diff options
Diffstat (limited to 'src')
95 files changed, 26080 insertions, 32551 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 580f35bf..4931d673 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,12 @@ +2008-11-20 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/coerce.spad.pamphlet (CoercibleFrom): New. + (ConvertibleFrom): Likewise. + (RetractableTo): Use it. + * algebra/Makefile.pamphlet (axiom_algebra_layer_0): Include + KRCFROM and KVTFROM. + * share/algebra/: Update databases. + 2008-11-18 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/sys-utility.boot (loadExports): New. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 7d0e7223..0e9b9f99 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -356,6 +356,7 @@ axiom_algebra_bootstrap_objects = \ axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ + KRCFROM KVTFROM \ MSYSCMD OM OMCONN OMDEV OUT \ PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \ PROPERTY BASTYPE BASTYPE- CATEGORY LMODULE \ diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index f6156809..28f9ad4e 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -185,6 +185,7 @@ system.spad.pamphlet (MSYSCMD) axiom_algebra_layer_0 = \ AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \ + KRCFROM KVTFROM \ MSYSCMD OM OMCONN OMDEV OUT \ PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \ PROPERTY BASTYPE BASTYPE- CATEGORY LMODULE \ diff --git a/src/algebra/coerce.spad.pamphlet b/src/algebra/coerce.spad.pamphlet index f270bba6..8176377a 100644 --- a/src/algebra/coerce.spad.pamphlet +++ b/src/algebra/coerce.spad.pamphlet @@ -1,15 +1,20 @@ \documentclass{article} \usepackage{axiom} -\begin{document} + \title{\$SPAD/src/algebra coerce.spad} \author{Richard Jenks, Manuel Bronstein, Gabriel Dos Reis} + + +\begin{document} + \maketitle \begin{abstract} \end{abstract} -\eject \tableofcontents \eject + \section{category TYPE Type} + <<category TYPE Type>>= )abbrev category TYPE Type ++ The new fundamental Type (keeping Object for 1.5 as well) @@ -39,6 +44,7 @@ UnionType(): Category == with nil \section{category KOERCE CoercibleTo} + <<category KOERCE CoercibleTo>>= )abbrev category KOERCE CoercibleTo ++ Category for coerce @@ -53,7 +59,28 @@ CoercibleTo(S:Type): Category == with ++ coerce(a) transforms a into an element of S. @ + +\section{category KRCFROM CoercibleFrom} + +<<category KRCFROM CoercibleFrom>>= +)abbrev category KRCFROM CoercibleFrom +++ Author: Gabriel Dos Reis +++ Date Create: November 19, 2008 +++ Date Last Modified: November 19, 2008 +++ See Also: CoercibleTo +++ Description: +++ A is coercible from B iff any element of domain B can be +++ automically converted into an element of domain B. In symbols +++ A has CoercibleFrom B <=> B has CoercibleTo A +CoercibleFrom(S: Type): Category == with + coerce: S -> % + ++ coerce(s) transforms `s' into an element of `%'. + +@ + + \section{category KONVERT ConvertibleTo} + <<category KONVERT ConvertibleTo>>= )abbrev category KONVERT ConvertibleTo ++ Category for convert @@ -69,20 +96,43 @@ ConvertibleTo(S:Type): Category == with ++ convert(a) transforms a into an element of S. @ + +\section{category KVTFROM ConvertibleFrom} + +<<category KVTFROM ConvertibleFrom>>= +)abbrev category KVTFROM ConvertibleFrom +++ Author: Gabriel Dos Reis +++ Date Create: November 19, 2008 +++ Date Last Modified: November 19, 2008 +++ See Also: ConvertibleTo +++ Description: +++ A is convertible from B iff any element of domain B can be +++ explicitly converted into an element of domain B. In symbols +++ A has ConvertibleFrom B <=> B has ConvertibleTo A +ConvertibleFrom(S: Type): Category == with + convert: S -> % + ++ convert(s) transforms `s' into an element of `%'. + +@ + + + + + \section{category RETRACT RetractableTo} + <<category RETRACT RetractableTo>>= )abbrev category RETRACT RetractableTo ++ Category for retract ++ Author: ??? ++ Date Created: ??? -++ Date Last Updated: 14 May 1991 +++ Date Last Updated: November 19, 2008 +++ Related Constructor: CoercibleFrom ++ Description: ++ A is retractable to B means that some elementsif A can be converted ++ into elements of B and any element of B can be converted into an ++ element of A. -RetractableTo(S: Type): Category == with - coerce: S -> % - ++ coerce(a) transforms a into an element of %. +RetractableTo(S: Type): Category == CoercibleFrom S with retractIfCan: % -> Union(S,"failed") ++ retractIfCan(a) transforms a into an element of S if possible. ++ Returns "failed" if a cannot be made into an element of S. @@ -95,10 +145,14 @@ RetractableTo(S: Type): Category == with u @ + \section{License} + <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. +--Copyright (C) 2007-2008, Gabriel Dos Reis. +--All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are @@ -134,7 +188,9 @@ RetractableTo(S: Type): Category == with <<category TYPE Type>> <<category UTYPE UnionType>> <<category KOERCE CoercibleTo>> +<<category KRCFROM CoercibleFrom>> <<category KONVERT ConvertibleTo>> +<<category KVTFROM ConvertibleFrom>> <<category RETRACT RetractableTo>> @ \eject diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 4b434a9d..f0cf420e 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -603,6 +603,7 @@ (|CancellationAbelianMonoid| . CABMON) (|CharacteristicNonZero| . CHARNZ) (|CharacteristicZero| . CHARZ) + (|CoercibleFrom| . KRCFROM) (|CoercibleTo| . KOERCE) (|Collection| . CLAGG) (|CombinatorialFunctionCategory| . CFCAT) @@ -610,6 +611,7 @@ (|CommutativeRing| . COMRING) (|ComplexCategory| . COMPCAT) (|Conduit| . CONDUIT) + (|ConvertibleFrom| . KVTFROM) (|ConvertibleTo| . KONVERT) (|DequeueAggregate| . DQAGG) (|Dictionary| . DIAGG) diff --git a/src/algebra/strap/ABELGRP-.lsp b/src/algebra/strap/ABELGRP-.lsp index 2fdeec9b..dc10e8f6 100644 --- a/src/algebra/strap/ABELGRP-.lsp +++ b/src/algebra/strap/ABELGRP-.lsp @@ -68,38 +68,3 @@ 0 0 13 0 21 2 0 11 0 0 12 2 0 0 0 0 9 2 0 0 13 0 21 2 0 0 15 0 16))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|AbelianGroup&| '|isFunctor| - '(((* ($ (|Integer|) $)) T (ELT $ 21)) - ((- ($ $ $)) T (ELT $ 9)) ((- ($ $)) T (ELT $ NIL)) - ((|subtractIfCan| ((|Union| $ "failed") $ $)) T - (ELT $ 12)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ 16)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL))) - (|addModemap| '|AbelianGroup&| '(|AbelianGroup&| |#1|) - '((CATEGORY |domain| - (SIGNATURE * (|#1| (|Integer|) |#1|)) - (SIGNATURE - (|#1| |#1| |#1|)) - (SIGNATURE - (|#1| |#1|)) - (SIGNATURE |subtractIfCan| - ((|Union| |#1| "failed") |#1| |#1|)) - (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) - (|AbelianGroup|)) - T '|AbelianGroup&| - (|put| '|AbelianGroup&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE * (|#1| (|Integer|) |#1|)) - (SIGNATURE - (|#1| |#1| |#1|)) - (SIGNATURE - (|#1| |#1|)) - (SIGNATURE |subtractIfCan| - ((|Union| |#1| "failed") |#1| - |#1|)) - (SIGNATURE * - (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE * - (|#1| (|PositiveInteger|) |#1|))) - (|AbelianGroup|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/ABELGRP.lsp b/src/algebra/strap/ABELGRP.lsp index dd8da1ef..e2f7daf4 100644 --- a/src/algebra/strap/ABELGRP.lsp +++ b/src/algebra/strap/ABELGRP.lsp @@ -13,7 +13,7 @@ ((* ($ (|Integer|) $)) T)) NIL '((|Integer|)) NIL)) |AbelianGroup|) - (SETELT #0# 0 '(|AbelianGroup|)))))) + (|setShellEntry| #0# 0 '(|AbelianGroup|)))))) (DEFUN |AbelianGroup| () (LET () @@ -21,9 +21,4 @@ (|AbelianGroup;AL|) (T (SETQ |AbelianGroup;AL| (|AbelianGroup;|)))))) -(SETQ |$CategoryFrame| - (|put| '|AbelianGroup| '|isCategory| T - (|addModemap| '|AbelianGroup| '(|AbelianGroup|) - '((|Category|)) T '|AbelianGroup| |$CategoryFrame|))) - (MAKEPROP '|AbelianGroup| 'NILADIC T) diff --git a/src/algebra/strap/ABELMON-.lsp b/src/algebra/strap/ABELMON-.lsp index 1c1cdd43..bfdc7eee 100644 --- a/src/algebra/strap/ABELMON-.lsp +++ b/src/algebra/strap/ABELMON-.lsp @@ -61,29 +61,3 @@ 16 6 13 6 17 2 0 0 11 0 18 1 0 8 0 10 0 0 0 15 2 0 0 11 0 18 2 0 0 13 0 14))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|AbelianMonoid&| '|isFunctor| - '(((* ($ (|NonNegativeInteger|) $)) T (ELT $ 18)) - ((|zero?| ((|Boolean|) $)) T (ELT $ 10)) - ((|sample| ($)) T (ELT $ 15)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ 14))) - (|addModemap| '|AbelianMonoid&| '(|AbelianMonoid&| |#1|) - '((CATEGORY |domain| - (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE |zero?| ((|Boolean|) |#1|)) - (SIGNATURE |sample| (|#1|)) - (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) - (|AbelianMonoid|)) - T '|AbelianMonoid&| - (|put| '|AbelianMonoid&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE * - (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE |zero?| ((|Boolean|) |#1|)) - (SIGNATURE |sample| (|#1|)) - (SIGNATURE * - (|#1| (|PositiveInteger|) |#1|))) - (|AbelianMonoid|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/ABELMON.lsp b/src/algebra/strap/ABELMON.lsp index f0eaa266..af28662b 100644 --- a/src/algebra/strap/ABELMON.lsp +++ b/src/algebra/strap/ABELMON.lsp @@ -17,7 +17,7 @@ '((|NonNegativeInteger|) (|Boolean|)) NIL)) |AbelianMonoid|) - (SETELT #0# 0 '(|AbelianMonoid|)))))) + (|setShellEntry| #0# 0 '(|AbelianMonoid|)))))) (DEFUN |AbelianMonoid| () (LET () @@ -25,9 +25,4 @@ (|AbelianMonoid;AL|) (T (SETQ |AbelianMonoid;AL| (|AbelianMonoid;|)))))) -(SETQ |$CategoryFrame| - (|put| '|AbelianMonoid| '|isCategory| T - (|addModemap| '|AbelianMonoid| '(|AbelianMonoid|) - '((|Category|)) T '|AbelianMonoid| |$CategoryFrame|))) - (MAKEPROP '|AbelianMonoid| 'NILADIC T) diff --git a/src/algebra/strap/ABELSG-.lsp b/src/algebra/strap/ABELSG-.lsp index a248d398..9391dd77 100644 --- a/src/algebra/strap/ABELSG-.lsp +++ b/src/algebra/strap/ABELSG-.lsp @@ -38,20 +38,3 @@ '(2 8 6 7 6 9 2 0 0 7 0 10 2 0 0 7 0 10))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|AbelianSemiGroup&| '|isFunctor| - '(((* ($ (|PositiveInteger|) $)) T (ELT $ 10))) - (|addModemap| '|AbelianSemiGroup&| - '(|AbelianSemiGroup&| |#1|) - '((CATEGORY |domain| - (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) - (|AbelianSemiGroup|)) - T '|AbelianSemiGroup&| - (|put| '|AbelianSemiGroup&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE * - (|#1| (|PositiveInteger|) |#1|))) - (|AbelianSemiGroup|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/ABELSG.lsp b/src/algebra/strap/ABELSG.lsp index 7c2a2a7d..062071e2 100644 --- a/src/algebra/strap/ABELSG.lsp +++ b/src/algebra/strap/ABELSG.lsp @@ -13,7 +13,7 @@ ((* ($ (|PositiveInteger|) $)) T)) NIL '((|PositiveInteger|)) NIL)) |AbelianSemiGroup|) - (SETELT #0# 0 '(|AbelianSemiGroup|)))))) + (|setShellEntry| #0# 0 '(|AbelianSemiGroup|)))))) (DEFUN |AbelianSemiGroup| () (LET () @@ -21,10 +21,4 @@ (|AbelianSemiGroup;AL|) (T (SETQ |AbelianSemiGroup;AL| (|AbelianSemiGroup;|)))))) -(SETQ |$CategoryFrame| - (|put| '|AbelianSemiGroup| '|isCategory| T - (|addModemap| '|AbelianSemiGroup| '(|AbelianSemiGroup|) - '((|Category|)) T '|AbelianSemiGroup| - |$CategoryFrame|))) - (MAKEPROP '|AbelianSemiGroup| 'NILADIC T) diff --git a/src/algebra/strap/ALAGG.lsp b/src/algebra/strap/ALAGG.lsp index 16c80bd0..8d0f1fea 100644 --- a/src/algebra/strap/ALAGG.lsp +++ b/src/algebra/strap/ALAGG.lsp @@ -34,9 +34,9 @@ T)) NIL 'NIL NIL)) . #2=(|AssociationListAggregate|)))))) . #2#) - (SETELT #0# 0 - (LIST '|AssociationListAggregate| (|devaluate| |t#1|) - (|devaluate| |t#2|))))))) + (|setShellEntry| #0# 0 + (LIST '|AssociationListAggregate| (|devaluate| |t#1|) + (|devaluate| |t#2|))))))) (DEFUN |AssociationListAggregate| (&REST #0=#:G1402 &AUX #1=#:G1400) (DSETQ #1# #0#) @@ -53,10 +53,3 @@ #'|AssociationListAggregate;| #1#))) |AssociationListAggregate;AL|)) #2#)))) - -(SETQ |$CategoryFrame| - (|put| '|AssociationListAggregate| '|isCategory| T - (|addModemap| '|AssociationListAggregate| - '(|AssociationListAggregate| |#1| |#2|) - '((|Category|) (|SetCategory|) (|SetCategory|)) T - '|AssociationListAggregate| |$CategoryFrame|))) diff --git a/src/algebra/strap/BOOLEAN.lsp b/src/algebra/strap/BOOLEAN.lsp index 693fc054..1e367244 100644 --- a/src/algebra/strap/BOOLEAN.lsp +++ b/src/algebra/strap/BOOLEAN.lsp @@ -220,62 +220,4 @@ 0 0 1 2 0 18 0 0 22 2 0 0 0 0 12))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|Boolean| '|isFunctor| - '(((|test| ($ $)) T (ELT $ 6)) - ((|nor| ($ $ $)) T (ELT $ 16)) - ((|nand| ($ $ $)) T (ELT $ 17)) - ((|xor| ($ $ $)) T (ELT $ 15)) - ((|false| ($)) T (CONST $ 8)) - ((|true| ($)) T (CONST $ 7)) - ((|convert| ((|InputForm|) $)) T (ELT $ 36)) - ((|not| ($ $)) T (ELT $ 9)) - ((|and| ($ $ $)) T (ELT $ 11)) - ((|or| ($ $ $)) T (ELT $ 13)) - ((|implies| ($ $ $)) T (ELT $ 20)) - ((|equiv| ($ $ $)) T (ELT $ 21)) - ((~ ($ $)) T (ELT $ 10)) ((|/\\| ($ $ $)) T (ELT $ 12)) - ((|\\/| ($ $ $)) T (ELT $ 14)) - ((|size| ((|NonNegativeInteger|))) T (ELT $ 24)) - ((|index| ($ (|PositiveInteger|))) T (ELT $ 28)) - ((|lookup| ((|PositiveInteger|) $)) T (ELT $ 29)) - ((|random| ($)) T (ELT $ 30)) - ((|min| ($ $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 22)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 39)) - ((= ((|Boolean|) $ $)) T (ELT $ 19)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|Boolean| '(|Boolean|) - '((|Join| (|OrderedFinite|) (|Logic|) - (|PropositionalLogic|) - (|ConvertibleTo| (|InputForm|)) - (CATEGORY |domain| - (SIGNATURE |true| ($) |constant|) - (SIGNATURE |false| ($) |constant|) - (SIGNATURE |xor| ($ $ $)) - (SIGNATURE |nand| ($ $ $)) - (SIGNATURE |nor| ($ $ $)) - (SIGNATURE |test| ($ $))))) - T '|Boolean| - (|put| '|Boolean| '|mode| - '(|Mapping| - (|Join| (|OrderedFinite|) (|Logic|) - (|PropositionalLogic|) - (|ConvertibleTo| (|InputForm|)) - (CATEGORY |domain| - (SIGNATURE |true| ($) |constant|) - (SIGNATURE |false| ($) - |constant|) - (SIGNATURE |xor| ($ $ $)) - (SIGNATURE |nand| ($ $ $)) - (SIGNATURE |nor| ($ $ $)) - (SIGNATURE |test| ($ $))))) - |$CategoryFrame|)))) - (MAKEPROP '|Boolean| 'NILADIC T) diff --git a/src/algebra/strap/CABMON.lsp b/src/algebra/strap/CABMON.lsp index a95397c0..11a8f26a 100644 --- a/src/algebra/strap/CABMON.lsp +++ b/src/algebra/strap/CABMON.lsp @@ -14,7 +14,7 @@ T)) NIL 'NIL NIL)) |CancellationAbelianMonoid|) - (SETELT #0# 0 '(|CancellationAbelianMonoid|)))))) + (|setShellEntry| #0# 0 '(|CancellationAbelianMonoid|)))))) (DEFUN |CancellationAbelianMonoid| () (LET () @@ -23,10 +23,4 @@ (T (SETQ |CancellationAbelianMonoid;AL| (|CancellationAbelianMonoid;|)))))) -(SETQ |$CategoryFrame| - (|put| '|CancellationAbelianMonoid| '|isCategory| T - (|addModemap| '|CancellationAbelianMonoid| - '(|CancellationAbelianMonoid|) '((|Category|)) T - '|CancellationAbelianMonoid| |$CategoryFrame|))) - (MAKEPROP '|CancellationAbelianMonoid| 'NILADIC T) diff --git a/src/algebra/strap/CHAR.lsp b/src/algebra/strap/CHAR.lsp index f6d4583e..b04e065f 100644 --- a/src/algebra/strap/CHAR.lsp +++ b/src/algebra/strap/CHAR.lsp @@ -236,85 +236,4 @@ 0 1 2 0 6 0 0 8))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|Character| '|isFunctor| - '(((|alphanumeric?| ((|Boolean|) $)) T (ELT $ 36)) - ((|lowerCase?| ((|Boolean|) $)) T (ELT $ 32)) - ((|upperCase?| ((|Boolean|) $)) T (ELT $ 30)) - ((|alphabetic?| ((|Boolean|) $)) T (ELT $ 34)) - ((|hexDigit?| ((|Boolean|) $)) T (ELT $ 28)) - ((|digit?| ((|Boolean|) $)) T (ELT $ 26)) - ((|lowerCase| ($ $)) T (ELT $ 44)) - ((|upperCase| ($ $)) T (ELT $ 43)) - ((|escape| ($)) T (ELT $ 19)) - ((|quote| ($)) T (ELT $ 18)) - ((|space| ($)) T (ELT $ 17)) - ((|char| ($ (|String|))) T (ELT $ 42)) - ((|char| ($ (|NonNegativeInteger|))) T (ELT $ 11)) - ((|ord| ((|NonNegativeInteger|) $)) T (ELT $ 14)) - ((|size| ((|NonNegativeInteger|))) T (ELT $ 10)) - ((|index| ($ (|PositiveInteger|))) T (ELT $ 13)) - ((|lookup| ((|PositiveInteger|) $)) T (ELT $ 15)) - ((|random| ($)) T (ELT $ 16)) - ((|min| ($ $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 8)) - ((|latex| ((|String|) $)) T (ELT $ 38)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 21)) - ((= ((|Boolean|) $ $)) T (ELT $ 7)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|Character| '(|Character|) - '((|Join| (|OrderedFinite|) - (CATEGORY |domain| - (SIGNATURE |ord| - ((|NonNegativeInteger|) $)) - (SIGNATURE |char| - ($ (|NonNegativeInteger|))) - (SIGNATURE |char| ($ (|String|))) - (SIGNATURE |space| ($)) - (SIGNATURE |quote| ($)) - (SIGNATURE |escape| ($)) - (SIGNATURE |upperCase| ($ $)) - (SIGNATURE |lowerCase| ($ $)) - (SIGNATURE |digit?| ((|Boolean|) $)) - (SIGNATURE |hexDigit?| ((|Boolean|) $)) - (SIGNATURE |alphabetic?| - ((|Boolean|) $)) - (SIGNATURE |upperCase?| ((|Boolean|) $)) - (SIGNATURE |lowerCase?| ((|Boolean|) $)) - (SIGNATURE |alphanumeric?| - ((|Boolean|) $))))) - T '|Character| - (|put| '|Character| '|mode| - '(|Mapping| - (|Join| (|OrderedFinite|) - (CATEGORY |domain| - (SIGNATURE |ord| - ((|NonNegativeInteger|) $)) - (SIGNATURE |char| - ($ (|NonNegativeInteger|))) - (SIGNATURE |char| ($ (|String|))) - (SIGNATURE |space| ($)) - (SIGNATURE |quote| ($)) - (SIGNATURE |escape| ($)) - (SIGNATURE |upperCase| ($ $)) - (SIGNATURE |lowerCase| ($ $)) - (SIGNATURE |digit?| - ((|Boolean|) $)) - (SIGNATURE |hexDigit?| - ((|Boolean|) $)) - (SIGNATURE |alphabetic?| - ((|Boolean|) $)) - (SIGNATURE |upperCase?| - ((|Boolean|) $)) - (SIGNATURE |lowerCase?| - ((|Boolean|) $)) - (SIGNATURE |alphanumeric?| - ((|Boolean|) $))))) - |$CategoryFrame|)))) - (MAKEPROP '|Character| 'NILADIC T) diff --git a/src/algebra/strap/CLAGG-.lsp b/src/algebra/strap/CLAGG-.lsp index 4b61a7db..09d47ce4 100644 --- a/src/algebra/strap/CLAGG-.lsp +++ b/src/algebra/strap/CLAGG-.lsp @@ -268,107 +268,3 @@ 13 0 16 2 0 10 13 0 14 2 0 12 13 0 15 1 0 10 0 11))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|Collection&| '|isFunctor| - '(((|removeDuplicates| ($ $)) T (ELT $ 36)) - ((|remove| ($ |#2| $)) T (ELT $ 32)) - ((|reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|)) - T (ELT $ 34)) - ((|select| ($ (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 29)) - ((|remove| ($ (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 27)) - ((|reduce| (|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|)) T - (ELT $ 24)) - ((|reduce| (|#2| (|Mapping| |#2| |#2| |#2|) $)) T - (ELT $ 22)) - ((|find| ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 19)) - ((|count| ((|NonNegativeInteger|) |#2| $)) T - (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 14)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 16)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 15)) - ((|#| ((|NonNegativeInteger|) $)) T (ELT $ 11))) - (|addModemap| '|Collection&| '(|Collection&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |removeDuplicates| (|#1| |#1|)) - (SIGNATURE |remove| (|#1| |#2| |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| - |#2|)) - (SIGNATURE |select| - (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |remove| - (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) - (SIGNATURE |find| - ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) |#2| |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |every?| - ((|Boolean|) (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |any?| - ((|Boolean|) (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) - (|Collection| |#2|) (|Type|)) - T '|Collection&| - (|put| '|Collection&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |removeDuplicates| - (|#1| |#1|)) - (SIGNATURE |remove| (|#1| |#2| |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1| |#2| |#2|)) - (SIGNATURE |select| - (|#1| (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |remove| - (|#1| (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1| |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1|)) - (SIGNATURE |find| - ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) |#2| |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |every?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |any?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |#| - ((|NonNegativeInteger|) |#1|))) - (|Collection| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/CLAGG.lsp b/src/algebra/strap/CLAGG.lsp index 6ec49d46..a7cff743 100644 --- a/src/algebra/strap/CLAGG.lsp +++ b/src/algebra/strap/CLAGG.lsp @@ -90,7 +90,8 @@ (|InputForm|))))) '((|List| |t#1|)) NIL)) . #1=(|Collection|))))) . #1#) - (SETELT #0# 0 (LIST '|Collection| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|Collection| (|devaluate| |t#1|))))))) (DEFUN |Collection| (#0=#:G1398) (LET (#1=#:G1399) @@ -102,9 +103,3 @@ (SETQ #1# (|Collection;| #0#))) |Collection;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|Collection| '|isCategory| T - (|addModemap| '|Collection| '(|Collection| |#1|) - '((|Category|) (|Type|)) T '|Collection| - |$CategoryFrame|))) diff --git a/src/algebra/strap/COMRING.lsp b/src/algebra/strap/COMRING.lsp index 6bf0118a..01ad8233 100644 --- a/src/algebra/strap/COMRING.lsp +++ b/src/algebra/strap/COMRING.lsp @@ -11,7 +11,7 @@ (|mkCategory| '|package| NIL '(((|commutative| "*") T)) 'NIL NIL)) |CommutativeRing|) - (SETELT #0# 0 '(|CommutativeRing|)))))) + (|setShellEntry| #0# 0 '(|CommutativeRing|)))))) (DEFUN |CommutativeRing| () (LET () @@ -19,9 +19,4 @@ (|CommutativeRing;AL|) (T (SETQ |CommutativeRing;AL| (|CommutativeRing;|)))))) -(SETQ |$CategoryFrame| - (|put| '|CommutativeRing| '|isCategory| T - (|addModemap| '|CommutativeRing| '(|CommutativeRing|) - '((|Category|)) T '|CommutativeRing| |$CategoryFrame|))) - (MAKEPROP '|CommutativeRing| 'NILADIC T) diff --git a/src/algebra/strap/DFLOAT.lsp b/src/algebra/strap/DFLOAT.lsp index 1123d4d0..57f96e29 100644 --- a/src/algebra/strap/DFLOAT.lsp +++ b/src/algebra/strap/DFLOAT.lsp @@ -696,9 +696,8 @@ (GO #0#)))) (LETT |me| (MANEXP |x|) |DFLOAT;manexp|) (LETT |two53| - (SPADCALL (FLOAT-RADIX 0.0) - (FLOAT-DIGITS 0.0) - (|getShellEntry| $ 117)) + (EXPT (FLOAT-RADIX 0.0) + (FLOAT-DIGITS 0.0)) |DFLOAT;manexp|) (EXIT (CONS (* |s| (FIX (* |two53| (QCAR |me|)))) @@ -706,9 +705,9 @@ #0# (EXIT #0#))))) (DEFUN |DFLOAT;rationalApproximation;$2NniF;83| (|f| |d| |b| $) - (PROG (|#G102| |nu| |ex| BASE #0=#:G1525 |de| |tol| |#G103| |q| |r| - |p2| |q2| #1=#:G1541 |#G104| |#G105| |p0| |p1| |#G106| - |#G107| |q0| |q1| |#G108| |#G109| |s| |t| #2=#:G1539) + (PROG (|#G102| |nu| |ex| BASE #0=#:G1526 |de| |tol| |#G103| |q| |r| + |p2| |q2| #1=#:G1544 |#G104| |#G105| |p0| |p1| |#G106| + |#G107| |q0| |q1| |#G108| |#G109| |s| |t| #2=#:G1542) (RETURN (SEQ (EXIT (SEQ (PROGN (LETT |#G102| (|DFLOAT;manexp| |f| $) @@ -776,14 +775,14 @@ (- (* |nu| |q2|) (* |de| |p2|))) (|getShellEntry| $ - 120)) + 119)) (* |de| (ABS |p2|)))) (EXIT (PROGN (LETT #1# (SPADCALL |p2| |q2| (|getShellEntry| $ - 119)) + 118)) |DFLOAT;rationalApproximation;$2NniF;83|) (GO #1#))))) (PROGN @@ -825,36 +824,36 @@ |DFLOAT;rationalApproximation;$2NniF;83|) (|check-subtype| (>= #2# 0) '(|NonNegativeInteger|) #2#)))) - (|getShellEntry| $ 121))))))) + (|getShellEntry| $ 120))))))) #1# (EXIT #1#))))) (DEFUN |DFLOAT;**;$F$;84| (|x| |r| $) - (PROG (|n| |d| #0=#:G1550) + (PROG (|n| |d| #0=#:G1553) (RETURN (SEQ (EXIT (COND ((ZEROP |x|) (COND - ((SPADCALL |r| (|getShellEntry| $ 122)) + ((SPADCALL |r| (|getShellEntry| $ 121)) (|error| "0**0 is undefined")) - ((SPADCALL |r| (|getShellEntry| $ 123)) + ((SPADCALL |r| (|getShellEntry| $ 122)) (|error| "division by 0")) ('T 0.0))) - ((OR (SPADCALL |r| (|getShellEntry| $ 122)) + ((OR (SPADCALL |r| (|getShellEntry| $ 121)) (= |x| 1.0)) 1.0) ('T (COND - ((SPADCALL |r| (|spadConstant| $ 124) - (|getShellEntry| $ 125)) + ((SPADCALL |r| (|spadConstant| $ 123) + (|getShellEntry| $ 124)) |x|) ('T (SEQ (LETT |n| (SPADCALL |r| - (|getShellEntry| $ 126)) + (|getShellEntry| $ 125)) |DFLOAT;**;$F$;84|) (LETT |d| (SPADCALL |r| - (|getShellEntry| $ 127)) + (|getShellEntry| $ 126)) |DFLOAT;**;$F$;84|) (EXIT (COND ((MINUSP |x|) @@ -893,7 +892,7 @@ (DEFUN |DoubleFloat| () (PROG () (RETURN - (PROG (#0=#:G1563) + (PROG (#0=#:G1566) (RETURN (COND ((LETT #0# (HGET |$ConstructorCache| '|DoubleFloat|) @@ -914,7 +913,7 @@ (RETURN (PROGN (LETT |dv$| '(|DoubleFloat|) . #0=(|DoubleFloat|)) - (LETT $ (|newShell| 141) . #0#) + (LETT $ (|newShell| 140) . #0#) (|setShellEntry| $ 0 |dv$|) (|setShellEntry| $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) @@ -975,45 +974,45 @@ (|Union| 104 '"failed") |DFLOAT;retractIfCan;$U;77| |DFLOAT;retract;$I;78| (|Union| 24 '"failed") |DFLOAT;retractIfCan;$U;79| |DFLOAT;sign;$I;80| - |DFLOAT;abs;2$;81| (63 . **) (69 . |Zero|) (73 . /) - (79 . *) (85 . |coerce|) (90 . |zero?|) (95 . |negative?|) - (100 . |One|) (104 . =) (110 . |numer|) (115 . |denom|) + |DFLOAT;abs;2$;81| (63 . |Zero|) (67 . /) (73 . *) + (79 . |coerce|) (84 . |zero?|) (89 . |negative?|) + (94 . |One|) (98 . =) (104 . |numer|) (109 . |denom|) |DFLOAT;**;$F$;84| (|PatternMatchResult| 101 $) (|Pattern| 101) (|Factored| $) (|Record| (|:| |coef1| $) (|:| |coef2| $)) - (|Union| 132 '"failed") (|List| $) (|Union| 134 '"failed") + (|Union| 131 '"failed") (|List| $) (|Union| 133 '"failed") (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) (|Record| (|:| |quotient| $) (|:| |remainder| $)) (|SparseUnivariatePolynomial| $) - (|Record| (|:| |coef| 134) (|:| |generator| $)) + (|Record| (|:| |coef| 133) (|:| |generator| $)) (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $))) - '#(~= 120 |zero?| 126 |wholePart| 131 |unitNormal| 136 - |unitCanonical| 141 |unit?| 146 |truncate| 151 |tanh| 156 - |tan| 161 |subtractIfCan| 166 |squareFreePart| 172 - |squareFree| 177 |sqrt| 182 |sizeLess?| 187 |sinh| 193 - |sin| 198 |sign| 203 |sech| 208 |sec| 213 |sample| 218 - |round| 222 |retractIfCan| 227 |retract| 237 |rem| 247 - |recip| 253 |rationalApproximation| 258 |quo| 271 - |principalIdeal| 277 |prime?| 282 |precision| 287 - |positive?| 291 |pi| 296 |patternMatch| 300 |order| 307 - |one?| 312 |nthRoot| 317 |norm| 323 |negative?| 328 - |multiEuclidean| 333 |min| 339 |max| 349 |mantissa| 359 - |log2| 364 |log10| 369 |log| 374 |lcm| 379 |latex| 390 - |inv| 395 |hash| 400 |gcdPolynomial| 405 |gcd| 411 - |fractionPart| 422 |floor| 427 |float| 432 |factor| 445 - |extendedEuclidean| 450 |exquo| 463 |expressIdealMember| - 469 |exponent| 475 |exp1| 480 |exp| 484 |euclideanSize| - 489 |divide| 494 |digits| 500 |differentiate| 504 |csch| - 515 |csc| 520 |coth| 525 |cot| 530 |cosh| 535 |cos| 540 - |convert| 545 |coerce| 565 |characteristic| 595 |ceiling| - 599 |bits| 604 |base| 608 |atanh| 612 |atan| 617 - |associates?| 628 |asinh| 634 |asin| 639 |asech| 644 - |asec| 649 |acsch| 654 |acsc| 659 |acoth| 664 |acot| 669 - |acosh| 674 |acos| 679 |abs| 684 |Zero| 689 |One| 693 - |OMwrite| 697 |Gamma| 721 D 726 |Beta| 737 >= 743 > 749 = - 755 <= 761 < 767 / 773 - 785 + 796 ** 802 * 832) + '#(~= 114 |zero?| 120 |wholePart| 125 |unitNormal| 130 + |unitCanonical| 135 |unit?| 140 |truncate| 145 |tanh| 150 + |tan| 155 |subtractIfCan| 160 |squareFreePart| 166 + |squareFree| 171 |sqrt| 176 |sizeLess?| 181 |sinh| 187 + |sin| 192 |sign| 197 |sech| 202 |sec| 207 |sample| 212 + |round| 216 |retractIfCan| 221 |retract| 231 |rem| 241 + |recip| 247 |rationalApproximation| 252 |quo| 265 + |principalIdeal| 271 |prime?| 276 |precision| 281 + |positive?| 285 |pi| 290 |patternMatch| 294 |order| 301 + |one?| 306 |nthRoot| 311 |norm| 317 |negative?| 322 + |multiEuclidean| 327 |min| 333 |max| 343 |mantissa| 353 + |log2| 358 |log10| 363 |log| 368 |lcm| 373 |latex| 384 + |inv| 389 |hash| 394 |gcdPolynomial| 399 |gcd| 405 + |fractionPart| 416 |floor| 421 |float| 426 |factor| 439 + |extendedEuclidean| 444 |exquo| 457 |expressIdealMember| + 463 |exponent| 469 |exp1| 474 |exp| 478 |euclideanSize| + 483 |divide| 488 |digits| 494 |differentiate| 498 |csch| + 509 |csc| 514 |coth| 519 |cot| 524 |cosh| 529 |cos| 534 + |convert| 539 |coerce| 559 |characteristic| 589 |ceiling| + 593 |bits| 598 |base| 602 |atanh| 606 |atan| 611 + |associates?| 622 |asinh| 628 |asin| 633 |asech| 638 + |asec| 643 |acsch| 648 |acsc| 653 |acoth| 658 |acot| 663 + |acosh| 668 |acos| 673 |abs| 678 |Zero| 683 |One| 687 + |OMwrite| 691 |Gamma| 715 D 720 |Beta| 731 >= 737 > 743 = + 749 <= 755 < 761 / 767 - 779 + 790 ** 796 * 826) '((|approximate| . 0) (|canonicalsClosed| . 0) (|canonicalUnitNormal| . 0) (|noZeroDivisors| . 0) ((|commutative| "*") . 0) (|rightUnitary| . 0) @@ -1021,7 +1020,7 @@ (CONS (|makeByteWordVec2| 1 '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0)) + 0 0 0 0 0 0 0 0)) (CONS '#(|FloatingPointSystem&| |RealNumberSystem&| |Field&| |EuclideanDomain&| NIL |UniqueFactorizationDomain&| |GcdDomain&| @@ -1038,8 +1037,8 @@ |HyperbolicFunctionCategory&| |ArcTrigonometricFunctionCategory&| |TrigonometricFunctionCategory&| NIL NIL - |RadicalCategory&| |RetractableTo&| - |RetractableTo&| NIL NIL |BasicType&| NIL) + |RadicalCategory&| |RetractableTo&| NIL + |RetractableTo&| NIL NIL NIL |BasicType&| NIL) (CONS '#((|FloatingPointSystem|) (|RealNumberSystem|) (|Field|) (|EuclideanDomain|) @@ -1072,321 +1071,71 @@ (|HyperbolicFunctionCategory|) (|ArcTrigonometricFunctionCategory|) (|TrigonometricFunctionCategory|) - (|OpenMath|) (|ConvertibleTo| 130) + (|OpenMath|) (|ConvertibleTo| 129) (|RadicalCategory|) (|RetractableTo| 104) + (|CoercibleFrom| 104) (|RetractableTo| 24) + (|CoercibleFrom| 24) (|ConvertibleTo| 101) (|ConvertibleTo| 13) (|BasicType|) (|CoercibleTo| 38)) - (|makeByteWordVec2| 140 + (|makeByteWordVec2| 139 '(0 6 0 7 2 9 0 8 6 10 1 9 11 0 12 2 9 11 0 13 14 1 9 11 0 15 1 9 11 0 16 2 0 0 22 0 29 1 38 0 13 39 1 41 0 13 42 1 93 13 13 94 2 93 13 13 13 96 1 101 - 0 13 102 2 24 0 0 22 117 0 104 0 118 - 2 104 0 24 24 119 2 24 0 105 0 120 1 - 104 0 24 121 1 104 18 0 122 1 104 18 - 0 123 0 104 0 124 2 104 18 0 0 125 1 - 104 24 0 126 1 104 24 0 127 2 0 18 0 - 0 1 1 0 18 0 87 1 0 24 0 98 1 0 140 0 - 1 1 0 0 0 1 1 0 18 0 1 1 0 0 0 1 1 0 - 0 0 75 1 0 0 0 63 2 0 90 0 0 1 1 0 0 - 0 1 1 0 131 0 1 1 0 0 0 54 2 0 18 0 0 - 1 1 0 0 0 73 1 0 0 0 61 1 0 24 0 115 - 1 0 0 0 78 1 0 0 0 65 0 0 0 1 1 0 0 0 - 1 1 0 110 0 111 1 0 113 0 114 1 0 104 - 0 109 1 0 24 0 112 2 0 0 0 0 1 1 0 90 - 0 91 2 0 104 0 105 107 3 0 104 0 105 - 105 106 2 0 0 0 0 1 1 0 139 134 1 1 0 - 18 0 1 0 0 22 27 1 0 18 0 1 0 0 0 37 - 3 0 129 0 130 129 1 1 0 24 0 33 1 0 - 18 0 1 2 0 0 0 24 1 1 0 0 0 1 1 0 18 - 0 86 2 0 135 134 0 1 0 0 0 32 2 0 0 0 - 0 51 0 0 0 31 2 0 0 0 0 50 1 0 24 0 - 25 1 0 0 0 28 1 0 0 0 55 1 0 0 0 60 2 - 0 0 0 0 1 1 0 0 134 1 1 0 8 0 1 1 0 0 - 0 1 1 0 88 0 89 2 0 138 138 138 1 1 0 - 0 134 1 2 0 0 0 0 1 1 0 0 0 1 1 0 0 0 - 1 3 0 0 24 24 22 99 2 0 0 24 24 1 1 0 - 131 0 1 3 0 133 0 0 0 1 2 0 136 0 0 1 - 2 0 90 0 0 1 2 0 135 134 0 1 1 0 24 0 - 26 0 0 0 36 1 0 0 0 59 1 0 105 0 1 2 - 0 137 0 0 1 0 0 22 1 1 0 0 0 92 2 0 0 - 0 105 1 1 0 0 0 76 1 0 0 0 66 1 0 0 0 - 77 1 0 0 0 64 1 0 0 0 74 1 0 0 0 62 1 - 0 41 0 43 1 0 130 0 1 1 0 101 0 103 1 - 0 13 0 100 1 0 0 104 1 1 0 0 24 58 1 - 0 0 104 1 1 0 0 24 58 1 0 0 0 1 1 0 - 38 0 40 0 0 105 1 1 0 0 0 1 0 0 22 30 - 0 0 22 23 1 0 0 0 81 2 0 0 0 0 108 1 - 0 0 0 69 2 0 18 0 0 1 1 0 0 0 79 1 0 - 0 0 67 1 0 0 0 84 1 0 0 0 72 1 0 0 0 - 82 1 0 0 0 70 1 0 0 0 83 1 0 0 0 71 1 - 0 0 0 80 1 0 0 0 68 1 0 0 0 116 0 0 0 - 34 0 0 0 35 2 0 11 9 0 20 3 0 11 9 0 - 18 21 1 0 8 0 17 2 0 8 0 18 19 1 0 0 - 0 95 1 0 0 0 1 2 0 0 0 105 1 2 0 0 0 - 0 97 2 0 18 0 0 1 2 0 18 0 0 1 2 0 18 - 0 0 52 2 0 18 0 0 1 2 0 18 0 0 44 2 0 - 0 0 24 53 2 0 0 0 0 85 2 0 0 0 0 47 1 - 0 0 0 45 2 0 0 0 0 46 2 0 0 0 0 57 2 - 0 0 0 104 128 2 0 0 0 24 56 2 0 0 0 - 105 1 2 0 0 0 22 1 2 0 0 104 0 1 2 0 - 0 0 104 1 2 0 0 0 0 48 2 0 0 24 0 49 - 2 0 0 105 0 1 2 0 0 22 0 29))))) + 0 13 102 0 104 0 117 2 104 0 24 24 + 118 2 24 0 105 0 119 1 104 0 24 120 1 + 104 18 0 121 1 104 18 0 122 0 104 0 + 123 2 104 18 0 0 124 1 104 24 0 125 1 + 104 24 0 126 2 0 18 0 0 1 1 0 18 0 87 + 1 0 24 0 98 1 0 139 0 1 1 0 0 0 1 1 0 + 18 0 1 1 0 0 0 1 1 0 0 0 75 1 0 0 0 + 63 2 0 90 0 0 1 1 0 0 0 1 1 0 130 0 1 + 1 0 0 0 54 2 0 18 0 0 1 1 0 0 0 73 1 + 0 0 0 61 1 0 24 0 115 1 0 0 0 78 1 0 + 0 0 65 0 0 0 1 1 0 0 0 1 1 0 110 0 + 111 1 0 113 0 114 1 0 104 0 109 1 0 + 24 0 112 2 0 0 0 0 1 1 0 90 0 91 2 0 + 104 0 105 107 3 0 104 0 105 105 106 2 + 0 0 0 0 1 1 0 138 133 1 1 0 18 0 1 0 + 0 22 27 1 0 18 0 1 0 0 0 37 3 0 128 0 + 129 128 1 1 0 24 0 33 1 0 18 0 1 2 0 + 0 0 24 1 1 0 0 0 1 1 0 18 0 86 2 0 + 134 133 0 1 0 0 0 32 2 0 0 0 0 51 0 0 + 0 31 2 0 0 0 0 50 1 0 24 0 25 1 0 0 0 + 28 1 0 0 0 55 1 0 0 0 60 2 0 0 0 0 1 + 1 0 0 133 1 1 0 8 0 1 1 0 0 0 1 1 0 + 88 0 89 2 0 137 137 137 1 1 0 0 133 1 + 2 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 3 0 0 + 24 24 22 99 2 0 0 24 24 1 1 0 130 0 1 + 3 0 132 0 0 0 1 2 0 135 0 0 1 2 0 90 + 0 0 1 2 0 134 133 0 1 1 0 24 0 26 0 0 + 0 36 1 0 0 0 59 1 0 105 0 1 2 0 136 0 + 0 1 0 0 22 1 1 0 0 0 92 2 0 0 0 105 1 + 1 0 0 0 76 1 0 0 0 66 1 0 0 0 77 1 0 + 0 0 64 1 0 0 0 74 1 0 0 0 62 1 0 41 0 + 43 1 0 129 0 1 1 0 101 0 103 1 0 13 0 + 100 1 0 0 104 1 1 0 0 24 58 1 0 0 104 + 1 1 0 0 24 58 1 0 0 0 1 1 0 38 0 40 0 + 0 105 1 1 0 0 0 1 0 0 22 30 0 0 22 23 + 1 0 0 0 81 2 0 0 0 0 108 1 0 0 0 69 2 + 0 18 0 0 1 1 0 0 0 79 1 0 0 0 67 1 0 + 0 0 84 1 0 0 0 72 1 0 0 0 82 1 0 0 0 + 70 1 0 0 0 83 1 0 0 0 71 1 0 0 0 80 1 + 0 0 0 68 1 0 0 0 116 0 0 0 34 0 0 0 + 35 2 0 11 9 0 20 3 0 11 9 0 18 21 1 0 + 8 0 17 2 0 8 0 18 19 1 0 0 0 95 1 0 0 + 0 1 2 0 0 0 105 1 2 0 0 0 0 97 2 0 18 + 0 0 1 2 0 18 0 0 1 2 0 18 0 0 52 2 0 + 18 0 0 1 2 0 18 0 0 44 2 0 0 0 24 53 + 2 0 0 0 0 85 2 0 0 0 0 47 1 0 0 0 45 + 2 0 0 0 0 46 2 0 0 0 0 57 2 0 0 0 104 + 127 2 0 0 0 24 56 2 0 0 0 105 1 2 0 0 + 0 22 1 2 0 0 104 0 1 2 0 0 0 104 1 2 + 0 0 0 0 48 2 0 0 24 0 49 2 0 0 105 0 + 1 2 0 0 22 0 29))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|DoubleFloat| '|isFunctor| - '(((|rationalApproximation| - ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) - (|NonNegativeInteger|))) - T (ELT $ 106)) - ((|rationalApproximation| - ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|))) - T (ELT $ 107)) - ((|Beta| ($ $ $)) T (ELT $ 97)) - ((|Gamma| ($ $)) T (ELT $ 95)) - ((|atan| ($ $ $)) T (ELT $ 108)) - ((|log10| ($ $)) T (ELT $ 55)) - ((|log2| ($ $)) T (ELT $ 28)) - ((|exp1| ($)) T (ELT $ 36)) - ((/ ($ $ (|Integer|))) T (ELT $ 53)) - ((|convert| ((|InputForm|) $)) T (ELT $ 43)) - ((|tan| ($ $)) T (ELT $ 63)) - ((|sin| ($ $)) T (ELT $ 61)) - ((|sec| ($ $)) T (ELT $ 65)) - ((|csc| ($ $)) T (ELT $ 66)) - ((|cot| ($ $)) T (ELT $ 64)) - ((|cos| ($ $)) T (ELT $ 62)) - ((|acos| ($ $)) T (ELT $ 68)) - ((|acot| ($ $)) T (ELT $ 71)) - ((|acsc| ($ $)) T (ELT $ 70)) - ((|asec| ($ $)) T (ELT $ 72)) - ((|asin| ($ $)) T (ELT $ 67)) - ((|atan| ($ $)) T (ELT $ 69)) - ((|cosh| ($ $)) T (ELT $ 74)) - ((|coth| ($ $)) T (ELT $ 77)) - ((|csch| ($ $)) T (ELT $ 76)) - ((|sech| ($ $)) T (ELT $ 78)) - ((|sinh| ($ $)) T (ELT $ 73)) - ((|tanh| ($ $)) T (ELT $ 75)) - ((|acosh| ($ $)) T (ELT $ 80)) - ((|acoth| ($ $)) T (ELT $ 83)) - ((|acsch| ($ $)) T (ELT $ 82)) - ((|asech| ($ $)) T (ELT $ 84)) - ((|asinh| ($ $)) T (ELT $ 79)) - ((|atanh| ($ $)) T (ELT $ 81)) - ((|log| ($ $)) T (ELT $ 60)) - ((|exp| ($ $)) T (ELT $ 59)) ((** ($ $ $)) T (ELT $ 57)) - ((|pi| ($)) T (ELT $ 37)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))) - T (ELT $ 21)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $)) T - (ELT $ 20)) - ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 19)) - ((|OMwrite| ((|String|) $)) T (ELT $ 17)) - ((|differentiate| ($ $)) T (ELT $ 92)) - ((D ($ $)) T (ELT $ NIL)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((D ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|max| ($)) - (AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) - (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) - (ELT $ 31)) - ((|min| ($)) - (AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) - (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) - (ELT $ 32)) - ((|decreasePrecision| ((|PositiveInteger|) (|Integer|))) - (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (ELT $ NIL)) - ((|increasePrecision| ((|PositiveInteger|) (|Integer|))) - (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (ELT $ NIL)) - ((|precision| ((|PositiveInteger|) (|PositiveInteger|))) - (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (ELT $ NIL)) - ((|digits| ((|PositiveInteger|) (|PositiveInteger|))) - (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (ELT $ NIL)) - ((|bits| ((|PositiveInteger|) (|PositiveInteger|))) - (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (ELT $ NIL)) - ((|precision| ((|PositiveInteger|))) T (ELT $ 27)) - ((|digits| ((|PositiveInteger|))) T (ELT $ NIL)) - ((|bits| ((|PositiveInteger|))) T (ELT $ 30)) - ((|mantissa| ((|Integer|) $)) T (ELT $ 25)) - ((|exponent| ((|Integer|) $)) T (ELT $ 26)) - ((|base| ((|PositiveInteger|))) T (ELT $ 23)) - ((|order| ((|Integer|) $)) T (ELT $ 33)) - ((|float| ($ (|Integer|) (|Integer|) - (|PositiveInteger|))) - T (ELT $ 99)) - ((|float| ($ (|Integer|) (|Integer|))) T (ELT $ NIL)) - ((|round| ($ $)) T (ELT $ NIL)) - ((|truncate| ($ $)) T (ELT $ NIL)) - ((|fractionPart| ($ $)) T (ELT $ NIL)) - ((|wholePart| ((|Integer|) $)) T (ELT $ 98)) - ((|floor| ($ $)) T (ELT $ NIL)) - ((|ceiling| ($ $)) T (ELT $ NIL)) - ((|norm| ($ $)) T (ELT $ NIL)) - ((|patternMatch| - ((|PatternMatchResult| (|Float|) $) $ - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) $))) - T (ELT $ NIL)) - ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ NIL)) - ((** ($ $ (|Fraction| (|Integer|)))) T (ELT $ 128)) - ((|nthRoot| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|sqrt| ($ $)) T (ELT $ 54)) - ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ 109)) - ((|retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ 111)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((|retract| ((|Integer|) $)) T (ELT $ 112)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ 114)) - ((|coerce| ($ (|Integer|))) T (ELT $ 58)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 100)) - ((|convert| ((|Float|) $)) T (ELT $ 103)) - ((< ((|Boolean|) $ $)) T (ELT $ 44)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ 50)) - ((|min| ($ $ $)) T (ELT $ 51)) - ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 86)) - ((|sign| ((|Integer|) $)) T (ELT $ 115)) - ((|abs| ($ $)) T (ELT $ 116)) ((/ ($ $ $)) T (ELT $ 85)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((* ($ (|Fraction| (|Integer|)) $)) T (ELT $ NIL)) - ((* ($ $ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((** ($ $ (|Integer|))) T (ELT $ 56)) - ((|inv| ($ $)) T (ELT $ NIL)) - ((|prime?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ NIL)) - ((|squareFreePart| ($ $)) T (ELT $ NIL)) - ((|factor| ((|Factored| $) $)) T (ELT $ NIL)) - ((|multiEuclidean| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|extendedEuclidean| - ((|Union| (|Record| (|:| |coef1| $) - (|:| |coef2| $)) - "failed") - $ $ $)) - T (ELT $ NIL)) - ((|extendedEuclidean| - ((|Record| (|:| |coef1| $) (|:| |coef2| $) - (|:| |generator| $)) - $ $)) - T (ELT $ NIL)) - ((|rem| ($ $ $)) T (ELT $ NIL)) - ((|quo| ($ $ $)) T (ELT $ NIL)) - ((|divide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $)) - T (ELT $ NIL)) - ((|euclideanSize| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|sizeLess?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|expressIdealMember| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|principalIdeal| - ((|Record| (|:| |coef| (|List| $)) - (|:| |generator| $)) - (|List| $))) - T (ELT $ NIL)) - ((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ NIL)) - ((|lcm| ($ (|List| $))) T (ELT $ NIL)) - ((|lcm| ($ $ $)) T (ELT $ NIL)) - ((|gcd| ($ (|List| $))) T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ NIL)) - ((|unit?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|associates?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|unitCanonical| ($ $)) T (ELT $ NIL)) - ((|unitNormal| - ((|Record| (|:| |unit| $) (|:| |canonical| $) - (|:| |associate| $)) - $)) - T (ELT $ NIL)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ NIL)) - ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 58)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|One| ($)) T (CONST $ 35)) - ((|one?| ((|Boolean|) $)) T (ELT $ NIL)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ 91)) - ((* ($ $ $)) T (ELT $ 48)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((* ($ (|Integer|) $)) T (ELT $ 49)) - ((- ($ $ $)) T (ELT $ 47)) ((- ($ $)) T (ELT $ 45)) - ((|subtractIfCan| ((|Union| $ "failed") $ $)) T - (ELT $ NIL)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((|zero?| ((|Boolean|) $)) T (ELT $ 87)) - ((|sample| ($)) T (CONST $ NIL)) - ((|Zero| ($)) T (CONST $ 34)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ 29)) - ((+ ($ $ $)) T (ELT $ 46)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ 89)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 40)) - ((= ((|Boolean|) $ $)) T (ELT $ 52)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|DoubleFloat| '(|DoubleFloat|) - '((|Join| (|FloatingPointSystem|) (|DifferentialRing|) - (|OpenMath|) - (|TranscendentalFunctionCategory|) - (|ConvertibleTo| (|InputForm|)) - (CATEGORY |domain| - (SIGNATURE / ($ $ (|Integer|))) - (SIGNATURE ** ($ $ $)) - (SIGNATURE |exp1| ($)) - (SIGNATURE |log2| ($ $)) - (SIGNATURE |log10| ($ $)) - (SIGNATURE |atan| ($ $ $)) - (SIGNATURE |Gamma| ($ $)) - (SIGNATURE |Beta| ($ $ $)) - (SIGNATURE |rationalApproximation| - ((|Fraction| (|Integer|)) $ - (|NonNegativeInteger|))) - (SIGNATURE |rationalApproximation| - ((|Fraction| (|Integer|)) $ - (|NonNegativeInteger|) - (|NonNegativeInteger|)))))) - T '|DoubleFloat| - (|put| '|DoubleFloat| '|mode| - '(|Mapping| - (|Join| (|FloatingPointSystem|) - (|DifferentialRing|) (|OpenMath|) - (|TranscendentalFunctionCategory|) - (|ConvertibleTo| (|InputForm|)) - (CATEGORY |domain| - (SIGNATURE / ($ $ (|Integer|))) - (SIGNATURE ** ($ $ $)) - (SIGNATURE |exp1| ($)) - (SIGNATURE |log2| ($ $)) - (SIGNATURE |log10| ($ $)) - (SIGNATURE |atan| ($ $ $)) - (SIGNATURE |Gamma| ($ $)) - (SIGNATURE |Beta| ($ $ $)) - (SIGNATURE - |rationalApproximation| - ((|Fraction| (|Integer|)) $ - (|NonNegativeInteger|))) - (SIGNATURE - |rationalApproximation| - ((|Fraction| (|Integer|)) $ - (|NonNegativeInteger|) - (|NonNegativeInteger|)))))) - |$CategoryFrame|)))) - (MAKEPROP '|DoubleFloat| 'NILADIC T) diff --git a/src/algebra/strap/DIFRING-.lsp b/src/algebra/strap/DIFRING-.lsp index 0c2afaf6..1c9f8444 100644 --- a/src/algebra/strap/DIFRING-.lsp +++ b/src/algebra/strap/DIFRING-.lsp @@ -57,33 +57,3 @@ '(1 6 0 0 7 2 6 0 0 9 11 2 0 0 0 9 10 2 0 0 0 9 12 1 0 0 0 8))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|DifferentialRing&| '|isFunctor| - '(((D ($ $ (|NonNegativeInteger|))) T (ELT $ 12)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ 10)) - ((D ($ $)) T (ELT $ 8)) - ((|differentiate| ($ $)) T (ELT $ NIL))) - (|addModemap| '|DifferentialRing&| - '(|DifferentialRing&| |#1|) - '((CATEGORY |domain| - (SIGNATURE D (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE D (|#1| |#1|)) - (SIGNATURE |differentiate| (|#1| |#1|))) - (|DifferentialRing|)) - T '|DifferentialRing&| - (|put| '|DifferentialRing&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE D - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE D (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1|))) - (|DifferentialRing|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/DIFRING.lsp b/src/algebra/strap/DIFRING.lsp index 63e3b4fd..89e91f31 100644 --- a/src/algebra/strap/DIFRING.lsp +++ b/src/algebra/strap/DIFRING.lsp @@ -17,7 +17,7 @@ ((D ($ $ (|NonNegativeInteger|))) T)) NIL '((|NonNegativeInteger|)) NIL)) |DifferentialRing|) - (SETELT #0# 0 '(|DifferentialRing|)))))) + (|setShellEntry| #0# 0 '(|DifferentialRing|)))))) (DEFUN |DifferentialRing| () (LET () @@ -25,10 +25,4 @@ (|DifferentialRing;AL|) (T (SETQ |DifferentialRing;AL| (|DifferentialRing;|)))))) -(SETQ |$CategoryFrame| - (|put| '|DifferentialRing| '|isCategory| T - (|addModemap| '|DifferentialRing| '(|DifferentialRing|) - '((|Category|)) T '|DifferentialRing| - |$CategoryFrame|))) - (MAKEPROP '|DifferentialRing| 'NILADIC T) diff --git a/src/algebra/strap/DIVRING-.lsp b/src/algebra/strap/DIVRING-.lsp index b8b219ec..4a61885c 100644 --- a/src/algebra/strap/DIVRING-.lsp +++ b/src/algebra/strap/DIVRING-.lsp @@ -58,53 +58,3 @@ 19 1 6 0 15 20 2 6 0 15 0 21 2 6 0 0 0 22 2 0 0 0 15 16 2 0 0 17 0 23))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|DivisionRing&| '|isFunctor| - '(((** ($ $ (|Integer|))) T (ELT $ 16)) - ((* ($ $ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((* ($ (|Fraction| (|Integer|)) $)) T (ELT $ 23)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((* ($ $ $)) T (ELT $ NIL)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((* ($ (|Integer|) $)) T (ELT $ NIL)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL))) - (|addModemap| '|DivisionRing&| '(|DivisionRing&| |#1|) - '((CATEGORY |domain| - (SIGNATURE ** (|#1| |#1| (|Integer|))) - (SIGNATURE * - (|#1| |#1| (|Fraction| (|Integer|)))) - (SIGNATURE * - (|#1| (|Fraction| (|Integer|)) |#1|)) - (SIGNATURE ** - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE * (|#1| |#1| |#1|)) - (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) - (SIGNATURE * (|#1| (|Integer|) |#1|)) - (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) - (|DivisionRing|)) - T '|DivisionRing&| - (|put| '|DivisionRing&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE ** (|#1| |#1| (|Integer|))) - (SIGNATURE * - (|#1| |#1| - (|Fraction| (|Integer|)))) - (SIGNATURE * - (|#1| (|Fraction| (|Integer|)) - |#1|)) - (SIGNATURE ** - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE * (|#1| |#1| |#1|)) - (SIGNATURE ** - (|#1| |#1| (|PositiveInteger|))) - (SIGNATURE * (|#1| (|Integer|) |#1|)) - (SIGNATURE * - (|#1| (|NonNegativeInteger|) |#1|)) - (SIGNATURE * - (|#1| (|PositiveInteger|) |#1|))) - (|DivisionRing|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/DIVRING.lsp b/src/algebra/strap/DIVRING.lsp index e72ef347..ce6499f5 100644 --- a/src/algebra/strap/DIVRING.lsp +++ b/src/algebra/strap/DIVRING.lsp @@ -16,7 +16,7 @@ ((|inv| ($ $)) T)) NIL '((|Integer|)) NIL))) |DivisionRing|) - (SETELT #0# 0 '(|DivisionRing|)))))) + (|setShellEntry| #0# 0 '(|DivisionRing|)))))) (DEFUN |DivisionRing| () (LET () @@ -24,9 +24,4 @@ (|DivisionRing;AL|) (T (SETQ |DivisionRing;AL| (|DivisionRing;|)))))) -(SETQ |$CategoryFrame| - (|put| '|DivisionRing| '|isCategory| T - (|addModemap| '|DivisionRing| '(|DivisionRing|) - '((|Category|)) T '|DivisionRing| |$CategoryFrame|))) - (MAKEPROP '|DivisionRing| 'NILADIC T) diff --git a/src/algebra/strap/ENTIRER.lsp b/src/algebra/strap/ENTIRER.lsp index 9b89cfc9..d82918d3 100644 --- a/src/algebra/strap/ENTIRER.lsp +++ b/src/algebra/strap/ENTIRER.lsp @@ -11,7 +11,7 @@ (|mkCategory| '|package| NIL '((|noZeroDivisors| T)) 'NIL NIL)) |EntireRing|) - (SETELT #0# 0 '(|EntireRing|)))))) + (|setShellEntry| #0# 0 '(|EntireRing|)))))) (DEFUN |EntireRing| () (LET () @@ -19,9 +19,4 @@ (|EntireRing;AL|) (T (SETQ |EntireRing;AL| (|EntireRing;|)))))) -(SETQ |$CategoryFrame| - (|put| '|EntireRing| '|isCategory| T - (|addModemap| '|EntireRing| '(|EntireRing|) - '((|Category|)) T '|EntireRing| |$CategoryFrame|))) - (MAKEPROP '|EntireRing| 'NILADIC T) diff --git a/src/algebra/strap/ES-.lsp b/src/algebra/strap/ES-.lsp index 15d5ab4d..d17b7e1b 100644 --- a/src/algebra/strap/ES-.lsp +++ b/src/algebra/strap/ES-.lsp @@ -934,282 +934,3 @@ 53 1 0 0 15 55 1 0 0 0 17 1 0 20 10 22))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|ExpressionSpace&| '|isFunctor| - '(((|odd?| ((|Boolean|) $)) T (ELT $ 131)) - ((|even?| ((|Boolean|) $)) T (ELT $ 129)) - ((|eval| ($ $ (|BasicOperator|) (|Mapping| $ $))) T - (ELT $ 77)) - ((|eval| ($ $ (|BasicOperator|) - (|Mapping| $ (|List| $)))) - T (ELT $ 71)) - ((|eval| ($ $ (|List| (|BasicOperator|)) - (|List| (|Mapping| $ (|List| $))))) - T (ELT $ 85)) - ((|eval| ($ $ (|List| (|BasicOperator|)) - (|List| (|Mapping| $ $)))) - T (ELT $ 83)) - ((|eval| ($ $ (|Symbol|) (|Mapping| $ $))) T (ELT $ 75)) - ((|eval| ($ $ (|Symbol|) (|Mapping| $ (|List| $)))) T - (ELT $ 69)) - ((|eval| ($ $ (|List| (|Symbol|)) - (|List| (|Mapping| $ (|List| $))))) - T (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Symbol|)) - (|List| (|Mapping| $ $)))) - T (ELT $ 84)) - ((|freeOf?| ((|Boolean|) $ (|Symbol|))) T (ELT $ 51)) - ((|freeOf?| ((|Boolean|) $ $)) T (ELT $ 59)) - ((|map| ($ (|Mapping| $ $) (|Kernel| $))) T (ELT $ 89)) - ((|kernel| ($ (|BasicOperator|) (|List| $))) T - (ELT $ 100)) - ((|kernel| ($ (|BasicOperator|) $)) T (ELT $ 61)) - ((|is?| ((|Boolean|) $ (|Symbol|))) T (ELT $ 116)) - ((|is?| ((|Boolean|) $ (|BasicOperator|))) T - (ELT $ 117)) - ((|belong?| ((|Boolean|) (|BasicOperator|))) T - (ELT $ 22)) - ((|operator| ((|BasicOperator|) (|BasicOperator|))) T - (ELT $ 91)) - ((|operators| ((|List| (|BasicOperator|)) $)) T - (ELT $ 38)) - ((|tower| ((|List| (|Kernel| $)) $)) T (ELT $ 30)) - ((|mainKernel| ((|Union| (|Kernel| $) "failed") $)) T - (ELT $ 93)) - ((|height| ((|NonNegativeInteger|) $)) T (ELT $ 46)) - ((|distribute| ($ $ $)) T (ELT $ 119)) - ((|distribute| ($ $)) T (ELT $ 53)) - ((|paren| ($ (|List| $))) T (ELT $ 56)) - ((|paren| ($ $)) T (ELT $ 19)) - ((|box| ($ (|List| $))) T (ELT $ 55)) - ((|box| ($ $)) T (ELT $ 17)) - ((|subst| ($ $ (|List| (|Kernel| $)) (|List| $))) T - (ELT $ NIL)) - ((|subst| ($ $ (|List| (|Equation| $)))) T (ELT $ 123)) - ((|subst| ($ $ (|Equation| $))) T (ELT $ 81)) - ((|elt| ($ (|BasicOperator|) (|List| $))) T (ELT $ 109)) - ((|elt| ($ (|BasicOperator|) $ $ $ $)) T (ELT $ 65)) - ((|elt| ($ (|BasicOperator|) $ $ $)) T (ELT $ 64)) - ((|elt| ($ (|BasicOperator|) $ $)) T (ELT $ 63)) - ((|elt| ($ (|BasicOperator|) $)) T (ELT $ 62)) - ((|eval| ($ $ (|List| $) (|List| $))) T (ELT $ NIL)) - ((|eval| ($ $ $ $)) T (ELT $ NIL)) - ((|eval| ($ $ (|Equation| $))) T (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| $)))) T (ELT $ 121)) - ((|eval| ($ $ (|List| (|Kernel| $)) (|List| $))) T - (ELT $ NIL)) - ((|eval| ($ $ (|Kernel| $) $)) T (ELT $ NIL)) - ((|retract| ((|Kernel| $) $)) T (ELT $ 112)) - ((|retractIfCan| ((|Union| (|Kernel| $) "failed") $)) T - (ELT $ 113))) - (|addModemap| '|ExpressionSpace&| - '(|ExpressionSpace&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |odd?| ((|Boolean|) |#1|)) - (SIGNATURE |even?| ((|Boolean|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|BasicOperator|) - (|Mapping| |#1| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|BasicOperator|) - (|Mapping| |#1| (|List| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|BasicOperator|)) - (|List| (|Mapping| |#1| (|List| |#1|))))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|BasicOperator|)) - (|List| (|Mapping| |#1| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|Symbol|) (|Mapping| |#1| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|Symbol|) - (|Mapping| |#1| (|List| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|Mapping| |#1| (|List| |#1|))))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|Mapping| |#1| |#1|)))) - (SIGNATURE |freeOf?| - ((|Boolean|) |#1| (|Symbol|))) - (SIGNATURE |freeOf?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#1| |#1|) (|Kernel| |#1|))) - (SIGNATURE |kernel| - (|#1| (|BasicOperator|) (|List| |#1|))) - (SIGNATURE |kernel| - (|#1| (|BasicOperator|) |#1|)) - (SIGNATURE |is?| ((|Boolean|) |#1| (|Symbol|))) - (SIGNATURE |is?| - ((|Boolean|) |#1| (|BasicOperator|))) - (SIGNATURE |belong?| - ((|Boolean|) (|BasicOperator|))) - (SIGNATURE |operator| - ((|BasicOperator|) (|BasicOperator|))) - (SIGNATURE |operators| - ((|List| (|BasicOperator|)) |#1|)) - (SIGNATURE |tower| - ((|List| (|Kernel| |#1|)) |#1|)) - (SIGNATURE |mainKernel| - ((|Union| (|Kernel| |#1|) "failed") |#1|)) - (SIGNATURE |height| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |distribute| (|#1| |#1| |#1|)) - (SIGNATURE |distribute| (|#1| |#1|)) - (SIGNATURE |paren| (|#1| (|List| |#1|))) - (SIGNATURE |paren| (|#1| |#1|)) - (SIGNATURE |box| (|#1| (|List| |#1|))) - (SIGNATURE |box| (|#1| |#1|)) - (SIGNATURE |subst| - (|#1| |#1| (|List| (|Kernel| |#1|)) - (|List| |#1|))) - (SIGNATURE |subst| - (|#1| |#1| (|List| (|Equation| |#1|)))) - (SIGNATURE |subst| - (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) (|List| |#1|))) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1| |#1| |#1|)) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1| - |#1|)) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1|)) - (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) (|List| |#1|))) - (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Equation| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Kernel| |#1|)) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|Kernel| |#1|) |#1|)) - (SIGNATURE |retract| ((|Kernel| |#1|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Kernel| |#1|) "failed") |#1|))) - (|ExpressionSpace|)) - T '|ExpressionSpace&| - (|put| '|ExpressionSpace&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |odd?| ((|Boolean|) |#1|)) - (SIGNATURE |even?| ((|Boolean|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|BasicOperator|) - (|Mapping| |#1| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|BasicOperator|) - (|Mapping| |#1| (|List| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|BasicOperator|)) - (|List| - (|Mapping| |#1| (|List| |#1|))))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|BasicOperator|)) - (|List| (|Mapping| |#1| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|Symbol|) - (|Mapping| |#1| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|Symbol|) - (|Mapping| |#1| (|List| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Symbol|)) - (|List| - (|Mapping| |#1| (|List| |#1|))))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|Mapping| |#1| |#1|)))) - (SIGNATURE |freeOf?| - ((|Boolean|) |#1| (|Symbol|))) - (SIGNATURE |freeOf?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#1| |#1|) - (|Kernel| |#1|))) - (SIGNATURE |kernel| - (|#1| (|BasicOperator|) - (|List| |#1|))) - (SIGNATURE |kernel| - (|#1| (|BasicOperator|) |#1|)) - (SIGNATURE |is?| - ((|Boolean|) |#1| (|Symbol|))) - (SIGNATURE |is?| - ((|Boolean|) |#1| - (|BasicOperator|))) - (SIGNATURE |belong?| - ((|Boolean|) (|BasicOperator|))) - (SIGNATURE |operator| - ((|BasicOperator|) - (|BasicOperator|))) - (SIGNATURE |operators| - ((|List| (|BasicOperator|)) |#1|)) - (SIGNATURE |tower| - ((|List| (|Kernel| |#1|)) |#1|)) - (SIGNATURE |mainKernel| - ((|Union| (|Kernel| |#1|) - "failed") - |#1|)) - (SIGNATURE |height| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |distribute| - (|#1| |#1| |#1|)) - (SIGNATURE |distribute| (|#1| |#1|)) - (SIGNATURE |paren| - (|#1| (|List| |#1|))) - (SIGNATURE |paren| (|#1| |#1|)) - (SIGNATURE |box| (|#1| (|List| |#1|))) - (SIGNATURE |box| (|#1| |#1|)) - (SIGNATURE |subst| - (|#1| |#1| - (|List| (|Kernel| |#1|)) - (|List| |#1|))) - (SIGNATURE |subst| - (|#1| |#1| - (|List| (|Equation| |#1|)))) - (SIGNATURE |subst| - (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) - (|List| |#1|))) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1| - |#1| |#1|)) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1| - |#1|)) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1| |#1|)) - (SIGNATURE |elt| - (|#1| (|BasicOperator|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|Equation| |#1|)))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|Kernel| |#1|)) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|Kernel| |#1|) |#1|)) - (SIGNATURE |retract| - ((|Kernel| |#1|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Kernel| |#1|) - "failed") - |#1|))) - (|ExpressionSpace|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/ES.lsp b/src/algebra/strap/ES.lsp index 757ce9e6..5199b94c 100644 --- a/src/algebra/strap/ES.lsp +++ b/src/algebra/strap/ES.lsp @@ -144,7 +144,7 @@ (|Equation| $)) NIL))) |ExpressionSpace|) - (SETELT #0# 0 '(|ExpressionSpace|)))))) + (|setShellEntry| #0# 0 '(|ExpressionSpace|)))))) (DEFUN |ExpressionSpace| () (LET () @@ -152,9 +152,4 @@ (|ExpressionSpace;AL|) (T (SETQ |ExpressionSpace;AL| (|ExpressionSpace;|)))))) -(SETQ |$CategoryFrame| - (|put| '|ExpressionSpace| '|isCategory| T - (|addModemap| '|ExpressionSpace| '(|ExpressionSpace|) - '((|Category|)) T '|ExpressionSpace| |$CategoryFrame|))) - (MAKEPROP '|ExpressionSpace| 'NILADIC T) diff --git a/src/algebra/strap/EUCDOM-.lsp b/src/algebra/strap/EUCDOM-.lsp index f354c167..405da119 100644 --- a/src/algebra/strap/EUCDOM-.lsp +++ b/src/algebra/strap/EUCDOM-.lsp @@ -550,102 +550,3 @@ 0 0 0 0 21 3 0 36 0 0 0 37 2 0 31 0 0 32 2 0 16 0 0 17 2 0 45 41 0 46))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|EuclideanDomain&| '|isFunctor| - '(((|multiEuclidean| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ 53)) - ((|extendedEuclidean| - ((|Union| (|Record| (|:| |coef1| $) - (|:| |coef2| $)) - "failed") - $ $ $)) - T (ELT $ 37)) - ((|extendedEuclidean| - ((|Record| (|:| |coef1| $) (|:| |coef2| $) - (|:| |generator| $)) - $ $)) - T (ELT $ 32)) - ((|rem| ($ $ $)) T (ELT $ 15)) - ((|quo| ($ $ $)) T (ELT $ 14)) - ((|sizeLess?| ((|Boolean|) $ $)) T (ELT $ 11)) - ((|expressIdealMember| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ 46)) - ((|principalIdeal| - ((|Record| (|:| |coef| (|List| $)) - (|:| |generator| $)) - (|List| $))) - T (ELT $ 44)) - ((|gcd| ($ (|List| $))) T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ 21)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ 17))) - (|addModemap| '|EuclideanDomain&| - '(|EuclideanDomain&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |multiEuclidean| - ((|Union| (|List| |#1|) "failed") - (|List| |#1|) |#1|)) - (SIGNATURE |extendedEuclidean| - ((|Union| (|Record| (|:| |coef1| |#1|) - (|:| |coef2| |#1|)) - "failed") - |#1| |#1| |#1|)) - (SIGNATURE |extendedEuclidean| - ((|Record| (|:| |coef1| |#1|) - (|:| |coef2| |#1|) - (|:| |generator| |#1|)) - |#1| |#1|)) - (SIGNATURE |rem| (|#1| |#1| |#1|)) - (SIGNATURE |quo| (|#1| |#1| |#1|)) - (SIGNATURE |sizeLess?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |expressIdealMember| - ((|Union| (|List| |#1|) "failed") - (|List| |#1|) |#1|)) - (SIGNATURE |principalIdeal| - ((|Record| (|:| |coef| (|List| |#1|)) - (|:| |generator| |#1|)) - (|List| |#1|))) - (SIGNATURE |gcd| (|#1| (|List| |#1|))) - (SIGNATURE |gcd| (|#1| |#1| |#1|)) - (SIGNATURE |exquo| - ((|Union| |#1| "failed") |#1| |#1|))) - (|EuclideanDomain|)) - T '|EuclideanDomain&| - (|put| '|EuclideanDomain&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |multiEuclidean| - ((|Union| (|List| |#1|) "failed") - (|List| |#1|) |#1|)) - (SIGNATURE |extendedEuclidean| - ((|Union| - (|Record| (|:| |coef1| |#1|) - (|:| |coef2| |#1|)) - "failed") - |#1| |#1| |#1|)) - (SIGNATURE |extendedEuclidean| - ((|Record| (|:| |coef1| |#1|) - (|:| |coef2| |#1|) - (|:| |generator| |#1|)) - |#1| |#1|)) - (SIGNATURE |rem| (|#1| |#1| |#1|)) - (SIGNATURE |quo| (|#1| |#1| |#1|)) - (SIGNATURE |sizeLess?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |expressIdealMember| - ((|Union| (|List| |#1|) "failed") - (|List| |#1|) |#1|)) - (SIGNATURE |principalIdeal| - ((|Record| - (|:| |coef| (|List| |#1|)) - (|:| |generator| |#1|)) - (|List| |#1|))) - (SIGNATURE |gcd| (|#1| (|List| |#1|))) - (SIGNATURE |gcd| (|#1| |#1| |#1|)) - (SIGNATURE |exquo| - ((|Union| |#1| "failed") |#1| - |#1|))) - (|EuclideanDomain|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/EUCDOM.lsp b/src/algebra/strap/EUCDOM.lsp index 7c101f7e..3c060c32 100644 --- a/src/algebra/strap/EUCDOM.lsp +++ b/src/algebra/strap/EUCDOM.lsp @@ -42,7 +42,7 @@ (|Boolean|)) NIL)) |EuclideanDomain|) - (SETELT #0# 0 '(|EuclideanDomain|)))))) + (|setShellEntry| #0# 0 '(|EuclideanDomain|)))))) (DEFUN |EuclideanDomain| () (LET () @@ -50,9 +50,4 @@ (|EuclideanDomain;AL|) (T (SETQ |EuclideanDomain;AL| (|EuclideanDomain;|)))))) -(SETQ |$CategoryFrame| - (|put| '|EuclideanDomain| '|isCategory| T - (|addModemap| '|EuclideanDomain| '(|EuclideanDomain|) - '((|Category|)) T '|EuclideanDomain| |$CategoryFrame|))) - (MAKEPROP '|EuclideanDomain| 'NILADIC T) diff --git a/src/algebra/strap/FFIELDC-.lsp b/src/algebra/strap/FFIELDC-.lsp index d0a70454..0f649439 100644 --- a/src/algebra/strap/FFIELDC-.lsp +++ b/src/algebra/strap/FFIELDC-.lsp @@ -650,105 +650,3 @@ 44 1 0 32 33 34 1 0 0 0 37 1 0 15 0 38))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|FiniteFieldCategory&| '|isFunctor| - '(((|order| ((|PositiveInteger|) $)) T (ELT $ 52)) - ((|discreteLog| ((|NonNegativeInteger|) $)) T - (ELT $ 60)) - ((|primitive?| ((|Boolean|) $)) T (ELT $ 51)) - ((|createPrimitiveElement| ($)) T (ELT $ 44)) - ((|conditionP| - ((|Union| (|Vector| $) "failed") (|Matrix| $))) - T (ELT $ 34)) - ((|charthRoot| ($ $)) T (ELT $ 37)) - ((|differentiate| ($ $)) T (ELT $ 8)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|init| ($)) T (ELT $ 9)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ 16)) - ((|discreteLog| - ((|Union| (|NonNegativeInteger|) "failed") $ $)) - T (ELT $ 71)) - ((|order| ((|OnePointCompletion| (|PositiveInteger|)) $)) - T (ELT $ 21)) - ((|charthRoot| ((|Union| $ "failed") $)) T (ELT $ 38)) - ((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 93))) - (|addModemap| '|FiniteFieldCategory&| - '(|FiniteFieldCategory&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |order| ((|PositiveInteger|) |#1|)) - (SIGNATURE |discreteLog| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |primitive?| ((|Boolean|) |#1|)) - (SIGNATURE |createPrimitiveElement| (|#1|)) - (SIGNATURE |conditionP| - ((|Union| (|Vector| |#1|) "failed") - (|Matrix| |#1|))) - (SIGNATURE |charthRoot| (|#1| |#1|)) - (SIGNATURE |differentiate| (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |discreteLog| - ((|Union| (|NonNegativeInteger|) "failed") - |#1| |#1|)) - (SIGNATURE |order| - ((|OnePointCompletion| (|PositiveInteger|)) - |#1|)) - (SIGNATURE |charthRoot| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|)))) - (|FiniteFieldCategory|)) - T '|FiniteFieldCategory&| - (|put| '|FiniteFieldCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |order| - ((|PositiveInteger|) |#1|)) - (SIGNATURE |discreteLog| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |primitive?| - ((|Boolean|) |#1|)) - (SIGNATURE |createPrimitiveElement| - (|#1|)) - (SIGNATURE |conditionP| - ((|Union| (|Vector| |#1|) - "failed") - (|Matrix| |#1|))) - (SIGNATURE |charthRoot| (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |discreteLog| - ((|Union| (|NonNegativeInteger|) - "failed") - |#1| |#1|)) - (SIGNATURE |order| - ((|OnePointCompletion| - (|PositiveInteger|)) - |#1|)) - (SIGNATURE |charthRoot| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|)))) - (|FiniteFieldCategory|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/FFIELDC.lsp b/src/algebra/strap/FFIELDC.lsp index 4bc08870..9f7cef9b 100644 --- a/src/algebra/strap/FFIELDC.lsp +++ b/src/algebra/strap/FFIELDC.lsp @@ -49,7 +49,7 @@ (|Matrix| $)) NIL)) |FiniteFieldCategory|) - (SETELT #0# 0 '(|FiniteFieldCategory|)))))) + (|setShellEntry| #0# 0 '(|FiniteFieldCategory|)))))) (DEFUN |FiniteFieldCategory| () (LET () @@ -57,10 +57,4 @@ (|FiniteFieldCategory;AL|) (T (SETQ |FiniteFieldCategory;AL| (|FiniteFieldCategory;|)))))) -(SETQ |$CategoryFrame| - (|put| '|FiniteFieldCategory| '|isCategory| T - (|addModemap| '|FiniteFieldCategory| - '(|FiniteFieldCategory|) '((|Category|)) T - '|FiniteFieldCategory| |$CategoryFrame|))) - (MAKEPROP '|FiniteFieldCategory| 'NILADIC T) diff --git a/src/algebra/strap/FPS-.lsp b/src/algebra/strap/FPS-.lsp index 312a0bbc..6cbb70df 100644 --- a/src/algebra/strap/FPS-.lsp +++ b/src/algebra/strap/FPS-.lsp @@ -55,41 +55,3 @@ 13 2 9 0 7 0 14 0 6 0 15 2 0 0 9 9 11 0 0 7 16))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|FloatingPointSystem&| '|isFunctor| - '(((|digits| ((|PositiveInteger|) (|PositiveInteger|))) T - (ELT $ NIL)) - ((|digits| ((|PositiveInteger|))) T (ELT $ 16)) - ((|float| ($ (|Integer|) (|Integer|) - (|PositiveInteger|))) - T (ELT $ NIL)) - ((|float| ($ (|Integer|) (|Integer|))) T (ELT $ 11))) - (|addModemap| '|FloatingPointSystem&| - '(|FloatingPointSystem&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |digits| - ((|PositiveInteger|) (|PositiveInteger|))) - (SIGNATURE |digits| ((|PositiveInteger|))) - (SIGNATURE |float| - (|#1| (|Integer|) (|Integer|) - (|PositiveInteger|))) - (SIGNATURE |float| - (|#1| (|Integer|) (|Integer|)))) - (|FloatingPointSystem|)) - T '|FloatingPointSystem&| - (|put| '|FloatingPointSystem&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |digits| - ((|PositiveInteger|) - (|PositiveInteger|))) - (SIGNATURE |digits| - ((|PositiveInteger|))) - (SIGNATURE |float| - (|#1| (|Integer|) (|Integer|) - (|PositiveInteger|))) - (SIGNATURE |float| - (|#1| (|Integer|) (|Integer|)))) - (|FloatingPointSystem|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/FPS.lsp b/src/algebra/strap/FPS.lsp index f3935aa4..313baa93 100644 --- a/src/algebra/strap/FPS.lsp +++ b/src/algebra/strap/FPS.lsp @@ -70,7 +70,7 @@ '((|approximate| T)) '((|PositiveInteger|) (|Integer|)) NIL)) |FloatingPointSystem|) - (SETELT #0# 0 '(|FloatingPointSystem|)))))) + (|setShellEntry| #0# 0 '(|FloatingPointSystem|)))))) (DEFUN |FloatingPointSystem| () (LET () @@ -78,10 +78,4 @@ (|FloatingPointSystem;AL|) (T (SETQ |FloatingPointSystem;AL| (|FloatingPointSystem;|)))))) -(SETQ |$CategoryFrame| - (|put| '|FloatingPointSystem| '|isCategory| T - (|addModemap| '|FloatingPointSystem| - '(|FloatingPointSystem|) '((|Category|)) T - '|FloatingPointSystem| |$CategoryFrame|))) - (MAKEPROP '|FloatingPointSystem| 'NILADIC T) diff --git a/src/algebra/strap/GCDDOM-.lsp b/src/algebra/strap/GCDDOM-.lsp index 8e9a0e77..b3a3bbc5 100644 --- a/src/algebra/strap/GCDDOM-.lsp +++ b/src/algebra/strap/GCDDOM-.lsp @@ -233,43 +233,3 @@ 20 21 2 0 0 0 0 14 2 0 40 40 40 41 1 0 0 20 22))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|GcdDomain&| '|isFunctor| - '(((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 41)) - ((|lcm| ($ (|List| $))) T (ELT $ 21)) - ((|lcm| ($ $ $)) T (ELT $ 14)) - ((|gcd| ($ (|List| $))) T (ELT $ 22)) - ((|gcd| ($ $ $)) T (ELT $ NIL))) - (|addModemap| '|GcdDomain&| '(|GcdDomain&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |lcm| (|#1| (|List| |#1|))) - (SIGNATURE |lcm| (|#1| |#1| |#1|)) - (SIGNATURE |gcd| (|#1| (|List| |#1|))) - (SIGNATURE |gcd| (|#1| |#1| |#1|))) - (|GcdDomain|)) - T '|GcdDomain&| - (|put| '|GcdDomain&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |lcm| (|#1| (|List| |#1|))) - (SIGNATURE |lcm| (|#1| |#1| |#1|)) - (SIGNATURE |gcd| (|#1| (|List| |#1|))) - (SIGNATURE |gcd| (|#1| |#1| |#1|))) - (|GcdDomain|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/GCDDOM.lsp b/src/algebra/strap/GCDDOM.lsp index 313add96..8f4675a6 100644 --- a/src/algebra/strap/GCDDOM.lsp +++ b/src/algebra/strap/GCDDOM.lsp @@ -23,15 +23,10 @@ (|List| $)) NIL)) |GcdDomain|) - (SETELT #0# 0 '(|GcdDomain|)))))) + (|setShellEntry| #0# 0 '(|GcdDomain|)))))) (DEFUN |GcdDomain| () (LET () (COND (|GcdDomain;AL|) (T (SETQ |GcdDomain;AL| (|GcdDomain;|)))))) -(SETQ |$CategoryFrame| - (|put| '|GcdDomain| '|isCategory| T - (|addModemap| '|GcdDomain| '(|GcdDomain|) '((|Category|)) - T '|GcdDomain| |$CategoryFrame|))) - (MAKEPROP '|GcdDomain| 'NILADIC T) diff --git a/src/algebra/strap/HOAGG-.lsp b/src/algebra/strap/HOAGG-.lsp index 21abe57d..b1b57cdc 100644 --- a/src/algebra/strap/HOAGG-.lsp +++ b/src/algebra/strap/HOAGG-.lsp @@ -324,89 +324,3 @@ 0 32 0 37 2 0 18 19 0 20 2 0 18 0 0 31 1 0 16 0 17))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|HomogeneousAggregate&| '|isFunctor| - '(((|coerce| ((|OutputForm|) $)) T (ELT $ 37)) - ((= ((|Boolean|) $ $)) T (ELT $ 31)) - ((|eval| ($ $ (|List| |#2|) (|List| |#2|))) T - (ELT $ NIL)) - ((|eval| ($ $ |#2| |#2|)) T (ELT $ NIL)) - ((|eval| ($ $ (|Equation| |#2|))) T (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| |#2|)))) T (ELT $ 13)) - ((|member?| ((|Boolean|) |#2| $)) T (ELT $ 28)) - ((|count| ((|NonNegativeInteger|) |#2| $)) T (ELT $ 26)) - ((|members| ((|List| |#2|) $)) T (ELT $ 23)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 22)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 21)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 20)) - ((|#| ((|NonNegativeInteger|) $)) T (ELT $ 17))) - (|addModemap| '|HomogeneousAggregate&| - '(|HomogeneousAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |coerce| ((|OutputForm|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#2|) (|List| |#2|))) - (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) - (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Equation| |#2|)))) - (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) |#2| |#1|)) - (SIGNATURE |members| ((|List| |#2|) |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |every?| - ((|Boolean|) (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |any?| - ((|Boolean|) (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) - (|HomogeneousAggregate| |#2|) (|Type|)) - T '|HomogeneousAggregate&| - (|put| '|HomogeneousAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |coerce| - ((|OutputForm|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#2|) - (|List| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| |#2| |#2|)) - (SIGNATURE |eval| - (|#1| |#1| (|Equation| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|Equation| |#2|)))) - (SIGNATURE |member?| - ((|Boolean|) |#2| |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) |#2| |#1|)) - (SIGNATURE |members| - ((|List| |#2|) |#1|)) - (SIGNATURE |count| - ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |every?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |any?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |#| - ((|NonNegativeInteger|) |#1|))) - (|HomogeneousAggregate| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/HOAGG.lsp b/src/algebra/strap/HOAGG.lsp index baccec79..7e2bb119 100644 --- a/src/algebra/strap/HOAGG.lsp +++ b/src/algebra/strap/HOAGG.lsp @@ -97,8 +97,8 @@ (|List| |t#1|)) NIL)) . #1=(|HomogeneousAggregate|))))) . #1#) - (SETELT #0# 0 - (LIST '|HomogeneousAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|HomogeneousAggregate| (|devaluate| |t#1|))))))) (DEFUN |HomogeneousAggregate| (#0=#:G1399) (LET (#1=#:G1400) @@ -110,10 +110,3 @@ (SETQ #1# (|HomogeneousAggregate;| #0#))) |HomogeneousAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|HomogeneousAggregate| '|isCategory| T - (|addModemap| '|HomogeneousAggregate| - '(|HomogeneousAggregate| |#1|) - '((|Category|) (|Type|)) T '|HomogeneousAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/ILIST.lsp b/src/algebra/strap/ILIST.lsp index 3bf0bc8d..39658b69 100644 --- a/src/algebra/strap/ILIST.lsp +++ b/src/algebra/strap/ILIST.lsp @@ -716,255 +716,3 @@ 0 0 1 2 5 11 0 0 1 2 7 11 0 0 48 2 5 11 0 0 1 2 5 11 0 0 1 1 0 8 0 9))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|IndexedList| '|isFunctor| - '(((|coerce| ((|OutputForm|) $)) - (|has| |#1| (|CoercibleTo| (|OutputForm|))) (ELT $ 46)) - ((~= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ 48)) - ((|hash| ((|SingleInteger|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) (|has| |#1| (|SetCategory|)) - (ELT $ 51)) - ((|list| ($ |#1|)) T (ELT $ NIL)) - ((|concat!| ($ $ |#1|)) T (ELT $ NIL)) - ((|concat!| ($ $ $)) T (ELT $ 54)) - ((|delete!| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|delete!| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|remove!| ($ (|Mapping| (|Boolean|) |#1|) $)) T - (ELT $ NIL)) - ((|insert!| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|insert!| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|merge!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ 58)) - ((|select!| ($ (|Mapping| (|Boolean|) |#1|) $)) T - (ELT $ NIL)) - ((|remove!| ($ |#1| $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|removeDuplicates!| ($ $)) - (|has| |#1| (|SetCategory|)) (ELT $ 55)) - ((|merge!| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|reverse| ($ $)) T (ELT $ 29)) - ((|sort| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) T - (ELT $ NIL)) - ((|sorted?| - ((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $)) - T (ELT $ NIL)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $ (|Integer|))) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|merge| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort| ($ $)) (|has| |#1| (|OrderedSet|)) (ELT $ NIL)) - ((|sorted?| ((|Boolean|) $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|reverse!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 28)) - ((|sort!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 57)) - ((|sort!| ($ $)) - (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) - (|has| |#1| (|OrderedSet|))) - (ELT $ NIL)) - ((|min| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|max| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((> ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((< ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|possiblyInfinite?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|explicitlyFinite?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|qsetelt!| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|qelt| (|#1| $ (|Integer|))) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|) |#1|)) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|))) T (ELT $ NIL)) - ((|entries| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ NIL)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ NIL)) - ((|entry?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|maxIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|minIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ 31)) - ((|fill!| ($ $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|swap!| ((|Void|) $ (|Integer|) (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) - (|has| |#1| (|ConvertibleTo| (|InputForm|))) - (ELT $ NIL)) - ((|removeDuplicates| ($ $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|remove| ($ |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|reduce| - (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|remove| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|find| ((|Union| |#1| "failed") - (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|construct| ($ (|List| |#1|))) T (ELT $ 26)) - ((|new| ($ (|NonNegativeInteger|) |#1|)) T (ELT $ NIL)) - ((|concat| ($ $ |#1|)) T (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|delete| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|insert| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|insert| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|setelt| - (|#1| $ (|UniversalSegment| (|Integer|)) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|split!| ($ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 59)) - ((|setelt| (|#1| $ "last" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setlast!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| ($ $ "rest" $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 24)) - ((|setrest!| ($ $ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 23)) - ((|setelt| (|#1| $ "first" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 22)) - ((|setfirst!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 21)) - ((|cycleSplit!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|cycleTail| ($ $)) T (ELT $ NIL)) - ((|cycleLength| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|cycleEntry| ($ $)) T (ELT $ 36)) - ((|third| (|#1| $)) T (ELT $ NIL)) - ((|second| (|#1| $)) T (ELT $ NIL)) - ((|tail| ($ $)) T (ELT $ NIL)) - ((|last| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|elt| (|#1| $ "last")) T (ELT $ NIL)) - ((|last| (|#1| $)) T (ELT $ NIL)) - ((|rest| ($ $ (|NonNegativeInteger|))) T (ELT $ 32)) - ((|elt| ($ $ "rest")) T (ELT $ 20)) - ((|rest| ($ $)) T (ELT $ 18)) - ((|first| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|elt| (|#1| $ "first")) T (ELT $ 15)) - ((|first| (|#1| $)) T (ELT $ 13)) - ((|concat| ($ |#1| $)) T (ELT $ 10)) - ((|concat| ($ $ $)) T (ELT $ NIL)) - ((|setvalue!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ "value" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setchildren!| ($ $ (|List| $))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|node?| ((|Boolean|) $ $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|child?| ((|Boolean|) $ $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|distance| ((|Integer|) $ $)) T (ELT $ NIL)) - ((|leaves| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|cyclic?| ((|Boolean|) $)) T (ELT $ 34)) - ((|elt| (|#1| $ "value")) T (ELT $ NIL)) - ((|value| (|#1| $)) T (ELT $ NIL)) - ((|leaf?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|nodes| ((|List| $) $)) T (ELT $ NIL)) - ((|children| ((|List| $) $)) T (ELT $ NIL)) - ((|eval| ($ $ (|List| |#1|) (|List| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ |#1| |#1|)) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Equation| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| |#1|)))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|member?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ 53)) - ((|count| ((|NonNegativeInteger|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|members| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|parts| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ 27)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|map!| ($ (|Mapping| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1|) $)) T (ELT $ NIL)) - ((|#| ((|NonNegativeInteger|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ 9)) - ((|sample| ($)) T (CONST $ NIL)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|empty?| ((|Boolean|) $)) T (ELT $ 17)) - ((|empty| ($)) T (ELT $ 16)) - ((|copy| ($ $)) T (ELT $ 35)) - ((|eq?| ((|Boolean|) $ $)) T (ELT $ 12))) - (|addModemap| '|IndexedList| '(|IndexedList| |#1| |#2|) - '((|ListAggregate| |#1|) (|Type|) (|Integer|)) T - '|IndexedList| - (|put| '|IndexedList| '|mode| - '(|Mapping| (|ListAggregate| |#1|) (|Type|) - (|Integer|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/INS-.lsp b/src/algebra/strap/INS-.lsp index b16fd75f..229a04fa 100644 --- a/src/algebra/strap/INS-.lsp +++ b/src/algebra/strap/INS-.lsp @@ -415,164 +415,3 @@ 36 0 0 7 8 2 0 11 0 0 20 2 0 0 0 0 55))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|IntegerNumberSystem&| '|isFunctor| - '(((|invmod| ($ $ $)) T (ELT $ 84)) - ((|powmod| ($ $ $ $)) T (ELT $ 86)) - ((|mask| ($ $)) T (ELT $ 23)) - ((|copy| ($ $)) T (ELT $ 17)) - ((|rationalIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ 74)) - ((|rational| ((|Fraction| (|Integer|)) $)) T (ELT $ 72)) - ((|rational?| ((|Boolean|) $)) T (ELT $ 24)) - ((|symmetricRemainder| ($ $ $)) T (ELT $ 79)) - ((|bit?| ((|Boolean|) $ $)) T (ELT $ 20)) - ((|even?| ((|Boolean|) $)) T (ELT $ 14)) - ((|init| ($)) T (ELT $ 60)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ 64)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 33)) - ((|convert| ((|Float|) $)) T (ELT $ 31)) - ((|permutation| ($ $ $)) T (ELT $ 57)) - ((|factorial| ($ $)) T (ELT $ 53)) - ((|binomial| ($ $ $)) T (ELT $ 55)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ 69)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ 40)) - ((|convert| ((|InputForm|) $)) T (ELT $ 36)) - ((|retract| ((|Integer|) $)) T (ELT $ 37)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ 59)) - ((|convert| ((|Integer|) $)) T (ELT $ NIL)) - ((|differentiate| ($ $)) T (ELT $ 10)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|positive?| ((|Boolean|) $)) T (ELT $ 16)) - ((|euclideanSize| ((|NonNegativeInteger|) $)) T - (ELT $ 28)) - ((|factor| ((|Factored| $) $)) T (ELT $ 45)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ 47)) - ((|prime?| ((|Boolean|) $)) T (ELT $ 50)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ 8))) - (|addModemap| '|IntegerNumberSystem&| - '(|IntegerNumberSystem&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |invmod| (|#1| |#1| |#1|)) - (SIGNATURE |powmod| (|#1| |#1| |#1| |#1|)) - (SIGNATURE |mask| (|#1| |#1|)) - (SIGNATURE |copy| (|#1| |#1|)) - (SIGNATURE |rationalIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") - |#1|)) - (SIGNATURE |rational| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |rational?| ((|Boolean|) |#1|)) - (SIGNATURE |symmetricRemainder| - (|#1| |#1| |#1|)) - (SIGNATURE |bit?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |even?| ((|Boolean|) |#1|)) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |permutation| (|#1| |#1| |#1|)) - (SIGNATURE |factorial| (|#1| |#1|)) - (SIGNATURE |binomial| (|#1| |#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |convert| ((|InputForm|) |#1|)) - (SIGNATURE |retract| ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") |#1|)) - (SIGNATURE |convert| ((|Integer|) |#1|)) - (SIGNATURE |differentiate| (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |positive?| ((|Boolean|) |#1|)) - (SIGNATURE |euclideanSize| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |prime?| ((|Boolean|) |#1|)) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|)))) - (|IntegerNumberSystem|)) - T '|IntegerNumberSystem&| - (|put| '|IntegerNumberSystem&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |invmod| (|#1| |#1| |#1|)) - (SIGNATURE |powmod| - (|#1| |#1| |#1| |#1|)) - (SIGNATURE |mask| (|#1| |#1|)) - (SIGNATURE |copy| (|#1| |#1|)) - (SIGNATURE |rationalIfCan| - ((|Union| (|Fraction| (|Integer|)) - "failed") - |#1|)) - (SIGNATURE |rational| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |rational?| - ((|Boolean|) |#1|)) - (SIGNATURE |symmetricRemainder| - (|#1| |#1| |#1|)) - (SIGNATURE |bit?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |even?| ((|Boolean|) |#1|)) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |convert| - ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |permutation| - (|#1| |#1| |#1|)) - (SIGNATURE |factorial| (|#1| |#1|)) - (SIGNATURE |binomial| - (|#1| |#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) - |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) - |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |convert| - ((|InputForm|) |#1|)) - (SIGNATURE |retract| - ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") - |#1|)) - (SIGNATURE |convert| - ((|Integer|) |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |positive?| - ((|Boolean|) |#1|)) - (SIGNATURE |euclideanSize| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |factor| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |prime?| - ((|Boolean|) |#1|)) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|)))) - (|IntegerNumberSystem|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/INS.lsp b/src/algebra/strap/INS.lsp index af5969d3..ef6261ca 100644 --- a/src/algebra/strap/INS.lsp +++ b/src/algebra/strap/INS.lsp @@ -63,7 +63,7 @@ (|Boolean|)) NIL))) |IntegerNumberSystem|) - (SETELT #0# 0 '(|IntegerNumberSystem|)))))) + (|setShellEntry| #0# 0 '(|IntegerNumberSystem|)))))) (DEFUN |IntegerNumberSystem| () (LET () @@ -71,10 +71,4 @@ (|IntegerNumberSystem;AL|) (T (SETQ |IntegerNumberSystem;AL| (|IntegerNumberSystem;|)))))) -(SETQ |$CategoryFrame| - (|put| '|IntegerNumberSystem| '|isCategory| T - (|addModemap| '|IntegerNumberSystem| - '(|IntegerNumberSystem|) '((|Category|)) T - '|IntegerNumberSystem| |$CategoryFrame|))) - (MAKEPROP '|IntegerNumberSystem| 'NILADIC T) diff --git a/src/algebra/strap/INT.lsp b/src/algebra/strap/INT.lsp index 7fa42593..0e57fde8 100644 --- a/src/algebra/strap/INT.lsp +++ b/src/algebra/strap/INT.lsp @@ -628,7 +628,7 @@ (|unitsKnown| . 0)) (CONS (|makeByteWordVec2| 1 '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)) + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)) (CONS '#(|IntegerNumberSystem&| |EuclideanDomain&| |UniqueFactorizationDomain&| NIL NIL |GcdDomain&| |IntegralDomain&| |Algebra&| NIL @@ -638,7 +638,7 @@ |Monoid&| NIL NIL |OrderedSet&| |AbelianSemiGroup&| |SemiGroup&| NIL |SetCategory&| NIL NIL NIL NIL NIL NIL NIL - |RetractableTo&| NIL |BasicType&| NIL) + |RetractableTo&| NIL NIL |BasicType&| NIL) (CONS '#((|IntegerNumberSystem|) (|EuclideanDomain|) (|UniqueFactorizationDomain|) @@ -669,6 +669,7 @@ (|ConvertibleTo| 123) (|ConvertibleTo| 50) (|RetractableTo| 11) + (|CoercibleFrom| 11) (|ConvertibleTo| 11) (|BasicType|) (|CoercibleTo| 36)) (|makeByteWordVec2| 131 @@ -719,180 +720,4 @@ 2 0 0 131 0 1))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|Integer| '|isFunctor| - '(((|OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))) - T (ELT $ 24)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $)) T - (ELT $ 23)) - ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 22)) - ((|OMwrite| ((|String|) $)) T (ELT $ 20)) - ((|convert| ((|String|) $)) T (ELT $ 53)) - ((|invmod| ($ $ $)) T (ELT $ NIL)) - ((|powmod| ($ $ $ $)) T (ELT $ NIL)) - ((|mulmod| ($ $ $ $)) T (ELT $ 44)) - ((|submod| ($ $ $ $)) T (ELT $ 43)) - ((|addmod| ($ $ $ $)) T (ELT $ 42)) - ((|mask| ($ $)) T (ELT $ NIL)) - ((|dec| ($ $)) T (ELT $ 32)) - ((|inc| ($ $)) T (ELT $ 31)) - ((|copy| ($ $)) T (ELT $ 30)) - ((|random| ($ $)) T (ELT $ 65)) - ((|random| ($)) T (ELT $ 64)) - ((|rationalIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ NIL)) - ((|rational| ((|Fraction| (|Integer|)) $)) T - (ELT $ NIL)) - ((|rational?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|symmetricRemainder| ($ $ $)) T (ELT $ NIL)) - ((|positiveRemainder| ($ $ $)) T (ELT $ 55)) - ((|bit?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|shift| ($ $ $)) T (ELT $ 82)) - ((|length| ($ $)) T (ELT $ 41)) - ((|base| ($)) T (ELT $ 29)) - ((|even?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|odd?| ((|Boolean|) $)) T (ELT $ 75)) - ((|init| ($)) T (CONST $ NIL)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 49)) - ((|convert| ((|Float|) $)) T (ELT $ 47)) - ((|permutation| ($ $ $)) T (ELT $ NIL)) - ((|factorial| ($ $)) T (ELT $ NIL)) - ((|binomial| ($ $ $)) T (ELT $ NIL)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ NIL)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) T (ELT $ 52)) - ((|reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| $))) - T (ELT $ 58)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| (|Integer|))) - (|:| |vec| (|Vector| (|Integer|)))) - (|Matrix| $) (|Vector| $))) - T (ELT $ 62)) - ((|retract| ((|Integer|) $)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 39)) - ((|convert| ((|Integer|) $)) T (ELT $ 40)) - ((|differentiate| ($ $)) T (ELT $ NIL)) - ((D ($ $)) T (ELT $ NIL)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((D ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|abs| ($ $)) T (ELT $ 63)) - ((|sign| ((|Integer|) $)) T (ELT $ NIL)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 35)) - ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|min| ($ $ $)) T (ELT $ 77)) - ((|max| ($ $ $)) T (ELT $ 76)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 67)) - ((|principalIdeal| - ((|Record| (|:| |coef| (|List| $)) - (|:| |generator| $)) - (|List| $))) - T (ELT $ NIL)) - ((|expressIdealMember| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|sizeLess?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|euclideanSize| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|divide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $)) - T (ELT $ 79)) - ((|quo| ($ $ $)) T (ELT $ 80)) - ((|rem| ($ $ $)) T (ELT $ 81)) - ((|extendedEuclidean| - ((|Record| (|:| |coef1| $) (|:| |coef2| $) - (|:| |generator| $)) - $ $)) - T (ELT $ NIL)) - ((|extendedEuclidean| - ((|Union| (|Record| (|:| |coef1| $) - (|:| |coef2| $)) - "failed") - $ $ $)) - T (ELT $ NIL)) - ((|multiEuclidean| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|factor| ((|Factored| $) $)) T (ELT $ 105)) - ((|squareFreePart| ($ $)) T (ELT $ NIL)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ NIL)) - ((|prime?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 119)) - ((|lcm| ($ (|List| $))) T (ELT $ NIL)) - ((|lcm| ($ $ $)) T (ELT $ NIL)) - ((|gcd| ($ (|List| $))) T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ 86)) - ((|unit?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|associates?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|unitCanonical| ($ $)) T (ELT $ 89)) - ((|unitNormal| - ((|Record| (|:| |unit| $) (|:| |canonical| $) - (|:| |associate| $)) - $)) - T (ELT $ 88)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ 84)) - ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 39)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|One| ($)) T (CONST $ 28)) - ((|one?| ((|Boolean|) $)) T (ELT $ 26)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ 74)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ 85)) - ((* ($ $ $)) T (ELT $ 71)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((* ($ (|Integer|) $)) T (ELT $ 72)) - ((- ($ $ $)) T (ELT $ 70)) ((- ($ $)) T (ELT $ 68)) - ((|subtractIfCan| ((|Union| $ "failed") $ $)) T - (ELT $ NIL)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((|zero?| ((|Boolean|) $)) T (ELT $ 25)) - ((|sample| ($)) T (CONST $ NIL)) - ((|Zero| ($)) T (CONST $ 27)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) - ((+ ($ $ $)) T (ELT $ 69)) - ((|latex| ((|String|) $)) T (ELT $ 54)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ 34)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 38)) - ((= ((|Boolean|) $ $)) T (ELT $ 66)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|Integer| '(|Integer|) - '((|Join| (|IntegerNumberSystem|) - (|ConvertibleTo| (|String|)) (|OpenMath|) - (CATEGORY |domain| - (SIGNATURE |random| ($ $)) - (ATTRIBUTE |canonical|) - (ATTRIBUTE |canonicalsClosed|) - (ATTRIBUTE |noetherian|) - (ATTRIBUTE |infinite|)))) - T '|Integer| - (|put| '|Integer| '|mode| - '(|Mapping| - (|Join| (|IntegerNumberSystem|) - (|ConvertibleTo| (|String|)) - (|OpenMath|) - (CATEGORY |domain| - (SIGNATURE |random| ($ $)) - (ATTRIBUTE |canonical|) - (ATTRIBUTE |canonicalsClosed|) - (ATTRIBUTE |noetherian|) - (ATTRIBUTE |infinite|)))) - |$CategoryFrame|)))) - (MAKEPROP '|Integer| 'NILADIC T) diff --git a/src/algebra/strap/INTDOM-.lsp b/src/algebra/strap/INTDOM-.lsp index a8b6e221..b44a7d0d 100644 --- a/src/algebra/strap/INTDOM-.lsp +++ b/src/algebra/strap/INTDOM-.lsp @@ -100,47 +100,3 @@ 11 1 0 12 0 18 1 0 14 0 16 2 0 12 0 0 20))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|IntegralDomain&| '|isFunctor| - '(((|unit?| ((|Boolean|) $)) T (ELT $ 18)) - ((|associates?| ((|Boolean|) $ $)) T (ELT $ 20)) - ((|unitCanonical| ($ $)) T (ELT $ 11)) - ((|unitNormal| - ((|Record| (|:| |unit| $) (|:| |canonical| $) - (|:| |associate| $)) - $)) - T (ELT $ 9)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ 16))) - (|addModemap| '|IntegralDomain&| '(|IntegralDomain&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |unit?| ((|Boolean|) |#1|)) - (SIGNATURE |associates?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |unitCanonical| (|#1| |#1|)) - (SIGNATURE |unitNormal| - ((|Record| (|:| |unit| |#1|) - (|:| |canonical| |#1|) - (|:| |associate| |#1|)) - |#1|)) - (SIGNATURE |recip| - ((|Union| |#1| "failed") |#1|))) - (|IntegralDomain|)) - T '|IntegralDomain&| - (|put| '|IntegralDomain&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |unit?| ((|Boolean|) |#1|)) - (SIGNATURE |associates?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |unitCanonical| - (|#1| |#1|)) - (SIGNATURE |unitNormal| - ((|Record| (|:| |unit| |#1|) - (|:| |canonical| |#1|) - (|:| |associate| |#1|)) - |#1|)) - (SIGNATURE |recip| - ((|Union| |#1| "failed") |#1|))) - (|IntegralDomain|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/INTDOM.lsp b/src/algebra/strap/INTDOM.lsp index fc558f82..a452bca6 100644 --- a/src/algebra/strap/INTDOM.lsp +++ b/src/algebra/strap/INTDOM.lsp @@ -23,7 +23,7 @@ ((|unit?| ((|Boolean|) $)) T)) NIL '((|Boolean|)) NIL)) |IntegralDomain|) - (SETELT #0# 0 '(|IntegralDomain|)))))) + (|setShellEntry| #0# 0 '(|IntegralDomain|)))))) (DEFUN |IntegralDomain| () (LET () @@ -31,9 +31,4 @@ (|IntegralDomain;AL|) (T (SETQ |IntegralDomain;AL| (|IntegralDomain;|)))))) -(SETQ |$CategoryFrame| - (|put| '|IntegralDomain| '|isCategory| T - (|addModemap| '|IntegralDomain| '(|IntegralDomain|) - '((|Category|)) T '|IntegralDomain| |$CategoryFrame|))) - (MAKEPROP '|IntegralDomain| 'NILADIC T) diff --git a/src/algebra/strap/ISTRING.lsp b/src/algebra/strap/ISTRING.lsp index 3dd2bb09..20b18b16 100644 --- a/src/algebra/strap/ISTRING.lsp +++ b/src/algebra/strap/ISTRING.lsp @@ -1041,258 +1041,3 @@ 14 2 5 11 0 0 1 2 5 11 0 0 15 1 0 7 0 13))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|IndexedString| '|isFunctor| - '(((~= ((|Boolean|) $ $)) - (|has| (|Character|) (|SetCategory|)) (ELT $ NIL)) - ((= ((|Boolean|) $ $)) - (|has| (|Character|) (|SetCategory|)) (ELT $ 14)) - ((|coerce| ((|OutputForm|) $)) - (|has| (|Character|) (|CoercibleTo| (|OutputForm|))) - (ELT $ 27)) - ((|hash| ((|SingleInteger|) $)) - (|has| (|Character|) (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) - (|has| (|Character|) (|SetCategory|)) (ELT $ 38)) - ((|hash| ((|Integer|) $)) T (ELT $ 69)) - ((|elt| ($ $ $)) T (ELT $ NIL)) - ((|rightTrim| ($ $ (|CharacterClass|))) T (ELT $ 65)) - ((|rightTrim| ($ $ (|Character|))) T (ELT $ 64)) - ((|leftTrim| ($ $ (|CharacterClass|))) T (ELT $ 63)) - ((|leftTrim| ($ $ (|Character|))) T (ELT $ 62)) - ((|trim| ($ $ (|CharacterClass|))) T (ELT $ NIL)) - ((|trim| ($ $ (|Character|))) T (ELT $ NIL)) - ((|split| ((|List| $) $ (|CharacterClass|))) T - (ELT $ 61)) - ((|split| ((|List| $) $ (|Character|))) T (ELT $ 60)) - ((|coerce| ($ (|Character|))) T (ELT $ NIL)) - ((|position| - ((|Integer|) (|CharacterClass|) $ (|Integer|))) - T (ELT $ 50)) - ((|position| ((|Integer|) $ $ (|Integer|))) T - (ELT $ 47)) - ((|replace| ($ $ (|UniversalSegment| (|Integer|)) $)) T - (ELT $ 44)) - ((|match?| ((|Boolean|) $ $ (|Character|))) T - (ELT $ 73)) - ((|match| ((|NonNegativeInteger|) $ $ (|Character|))) T - (ELT $ 70)) - ((|substring?| ((|Boolean|) $ $ (|Integer|))) T - (ELT $ 46)) - ((|suffix?| ((|Boolean|) $ $)) T (ELT $ 51)) - ((|prefix?| ((|Boolean|) $ $)) T (ELT $ 72)) - ((|upperCase!| ($ $)) T (ELT $ 34)) - ((|upperCase| ($ $)) T (ELT $ NIL)) - ((|lowerCase!| ($ $)) T (ELT $ 37)) - ((|lowerCase| ($ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) - (|has| (|Character|) (|OrderedSet|)) (ELT $ 15)) - ((> ((|Boolean|) $ $)) - (|has| (|Character|) (|OrderedSet|)) (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) - (|has| (|Character|) (|OrderedSet|)) (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) - (|has| (|Character|) (|OrderedSet|)) (ELT $ NIL)) - ((|max| ($ $ $)) (|has| (|Character|) (|OrderedSet|)) - (ELT $ NIL)) - ((|min| ($ $ $)) (|has| (|Character|) (|OrderedSet|)) - (ELT $ NIL)) - ((|sort!| ($ $)) - (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) - (|has| (|Character|) (|OrderedSet|))) - (ELT $ NIL)) - ((|sort!| ($ (|Mapping| (|Boolean|) (|Character|) - (|Character|)) - $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|reverse!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 66)) - ((|sorted?| ((|Boolean|) $)) - (|has| (|Character|) (|OrderedSet|)) (ELT $ NIL)) - ((|sort| ($ $)) (|has| (|Character|) (|OrderedSet|)) - (ELT $ NIL)) - ((|merge| ($ $ $)) (|has| (|Character|) (|OrderedSet|)) - (ELT $ NIL)) - ((|position| ((|Integer|) (|Character|) $ (|Integer|))) - (|has| (|Character|) (|SetCategory|)) (ELT $ 48)) - ((|position| ((|Integer|) (|Character|) $)) - (|has| (|Character|) (|SetCategory|)) (ELT $ NIL)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) (|Character|)) - $)) - T (ELT $ NIL)) - ((|sorted?| - ((|Boolean|) - (|Mapping| (|Boolean|) (|Character|) - (|Character|)) - $)) - T (ELT $ NIL)) - ((|sort| ($ (|Mapping| (|Boolean|) (|Character|) - (|Character|)) - $)) - T (ELT $ NIL)) - ((|reverse| ($ $)) T (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) (|Character|) - (|Character|)) - $ $)) - T (ELT $ NIL)) - ((|setelt| - ((|Character|) $ (|UniversalSegment| (|Integer|)) - (|Character|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|insert| ($ $ $ (|Integer|))) T (ELT $ 23)) - ((|insert| ($ (|Character|) $ (|Integer|))) T - (ELT $ NIL)) - ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|delete| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ 21)) - ((|map| ($ (|Mapping| (|Character|) (|Character|) - (|Character|)) - $ $)) - T (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ 67)) - ((|concat| ($ $ $)) T (ELT $ 16)) - ((|concat| ($ (|Character|) $)) T (ELT $ NIL)) - ((|concat| ($ $ (|Character|))) T (ELT $ NIL)) - ((|new| ($ (|NonNegativeInteger|) (|Character|))) T - (ELT $ 9)) - ((|construct| ($ (|List| (|Character|)))) T (ELT $ NIL)) - ((|find| ((|Union| (|Character|) "failed") - (|Mapping| (|Boolean|) (|Character|)) $)) - T (ELT $ NIL)) - ((|reduce| - ((|Character|) - (|Mapping| (|Character|) (|Character|) - (|Character|)) - $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| - ((|Character|) - (|Mapping| (|Character|) (|Character|) - (|Character|)) - $ (|Character|))) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|remove| ($ (|Mapping| (|Boolean|) (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| - ((|Character|) - (|Mapping| (|Character|) (|Character|) - (|Character|)) - $ (|Character|) (|Character|))) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|remove| ($ (|Character|) $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|removeDuplicates| ($ $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) - (|has| (|Character|) (|ConvertibleTo| (|InputForm|))) - (ELT $ NIL)) - ((|swap!| ((|Void|) $ (|Integer|) (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|fill!| ($ $ (|Character|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|first| ((|Character|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|minIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ 28)) - ((|maxIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ 42)) - ((|entry?| ((|Boolean|) (|Character|) $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ NIL)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ NIL)) - ((|entries| ((|List| (|Character|)) $)) T (ELT $ NIL)) - ((|elt| ((|Character|) $ (|Integer|))) T (ELT $ 52)) - ((|elt| ((|Character|) $ (|Integer|) (|Character|))) T - (ELT $ NIL)) - ((|qelt| ((|Character|) $ (|Integer|))) T (ELT $ NIL)) - ((|setelt| ((|Character|) $ (|Integer|) (|Character|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 45)) - ((|qsetelt!| - ((|Character|) $ (|Integer|) (|Character|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Character|)) - (|List| (|Character|)))) - (AND (|has| (|Character|) (|Evalable| (|Character|))) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Character|) (|Character|))) - (AND (|has| (|Character|) (|Evalable| (|Character|))) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Equation| (|Character|)))) - (AND (|has| (|Character|) (|Evalable| (|Character|))) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| (|Character|))))) - (AND (|has| (|Character|) (|Evalable| (|Character|))) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|member?| ((|Boolean|) (|Character|) $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) (|Character|) $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| (|Character|) (|SetCategory|))) - (ELT $ NIL)) - ((|members| ((|List| (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|parts| ((|List| (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|every?| - ((|Boolean|) (|Mapping| (|Boolean|) (|Character|)) - $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|any?| ((|Boolean|) - (|Mapping| (|Boolean|) (|Character|)) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|map!| ($ (|Mapping| (|Character|) (|Character|)) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 33)) - ((|map| ($ (|Mapping| (|Character|) (|Character|)) $)) T - (ELT $ NIL)) - ((|#| ((|NonNegativeInteger|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ 13)) - ((|sample| ($)) T (CONST $ NIL)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|empty?| ((|Boolean|) $)) T (ELT $ 12)) - ((|empty| ($)) T (ELT $ 10)) - ((|copy| ($ $)) T (ELT $ 17)) - ((|eq?| ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|IndexedString| '(|IndexedString| |#1|) - '((|Join| (|StringAggregate|) - (CATEGORY |domain| - (SIGNATURE |hash| ((|Integer|) $)))) - (|Integer|)) - T '|IndexedString| - (|put| '|IndexedString| '|mode| - '(|Mapping| - (|Join| (|StringAggregate|) - (CATEGORY |domain| - (SIGNATURE |hash| - ((|Integer|) $)))) - (|Integer|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/LIST.lsp b/src/algebra/strap/LIST.lsp index e43d4ed3..949f0960 100644 --- a/src/algebra/strap/LIST.lsp +++ b/src/algebra/strap/LIST.lsp @@ -353,308 +353,3 @@ 0 0 11 3 6 12 13 0 8 29 2 6 12 13 0 28 1 6 15 0 26 2 6 15 0 8 27))))) '|lookupIncomplete|)) - -(SETQ |$CategoryFrame| - (|put| '|List| '|isFunctor| - '(((~= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) - (|has| |#1| (|CoercibleTo| (|OutputForm|))) - (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))) - (|has| |#1| (|OpenMath|)) (ELT $ 29)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $)) - (|has| |#1| (|OpenMath|)) (ELT $ 28)) - ((|OMwrite| ((|String|) $ (|Boolean|))) - (|has| |#1| (|OpenMath|)) (ELT $ 27)) - ((|OMwrite| ((|String|) $)) (|has| |#1| (|OpenMath|)) - (ELT $ 26)) - ((|setDifference| ($ $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ 37)) - ((|setIntersection| ($ $ $)) - (|has| |#1| (|SetCategory|)) (ELT $ 34)) - ((|setUnion| ($ $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ 32)) - ((|append| ($ $ $)) T (ELT $ 11)) - ((|cons| ($ |#1| $)) T (ELT $ 10)) - ((|null| ((|Boolean|) $)) T (ELT $ 9)) - ((|nil| ($)) T (ELT $ 7)) - ((|list| ($ |#1|)) T (ELT $ NIL)) - ((|concat!| ($ $ |#1|)) T (ELT $ NIL)) - ((|concat!| ($ $ $)) T (ELT $ NIL)) - ((|delete!| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|delete!| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|remove!| ($ (|Mapping| (|Boolean|) |#1|) $)) T - (ELT $ NIL)) - ((|insert!| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|insert!| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|merge!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|select!| ($ (|Mapping| (|Boolean|) |#1|) $)) T - (ELT $ NIL)) - ((|remove!| ($ |#1| $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|removeDuplicates!| ($ $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|merge!| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|reverse| ($ $)) T (ELT $ NIL)) - ((|sort| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) T - (ELT $ NIL)) - ((|sorted?| - ((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $)) - T (ELT $ NIL)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $ (|Integer|))) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|merge| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort| ($ $)) (|has| |#1| (|OrderedSet|)) (ELT $ NIL)) - ((|sorted?| ((|Boolean|) $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|reverse!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|sort!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|sort!| ($ $)) - (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) - (|has| |#1| (|OrderedSet|))) - (ELT $ NIL)) - ((|min| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|max| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((> ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((< ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|possiblyInfinite?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|explicitlyFinite?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|qsetelt!| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|qelt| (|#1| $ (|Integer|))) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|) |#1|)) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|))) T (ELT $ 36)) - ((|entries| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ NIL)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ NIL)) - ((|entry?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|maxIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|minIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|fill!| ($ $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|swap!| ((|Void|) $ (|Integer|) (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) - (|has| |#1| (|ConvertibleTo| (|InputForm|))) - (ELT $ 45)) - ((|removeDuplicates| ($ $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ 31)) - ((|remove| ($ |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|reduce| - (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|remove| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|find| ((|Union| |#1| "failed") - (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|construct| ($ (|List| |#1|))) T (ELT $ NIL)) - ((|new| ($ (|NonNegativeInteger|) |#1|)) T (ELT $ NIL)) - ((|concat| ($ $ |#1|)) T (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|delete| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|insert| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|insert| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|setelt| - (|#1| $ (|UniversalSegment| (|Integer|)) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|split!| ($ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ "last" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setlast!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| ($ $ "rest" $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setrest!| ($ $ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ "first" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setfirst!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|cycleSplit!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|cycleTail| ($ $)) T (ELT $ NIL)) - ((|cycleLength| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|cycleEntry| ($ $)) T (ELT $ NIL)) - ((|third| (|#1| $)) T (ELT $ NIL)) - ((|second| (|#1| $)) T (ELT $ NIL)) - ((|tail| ($ $)) T (ELT $ NIL)) - ((|last| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|elt| (|#1| $ "last")) T (ELT $ NIL)) - ((|last| (|#1| $)) T (ELT $ NIL)) - ((|rest| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|elt| ($ $ "rest")) T (ELT $ NIL)) - ((|rest| ($ $)) T (ELT $ NIL)) - ((|first| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|elt| (|#1| $ "first")) T (ELT $ NIL)) - ((|first| (|#1| $)) T (ELT $ NIL)) - ((|concat| ($ |#1| $)) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ 30)) - ((|setvalue!| (|#1| $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setelt| (|#1| $ "value" |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|setchildren!| ($ $ (|List| $))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|node?| ((|Boolean|) $ $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|child?| ((|Boolean|) $ $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|distance| ((|Integer|) $ $)) T (ELT $ NIL)) - ((|leaves| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|cyclic?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|elt| (|#1| $ "value")) T (ELT $ NIL)) - ((|value| (|#1| $)) T (ELT $ NIL)) - ((|leaf?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|nodes| ((|List| $) $)) T (ELT $ NIL)) - ((|children| ((|List| $) $)) T (ELT $ NIL)) - ((|eval| ($ $ (|List| |#1|) (|List| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ |#1| |#1|)) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Equation| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| |#1|)))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|member?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ 33)) - ((|count| ((|NonNegativeInteger|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|members| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|parts| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|map!| ($ (|Mapping| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1|) $)) T (ELT $ NIL)) - ((|#| ((|NonNegativeInteger|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|sample| ($)) T (CONST $ NIL)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|empty?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|empty| ($)) T (ELT $ NIL)) - ((|copy| ($ $)) T (ELT $ NIL)) - ((|eq?| ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|List| '(|List| |#1|) - '((|Join| (|ListAggregate| |#1|) - (CATEGORY |domain| (SIGNATURE |nil| ($)) - (SIGNATURE |null| ((|Boolean|) $)) - (SIGNATURE |cons| ($ |#1| $)) - (SIGNATURE |append| ($ $ $)) - (IF (|has| |#1| (|SetCategory|)) - (PROGN - (SIGNATURE |setUnion| ($ $ $)) - (SIGNATURE |setIntersection| - ($ $ $)) - (SIGNATURE |setDifference| - ($ $ $))) - |%noBranch|) - (IF (|has| |#1| (|OpenMath|)) - (ATTRIBUTE (|OpenMath|)) - |%noBranch|))) - (|Type|)) - T '|List| - (|put| '|List| '|mode| - '(|Mapping| - (|Join| (|ListAggregate| |#1|) - (CATEGORY |domain| - (SIGNATURE |nil| ($)) - (SIGNATURE |null| - ((|Boolean|) $)) - (SIGNATURE |cons| ($ |#1| $)) - (SIGNATURE |append| ($ $ $)) - (IF (|has| |#1| (|SetCategory|)) - (PROGN - (SIGNATURE |setUnion| ($ $ $)) - (SIGNATURE |setIntersection| - ($ $ $)) - (SIGNATURE |setDifference| - ($ $ $))) - |%noBranch|) - (IF (|has| |#1| (|OpenMath|)) - (ATTRIBUTE (|OpenMath|)) - |%noBranch|))) - (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/LNAGG-.lsp b/src/algebra/strap/LNAGG-.lsp index 8fb55dad..b997b6b1 100644 --- a/src/algebra/strap/LNAGG-.lsp +++ b/src/algebra/strap/LNAGG-.lsp @@ -102,53 +102,3 @@ 0 7 0 8 22 1 0 11 0 12 2 0 13 8 0 15 2 0 0 0 7 19 2 0 0 7 0 20))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|LinearAggregate&| '|isFunctor| - '(((|insert| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|insert| ($ |#2| $ (|Integer|))) T (ELT $ 22)) - ((|concat| ($ (|List| $))) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ NIL)) - ((|concat| ($ |#2| $)) T (ELT $ 20)) - ((|concat| ($ $ |#2|)) T (ELT $ 19)) - ((|maxIndex| ((|Integer|) $)) T (ELT $ 24)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ 12)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ 15))) - (|addModemap| '|LinearAggregate&| - '(|LinearAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |insert| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |insert| - (|#1| |#2| |#1| (|Integer|))) - (SIGNATURE |concat| (|#1| (|List| |#1|))) - (SIGNATURE |concat| (|#1| |#1| |#1|)) - (SIGNATURE |concat| (|#1| |#2| |#1|)) - (SIGNATURE |concat| (|#1| |#1| |#2|)) - (SIGNATURE |maxIndex| ((|Integer|) |#1|)) - (SIGNATURE |indices| - ((|List| (|Integer|)) |#1|)) - (SIGNATURE |index?| - ((|Boolean|) (|Integer|) |#1|))) - (|LinearAggregate| |#2|) (|Type|)) - T '|LinearAggregate&| - (|put| '|LinearAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |insert| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |insert| - (|#1| |#2| |#1| (|Integer|))) - (SIGNATURE |concat| - (|#1| (|List| |#1|))) - (SIGNATURE |concat| (|#1| |#1| |#1|)) - (SIGNATURE |concat| (|#1| |#2| |#1|)) - (SIGNATURE |concat| (|#1| |#1| |#2|)) - (SIGNATURE |maxIndex| - ((|Integer|) |#1|)) - (SIGNATURE |indices| - ((|List| (|Integer|)) |#1|)) - (SIGNATURE |index?| - ((|Boolean|) (|Integer|) |#1|))) - (|LinearAggregate| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/LNAGG.lsp b/src/algebra/strap/LNAGG.lsp index 98805faf..39b44e3c 100644 --- a/src/algebra/strap/LNAGG.lsp +++ b/src/algebra/strap/LNAGG.lsp @@ -67,7 +67,8 @@ (|NonNegativeInteger|)) NIL)) . #2=(|LinearAggregate|)))))) . #2#) - (SETELT #0# 0 (LIST '|LinearAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|LinearAggregate| (|devaluate| |t#1|))))))) (DEFUN |LinearAggregate| (#0=#:G1400) (LET (#1=#:G1401) @@ -79,9 +80,3 @@ (SETQ #1# (|LinearAggregate;| #0#))) |LinearAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|LinearAggregate| '|isCategory| T - (|addModemap| '|LinearAggregate| '(|LinearAggregate| |#1|) - '((|Category|) (|Type|)) T '|LinearAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/LSAGG-.lsp b/src/algebra/strap/LSAGG-.lsp index 4823fd5b..504a9575 100644 --- a/src/algebra/strap/LSAGG-.lsp +++ b/src/algebra/strap/LSAGG-.lsp @@ -959,195 +959,3 @@ 31 38 3 0 0 0 0 31 60 1 0 0 0 58 2 0 10 0 0 66))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|ListAggregate&| '|isFunctor| - '(((|list| ($ |#2|)) T (ELT $ 15)) - ((|delete!| ($ $ (|Integer|))) T (ELT $ 38)) - ((|delete!| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ 44)) - ((|remove!| ($ (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 37)) - ((|insert!| ($ |#2| $ (|Integer|))) T (ELT $ 34)) - ((|insert!| ($ $ $ (|Integer|))) T (ELT $ 36)) - ((|merge!| ($ (|Mapping| (|Boolean|) |#2| |#2|) $ $)) T - (ELT $ 30)) - ((|select!| ($ (|Mapping| (|Boolean|) |#2|) $)) T - (ELT $ 28)) - ((|remove!| ($ |#2| $)) T (ELT $ NIL)) - ((|removeDuplicates!| ($ $)) T (ELT $ 64)) - ((|merge!| ($ $ $)) T (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) |#2| |#2|) $ $)) T - (ELT $ 24)) - ((|sorted?| - ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $)) - T (ELT $ 50)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 47)) - ((|position| ((|Integer|) |#2| $)) T (ELT $ NIL)) - ((|position| ((|Integer|) |#2| $ (|Integer|))) T - (ELT $ 61)) - ((|merge| ($ $ $)) T (ELT $ NIL)) - ((|sorted?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) T (ELT $ 60)) - ((|reverse!| ($ $)) T (ELT $ 56)) - ((|sort!| ($ (|Mapping| (|Boolean|) |#2| |#2|) $)) T - (ELT $ 12)) - ((|sort!| ($ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 66)) - ((|reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|)) - T (ELT $ 53)) - ((|reduce| (|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|)) T - (ELT $ 51)) - ((|reduce| (|#2| (|Mapping| |#2| |#2| |#2|) $)) T - (ELT $ 21)) - ((|find| ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) $)) - T (ELT $ 46)) - ((|new| ($ (|NonNegativeInteger|) |#2|)) T (ELT $ 54)) - ((|map| ($ (|Mapping| |#2| |#2| |#2|) $ $)) T - (ELT $ 55)) - ((|map| ($ (|Mapping| |#2| |#2|) $)) T (ELT $ NIL)) - ((|copy| ($ $)) T (ELT $ 58))) - (|addModemap| '|ListAggregate&| - '(|ListAggregate&| |#1| |#2|) - '((CATEGORY |domain| (SIGNATURE |list| (|#1| |#2|)) - (SIGNATURE |delete!| (|#1| |#1| (|Integer|))) - (SIGNATURE |delete!| - (|#1| |#1| (|UniversalSegment| (|Integer|)))) - (SIGNATURE |remove!| - (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |insert!| - (|#1| |#2| |#1| (|Integer|))) - (SIGNATURE |insert!| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |merge!| - (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| - |#1|)) - (SIGNATURE |select!| - (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |remove!| (|#1| |#2| |#1|)) - (SIGNATURE |removeDuplicates!| (|#1| |#1|)) - (SIGNATURE |merge!| (|#1| |#1| |#1|)) - (SIGNATURE |merge| - (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| - |#1|)) - (SIGNATURE |sorted?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) - (SIGNATURE |position| - ((|Integer|) (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |position| ((|Integer|) |#2| |#1|)) - (SIGNATURE |position| - ((|Integer|) |#2| |#1| (|Integer|))) - (SIGNATURE |merge| (|#1| |#1| |#1|)) - (SIGNATURE |sorted?| ((|Boolean|) |#1|)) - (SIGNATURE |copyInto!| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |reverse!| (|#1| |#1|)) - (SIGNATURE |sort!| - (|#1| (|Mapping| (|Boolean|) |#2| |#2|) - |#1|)) - (SIGNATURE |sort!| (|#1| |#1|)) - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| - |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) - (SIGNATURE |find| - ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) |#1|)) - (SIGNATURE |new| - (|#1| (|NonNegativeInteger|) |#2|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2|) |#1|)) - (SIGNATURE |copy| (|#1| |#1|))) - (|ListAggregate| |#2|) (|Type|)) - T '|ListAggregate&| - (|put| '|ListAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |list| (|#1| |#2|)) - (SIGNATURE |delete!| - (|#1| |#1| (|Integer|))) - (SIGNATURE |delete!| - (|#1| |#1| - (|UniversalSegment| (|Integer|)))) - (SIGNATURE |remove!| - (|#1| (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |insert!| - (|#1| |#2| |#1| (|Integer|))) - (SIGNATURE |insert!| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |merge!| - (|#1| - (|Mapping| (|Boolean|) |#2| |#2|) - |#1| |#1|)) - (SIGNATURE |select!| - (|#1| (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |remove!| (|#1| |#2| |#1|)) - (SIGNATURE |removeDuplicates!| - (|#1| |#1|)) - (SIGNATURE |merge!| (|#1| |#1| |#1|)) - (SIGNATURE |merge| - (|#1| - (|Mapping| (|Boolean|) |#2| |#2|) - |#1| |#1|)) - (SIGNATURE |sorted?| - ((|Boolean|) - (|Mapping| (|Boolean|) |#2| |#2|) - |#1|)) - (SIGNATURE |position| - ((|Integer|) - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |position| - ((|Integer|) |#2| |#1|)) - (SIGNATURE |position| - ((|Integer|) |#2| |#1| - (|Integer|))) - (SIGNATURE |merge| (|#1| |#1| |#1|)) - (SIGNATURE |sorted?| - ((|Boolean|) |#1|)) - (SIGNATURE |copyInto!| - (|#1| |#1| |#1| (|Integer|))) - (SIGNATURE |reverse!| (|#1| |#1|)) - (SIGNATURE |sort!| - (|#1| - (|Mapping| (|Boolean|) |#2| |#2|) - |#1|)) - (SIGNATURE |sort!| (|#1| |#1|)) - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1| |#2| |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1| |#2|)) - (SIGNATURE |reduce| - (|#2| (|Mapping| |#2| |#2| |#2|) - |#1|)) - (SIGNATURE |find| - ((|Union| |#2| "failed") - (|Mapping| (|Boolean|) |#2|) - |#1|)) - (SIGNATURE |new| - (|#1| (|NonNegativeInteger|) |#2|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2| |#2|) - |#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2|) |#1|)) - (SIGNATURE |copy| (|#1| |#1|))) - (|ListAggregate| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/LSAGG.lsp b/src/algebra/strap/LSAGG.lsp index 924ec233..bfe188ac 100644 --- a/src/algebra/strap/LSAGG.lsp +++ b/src/algebra/strap/LSAGG.lsp @@ -24,7 +24,8 @@ '(((|list| ($ |t#1|)) T)) NIL 'NIL NIL)) . #1=(|ListAggregate|))))) . #1#) - (SETELT #0# 0 (LIST '|ListAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|ListAggregate| (|devaluate| |t#1|))))))) (DEFUN |ListAggregate| (#0=#:G1431) (LET (#1=#:G1432) @@ -36,9 +37,3 @@ (SETQ #1# (|ListAggregate;| #0#))) |ListAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|ListAggregate| '|isCategory| T - (|addModemap| '|ListAggregate| '(|ListAggregate| |#1|) - '((|Category|) (|Type|)) T '|ListAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/MONOID-.lsp b/src/algebra/strap/MONOID-.lsp index 6673562a..b3cf1042 100644 --- a/src/algebra/strap/MONOID-.lsp +++ b/src/algebra/strap/MONOID-.lsp @@ -59,35 +59,3 @@ 0 0 11 1 0 12 0 13 1 0 8 0 10 2 0 0 0 17 18))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|Monoid&| '|isFunctor| - '(((|recip| ((|Union| $ "failed") $)) T (ELT $ 13)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ 18)) - ((|one?| ((|Boolean|) $)) T (ELT $ 10)) - ((|sample| ($)) T (ELT $ 11)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL))) - (|addModemap| '|Monoid&| '(|Monoid&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |recip| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE ** - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |one?| ((|Boolean|) |#1|)) - (SIGNATURE |sample| (|#1|)) - (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) - (|Monoid|)) - T '|Monoid&| - (|put| '|Monoid&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |recip| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE ** - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |one?| ((|Boolean|) |#1|)) - (SIGNATURE |sample| (|#1|)) - (SIGNATURE ** - (|#1| |#1| (|PositiveInteger|)))) - (|Monoid|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/MONOID.lsp b/src/algebra/strap/MONOID.lsp index 43b52fd0..538e9b0e 100644 --- a/src/algebra/strap/MONOID.lsp +++ b/src/algebra/strap/MONOID.lsp @@ -18,14 +18,9 @@ '((|NonNegativeInteger|) (|Boolean|)) NIL)) |Monoid|) - (SETELT #0# 0 '(|Monoid|)))))) + (|setShellEntry| #0# 0 '(|Monoid|)))))) (DEFUN |Monoid| () (LET () (COND (|Monoid;AL|) (T (SETQ |Monoid;AL| (|Monoid;|)))))) -(SETQ |$CategoryFrame| - (|put| '|Monoid| '|isCategory| T - (|addModemap| '|Monoid| '(|Monoid|) '((|Category|)) T - '|Monoid| |$CategoryFrame|))) - (MAKEPROP '|Monoid| 'NILADIC T) diff --git a/src/algebra/strap/MTSCAT.lsp b/src/algebra/strap/MTSCAT.lsp index ecc72ee2..443b2d5f 100644 --- a/src/algebra/strap/MTSCAT.lsp +++ b/src/algebra/strap/MTSCAT.lsp @@ -84,9 +84,9 @@ (|List| (|NonNegativeInteger|))) NIL)) . #2=(|MultivariateTaylorSeriesCategory|)))))) . #2#) - (SETELT #0# 0 - (LIST '|MultivariateTaylorSeriesCategory| - (|devaluate| |t#1|) (|devaluate| |t#2|))))))) + (|setShellEntry| #0# 0 + (LIST '|MultivariateTaylorSeriesCategory| + (|devaluate| |t#1|) (|devaluate| |t#2|))))))) (DEFUN |MultivariateTaylorSeriesCategory| (&REST #0=#:G1402 &AUX #1=#:G1400) @@ -105,10 +105,3 @@ #1#))) |MultivariateTaylorSeriesCategory;AL|)) #2#)))) - -(SETQ |$CategoryFrame| - (|put| '|MultivariateTaylorSeriesCategory| '|isCategory| T - (|addModemap| '|MultivariateTaylorSeriesCategory| - '(|MultivariateTaylorSeriesCategory| |#1| |#2|) - '((|Category|) (|Ring|) (|OrderedSet|)) T - '|MultivariateTaylorSeriesCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/NNI.lsp b/src/algebra/strap/NNI.lsp index 2d3fe6a9..329200c6 100644 --- a/src/algebra/strap/NNI.lsp +++ b/src/algebra/strap/NNI.lsp @@ -120,78 +120,4 @@ 0 0 0 0 1 2 0 0 12 0 1 2 0 0 11 0 1))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|NonNegativeInteger| '|isFunctor| - '(((|random| ($ $)) T (ELT $ NIL)) - ((|shift| ($ $ (|Integer|))) T (ELT $ 7)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ NIL)) - ((|divide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $)) - T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ NIL)) - ((|rem| ($ $ $)) T (ELT $ NIL)) - ((|quo| ($ $ $)) T (ELT $ NIL)) - ((* ($ $ $)) T (ELT $ NIL)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((|One| ($)) T (CONST $ NIL)) - ((|one?| ((|Boolean|) $)) T (ELT $ NIL)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((|sup| ($ $ $)) T (ELT $ 6)) - ((|subtractIfCan| ((|Union| $ "failed") $ $)) T - (ELT $ 9)) - ((|Zero| ($)) T (CONST $ NIL)) - ((|sample| ($)) T (CONST $ NIL)) - ((|zero?| ((|Boolean|) $)) T (ELT $ NIL)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((+ ($ $ $)) T (ELT $ NIL)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) - ((|min| ($ $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL)) - ((= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|NonNegativeInteger| - '(|NonNegativeInteger|) - '((|Join| (|OrderedAbelianMonoidSup|) (|Monoid|) - (CATEGORY |domain| (SIGNATURE |quo| ($ $ $)) - (SIGNATURE |rem| ($ $ $)) - (SIGNATURE |gcd| ($ $ $)) - (SIGNATURE |divide| - ((|Record| (|:| |quotient| $) - (|:| |remainder| $)) - $ $)) - (SIGNATURE |exquo| - ((|Union| $ "failed") $ $)) - (SIGNATURE |shift| ($ $ (|Integer|))) - (SIGNATURE |random| ($ $)) - (ATTRIBUTE (|commutative| "*"))))) - T '|NonNegativeInteger| - (|put| '|NonNegativeInteger| '|mode| - '(|Mapping| - (|Join| (|OrderedAbelianMonoidSup|) - (|Monoid|) - (CATEGORY |domain| - (SIGNATURE |quo| ($ $ $)) - (SIGNATURE |rem| ($ $ $)) - (SIGNATURE |gcd| ($ $ $)) - (SIGNATURE |divide| - ((|Record| (|:| |quotient| $) - (|:| |remainder| $)) - $ $)) - (SIGNATURE |exquo| - ((|Union| $ "failed") $ $)) - (SIGNATURE |shift| - ($ $ (|Integer|))) - (SIGNATURE |random| ($ $)) - (ATTRIBUTE (|commutative| "*"))))) - |$CategoryFrame|)))) - (MAKEPROP '|NonNegativeInteger| 'NILADIC T) diff --git a/src/algebra/strap/OINTDOM.lsp b/src/algebra/strap/OINTDOM.lsp index c68598c8..e03dfea0 100644 --- a/src/algebra/strap/OINTDOM.lsp +++ b/src/algebra/strap/OINTDOM.lsp @@ -8,7 +8,7 @@ (RETURN (PROG1 (LETT #0# (|Join| (|IntegralDomain|) (|OrderedRing|)) |OrderedIntegralDomain|) - (SETELT #0# 0 '(|OrderedIntegralDomain|)))))) + (|setShellEntry| #0# 0 '(|OrderedIntegralDomain|)))))) (DEFUN |OrderedIntegralDomain| () (LET () @@ -16,10 +16,4 @@ (|OrderedIntegralDomain;AL|) (T (SETQ |OrderedIntegralDomain;AL| (|OrderedIntegralDomain;|)))))) -(SETQ |$CategoryFrame| - (|put| '|OrderedIntegralDomain| '|isCategory| T - (|addModemap| '|OrderedIntegralDomain| - '(|OrderedIntegralDomain|) '((|Category|)) T - '|OrderedIntegralDomain| |$CategoryFrame|))) - (MAKEPROP '|OrderedIntegralDomain| 'NILADIC T) diff --git a/src/algebra/strap/ORDRING-.lsp b/src/algebra/strap/ORDRING-.lsp index 9b433619..c5eb9558 100644 --- a/src/algebra/strap/ORDRING-.lsp +++ b/src/algebra/strap/ORDRING-.lsp @@ -64,28 +64,3 @@ 0 16 0 17 1 0 8 0 10 1 0 8 0 11 1 0 0 0 19))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|OrderedRing&| '|isFunctor| - '(((|abs| ($ $)) T (ELT $ 19)) - ((|sign| ((|Integer|) $)) T (ELT $ 17)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 11)) - ((|positive?| ((|Boolean|) $)) T (ELT $ 10))) - (|addModemap| '|OrderedRing&| '(|OrderedRing&| |#1|) - '((CATEGORY |domain| (SIGNATURE |abs| (|#1| |#1|)) - (SIGNATURE |sign| ((|Integer|) |#1|)) - (SIGNATURE |negative?| ((|Boolean|) |#1|)) - (SIGNATURE |positive?| ((|Boolean|) |#1|))) - (|OrderedRing|)) - T '|OrderedRing&| - (|put| '|OrderedRing&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |abs| (|#1| |#1|)) - (SIGNATURE |sign| ((|Integer|) |#1|)) - (SIGNATURE |negative?| - ((|Boolean|) |#1|)) - (SIGNATURE |positive?| - ((|Boolean|) |#1|))) - (|OrderedRing|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/ORDRING.lsp b/src/algebra/strap/ORDRING.lsp index a15e19b1..a4ded68e 100644 --- a/src/algebra/strap/ORDRING.lsp +++ b/src/algebra/strap/ORDRING.lsp @@ -15,7 +15,7 @@ ((|abs| ($ $)) T)) NIL '((|Integer|) (|Boolean|)) NIL)) |OrderedRing|) - (SETELT #0# 0 '(|OrderedRing|)))))) + (|setShellEntry| #0# 0 '(|OrderedRing|)))))) (DEFUN |OrderedRing| () (LET () @@ -23,9 +23,4 @@ (|OrderedRing;AL|) (T (SETQ |OrderedRing;AL| (|OrderedRing;|)))))) -(SETQ |$CategoryFrame| - (|put| '|OrderedRing| '|isCategory| T - (|addModemap| '|OrderedRing| '(|OrderedRing|) - '((|Category|)) T '|OrderedRing| |$CategoryFrame|))) - (MAKEPROP '|OrderedRing| 'NILADIC T) diff --git a/src/algebra/strap/OUTFORM.lsp b/src/algebra/strap/OUTFORM.lsp index dead66e8..97591c7a 100644 --- a/src/algebra/strap/OUTFORM.lsp +++ b/src/algebra/strap/OUTFORM.lsp @@ -969,365 +969,4 @@ 0 0 0 0 85))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|OutputForm| '|isFunctor| - '(((SEGMENT ($ $)) T (ELT $ 96)) - ((SEGMENT ($ $ $)) T (ELT $ 95)) - ((|not| ($ $)) T (ELT $ 94)) - ((|or| ($ $ $)) T (ELT $ 93)) - ((|and| ($ $ $)) T (ELT $ 92)) - ((|exquo| ($ $ $)) T (ELT $ 91)) - ((|quo| ($ $ $)) T (ELT $ 90)) - ((|rem| ($ $ $)) T (ELT $ 89)) - ((|div| ($ $ $)) T (ELT $ 88)) - ((** ($ $ $)) T (ELT $ 87)) ((/ ($ $ $)) T (ELT $ 86)) - ((* ($ $ $)) T (ELT $ 85)) ((- ($ $)) T (ELT $ 84)) - ((- ($ $ $)) T (ELT $ 83)) ((+ ($ $ $)) T (ELT $ 82)) - ((>= ($ $ $)) T (ELT $ 81)) ((<= ($ $ $)) T (ELT $ 80)) - ((> ($ $ $)) T (ELT $ 79)) ((< ($ $ $)) T (ELT $ 78)) - ((~= ($ $ $)) T (ELT $ 77)) ((= ($ $ $)) T (ELT $ 17)) - ((|blankSeparate| ($ (|List| $))) T (ELT $ 57)) - ((|semicolonSeparate| ($ (|List| $))) T (ELT $ 53)) - ((|commaSeparate| ($ (|List| $))) T (ELT $ 52)) - ((|pile| ($ (|List| $))) T (ELT $ 51)) - ((|paren| ($ (|List| $))) T (ELT $ 63)) - ((|paren| ($ $)) T (ELT $ 62)) - ((|bracket| ($ (|List| $))) T (ELT $ 61)) - ((|bracket| ($ $)) T (ELT $ 60)) - ((|brace| ($ (|List| $))) T (ELT $ 59)) - ((|brace| ($ $)) T (ELT $ 58)) - ((|int| ($ $ $ $)) T (ELT $ 135)) - ((|int| ($ $ $)) T (ELT $ 134)) - ((|int| ($ $)) T (ELT $ 133)) - ((|prod| ($ $ $ $)) T (ELT $ 132)) - ((|prod| ($ $ $)) T (ELT $ 131)) - ((|prod| ($ $)) T (ELT $ 130)) - ((|sum| ($ $ $ $)) T (ELT $ 129)) - ((|sum| ($ $ $)) T (ELT $ 128)) - ((|sum| ($ $)) T (ELT $ 127)) - ((|overlabel| ($ $ $)) T (ELT $ 112)) - ((|overbar| ($ $)) T (ELT $ 106)) - ((|prime| ($ $ (|NonNegativeInteger|))) T (ELT $ 111)) - ((|prime| ($ $)) T (ELT $ 108)) - ((|dot| ($ $ (|NonNegativeInteger|))) T (ELT $ 110)) - ((|dot| ($ $)) T (ELT $ 107)) - ((|quote| ($ $)) T (ELT $ 105)) - ((|supersub| ($ $ (|List| $))) T (ELT $ 74)) - ((|scripts| ($ $ (|List| $))) T (ELT $ 71)) - ((|presuper| ($ $ $)) T (ELT $ 67)) - ((|presub| ($ $ $)) T (ELT $ 66)) - ((|super| ($ $ $)) T (ELT $ 65)) - ((|sub| ($ $ $)) T (ELT $ 64)) - ((|binomial| ($ $ $)) T (ELT $ 97)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ 126)) - ((|rarrow| ($ $ $)) T (ELT $ 121)) - ((|assign| ($ $ $)) T (ELT $ 119)) - ((|slash| ($ $ $)) T (ELT $ 118)) - ((|over| ($ $ $)) T (ELT $ 117)) - ((|root| ($ $ $)) T (ELT $ 116)) - ((|root| ($ $)) T (ELT $ 115)) - ((|zag| ($ $ $)) T (ELT $ 114)) - ((|matrix| ($ (|List| (|List| $)))) T (ELT $ 50)) - ((|box| ($ $)) T (ELT $ 113)) - ((|label| ($ $ $)) T (ELT $ 120)) - ((|string| ($ $)) T (ELT $ 104)) - ((|elt| ($ $ (|List| $))) T (ELT $ 99)) - ((|infix?| ((|Boolean|) $)) T (ELT $ 98)) - ((|postfix| ($ $ $)) T (ELT $ 103)) - ((|infix| ($ $ $ $)) T (ELT $ 102)) - ((|infix| ($ $ (|List| $))) T (ELT $ 101)) - ((|prefix| ($ $ (|List| $))) T (ELT $ 100)) - ((|vconcat| ($ (|List| $))) T (ELT $ 76)) - ((|hconcat| ($ (|List| $))) T (ELT $ 75)) - ((|vconcat| ($ $ $)) T (ELT $ 46)) - ((|hconcat| ($ $ $)) T (ELT $ 38)) - ((|center| ($ $)) T (ELT $ 42)) - ((|right| ($ $)) T (ELT $ 44)) - ((|left| ($ $)) T (ELT $ 43)) - ((|center| ($ $ (|Integer|))) T (ELT $ 39)) - ((|right| ($ $ (|Integer|))) T (ELT $ 41)) - ((|left| ($ $ (|Integer|))) T (ELT $ 40)) - ((|rspace| ($ (|Integer|) (|Integer|))) T (ELT $ 47)) - ((|vspace| ($ (|Integer|))) T (ELT $ 45)) - ((|hspace| ($ (|Integer|))) T (ELT $ 37)) - ((|superHeight| ((|Integer|) $)) T (ELT $ 34)) - ((|subHeight| ((|Integer|) $)) T (ELT $ 33)) - ((|height| ((|Integer|))) T (ELT $ 35)) - ((|width| ((|Integer|))) T (ELT $ 36)) - ((|height| ((|Integer|) $)) T (ELT $ 32)) - ((|width| ((|Integer|) $)) T (ELT $ 31)) - ((|doubleFloatFormat| ((|String|) (|String|))) T - (ELT $ 8)) - ((|empty| ($)) T (ELT $ 13)) - ((|outputForm| ($ (|DoubleFloat|))) T (ELT $ 25)) - ((|outputForm| ($ (|String|))) T (ELT $ 30)) - ((|outputForm| ($ (|Symbol|))) T (ELT $ 23)) - ((|outputForm| ($ (|Integer|))) T (ELT $ 21)) - ((|messagePrint| ((|Void|) (|String|))) T (ELT $ 15)) - ((|message| ($ (|String|))) T (ELT $ 14)) - ((|print| ((|Void|) $)) T (ELT $ 10)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 19)) - ((= ((|Boolean|) $ $)) T (ELT $ 16)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|OutputForm| '(|OutputForm|) - '((|Join| (|SetCategory|) - (CATEGORY |domain| - (SIGNATURE |print| ((|Void|) $)) - (SIGNATURE |message| ($ (|String|))) - (SIGNATURE |messagePrint| - ((|Void|) (|String|))) - (SIGNATURE |outputForm| ($ (|Integer|))) - (SIGNATURE |outputForm| ($ (|Symbol|))) - (SIGNATURE |outputForm| ($ (|String|))) - (SIGNATURE |outputForm| - ($ (|DoubleFloat|))) - (SIGNATURE |empty| ($)) - (SIGNATURE |doubleFloatFormat| - ((|String|) (|String|))) - (SIGNATURE |width| ((|Integer|) $)) - (SIGNATURE |height| ((|Integer|) $)) - (SIGNATURE |width| ((|Integer|))) - (SIGNATURE |height| ((|Integer|))) - (SIGNATURE |subHeight| ((|Integer|) $)) - (SIGNATURE |superHeight| - ((|Integer|) $)) - (SIGNATURE |hspace| ($ (|Integer|))) - (SIGNATURE |vspace| ($ (|Integer|))) - (SIGNATURE |rspace| - ($ (|Integer|) (|Integer|))) - (SIGNATURE |left| ($ $ (|Integer|))) - (SIGNATURE |right| ($ $ (|Integer|))) - (SIGNATURE |center| ($ $ (|Integer|))) - (SIGNATURE |left| ($ $)) - (SIGNATURE |right| ($ $)) - (SIGNATURE |center| ($ $)) - (SIGNATURE |hconcat| ($ $ $)) - (SIGNATURE |vconcat| ($ $ $)) - (SIGNATURE |hconcat| ($ (|List| $))) - (SIGNATURE |vconcat| ($ (|List| $))) - (SIGNATURE |prefix| ($ $ (|List| $))) - (SIGNATURE |infix| ($ $ (|List| $))) - (SIGNATURE |infix| ($ $ $ $)) - (SIGNATURE |postfix| ($ $ $)) - (SIGNATURE |infix?| ((|Boolean|) $)) - (SIGNATURE |elt| ($ $ (|List| $))) - (SIGNATURE |string| ($ $)) - (SIGNATURE |label| ($ $ $)) - (SIGNATURE |box| ($ $)) - (SIGNATURE |matrix| - ($ (|List| (|List| $)))) - (SIGNATURE |zag| ($ $ $)) - (SIGNATURE |root| ($ $)) - (SIGNATURE |root| ($ $ $)) - (SIGNATURE |over| ($ $ $)) - (SIGNATURE |slash| ($ $ $)) - (SIGNATURE |assign| ($ $ $)) - (SIGNATURE |rarrow| ($ $ $)) - (SIGNATURE |differentiate| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |binomial| ($ $ $)) - (SIGNATURE |sub| ($ $ $)) - (SIGNATURE |super| ($ $ $)) - (SIGNATURE |presub| ($ $ $)) - (SIGNATURE |presuper| ($ $ $)) - (SIGNATURE |scripts| ($ $ (|List| $))) - (SIGNATURE |supersub| ($ $ (|List| $))) - (SIGNATURE |quote| ($ $)) - (SIGNATURE |dot| ($ $)) - (SIGNATURE |dot| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |prime| ($ $)) - (SIGNATURE |prime| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |overbar| ($ $)) - (SIGNATURE |overlabel| ($ $ $)) - (SIGNATURE |sum| ($ $)) - (SIGNATURE |sum| ($ $ $)) - (SIGNATURE |sum| ($ $ $ $)) - (SIGNATURE |prod| ($ $)) - (SIGNATURE |prod| ($ $ $)) - (SIGNATURE |prod| ($ $ $ $)) - (SIGNATURE |int| ($ $)) - (SIGNATURE |int| ($ $ $)) - (SIGNATURE |int| ($ $ $ $)) - (SIGNATURE |brace| ($ $)) - (SIGNATURE |brace| ($ (|List| $))) - (SIGNATURE |bracket| ($ $)) - (SIGNATURE |bracket| ($ (|List| $))) - (SIGNATURE |paren| ($ $)) - (SIGNATURE |paren| ($ (|List| $))) - (SIGNATURE |pile| ($ (|List| $))) - (SIGNATURE |commaSeparate| - ($ (|List| $))) - (SIGNATURE |semicolonSeparate| - ($ (|List| $))) - (SIGNATURE |blankSeparate| - ($ (|List| $))) - (SIGNATURE = ($ $ $)) - (SIGNATURE ~= ($ $ $)) - (SIGNATURE < ($ $ $)) - (SIGNATURE > ($ $ $)) - (SIGNATURE <= ($ $ $)) - (SIGNATURE >= ($ $ $)) - (SIGNATURE + ($ $ $)) - (SIGNATURE - ($ $ $)) - (SIGNATURE - ($ $)) - (SIGNATURE * ($ $ $)) - (SIGNATURE / ($ $ $)) - (SIGNATURE ** ($ $ $)) - (SIGNATURE |div| ($ $ $)) - (SIGNATURE |rem| ($ $ $)) - (SIGNATURE |quo| ($ $ $)) - (SIGNATURE |exquo| ($ $ $)) - (SIGNATURE |and| ($ $ $)) - (SIGNATURE |or| ($ $ $)) - (SIGNATURE |not| ($ $)) - (SIGNATURE SEGMENT ($ $ $)) - (SIGNATURE SEGMENT ($ $))))) - T '|OutputForm| - (|put| '|OutputForm| '|mode| - '(|Mapping| - (|Join| (|SetCategory|) - (CATEGORY |domain| - (SIGNATURE |print| ((|Void|) $)) - (SIGNATURE |message| - ($ (|String|))) - (SIGNATURE |messagePrint| - ((|Void|) (|String|))) - (SIGNATURE |outputForm| - ($ (|Integer|))) - (SIGNATURE |outputForm| - ($ (|Symbol|))) - (SIGNATURE |outputForm| - ($ (|String|))) - (SIGNATURE |outputForm| - ($ (|DoubleFloat|))) - (SIGNATURE |empty| ($)) - (SIGNATURE |doubleFloatFormat| - ((|String|) (|String|))) - (SIGNATURE |width| - ((|Integer|) $)) - (SIGNATURE |height| - ((|Integer|) $)) - (SIGNATURE |width| ((|Integer|))) - (SIGNATURE |height| - ((|Integer|))) - (SIGNATURE |subHeight| - ((|Integer|) $)) - (SIGNATURE |superHeight| - ((|Integer|) $)) - (SIGNATURE |hspace| - ($ (|Integer|))) - (SIGNATURE |vspace| - ($ (|Integer|))) - (SIGNATURE |rspace| - ($ (|Integer|) (|Integer|))) - (SIGNATURE |left| - ($ $ (|Integer|))) - (SIGNATURE |right| - ($ $ (|Integer|))) - (SIGNATURE |center| - ($ $ (|Integer|))) - (SIGNATURE |left| ($ $)) - (SIGNATURE |right| ($ $)) - (SIGNATURE |center| ($ $)) - (SIGNATURE |hconcat| ($ $ $)) - (SIGNATURE |vconcat| ($ $ $)) - (SIGNATURE |hconcat| - ($ (|List| $))) - (SIGNATURE |vconcat| - ($ (|List| $))) - (SIGNATURE |prefix| - ($ $ (|List| $))) - (SIGNATURE |infix| - ($ $ (|List| $))) - (SIGNATURE |infix| ($ $ $ $)) - (SIGNATURE |postfix| ($ $ $)) - (SIGNATURE |infix?| - ((|Boolean|) $)) - (SIGNATURE |elt| - ($ $ (|List| $))) - (SIGNATURE |string| ($ $)) - (SIGNATURE |label| ($ $ $)) - (SIGNATURE |box| ($ $)) - (SIGNATURE |matrix| - ($ (|List| (|List| $)))) - (SIGNATURE |zag| ($ $ $)) - (SIGNATURE |root| ($ $)) - (SIGNATURE |root| ($ $ $)) - (SIGNATURE |over| ($ $ $)) - (SIGNATURE |slash| ($ $ $)) - (SIGNATURE |assign| ($ $ $)) - (SIGNATURE |rarrow| ($ $ $)) - (SIGNATURE |differentiate| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |binomial| ($ $ $)) - (SIGNATURE |sub| ($ $ $)) - (SIGNATURE |super| ($ $ $)) - (SIGNATURE |presub| ($ $ $)) - (SIGNATURE |presuper| ($ $ $)) - (SIGNATURE |scripts| - ($ $ (|List| $))) - (SIGNATURE |supersub| - ($ $ (|List| $))) - (SIGNATURE |quote| ($ $)) - (SIGNATURE |dot| ($ $)) - (SIGNATURE |dot| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |prime| ($ $)) - (SIGNATURE |prime| - ($ $ (|NonNegativeInteger|))) - (SIGNATURE |overbar| ($ $)) - (SIGNATURE |overlabel| ($ $ $)) - (SIGNATURE |sum| ($ $)) - (SIGNATURE |sum| ($ $ $)) - (SIGNATURE |sum| ($ $ $ $)) - (SIGNATURE |prod| ($ $)) - (SIGNATURE |prod| ($ $ $)) - (SIGNATURE |prod| ($ $ $ $)) - (SIGNATURE |int| ($ $)) - (SIGNATURE |int| ($ $ $)) - (SIGNATURE |int| ($ $ $ $)) - (SIGNATURE |brace| ($ $)) - (SIGNATURE |brace| - ($ (|List| $))) - (SIGNATURE |bracket| ($ $)) - (SIGNATURE |bracket| - ($ (|List| $))) - (SIGNATURE |paren| ($ $)) - (SIGNATURE |paren| - ($ (|List| $))) - (SIGNATURE |pile| ($ (|List| $))) - (SIGNATURE |commaSeparate| - ($ (|List| $))) - (SIGNATURE |semicolonSeparate| - ($ (|List| $))) - (SIGNATURE |blankSeparate| - ($ (|List| $))) - (SIGNATURE = ($ $ $)) - (SIGNATURE ~= ($ $ $)) - (SIGNATURE < ($ $ $)) - (SIGNATURE > ($ $ $)) - (SIGNATURE <= ($ $ $)) - (SIGNATURE >= ($ $ $)) - (SIGNATURE + ($ $ $)) - (SIGNATURE - ($ $ $)) - (SIGNATURE - ($ $)) - (SIGNATURE * ($ $ $)) - (SIGNATURE / ($ $ $)) - (SIGNATURE ** ($ $ $)) - (SIGNATURE |div| ($ $ $)) - (SIGNATURE |rem| ($ $ $)) - (SIGNATURE |quo| ($ $ $)) - (SIGNATURE |exquo| ($ $ $)) - (SIGNATURE |and| ($ $ $)) - (SIGNATURE |or| ($ $ $)) - (SIGNATURE |not| ($ $)) - (SIGNATURE SEGMENT ($ $ $)) - (SIGNATURE SEGMENT ($ $))))) - |$CategoryFrame|)))) - (MAKEPROP '|OutputForm| 'NILADIC T) diff --git a/src/algebra/strap/PI.lsp b/src/algebra/strap/PI.lsp index 3503efb1..2cf0e75e 100644 --- a/src/algebra/strap/PI.lsp +++ b/src/algebra/strap/PI.lsp @@ -72,41 +72,4 @@ 0 0 6 0 1))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|PositiveInteger| '|isFunctor| - '(((|gcd| ($ $ $)) T (ELT $ NIL)) - ((* ($ $ $)) T (ELT $ NIL)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((|One| ($)) T (CONST $ NIL)) - ((|sample| ($)) T (CONST $ NIL)) - ((|one?| ((|Boolean|) $)) T (ELT $ NIL)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((+ ($ $ $)) T (ELT $ NIL)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) - ((|min| ($ $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL)) - ((= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|PositiveInteger| '(|PositiveInteger|) - '((|Join| (|OrderedAbelianSemiGroup|) (|Monoid|) - (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)) - (ATTRIBUTE (|commutative| "*"))))) - T '|PositiveInteger| - (|put| '|PositiveInteger| '|mode| - '(|Mapping| - (|Join| (|OrderedAbelianSemiGroup|) - (|Monoid|) - (CATEGORY |domain| - (SIGNATURE |gcd| ($ $ $)) - (ATTRIBUTE (|commutative| "*"))))) - |$CategoryFrame|)))) - (MAKEPROP '|PositiveInteger| 'NILADIC T) diff --git a/src/algebra/strap/POLYCAT-.lsp b/src/algebra/strap/POLYCAT-.lsp index c33191ee..f081f580 100644 --- a/src/algebra/strap/POLYCAT-.lsp +++ b/src/algebra/strap/POLYCAT-.lsp @@ -142,8 +142,8 @@ |POLYCAT-;convert;SIf;43|)) (DEFUN |POLYCAT-;eval;SLS;1| (|p| |l| $) - (PROG (#0=#:G1686 #1=#:G1426 #2=#:G1687 #3=#:G1688 |lvar| #4=#:G1689 - |e| #5=#:G1690) + (PROG (#0=#:G1688 #1=#:G1426 #2=#:G1689 #3=#:G1690 |lvar| #4=#:G1691 + |e| #5=#:G1692) (RETURN (SEQ (COND ((NULL |l|) |p|) @@ -261,7 +261,7 @@ ('T (CONS 0 |l|)))))) (DEFUN |POLYCAT-;isTimes;SU;4| (|p| $) - (PROG (|lv| #0=#:G1691 |v| #1=#:G1692 |l| |r|) + (PROG (|lv| #0=#:G1693 |v| #1=#:G1694 |l| |r|) (RETURN (SEQ (COND ((OR (NULL (LETT |lv| @@ -402,7 +402,7 @@ (|getShellEntry| $ 62))) (DEFUN |POLYCAT-;primitiveMonomials;SL;12| (|p| $) - (PROG (#0=#:G1693 |q| #1=#:G1694) + (PROG (#0=#:G1695 |q| #1=#:G1696) (RETURN (SEQ (PROGN (LETT #0# NIL |POLYCAT-;primitiveMonomials;SL;12|) @@ -522,7 +522,7 @@ (|getShellEntry| $ 77))) (DEFUN |POLYCAT-;allMonoms| (|l| $) - (PROG (#0=#:G1695 |p| #1=#:G1696) + (PROG (#0=#:G1697 |p| #1=#:G1698) (RETURN (SEQ (SPADCALL (SPADCALL @@ -549,7 +549,7 @@ (|getShellEntry| $ 82)))))) (DEFUN |POLYCAT-;P2R| (|p| |b| |n| $) - (PROG (|w| |bj| #0=#:G1698 |i| #1=#:G1697) + (PROG (|w| |bj| #0=#:G1700 |i| #1=#:G1699) (RETURN (SEQ (LETT |w| (SPADCALL |n| (|spadConstant| $ 23) @@ -578,7 +578,7 @@ (EXIT |w|))))) (DEFUN |POLYCAT-;eq2R| (|l| |b| $) - (PROG (#0=#:G1699 |bj| #1=#:G1700 #2=#:G1701 |p| #3=#:G1702) + (PROG (#0=#:G1701 |bj| #1=#:G1702 #2=#:G1703 |p| #3=#:G1704) (RETURN (SEQ (SPADCALL (PROGN @@ -628,7 +628,7 @@ (|getShellEntry| $ 92)))))) (DEFUN |POLYCAT-;reducedSystem;MM;20| (|m| $) - (PROG (#0=#:G1703 |r| #1=#:G1704 |b| #2=#:G1705 |bj| #3=#:G1706 |d| + (PROG (#0=#:G1705 |r| #1=#:G1706 |b| #2=#:G1707 |bj| #3=#:G1708 |d| |mm| |l|) (RETURN (SEQ (LETT |l| (SPADCALL |m| (|getShellEntry| $ 95)) @@ -705,7 +705,7 @@ (EXIT |mm|))))) (DEFUN |POLYCAT-;reducedSystem;MVR;21| (|m| |v| $) - (PROG (#0=#:G1707 |s| #1=#:G1708 |b| #2=#:G1709 |bj| #3=#:G1710 |d| + (PROG (#0=#:G1709 |s| #1=#:G1710 |b| #2=#:G1711 |bj| #3=#:G1712 |d| |n| |mm| |w| |l| |r|) (RETURN (SEQ (LETT |l| (SPADCALL |m| (|getShellEntry| $ 95)) @@ -812,8 +812,8 @@ (SPADCALL |pp| (|getShellEntry| $ 121))) (DEFUN |POLYCAT-;factor;SF;26| (|p| $) - (PROG (|v| |ansR| #0=#:G1711 |w| #1=#:G1712 |up| |ansSUP| #2=#:G1713 - |ww| #3=#:G1714) + (PROG (|v| |ansR| #0=#:G1713 |w| #1=#:G1714 |up| |ansSUP| #2=#:G1715 + |ww| #3=#:G1716) (RETURN (SEQ (LETT |v| (SPADCALL |p| (|getShellEntry| $ 43)) |POLYCAT-;factor;SF;26|) @@ -912,13 +912,13 @@ (|getShellEntry| $ 134))))))))))) (DEFUN |POLYCAT-;conditionP;MU;27| (|mat| $) - (PROG (|ll| #0=#:G1715 |z| #1=#:G1716 |ch| |l| #2=#:G1717 #3=#:G1718 - #4=#:G1580 #5=#:G1578 #6=#:G1579 #7=#:G1719 |vars| |degs| - #8=#:G1720 |d| #9=#:G1721 |nd| #10=#:G1607 #11=#:G1587 - |deg1| |redmons| #12=#:G1722 |v| #13=#:G1724 |u| - #14=#:G1723 |llR| |monslist| |ans| #15=#:G1725 - #16=#:G1726 |mons| #17=#:G1727 |m| #18=#:G1728 |i| - #19=#:G1603 #20=#:G1601 #21=#:G1602) + (PROG (|ll| #0=#:G1717 |z| #1=#:G1718 |ch| |l| #2=#:G1719 #3=#:G1720 + #4=#:G1582 #5=#:G1580 #6=#:G1581 #7=#:G1721 |vars| |degs| + #8=#:G1722 |d| #9=#:G1723 |nd| #10=#:G1609 #11=#:G1589 + |deg1| |redmons| #12=#:G1724 |v| #13=#:G1726 |u| + #14=#:G1725 |llR| |monslist| |ans| #15=#:G1727 + #16=#:G1728 |mons| #17=#:G1729 |m| #18=#:G1730 |i| + #19=#:G1605 #20=#:G1603 #21=#:G1604) (RETURN (SEQ (EXIT (SEQ (LETT |ll| (SPADCALL @@ -1281,7 +1281,7 @@ $)))))))))) (DEFUN |POLYCAT-;charthRootlv| (|p| |vars| |ch| $) - (PROG (|v| |dd| |cp| |d| #0=#:G1628 |ans| |ansx| #1=#:G1635) + (PROG (|v| |dd| |cp| |d| #0=#:G1630 |ans| |ansx| #1=#:G1637) (RETURN (SEQ (EXIT (COND ((NULL |vars|) @@ -1410,7 +1410,7 @@ (SPADCALL |p| (|getShellEntry| $ 167))) (DEFUN |POLYCAT-;squareFreePart;2S;34| (|p| $) - (PROG (|s| |f| #0=#:G1729 #1=#:G1649 #2=#:G1647 #3=#:G1648) + (PROG (|s| |f| #0=#:G1731 #1=#:G1651 #2=#:G1649 #3=#:G1650) (RETURN (SEQ (SPADCALL (SPADCALL @@ -1456,7 +1456,7 @@ (|getShellEntry| $ 174))) (DEFUN |POLYCAT-;primitivePart;2S;36| (|p| $) - (PROG (#0=#:G1653) + (PROG (#0=#:G1655) (RETURN (QVELT (SPADCALL (PROG2 (LETT #0# @@ -1472,7 +1472,7 @@ 1)))) (DEFUN |POLYCAT-;primitivePart;SVarSetS;37| (|p| |v| $) - (PROG (#0=#:G1659) + (PROG (#0=#:G1661) (RETURN (QVELT (SPADCALL (PROG2 (LETT #0# @@ -1895,425 +1895,3 @@ 149 98 154 3 0 0 0 16 53 55 3 0 0 0 9 36 52 1 0 145 0 156 2 0 24 0 0 186))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|PolynomialCategory&| '|isFunctor| - '(((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 109)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ 165)) - ((|squareFreePart| ($ $)) T (ELT $ 173)) - ((|charthRoot| ((|Union| $ "failed") $)) T (ELT $ 156)) - ((< ((|Boolean|) $ $)) T (ELT $ 186)) - ((|convert| ((|InputForm|) $)) T (ELT $ 221)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ 206)) - ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ 213)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ 192)) - ((|patternMatch| - ((|PatternMatchResult| (|Float|) $) $ - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) $))) - T (ELT $ 199)) - ((|factor| ((|Factored| $) $)) T (ELT $ 140)) - ((|factorPolynomial| - ((|Factored| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 120)) - ((|factorSquareFreePolynomial| - ((|Factored| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 122)) - ((|solveLinearPolynomialEquation| - ((|Union| (|List| (|SparseUnivariatePolynomial| $)) - "failed") - (|List| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 116)) - ((|conditionP| - ((|Union| (|Vector| $) "failed") (|Matrix| $))) - T (ELT $ 154)) - ((|primitivePart| ($ $ |#4|)) T (ELT $ 183)) - ((|content| ($ $ |#4|)) T (ELT $ 175)) - ((|discriminant| ($ $ |#4|)) T (ELT $ 78)) - ((|resultant| ($ $ $ |#4|)) T (ELT $ 76)) - ((|primitiveMonomials| ((|List| $) $)) T (ELT $ 63)) - ((|totalDegree| - ((|NonNegativeInteger|) $ (|List| |#4|))) - T (ELT $ 74)) - ((|totalDegree| ((|NonNegativeInteger|) $)) T - (ELT $ 71)) - ((|isExpt| - ((|Union| (|Record| (|:| |var| |#4|) - (|:| |exponent| - (|NonNegativeInteger|))) - "failed") - $)) - T (ELT $ 47)) - ((|isTimes| ((|Union| (|List| $) "failed") $)) T - (ELT $ 42)) - ((|isPlus| ((|Union| (|List| $) "failed") $)) T - (ELT $ 31)) - ((|monomial| - ($ $ (|List| |#4|) (|List| (|NonNegativeInteger|)))) - T (ELT $ 57)) - ((|monomial| ($ $ |#4| (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|monicDivide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $ |#4|)) - T (ELT $ 162)) - ((|monomials| ((|List| $) $)) T (ELT $ 28)) - ((|coefficient| - ($ $ (|List| |#4|) (|List| (|NonNegativeInteger|)))) - T (ELT $ 55)) - ((|coefficient| ($ $ |#4| (|NonNegativeInteger|))) T - (ELT $ 52)) - ((|reducedSystem| ((|Matrix| |#2|) (|Matrix| $))) T - (ELT $ 99)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| $) (|Vector| $))) - T (ELT $ 106)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| (|Integer|))) - (|:| |vec| (|Vector| (|Integer|)))) - (|Matrix| $) (|Vector| $))) - T (ELT $ NIL)) - ((|reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| $))) - T (ELT $ NIL)) - ((|retract| (|#4| $)) T (ELT $ 59)) - ((|retractIfCan| ((|Union| |#4| "failed") $)) T - (ELT $ 60)) - ((|eval| ($ $ (|List| |#4|) (|List| $))) T (ELT $ NIL)) - ((|eval| ($ $ |#4| $)) T (ELT $ NIL)) - ((|eval| ($ $ (|List| |#4|) (|List| |#2|))) T - (ELT $ NIL)) - ((|eval| ($ $ |#4| |#2|)) T (ELT $ NIL)) - ((|eval| ($ $ (|List| $) (|List| $))) T (ELT $ NIL)) - ((|eval| ($ $ $ $)) T (ELT $ NIL)) - ((|eval| ($ $ (|Equation| $))) T (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| $)))) T (ELT $ 21)) - ((|monomial| ($ |#2| |#3|)) T (ELT $ NIL)) - ((|coefficient| (|#2| $ |#3|)) T (ELT $ NIL)) - ((|retract| ((|Integer|) $)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ NIL)) - ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ NIL)) - ((|retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ NIL)) - ((|retractIfCan| ((|Union| |#2| "failed") $)) T - (ELT $ NIL)) - ((|retract| (|#2| $)) T (ELT $ NIL)) - ((|content| (|#2| $)) T (ELT $ NIL)) - ((|primitivePart| ($ $)) T (ELT $ 180))) - (|addModemap| '|PolynomialCategory&| - '(|PolynomialCategory&| |#1| |#2| |#3| |#4|) - '((CATEGORY |domain| - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePart| (|#1| |#1|)) - (SIGNATURE |charthRoot| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |convert| ((|InputForm|) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) |#1|))) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) |#1|) |#1| - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) |#1|))) - (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) - (SIGNATURE |factorPolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |factorSquareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |solveLinearPolynomialEquation| - ((|Union| (|List| - (|SparseUnivariatePolynomial| - |#1|)) - "failed") - (|List| (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |conditionP| - ((|Union| (|Vector| |#1|) "failed") - (|Matrix| |#1|))) - (SIGNATURE |primitivePart| (|#1| |#1| |#4|)) - (SIGNATURE |content| (|#1| |#1| |#4|)) - (SIGNATURE |discriminant| (|#1| |#1| |#4|)) - (SIGNATURE |resultant| (|#1| |#1| |#1| |#4|)) - (SIGNATURE |primitiveMonomials| - ((|List| |#1|) |#1|)) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1| (|List| |#4|))) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |isExpt| - ((|Union| (|Record| (|:| |var| |#4|) - (|:| |exponent| - (|NonNegativeInteger|))) - "failed") - |#1|)) - (SIGNATURE |isTimes| - ((|Union| (|List| |#1|) "failed") |#1|)) - (SIGNATURE |isPlus| - ((|Union| (|List| |#1|) "failed") |#1|)) - (SIGNATURE |monomial| - (|#1| |#1| (|List| |#4|) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |monomial| - (|#1| |#1| |#4| (|NonNegativeInteger|))) - (SIGNATURE |monicDivide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1| |#4|)) - (SIGNATURE |monomials| ((|List| |#1|) |#1|)) - (SIGNATURE |coefficient| - (|#1| |#1| (|List| |#4|) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |coefficient| - (|#1| |#1| |#4| (|NonNegativeInteger|))) - (SIGNATURE |reducedSystem| - ((|Matrix| |#2|) (|Matrix| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| (|:| |mat| - (|Matrix| (|Integer|))) - (|:| |vec| - (|Vector| (|Integer|)))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Matrix| (|Integer|)) (|Matrix| |#1|))) - (SIGNATURE |retract| (|#4| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#4| "failed") |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#4|) (|List| |#1|))) - (SIGNATURE |eval| (|#1| |#1| |#4| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#4|) (|List| |#2|))) - (SIGNATURE |eval| (|#1| |#1| |#4| |#2|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) (|List| |#1|))) - (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Equation| |#1|)))) - (SIGNATURE |monomial| (|#1| |#2| |#3|)) - (SIGNATURE |coefficient| (|#2| |#1| |#3|)) - (SIGNATURE |retract| ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") - |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |content| (|#2| |#1|)) - (SIGNATURE |primitivePart| (|#1| |#1|))) - (|PolynomialCategory| |#2| |#3| |#4|) (|Ring|) - (|OrderedAbelianMonoidSup|) (|OrderedSet|)) - T '|PolynomialCategory&| - (|put| '|PolynomialCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePart| - (|#1| |#1|)) - (SIGNATURE |charthRoot| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |convert| - ((|InputForm|) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) - |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) - |#1|))) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) - |#1|) - |#1| (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) - |#1|))) - (SIGNATURE |factor| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |factorPolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE - |factorSquareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE - |solveLinearPolynomialEquation| - ((|Union| - (|List| - (|SparseUnivariatePolynomial| - |#1|)) - "failed") - (|List| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |conditionP| - ((|Union| (|Vector| |#1|) - "failed") - (|Matrix| |#1|))) - (SIGNATURE |primitivePart| - (|#1| |#1| |#4|)) - (SIGNATURE |content| (|#1| |#1| |#4|)) - (SIGNATURE |discriminant| - (|#1| |#1| |#4|)) - (SIGNATURE |resultant| - (|#1| |#1| |#1| |#4|)) - (SIGNATURE |primitiveMonomials| - ((|List| |#1|) |#1|)) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1| - (|List| |#4|))) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |isExpt| - ((|Union| - (|Record| (|:| |var| |#4|) - (|:| |exponent| - (|NonNegativeInteger|))) - "failed") - |#1|)) - (SIGNATURE |isTimes| - ((|Union| (|List| |#1|) "failed") - |#1|)) - (SIGNATURE |isPlus| - ((|Union| (|List| |#1|) "failed") - |#1|)) - (SIGNATURE |monomial| - (|#1| |#1| (|List| |#4|) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |monomial| - (|#1| |#1| |#4| - (|NonNegativeInteger|))) - (SIGNATURE |monicDivide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1| |#4|)) - (SIGNATURE |monomials| - ((|List| |#1|) |#1|)) - (SIGNATURE |coefficient| - (|#1| |#1| (|List| |#4|) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |coefficient| - (|#1| |#1| |#4| - (|NonNegativeInteger|))) - (SIGNATURE |reducedSystem| - ((|Matrix| |#2|) (|Matrix| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| - (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| - (|:| |mat| - (|Matrix| (|Integer|))) - (|:| |vec| - (|Vector| (|Integer|)))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Matrix| (|Integer|)) - (|Matrix| |#1|))) - (SIGNATURE |retract| (|#4| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#4| "failed") |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#4|) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| |#4| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#4|) - (|List| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| |#4| |#2|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|Equation| |#1|)))) - (SIGNATURE |monomial| - (|#1| |#2| |#3|)) - (SIGNATURE |coefficient| - (|#2| |#1| |#3|)) - (SIGNATURE |retract| - ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") - |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) - "failed") - |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |content| (|#2| |#1|)) - (SIGNATURE |primitivePart| - (|#1| |#1|))) - (|PolynomialCategory| |#2| |#3| |#4|) - (|Ring|) (|OrderedAbelianMonoidSup|) - (|OrderedSet|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/POLYCAT.lsp b/src/algebra/strap/POLYCAT.lsp index 69b15a81..f2e8f11b 100644 --- a/src/algebra/strap/POLYCAT.lsp +++ b/src/algebra/strap/POLYCAT.lsp @@ -219,9 +219,9 @@ (|NonNegativeInteger|))) NIL)) . #1=(|PolynomialCategory|))))) . #1#) - (SETELT #0# 0 - (LIST '|PolynomialCategory| (|devaluate| |t#1|) - (|devaluate| |t#2|) (|devaluate| |t#3|))))))) + (|setShellEntry| #0# 0 + (LIST '|PolynomialCategory| (|devaluate| |t#1|) + (|devaluate| |t#2|) (|devaluate| |t#3|))))))) (DEFUN |PolynomialCategory| (&REST #0=#:G1418 &AUX #1=#:G1416) (DSETQ #1# #0#) @@ -236,11 +236,3 @@ (APPLY #'|PolynomialCategory;| #1#))) |PolynomialCategory;AL|)) #2#)))) - -(SETQ |$CategoryFrame| - (|put| '|PolynomialCategory| '|isCategory| T - (|addModemap| '|PolynomialCategory| - '(|PolynomialCategory| |#1| |#2| |#3|) - '((|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) - (|OrderedSet|)) - T '|PolynomialCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/PRIMARR.lsp b/src/algebra/strap/PRIMARR.lsp index 9aa4b635..b9f73fa8 100644 --- a/src/algebra/strap/PRIMARR.lsp +++ b/src/algebra/strap/PRIMARR.lsp @@ -233,187 +233,3 @@ 1 2 5 19 0 0 1 2 5 19 0 0 1 1 0 7 0 8))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|PrimitiveArray| '|isFunctor| - '(((~= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) - (|has| |#1| (|CoercibleTo| (|OutputForm|))) - (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((< ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((> ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|max| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|min| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort!| ($ $)) - (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) - (|has| |#1| (|OrderedSet|))) - (ELT $ NIL)) - ((|sort!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|reverse!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|sorted?| ((|Boolean|) $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort| ($ $)) (|has| |#1| (|OrderedSet|)) (ELT $ NIL)) - ((|merge| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $ (|Integer|))) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|sorted?| - ((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $)) - T (ELT $ NIL)) - ((|sort| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) T - (ELT $ NIL)) - ((|reverse| ($ $)) T (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|setelt| - (|#1| $ (|UniversalSegment| (|Integer|)) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|insert| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|insert| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|delete| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ NIL)) - ((|concat| ($ |#1| $)) T (ELT $ NIL)) - ((|concat| ($ $ |#1|)) T (ELT $ NIL)) - ((|new| ($ (|NonNegativeInteger|) |#1|)) T (ELT $ 12)) - ((|construct| ($ (|List| |#1|))) T (ELT $ NIL)) - ((|find| ((|Union| |#1| "failed") - (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|remove| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| - (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|remove| ($ |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|removeDuplicates| ($ $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) - (|has| |#1| (|ConvertibleTo| (|InputForm|))) - (ELT $ NIL)) - ((|swap!| ((|Void|) $ (|Integer|) (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|fill!| ($ $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 17)) - ((|first| (|#1| $)) (|has| (|Integer|) (|OrderedSet|)) - (ELT $ NIL)) - ((|minIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ 10)) - ((|maxIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|entry?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ NIL)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ NIL)) - ((|entries| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|))) T (ELT $ 14)) - ((|elt| (|#1| $ (|Integer|) |#1|)) T (ELT $ NIL)) - ((|qelt| (|#1| $ (|Integer|))) T (ELT $ 13)) - ((|setelt| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 16)) - ((|qsetelt!| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ 15)) - ((|eval| ($ $ (|List| |#1|) (|List| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ |#1| |#1|)) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Equation| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| |#1|)))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|member?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|members| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|parts| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|map!| ($ (|Mapping| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1|) $)) T (ELT $ NIL)) - ((|#| ((|NonNegativeInteger|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ 8)) - ((|sample| ($)) T (CONST $ NIL)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|empty?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|empty| ($)) T (ELT $ 11)) - ((|copy| ($ $)) T (ELT $ NIL)) - ((|eq?| ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|PrimitiveArray| '(|PrimitiveArray| |#1|) - '((|OneDimensionalArrayAggregate| |#1|) (|Type|)) T - '|PrimitiveArray| - (|put| '|PrimitiveArray| '|mode| - '(|Mapping| - (|OneDimensionalArrayAggregate| |#1|) - (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/PSETCAT-.lsp b/src/algebra/strap/PSETCAT-.lsp index f0aa0b4c..a216f16e 100644 --- a/src/algebra/strap/PSETCAT-.lsp +++ b/src/algebra/strap/PSETCAT-.lsp @@ -961,130 +961,3 @@ 0 0 0 9 32 2 0 0 0 9 34 2 0 15 0 0 40))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|PolynomialSetCategory&| '|isFunctor| - '(((|triangular?| ((|Boolean|) $)) T (ELT $ 47)) - ((|rewriteIdealWithRemainder| - ((|List| |#5|) (|List| |#5|) $)) - T (ELT $ 90)) - ((|rewriteIdealWithHeadRemainder| - ((|List| |#5|) (|List| |#5|) $)) - T (ELT $ 87)) - ((|remainder| - ((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) - (|:| |den| |#2|)) - |#5| $)) - T (ELT $ 81)) - ((|headRemainder| - ((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| - $)) - T (ELT $ 73)) - ((|roughUnitIdeal?| ((|Boolean|) $)) T (ELT $ 49)) - ((|roughEqualIdeals?| ((|Boolean|) $ $)) T (ELT $ 58)) - ((|roughSubIdeal?| ((|Boolean|) $ $)) T (ELT $ 55)) - ((|roughBase?| ((|Boolean|) $)) T (ELT $ 53)) - ((|trivialIdeal?| ((|Boolean|) $)) T (ELT $ 48)) - ((|sort| ((|Record| (|:| |under| $) (|:| |floor| $) - (|:| |upper| $)) - $ |#4|)) - T (ELT $ 36)) - ((|collectUpper| ($ $ |#4|)) T (ELT $ 33)) - ((|collect| ($ $ |#4|)) T (ELT $ 34)) - ((|collectUnder| ($ $ |#4|)) T (ELT $ 32)) - ((|mainVariable?| ((|Boolean|) |#4| $)) T (ELT $ 30)) - ((|mainVariables| ((|List| |#4|) $)) T (ELT $ 27)) - ((|variables| ((|List| |#4|) $)) T (ELT $ 23)) - ((= ((|Boolean|) $ $)) T (ELT $ 40))) - (|addModemap| '|PolynomialSetCategory&| - '(|PolynomialSetCategory&| |#1| |#2| |#3| |#4| |#5|) - '((CATEGORY |domain| - (SIGNATURE |triangular?| ((|Boolean|) |#1|)) - (SIGNATURE |rewriteIdealWithRemainder| - ((|List| |#5|) (|List| |#5|) |#1|)) - (SIGNATURE |rewriteIdealWithHeadRemainder| - ((|List| |#5|) (|List| |#5|) |#1|)) - (SIGNATURE |remainder| - ((|Record| (|:| |rnum| |#2|) - (|:| |polnum| |#5|) (|:| |den| |#2|)) - |#5| |#1|)) - (SIGNATURE |headRemainder| - ((|Record| (|:| |num| |#5|) - (|:| |den| |#2|)) - |#5| |#1|)) - (SIGNATURE |roughUnitIdeal?| ((|Boolean|) |#1|)) - (SIGNATURE |roughEqualIdeals?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |roughSubIdeal?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |roughBase?| ((|Boolean|) |#1|)) - (SIGNATURE |trivialIdeal?| ((|Boolean|) |#1|)) - (SIGNATURE |sort| - ((|Record| (|:| |under| |#1|) - (|:| |floor| |#1|) (|:| |upper| |#1|)) - |#1| |#4|)) - (SIGNATURE |collectUpper| (|#1| |#1| |#4|)) - (SIGNATURE |collect| (|#1| |#1| |#4|)) - (SIGNATURE |collectUnder| (|#1| |#1| |#4|)) - (SIGNATURE |mainVariable?| - ((|Boolean|) |#4| |#1|)) - (SIGNATURE |mainVariables| ((|List| |#4|) |#1|)) - (SIGNATURE |variables| ((|List| |#4|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|))) - (|PolynomialSetCategory| |#2| |#3| |#4| |#5|) - (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) - (|RecursivePolynomialCategory| |#2| |#3| |#4|)) - T '|PolynomialSetCategory&| - (|put| '|PolynomialSetCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |triangular?| - ((|Boolean|) |#1|)) - (SIGNATURE |rewriteIdealWithRemainder| - ((|List| |#5|) (|List| |#5|) |#1|)) - (SIGNATURE - |rewriteIdealWithHeadRemainder| - ((|List| |#5|) (|List| |#5|) |#1|)) - (SIGNATURE |remainder| - ((|Record| (|:| |rnum| |#2|) - (|:| |polnum| |#5|) - (|:| |den| |#2|)) - |#5| |#1|)) - (SIGNATURE |headRemainder| - ((|Record| (|:| |num| |#5|) - (|:| |den| |#2|)) - |#5| |#1|)) - (SIGNATURE |roughUnitIdeal?| - ((|Boolean|) |#1|)) - (SIGNATURE |roughEqualIdeals?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |roughSubIdeal?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |roughBase?| - ((|Boolean|) |#1|)) - (SIGNATURE |trivialIdeal?| - ((|Boolean|) |#1|)) - (SIGNATURE |sort| - ((|Record| (|:| |under| |#1|) - (|:| |floor| |#1|) - (|:| |upper| |#1|)) - |#1| |#4|)) - (SIGNATURE |collectUpper| - (|#1| |#1| |#4|)) - (SIGNATURE |collect| (|#1| |#1| |#4|)) - (SIGNATURE |collectUnder| - (|#1| |#1| |#4|)) - (SIGNATURE |mainVariable?| - ((|Boolean|) |#4| |#1|)) - (SIGNATURE |mainVariables| - ((|List| |#4|) |#1|)) - (SIGNATURE |variables| - ((|List| |#4|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|))) - (|PolynomialSetCategory| |#2| |#3| |#4| - |#5|) - (|Ring|) (|OrderedAbelianMonoidSup|) - (|OrderedSet|) - (|RecursivePolynomialCategory| |#2| |#3| - |#4|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/PSETCAT.lsp b/src/algebra/strap/PSETCAT.lsp index e5b90b16..4db40c2c 100644 --- a/src/algebra/strap/PSETCAT.lsp +++ b/src/algebra/strap/PSETCAT.lsp @@ -102,10 +102,10 @@ (|List| |t#3|)) NIL)) . #2=(|PolynomialSetCategory|)))))) . #2#) - (SETELT #0# 0 - (LIST '|PolynomialSetCategory| (|devaluate| |t#1|) - (|devaluate| |t#2|) (|devaluate| |t#3|) - (|devaluate| |t#4|))))))) + (|setShellEntry| #0# 0 + (LIST '|PolynomialSetCategory| (|devaluate| |t#1|) + (|devaluate| |t#2|) (|devaluate| |t#3|) + (|devaluate| |t#4|))))))) (DEFUN |PolynomialSetCategory| (&REST #0=#:G1434 &AUX #1=#:G1432) (DSETQ #1# #0#) @@ -121,12 +121,3 @@ #1#))) |PolynomialSetCategory;AL|)) #2#)))) - -(SETQ |$CategoryFrame| - (|put| '|PolynomialSetCategory| '|isCategory| T - (|addModemap| '|PolynomialSetCategory| - '(|PolynomialSetCategory| |#1| |#2| |#3| |#4|) - '((|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) - (|OrderedSet|) - (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) - T '|PolynomialSetCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/QFCAT-.lsp b/src/algebra/strap/QFCAT-.lsp index 00304cb1..78512ea8 100644 --- a/src/algebra/strap/QFCAT-.lsp +++ b/src/algebra/strap/QFCAT-.lsp @@ -519,269 +519,3 @@ 67 0 70 1 0 76 0 79 1 0 0 55 57 1 0 0 85 90 0 0 29 31 2 0 48 0 0 50))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|QuotientFieldCategory&| '|isFunctor| - '(((< ((|Boolean|) $ $)) T (ELT $ 50)) - ((|init| ($)) T (ELT $ 16)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ 20)) - ((|retract| ((|Integer|) $)) T (ELT $ 92)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ 95)) - ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ NIL)) - ((|retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ NIL)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 47)) - ((|convert| ((|Float|) $)) T (ELT $ 44)) - ((|convert| ((|InputForm|) $)) T (ELT $ 40)) - ((|retract| ((|Symbol|) $)) T (ELT $ 60)) - ((|retractIfCan| ((|Union| (|Symbol|) "failed") $)) T - (ELT $ 65)) - ((|coerce| ($ (|Symbol|))) T (ELT $ 57)) - ((|random| ($)) T (ELT $ 98)) - ((|fractionPart| ($ $)) T (ELT $ 54)) - ((|denominator| ($ $)) T (ELT $ 12)) - ((|numerator| ($ $)) T (ELT $ 10)) - ((|patternMatch| - ((|PatternMatchResult| (|Float|) $) $ - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) $))) - T (ELT $ 84)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ 75)) - ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ 79)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ 70)) - ((|reducedSystem| ((|Matrix| |#2|) (|Matrix| $))) T - (ELT $ 28)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| $) (|Vector| $))) - T (ELT $ 112)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| (|Integer|))) - (|:| |vec| (|Vector| (|Integer|)))) - (|Matrix| $) (|Vector| $))) - T (ELT $ NIL)) - ((|reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| $))) - T (ELT $ NIL)) - ((|differentiate| ($ $ (|Mapping| |#2| |#2|))) T - (ELT $ 36)) - ((|differentiate| - ($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|Symbol|) (|NonNegativeInteger|))) - T (ELT $ NIL)) - ((|differentiate| ($ $ (|List| (|Symbol|)))) T - (ELT $ NIL)) - ((|differentiate| ($ $ (|Symbol|))) T (ELT $ NIL)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|differentiate| ($ $)) T (ELT $ NIL)) - ((|map| ($ (|Mapping| |#2| |#2|) $)) T (ELT $ 22)) - ((|retract| (|#2| $)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| |#2| "failed") $)) T - (ELT $ NIL)) - ((|coerce| ($ |#2|)) T (ELT $ NIL)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ 90)) - ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ NIL)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ 31)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL))) - (|addModemap| '|QuotientFieldCategory&| - '(|QuotientFieldCategory&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |retract| ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") - |#1|)) - (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |convert| ((|InputForm|) |#1|)) - (SIGNATURE |retract| ((|Symbol|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Symbol|) "failed") |#1|)) - (SIGNATURE |coerce| (|#1| (|Symbol|))) - (SIGNATURE |random| (|#1|)) - (SIGNATURE |fractionPart| (|#1| |#1|)) - (SIGNATURE |denominator| (|#1| |#1|)) - (SIGNATURE |numerator| (|#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) |#1|) |#1| - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) |#1|))) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |reducedSystem| - ((|Matrix| |#2|) (|Matrix| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| - (|:| |mat| (|Matrix| (|Integer|))) - (|:| |vec| (|Vector| (|Integer|)))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Matrix| (|Integer|)) (|Matrix| |#1|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |differentiate| (|#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2|) |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |coerce| (|#1| |#2|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |coerce| (|#1| (|Integer|))) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|))) - (SIGNATURE |coerce| ((|OutputForm|) |#1|))) - (|QuotientFieldCategory| |#2|) (|IntegralDomain|)) - T '|QuotientFieldCategory&| - (|put| '|QuotientFieldCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE < ((|Boolean|) |#1| |#1|)) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |retract| - ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") - |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) - "failed") - |#1|)) - (SIGNATURE |convert| - ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |convert| - ((|InputForm|) |#1|)) - (SIGNATURE |retract| - ((|Symbol|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Symbol|) "failed") - |#1|)) - (SIGNATURE |coerce| (|#1| (|Symbol|))) - (SIGNATURE |random| (|#1|)) - (SIGNATURE |fractionPart| (|#1| |#1|)) - (SIGNATURE |denominator| (|#1| |#1|)) - (SIGNATURE |numerator| (|#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) - |#1|) - |#1| (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) - |#1|))) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Integer|) - |#1|) - |#1| (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) - |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |convert| - ((|Pattern| (|Integer|)) |#1|)) - (SIGNATURE |reducedSystem| - ((|Matrix| |#2|) (|Matrix| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| - (|:| |mat| (|Matrix| |#2|)) - (|:| |vec| (|Vector| |#2|))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Record| - (|:| |mat| - (|Matrix| (|Integer|))) - (|:| |vec| - (|Vector| (|Integer|)))) - (|Matrix| |#1|) (|Vector| |#1|))) - (SIGNATURE |reducedSystem| - ((|Matrix| (|Integer|)) - (|Matrix| |#1|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1|)) - (SIGNATURE |map| - (|#1| (|Mapping| |#2| |#2|) |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |coerce| (|#1| |#2|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |coerce| - (|#1| (|Integer|))) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|))) - (SIGNATURE |coerce| - ((|OutputForm|) |#1|))) - (|QuotientFieldCategory| |#2|) - (|IntegralDomain|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/QFCAT.lsp b/src/algebra/strap/QFCAT.lsp index be400de3..dd721698 100644 --- a/src/algebra/strap/QFCAT.lsp +++ b/src/algebra/strap/QFCAT.lsp @@ -89,8 +89,8 @@ (|PolynomialFactorizationExplicit|)))) 'NIL NIL)) . #1=(|QuotientFieldCategory|))))) . #1#) - (SETELT #0# 0 - (LIST '|QuotientFieldCategory| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|QuotientFieldCategory| (|devaluate| |t#1|))))))) (DEFUN |QuotientFieldCategory| (#0=#:G1400) (LET (#1=#:G1401) @@ -103,10 +103,3 @@ (SETQ #1# (|QuotientFieldCategory;| #0#))) |QuotientFieldCategory;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|QuotientFieldCategory| '|isCategory| T - (|addModemap| '|QuotientFieldCategory| - '(|QuotientFieldCategory| |#1|) - '((|Category|) (|IntegralDomain|)) T - '|QuotientFieldCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/RCAGG-.lsp b/src/algebra/strap/RCAGG-.lsp index 599cc1a2..e10fc5da 100644 --- a/src/algebra/strap/RCAGG-.lsp +++ b/src/algebra/strap/RCAGG-.lsp @@ -64,27 +64,3 @@ 18 3 0 7 0 9 7 12 2 0 7 0 9 10 2 0 15 0 0 18))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|RecursiveAggregate&| '|isFunctor| - '(((|setelt| (|#2| $ "value" |#2|)) T (ELT $ 12)) - ((|child?| ((|Boolean|) $ $)) T (ELT $ 18)) - ((|elt| (|#2| $ "value")) T (ELT $ 10))) - (|addModemap| '|RecursiveAggregate&| - '(|RecursiveAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) - (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| "value"))) - (|RecursiveAggregate| |#2|) (|Type|)) - T '|RecursiveAggregate&| - (|put| '|RecursiveAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |setelt| - (|#2| |#1| "value" |#2|)) - (SIGNATURE |child?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| "value"))) - (|RecursiveAggregate| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/RCAGG.lsp b/src/algebra/strap/RCAGG.lsp index c03c9f27..46649f33 100644 --- a/src/algebra/strap/RCAGG.lsp +++ b/src/algebra/strap/RCAGG.lsp @@ -60,7 +60,8 @@ (|Integer|) (|List| |t#1|)) NIL)) . #1=(|RecursiveAggregate|))))) . #1#) - (SETELT #0# 0 (LIST '|RecursiveAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|RecursiveAggregate| (|devaluate| |t#1|))))))) (DEFUN |RecursiveAggregate| (#0=#:G1398) (LET (#1=#:G1399) @@ -72,9 +73,3 @@ (SETQ #1# (|RecursiveAggregate;| #0#))) |RecursiveAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|RecursiveAggregate| '|isCategory| T - (|addModemap| '|RecursiveAggregate| - '(|RecursiveAggregate| |#1|) '((|Category|) (|Type|)) - T '|RecursiveAggregate| |$CategoryFrame|))) diff --git a/src/algebra/strap/REF.lsp b/src/algebra/strap/REF.lsp index 30394145..0142338b 100644 --- a/src/algebra/strap/REF.lsp +++ b/src/algebra/strap/REF.lsp @@ -109,51 +109,3 @@ 1 1 22 0 1 1 0 6 0 11 1 0 6 0 13 1 1 16 0 21 2 0 8 0 0 9))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|Reference| '|isFunctor| - '(((~= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ 21)) - ((|hash| ((|SingleInteger|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((= ((|Boolean|) $ $)) T (ELT $ 9)) - ((|setref| (|#1| $ |#1|)) T (ELT $ 14)) - ((|deref| (|#1| $)) T (ELT $ 13)) - ((|setelt| (|#1| $ |#1|)) T (ELT $ 12)) - ((|elt| (|#1| $)) T (ELT $ 11)) - ((|ref| ($ |#1|)) T (ELT $ 10))) - (|addModemap| '|Reference| '(|Reference| |#1|) - '((|Join| (|Type|) - (CATEGORY |domain| - (SIGNATURE |ref| ($ |#1|)) - (SIGNATURE |elt| (|#1| $)) - (SIGNATURE |setelt| (|#1| $ |#1|)) - (SIGNATURE |deref| (|#1| $)) - (SIGNATURE |setref| (|#1| $ |#1|)) - (SIGNATURE = ((|Boolean|) $ $)) - (IF (|has| |#1| (|SetCategory|)) - (ATTRIBUTE (|SetCategory|)) - |%noBranch|))) - (|Type|)) - T '|Reference| - (|put| '|Reference| '|mode| - '(|Mapping| - (|Join| (|Type|) - (CATEGORY |domain| - (SIGNATURE |ref| ($ |#1|)) - (SIGNATURE |elt| (|#1| $)) - (SIGNATURE |setelt| - (|#1| $ |#1|)) - (SIGNATURE |deref| (|#1| $)) - (SIGNATURE |setref| - (|#1| $ |#1|)) - (SIGNATURE = ((|Boolean|) $ $)) - (IF (|has| |#1| (|SetCategory|)) - (ATTRIBUTE (|SetCategory|)) - |%noBranch|))) - (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/RING-.lsp b/src/algebra/strap/RING-.lsp index 3ce200ae..f5a4504a 100644 --- a/src/algebra/strap/RING-.lsp +++ b/src/algebra/strap/RING-.lsp @@ -31,23 +31,3 @@ (|makeByteWordVec2| 10 '(0 6 0 7 2 6 0 8 0 9 1 0 0 8 10))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|Ring&| '|isFunctor| - '(((|coerce| ($ (|Integer|))) T (ELT $ 10)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL))) - (|addModemap| '|Ring&| '(|Ring&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |coerce| (|#1| (|Integer|))) - (SIGNATURE |coerce| ((|OutputForm|) |#1|))) - (|Ring|)) - T '|Ring&| - (|put| '|Ring&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |coerce| - (|#1| (|Integer|))) - (SIGNATURE |coerce| - ((|OutputForm|) |#1|))) - (|Ring|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/RING.lsp b/src/algebra/strap/RING.lsp index 016a3ee0..7b61ea0f 100644 --- a/src/algebra/strap/RING.lsp +++ b/src/algebra/strap/RING.lsp @@ -17,14 +17,9 @@ '((|Integer|) (|NonNegativeInteger|)) NIL)) |Ring|) - (SETELT #0# 0 '(|Ring|)))))) + (|setShellEntry| #0# 0 '(|Ring|)))))) (DEFUN |Ring| () (LET () (COND (|Ring;AL|) (T (SETQ |Ring;AL| (|Ring;|)))))) -(SETQ |$CategoryFrame| - (|put| '|Ring| '|isCategory| T - (|addModemap| '|Ring| '(|Ring|) '((|Category|)) T '|Ring| - |$CategoryFrame|))) - (MAKEPROP '|Ring| 'NILADIC T) diff --git a/src/algebra/strap/RNG.lsp b/src/algebra/strap/RNG.lsp index 6a2f53a5..7e7bf619 100644 --- a/src/algebra/strap/RNG.lsp +++ b/src/algebra/strap/RNG.lsp @@ -7,14 +7,9 @@ (PROG (#0=#:G1397) (RETURN (PROG1 (LETT #0# (|Join| (|AbelianGroup|) (|SemiGroup|)) |Rng|) - (SETELT #0# 0 '(|Rng|)))))) + (|setShellEntry| #0# 0 '(|Rng|)))))) (DEFUN |Rng| () (LET () (COND (|Rng;AL|) (T (SETQ |Rng;AL| (|Rng;|)))))) -(SETQ |$CategoryFrame| - (|put| '|Rng| '|isCategory| T - (|addModemap| '|Rng| '(|Rng|) '((|Category|)) T '|Rng| - |$CategoryFrame|))) - (MAKEPROP '|Rng| 'NILADIC T) diff --git a/src/algebra/strap/RNS-.lsp b/src/algebra/strap/RNS-.lsp index ef8a5ed3..042d128b 100644 --- a/src/algebra/strap/RNS-.lsp +++ b/src/algebra/strap/RNS-.lsp @@ -187,91 +187,3 @@ 0 33 1 0 0 25 28 1 0 0 25 28 0 0 7 8 1 0 0 0 39))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|RealNumberSystem&| '|isFunctor| - '(((|round| ($ $)) T (ELT $ 22)) - ((|truncate| ($ $)) T (ELT $ 16)) - ((|fractionPart| ($ $)) T (ELT $ 11)) - ((|floor| ($ $)) T (ELT $ 38)) - ((|ceiling| ($ $)) T (ELT $ 39)) - ((|norm| ($ $)) T (ELT $ 24)) - ((|patternMatch| - ((|PatternMatchResult| (|Float|) $) $ - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) $))) - T (ELT $ 49)) - ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ 33)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ 28)) - ((|coerce| ($ (|Integer|))) T (ELT $ NIL)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ NIL)) - ((|convert| ((|Float|) $)) T (ELT $ NIL)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ 28)) - ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ NIL)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ 8)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL))) - (|addModemap| '|RealNumberSystem&| - '(|RealNumberSystem&| |#1|) - '((CATEGORY |domain| (SIGNATURE |round| (|#1| |#1|)) - (SIGNATURE |truncate| (|#1| |#1|)) - (SIGNATURE |fractionPart| (|#1| |#1|)) - (SIGNATURE |floor| (|#1| |#1|)) - (SIGNATURE |ceiling| (|#1| |#1|)) - (SIGNATURE |norm| (|#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) |#1|) |#1| - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| (|#1| (|Integer|))) - (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |coerce| (|#1| (|Integer|))) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|))) - (SIGNATURE |coerce| ((|OutputForm|) |#1|))) - (|RealNumberSystem|)) - T '|RealNumberSystem&| - (|put| '|RealNumberSystem&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |round| (|#1| |#1|)) - (SIGNATURE |truncate| (|#1| |#1|)) - (SIGNATURE |fractionPart| (|#1| |#1|)) - (SIGNATURE |floor| (|#1| |#1|)) - (SIGNATURE |ceiling| (|#1| |#1|)) - (SIGNATURE |norm| (|#1| |#1|)) - (SIGNATURE |patternMatch| - ((|PatternMatchResult| (|Float|) - |#1|) - |#1| (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) - |#1|))) - (SIGNATURE |convert| - ((|Pattern| (|Float|)) |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| - (|#1| (|Integer|))) - (SIGNATURE |convert| - ((|DoubleFloat|) |#1|)) - (SIGNATURE |convert| ((|Float|) |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |coerce| - (|#1| (|Integer|))) - (SIGNATURE |characteristic| - ((|NonNegativeInteger|))) - (SIGNATURE |coerce| - ((|OutputForm|) |#1|))) - (|RealNumberSystem|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/RNS.lsp b/src/algebra/strap/RNS.lsp index 2ece00ea..f9641660 100644 --- a/src/algebra/strap/RNS.lsp +++ b/src/algebra/strap/RNS.lsp @@ -31,7 +31,7 @@ ((|abs| ($ $)) T)) NIL '((|Integer|)) NIL))) |RealNumberSystem|) - (SETELT #0# 0 '(|RealNumberSystem|)))))) + (|setShellEntry| #0# 0 '(|RealNumberSystem|)))))) (DEFUN |RealNumberSystem| () (LET () @@ -39,10 +39,4 @@ (|RealNumberSystem;AL|) (T (SETQ |RealNumberSystem;AL| (|RealNumberSystem;|)))))) -(SETQ |$CategoryFrame| - (|put| '|RealNumberSystem| '|isCategory| T - (|addModemap| '|RealNumberSystem| '(|RealNumberSystem|) - '((|Category|)) T '|RealNumberSystem| - |$CategoryFrame|))) - (MAKEPROP '|RealNumberSystem| 'NILADIC T) diff --git a/src/algebra/strap/SETAGG-.lsp b/src/algebra/strap/SETAGG-.lsp index 103e4819..a9253081 100644 --- a/src/algebra/strap/SETAGG-.lsp +++ b/src/algebra/strap/SETAGG-.lsp @@ -60,38 +60,3 @@ 0 0 7 0 14 2 0 0 0 7 13 2 0 0 0 0 10 2 0 0 0 7 15))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|SetAggregate&| '|isFunctor| - '(((|union| ($ |#2| $)) T (ELT $ 14)) - ((|union| ($ $ |#2|)) T (ELT $ 13)) - ((|union| ($ $ $)) T (ELT $ NIL)) - ((|symmetricDifference| ($ $ $)) T (ELT $ 10)) - ((|difference| ($ $ |#2|)) T (ELT $ 15)) - ((|difference| ($ $ $)) T (ELT $ NIL))) - (|addModemap| '|SetAggregate&| - '(|SetAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |union| (|#1| |#2| |#1|)) - (SIGNATURE |union| (|#1| |#1| |#2|)) - (SIGNATURE |union| (|#1| |#1| |#1|)) - (SIGNATURE |symmetricDifference| - (|#1| |#1| |#1|)) - (SIGNATURE |difference| (|#1| |#1| |#2|)) - (SIGNATURE |difference| (|#1| |#1| |#1|))) - (|SetAggregate| |#2|) (|SetCategory|)) - T '|SetAggregate&| - (|put| '|SetAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |union| (|#1| |#2| |#1|)) - (SIGNATURE |union| (|#1| |#1| |#2|)) - (SIGNATURE |union| (|#1| |#1| |#1|)) - (SIGNATURE |symmetricDifference| - (|#1| |#1| |#1|)) - (SIGNATURE |difference| - (|#1| |#1| |#2|)) - (SIGNATURE |difference| - (|#1| |#1| |#1|))) - (|SetAggregate| |#2|) (|SetCategory|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/SETAGG.lsp b/src/algebra/strap/SETAGG.lsp index 37a253ed..d40ba5ab 100644 --- a/src/algebra/strap/SETAGG.lsp +++ b/src/algebra/strap/SETAGG.lsp @@ -44,7 +44,8 @@ '((|Boolean|) (|List| |t#1|)) NIL)) . #1=(|SetAggregate|))))) . #1#) - (SETELT #0# 0 (LIST '|SetAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|SetAggregate| (|devaluate| |t#1|))))))) (DEFUN |SetAggregate| (#0=#:G1398) (LET (#1=#:G1399) @@ -56,9 +57,3 @@ (SETQ #1# (|SetAggregate;| #0#))) |SetAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|SetAggregate| '|isCategory| T - (|addModemap| '|SetAggregate| '(|SetAggregate| |#1|) - '((|Category|) (|SetCategory|)) T '|SetAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/SETCAT-.lsp b/src/algebra/strap/SETCAT-.lsp index a84a276e..30703707 100644 --- a/src/algebra/strap/SETCAT-.lsp +++ b/src/algebra/strap/SETCAT-.lsp @@ -42,22 +42,3 @@ (|makeByteWordVec2| 10 '(1 0 9 0 10 1 0 7 0 8))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|SetCategory&| '|isFunctor| - '(((|latex| ((|String|) $)) T (ELT $ 10)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ 8))) - (|addModemap| '|SetCategory&| '(|SetCategory&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |latex| ((|String|) |#1|)) - (SIGNATURE |hash| ((|SingleInteger|) |#1|))) - (|SetCategory|)) - T '|SetCategory&| - (|put| '|SetCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |latex| ((|String|) |#1|)) - (SIGNATURE |hash| - ((|SingleInteger|) |#1|))) - (|SetCategory|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/SETCAT.lsp b/src/algebra/strap/SETCAT.lsp index 2ea735a4..22ad6fd5 100644 --- a/src/algebra/strap/SETCAT.lsp +++ b/src/algebra/strap/SETCAT.lsp @@ -16,7 +16,7 @@ NIL '((|String|) (|SingleInteger|)) NIL))) |SetCategory|) - (SETELT #0# 0 '(|SetCategory|)))))) + (|setShellEntry| #0# 0 '(|SetCategory|)))))) (DEFUN |SetCategory| () (LET () @@ -24,9 +24,4 @@ (|SetCategory;AL|) (T (SETQ |SetCategory;AL| (|SetCategory;|)))))) -(SETQ |$CategoryFrame| - (|put| '|SetCategory| '|isCategory| T - (|addModemap| '|SetCategory| '(|SetCategory|) - '((|Category|)) T '|SetCategory| |$CategoryFrame|))) - (MAKEPROP '|SetCategory| 'NILADIC T) diff --git a/src/algebra/strap/SINT.lsp b/src/algebra/strap/SINT.lsp index f1c1c5f9..2da14713 100644 --- a/src/algebra/strap/SINT.lsp +++ b/src/algebra/strap/SINT.lsp @@ -572,7 +572,7 @@ (|leftUnitary| . 0) (|unitsKnown| . 0)) (CONS (|makeByteWordVec2| 1 '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)) + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)) (CONS '#(|IntegerNumberSystem&| |EuclideanDomain&| |UniqueFactorizationDomain&| NIL NIL |GcdDomain&| |IntegralDomain&| |Algebra&| NIL @@ -582,7 +582,7 @@ |Monoid&| NIL NIL |OrderedSet&| |AbelianSemiGroup&| |SemiGroup&| |Logic&| NIL |SetCategory&| NIL NIL NIL NIL NIL NIL - |RetractableTo&| NIL |BasicType&| NIL) + |RetractableTo&| NIL NIL |BasicType&| NIL) (CONS '#((|IntegerNumberSystem|) (|EuclideanDomain|) (|UniqueFactorizationDomain|) @@ -613,6 +613,7 @@ (|ConvertibleTo| 92) (|ConvertibleTo| 94) (|RetractableTo| 12) + (|CoercibleFrom| 12) (|ConvertibleTo| 12) (|BasicType|) (|CoercibleTo| 29)) (|makeByteWordVec2| 104 @@ -659,201 +660,4 @@ 0 56 0 1 2 0 0 104 0 1))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|SingleInteger| '|isFunctor| - '(((|Or| ($ $ $)) T (ELT $ 47)) - ((|And| ($ $ $)) T (ELT $ 46)) - ((|Not| ($ $)) T (ELT $ 45)) - ((|xor| ($ $ $)) T (ELT $ 48)) - ((|not| ($ $)) T (ELT $ 42)) ((|min| ($)) T (ELT $ 39)) - ((|max| ($)) T (ELT $ 38)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))) - T (ELT $ 25)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $)) T - (ELT $ 24)) - ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 23)) - ((|OMwrite| ((|String|) $)) T (ELT $ 21)) - ((~ ($ $)) T (ELT $ 41)) ((|/\\| ($ $ $)) T (ELT $ 43)) - ((|\\/| ($ $ $)) T (ELT $ 44)) - ((|invmod| ($ $ $)) T (ELT $ NIL)) - ((|powmod| ($ $ $ $)) T (ELT $ NIL)) - ((|mulmod| ($ $ $ $)) T (ELT $ 73)) - ((|submod| ($ $ $ $)) T (ELT $ 75)) - ((|addmod| ($ $ $ $)) T (ELT $ 74)) - ((|mask| ($ $)) T (ELT $ NIL)) - ((|dec| ($ $)) T (ELT $ 51)) - ((|inc| ($ $)) T (ELT $ 50)) - ((|copy| ($ $)) T (ELT $ NIL)) - ((|random| ($ $)) T (ELT $ 84)) - ((|random| ($)) T (ELT $ 83)) - ((|rationalIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ NIL)) - ((|rational| ((|Fraction| (|Integer|)) $)) T - (ELT $ NIL)) - ((|rational?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|symmetricRemainder| ($ $ $)) T (ELT $ NIL)) - ((|positiveRemainder| ($ $ $)) T (ELT $ 81)) - ((|bit?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|shift| ($ $ $)) T (ELT $ 72)) - ((|length| ($ $)) T (ELT $ 71)) - ((|base| ($)) T (ELT $ 37)) - ((|even?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|odd?| ((|Boolean|) $)) T (ELT $ 64)) - ((|init| ($)) T (CONST $ NIL)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ NIL)) - ((|convert| ((|Float|) $)) T (ELT $ NIL)) - ((|permutation| ($ $ $)) T (ELT $ NIL)) - ((|factorial| ($ $)) T (ELT $ NIL)) - ((|binomial| ($ $ $)) T (ELT $ NIL)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ NIL)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) T (ELT $ NIL)) - ((|reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| $))) - T (ELT $ 28)) - ((|reducedSystem| - ((|Record| (|:| |mat| (|Matrix| (|Integer|))) - (|:| |vec| (|Vector| (|Integer|)))) - (|Matrix| $) (|Vector| $))) - T (ELT $ 80)) - ((|retract| ((|Integer|) $)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 82)) - ((|convert| ((|Integer|) $)) T (ELT $ 32)) - ((|differentiate| ($ $)) T (ELT $ NIL)) - ((D ($ $)) T (ELT $ NIL)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((D ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|abs| ($ $)) T (ELT $ 63)) - ((|sign| ((|Integer|) $)) T (ELT $ NIL)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 76)) - ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|min| ($ $ $)) T (ELT $ 68)) - ((|max| ($ $ $)) T (ELT $ 67)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 49)) - ((|principalIdeal| - ((|Record| (|:| |coef| (|List| $)) - (|:| |generator| $)) - (|List| $))) - T (ELT $ NIL)) - ((|expressIdealMember| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|sizeLess?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|euclideanSize| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|divide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $)) - T (ELT $ 61)) - ((|quo| ($ $ $)) T (ELT $ 58)) - ((|rem| ($ $ $)) T (ELT $ 59)) - ((|extendedEuclidean| - ((|Record| (|:| |coef1| $) (|:| |coef2| $) - (|:| |generator| $)) - $ $)) - T (ELT $ NIL)) - ((|extendedEuclidean| - ((|Union| (|Record| (|:| |coef1| $) - (|:| |coef2| $)) - "failed") - $ $ $)) - T (ELT $ NIL)) - ((|multiEuclidean| - ((|Union| (|List| $) "failed") (|List| $) $)) - T (ELT $ NIL)) - ((|factor| ((|Factored| $) $)) T (ELT $ NIL)) - ((|squareFreePart| ($ $)) T (ELT $ NIL)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ NIL)) - ((|prime?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ NIL)) - ((|lcm| ($ (|List| $))) T (ELT $ NIL)) - ((|lcm| ($ $ $)) T (ELT $ NIL)) - ((|gcd| ($ (|List| $))) T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ 62)) - ((|unit?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|associates?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|unitCanonical| ($ $)) T (ELT $ NIL)) - ((|unitNormal| - ((|Record| (|:| |unit| $) (|:| |canonical| $) - (|:| |associate| $)) - $)) - T (ELT $ 86)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ NIL)) - ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 82)) - ((|characteristic| ((|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|One| ($)) T (CONST $ 36)) - ((|one?| ((|Boolean|) $)) T (ELT $ 66)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ 57)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((* ($ $ $)) T (ELT $ 55)) - ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((* ($ (|Integer|) $)) T (ELT $ 34)) - ((- ($ $ $)) T (ELT $ 54)) ((- ($ $)) T (ELT $ 52)) - ((|subtractIfCan| ((|Union| $ "failed") $ $)) T - (ELT $ NIL)) - ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((|zero?| ((|Boolean|) $)) T (ELT $ 65)) - ((|sample| ($)) T (CONST $ NIL)) - ((|Zero| ($)) T (CONST $ 35)) - ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) - ((+ ($ $ $)) T (ELT $ 53)) - ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ 70)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 31)) - ((= ((|Boolean|) $ $)) T (ELT $ 40)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|SingleInteger| '(|SingleInteger|) - '((|Join| (|IntegerNumberSystem|) (|Logic|) - (|OpenMath|) - (CATEGORY |domain| (ATTRIBUTE |canonical|) - (ATTRIBUTE |canonicalsClosed|) - (ATTRIBUTE |noetherian|) - (SIGNATURE |max| ($)) - (SIGNATURE |min| ($)) - (SIGNATURE |not| ($ $)) - (SIGNATURE ~ ($ $)) - (SIGNATURE |/\\| ($ $ $)) - (SIGNATURE |\\/| ($ $ $)) - (SIGNATURE |xor| ($ $ $)) - (SIGNATURE |Not| ($ $)) - (SIGNATURE |And| ($ $ $)) - (SIGNATURE |Or| ($ $ $))))) - T '|SingleInteger| - (|put| '|SingleInteger| '|mode| - '(|Mapping| - (|Join| (|IntegerNumberSystem|) (|Logic|) - (|OpenMath|) - (CATEGORY |domain| - (ATTRIBUTE |canonical|) - (ATTRIBUTE |canonicalsClosed|) - (ATTRIBUTE |noetherian|) - (SIGNATURE |max| ($)) - (SIGNATURE |min| ($)) - (SIGNATURE |not| ($ $)) - (SIGNATURE ~ ($ $)) - (SIGNATURE |/\\| ($ $ $)) - (SIGNATURE |\\/| ($ $ $)) - (SIGNATURE |xor| ($ $ $)) - (SIGNATURE |Not| ($ $)) - (SIGNATURE |And| ($ $ $)) - (SIGNATURE |Or| ($ $ $))))) - |$CategoryFrame|)))) - (MAKEPROP '|SingleInteger| 'NILADIC T) diff --git a/src/algebra/strap/STAGG-.lsp b/src/algebra/strap/STAGG-.lsp index 58ab78db..830a8636 100644 --- a/src/algebra/strap/STAGG-.lsp +++ b/src/algebra/strap/STAGG-.lsp @@ -351,119 +351,3 @@ 20 23 2 0 0 0 24 31 2 0 0 0 0 47 1 0 0 34 36 2 0 0 0 0 33))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|StreamAggregate&| '|isFunctor| - '(((|possiblyInfinite?| ((|Boolean|) $)) T (ELT $ 12)) - ((|explicitlyFinite?| ((|Boolean|) $)) T (ELT $ 11)) - ((|setelt| (|#2| $ (|Integer|) |#2|)) T (ELT $ 41)) - ((|elt| (|#2| $ (|Integer|) |#2|)) T (ELT $ NIL)) - ((|elt| (|#2| $ (|Integer|))) T (ELT $ 23)) - ((|fill!| ($ $ |#2|)) T (ELT $ 40)) - ((|concat| ($ $ |#2|)) T (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ 36)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ 31)) - ((|setelt| - (|#2| $ (|UniversalSegment| (|Integer|)) |#2|)) - T (ELT $ 44)) - ((|setelt| (|#2| $ "last" |#2|)) T (ELT $ NIL)) - ((|setelt| ($ $ "rest" $)) T (ELT $ NIL)) - ((|setelt| (|#2| $ "first" |#2|)) T (ELT $ NIL)) - ((|concat!| ($ $ |#2|)) T (ELT $ NIL)) - ((|concat!| ($ $ $)) T (ELT $ 47)) - ((|elt| (|#2| $ "last")) T (ELT $ NIL)) - ((|elt| ($ $ "rest")) T (ELT $ NIL)) - ((|first| ($ $ (|NonNegativeInteger|))) T (ELT $ 17)) - ((|elt| (|#2| $ "first")) T (ELT $ NIL)) - ((|first| (|#2| $)) T (ELT $ NIL)) - ((|concat| ($ |#2| $)) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ 33)) - ((|setelt| (|#2| $ "value" |#2|)) T (ELT $ NIL)) - ((|elt| (|#2| $ "value")) T (ELT $ NIL)) - ((|map!| ($ (|Mapping| |#2| |#2|) $)) T (ELT $ 39))) - (|addModemap| '|StreamAggregate&| - '(|StreamAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |possiblyInfinite?| - ((|Boolean|) |#1|)) - (SIGNATURE |explicitlyFinite?| - ((|Boolean|) |#1|)) - (SIGNATURE |setelt| - (|#2| |#1| (|Integer|) |#2|)) - (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) - (SIGNATURE |elt| (|#2| |#1| (|Integer|))) - (SIGNATURE |fill!| (|#1| |#1| |#2|)) - (SIGNATURE |concat| (|#1| |#1| |#2|)) - (SIGNATURE |concat| (|#1| (|List| |#1|))) - (SIGNATURE |elt| - (|#1| |#1| (|UniversalSegment| (|Integer|)))) - (SIGNATURE |setelt| - (|#2| |#1| (|UniversalSegment| (|Integer|)) - |#2|)) - (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) - (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) - (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) - (SIGNATURE |concat!| (|#1| |#1| |#2|)) - (SIGNATURE |concat!| (|#1| |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| "last")) - (SIGNATURE |elt| (|#1| |#1| "rest")) - (SIGNATURE |first| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#2| |#1| "first")) - (SIGNATURE |first| (|#2| |#1|)) - (SIGNATURE |concat| (|#1| |#2| |#1|)) - (SIGNATURE |concat| (|#1| |#1| |#1|)) - (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) - (SIGNATURE |elt| (|#2| |#1| "value")) - (SIGNATURE |map!| - (|#1| (|Mapping| |#2| |#2|) |#1|))) - (|StreamAggregate| |#2|) (|Type|)) - T '|StreamAggregate&| - (|put| '|StreamAggregate&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |possiblyInfinite?| - ((|Boolean|) |#1|)) - (SIGNATURE |explicitlyFinite?| - ((|Boolean|) |#1|)) - (SIGNATURE |setelt| - (|#2| |#1| (|Integer|) |#2|)) - (SIGNATURE |elt| - (|#2| |#1| (|Integer|) |#2|)) - (SIGNATURE |elt| - (|#2| |#1| (|Integer|))) - (SIGNATURE |fill!| (|#1| |#1| |#2|)) - (SIGNATURE |concat| (|#1| |#1| |#2|)) - (SIGNATURE |concat| - (|#1| (|List| |#1|))) - (SIGNATURE |elt| - (|#1| |#1| - (|UniversalSegment| (|Integer|)))) - (SIGNATURE |setelt| - (|#2| |#1| - (|UniversalSegment| (|Integer|)) - |#2|)) - (SIGNATURE |setelt| - (|#2| |#1| "last" |#2|)) - (SIGNATURE |setelt| - (|#1| |#1| "rest" |#1|)) - (SIGNATURE |setelt| - (|#2| |#1| "first" |#2|)) - (SIGNATURE |concat!| (|#1| |#1| |#2|)) - (SIGNATURE |concat!| (|#1| |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| "last")) - (SIGNATURE |elt| (|#1| |#1| "rest")) - (SIGNATURE |first| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#2| |#1| "first")) - (SIGNATURE |first| (|#2| |#1|)) - (SIGNATURE |concat| (|#1| |#2| |#1|)) - (SIGNATURE |concat| (|#1| |#1| |#1|)) - (SIGNATURE |setelt| - (|#2| |#1| "value" |#2|)) - (SIGNATURE |elt| (|#2| |#1| "value")) - (SIGNATURE |map!| - (|#1| (|Mapping| |#2| |#2|) |#1|))) - (|StreamAggregate| |#2|) (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/STAGG.lsp b/src/algebra/strap/STAGG.lsp index 01d3f13a..03bb692d 100644 --- a/src/algebra/strap/STAGG.lsp +++ b/src/algebra/strap/STAGG.lsp @@ -27,7 +27,8 @@ T)) NIL '((|Boolean|)) NIL)) . #1=(|StreamAggregate|))))) . #1#) - (SETELT #0# 0 (LIST '|StreamAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|StreamAggregate| (|devaluate| |t#1|))))))) (DEFUN |StreamAggregate| (#0=#:G1405) (LET (#1=#:G1406) @@ -39,9 +40,3 @@ (SETQ #1# (|StreamAggregate;| #0#))) |StreamAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|StreamAggregate| '|isCategory| T - (|addModemap| '|StreamAggregate| '(|StreamAggregate| |#1|) - '((|Category|) (|Type|)) T '|StreamAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/SYMBOL.lsp b/src/algebra/strap/SYMBOL.lsp index 8f641a49..f19cf4da 100644 --- a/src/algebra/strap/SYMBOL.lsp +++ b/src/algebra/strap/SYMBOL.lsp @@ -915,191 +915,4 @@ 1 2 0 21 0 0 50))))) '|lookupComplete|)) -(SETQ |$CategoryFrame| - (|put| '|Symbol| '|isFunctor| - '(((|sample| ($)) T (CONST $ 124)) - ((|list| ((|List| $) $)) T (ELT $ 107)) - ((|string| ((|String|) $)) T (ELT $ 84)) - ((|elt| ($ $ (|List| (|OutputForm|)))) T (ELT $ 58)) - ((|argscript| ($ $ (|List| (|OutputForm|)))) T - (ELT $ 60)) - ((|superscript| ($ $ (|List| (|OutputForm|)))) T - (ELT $ 59)) - ((|subscript| ($ $ (|List| (|OutputForm|)))) T - (ELT $ 57)) - ((|script| - ($ $ - (|Record| (|:| |sub| (|List| (|OutputForm|))) - (|:| |sup| (|List| (|OutputForm|))) - (|:| |presup| (|List| (|OutputForm|))) - (|:| |presub| (|List| (|OutputForm|))) - (|:| |args| (|List| (|OutputForm|)))))) - T (ELT $ 82)) - ((|script| ($ $ (|List| (|List| (|OutputForm|))))) T - (ELT $ 56)) - ((|scripts| - ((|Record| (|:| |sub| (|List| (|OutputForm|))) - (|:| |sup| (|List| (|OutputForm|))) - (|:| |presup| (|List| (|OutputForm|))) - (|:| |presub| (|List| (|OutputForm|))) - (|:| |args| (|List| (|OutputForm|)))) - $)) - T (ELT $ 87)) - ((|scripted?| ((|Boolean|) $)) T (ELT $ 22)) - ((|name| ($ $)) T (ELT $ 83)) - ((|coerce| ($ (|String|))) T (ELT $ 48)) - ((|resetNew| ((|Void|))) T (ELT $ 106)) - ((|new| ($ $)) T (ELT $ 101)) ((|new| ($)) T (ELT $ 95)) - ((|patternMatch| - ((|PatternMatchResult| (|Float|) $) $ - (|Pattern| (|Float|)) - (|PatternMatchResult| (|Float|) $))) - T (ELT $ 73)) - ((|patternMatch| - ((|PatternMatchResult| (|Integer|) $) $ - (|Pattern| (|Integer|)) - (|PatternMatchResult| (|Integer|) $))) - T (ELT $ 66)) - ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ 75)) - ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ 77)) - ((|convert| ((|Symbol|) $)) T (ELT $ 47)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))) - T (ELT $ 36)) - ((|OMwrite| ((|Void|) (|OpenMathDevice|) $)) T - (ELT $ 35)) - ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 34)) - ((|OMwrite| ((|String|) $)) T (ELT $ 33)) - ((|convert| ((|InputForm|) $)) T (ELT $ 46)) - ((|min| ($ $ $)) T (ELT $ NIL)) - ((|max| ($ $ $)) T (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) - ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 50)) - ((|latex| ((|String|) $)) T (ELT $ 90)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 53)) - ((= ((|Boolean|) $ $)) T (ELT $ 49)) - ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|Symbol| '(|Symbol|) - '((|Join| (|OrderedSet|) - (|ConvertibleTo| (|InputForm|)) (|OpenMath|) - (|ConvertibleTo| (|Symbol|)) - (|ConvertibleTo| (|Pattern| (|Integer|))) - (|ConvertibleTo| (|Pattern| (|Float|))) - (|PatternMatchable| (|Integer|)) - (|PatternMatchable| (|Float|)) - (CATEGORY |domain| (SIGNATURE |new| ($)) - (SIGNATURE |new| ($ $)) - (SIGNATURE |resetNew| ((|Void|))) - (SIGNATURE |coerce| ($ (|String|))) - (SIGNATURE |name| ($ $)) - (SIGNATURE |scripted?| ((|Boolean|) $)) - (SIGNATURE |scripts| - ((|Record| - (|:| |sub| - (|List| (|OutputForm|))) - (|:| |sup| - (|List| (|OutputForm|))) - (|:| |presup| - (|List| (|OutputForm|))) - (|:| |presub| - (|List| (|OutputForm|))) - (|:| |args| - (|List| (|OutputForm|)))) - $)) - (SIGNATURE |script| - ($ $ - (|List| (|List| (|OutputForm|))))) - (SIGNATURE |script| - ($ $ - (|Record| - (|:| |sub| - (|List| (|OutputForm|))) - (|:| |sup| - (|List| (|OutputForm|))) - (|:| |presup| - (|List| (|OutputForm|))) - (|:| |presub| - (|List| (|OutputForm|))) - (|:| |args| - (|List| (|OutputForm|)))))) - (SIGNATURE |subscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |superscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |argscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |elt| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |string| ((|String|) $)) - (SIGNATURE |list| ((|List| $) $)) - (SIGNATURE |sample| ($) |constant|)))) - T '|Symbol| - (|put| '|Symbol| '|mode| - '(|Mapping| - (|Join| (|OrderedSet|) - (|ConvertibleTo| (|InputForm|)) - (|OpenMath|) - (|ConvertibleTo| (|Symbol|)) - (|ConvertibleTo| - (|Pattern| (|Integer|))) - (|ConvertibleTo| - (|Pattern| (|Float|))) - (|PatternMatchable| (|Integer|)) - (|PatternMatchable| (|Float|)) - (CATEGORY |domain| - (SIGNATURE |new| ($)) - (SIGNATURE |new| ($ $)) - (SIGNATURE |resetNew| ((|Void|))) - (SIGNATURE |coerce| - ($ (|String|))) - (SIGNATURE |name| ($ $)) - (SIGNATURE |scripted?| - ((|Boolean|) $)) - (SIGNATURE |scripts| - ((|Record| - (|:| |sub| - (|List| (|OutputForm|))) - (|:| |sup| - (|List| (|OutputForm|))) - (|:| |presup| - (|List| (|OutputForm|))) - (|:| |presub| - (|List| (|OutputForm|))) - (|:| |args| - (|List| (|OutputForm|)))) - $)) - (SIGNATURE |script| - ($ $ - (|List| - (|List| (|OutputForm|))))) - (SIGNATURE |script| - ($ $ - (|Record| - (|:| |sub| - (|List| (|OutputForm|))) - (|:| |sup| - (|List| (|OutputForm|))) - (|:| |presup| - (|List| (|OutputForm|))) - (|:| |presub| - (|List| (|OutputForm|))) - (|:| |args| - (|List| (|OutputForm|)))))) - (SIGNATURE |subscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |superscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |argscript| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |elt| - ($ $ (|List| (|OutputForm|)))) - (SIGNATURE |string| - ((|String|) $)) - (SIGNATURE |list| ((|List| $) $)) - (SIGNATURE |sample| ($) - |constant|)))) - |$CategoryFrame|)))) - (MAKEPROP '|Symbol| 'NILADIC T) diff --git a/src/algebra/strap/TSETCAT-.lsp b/src/algebra/strap/TSETCAT-.lsp index da0e9e85..10ae2d9c 100644 --- a/src/algebra/strap/TSETCAT-.lsp +++ b/src/algebra/strap/TSETCAT-.lsp @@ -1150,302 +1150,3 @@ 43 2 0 11 0 99 100 1 0 114 0 115 2 0 11 9 0 118 2 0 11 0 0 19))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|TriangularSetCategory&| '|isFunctor| - '(((|coHeight| ((|NonNegativeInteger|) $)) T (ELT $ 130)) - ((|extend| ($ $ |#5|)) T (ELT $ 127)) - ((|select| ((|Union| |#5| "failed") $ |#4|)) T - (ELT $ 119)) - ((|algebraic?| ((|Boolean|) |#4| $)) T (ELT $ 118)) - ((|algebraicVariables| ((|List| |#4|) $)) T (ELT $ 115)) - ((|rest| ((|Union| $ "failed") $)) T (ELT $ 112)) - ((|last| ((|Union| |#5| "failed") $)) T (ELT $ 110)) - ((|first| ((|Union| |#5| "failed") $)) T (ELT $ 109)) - ((|reduceByQuasiMonic| (|#5| |#5| $)) T (ELT $ 98)) - ((|collectQuasiMonic| ($ $)) T (ELT $ 120)) - ((|removeZero| (|#5| |#5| $)) T (ELT $ 94)) - ((|initiallyReduce| (|#5| |#5| $)) T (ELT $ 81)) - ((|headReduce| (|#5| |#5| $)) T (ELT $ 78)) - ((|stronglyReduce| (|#5| |#5| $)) T (ELT $ 75)) - ((|rewriteSetWithReduction| - ((|List| |#5|) (|List| |#5|) $ - (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - T (ELT $ 73)) - ((|reduce| - (|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - T (ELT $ 69)) - ((|initiallyReduced?| ((|Boolean|) $)) T (ELT $ 107)) - ((|headReduced?| ((|Boolean|) $)) T (ELT $ 105)) - ((|stronglyReduced?| ((|Boolean|) $)) T (ELT $ 102)) - ((|autoReduced?| - ((|Boolean|) $ - (|Mapping| (|Boolean|) |#5| (|List| |#5|)))) - T (ELT $ 100)) - ((|initiallyReduced?| ((|Boolean|) |#5| $)) T - (ELT $ 67)) - ((|headReduced?| ((|Boolean|) |#5| $)) T (ELT $ 63)) - ((|stronglyReduced?| ((|Boolean|) |#5| $)) T (ELT $ 60)) - ((|reduced?| - ((|Boolean|) |#5| $ - (|Mapping| (|Boolean|) |#5| |#5|))) - T (ELT $ 31)) - ((|normalized?| ((|Boolean|) $)) T (ELT $ 103)) - ((|normalized?| ((|Boolean|) |#5| $)) T (ELT $ 58)) - ((|quasiComponent| - ((|Record| (|:| |close| (|List| |#5|)) - (|:| |open| (|List| |#5|))) - $)) - T (ELT $ 55)) - ((|degree| ((|NonNegativeInteger|) $)) T (ELT $ 52)) - ((|initials| ((|List| |#5|) $)) T (ELT $ 49)) - ((|basicSet| - ((|Union| (|Record| (|:| |bas| $) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) (|Mapping| (|Boolean|) |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - T (ELT $ 45)) - ((|basicSet| - ((|Union| (|Record| (|:| |bas| $) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|))) - T (ELT $ 43)) - ((|infRittWu?| ((|Boolean|) $ $)) T (ELT $ 27)) - ((|collectUpper| ($ $ |#4|)) T (ELT $ 122)) - ((|collectUnder| ($ $ |#4|)) T (ELT $ 121)) - ((|mvar| (|#4| $)) T (ELT $ 108)) - ((|retractIfCan| ((|Union| $ "failed") (|List| |#5|))) T - (ELT $ 126)) - ((|coerce| ((|List| |#5|) $)) T (ELT $ 113)) - ((|construct| ($ (|List| |#5|))) T (ELT $ 124)) - ((|reduce| (|#5| (|Mapping| |#5| |#5| |#5|) $)) T - (ELT $ NIL)) - ((|reduce| (|#5| (|Mapping| |#5| |#5| |#5|) $ |#5|)) T - (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) |#5|) $)) T - (ELT $ NIL)) - ((|reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) $ |#5| |#5|)) - T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL)) - ((= ((|Boolean|) $ $)) T (ELT $ 19))) - (|addModemap| '|TriangularSetCategory&| - '(|TriangularSetCategory&| |#1| |#2| |#3| |#4| |#5|) - '((CATEGORY |domain| - (SIGNATURE |coHeight| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |extend| (|#1| |#1| |#5|)) - (SIGNATURE |select| - ((|Union| |#5| "failed") |#1| |#4|)) - (SIGNATURE |algebraic?| ((|Boolean|) |#4| |#1|)) - (SIGNATURE |algebraicVariables| - ((|List| |#4|) |#1|)) - (SIGNATURE |rest| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |last| - ((|Union| |#5| "failed") |#1|)) - (SIGNATURE |first| - ((|Union| |#5| "failed") |#1|)) - (SIGNATURE |reduceByQuasiMonic| - (|#5| |#5| |#1|)) - (SIGNATURE |collectQuasiMonic| (|#1| |#1|)) - (SIGNATURE |removeZero| (|#5| |#5| |#1|)) - (SIGNATURE |initiallyReduce| (|#5| |#5| |#1|)) - (SIGNATURE |headReduce| (|#5| |#5| |#1|)) - (SIGNATURE |stronglyReduce| (|#5| |#5| |#1|)) - (SIGNATURE |rewriteSetWithReduction| - ((|List| |#5|) (|List| |#5|) |#1| - (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |reduce| - (|#5| |#5| |#1| (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |initiallyReduced?| - ((|Boolean|) |#1|)) - (SIGNATURE |headReduced?| ((|Boolean|) |#1|)) - (SIGNATURE |stronglyReduced?| - ((|Boolean|) |#1|)) - (SIGNATURE |autoReduced?| - ((|Boolean|) |#1| - (|Mapping| (|Boolean|) |#5| (|List| |#5|)))) - (SIGNATURE |initiallyReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |headReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |stronglyReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |reduced?| - ((|Boolean|) |#5| |#1| - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |normalized?| ((|Boolean|) |#1|)) - (SIGNATURE |normalized?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |quasiComponent| - ((|Record| (|:| |close| (|List| |#5|)) - (|:| |open| (|List| |#5|))) - |#1|)) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |initials| ((|List| |#5|) |#1|)) - (SIGNATURE |basicSet| - ((|Union| (|Record| (|:| |bas| |#1|) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) (|Mapping| (|Boolean|) |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |basicSet| - ((|Union| (|Record| (|:| |bas| |#1|) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |infRittWu?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |collectUpper| (|#1| |#1| |#4|)) - (SIGNATURE |collectUnder| (|#1| |#1| |#4|)) - (SIGNATURE |mvar| (|#4| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#1| "failed") (|List| |#5|))) - (SIGNATURE |coerce| ((|List| |#5|) |#1|)) - (SIGNATURE |construct| (|#1| (|List| |#5|))) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) |#1|)) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) |#1| |#5|)) - (SIGNATURE |select| - (|#1| (|Mapping| (|Boolean|) |#5|) |#1|)) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) |#1| |#5| - |#5|)) - (SIGNATURE |coerce| ((|OutputForm|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|))) - (|TriangularSetCategory| |#2| |#3| |#4| |#5|) - (|IntegralDomain|) (|OrderedAbelianMonoidSup|) - (|OrderedSet|) - (|RecursivePolynomialCategory| |#2| |#3| |#4|)) - T '|TriangularSetCategory&| - (|put| '|TriangularSetCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |coHeight| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |extend| (|#1| |#1| |#5|)) - (SIGNATURE |select| - ((|Union| |#5| "failed") |#1| - |#4|)) - (SIGNATURE |algebraic?| - ((|Boolean|) |#4| |#1|)) - (SIGNATURE |algebraicVariables| - ((|List| |#4|) |#1|)) - (SIGNATURE |rest| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |last| - ((|Union| |#5| "failed") |#1|)) - (SIGNATURE |first| - ((|Union| |#5| "failed") |#1|)) - (SIGNATURE |reduceByQuasiMonic| - (|#5| |#5| |#1|)) - (SIGNATURE |collectQuasiMonic| - (|#1| |#1|)) - (SIGNATURE |removeZero| - (|#5| |#5| |#1|)) - (SIGNATURE |initiallyReduce| - (|#5| |#5| |#1|)) - (SIGNATURE |headReduce| - (|#5| |#5| |#1|)) - (SIGNATURE |stronglyReduce| - (|#5| |#5| |#1|)) - (SIGNATURE |rewriteSetWithReduction| - ((|List| |#5|) (|List| |#5|) |#1| - (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |reduce| - (|#5| |#5| |#1| - (|Mapping| |#5| |#5| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |initiallyReduced?| - ((|Boolean|) |#1|)) - (SIGNATURE |headReduced?| - ((|Boolean|) |#1|)) - (SIGNATURE |stronglyReduced?| - ((|Boolean|) |#1|)) - (SIGNATURE |autoReduced?| - ((|Boolean|) |#1| - (|Mapping| (|Boolean|) |#5| - (|List| |#5|)))) - (SIGNATURE |initiallyReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |headReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |stronglyReduced?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |reduced?| - ((|Boolean|) |#5| |#1| - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |normalized?| - ((|Boolean|) |#1|)) - (SIGNATURE |normalized?| - ((|Boolean|) |#5| |#1|)) - (SIGNATURE |quasiComponent| - ((|Record| - (|:| |close| (|List| |#5|)) - (|:| |open| (|List| |#5|))) - |#1|)) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |initials| - ((|List| |#5|) |#1|)) - (SIGNATURE |basicSet| - ((|Union| - (|Record| (|:| |bas| |#1|) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) - (|Mapping| (|Boolean|) |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |basicSet| - ((|Union| - (|Record| (|:| |bas| |#1|) - (|:| |top| (|List| |#5|))) - "failed") - (|List| |#5|) - (|Mapping| (|Boolean|) |#5| |#5|))) - (SIGNATURE |infRittWu?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |collectUpper| - (|#1| |#1| |#4|)) - (SIGNATURE |collectUnder| - (|#1| |#1| |#4|)) - (SIGNATURE |mvar| (|#4| |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| |#1| "failed") - (|List| |#5|))) - (SIGNATURE |coerce| - ((|List| |#5|) |#1|)) - (SIGNATURE |construct| - (|#1| (|List| |#5|))) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) - |#1|)) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) - |#1| |#5|)) - (SIGNATURE |select| - (|#1| (|Mapping| (|Boolean|) |#5|) - |#1|)) - (SIGNATURE |reduce| - (|#5| (|Mapping| |#5| |#5| |#5|) - |#1| |#5| |#5|)) - (SIGNATURE |coerce| - ((|OutputForm|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|))) - (|TriangularSetCategory| |#2| |#3| |#4| - |#5|) - (|IntegralDomain|) - (|OrderedAbelianMonoidSup|) (|OrderedSet|) - (|RecursivePolynomialCategory| |#2| |#3| - |#4|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/TSETCAT.lsp b/src/algebra/strap/TSETCAT.lsp index 12fb6a33..acfb9eb0 100644 --- a/src/algebra/strap/TSETCAT.lsp +++ b/src/algebra/strap/TSETCAT.lsp @@ -179,10 +179,10 @@ (|List| |t#4|) (|List| $)) NIL)) . #1=(|TriangularSetCategory|))))) . #1#) - (SETELT #0# 0 - (LIST '|TriangularSetCategory| (|devaluate| |t#1|) - (|devaluate| |t#2|) (|devaluate| |t#3|) - (|devaluate| |t#4|))))))) + (|setShellEntry| #0# 0 + (LIST '|TriangularSetCategory| (|devaluate| |t#1|) + (|devaluate| |t#2|) (|devaluate| |t#3|) + (|devaluate| |t#4|))))))) (DEFUN |TriangularSetCategory| (&REST #0=#:G1451 &AUX #1=#:G1449) (DSETQ #1# #0#) @@ -198,12 +198,3 @@ #1#))) |TriangularSetCategory;AL|)) #2#)))) - -(SETQ |$CategoryFrame| - (|put| '|TriangularSetCategory| '|isCategory| T - (|addModemap| '|TriangularSetCategory| - '(|TriangularSetCategory| |#1| |#2| |#3| |#4|) - '((|Category|) (|IntegralDomain|) - (|OrderedAbelianMonoidSup|) (|OrderedSet|) - (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) - T '|TriangularSetCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/UFD-.lsp b/src/algebra/strap/UFD-.lsp index 1b71367c..9b2273b3 100644 --- a/src/algebra/strap/UFD-.lsp +++ b/src/algebra/strap/UFD-.lsp @@ -87,24 +87,3 @@ 0 0 0 15 0 6 0 16 1 6 7 0 18 1 9 21 0 22 1 0 0 0 17 1 0 23 0 24))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|UniqueFactorizationDomain&| '|isFunctor| - '(((|squareFreePart| ($ $)) T (ELT $ 17)) - ((|prime?| ((|Boolean|) $)) T (ELT $ 24))) - (|addModemap| '|UniqueFactorizationDomain&| - '(|UniqueFactorizationDomain&| |#1|) - '((CATEGORY |domain| - (SIGNATURE |squareFreePart| (|#1| |#1|)) - (SIGNATURE |prime?| ((|Boolean|) |#1|))) - (|UniqueFactorizationDomain|)) - T '|UniqueFactorizationDomain&| - (|put| '|UniqueFactorizationDomain&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |squareFreePart| - (|#1| |#1|)) - (SIGNATURE |prime?| - ((|Boolean|) |#1|))) - (|UniqueFactorizationDomain|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/UFD.lsp b/src/algebra/strap/UFD.lsp index f92b4bf5..1379c56d 100644 --- a/src/algebra/strap/UFD.lsp +++ b/src/algebra/strap/UFD.lsp @@ -15,7 +15,7 @@ ((|factor| ((|Factored| $) $)) T)) NIL '((|Factored| $) (|Boolean|)) NIL)) |UniqueFactorizationDomain|) - (SETELT #0# 0 '(|UniqueFactorizationDomain|)))))) + (|setShellEntry| #0# 0 '(|UniqueFactorizationDomain|)))))) (DEFUN |UniqueFactorizationDomain| () (LET () @@ -24,10 +24,4 @@ (T (SETQ |UniqueFactorizationDomain;AL| (|UniqueFactorizationDomain;|)))))) -(SETQ |$CategoryFrame| - (|put| '|UniqueFactorizationDomain| '|isCategory| T - (|addModemap| '|UniqueFactorizationDomain| - '(|UniqueFactorizationDomain|) '((|Category|)) T - '|UniqueFactorizationDomain| |$CategoryFrame|))) - (MAKEPROP '|UniqueFactorizationDomain| 'NILADIC T) diff --git a/src/algebra/strap/ULSCAT.lsp b/src/algebra/strap/ULSCAT.lsp index e87c6157..c3b72800 100644 --- a/src/algebra/strap/ULSCAT.lsp +++ b/src/algebra/strap/ULSCAT.lsp @@ -93,9 +93,9 @@ (|:| |c| |t#1|)))) NIL)) . #2=(|UnivariateLaurentSeriesCategory|)))))) . #2#) - (SETELT #0# 0 - (LIST '|UnivariateLaurentSeriesCategory| - (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|UnivariateLaurentSeriesCategory| + (|devaluate| |t#1|))))))) (DEFUN |UnivariateLaurentSeriesCategory| (#0=#:G1400) (LET (#1=#:G1401) @@ -111,10 +111,3 @@ #0#))) |UnivariateLaurentSeriesCategory;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|UnivariateLaurentSeriesCategory| '|isCategory| T - (|addModemap| '|UnivariateLaurentSeriesCategory| - '(|UnivariateLaurentSeriesCategory| |#1|) - '((|Category|) (|Ring|)) T - '|UnivariateLaurentSeriesCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/UPOLYC-.lsp b/src/algebra/strap/UPOLYC-.lsp index ceef39e9..ddb992a4 100644 --- a/src/algebra/strap/UPOLYC-.lsp +++ b/src/algebra/strap/UPOLYC-.lsp @@ -1402,642 +1402,3 @@ 19 0 14 20 2 0 0 0 12 125 2 0 120 0 0 161 2 0 156 143 0 157 1 0 0 12 51))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|UnivariatePolynomialCategory&| '|isFunctor| - '(((|coerce| ($ $)) T (ELT $ NIL)) - ((|gcdPolynomial| - ((|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 182)) - ((|squareFree| ((|Factored| $) $)) T (ELT $ 173)) - ((|squareFreePart| ($ $)) T (ELT $ 175)) - ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((|init| ($)) T (ELT $ 119)) - ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ 123)) - ((|elt| ((|Fraction| $) $ (|Fraction| $))) T - (ELT $ 169)) - ((|euclideanSize| ((|NonNegativeInteger|) $)) T - (ELT $ 188)) - ((|divide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ $)) - T (ELT $ 191)) - ((|integrate| ($ $)) T (ELT $ 197)) - ((|elt| (|#2| (|Fraction| $) |#2|)) T (ELT $ 187)) - ((|separate| - ((|Record| (|:| |primePart| $) - (|:| |commonPart| $)) - $ $)) - T (ELT $ 130)) - ((|pseudoDivide| - ((|Record| (|:| |coef| |#2|) (|:| |quotient| $) - (|:| |remainder| $)) - $ $)) - T (ELT $ 153)) - ((|pseudoQuotient| ($ $ $)) T (ELT $ 151)) - ((|composite| - ((|Union| (|Fraction| $) "failed") (|Fraction| $) - $)) - T (ELT $ 157)) - ((|composite| ((|Union| $ "failed") $ $)) T (ELT $ 161)) - ((|order| ((|NonNegativeInteger|) $ $)) T (ELT $ 170)) - ((|elt| ((|Fraction| $) (|Fraction| $) (|Fraction| $))) - T (ELT $ 147)) - ((|differentiate| ($ $ (|Mapping| |#2| |#2|) $)) T - (ELT $ 134)) - ((|shiftLeft| ($ $ (|NonNegativeInteger|))) T - (ELT $ 73)) - ((|shiftRight| ($ $ (|NonNegativeInteger|))) T - (ELT $ 71)) - ((|karatsubaDivide| - ((|Record| (|:| |quotient| $) (|:| |remainder| $)) - $ (|NonNegativeInteger|))) - T (ELT $ 70)) - ((|unmakeSUP| ($ (|SparseUnivariatePolynomial| |#2|))) T - (ELT $ 67)) - ((|makeSUP| ((|SparseUnivariatePolynomial| |#2|) $)) T - (ELT $ 59)) - ((|vectorise| - ((|Vector| |#2|) $ (|NonNegativeInteger|))) - T (ELT $ 114)) - ((|differentiate| ($ $ (|Mapping| |#2| |#2|))) T - (ELT $ 137)) - ((|differentiate| - ($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|Symbol|) (|NonNegativeInteger|))) - T (ELT $ NIL)) - ((|differentiate| ($ $ (|List| (|Symbol|)))) T - (ELT $ NIL)) - ((|differentiate| ($ $ (|Symbol|))) T (ELT $ NIL)) - ((|differentiate| ($ $)) T (ELT $ 138)) - ((|differentiate| ($ $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|elt| ($ $ $)) T (ELT $ NIL)) - ((|elt| (|#2| $ |#2|)) T (ELT $ NIL)) - ((|factor| ((|Factored| $) $)) T (ELT $ 107)) - ((|squareFreePolynomial| - ((|Factored| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 185)) - ((|factorPolynomial| - ((|Factored| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 86)) - ((|factorSquareFreePolynomial| - ((|Factored| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 88)) - ((|solveLinearPolynomialEquation| - ((|Union| (|List| (|SparseUnivariatePolynomial| $)) - "failed") - (|List| (|SparseUnivariatePolynomial| $)) - (|SparseUnivariatePolynomial| $))) - T (ELT $ 82)) - ((|content| ($ $ (|SingletonAsOrderedSet|))) T - (ELT $ 125)) - ((|variables| ((|List| (|SingletonAsOrderedSet|)) $)) T - (ELT $ 15)) - ((|totalDegree| - ((|NonNegativeInteger|) $ - (|List| (|SingletonAsOrderedSet|)))) - T (ELT $ 18)) - ((|totalDegree| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|monomial| - ($ $ (|List| (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - T (ELT $ NIL)) - ((|monomial| - ($ $ (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - T (ELT $ 47)) - ((|minimumDegree| - ((|List| (|NonNegativeInteger|)) $ - (|List| (|SingletonAsOrderedSet|)))) - T (ELT $ 43)) - ((|minimumDegree| - ((|NonNegativeInteger|) $ - (|SingletonAsOrderedSet|))) - T (ELT $ 42)) - ((|mainVariable| - ((|Union| (|SingletonAsOrderedSet|) "failed") $)) - T (ELT $ 40)) - ((|degree| - ((|List| (|NonNegativeInteger|)) $ - (|List| (|SingletonAsOrderedSet|)))) - T (ELT $ 20)) - ((|degree| - ((|NonNegativeInteger|) $ - (|SingletonAsOrderedSet|))) - T (ELT $ 16)) - ((|retract| ((|SingletonAsOrderedSet|) $)) T - (ELT $ NIL)) - ((|retractIfCan| - ((|Union| (|SingletonAsOrderedSet|) "failed") $)) - T (ELT $ NIL)) - ((|coerce| ($ (|SingletonAsOrderedSet|))) T (ELT $ 51)) - ((|eval| ($ $ (|List| (|SingletonAsOrderedSet|)) - (|List| $))) - T (ELT $ 23)) - ((|eval| ($ $ (|SingletonAsOrderedSet|) $)) T - (ELT $ 25)) - ((|eval| ($ $ (|List| (|SingletonAsOrderedSet|)) - (|List| |#2|))) - T (ELT $ 28)) - ((|eval| ($ $ (|SingletonAsOrderedSet|) |#2|)) T - (ELT $ 31)) - ((|eval| ($ $ (|List| $) (|List| $))) T (ELT $ NIL)) - ((|eval| ($ $ $ $)) T (ELT $ NIL)) - ((|eval| ($ $ (|Equation| $))) T (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| $)))) T (ELT $ 39)) - ((|degree| ((|NonNegativeInteger|) $)) T (ELT $ NIL)) - ((|monomial| ($ |#2| (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|retract| ((|Integer|) $)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ NIL)) - ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ NIL)) - ((|retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ NIL)) - ((|coerce| ($ |#2|)) T (ELT $ NIL)) - ((|retractIfCan| ((|Union| |#2| "failed") $)) T - (ELT $ 117)) - ((|retract| (|#2| $)) T (ELT $ 115)) - ((|minimumDegree| ((|NonNegativeInteger|) $)) T - (ELT $ NIL)) - ((|content| (|#2| $)) T (ELT $ NIL)) - ((|differentiate| - ($ $ (|List| (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - T (ELT $ NIL)) - ((|differentiate| - ($ $ (|List| (|SingletonAsOrderedSet|)))) - T (ELT $ NIL)) - ((|differentiate| ($ $ (|SingletonAsOrderedSet|))) T - (ELT $ 140)) - ((|coerce| ($ (|Integer|))) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ NIL))) - (|addModemap| '|UnivariatePolynomialCategory&| - '(|UnivariatePolynomialCategory&| |#1| |#2|) - '((CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePart| (|#1| |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |elt| - ((|Fraction| |#1|) |#1| (|Fraction| |#1|))) - (SIGNATURE |euclideanSize| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |divide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1|)) - (SIGNATURE |integrate| (|#1| |#1|)) - (SIGNATURE |elt| (|#2| (|Fraction| |#1|) |#2|)) - (SIGNATURE |separate| - ((|Record| (|:| |primePart| |#1|) - (|:| |commonPart| |#1|)) - |#1| |#1|)) - (SIGNATURE |pseudoDivide| - ((|Record| (|:| |coef| |#2|) - (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1|)) - (SIGNATURE |pseudoQuotient| (|#1| |#1| |#1|)) - (SIGNATURE |composite| - ((|Union| (|Fraction| |#1|) "failed") - (|Fraction| |#1|) |#1|)) - (SIGNATURE |composite| - ((|Union| |#1| "failed") |#1| |#1|)) - (SIGNATURE |order| - ((|NonNegativeInteger|) |#1| |#1|)) - (SIGNATURE |elt| - ((|Fraction| |#1|) (|Fraction| |#1|) - (|Fraction| |#1|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) |#1|)) - (SIGNATURE |shiftLeft| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |shiftRight| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |karatsubaDivide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| (|NonNegativeInteger|))) - (SIGNATURE |unmakeSUP| - (|#1| (|SparseUnivariatePolynomial| |#2|))) - (SIGNATURE |makeSUP| - ((|SparseUnivariatePolynomial| |#2|) |#1|)) - (SIGNATURE |vectorise| - ((|Vector| |#2|) |#1| - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|))) - (SIGNATURE |differentiate| (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#1| |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| |#2|)) - (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |factorPolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |factorSquareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |solveLinearPolynomialEquation| - ((|Union| (|List| - (|SparseUnivariatePolynomial| - |#1|)) - "failed") - (|List| (|SparseUnivariatePolynomial| |#1|)) - (|SparseUnivariatePolynomial| |#1|))) - (SIGNATURE |content| - (|#1| |#1| (|SingletonAsOrderedSet|))) - (SIGNATURE |variables| - ((|List| (|SingletonAsOrderedSet|)) |#1|)) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1| - (|List| (|SingletonAsOrderedSet|)))) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |monomial| - (|#1| |#1| - (|List| (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |monomial| - (|#1| |#1| (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - (SIGNATURE |minimumDegree| - ((|List| (|NonNegativeInteger|)) |#1| - (|List| (|SingletonAsOrderedSet|)))) - (SIGNATURE |minimumDegree| - ((|NonNegativeInteger|) |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |mainVariable| - ((|Union| (|SingletonAsOrderedSet|) - "failed") - |#1|)) - (SIGNATURE |degree| - ((|List| (|NonNegativeInteger|)) |#1| - (|List| (|SingletonAsOrderedSet|)))) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |retract| - ((|SingletonAsOrderedSet|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|SingletonAsOrderedSet|) - "failed") - |#1|)) - (SIGNATURE |coerce| - (|#1| (|SingletonAsOrderedSet|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|SingletonAsOrderedSet|)) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|SingletonAsOrderedSet|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)) - (|List| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| (|SingletonAsOrderedSet|) |#2|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) (|List| |#1|))) - (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| (|List| (|Equation| |#1|)))) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |monomial| - (|#1| |#2| (|NonNegativeInteger|))) - (SIGNATURE |retract| ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) "failed") - |#1|)) - (SIGNATURE |coerce| (|#1| |#2|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |minimumDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |content| (|#2| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| - (|List| (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| - (|List| (|SingletonAsOrderedSet|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|SingletonAsOrderedSet|))) - (SIGNATURE |coerce| (|#1| (|Integer|))) - (SIGNATURE |coerce| ((|OutputForm|) |#1|))) - (|UnivariatePolynomialCategory| |#2|) (|Ring|)) - T '|UnivariatePolynomialCategory&| - (|put| '|UnivariatePolynomialCategory&| '|mode| - '(|Mapping| - (CATEGORY |domain| - (SIGNATURE |coerce| (|#1| |#1|)) - (SIGNATURE |gcdPolynomial| - ((|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |squareFree| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePart| - (|#1| |#1|)) - (SIGNATURE |coerce| - (|#1| (|Fraction| (|Integer|)))) - (SIGNATURE |init| (|#1|)) - (SIGNATURE |nextItem| - ((|Union| |#1| "failed") |#1|)) - (SIGNATURE |elt| - ((|Fraction| |#1|) |#1| - (|Fraction| |#1|))) - (SIGNATURE |euclideanSize| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |divide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1|)) - (SIGNATURE |integrate| (|#1| |#1|)) - (SIGNATURE |elt| - (|#2| (|Fraction| |#1|) |#2|)) - (SIGNATURE |separate| - ((|Record| (|:| |primePart| |#1|) - (|:| |commonPart| |#1|)) - |#1| |#1|)) - (SIGNATURE |pseudoDivide| - ((|Record| (|:| |coef| |#2|) - (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| |#1|)) - (SIGNATURE |pseudoQuotient| - (|#1| |#1| |#1|)) - (SIGNATURE |composite| - ((|Union| (|Fraction| |#1|) - "failed") - (|Fraction| |#1|) |#1|)) - (SIGNATURE |composite| - ((|Union| |#1| "failed") |#1| - |#1|)) - (SIGNATURE |order| - ((|NonNegativeInteger|) |#1| |#1|)) - (SIGNATURE |elt| - ((|Fraction| |#1|) - (|Fraction| |#1|) - (|Fraction| |#1|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) - |#1|)) - (SIGNATURE |shiftLeft| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |shiftRight| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |karatsubaDivide| - ((|Record| (|:| |quotient| |#1|) - (|:| |remainder| |#1|)) - |#1| (|NonNegativeInteger|))) - (SIGNATURE |unmakeSUP| - (|#1| - (|SparseUnivariatePolynomial| - |#2|))) - (SIGNATURE |makeSUP| - ((|SparseUnivariatePolynomial| - |#2|) - |#1|)) - (SIGNATURE |vectorise| - ((|Vector| |#2|) |#1| - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Mapping| |#2| |#2|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| (|List| (|Symbol|)))) - (SIGNATURE |differentiate| - (|#1| |#1| (|Symbol|))) - (SIGNATURE |differentiate| - (|#1| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#1| |#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| |#2|)) - (SIGNATURE |factor| - ((|Factored| |#1|) |#1|)) - (SIGNATURE |squareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |factorPolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE - |factorSquareFreePolynomial| - ((|Factored| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE - |solveLinearPolynomialEquation| - ((|Union| - (|List| - (|SparseUnivariatePolynomial| - |#1|)) - "failed") - (|List| - (|SparseUnivariatePolynomial| - |#1|)) - (|SparseUnivariatePolynomial| - |#1|))) - (SIGNATURE |content| - (|#1| |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |variables| - ((|List| - (|SingletonAsOrderedSet|)) - |#1|)) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1| - (|List| - (|SingletonAsOrderedSet|)))) - (SIGNATURE |totalDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |monomial| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |monomial| - (|#1| |#1| - (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - (SIGNATURE |minimumDegree| - ((|List| (|NonNegativeInteger|)) - |#1| - (|List| - (|SingletonAsOrderedSet|)))) - (SIGNATURE |minimumDegree| - ((|NonNegativeInteger|) |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |mainVariable| - ((|Union| - (|SingletonAsOrderedSet|) - "failed") - |#1|)) - (SIGNATURE |degree| - ((|List| (|NonNegativeInteger|)) - |#1| - (|List| - (|SingletonAsOrderedSet|)))) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |retract| - ((|SingletonAsOrderedSet|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| - (|SingletonAsOrderedSet|) - "failed") - |#1|)) - (SIGNATURE |coerce| - (|#1| (|SingletonAsOrderedSet|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| - (|SingletonAsOrderedSet|) |#1|)) - (SIGNATURE |eval| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)) - (|List| |#2|))) - (SIGNATURE |eval| - (|#1| |#1| - (|SingletonAsOrderedSet|) |#2|)) - (SIGNATURE |eval| - (|#1| |#1| (|List| |#1|) - (|List| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| |#1| |#1|)) - (SIGNATURE |eval| - (|#1| |#1| (|Equation| |#1|))) - (SIGNATURE |eval| - (|#1| |#1| - (|List| (|Equation| |#1|)))) - (SIGNATURE |degree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |monomial| - (|#1| |#2| (|NonNegativeInteger|))) - (SIGNATURE |retract| - ((|Integer|) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Integer|) "failed") - |#1|)) - (SIGNATURE |retract| - ((|Fraction| (|Integer|)) |#1|)) - (SIGNATURE |retractIfCan| - ((|Union| (|Fraction| (|Integer|)) - "failed") - |#1|)) - (SIGNATURE |coerce| (|#1| |#2|)) - (SIGNATURE |retractIfCan| - ((|Union| |#2| "failed") |#1|)) - (SIGNATURE |retract| (|#2| |#1|)) - (SIGNATURE |minimumDegree| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |content| (|#2| |#1|)) - (SIGNATURE |differentiate| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)) - (|List| (|NonNegativeInteger|)))) - (SIGNATURE |differentiate| - (|#1| |#1| - (|SingletonAsOrderedSet|) - (|NonNegativeInteger|))) - (SIGNATURE |differentiate| - (|#1| |#1| - (|List| - (|SingletonAsOrderedSet|)))) - (SIGNATURE |differentiate| - (|#1| |#1| - (|SingletonAsOrderedSet|))) - (SIGNATURE |coerce| - (|#1| (|Integer|))) - (SIGNATURE |coerce| - ((|OutputForm|) |#1|))) - (|UnivariatePolynomialCategory| |#2|) - (|Ring|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/UPOLYC.lsp b/src/algebra/strap/UPOLYC.lsp index a84a5c3a..1a1726c7 100644 --- a/src/algebra/strap/UPOLYC.lsp +++ b/src/algebra/strap/UPOLYC.lsp @@ -138,9 +138,8 @@ (|Vector| |t#1|)) NIL)) . #3=(|UnivariatePolynomialCategory|)))))) . #3#) - (SETELT #0# 0 - (LIST '|UnivariatePolynomialCategory| - (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|UnivariatePolynomialCategory| (|devaluate| |t#1|))))))) (DEFUN |UnivariatePolynomialCategory| (#0=#:G1436) (LET (#1=#:G1437) @@ -156,10 +155,3 @@ #0#))) |UnivariatePolynomialCategory;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|UnivariatePolynomialCategory| '|isCategory| T - (|addModemap| '|UnivariatePolynomialCategory| - '(|UnivariatePolynomialCategory| |#1|) - '((|Category|) (|Ring|)) T - '|UnivariatePolynomialCategory| |$CategoryFrame|))) diff --git a/src/algebra/strap/URAGG-.lsp b/src/algebra/strap/URAGG-.lsp index 9fb56330..c5870cbe 100644 --- a/src/algebra/strap/URAGG-.lsp +++ b/src/algebra/strap/URAGG-.lsp @@ -770,170 +770,3 @@ 1 0 30 0 41 1 0 0 0 40 2 0 0 0 0 58 1 0 25 0 27 2 0 19 0 0 48 1 0 30 0 35))))) '|lookupComplete|)) - -(SETQ |$CategoryFrame| - (|put| '|UnaryRecursiveAggregate&| '|isFunctor| - '(((|split!| ($ $ (|Integer|))) T (ELT $ 64)) - ((|setelt| (|#2| $ "last" |#2|)) T (ELT $ 54)) - ((|setlast!| (|#2| $ |#2|)) T (ELT $ 59)) - ((|setelt| ($ $ "rest" $)) T (ELT $ 56)) - ((|setelt| (|#2| $ "first" |#2|)) T (ELT $ 52)) - ((|cycleSplit!| ($ $)) T (ELT $ 65)) - ((|cycleTail| ($ $)) T (ELT $ 39)) - ((|cycleLength| ((|NonNegativeInteger|) $)) T - (ELT $ 41)) - ((|cycleEntry| ($ $)) T (ELT $ 40)) - ((|third| (|#2| $)) T (ELT $ 18)) - ((|second| (|#2| $)) T (ELT $ 17)) - ((|tail| ($ $)) T (ELT $ 36)) - ((|last| ($ $ (|NonNegativeInteger|))) T (ELT $ 46)) - ((|elt| (|#2| $ "last")) T (ELT $ 13)) - ((|last| (|#2| $)) T (ELT $ 24)) - ((|rest| ($ $ (|NonNegativeInteger|))) T (ELT $ 42)) - ((|elt| ($ $ "rest")) T (ELT $ 16)) - ((|rest| ($ $)) T (ELT $ NIL)) - ((|elt| (|#2| $ "first")) T (ELT $ 10)) - ((|concat| ($ |#2| $)) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ 58)) - ((|setvalue!| (|#2| $ |#2|)) T (ELT $ 61)) - ((|setelt| (|#2| $ "value" |#2|)) T (ELT $ NIL)) - ((|setchildren!| ($ $ (|List| $))) T (ELT $ 60)) - ((|node?| ((|Boolean|) $ $)) T (ELT $ 50)) - ((|cyclic?| ((|Boolean|) $)) T (ELT $ 22)) - ((|elt| (|#2| $ "value")) T (ELT $ NIL)) - ((|value| (|#2| $)) T (ELT $ 29)) - ((|leaf?| ((|Boolean|) $)) T (ELT $ 28)) - ((|nodes| ((|List| $) $)) T (ELT $ 26)) - ((|children| ((|List| $) $)) T (ELT $ 27)) - ((= ((|Boolean|) $ $)) T (ELT $ 48)) - ((|#| ((|NonNegativeInteger|) $)) T (ELT $ 35)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ 33)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ 32)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ 31))) - (|addModemap| '|UnaryRecursiveAggregate&| - '(|UnaryRecursiveAggregate&| |#1| |#2|) - '((CATEGORY |domain| - (SIGNATURE |split!| (|#1| |#1| (|Integer|))) - (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) - (SIGNATURE |setlast!| (|#2| |#1| |#2|)) - (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) - (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) - (SIGNATURE |cycleSplit!| (|#1| |#1|)) - (SIGNATURE |cycleTail| (|#1| |#1|)) - (SIGNATURE |cycleLength| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |cycleEntry| (|#1| |#1|)) - (SIGNATURE |third| (|#2| |#1|)) - (SIGNATURE |second| (|#2| |#1|)) - (SIGNATURE |tail| (|#1| |#1|)) - (SIGNATURE |last| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#2| |#1| "last")) - (SIGNATURE |last| (|#2| |#1|)) - (SIGNATURE |rest| - (|#1| |#1| (|NonNegativeInteger|))) - (SIGNATURE |elt| (|#1| |#1| "rest")) - (SIGNATURE |rest| (|#1| |#1|)) - (SIGNATURE |elt| (|#2| |#1| "first")) - (SIGNATURE |concat| (|#1| |#2| |#1|)) - (SIGNATURE |concat| (|#1| |#1| |#1|)) - (SIGNATURE |setvalue!| (|#2| |#1| |#2|)) - (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) - (SIGNATURE |setchildren!| - (|#1| |#1| (|List| |#1|))) - (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) - (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) - (SIGNATURE |elt| (|#2| |#1| "value")) - (SIGNATURE |value| (|#2| |#1|)) - (SIGNATURE |leaf?| ((|Boolean|) |#1|)) - (SIGNATURE |nodes| ((|List| |#1|) |#1|)) - (SIGNATURE |children| ((|List| |#1|) |#1|)) - (SIGNATURE = ((|Boolean|) |#1| |#1|)) - (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |size?| - ((|Boolean|) |#1| (|NonNegativeInteger|))) - (SIGNATURE |more?| - ((|Boolean|) |#1| (|NonNegativeInteger|))) - (SIGNATURE |less?| - ((|Boolean|) |#1| (|NonNegativeInteger|)))) - (|UnaryRecursiveAggregate| |#2|) (|Type|)) - T '|UnaryRecursiveAggregate&| - (|put| '|UnaryRecursiveAggregate&| '|mode| - '(|Mapping| (CATEGORY |domain| - (SIGNATURE |split!| - (|#1| |#1| (|Integer|))) - (SIGNATURE |setelt| - (|#2| |#1| "last" |#2|)) - (SIGNATURE |setlast!| - (|#2| |#1| |#2|)) - (SIGNATURE |setelt| - (|#1| |#1| "rest" |#1|)) - (SIGNATURE |setelt| - (|#2| |#1| "first" |#2|)) - (SIGNATURE |cycleSplit!| - (|#1| |#1|)) - (SIGNATURE |cycleTail| - (|#1| |#1|)) - (SIGNATURE |cycleLength| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |cycleEntry| - (|#1| |#1|)) - (SIGNATURE |third| (|#2| |#1|)) - (SIGNATURE |second| (|#2| |#1|)) - (SIGNATURE |tail| (|#1| |#1|)) - (SIGNATURE |last| - (|#1| |#1| - (|NonNegativeInteger|))) - (SIGNATURE |elt| - (|#2| |#1| "last")) - (SIGNATURE |last| (|#2| |#1|)) - (SIGNATURE |rest| - (|#1| |#1| - (|NonNegativeInteger|))) - (SIGNATURE |elt| - (|#1| |#1| "rest")) - (SIGNATURE |rest| (|#1| |#1|)) - (SIGNATURE |elt| - (|#2| |#1| "first")) - (SIGNATURE |concat| - (|#1| |#2| |#1|)) - (SIGNATURE |concat| - (|#1| |#1| |#1|)) - (SIGNATURE |setvalue!| - (|#2| |#1| |#2|)) - (SIGNATURE |setelt| - (|#2| |#1| "value" |#2|)) - (SIGNATURE |setchildren!| - (|#1| |#1| (|List| |#1|))) - (SIGNATURE |node?| - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |cyclic?| - ((|Boolean|) |#1|)) - (SIGNATURE |elt| - (|#2| |#1| "value")) - (SIGNATURE |value| (|#2| |#1|)) - (SIGNATURE |leaf?| - ((|Boolean|) |#1|)) - (SIGNATURE |nodes| - ((|List| |#1|) |#1|)) - (SIGNATURE |children| - ((|List| |#1|) |#1|)) - (SIGNATURE = - ((|Boolean|) |#1| |#1|)) - (SIGNATURE |#| - ((|NonNegativeInteger|) |#1|)) - (SIGNATURE |size?| - ((|Boolean|) |#1| - (|NonNegativeInteger|))) - (SIGNATURE |more?| - ((|Boolean|) |#1| - (|NonNegativeInteger|))) - (SIGNATURE |less?| - ((|Boolean|) |#1| - (|NonNegativeInteger|)))) - (|UnaryRecursiveAggregate| |#2|) - (|Type|)) - |$CategoryFrame|)))) diff --git a/src/algebra/strap/URAGG.lsp b/src/algebra/strap/URAGG.lsp index 9cd5bea8..acc123db 100644 --- a/src/algebra/strap/URAGG.lsp +++ b/src/algebra/strap/URAGG.lsp @@ -96,8 +96,8 @@ (|NonNegativeInteger|)) NIL)) . #1=(|UnaryRecursiveAggregate|))))) . #1#) - (SETELT #0# 0 - (LIST '|UnaryRecursiveAggregate| (|devaluate| |t#1|))))))) + (|setShellEntry| #0# 0 + (LIST '|UnaryRecursiveAggregate| (|devaluate| |t#1|))))))) (DEFUN |UnaryRecursiveAggregate| (#0=#:G1426) (LET (#1=#:G1427) @@ -111,10 +111,3 @@ (|UnaryRecursiveAggregate;| #0#))) |UnaryRecursiveAggregate;AL|)) #1#)))) - -(SETQ |$CategoryFrame| - (|put| '|UnaryRecursiveAggregate| '|isCategory| T - (|addModemap| '|UnaryRecursiveAggregate| - '(|UnaryRecursiveAggregate| |#1|) - '((|Category|) (|Type|)) T '|UnaryRecursiveAggregate| - |$CategoryFrame|))) diff --git a/src/algebra/strap/VECTOR.lsp b/src/algebra/strap/VECTOR.lsp index 3fb2fb67..61c9ca51 100644 --- a/src/algebra/strap/VECTOR.lsp +++ b/src/algebra/strap/VECTOR.lsp @@ -137,216 +137,3 @@ 13 0 19 1 0 0 7 9 1 0 7 0 15 1 3 13 0 19 1 0 0 7 8))))) '|lookupIncomplete|)) - -(SETQ |$CategoryFrame| - (|put| '|Vector| '|isFunctor| - '(((~= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((= ((|Boolean|) $ $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) - (|has| |#1| (|CoercibleTo| (|OutputForm|))) - (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|latex| ((|String|) $)) (|has| |#1| (|SetCategory|)) - (ELT $ NIL)) - ((|vector| ($ (|List| |#1|))) T (ELT $ 9)) - ((|magnitude| (|#1| $)) - (AND (|has| |#1| (|RadicalCategory|)) - (|has| |#1| (|Ring|))) - (ELT $ NIL)) - ((|length| (|#1| $)) - (AND (|has| |#1| (|RadicalCategory|)) - (|has| |#1| (|Ring|))) - (ELT $ NIL)) - ((|cross| ($ $ $)) (|has| |#1| (|Ring|)) (ELT $ NIL)) - ((|outerProduct| ((|Matrix| |#1|) $ $)) - (|has| |#1| (|Ring|)) (ELT $ NIL)) - ((|dot| (|#1| $ $)) (|has| |#1| (|Ring|)) (ELT $ NIL)) - ((* ($ $ |#1|)) (|has| |#1| (|Monoid|)) (ELT $ NIL)) - ((* ($ |#1| $)) (|has| |#1| (|Monoid|)) (ELT $ NIL)) - ((* ($ (|Integer|) $)) (|has| |#1| (|AbelianGroup|)) - (ELT $ NIL)) - ((- ($ $ $)) (|has| |#1| (|AbelianGroup|)) (ELT $ NIL)) - ((- ($ $)) (|has| |#1| (|AbelianGroup|)) (ELT $ NIL)) - ((|zero| ($ (|NonNegativeInteger|))) - (|has| |#1| (|AbelianMonoid|)) (ELT $ NIL)) - ((+ ($ $ $)) (|has| |#1| (|AbelianSemiGroup|)) - (ELT $ NIL)) - ((< ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((> ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((>= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((<= ((|Boolean|) $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|max| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|min| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort!| ($ $)) - (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) - (|has| |#1| (|OrderedSet|))) - (ELT $ NIL)) - ((|sort!| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|reverse!| ($ $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|copyInto!| ($ $ $ (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|sorted?| ((|Boolean|) $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|sort| ($ $)) (|has| |#1| (|OrderedSet|)) (ELT $ NIL)) - ((|merge| ($ $ $)) (|has| |#1| (|OrderedSet|)) - (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $ (|Integer|))) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| ((|Integer|) |#1| $)) - (|has| |#1| (|SetCategory|)) (ELT $ NIL)) - ((|position| - ((|Integer|) (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|sorted?| - ((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $)) - T (ELT $ NIL)) - ((|sort| ($ (|Mapping| (|Boolean|) |#1| |#1|) $)) T - (ELT $ NIL)) - ((|reverse| ($ $)) T (ELT $ NIL)) - ((|merge| ($ (|Mapping| (|Boolean|) |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|setelt| - (|#1| $ (|UniversalSegment| (|Integer|)) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|insert| ($ $ $ (|Integer|))) T (ELT $ NIL)) - ((|insert| ($ |#1| $ (|Integer|))) T (ELT $ NIL)) - ((|delete| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|delete| ($ $ (|Integer|))) T (ELT $ NIL)) - ((|elt| ($ $ (|UniversalSegment| (|Integer|)))) T - (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1| |#1|) $ $)) T - (ELT $ NIL)) - ((|concat| ($ (|List| $))) T (ELT $ NIL)) - ((|concat| ($ $ $)) T (ELT $ NIL)) - ((|concat| ($ |#1| $)) T (ELT $ NIL)) - ((|concat| ($ $ |#1|)) T (ELT $ NIL)) - ((|new| ($ (|NonNegativeInteger|) |#1|)) T (ELT $ NIL)) - ((|construct| ($ (|List| |#1|))) T (ELT $ 8)) - ((|find| ((|Union| |#1| "failed") - (|Mapping| (|Boolean|) |#1|) $)) - T (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|remove| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|select| ($ (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|reduce| - (|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|remove| ($ |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|removeDuplicates| ($ $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) - (|has| |#1| (|ConvertibleTo| (|InputForm|))) - (ELT $ 19)) - ((|swap!| ((|Void|) $ (|Integer|) (|Integer|))) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|fill!| ($ $ |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|first| (|#1| $)) (|has| (|Integer|) (|OrderedSet|)) - (ELT $ NIL)) - ((|minIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|maxIndex| ((|Integer|) $)) - (|has| (|Integer|) (|OrderedSet|)) (ELT $ NIL)) - ((|entry?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|indices| ((|List| (|Integer|)) $)) T (ELT $ NIL)) - ((|index?| ((|Boolean|) (|Integer|) $)) T (ELT $ NIL)) - ((|entries| ((|List| |#1|) $)) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|))) T (ELT $ NIL)) - ((|elt| (|#1| $ (|Integer|) |#1|)) T (ELT $ NIL)) - ((|qelt| (|#1| $ (|Integer|))) T (ELT $ NIL)) - ((|setelt| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|qsetelt!| (|#1| $ (|Integer|) |#1|)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|eval| ($ $ (|List| |#1|) (|List| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ |#1| |#1|)) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|Equation| |#1|))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|eval| ($ $ (|List| (|Equation| |#1|)))) - (AND (|has| |#1| (|Evalable| |#1|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|member?| ((|Boolean|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|count| ((|NonNegativeInteger|) |#1| $)) - (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) - (|has| |#1| (|SetCategory|))) - (ELT $ NIL)) - ((|members| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|parts| ((|List| |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ 15)) - ((|count| ((|NonNegativeInteger|) - (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|map!| ($ (|Mapping| |#1| |#1|) $)) - (|has| $ (ATTRIBUTE |shallowlyMutable|)) (ELT $ NIL)) - ((|map| ($ (|Mapping| |#1| |#1|) $)) T (ELT $ NIL)) - ((|#| ((|NonNegativeInteger|) $)) - (|has| $ (ATTRIBUTE |finiteAggregate|)) (ELT $ NIL)) - ((|sample| ($)) T (CONST $ NIL)) - ((|size?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|more?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|less?| ((|Boolean|) $ (|NonNegativeInteger|))) T - (ELT $ NIL)) - ((|empty?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|empty| ($)) T (ELT $ NIL)) - ((|copy| ($ $)) T (ELT $ NIL)) - ((|eq?| ((|Boolean|) $ $)) T (ELT $ NIL))) - (|addModemap| '|Vector| '(|Vector| |#1|) - '((|Join| (|VectorCategory| |#1|) - (CATEGORY |domain| - (SIGNATURE |vector| ($ (|List| |#1|))))) - (|Type|)) - T '|Vector| - (|put| '|Vector| '|mode| - '(|Mapping| - (|Join| (|VectorCategory| |#1|) - (CATEGORY |domain| - (SIGNATURE |vector| - ($ (|List| |#1|))))) - (|Type|)) - |$CategoryFrame|)))) diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 7c898d9e..6f5bdb8e 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2271415 . 3433818805) +(2272406 . 3436147953) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4363 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4359 . T) (-4364 . T) (-4358 . T) (-2997 . T)) +((-4365 . T) (-4363 . T) (-4362 . T) ((-4370 "*") . T) (-4361 . T) (-4366 . T) (-4360 . T) (-4283 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1935) +(-32 R -3220) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) +((|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4366))) +((|HasAttribute| |#1| (QUOTE -4368))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2997 . T)) +((-4283 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1935 UP UPUP -3484) +(-40 -3220 UP UPUP -3714) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-1559 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-1559 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-1559 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) -(-41 R -1935) +((-4361 |has| (-401 |#2|) (-357)) (-4366 |has| (-401 |#2|) (-357)) (-4360 |has| (-401 |#2|) (-357)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-4029 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-4029 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-4029 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-4029 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) +(-41 R -3220) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-301)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) +((-4365 |has| |#1| (-544)) (-4363 . T) (-4362 . T)) ((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4366 . T) (-4367 . T)) -((-1559 (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|))))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-4029 (-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-832))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|))))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-832))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-832))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| $ (QUOTE (-1030))) (|HasCategory| $ (LIST (QUOTE -1019) (QUOTE (-552))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4363 . T)) +((-4365 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1935) +(-54 |Base| R -3220) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,7 +154,7 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL (-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -162,65 +162,65 @@ NIL NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-60 -3112) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-60 -4290) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -3112) +(-61 -4290) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -3112) +(-62 -4290) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3112) +(-63 -4290) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-64 -3112) +(-64 -4290) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3112) +(-65 -4290) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -3112) +(-66 -4290) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3112) +(-67 -4290) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3112) +(-68 -4290) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -3112) +(-69 -4290) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -3112) +(-70 -4290) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -3112) +(-71 -4290) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -3112) +(-72 -4290) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -3112) +(-73 -4290) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -232,55 +232,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -3112) +(-76 -4290) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3112) +(-77 -4290) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3112) +(-78 -4290) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3112) +(-79 -4290) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3112) +(-80 -4290) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3112) +(-81 -4290) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3112) +(-82 -4290) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3112) +(-83 -4290) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3112) +(-84 -4290) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3112) +(-85 -4290) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3112) +(-86 -4290) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3112) +(-87 -4290) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -3112) +(-88 -4290) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -290,14 +290,14 @@ NIL ((|HasCategory| |#1| (QUOTE (-357)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-91 S) -((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) +((|constructor| (NIL "This is the category of Spad abstract syntax trees.")) (|coerce| (($ (|Syntax|)) "\\spad{coerce(s)} parses syntax object \\spad{`s'} as a Spad construct."))) NIL NIL (-92) -((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) +((|constructor| (NIL "This is the category of Spad abstract syntax trees.")) (|coerce| (($ (|Syntax|)) "\\spad{coerce(s)} parses syntax object \\spad{`s'} as a Spad construct."))) NIL NIL (-93 S) @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4366 . T)) +((-4368 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4366 . T) ((-4368 "*") . T) (-4367 . T) (-4363 . T) (-4361 . T) (-4360 . T) (-4359 . T) (-4364 . T) (-4358 . T) (-4357 . T) (-4356 . T) (-4355 . T) (-4354 . T) (-4362 . T) (-4365 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4353 . T)) +((-4368 . T) ((-4370 "*") . T) (-4369 . T) (-4365 . T) (-4363 . T) (-4362 . T) (-4361 . T) (-4366 . T) (-4360 . T) (-4359 . T) (-4358 . T) (-4357 . T) (-4356 . T) (-4364 . T) (-4367 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4355 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4363 . T)) +((-4365 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4368 "*")))) +((|HasAttribute| |#1| (QUOTE (-4370 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4366 . T)) +((-4368 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,23 +354,23 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-552) (QUOTE (-890))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1003))) (|HasCategory| (-552) (QUOTE (-805))) (-4029 (|HasCategory| (-552) (QUOTE (-805))) (|HasCategory| (-552) (QUOTE (-832)))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1129))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-552) (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (|HasCategory| (-552) (QUOTE (-142))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-109) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1078))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-111) (QUOTE (-1078))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-844))))) (-110 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL (-111) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -379,30 +379,30 @@ NIL (-112 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-830)))) +((|HasCategory| |#1| (QUOTE (-832)))) (-113) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-114 -1935 UP) +(-114 -3220 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-115 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-115 |#1|) (QUOTE (-888))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-144))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-115 |#1|) (QUOTE (-1001))) (|HasCategory| (-115 |#1|) (QUOTE (-803))) (-1559 (|HasCategory| (-115 |#1|) (QUOTE (-803))) (|HasCategory| (-115 |#1|) (QUOTE (-830)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-1127))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-228))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-301))) (|HasCategory| (-115 |#1|) (QUOTE (-537))) (|HasCategory| (-115 |#1|) (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-888)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-115 |#1|) (QUOTE (-890))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-144))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-115 |#1|) (QUOTE (-1003))) (|HasCategory| (-115 |#1|) (QUOTE (-805))) (-4029 (|HasCategory| (-115 |#1|) (QUOTE (-805))) (|HasCategory| (-115 |#1|) (QUOTE (-832)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-1129))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-228))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-301))) (|HasCategory| (-115 |#1|) (QUOTE (-537))) (|HasCategory| (-115 |#1|) (QUOTE (-832))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-890)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))))) (-117 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4367))) +((|HasAttribute| |#1| (QUOTE -4369))) (-118 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2997 . T)) +((-4283 . T)) NIL (-119 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -410,15 +410,15 @@ NIL NIL (-120 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-121 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-122) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL (-123 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -426,20 +426,20 @@ NIL NIL (-124 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-127) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it has it is not as rigid as PrimitiveArray Byte is. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`c'}. The array can then store up to \\spad{`c'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128)))))) (-1559 (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-128) (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-128) (QUOTE (-1076)))) (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-128) (QUOTE (-1076))) (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| (-128) (QUOTE (-832))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1078))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128)))))) (-4029 (-12 (|HasCategory| (-128) (QUOTE (-1078))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-128) (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| (-128) (QUOTE (-832))) (|HasCategory| (-128) (QUOTE (-1078)))) (|HasCategory| (-128) (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-128) (QUOTE (-1078))) (-12 (|HasCategory| (-128) (QUOTE (-1078))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-844))))) (-128) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} views \\spad{`c'} a a byte. In particular \\spad{`c'} is supposed to have a numerical value less than 256.") (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -458,13 +458,13 @@ NIL NIL (-132) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4368 "*") . T)) +(((-4370 "*") . T)) NIL -(-133 |minix| -4030 S T$) +(-133 |minix| -2072 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-134 |minix| -4030 R) +(-134 |minix| -2072 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -482,8 +482,8 @@ NIL NIL (-138) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4366 . T) (-4356 . T) (-4367 . T)) -((-1559 (-12 (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4358 . T) (-4369 . T)) +((-4029 (-12 (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-141) (QUOTE (-1078))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-844))))) (-139 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -498,7 +498,7 @@ NIL NIL (-142) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4363 . T)) +((-4365 . T)) NIL (-143 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -506,9 +506,9 @@ NIL NIL (-144) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4363 . T)) +((-4365 . T)) NIL -(-145 -1935 UP UPUP) +(-145 -3220 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -519,14 +519,14 @@ NIL (-147 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasAttribute| |#1| (QUOTE -4366))) +((|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasAttribute| |#1| (QUOTE -4368))) (-148 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2997 . T)) +((-4283 . T)) NIL (-149 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4361 . T) (-4360 . T) (-4363 . T)) +((-4363 . T) (-4362 . T) (-4365 . T)) NIL (-150) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -548,7 +548,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-155 R -1935) +(-155 R -3220) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -579,10 +579,10 @@ NIL (-162 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) NIL -((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4362)) (|HasAttribute| |#2| (QUOTE -4365)) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-830)))) +((|HasCategory| |#2| (QUOTE (-890))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-983))) (|HasCategory| |#2| (QUOTE (-1176))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-832)))) (-163 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) -((-4359 -1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4362 |has| |#1| (-6 -4362)) (-4365 |has| |#1| (-6 -4365)) (-2997 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 -4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4367 |has| |#1| (-6 -4367)) (-4283 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-164 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -594,8 +594,8 @@ NIL NIL (-166 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4359 -1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4362 |has| |#1| (-6 -4362)) (-4365 |has| |#1| (-6 -4365)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-888))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-888))))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1174)))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1037))) (-12 (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-1174)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasAttribute| |#1| (QUOTE -4362)) (|HasAttribute| |#1| (QUOTE -4365)) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-343))))) +((-4361 -4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4367 |has| |#1| (-6 -4367)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-813)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1176)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-890))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-890)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-890))))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-983))) (|HasCategory| |#1| (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-537))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasAttribute| |#1| (QUOTE -4367)) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154))))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-343))))) (-167 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -606,7 +606,7 @@ NIL NIL (-169) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-170) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -614,7 +614,7 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4368 "*") . T) (-4359 . T) (-4364 . T) (-4358 . T) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") . T) (-4361 . T) (-4366 . T) (-4360 . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-172) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -631,7 +631,7 @@ NIL (-175 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-931 |#2|) (LIST (QUOTE -865) (|devaluate| |#1|)))) +((|HasCategory| (-933 |#2|) (LIST (QUOTE -867) (|devaluate| |#1|)))) (-176 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -660,7 +660,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'."))) NIL NIL -(-183 R -1935) +(-183 R -3220) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -768,23 +768,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-210 -1935 UP UPUP R) +(-210 -3220 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-211 -1935 FP) +(-211 -3220 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-212) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-552) (QUOTE (-890))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1003))) (|HasCategory| (-552) (QUOTE (-805))) (-4029 (|HasCategory| (-552) (QUOTE (-805))) (|HasCategory| (-552) (QUOTE (-832)))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1129))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-552) (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (|HasCategory| (-552) (QUOTE (-142))))) (-213) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-214 R -1935) +(-214 R -3220) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -798,19 +798,19 @@ NIL NIL (-217 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-218 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-219 R -1935) +(-219 R -3220) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-220) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4311 . T) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-221) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -818,23 +818,23 @@ NIL NIL (-222 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4370 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-223 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-224 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL (-225 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) +((|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228)))) (-226 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4363 . T)) +((-4365 . T)) NIL (-227 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -842,36 +842,36 @@ NIL NIL (-228) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4363 . T)) +((-4365 . T)) NIL (-229 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4366))) +((|HasAttribute| |#1| (QUOTE -4368))) (-230 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL (-231) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-232 S -4030 R) +(-232 S -2072 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828))) (|HasAttribute| |#3| (QUOTE -4363)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-1076)))) -(-233 -4030 R) +((|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (QUOTE (-830))) (|HasAttribute| |#3| (QUOTE -4365)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-1078)))) +(-233 -2072 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T) (-2997 . T)) +((-4362 |has| |#2| (-1030)) (-4363 |has| |#2| (-1030)) (-4365 |has| |#2| (-6 -4365)) ((-4370 "*") |has| |#2| (-169)) (-4368 . T) (-4283 . T)) NIL -(-234 -4030 A B) +(-234 -2072 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-235 -4030 R) +(-235 -2072 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4362 |has| |#2| (-1030)) (-4363 |has| |#2| (-1030)) (-4365 |has| |#2| (-6 -4365)) ((-4370 "*") |has| |#2| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-778))) (-4029 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-778)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (|HasCategory| |#2| (QUOTE (-1030))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasAttribute| |#2| (QUOTE -4365)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (-236) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -882,47 +882,47 @@ NIL NIL (-238) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4359 . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-239 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2997 . T)) +((-4283 . T)) NIL (-240 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-241 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-242 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(((-4370 "*") |has| |#2| (-169)) (-4361 |has| |#2| (-544)) (-4366 |has| |#2| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) (-243) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-244 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4363 -1559 (-2520 (|has| |#4| (-1028)) (|has| |#4| (-228))) (-2520 (|has| |#4| (-1028)) (|has| |#4| (-879 (-1152)))) (|has| |#4| (-6 -4363)) (-2520 (|has| |#4| (-1028)) (|has| |#4| (-623 (-552))))) (-4360 |has| |#4| (-1028)) (-4361 |has| |#4| (-1028)) ((-4368 "*") |has| |#4| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#4| (QUOTE (-357))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-1028)))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357)))) (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (QUOTE (-776))) (-1559 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (QUOTE (-828)))) (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (QUOTE (-169))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-228)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-357)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-709)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-776)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-828)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1028)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-709))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (|HasCategory| |#4| (QUOTE (-1028))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1076)))) (-1559 (|HasAttribute| |#4| (QUOTE -4363)) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4365 -4029 (-3792 (|has| |#4| (-1030)) (|has| |#4| (-228))) (-3792 (|has| |#4| (-1030)) (|has| |#4| (-881 (-1154)))) (|has| |#4| (-6 -4365)) (-3792 (|has| |#4| (-1030)) (|has| |#4| (-625 (-552))))) (-4362 |has| |#4| (-1030)) (-4363 |has| |#4| (-1030)) ((-4370 "*") |has| |#4| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-778))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-830))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#4| (QUOTE (-357))) (-4029 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-1030)))) (-4029 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (QUOTE (-778))) (-4029 (|HasCategory| |#4| (QUOTE (-778))) (|HasCategory| |#4| (QUOTE (-830)))) (|HasCategory| |#4| (QUOTE (-830))) (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (QUOTE (-169))) (-4029 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1030)))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1030)))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-228)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-357)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-711)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-778)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-830)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1030)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-778))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-830))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1030)))) (-4029 (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1030)))) (|HasCategory| |#4| (QUOTE (-711))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (|HasCategory| |#4| (QUOTE (-1030))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1078)))) (-4029 (|HasAttribute| |#4| (QUOTE -4365)) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1030)))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) (-245 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4363 -1559 (-2520 (|has| |#3| (-1028)) (|has| |#3| (-228))) (-2520 (|has| |#3| (-1028)) (|has| |#3| (-879 (-1152)))) (|has| |#3| (-6 -4363)) (-2520 (|has| |#3| (-1028)) (|has| |#3| (-623 (-552))))) (-4360 |has| |#3| (-1028)) (-4361 |has| |#3| (-1028)) ((-4368 "*") |has| |#3| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#3| (QUOTE (-357))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-776))) (-1559 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828)))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-169))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-709)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-776)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-828)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-709))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (|HasCategory| |#3| (QUOTE (-1028))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (-1559 (|HasAttribute| |#3| (QUOTE -4363)) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4365 -4029 (-3792 (|has| |#3| (-1030)) (|has| |#3| (-228))) (-3792 (|has| |#3| (-1030)) (|has| |#3| (-881 (-1154)))) (|has| |#3| (-6 -4365)) (-3792 (|has| |#3| (-1030)) (|has| |#3| (-625 (-552))))) (-4362 |has| |#3| (-1030)) (-4363 |has| |#3| (-1030)) ((-4370 "*") |has| |#3| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#3| (QUOTE (-357))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-778))) (-4029 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (QUOTE (-830)))) (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-169))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-711)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-778)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-830)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasCategory| |#3| (QUOTE (-711))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (|HasCategory| |#3| (QUOTE (-1030))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4029 (|HasAttribute| |#3| (QUOTE -4365)) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-844))))) (-246 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-228)))) (-247 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL (-248 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL (-249) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -962,8 +962,8 @@ NIL NIL (-258 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) (-259 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1008,11 +1008,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-270 R -1935) +(-270 R -3220) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-271 R -1935) +(-271 R -3220) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1031,10 +1031,10 @@ NIL (-275 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076)))) +((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078)))) (-276 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL (-277 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1055,18 +1055,18 @@ NIL (-281 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4367))) +((|HasAttribute| |#1| (QUOTE -4369))) (-282 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-283 S R |Mod| -3226 -3759 |exactQuo|) +(-283 S R |Mod| -3098 -1446 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-284) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4359 . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-285) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1082,21 +1082,21 @@ NIL NIL (-288 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4363 -1559 (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4360 |has| |#1| (-1028)) (-4361 |has| |#1| (-1028))) -((|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709)))) (|HasCategory| |#1| (QUOTE (-466))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-1076)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1088)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-296))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466)))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +((-4365 -4029 (|has| |#1| (-1030)) (|has| |#1| (-466))) (-4362 |has| |#1| (-1030)) (-4363 |has| |#1| (-1030))) +((|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-711)))) (|HasCategory| |#1| (QUOTE (-466))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-296))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466)))) (-4029 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-711)))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-289 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) (-290) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-291 -1935 S) +(-291 -3220 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-292 E -1935) +(-292 E -3220) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1111,7 +1111,7 @@ NIL (-295 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1028)))) +((|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1030)))) (-296) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1134,7 +1134,7 @@ NIL NIL (-301) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-302 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1144,7 +1144,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-304 -1935) +(-304 -3220) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1158,8 +1158,8 @@ NIL NIL (-307 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1001))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-803))) (-1559 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-803))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1127))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-228))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -303) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-301))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-12 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| $ (QUOTE (-142)))) (-1559 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (-12 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| $ (QUOTE (-142)))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-890))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-1003))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-805))) (-4029 (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-805))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-832)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-1129))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-228))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -1223) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -303) (LIST (QUOTE -1223) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1223) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1223) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-301))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-12 (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-890))) (|HasCategory| $ (QUOTE (-142)))) (-4029 (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (-12 (|HasCategory| (-1223 |#1| |#2| |#3| |#4|) (QUOTE (-890))) (|HasCategory| $ (QUOTE (-142)))))) (-308 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1170,9 +1170,9 @@ NIL NIL (-310 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4363 -1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-12 (|has| |#1| (-544)) (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (|has| |#1| (-1028)) (|has| |#1| (-466)))) (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-544)) (-4358 |has| |#1| (-544))) -((-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1088)))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1088)))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))))) (-1559 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1088)))) (-1559 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) -(-311 R -1935) +((-4365 -4029 (-3792 (|has| |#1| (-1030)) (|has| |#1| (-625 (-552)))) (-12 (|has| |#1| (-544)) (-4029 (-3792 (|has| |#1| (-1030)) (|has| |#1| (-625 (-552)))) (|has| |#1| (-1030)) (|has| |#1| (-466)))) (|has| |#1| (-1030)) (|has| |#1| (-466))) (-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) ((-4370 "*") |has| |#1| (-544)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-544)) (-4360 |has| |#1| (-544))) +((-4029 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552))))) (-4029 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4029 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))))) (-4029 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4029 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))))) (-4029 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1030)))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| $ (QUOTE (-1030))) (|HasCategory| $ (LIST (QUOTE -1019) (QUOTE (-552))))) +(-311 R -3220) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1182,8 +1182,8 @@ NIL NIL (-313 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) (-314 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1194,8 +1194,8 @@ NIL NIL (-316 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4361 . T) (-4360 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-775)))) +((-4363 . T) (-4362 . T)) +((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-777)))) (-317 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1203,26 +1203,26 @@ NIL (-318 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-754) (QUOTE (-775)))) +((|HasCategory| (-756) (QUOTE (-777)))) (-319 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169)))) (-320 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-321 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-322 S -1935) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-322 S -3220) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) -(-323 -1935) +(-323 -3220) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-324) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) @@ -1240,54 +1240,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-328 S -1935 UP UPUP R) +(-328 S -3220 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-329 -1935 UP UPUP R) +(-329 -3220 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-330 -1935 UP UPUP R) +(-330 -3220 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-331 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-332 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-333 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1030))) (|HasCategory| $ (LIST (QUOTE -1019) (QUOTE (-552))))) (-334 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-335 S -1935 UP UPUP) +(-335 S -3220 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-357)))) -(-336 -1935 UP UPUP) +(-336 -3220 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 |has| (-401 |#2|) (-357)) (-4366 |has| (-401 |#2|) (-357)) (-4360 |has| (-401 |#2|) (-357)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-337 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| (-891 |#1|) (QUOTE (-142))) (|HasCategory| (-891 |#1|) (QUOTE (-362)))) (|HasCategory| (-891 |#1|) (QUOTE (-144))) (|HasCategory| (-891 |#1|) (QUOTE (-362))) (|HasCategory| (-891 |#1|) (QUOTE (-142)))) (-338 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) (-339 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) (-340 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1302,33 +1302,33 @@ NIL NIL (-343) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-344 R UP -1935) +(-344 R UP -3220) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| (-891 |#1|) (QUOTE (-142))) (|HasCategory| (-891 |#1|) (QUOTE (-362)))) (|HasCategory| (-891 |#1|) (QUOTE (-144))) (|HasCategory| (-891 |#1|) (QUOTE (-362))) (|HasCategory| (-891 |#1|) (QUOTE (-142)))) (-346 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) (-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) (-348 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| (-891 |#1|) (QUOTE (-142))) (|HasCategory| (-891 |#1|) (QUOTE (-362)))) (|HasCategory| (-891 |#1|) (QUOTE (-144))) (|HasCategory| (-891 |#1|) (QUOTE (-362))) (|HasCategory| (-891 |#1|) (QUOTE (-142)))) (-349 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-350 -1935 GF) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-350 -3220 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1336,21 +1336,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-352 -1935 FP FPP) +(-352 -3220 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-353 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) (-354 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-355 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4363 . T)) +((-4365 . T)) NIL (-356 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1358,7 +1358,7 @@ NIL NIL (-357) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-358 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1374,7 +1374,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-544)))) (-361 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) +((-4365 |has| |#1| (-544)) (-4363 . T) (-4362 . T)) NIL (-362) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1386,7 +1386,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-357)))) (-364 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL (-365 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1395,14 +1395,14 @@ NIL (-366 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076)))) +((|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078)))) (-367 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4366 . T) (-2997 . T)) +((-4368 . T) (-4283 . T)) NIL (-368 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4363 . T) (-4362 . T)) NIL (-369 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1411,10 +1411,10 @@ NIL (-370 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) +((|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-371 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4363 . T)) +((-4365 . T)) NIL (-372 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1422,7 +1422,7 @@ NIL NIL (-373) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4349 . T) (-4357 . T) (-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4351 . T) (-4359 . T) (-4311 . T) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-374 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1430,31 +1430,31 @@ NIL NIL (-375 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) ((|HasCategory| |#1| (QUOTE (-169)))) (-376 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL (-377) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2997 . T)) +((-4283 . T)) NIL (-378) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2997 . T)) +((-4283 . T)) NIL (-379 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) ((|HasCategory| |#1| (QUOTE (-169)))) (-380 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-830)))) +((|HasCategory| |#1| (QUOTE (-832)))) (-381) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-382) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1466,13 +1466,13 @@ NIL NIL (-384 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL (-385) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-386 -1935 UP UPUP R) +(-386 -3220 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1486,27 +1486,27 @@ NIL NIL (-389) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2997 . T)) +((-4283 . T)) NIL (-390) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2997 . T)) +((-4283 . T)) NIL (-391) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-392 -3112 |returnType| -4279 |symbols|) +(-392 -4290 |returnType| -3676 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-393 -1935 UP) +(-393 -3220 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-394 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2997 . T)) +((-4283 . T)) NIL (-395 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1514,15 +1514,15 @@ NIL NIL (-396) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-397 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4349)) (|HasAttribute| |#1| (QUOTE -4357))) +((|HasAttribute| |#1| (QUOTE -4351)) (|HasAttribute| |#1| (QUOTE -4359))) (-398) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4311 . T) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-399 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1534,20 +1534,20 @@ NIL NIL (-401 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4353 -12 (|has| |#1| (-6 -4364)) (|has| |#1| (-445)) (|has| |#1| (-6 -4353))) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-803))) (-1559 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-830)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1127))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4364)) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#1| (QUOTE (-445)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +((-4355 -12 (|has| |#1| (-6 -4366)) (|has| |#1| (-445)) (|has| |#1| (-6 -4355))) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-805))) (-4029 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-832)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1129))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813))))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-813)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4355)) (|HasCategory| |#1| (QUOTE (-445)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) (-402 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-403 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL (-404 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) +((|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-405 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1556,14 +1556,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-407 R -1935 UP A) +(-407 R -3220 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-408 R -1935 UP A |ibasis|) +(-408 R -3220 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1017) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1019) (|devaluate| |#2|)))) (-409 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1574,12 +1574,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-357)))) (-411 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) +((-4365 |has| |#1| (-544)) (-4363 . T) (-4362 . T)) NIL (-412 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -303) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1193))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-445)))) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -303) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1195))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-445)))) (-413 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1603,40 +1603,40 @@ NIL (-418 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-362)))) +((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-362)))) (-419 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4366 . T) (-4356 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4358 . T) (-4369 . T) (-4283 . T)) NIL -(-420 R -1935) +(-420 R -3220) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-421 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4353 -12 (|has| |#1| (-6 -4353)) (|has| |#2| (-6 -4353))) (-4360 . T) (-4361 . T) (-4363 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#2| (QUOTE -4353)))) -(-422 R -1935) +((-4355 -12 (|has| |#1| (-6 -4355)) (|has| |#2| (-6 -4355))) (-4362 . T) (-4363 . T) (-4365 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4355)) (|HasAttribute| |#2| (QUOTE -4355)))) +(-422 R -3220) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-423 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-1088))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) +((|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-424 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4363 -1559 (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-544)) (-4358 |has| |#1| (-544)) (-2997 . T)) +((-4365 -4029 (|has| |#1| (-1030)) (|has| |#1| (-466))) (-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) ((-4370 "*") |has| |#1| (-544)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-544)) (-4360 |has| |#1| (-544)) (-4283 . T)) NIL -(-425 R -1935) +(-425 R -3220) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-426 R -1935) +(-426 R -3220) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-427 R -1935) +(-427 R -3220) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1644,10 +1644,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-429 R -1935 UP) +(-429 R -3220 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-48))))) (-430) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1662,17 +1662,17 @@ NIL NIL (-433) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2997 . T)) +((-4283 . T)) NIL (-434) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2997 . T)) +((-4283 . T)) NIL (-435 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-436 R UP -1935) +(-436 R UP -3220) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1710,16 +1710,16 @@ NIL NIL (-445) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-446 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4363 |has| (-401 (-931 |#1|)) (-544)) (-4361 . T) (-4360 . T)) -((|HasCategory| (-401 (-931 |#1|)) (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-401 (-931 |#1|)) (QUOTE (-544)))) +((-4365 |has| (-401 (-933 |#1|)) (-544)) (-4363 . T) (-4362 . T)) +((|HasCategory| (-401 (-933 |#1|)) (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-401 (-933 |#1|)) (QUOTE (-544)))) (-447 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(((-4370 "*") |has| |#2| (-169)) (-4361 |has| |#2| (-544)) (-4366 |has| |#2| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) (-448 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1746,7 +1746,7 @@ NIL NIL (-454 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL (-455 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1754,8 +1754,8 @@ NIL NIL (-456 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) (-457 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1784,7 +1784,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-464 |lv| -1935 R) +(-464 |lv| -3220 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1794,23 +1794,23 @@ NIL NIL (-466) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4363 . T)) +((-4365 . T)) NIL (-467 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) (-468 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-832))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) (-469 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) (-470) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-471) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1818,29 +1818,29 @@ NIL NIL (-472 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) (-473) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-474 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-475 -4030 S) +(((-4370 "*") |has| |#2| (-169)) (-4361 |has| |#2| (-544)) (-4366 |has| |#2| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-475 -2072 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4362 |has| |#2| (-1030)) (-4363 |has| |#2| (-1030)) (-4365 |has| |#2| (-6 -4365)) ((-4370 "*") |has| |#2| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-778))) (-4029 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-778)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (|HasCategory| |#2| (QUOTE (-1030))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasAttribute| |#2| (QUOTE -4365)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (-476) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL (-477 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-478 -1935 UP UPUP R) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-478 -3220 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1850,15 +1850,15 @@ NIL NIL (-480) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-552) (QUOTE (-890))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1003))) (|HasCategory| (-552) (QUOTE (-805))) (-4029 (|HasCategory| (-552) (QUOTE (-805))) (|HasCategory| (-552) (QUOTE (-832)))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1129))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-552) (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (|HasCategory| (-552) (QUOTE (-142))))) (-481 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +((|HasAttribute| |#1| (QUOTE -4368)) (|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (-482 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2997 . T)) +((-4283 . T)) NIL (-483) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) @@ -1872,34 +1872,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-486 -1935 UP |AlExt| |AlPol|) +(-486 -3220 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-487) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| $ (QUOTE (-1030))) (|HasCategory| $ (LIST (QUOTE -1019) (QUOTE (-552))))) (-488 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-489 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-490 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-491 R UP -1935) +(-491 R UP -3220) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-492 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1078))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-111) (QUOTE (-1078))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-844))))) (-493 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1912,10 +1912,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-496 -1935 |Expon| |VarSet| |DPoly|) +(-496 -3220 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-1152))))) +((|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-1154))))) (-497 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1959,39 +1959,39 @@ NIL (-507 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-775)))) +((|HasCategory| |#2| (QUOTE (-777)))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-509) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-510 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| (-569 |#1|) (QUOTE (-142))) (|HasCategory| (-569 |#1|) (QUOTE (-362)))) (|HasCategory| (-569 |#1|) (QUOTE (-144))) (|HasCategory| (-569 |#1|) (QUOTE (-362))) (|HasCategory| (-569 |#1|) (QUOTE (-142)))) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| (-569 |#1|) (QUOTE (-142))) (|HasCategory| (-569 |#1|) (QUOTE (-362)))) (|HasCategory| (-569 |#1|) (QUOTE (-144))) (|HasCategory| (-569 |#1|) (QUOTE (-362))) (|HasCategory| (-569 |#1|) (QUOTE (-142)))) (-511 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-512 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-513 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4367))) +((|HasAttribute| |#3| (QUOTE -4369))) (-514 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4367))) +((|HasAttribute| |#7| (QUOTE -4369))) (-515 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4370 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-516) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2013,7 +2013,7 @@ NIL NIL NIL (-521) -((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) +((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL (-522 R) @@ -2024,7 +2024,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-524 K -1935 |Par|) +(-524 K -3220 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2048,7 +2048,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-530 K -1935 |Par|) +(-530 K -3220 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2078,17 +2078,17 @@ NIL NIL (-537) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4366 . T) (-4367 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-538 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) -(-539 R -1935) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) +(-539 R -3220) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-540 R0 -1935 UP UPUP R) +(-540 R0 -3220 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2098,7 +2098,7 @@ NIL NIL (-542 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3030 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4311 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-543 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2106,9 +2106,9 @@ NIL NIL (-544) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-545 R -1935) +(-545 R -3220) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2120,39 +2120,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-548 R -1935 L) +(-548 R -3220 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -640) (|devaluate| |#2|)))) (-549) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-550 -1935 UP UPUP R) +(-550 -3220 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-551 -1935 UP) +(-551 -3220 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-552) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4348 . T) (-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4350 . T) (-4356 . T) (-4360 . T) (-4355 . T) (-4366 . T) (-4367 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-553) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-554 R -1935 L) +(-554 R -3220 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) -(-555 R -1935) +((|HasCategory| |#3| (LIST (QUOTE -640) (|devaluate| |#2|)))) +(-555 R -3220) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-613))))) -(-556 -1935 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-615))))) +(-556 -3220 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2160,27 +2160,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-558 -1935) +(-558 -3220) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-559 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3030 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4311 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-560) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-561 R -1935) +(-561 R -3220) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-613))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-544)))) -(-562 -1935 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-615))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154))))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-544)))) +(-562 -3220 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-563 R -1935) +(-563 R -3220) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2202,28 +2202,28 @@ NIL NIL (-568 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL (-569 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) ((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) (-570) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-571 R -1935) +(-571 R -3220) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-572 E -1935) +(-572 E -3220) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-573 -1935) +(-573 -3220) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4361 . T) (-4360 . T)) -((|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-1152))))) +((-4363 . T) (-4362 . T)) +((|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-1154))))) (-574 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2250,19 +2250,19 @@ NIL NIL (-580 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (-1559 (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076)))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (-4029 (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-844)))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-141) (QUOTE (-1078)))) (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-141) (QUOTE (-1078))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-844))))) (-581 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-582 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))) (|HasCategory| (-552) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552)))))) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))) (|HasCategory| (-552) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552)))))) (-583 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4361 |has| |#1| (-544)) (-4360 |has| |#1| (-544)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4363 . T)) +((-4363 |has| |#1| (-544)) (-4362 |has| |#1| (-544)) ((-4370 "*") |has| |#1| (-544)) (-4361 |has| |#1| (-544)) (-4365 . T)) ((|HasCategory| |#1| (QUOTE (-544)))) (-584 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) @@ -2272,7 +2272,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-586 R -1935 FG) +(-586 R -3220 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2282,15 +2282,15 @@ NIL NIL (-588 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-983))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (-589 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-830))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#3| (QUOTE (-1076)))) +((|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#2| (QUOTE (-832))) (|HasAttribute| |#1| (QUOTE -4368)) (|HasCategory| |#3| (QUOTE (-1078)))) (-590 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2997 . T)) +((-4283 . T)) NIL (-591) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) @@ -2302,19 +2302,19 @@ NIL NIL (-593 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4363 -1559 (-2520 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4361 . T) (-4360 . T)) -((-1559 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) +((-4365 -4029 (-3792 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4363 . T) (-4362 . T)) +((-4029 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-594 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| (-1134) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842))))) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (QUOTE (-1136))) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| (-1136) (QUOTE (-832))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -599) (QUOTE (-844))))) (-595 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-596 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL (-597 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2323,7 +2323,7 @@ NIL (-598 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) +((|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-599 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL @@ -2332,2657 +2332,2665 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-601 -1935 UP) +(-601 -3220 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-602) +(-602 S) +((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B}. In symbols \\indented{3}{A has CoercibleFrom \\spad{B}\\space{3}\\spad{<=>}\\space{2}\\spad{B} has CoercibleTo A}")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) +NIL +NIL +(-603) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-603 S R) +(-604 S) +((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain \\spad{B}. In symbols \\indented{3}{A has ConvertibleFrom \\spad{B}\\space{3}\\spad{<=>}\\space{2}\\spad{B} has ConvertibleTo A}")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) +NIL +NIL +(-605 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-604 R) +(-606 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4363 . T)) +((-4365 . T)) NIL -(-605 A R S) +(-607 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-828)))) -(-606 R -1935) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-830)))) +(-608 R -3220) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-607 R UP) +(-609 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4359 . T) (-4363 . T)) -((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) -(-608 R E V P TS ST) +((-4363 . T) (-4362 . T) ((-4370 "*") . T) (-4361 . T) (-4365 . T)) +((|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) +(-610 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-609 OV E Z P) +(-611 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-610) +(-612) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-611 |VarSet| R |Order|) +(-613 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-612 R |ls|) +(-614 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-613) +(-615) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-614 R -1935) +(-616 R -3220) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-615 |lv| -1935) +(-617 |lv| -3220) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-616) +(-618) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-1134) (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) -(-617 S R) +((-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (QUOTE (-1136))) (LIST (QUOTE |:|) (QUOTE -3360) (QUOTE (-52))))))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-52) (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-1136) (QUOTE (-832))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844))))) +(-619 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-357)))) -(-618 R) +(-620 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4363 . T) (-4362 . T)) NIL -(-619 R A) +(-621 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4363 -1559 (-2520 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4361 . T) (-4360 . T)) -((-1559 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) -(-620 R FE) +((-4365 -4029 (-3792 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4363 . T) (-4362 . T)) +((-4029 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) +(-622 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-621 R) +(-623 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-622 S R) +(-624 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1681 (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-357)))) -(-623 R) +((-4107 (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-357)))) +(-625 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-624 A B) +(-626 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-625 A B) +(-627 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-626 A B C) +(-628 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-627 S) +(-629 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-628 T$) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-813))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-630 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-629 S) +(-631 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-630 R) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-632 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-631 S E |un|) +(-633 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-632 A S) +(-634 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4367))) -(-633 S) +((|HasAttribute| |#1| (QUOTE -4369))) +(-635 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-634 R -1935 L) +(-636 R -3220 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-635 A) +(-637 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-636 A M) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-638 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-637 S A) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-639 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-357)))) -(-638 A) +(-640 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-639 -1935 UP) +(-641 -3220 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-640 A -1528) +(-642 A -2000) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-641 A L) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-643 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-642 S) +(-644 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-643) +(-645) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-644 M R S) +(-646 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4361 . T) (-4360 . T)) -((|HasCategory| |#1| (QUOTE (-774)))) -(-645 R) +((-4363 . T) (-4362 . T)) +((|HasCategory| |#1| (QUOTE (-776)))) +(-647 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-646 |VarSet| R) +(-648 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4363 . T) (-4362 . T)) ((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-169)))) -(-647 A S) +(-649 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-648 S) +(-650 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-649 -1935) +(-651 -3220) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-650 -1935 |Row| |Col| M) +(-652 -3220 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-651 R E OV P) +(-653 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-652 |n| R) +(-654 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4363 . T) (-4366 . T) (-4360 . T) (-4361 . T)) -((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544))) (-1559 (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-169)))) -(-653) +((-4365 . T) (-4368 . T) (-4362 . T) (-4363 . T)) +((|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4370 "*"))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (-4029 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544))) (-4029 (|HasAttribute| |#2| (QUOTE (-4370 "*"))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-655) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-654 |VarSet|) +(-656 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-655 A S) +(-657 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-656 S) +(-658 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-657 R) +(-659 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-658) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-660) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-659 |VarSet|) +(-661 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-660 A) +(-662 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-661 A C) +(-663 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-662 A B C) +(-664 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-663) +(-665) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-664 A) +(-666 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-665 A C) +(-667 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-666 A B C) +(-668 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-667 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-669 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-668 S R |Row| |Col|) +(-670 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544)))) -(-669 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4370 "*"))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544)))) +(-671 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL -(-670 R |Row| |Col| M) +(-672 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544)))) -(-671 R) +(-673 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4366 . T) (-4367 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-672 R) +((-4368 . T) (-4369 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4370 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-674 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-673 T$) +(-675 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-674 S -1935 FLAF FLAS) +(-676 S -3220 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-675 R Q) +(-677 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-676) +(-678) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4359 . T) (-4364 |has| (-681) (-357)) (-4358 |has| (-681) (-357)) (-4365 |has| (-681) (-6 -4365)) (-4362 |has| (-681) (-6 -4362)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-681) (QUOTE (-144))) (|HasCategory| (-681) (QUOTE (-142))) (|HasCategory| (-681) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-681) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-681) (QUOTE (-362))) (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-681) (QUOTE (-228))) (-1559 (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-343)))) (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (LIST (QUOTE -280) (QUOTE (-681)) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -303) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-681) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-681) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-681) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (-1559 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-343)))) (|HasCategory| (-681) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-681) (QUOTE (-1001))) (|HasCategory| (-681) (QUOTE (-1174))) (-12 (|HasCategory| (-681) (QUOTE (-981))) (|HasCategory| (-681) (QUOTE (-1174)))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-357))) (-12 (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (QUOTE (-888))))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (-12 (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-888)))) (-12 (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (QUOTE (-888))))) (|HasCategory| (-681) (QUOTE (-537))) (-12 (|HasCategory| (-681) (QUOTE (-1037))) (|HasCategory| (-681) (QUOTE (-1174)))) (|HasCategory| (-681) (QUOTE (-1037))) (-1559 (|HasCategory| (-681) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-681) (QUOTE (-357)))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-544)))) (-12 (|HasCategory| (-681) (QUOTE (-228))) (|HasCategory| (-681) (QUOTE (-357)))) (-12 (|HasCategory| (-681) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-681) (QUOTE (-357)))) (|HasCategory| (-681) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-681) (QUOTE (-830))) (|HasCategory| (-681) (QUOTE (-544))) (|HasAttribute| (-681) (QUOTE -4365)) (|HasAttribute| (-681) (QUOTE -4362)) (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-142)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-343))))) -(-677 S) +((-4361 . T) (-4366 |has| (-683) (-357)) (-4360 |has| (-683) (-357)) (-4367 |has| (-683) (-6 -4367)) (-4364 |has| (-683) (-6 -4364)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-683) (QUOTE (-144))) (|HasCategory| (-683) (QUOTE (-142))) (|HasCategory| (-683) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-683) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-683) (QUOTE (-362))) (|HasCategory| (-683) (QUOTE (-357))) (|HasCategory| (-683) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-683) (QUOTE (-228))) (-4029 (|HasCategory| (-683) (QUOTE (-357))) (|HasCategory| (-683) (QUOTE (-343)))) (|HasCategory| (-683) (QUOTE (-343))) (|HasCategory| (-683) (LIST (QUOTE -280) (QUOTE (-683)) (QUOTE (-683)))) (|HasCategory| (-683) (LIST (QUOTE -303) (QUOTE (-683)))) (|HasCategory| (-683) (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE (-683)))) (|HasCategory| (-683) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-683) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-683) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-683) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (-4029 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-357))) (|HasCategory| (-683) (QUOTE (-343)))) (|HasCategory| (-683) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-683) (QUOTE (-1003))) (|HasCategory| (-683) (QUOTE (-1176))) (-12 (|HasCategory| (-683) (QUOTE (-983))) (|HasCategory| (-683) (QUOTE (-1176)))) (-4029 (-12 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (|HasCategory| (-683) (QUOTE (-357))) (-12 (|HasCategory| (-683) (QUOTE (-343))) (|HasCategory| (-683) (QUOTE (-890))))) (-4029 (-12 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (-12 (|HasCategory| (-683) (QUOTE (-357))) (|HasCategory| (-683) (QUOTE (-890)))) (-12 (|HasCategory| (-683) (QUOTE (-343))) (|HasCategory| (-683) (QUOTE (-890))))) (|HasCategory| (-683) (QUOTE (-537))) (-12 (|HasCategory| (-683) (QUOTE (-1039))) (|HasCategory| (-683) (QUOTE (-1176)))) (|HasCategory| (-683) (QUOTE (-1039))) (-4029 (|HasCategory| (-683) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-683) (QUOTE (-357)))) (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890))) (-4029 (-12 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (|HasCategory| (-683) (QUOTE (-357)))) (-4029 (-12 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (|HasCategory| (-683) (QUOTE (-544)))) (-12 (|HasCategory| (-683) (QUOTE (-228))) (|HasCategory| (-683) (QUOTE (-357)))) (-12 (|HasCategory| (-683) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-683) (QUOTE (-357)))) (|HasCategory| (-683) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-683) (QUOTE (-832))) (|HasCategory| (-683) (QUOTE (-544))) (|HasAttribute| (-683) (QUOTE -4367)) (|HasAttribute| (-683) (QUOTE -4364)) (-12 (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (|HasCategory| (-683) (QUOTE (-142)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-683) (QUOTE (-301))) (|HasCategory| (-683) (QUOTE (-890)))) (|HasCategory| (-683) (QUOTE (-343))))) +(-679 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL -(-678 U) +(-680 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-679) +(-681) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-680 OV E -1935 PG) +(-682 OV E -3220 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-681) +(-683) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4311 . T) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-682 R) +(-684 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-683) +(-685) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4365 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4367 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-684 S D1 D2 I) +(-686 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-685 S) +(-687 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-686 S) +(-688 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-687 S) +(-689 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-688 S T$) +(-690 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-689 S -4251 I) +(-691 S -1765 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-690 E OV R P) +(-692 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-691 R) +(-693 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-692 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-694 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-693) +(-695) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-694 R |Mod| -3226 -3759 |exactQuo|) +(-696 R |Mod| -3098 -1446 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-695 R |Rep|) +(-697 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-696 IS E |ff|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-343))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-698 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-697 R M) +(-699 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) (-4365 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) -(-698 R |Mod| -3226 -3759 |exactQuo|) +(-700 R |Mod| -3098 -1446 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4363 . T)) +((-4365 . T)) NIL -(-699 S R) +(-701 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-700 R) +(-702 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL -(-701 -1935) +(-703 -3220) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-702 S) +(-704 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-703) +(-705) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-704 S) +(-706 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-705) +(-707) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-706 S R UP) +(-708 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362)))) -(-707 R UP) +(-709 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4359 |has| |#1| (-357)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 |has| |#1| (-357)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-708 S) +(-710 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-709) +(-711) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-710 -1935 UP) +(-712 -3220 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-711 |VarSet| E1 E2 R S PR PS) +(-713 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-712 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-714 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-713 E OV R PPR) +(-715 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-714 |vl| R) +(-716 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-715 E OV R PRF) +(((-4370 "*") |has| |#2| (-169)) (-4361 |has| |#2| (-544)) (-4366 |has| |#2| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-846 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-717 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-716 E OV R P) +(-718 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-717 R S M) +(-719 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-718 R M) +(-720 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-830)))) -(-719 S) +((-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) (-4365 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-832)))) +(-721 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4356 . T) (-4367 . T) (-2997 . T)) +((-4358 . T) (-4369 . T) (-4283 . T)) NIL -(-720 S) +(-722 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4366 . T) (-4356 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-721) +((-4368 . T) (-4358 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-723) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-722 S) +(-724 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-723 |Coef| |Var|) +(-725 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-724 OV E R P) +(-726 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-725 E OV R P) +(-727 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-726 S R) +(-728 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-727 R) +(-729 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL -(-728) +(-730) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-729) +(-731) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-730) +(-732) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-731) +(-733) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-732) +(-734) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-733) +(-735) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-734) +(-736) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-735) +(-737) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-736) +(-738) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-737) +(-739) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-738) +(-740) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-739) +(-741) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-740) +(-742) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-741) +(-743) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-742) +(-744) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-743 S) +(-745 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-744) +(-746) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-745 S) +(-747 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-746) +(-748) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-747 |Par|) +(-749 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-748 -1935) +(-750 -3220) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-749 P -1935) +(-751 P -3220) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-750 T$) +(-752 T$) NIL NIL NIL -(-751 UP -1935) +(-753 UP -3220) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-752) +(-754) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-753 R) +(-755 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-754) +(-756) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4368 "*") . T)) +(((-4370 "*") . T)) NIL -(-755 R -1935) +(-757 R -3220) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-756 S) +(-758 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-757) +(-759) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-758 R |PolR| E |PolE|) +(-760 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-759 R E V P TS) +(-761 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-760 -1935 |ExtF| |SUEx| |ExtP| |n|) +(-762 -3220 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-761 BP E OV R P) +(-763 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-762 |Par|) +(-764 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-763 R |VarSet|) +(-765 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (QUOTE (-537)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552))))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -971) (QUOTE (-552))))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-764 R S) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))) (-4107 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))) (-4107 (|HasCategory| |#1| (QUOTE (-537)))) (-4107 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))) (-4107 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552))))) (-4107 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1154)))) (-4107 (|HasCategory| |#1| (LIST (QUOTE -973) (QUOTE (-552))))))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-766 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-765 R) +(-767 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-766 R) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-768 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) -(-767 R E V P) +(-769 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-768 S) +(-770 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-169)))) -(-769) +((-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-169)))) +(-771) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-770) +(-772) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-771) +(-773) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-772) +(-774) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-773 |Curve|) +(-775 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-774) +(-776) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-775) +(-777) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-776) +(-778) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-777) +(-779) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-778) +(-780) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-779 S R) +(-781 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-362)))) -(-780 R) +((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-362)))) +(-782 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-781 -1559 R OS S) +(-783 -4029 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-782 R) +(-784 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-1559 (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) -(-783) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-4029 (|HasCategory| (-980 |#1|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (|HasCategory| (-980 |#1|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| (-980 |#1|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-980 |#1|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) +(-785) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-784 R -1935 L) +(-786 R -3220 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-785 R -1935) +(-787 R -3220) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-786) +(-788) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-787 R -1935) +(-789 R -3220) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-788) +(-790) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-789 -1935 UP UPUP R) +(-791 -3220 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-790 -1935 UP L LQ) +(-792 -3220 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-791) +(-793) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-792 -1935 UP L LQ) +(-794 -3220 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-793 -1935 UP) +(-795 -3220 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-794 -1935 L UP A LO) +(-796 -3220 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-795 -1935 UP) +(-797 -3220 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-796 -1935 LO) +(-798 -3220 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-797 -1935 LODO) +(-799 -3220 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-798 -4030 S |f|) +(-800 -2072 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) -(-799 R) +((-4362 |has| |#2| (-1030)) (-4363 |has| |#2| (-1030)) (-4365 |has| |#2| (-6 -4365)) ((-4370 "*") |has| |#2| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-778))) (-4029 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1030)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-778)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-778))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (|HasCategory| |#2| (QUOTE (-1030))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasAttribute| |#2| (QUOTE -4365)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) +(-801 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-800 |Kernels| R |var|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-803 (-1154)) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-803 (-1154)) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-803 (-1154)) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-803 (-1154)) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-803 (-1154)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-802 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4368 "*") |has| |#2| (-357)) (-4359 |has| |#2| (-357)) (-4364 |has| |#2| (-357)) (-4358 |has| |#2| (-357)) (-4363 . T) (-4361 . T) (-4360 . T)) +(((-4370 "*") |has| |#2| (-357)) (-4361 |has| |#2| (-357)) (-4366 |has| |#2| (-357)) (-4360 |has| |#2| (-357)) (-4365 . T) (-4363 . T) (-4362 . T)) ((|HasCategory| |#2| (QUOTE (-357)))) -(-801 S) +(-803 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-802 S) +(-804 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-803) +(-805) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-804) +(-806) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-805) +(-807) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-806) +(-808) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-807) +(-809) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-808) +(-810) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-809 R) +(-811 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-810 P R) +(-812 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) ((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-228)))) -(-811) +(-813) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-812) +(-814) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-813 S) +(-815 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4366 . T) (-4356 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4358 . T) (-4369 . T) (-4283 . T)) NIL -(-814) +(-816) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-815 R S) +(-817 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-816 R) +(-818 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4363 |has| |#1| (-828))) -((|HasCategory| |#1| (QUOTE (-828))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-817 R) +((-4365 |has| |#1| (-830))) +((|HasCategory| |#1| (QUOTE (-830))) (-4029 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-4029 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-819 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) (-4365 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) -(-818) +(-820) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-819) +(-821) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-820) +(-822) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-821) +(-823) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-822 R S) +(-824 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-823 R) +(-825 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4363 |has| |#1| (-828))) -((|HasCategory| |#1| (QUOTE (-828))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-824) +((-4365 |has| |#1| (-830))) +((|HasCategory| |#1| (QUOTE (-830))) (-4029 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-4029 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-826) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-825 -4030 S) +(-827 -2072 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-826) +(-828) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-827 S) +(-829 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-828) +(-830) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4363 . T)) +((-4365 . T)) NIL -(-829 S) +(-831 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-830) +(-832) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-831 S R) +(-833 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169)))) -(-832 R) +(-834 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-833 R C) +(-835 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) -(-834 R |sigma| -3427) +(-836 R |sigma| -2696) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-835 |x| R |sigma| -3427) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-837 |x| R |sigma| -2696) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-357)))) -(-836 R) +((-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-357)))) +(-838 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) -(-837) +(-839) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-838) +(-840) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-839 S) +(-841 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-840) +(-842) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-841) +(-843) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-842) +(-844) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-843) +(-845) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-844 |VariableList|) +(-846 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-845 R |vl| |wl| |wtlevel|) +(-847 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) (-4365 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) -(-846 R PS UP) +(-848 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-847 R |x| |pt|) +(-849 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-848 |p|) +(-850 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-849 |p|) +(-851 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-850 |p|) +(-852 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-849 |#1|) (QUOTE (-888))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-849 |#1|) (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-144))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-849 |#1|) (QUOTE (-1001))) (|HasCategory| (-849 |#1|) (QUOTE (-803))) (-1559 (|HasCategory| (-849 |#1|) (QUOTE (-803))) (|HasCategory| (-849 |#1|) (QUOTE (-830)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (QUOTE (-1127))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (QUOTE (-228))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -849) (|devaluate| |#1|)) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (QUOTE (-301))) (|HasCategory| (-849 |#1|) (QUOTE (-537))) (|HasCategory| (-849 |#1|) (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-888)))) (|HasCategory| (-849 |#1|) (QUOTE (-142))))) -(-851 |p| PADIC) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-851 |#1|) (QUOTE (-890))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-851 |#1|) (QUOTE (-142))) (|HasCategory| (-851 |#1|) (QUOTE (-144))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-851 |#1|) (QUOTE (-1003))) (|HasCategory| (-851 |#1|) (QUOTE (-805))) (-4029 (|HasCategory| (-851 |#1|) (QUOTE (-805))) (|HasCategory| (-851 |#1|) (QUOTE (-832)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-851 |#1|) (QUOTE (-1129))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-851 |#1|) (QUOTE (-228))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -851) (|devaluate| |#1|)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -851) (|devaluate| |#1|)))) (|HasCategory| (-851 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -851) (|devaluate| |#1|)) (LIST (QUOTE -851) (|devaluate| |#1|)))) (|HasCategory| (-851 |#1|) (QUOTE (-301))) (|HasCategory| (-851 |#1|) (QUOTE (-537))) (|HasCategory| (-851 |#1|) (QUOTE (-832))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-851 |#1|) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-851 |#1|) (QUOTE (-890)))) (|HasCategory| (-851 |#1|) (QUOTE (-142))))) +(-853 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-803))) (-1559 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-852 S T$) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-805))) (-4029 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1129))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-832))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-854 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))))) -(-853) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))))) +(-855) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-854) +(-856) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-855 CF1 CF2) +(-857 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-856 |ComponentFunction|) +(-858 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-857 CF1 CF2) +(-859 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-858 |ComponentFunction|) +(-860 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-859) +(-861) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-860 CF1 CF2) +(-862 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-861 |ComponentFunction|) +(-863 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-862) +(-864) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-863 R) +(-865 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-864 R S L) +(-866 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-865 S) +(-867 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-866 |Base| |Subject| |Pat|) +(-868 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1681 (|HasCategory| |#2| (QUOTE (-1028)))) (-1681 (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (-1681 (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) -(-867 R A B) +((-12 (-4107 (|HasCategory| |#2| (QUOTE (-1030)))) (-4107 (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154)))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (-4107 (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154)))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154))))) +(-869 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-868 R S) +(-870 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-869 R -4251) +(-871 R -1765) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-870 R S) +(-872 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-871 R) +(-873 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-872 |VarSet|) +(-874 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-873 UP R) +(-875 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-874) +(-876) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-875 UP -1935) +(-877 UP -3220) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-876) +(-878) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-877) +(-879) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-878 A S) +(-880 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-879 S) +(-881 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4363 . T)) +((-4365 . T)) NIL -(-880 S) +(-882 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-881 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-883 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-882 S) +(-884 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4363 . T)) +((-4365 . T)) NIL -(-883 S) +(-885 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-884 S) +(-886 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4363 . T)) -((-1559 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-830)))) -(-885 R E |VarSet| S) +((-4365 . T)) +((-4029 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-832)))) +(-887 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-886 R S) +(-888 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-887 S) +(-889 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-142)))) -(-888) +(-890) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-889 |p|) +(-891 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) ((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) -(-890 R0 -1935 UP UPUP R) +(-892 R0 -3220 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-891 UP UPUP R) +(-893 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-892 UP UPUP) +(-894 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-893 R) +(-895 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-894 R) +(-896 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-895 E OV R P) +(-897 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-896) +(-898) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-897 -1935) +(-899 -3220) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-898 R) +(-900 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-899) +(-901) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-900) +(-902) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4368 "*") . T)) +(((-4370 "*") . T)) NIL -(-901 -1935 P) +(-903 -3220 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-902 |xx| -1935) +(-904 |xx| -3220) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-903 R |Var| |Expon| GR) +(-905 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-904 S) +(-906 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-905) +(-907) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-906) +(-908) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-907) +(-909) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-908 R -1935) +(-910 R -3220) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-909) +(-911) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-910 S A B) +(-912 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-911 S R -1935) +(-913 S R -3220) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-912 I) +(-914 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-913 S E) +(-915 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-914 S R L) +(-916 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-915 S E V R P) +(-917 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -865) (|devaluate| |#1|)))) -(-916 R -1935 -4251) +((|HasCategory| |#3| (LIST (QUOTE -867) (|devaluate| |#1|)))) +(-918 R -3220 -1765) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-917 -4251) +(-919 -1765) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-918 S R Q) +(-920 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-919 S) +(-921 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-920 S R P) +(-922 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-921) +(-923) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-922 R) +(-924 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-923 |lv| R) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-983))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-925 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-924 |TheField| |ThePols|) +(-926 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-828)))) -(-925 R S) +((|HasCategory| |#1| (QUOTE (-830)))) +(-927 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-926 |x| R) +(-928 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-927 S R E |VarSet|) +(-929 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-888))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-830)))) -(-928 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-890))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-832)))) +(-930 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-929 E V R P -1935) +(-931 E V R P -3220) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-930 E |Vars| R P S) +(-932 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-931 R) +(-933 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-932 E V R P -1935) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1154) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1154) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1154) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1154) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1154) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-934 E V R P -3220) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-445)))) -(-933) +(-935) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-934) +(-936) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-935 R L) +(-937 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-936 A B) +(-938 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-937 S) +(-939 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-938) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-940) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-939 -1935) +(-941 -3220) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-940 I) +(-942 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-941) +(-943) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-942 R E) +(-944 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-129)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364))) -(-943 A B) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-129)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366))) +(-945 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4363 -12 (|has| |#2| (-466)) (|has| |#1| (-466)))) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-830))))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-830))))) -(-944) +((-4365 -12 (|has| |#2| (-466)) (|has| |#1| (-466)))) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-778)))) (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-832))))) (-12 (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-778)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-778))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-778))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#2| (QUOTE (-778))))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-832))))) +(-946) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-945 T$) +(-947 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-946) +(-948) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-947 S) +(-949 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL -(-948 R |polR|) +(-950 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-445)))) -(-949) +(-951) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-950) +(-952) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-951 S |Coef| |Expon| |Var|) +(-953 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-952 |Coef| |Expon| |Var|) +(-954 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-953) +(-955) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-954 S R E |VarSet| P) +(-956 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-544)))) -(-955 R E |VarSet| P) +(-957 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4366 . T) (-2997 . T)) +((-4368 . T) (-4283 . T)) NIL -(-956 R E V P) +(-958 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-445)))) -(-957 K) +(-959 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-958 |VarSet| E RC P) +(-960 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-959 R) +(-961 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-960 R1 R2) +(-962 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-961 R) +(-963 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-962 K) +(-964 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-963 R E OV PPR) +(-965 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-964 K R UP -1935) +(-966 K R UP -3220) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-965 |vl| |nv|) +(-967 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-966 R |Var| |Expon| |Dpoly|) +(-968 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301))))) -(-967 R E V P TS) +(-969 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-968) +(-970) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-969 A B R S) +(-971 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-970 A S) +(-972 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1127)))) -(-971 S) +((|HasCategory| |#2| (QUOTE (-890))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1129)))) +(-973 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2997 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4283 . T) (-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-972 |n| K) +(-974 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-973) +(-975) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-974 S) +(-976 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL -(-975 S R) +(-977 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-284)))) -(-976 R) +((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-284)))) +(-978 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4359 |has| |#1| (-284)) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 |has| |#1| (-284)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-977 QR R QS S) +(-979 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-978 R) +(-980 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4359 |has| |#1| (-284)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))))) -(-979 S) +((-4361 |has| |#1| (-284)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-537))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))))) +(-981 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-980 S) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-982 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-981) +(-983) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-982 -1935 UP UPUP |radicnd| |n|) +(-984 -3220 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-1559 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-1559 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-1559 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) -(-983 |bb|) +((-4361 |has| (-401 |#2|) (-357)) (-4366 |has| (-401 |#2|) (-357)) (-4360 |has| (-401 |#2|) (-357)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-4029 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-4029 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-4029 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-4029 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) +(-985 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) -(-984) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-552) (QUOTE (-890))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1003))) (|HasCategory| (-552) (QUOTE (-805))) (-4029 (|HasCategory| (-552) (QUOTE (-805))) (|HasCategory| (-552) (QUOTE (-832)))) (|HasCategory| (-552) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1129))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1154)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-552) (LIST (QUOTE -625) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-890)))) (|HasCategory| (-552) (QUOTE (-142))))) +(-986) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-985) +(-987) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-986 RP) +(-988 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-987 S) +(-989 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-988 A S) +(-990 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-1076)))) -(-989 S) +((|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#2| (QUOTE (-1078)))) +(-991 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-990 S) +(-992 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-991) +(-993) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4359 . T) (-4364 . T) (-4358 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4363 . T)) +((-4361 . T) (-4366 . T) (-4360 . T) (-4363 . T) (-4362 . T) ((-4370 "*") . T) (-4365 . T)) NIL -(-992 R -1935) +(-994 R -3220) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-993 R -1935) +(-995 R -3220) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-994 -1935 UP) +(-996 -3220 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-995 -1935 UP) +(-997 -3220 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-996 S) +(-998 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-997 F1 UP UPUP R F2) +(-999 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-998) +(-1000) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-999 |Pol|) +(-1001 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1000 |Pol|) +(-1002 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1001) +(-1003) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1002) +(-1004) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1003 |TheField|) +(-1005 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4359 . T) (-4364 . T) (-4358 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4363 . T)) -((-1559 (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (QUOTE (-552))))) -(-1004 -1935 L) +((-4361 . T) (-4366 . T) (-4360 . T) (-4363 . T) (-4362 . T) ((-4370 "*") . T) (-4365 . T)) +((-4029 (|HasCategory| (-401 (-552)) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1019) (QUOTE (-552))))) +(-1006 -3220 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1005 S) +(-1007 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1076)))) -(-1006 R E V P) +((|HasCategory| |#1| (QUOTE (-1078)))) +(-1008 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1007 R) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1009 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4368 "*")))) -(-1008 R) +((|HasAttribute| |#1| (QUOTE (-4370 "*")))) +(-1010 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301)))) -(-1009 S) +(-1011 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1010) +(-1012) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1011 S) +(-1013 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1012 S) +(-1014 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1013 -1935 |Expon| |VarSet| |FPol| |LFPol|) +(-1015 -3220 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1014) +(-1016) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-1152) (QUOTE (-830))) (|HasCategory| (-52) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1015) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (QUOTE (-1154))) (LIST (QUOTE |:|) (QUOTE -3360) (QUOTE (-52))))))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-52) (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-1154) (QUOTE (-832))) (|HasCategory| (-52) (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1017) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1016 A S) +(-1018 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1017 S) +(-1019 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1018 Q R) +(-1020 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1019) +(-1021) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1020 UP) +(-1022 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1021 R) +(-1023 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1022 R) +(-1024 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1023 T$) +(-1025 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1024 T$) -((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitepoint is the contant indicating the white point of this color space."))) +(-1026 T$) +((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1025 R |ls|) +(-1027 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| (-763 |#1| (-844 |#2|)) (QUOTE (-1076))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -763) (|devaluate| |#1|) (LIST (QUOTE -844) (|devaluate| |#2|)))))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-763 |#1| (-844 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-844 |#2|) (QUOTE (-362))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1026) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| (-765 |#1| (-846 |#2|)) (QUOTE (-1078))) (|HasCategory| (-765 |#1| (-846 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -765) (|devaluate| |#1|) (LIST (QUOTE -846) (|devaluate| |#2|)))))) (|HasCategory| (-765 |#1| (-846 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-765 |#1| (-846 |#2|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-846 |#2|) (QUOTE (-362))) (|HasCategory| (-765 |#1| (-846 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1028) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1027 S) +(-1029 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1028) +(-1030) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4363 . T)) +((-4365 . T)) NIL -(-1029 |xx| -1935) +(-1031 |xx| -3220) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1030 S |m| |n| R |Row| |Col|) +(-1032 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-301))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-544))) (|HasCategory| |#4| (QUOTE (-169)))) -(-1031 |m| |n| R |Row| |Col|) +(-1033 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4366 . T) (-2997 . T) (-4361 . T) (-4360 . T)) +((-4368 . T) (-4283 . T) (-4363 . T) (-4362 . T)) NIL -(-1032 |m| |n| R) +(-1034 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4366 . T) (-4361 . T) (-4360 . T)) -((-1559 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (QUOTE (-301))) (|HasCategory| |#3| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) -(-1033 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4368 . T) (-4363 . T) (-4362 . T)) +((-4029 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-301))) (|HasCategory| |#3| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-844)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) +(-1035 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1034 R) +(-1036 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1035) +(-1037) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1036 S) +(-1038 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1037) +(-1039) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1038 |TheField| |ThePolDom|) +(-1040 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1039) +(-1041) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4356 . T) (-4360 . T) (-4355 . T) (-4366 . T) (-4367 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1040) +(-1042) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-1152) (QUOTE (-830))) (|HasCategory| (-52) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1041 S R E V) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (QUOTE (-1154))) (LIST (QUOTE |:|) (QUOTE -3360) (QUOTE (-52))))))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-52) (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1078))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (QUOTE (-1078))) (|HasCategory| (-1154) (QUOTE (-832))) (|HasCategory| (-52) (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1043 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -971) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-1152))))) -(-1042 R E V) +((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -973) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-1154))))) +(-1044 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-1043) +(-1045) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1044 S |TheField| |ThePols|) +(-1046 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1045 |TheField| |ThePols|) +(-1047 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1046 R E V P TS) +(-1048 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1047 S R E V P) +(-1049 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1048 R E V P) +(-1050 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1049 R E V P TS) +(-1051 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1050) +(-1052) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1051 |f|) +(-1053 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1052 |Base| R -1935) +(-1054 |Base| R -3220) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1053 |Base| R -1935) +(-1055 |Base| R -3220) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1054 R |ls|) +(-1056 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1055 UP SAE UPA) +(-1057 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1056 R UP M) +(-1058 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4359 |has| |#1| (-357)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-343)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))))) -(-1057 UP SAE UPA) +((-4361 |has| |#1| (-357)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-343)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154))))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))))) +(-1059 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1058) +(-1060) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1059) +(-1061) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1060 S) +(-1062 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1061) +(-1063) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1062 R) +(-1064 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1063 R) +(-1065 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1064 S) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1066 (-1154)) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1066 (-1154)) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1066 (-1154)) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1066 (-1154)) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1066 (-1154)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1066 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1065 R S) +(-1067 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-828)))) -(-1066) +((|HasCategory| |#1| (QUOTE (-830)))) +(-1068) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1067 R S) +(-1069 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1068 S) +(-1070 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1076)))) -(-1069 S) +((|HasCategory| |#1| (QUOTE (-1078)))) +(-1071 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1070 S) +(-1072 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1076)))) -(-1071 S L) +((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1078)))) +(-1073 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1072) +(-1074) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1073 A S) +(-1075 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1074 S) +(-1076 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4356 . T) (-2997 . T)) +((-4358 . T) (-4283 . T)) NIL -(-1075 S) +(-1077 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1076) +(-1078) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1077 |m| |n|) +(-1079 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1078 S) +(-1080 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4366 . T) (-4356 . T) (-4367 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1079 |Str| |Sym| |Int| |Flt| |Expr|) +((-4368 . T) (-4358 . T) (-4369 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-832))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1081 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1080) +(-1082) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1081 |Str| |Sym| |Int| |Flt| |Expr|) +(-1083 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1082 R FS) +(-1084 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1083 R E V P TS) +(-1085 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1084 R E V P TS) +(-1086 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1085 R E V P) +(-1087 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1086) +(-1088) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1087 S) +(-1089 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1088) +(-1090) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1089 |dimtot| |dim1| S) +(-1091 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4360 |has| |#3| (-1028)) (-4361 |has| |#3| (-1028)) (-4363 |has| |#3| (-6 -4363)) ((-4368 "*") |has| |#3| (-169)) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#3| (QUOTE (-357))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-776))) (-1559 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828)))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-169))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-1076)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-709)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-776)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-828)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#3| (QUOTE (-1028))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (|HasAttribute| |#3| (QUOTE -4363)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1090 R |x|) +((-4362 |has| |#3| (-1030)) (-4363 |has| |#3| (-1030)) (-4365 |has| |#3| (-6 -4365)) ((-4370 "*") |has| |#3| (-169)) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#3| (QUOTE (-357))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-778))) (-4029 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (QUOTE (-830)))) (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-169))) (-4029 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1030)))) (-4029 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-711)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-778)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-830)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1078))))) (-4029 (-12 (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-778))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-830))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-832))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-1154))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552))))) (-4029 (|HasCategory| |#3| (QUOTE (-1030))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -1019) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1078)))) (|HasAttribute| |#3| (QUOTE -4365)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1092 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-445)))) -(-1091) +(-1093) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1092 R -1935) +(-1094 R -3220) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1093 R) +(-1095 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1094) +(-1096) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1095) +(-1097) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1096) +(-1098) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4356 . T) (-4360 . T) (-4355 . T) (-4366 . T) (-4367 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1097 S) +(-1099 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4366 . T) (-4367 . T) (-2997 . T)) +((-4368 . T) (-4369 . T) (-4283 . T)) NIL -(-1098 S |ndim| R |Row| |Col|) +(-1100 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-357))) (|HasAttribute| |#3| (QUOTE (-4368 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) -(-1099 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-357))) (|HasAttribute| |#3| (QUOTE (-4370 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) +(-1101 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2997 . T) (-4366 . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4283 . T) (-4368 . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1100 R |Row| |Col| M) +(-1102 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1101 R |VarSet|) +(-1103 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1102 |Coef| |Var| SMP) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1104 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1103 R E V P) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) +(-1105 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1104 UP -1935) +(-1106 UP -3220) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1105 R) +(-1107 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1106 R) +(-1108 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1107 R) +(-1109 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1108 S A) +(-1110 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-830)))) -(-1109 R) +((|HasCategory| |#1| (QUOTE (-832)))) +(-1111 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1110 R) +(-1112 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1111) +(-1113) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1112) +(-1114) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1113) +(-1115) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1114) +(-1116) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1115) +(-1117) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1116 V C) +(-1118 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1117 V C) +(-1119 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1116) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076))) (-1559 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1116) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076))))) (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1118 |ndim| R) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-1118 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1118) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1118 |#1| |#2|) (QUOTE (-1078)))) (|HasCategory| (-1118 |#1| |#2|) (QUOTE (-1078))) (-4029 (|HasCategory| (-1118 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-844)))) (-12 (|HasCategory| (-1118 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1118) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1118 |#1| |#2|) (QUOTE (-1078))))) (|HasCategory| (-1118 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1120 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4363 . T) (-4355 |has| |#2| (-6 (-4368 "*"))) (-4366 . T) (-4360 . T) (-4361 . T)) -((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-169)))) -(-1119 S) +((-4365 . T) (-4357 |has| |#2| (-6 (-4370 "*"))) (-4368 . T) (-4362 . T) (-4363 . T)) +((|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4370 "*"))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (-4029 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-357))) (-4029 (|HasAttribute| |#2| (QUOTE (-4370 "*"))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-1121 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1120) +(-1122) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1121 R E V P TS) +(-1123 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1122 R E V P) +(-1124 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1123 S) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1125 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1124 A S) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1126 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1125 S) +(-1127 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1126 |Key| |Ent| |dent|) +(-1128 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1127) +((-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-832))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1129) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1128 |Coef|) +(-1130 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1129 S) +(-1131 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1130 A B) +(-1132 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1131 A B C) +(-1133 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1132 S) +(-1134 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4367 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1133) +((-4369 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1135) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1134) +(-1136) NIL -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1135 |Entry|) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| (-141) (QUOTE (-1078))) (-12 (|HasCategory| (-141) (QUOTE (-1078))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1137 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#1|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-1134) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1136 A) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (QUOTE (-1136))) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#1|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (QUOTE (-1078))) (|HasCategory| (-1136) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1138 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) -(-1137 |Coef|) +(-1139 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1138 |Coef|) +(-1140 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1139 R UP) +(-1141 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-301)))) -(-1140 |n| R) +(-1142 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1141 S1 S2) +(-1143 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1142) +(-1144) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1143 |Coef| |var| |cen|) +(-1145 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4368 "*") -1559 (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-803))) (|has| |#1| (-169)) (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-888)))) (-4359 -1559 (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-803))) (|has| |#1| (-544)) (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1144 R -1935) +(((-4370 "*") -4029 (-3792 (|has| |#1| (-357)) (|has| (-1152 |#1| |#2| |#3|) (-805))) (|has| |#1| (-169)) (-3792 (|has| |#1| (-357)) (|has| (-1152 |#1| |#2| |#3|) (-890)))) (-4361 -4029 (-3792 (|has| |#1| (-357)) (|has| (-1152 |#1| |#2| |#3|) (-805))) (|has| |#1| (-544)) (-3792 (|has| |#1| (-357)) (|has| (-1152 |#1| |#2| |#3|) (-890)))) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1090))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1146 R -3220) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1145 R) +(-1147 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1146 R S) +(-1148 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1147 E OV R P) +(-1149 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1148 R) +(-1150 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1149 |Coef| |var| |cen|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1151 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) -(-1150 |Coef| |var| |cen|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) +(-1152 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|)))) (|HasCategory| (-754) (QUOTE (-1088))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) -(-1151) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-756)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-756)) (|devaluate| |#1|)))) (|HasCategory| (-756) (QUOTE (-1090))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-756))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-756))))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) +(-1153) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1152) +(-1154) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1153 R) +(-1155 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1154 R) +(-1156 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| (-950) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364))) -(-1155) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-6 -4366)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| (-952) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4366))) +(-1157) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1156) +(-1158) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1157) +(-1159) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1158 R) +(-1160 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1159) +(-1161) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1160 S) +(-1162 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1161 S) +(-1163 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1162 |Key| |Entry|) +(-1164 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4366 . T) (-4367 . T)) -((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) -(-1163 R) +((-4368 . T) (-4369 . T)) +((-12 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2670) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3360) (|devaluate| |#2|)))))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1078))) (-4029 (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-844)))) (|HasCategory| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (LIST (QUOTE -599) (QUOTE (-844))))) +(-1165 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1164 S |Key| |Entry|) +(-1166 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1165 |Key| |Entry|) +(-1167 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4367 . T) (-2997 . T)) +((-4369 . T) (-4283 . T)) NIL -(-1166 |Key| |Entry|) +(-1168 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1167) +(-1169) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1168 S) +(-1170 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1169) +(-1171) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1170) +(-1172) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1171 R) +(-1173 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1172) +(-1174) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1173 S) +(-1175 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1174) +(-1176) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1175 S) +(-1177 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1176 S) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1178 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1177) +(-1179) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1178 R -1935) +(-1180 R -3220) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1179 R |Row| |Col| M) +(-1181 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1180 R -1935) +(-1182 R -3220) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -865) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -865) (|devaluate| |#1|))))) -(-1181 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -873) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -867) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -867) (|devaluate| |#1|))))) +(-1183 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-362)))) -(-1182 R E V P) +(-1184 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1183 |Coef|) +(-1185 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1184 |Curve|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) +(-1186 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1185) +(-1187) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1186 S) +(-1188 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1187 -1935) +((|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1189 -3220) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1188) +(-1190) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1189) +(-1191) ((|constructor| (NIL "The fundamental Type."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1190 S) +(-1192 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-830)))) -(-1191) +((|HasCategory| |#1| (QUOTE (-832)))) +(-1193) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1192 S) +(-1194 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1193) +(-1195) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1194 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1196 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1195 |Coef|) +(-1197 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1196 S |Coef| UTS) +(-1198 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-357)))) -(-1197 |Coef| UTS) +(-1199 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-2997 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4283 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1198 |Coef| UTS) +(-1200 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142))))) (-1559 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-144))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-888))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142)))))) -(-1199 |Coef| |var| |cen|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-890)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142))))) (-4029 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-144))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1090))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-890)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-1154))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1003)))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-805)))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-832))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1154)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-890))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142)))))) +(-1201 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4368 "*") -1559 (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-803))) (|has| |#1| (-169)) (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-888)))) (-4359 -1559 (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-803))) (|has| |#1| (-544)) (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1200 ZP) +(((-4370 "*") -4029 (-3792 (|has| |#1| (-357)) (|has| (-1229 |#1| |#2| |#3|) (-805))) (|has| |#1| (-169)) (-3792 (|has| |#1| (-357)) (|has| (-1229 |#1| |#2| |#3|) (-890)))) (-4361 -4029 (-3792 (|has| |#1| (-357)) (|has| (-1229 |#1| |#2| |#3|) (-805))) (|has| |#1| (-544)) (-3792 (|has| |#1| (-357)) (|has| (-1229 |#1| |#2| |#3|) (-890)))) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1090))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-1154)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1154)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-890))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1229 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1202 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1201 R S) +(-1203 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-828)))) -(-1202 S) +((|HasCategory| |#1| (QUOTE (-830)))) +(-1204 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1076)))) -(-1203 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1078)))) +(-1205 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1204 R Q UP) +(-1206 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1205 R UP) +(-1207 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1206 R UP) +(-1208 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1207 R U) +(-1209 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1208 |x| R) +(-1210 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4362 |has| |#2| (-357)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-1209 R PR S PS) +(((-4370 "*") |has| |#2| (-169)) (-4361 |has| |#2| (-544)) (-4364 |has| |#2| (-357)) (-4366 |has| |#2| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-890))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-373))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -867) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -867) (QUOTE (-552))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-373)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -873) (QUOTE (-552)))))) (-12 (|HasCategory| (-1060) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (-4029 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1129))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (-4029 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (-4029 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-890)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-1211 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1210 S R) +(-1212 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1127)))) -(-1211 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1129)))) +(-1213 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4366 |has| |#1| (-6 -4366)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-1212 S |Coef| |Expon|) +(-1214 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1088))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1477) (LIST (|devaluate| |#2|) (QUOTE (-1152)))))) -(-1213 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1090))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3213) (LIST (|devaluate| |#2|) (QUOTE (-1154)))))) +(-1215 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1214 RC P) +(-1216 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1215 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1217 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1216 |Coef|) +(-1218 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1217 S |Coef| ULS) +(-1219 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1218 |Coef| ULS) +(-1220 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1219 |Coef| ULS) +(-1221 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) -(-1220 |Coef| |var| |cen|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) +(-1222 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) -(-1221 R FE |var| |cen|) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4366 |has| |#1| (-357)) (-4360 |has| |#1| (-357)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-4029 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) +(-1223 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4368 "*") |has| (-1220 |#2| |#3| |#4|) (-169)) (-4359 |has| (-1220 |#2| |#3| |#4|) (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-357))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-445))) (-1559 (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-544)))) -(-1222 A S) +(((-4370 "*") |has| (-1222 |#2| |#3| |#4|) (-169)) (-4361 |has| (-1222 |#2| |#3| |#4|) (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| (-1222 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1222 |#2| |#3| |#4|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1222 |#2| |#3| |#4|) (LIST (QUOTE -1019) (QUOTE (-552)))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-357))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-445))) (-4029 (|HasCategory| (-1222 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1222 |#2| |#3| |#4|) (LIST (QUOTE -1019) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| (-1222 |#2| |#3| |#4|) (QUOTE (-544)))) +(-1224 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4367))) -(-1223 S) +((|HasAttribute| |#1| (QUOTE -4369))) +(-1225 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1224 |Coef1| |Coef2| UTS1 UTS2) +(-1226 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1225 S |Coef|) +(-1227 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasSignature| |#2| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2747) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1152))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) -(-1226 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-1176))) (|HasSignature| |#2| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2889) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1154))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) +(-1228 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1227 |Coef| |var| |cen|) +(-1229 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|)))) (|HasCategory| (-754) (QUOTE (-1088))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) -(-1228 |Coef| UTS) +(((-4370 "*") |has| |#1| (-169)) (-4361 |has| |#1| (-544)) (-4362 . T) (-4363 . T) (-4365 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-4029 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-1154)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-756)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-756)) (|devaluate| |#1|)))) (|HasCategory| (-756) (QUOTE (-1090))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-756))))) (|HasSignature| |#1| (LIST (QUOTE -3213) (LIST (|devaluate| |#1|) (QUOTE (-1154)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-756))))) (|HasCategory| |#1| (QUOTE (-357))) (-4029 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-1176))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2889) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1154))))) (|HasSignature| |#1| (LIST (QUOTE -3611) (LIST (LIST (QUOTE -629) (QUOTE (-1154))) (|devaluate| |#1|))))))) +(-1230 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1229 -1935 UP L UTS) +(-1231 -3220 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-544)))) -(-1230) +(-1232) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2997 . T)) +((-4283 . T)) NIL -(-1231 |sym|) +(-1233 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1232 S R) +(-1234 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1233 R) +((|HasCategory| |#2| (QUOTE (-983))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1235 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4367 . T) (-4366 . T) (-2997 . T)) +((-4369 . T) (-4368 . T) (-4283 . T)) NIL -(-1234 A B) +(-1236 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1235 R) +(-1237 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4367 . T) (-4366 . T)) -((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1236) +((-4369 . T) (-4368 . T)) +((-4029 (-12 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-4029 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-4029 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| (-552) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-983))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1238) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1237) +(-1239) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1238) +(-1240) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1239) +(-1241) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1240) +(-1242) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1241 A S) +(-1243 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1242 S) +(-1244 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4361 . T) (-4360 . T)) +((-4363 . T) (-4362 . T)) NIL -(-1243 R) +(-1245 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1244 K R UP -1935) +(-1246 K R UP -3220) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1245) +(-1247) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1246) +(-1248) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1247 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1249 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((-4363 |has| |#1| (-169)) (-4362 |has| |#1| (-169)) (-4365 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1248 R E V P) +(-1250 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4367 . T) (-4366 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) -(-1249 R) +((-4369 . T) (-4368 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-844))))) +(-1251 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4360 . T) (-4361 . T) (-4363 . T)) +((-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1250 |vl| R) +(-1252 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4363 . T) (-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4359))) -(-1251 R |VarSet| XPOLY) +((-4365 . T) (-4361 |has| |#2| (-6 -4361)) (-4363 . T) (-4362 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4361))) +(-1253 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1252 |vl| R) +(-1254 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) +((-4361 |has| |#2| (-6 -4361)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-1253 S -1935) +(-1255 S -3220) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144)))) -(-1254 -1935) +(-1256 -3220) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-4360 . T) (-4366 . T) (-4361 . T) ((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL -(-1255 |VarSet| R) +(-1257 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -700) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasAttribute| |#2| (QUOTE -4359))) -(-1256 |vl| R) +((-4361 |has| |#2| (-6 -4361)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -702) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasAttribute| |#2| (QUOTE -4361))) +(-1258 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) +((-4361 |has| |#2| (-6 -4361)) (-4363 . T) (-4362 . T) (-4365 . T)) NIL -(-1257 R) +(-1259 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4359 |has| |#1| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4359))) -(-1258 R E) +((-4361 |has| |#1| (-6 -4361)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4361))) +(-1260 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4363 . T) (-4364 |has| |#1| (-6 -4364)) (-4359 |has| |#1| (-6 -4359)) (-4361 . T) (-4360 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4363)) (|HasAttribute| |#1| (QUOTE -4364)) (|HasAttribute| |#1| (QUOTE -4359))) -(-1259 |VarSet| R) +((-4365 . T) (-4366 |has| |#1| (-6 -4366)) (-4361 |has| |#1| (-6 -4361)) (-4363 . T) (-4362 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4365)) (|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4361))) +(-1261 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4359))) -(-1260 A) +((-4361 |has| |#2| (-6 -4361)) (-4363 . T) (-4362 . T) (-4365 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4361))) +(-1262 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1261 R |ls| |ls2|) +(-1263 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1262 R) +(-1264 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1263 |p|) +(-1265 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +(((-4370 "*") . T) (-4362 . T) (-4363 . T) (-4365 . T)) NIL NIL NIL @@ -5000,4 +5008,4 @@ NIL NIL NIL NIL -((-3 NIL 2271395 2271400 2271405 2271410) (-2 NIL 2271375 2271380 2271385 2271390) (-1 NIL 2271355 2271360 2271365 2271370) (0 NIL 2271335 2271340 2271345 2271350) (-1263 "ZMOD.spad" 2271144 2271157 2271273 2271330) (-1262 "ZLINDEP.spad" 2270188 2270199 2271134 2271139) (-1261 "ZDSOLVE.spad" 2260037 2260059 2270178 2270183) (-1260 "YSTREAM.spad" 2259530 2259541 2260027 2260032) (-1259 "XRPOLY.spad" 2258750 2258770 2259386 2259455) (-1258 "XPR.spad" 2256479 2256492 2258468 2258567) (-1257 "XPOLY.spad" 2256034 2256045 2256335 2256404) (-1256 "XPOLYC.spad" 2255351 2255367 2255960 2256029) (-1255 "XPBWPOLY.spad" 2253788 2253808 2255131 2255200) (-1254 "XF.spad" 2252249 2252264 2253690 2253783) (-1253 "XF.spad" 2250690 2250707 2252133 2252138) (-1252 "XFALG.spad" 2247714 2247730 2250616 2250685) (-1251 "XEXPPKG.spad" 2246965 2246991 2247704 2247709) (-1250 "XDPOLY.spad" 2246579 2246595 2246821 2246890) (-1249 "XALG.spad" 2246177 2246188 2246535 2246574) (-1248 "WUTSET.spad" 2242016 2242033 2245823 2245850) (-1247 "WP.spad" 2241030 2241074 2241874 2241941) (-1246 "WHILEAST.spad" 2240828 2240837 2241020 2241025) (-1245 "WHEREAST.spad" 2240499 2240508 2240818 2240823) (-1244 "WFFINTBS.spad" 2238062 2238084 2240489 2240494) (-1243 "WEIER.spad" 2236276 2236287 2238052 2238057) (-1242 "VSPACE.spad" 2235949 2235960 2236244 2236271) (-1241 "VSPACE.spad" 2235642 2235655 2235939 2235944) (-1240 "VOID.spad" 2235232 2235241 2235632 2235637) (-1239 "VIEW.spad" 2232854 2232863 2235222 2235227) (-1238 "VIEWDEF.spad" 2228051 2228060 2232844 2232849) (-1237 "VIEW3D.spad" 2211886 2211895 2228041 2228046) (-1236 "VIEW2D.spad" 2199623 2199632 2211876 2211881) (-1235 "VECTOR.spad" 2198298 2198309 2198549 2198576) (-1234 "VECTOR2.spad" 2196925 2196938 2198288 2198293) (-1233 "VECTCAT.spad" 2194813 2194824 2196881 2196920) (-1232 "VECTCAT.spad" 2192521 2192534 2194591 2194596) (-1231 "VARIABLE.spad" 2192301 2192316 2192511 2192516) (-1230 "UTYPE.spad" 2191935 2191944 2192281 2192296) (-1229 "UTSODETL.spad" 2191228 2191252 2191891 2191896) (-1228 "UTSODE.spad" 2189416 2189436 2191218 2191223) (-1227 "UTS.spad" 2184205 2184233 2187883 2187980) (-1226 "UTSCAT.spad" 2181656 2181672 2184103 2184200) (-1225 "UTSCAT.spad" 2178751 2178769 2181200 2181205) (-1224 "UTS2.spad" 2178344 2178379 2178741 2178746) (-1223 "URAGG.spad" 2172966 2172977 2178324 2178339) (-1222 "URAGG.spad" 2167562 2167575 2172922 2172927) (-1221 "UPXSSING.spad" 2165205 2165231 2166643 2166776) (-1220 "UPXS.spad" 2162232 2162260 2163337 2163486) (-1219 "UPXSCONS.spad" 2159989 2160009 2160364 2160513) (-1218 "UPXSCCA.spad" 2158447 2158467 2159835 2159984) (-1217 "UPXSCCA.spad" 2157047 2157069 2158437 2158442) (-1216 "UPXSCAT.spad" 2155628 2155644 2156893 2157042) (-1215 "UPXS2.spad" 2155169 2155222 2155618 2155623) (-1214 "UPSQFREE.spad" 2153581 2153595 2155159 2155164) (-1213 "UPSCAT.spad" 2151174 2151198 2153479 2153576) (-1212 "UPSCAT.spad" 2148473 2148499 2150780 2150785) (-1211 "UPOLYC.spad" 2143451 2143462 2148315 2148468) (-1210 "UPOLYC.spad" 2138321 2138334 2143187 2143192) (-1209 "UPOLYC2.spad" 2137790 2137809 2138311 2138316) (-1208 "UP.spad" 2134832 2134847 2135340 2135493) (-1207 "UPMP.spad" 2133722 2133735 2134822 2134827) (-1206 "UPDIVP.spad" 2133285 2133299 2133712 2133717) (-1205 "UPDECOMP.spad" 2131522 2131536 2133275 2133280) (-1204 "UPCDEN.spad" 2130729 2130745 2131512 2131517) (-1203 "UP2.spad" 2130091 2130112 2130719 2130724) (-1202 "UNISEG.spad" 2129444 2129455 2130010 2130015) (-1201 "UNISEG2.spad" 2128937 2128950 2129400 2129405) (-1200 "UNIFACT.spad" 2128038 2128050 2128927 2128932) (-1199 "ULS.spad" 2118590 2118618 2119683 2120112) (-1198 "ULSCONS.spad" 2112627 2112647 2112999 2113148) (-1197 "ULSCCAT.spad" 2110224 2110244 2112447 2112622) (-1196 "ULSCCAT.spad" 2107955 2107977 2110180 2110185) (-1195 "ULSCAT.spad" 2106171 2106187 2107801 2107950) (-1194 "ULS2.spad" 2105683 2105736 2106161 2106166) (-1193 "UFD.spad" 2104748 2104757 2105609 2105678) (-1192 "UFD.spad" 2103875 2103886 2104738 2104743) (-1191 "UDVO.spad" 2102722 2102731 2103865 2103870) (-1190 "UDPO.spad" 2100149 2100160 2102678 2102683) (-1189 "TYPE.spad" 2100071 2100080 2100129 2100144) (-1188 "TYPEAST.spad" 2099990 2099999 2100061 2100066) (-1187 "TWOFACT.spad" 2098640 2098655 2099980 2099985) (-1186 "TUPLE.spad" 2098026 2098037 2098539 2098544) (-1185 "TUBETOOL.spad" 2094863 2094872 2098016 2098021) (-1184 "TUBE.spad" 2093504 2093521 2094853 2094858) (-1183 "TS.spad" 2092093 2092109 2093069 2093166) (-1182 "TSETCAT.spad" 2079208 2079225 2092049 2092088) (-1181 "TSETCAT.spad" 2066321 2066340 2079164 2079169) (-1180 "TRMANIP.spad" 2060687 2060704 2066027 2066032) (-1179 "TRIMAT.spad" 2059646 2059671 2060677 2060682) (-1178 "TRIGMNIP.spad" 2058163 2058180 2059636 2059641) (-1177 "TRIGCAT.spad" 2057675 2057684 2058153 2058158) (-1176 "TRIGCAT.spad" 2057185 2057196 2057665 2057670) (-1175 "TREE.spad" 2055756 2055767 2056792 2056819) (-1174 "TRANFUN.spad" 2055587 2055596 2055746 2055751) (-1173 "TRANFUN.spad" 2055416 2055427 2055577 2055582) (-1172 "TOPSP.spad" 2055090 2055099 2055406 2055411) (-1171 "TOOLSIGN.spad" 2054753 2054764 2055080 2055085) (-1170 "TEXTFILE.spad" 2053310 2053319 2054743 2054748) (-1169 "TEX.spad" 2050327 2050336 2053300 2053305) (-1168 "TEX1.spad" 2049883 2049894 2050317 2050322) (-1167 "TEMUTL.spad" 2049438 2049447 2049873 2049878) (-1166 "TBCMPPK.spad" 2047531 2047554 2049428 2049433) (-1165 "TBAGG.spad" 2046555 2046578 2047499 2047526) (-1164 "TBAGG.spad" 2045599 2045624 2046545 2046550) (-1163 "TANEXP.spad" 2044975 2044986 2045589 2045594) (-1162 "TABLE.spad" 2043386 2043409 2043656 2043683) (-1161 "TABLEAU.spad" 2042867 2042878 2043376 2043381) (-1160 "TABLBUMP.spad" 2039650 2039661 2042857 2042862) (-1159 "SYSTEM.spad" 2038924 2038933 2039640 2039645) (-1158 "SYSSOLP.spad" 2036397 2036408 2038914 2038919) (-1157 "SYNTAX.spad" 2032667 2032676 2036387 2036392) (-1156 "SYMTAB.spad" 2030723 2030732 2032657 2032662) (-1155 "SYMS.spad" 2026708 2026717 2030713 2030718) (-1154 "SYMPOLY.spad" 2025715 2025726 2025797 2025924) (-1153 "SYMFUNC.spad" 2025190 2025201 2025705 2025710) (-1152 "SYMBOL.spad" 2022526 2022535 2025180 2025185) (-1151 "SWITCH.spad" 2019283 2019292 2022516 2022521) (-1150 "SUTS.spad" 2016182 2016210 2017750 2017847) (-1149 "SUPXS.spad" 2013196 2013224 2014314 2014463) (-1148 "SUP.spad" 2009965 2009976 2010746 2010899) (-1147 "SUPFRACF.spad" 2009070 2009088 2009955 2009960) (-1146 "SUP2.spad" 2008460 2008473 2009060 2009065) (-1145 "SUMRF.spad" 2007426 2007437 2008450 2008455) (-1144 "SUMFS.spad" 2007059 2007076 2007416 2007421) (-1143 "SULS.spad" 1997598 1997626 1998704 1999133) (-1142 "SUCHTAST.spad" 1997367 1997376 1997588 1997593) (-1141 "SUCH.spad" 1997047 1997062 1997357 1997362) (-1140 "SUBSPACE.spad" 1989054 1989069 1997037 1997042) (-1139 "SUBRESP.spad" 1988214 1988228 1989010 1989015) (-1138 "STTF.spad" 1984313 1984329 1988204 1988209) (-1137 "STTFNC.spad" 1980781 1980797 1984303 1984308) (-1136 "STTAYLOR.spad" 1973179 1973190 1980662 1980667) (-1135 "STRTBL.spad" 1971684 1971701 1971833 1971860) (-1134 "STRING.spad" 1971093 1971102 1971107 1971134) (-1133 "STRICAT.spad" 1970869 1970878 1971049 1971088) (-1132 "STREAM.spad" 1967637 1967648 1970394 1970409) (-1131 "STREAM3.spad" 1967182 1967197 1967627 1967632) (-1130 "STREAM2.spad" 1966250 1966263 1967172 1967177) (-1129 "STREAM1.spad" 1965954 1965965 1966240 1966245) (-1128 "STINPROD.spad" 1964860 1964876 1965944 1965949) (-1127 "STEP.spad" 1964061 1964070 1964850 1964855) (-1126 "STBL.spad" 1962587 1962615 1962754 1962769) (-1125 "STAGG.spad" 1961652 1961663 1962567 1962582) (-1124 "STAGG.spad" 1960725 1960738 1961642 1961647) (-1123 "STACK.spad" 1960076 1960087 1960332 1960359) (-1122 "SREGSET.spad" 1957780 1957797 1959722 1959749) (-1121 "SRDCMPK.spad" 1956325 1956345 1957770 1957775) (-1120 "SRAGG.spad" 1951410 1951419 1956281 1956320) (-1119 "SRAGG.spad" 1946527 1946538 1951400 1951405) (-1118 "SQMATRIX.spad" 1944143 1944161 1945059 1945146) (-1117 "SPLTREE.spad" 1938695 1938708 1943579 1943606) (-1116 "SPLNODE.spad" 1935283 1935296 1938685 1938690) (-1115 "SPFCAT.spad" 1934060 1934069 1935273 1935278) (-1114 "SPECOUT.spad" 1932610 1932619 1934050 1934055) (-1113 "SPADXPT.spad" 1924739 1924748 1932590 1932605) (-1112 "spad-parser.spad" 1924204 1924213 1924729 1924734) (-1111 "SPADAST.spad" 1923905 1923914 1924194 1924199) (-1110 "SPACEC.spad" 1907918 1907929 1923895 1923900) (-1109 "SPACE3.spad" 1907694 1907705 1907908 1907913) (-1108 "SORTPAK.spad" 1907239 1907252 1907650 1907655) (-1107 "SOLVETRA.spad" 1904996 1905007 1907229 1907234) (-1106 "SOLVESER.spad" 1903516 1903527 1904986 1904991) (-1105 "SOLVERAD.spad" 1899526 1899537 1903506 1903511) (-1104 "SOLVEFOR.spad" 1897946 1897964 1899516 1899521) (-1103 "SNTSCAT.spad" 1897534 1897551 1897902 1897941) (-1102 "SMTS.spad" 1895794 1895820 1897099 1897196) (-1101 "SMP.spad" 1893233 1893253 1893623 1893750) (-1100 "SMITH.spad" 1892076 1892101 1893223 1893228) (-1099 "SMATCAT.spad" 1890174 1890204 1892008 1892071) (-1098 "SMATCAT.spad" 1888216 1888248 1890052 1890057) (-1097 "SKAGG.spad" 1887165 1887176 1888172 1888211) (-1096 "SINT.spad" 1885473 1885482 1887031 1887160) (-1095 "SIMPAN.spad" 1885201 1885210 1885463 1885468) (-1094 "SIG.spad" 1884529 1884538 1885191 1885196) (-1093 "SIGNRF.spad" 1883637 1883648 1884519 1884524) (-1092 "SIGNEF.spad" 1882906 1882923 1883627 1883632) (-1091 "SIGAST.spad" 1882287 1882296 1882896 1882901) (-1090 "SHP.spad" 1880205 1880220 1882243 1882248) (-1089 "SHDP.spad" 1871190 1871217 1871699 1871830) (-1088 "SGROUP.spad" 1870798 1870807 1871180 1871185) (-1087 "SGROUP.spad" 1870404 1870415 1870788 1870793) (-1086 "SGCF.spad" 1863285 1863294 1870394 1870399) (-1085 "SFRTCAT.spad" 1862201 1862218 1863241 1863280) (-1084 "SFRGCD.spad" 1861264 1861284 1862191 1862196) (-1083 "SFQCMPK.spad" 1855901 1855921 1861254 1861259) (-1082 "SFORT.spad" 1855336 1855350 1855891 1855896) (-1081 "SEXOF.spad" 1855179 1855219 1855326 1855331) (-1080 "SEX.spad" 1855071 1855080 1855169 1855174) (-1079 "SEXCAT.spad" 1852175 1852215 1855061 1855066) (-1078 "SET.spad" 1850475 1850486 1851596 1851635) (-1077 "SETMN.spad" 1848909 1848926 1850465 1850470) (-1076 "SETCAT.spad" 1848394 1848403 1848899 1848904) (-1075 "SETCAT.spad" 1847877 1847888 1848384 1848389) (-1074 "SETAGG.spad" 1844386 1844397 1847845 1847872) (-1073 "SETAGG.spad" 1840915 1840928 1844376 1844381) (-1072 "SEQAST.spad" 1840618 1840627 1840905 1840910) (-1071 "SEGXCAT.spad" 1839730 1839743 1840598 1840613) (-1070 "SEG.spad" 1839543 1839554 1839649 1839654) (-1069 "SEGCAT.spad" 1838362 1838373 1839523 1839538) (-1068 "SEGBIND.spad" 1837434 1837445 1838317 1838322) (-1067 "SEGBIND2.spad" 1837130 1837143 1837424 1837429) (-1066 "SEGAST.spad" 1836844 1836853 1837120 1837125) (-1065 "SEG2.spad" 1836269 1836282 1836800 1836805) (-1064 "SDVAR.spad" 1835545 1835556 1836259 1836264) (-1063 "SDPOL.spad" 1832935 1832946 1833226 1833353) (-1062 "SCPKG.spad" 1831014 1831025 1832925 1832930) (-1061 "SCOPE.spad" 1830159 1830168 1831004 1831009) (-1060 "SCACHE.spad" 1828841 1828852 1830149 1830154) (-1059 "SASTCAT.spad" 1828750 1828759 1828831 1828836) (-1058 "SAOS.spad" 1828622 1828631 1828740 1828745) (-1057 "SAERFFC.spad" 1828335 1828355 1828612 1828617) (-1056 "SAE.spad" 1826510 1826526 1827121 1827256) (-1055 "SAEFACT.spad" 1826211 1826231 1826500 1826505) (-1054 "RURPK.spad" 1823852 1823868 1826201 1826206) (-1053 "RULESET.spad" 1823293 1823317 1823842 1823847) (-1052 "RULE.spad" 1821497 1821521 1823283 1823288) (-1051 "RULECOLD.spad" 1821349 1821362 1821487 1821492) (-1050 "RSTRCAST.spad" 1821066 1821075 1821339 1821344) (-1049 "RSETGCD.spad" 1817444 1817464 1821056 1821061) (-1048 "RSETCAT.spad" 1807216 1807233 1817400 1817439) (-1047 "RSETCAT.spad" 1797020 1797039 1807206 1807211) (-1046 "RSDCMPK.spad" 1795472 1795492 1797010 1797015) (-1045 "RRCC.spad" 1793856 1793886 1795462 1795467) (-1044 "RRCC.spad" 1792238 1792270 1793846 1793851) (-1043 "RPTAST.spad" 1791940 1791949 1792228 1792233) (-1042 "RPOLCAT.spad" 1771300 1771315 1791808 1791935) (-1041 "RPOLCAT.spad" 1750374 1750391 1770884 1770889) (-1040 "ROUTINE.spad" 1746237 1746246 1749021 1749048) (-1039 "ROMAN.spad" 1745469 1745478 1746103 1746232) (-1038 "ROIRC.spad" 1744549 1744581 1745459 1745464) (-1037 "RNS.spad" 1743452 1743461 1744451 1744544) (-1036 "RNS.spad" 1742441 1742452 1743442 1743447) (-1035 "RNG.spad" 1742176 1742185 1742431 1742436) (-1034 "RMODULE.spad" 1741814 1741825 1742166 1742171) (-1033 "RMCAT2.spad" 1741222 1741279 1741804 1741809) (-1032 "RMATRIX.spad" 1739901 1739920 1740389 1740428) (-1031 "RMATCAT.spad" 1735422 1735453 1739845 1739896) (-1030 "RMATCAT.spad" 1730845 1730878 1735270 1735275) (-1029 "RINTERP.spad" 1730733 1730753 1730835 1730840) (-1028 "RING.spad" 1730090 1730099 1730713 1730728) (-1027 "RING.spad" 1729455 1729466 1730080 1730085) (-1026 "RIDIST.spad" 1728839 1728848 1729445 1729450) (-1025 "RGCHAIN.spad" 1727418 1727434 1728324 1728351) (-1024 "RGBCSPC.spad" 1727199 1727211 1727408 1727413) (-1023 "RGBCMDL.spad" 1726729 1726741 1727189 1727194) (-1022 "RF.spad" 1724343 1724354 1726719 1726724) (-1021 "RFFACTOR.spad" 1723805 1723816 1724333 1724338) (-1020 "RFFACT.spad" 1723540 1723552 1723795 1723800) (-1019 "RFDIST.spad" 1722528 1722537 1723530 1723535) (-1018 "RETSOL.spad" 1721945 1721958 1722518 1722523) (-1017 "RETRACT.spad" 1721294 1721305 1721935 1721940) (-1016 "RETRACT.spad" 1720641 1720654 1721284 1721289) (-1015 "RETAST.spad" 1720453 1720462 1720631 1720636) (-1014 "RESULT.spad" 1718513 1718522 1719100 1719127) (-1013 "RESRING.spad" 1717860 1717907 1718451 1718508) (-1012 "RESLATC.spad" 1717184 1717195 1717850 1717855) (-1011 "REPSQ.spad" 1716913 1716924 1717174 1717179) (-1010 "REP.spad" 1714465 1714474 1716903 1716908) (-1009 "REPDB.spad" 1714170 1714181 1714455 1714460) (-1008 "REP2.spad" 1703742 1703753 1714012 1714017) (-1007 "REP1.spad" 1697732 1697743 1703692 1703697) (-1006 "REGSET.spad" 1695529 1695546 1697378 1697405) (-1005 "REF.spad" 1694858 1694869 1695484 1695489) (-1004 "REDORDER.spad" 1694034 1694051 1694848 1694853) (-1003 "RECLOS.spad" 1692817 1692837 1693521 1693614) (-1002 "REALSOLV.spad" 1691949 1691958 1692807 1692812) (-1001 "REAL.spad" 1691821 1691830 1691939 1691944) (-1000 "REAL0Q.spad" 1689103 1689118 1691811 1691816) (-999 "REAL0.spad" 1685932 1685946 1689093 1689098) (-998 "RDUCEAST.spad" 1685654 1685662 1685922 1685927) (-997 "RDIV.spad" 1685306 1685330 1685644 1685649) (-996 "RDIST.spad" 1684870 1684880 1685296 1685301) (-995 "RDETRS.spad" 1683667 1683684 1684860 1684865) (-994 "RDETR.spad" 1681775 1681792 1683657 1683662) (-993 "RDEEFS.spad" 1680849 1680865 1681765 1681770) (-992 "RDEEF.spad" 1679846 1679862 1680839 1680844) (-991 "RCFIELD.spad" 1677033 1677041 1679748 1679841) (-990 "RCFIELD.spad" 1674306 1674316 1677023 1677028) (-989 "RCAGG.spad" 1672209 1672219 1674286 1674301) (-988 "RCAGG.spad" 1670049 1670061 1672128 1672133) (-987 "RATRET.spad" 1669410 1669420 1670039 1670044) (-986 "RATFACT.spad" 1669103 1669114 1669400 1669405) (-985 "RANDSRC.spad" 1668423 1668431 1669093 1669098) (-984 "RADUTIL.spad" 1668178 1668186 1668413 1668418) (-983 "RADIX.spad" 1664968 1664981 1666645 1666738) (-982 "RADFF.spad" 1663382 1663418 1663500 1663656) (-981 "RADCAT.spad" 1662976 1662984 1663372 1663377) (-980 "RADCAT.spad" 1662568 1662578 1662966 1662971) (-979 "QUEUE.spad" 1661911 1661921 1662175 1662202) (-978 "QUAT.spad" 1660493 1660503 1660835 1660900) (-977 "QUATCT2.spad" 1660112 1660130 1660483 1660488) (-976 "QUATCAT.spad" 1658277 1658287 1660042 1660107) (-975 "QUATCAT.spad" 1656193 1656205 1657960 1657965) (-974 "QUAGG.spad" 1655007 1655017 1656149 1656188) (-973 "QQUTAST.spad" 1654776 1654784 1654997 1655002) (-972 "QFORM.spad" 1654239 1654253 1654766 1654771) (-971 "QFCAT.spad" 1652930 1652940 1654129 1654234) (-970 "QFCAT.spad" 1651224 1651236 1652425 1652430) (-969 "QFCAT2.spad" 1650915 1650931 1651214 1651219) (-968 "QEQUAT.spad" 1650472 1650480 1650905 1650910) (-967 "QCMPACK.spad" 1645219 1645238 1650462 1650467) (-966 "QALGSET.spad" 1641294 1641326 1645133 1645138) (-965 "QALGSET2.spad" 1639290 1639308 1641284 1641289) (-964 "PWFFINTB.spad" 1636600 1636621 1639280 1639285) (-963 "PUSHVAR.spad" 1635929 1635948 1636590 1636595) (-962 "PTRANFN.spad" 1632055 1632065 1635919 1635924) (-961 "PTPACK.spad" 1629143 1629153 1632045 1632050) (-960 "PTFUNC2.spad" 1628964 1628978 1629133 1629138) (-959 "PTCAT.spad" 1628046 1628056 1628920 1628959) (-958 "PSQFR.spad" 1627353 1627377 1628036 1628041) (-957 "PSEUDLIN.spad" 1626211 1626221 1627343 1627348) (-956 "PSETPK.spad" 1611644 1611660 1626089 1626094) (-955 "PSETCAT.spad" 1605552 1605575 1611612 1611639) (-954 "PSETCAT.spad" 1599446 1599471 1605508 1605513) (-953 "PSCURVE.spad" 1598429 1598437 1599436 1599441) (-952 "PSCAT.spad" 1597196 1597225 1598327 1598424) (-951 "PSCAT.spad" 1596053 1596084 1597186 1597191) (-950 "PRTITION.spad" 1594896 1594904 1596043 1596048) (-949 "PRTDAST.spad" 1594615 1594623 1594886 1594891) (-948 "PRS.spad" 1584177 1584194 1594571 1594576) (-947 "PRQAGG.spad" 1583596 1583606 1584133 1584172) (-946 "PROPLOG.spad" 1582999 1583007 1583586 1583591) (-945 "PROPFRML.spad" 1580917 1580928 1582989 1582994) (-944 "PROPERTY.spad" 1580411 1580419 1580907 1580912) (-943 "PRODUCT.spad" 1578091 1578103 1578377 1578432) (-942 "PR.spad" 1576477 1576489 1577182 1577309) (-941 "PRINT.spad" 1576229 1576237 1576467 1576472) (-940 "PRIMES.spad" 1574480 1574490 1576219 1576224) (-939 "PRIMELT.spad" 1572461 1572475 1574470 1574475) (-938 "PRIMCAT.spad" 1572084 1572092 1572451 1572456) (-937 "PRIMARR.spad" 1571089 1571099 1571267 1571294) (-936 "PRIMARR2.spad" 1569812 1569824 1571079 1571084) (-935 "PREASSOC.spad" 1569184 1569196 1569802 1569807) (-934 "PPCURVE.spad" 1568321 1568329 1569174 1569179) (-933 "PORTNUM.spad" 1568096 1568104 1568311 1568316) (-932 "POLYROOT.spad" 1566868 1566890 1568052 1568057) (-931 "POLY.spad" 1564165 1564175 1564682 1564809) (-930 "POLYLIFT.spad" 1563426 1563449 1564155 1564160) (-929 "POLYCATQ.spad" 1561528 1561550 1563416 1563421) (-928 "POLYCAT.spad" 1554934 1554955 1561396 1561523) (-927 "POLYCAT.spad" 1547642 1547665 1554106 1554111) (-926 "POLY2UP.spad" 1547090 1547104 1547632 1547637) (-925 "POLY2.spad" 1546685 1546697 1547080 1547085) (-924 "POLUTIL.spad" 1545626 1545655 1546641 1546646) (-923 "POLTOPOL.spad" 1544374 1544389 1545616 1545621) (-922 "POINT.spad" 1543213 1543223 1543300 1543327) (-921 "PNTHEORY.spad" 1539879 1539887 1543203 1543208) (-920 "PMTOOLS.spad" 1538636 1538650 1539869 1539874) (-919 "PMSYM.spad" 1538181 1538191 1538626 1538631) (-918 "PMQFCAT.spad" 1537768 1537782 1538171 1538176) (-917 "PMPRED.spad" 1537237 1537251 1537758 1537763) (-916 "PMPREDFS.spad" 1536681 1536703 1537227 1537232) (-915 "PMPLCAT.spad" 1535751 1535769 1536613 1536618) (-914 "PMLSAGG.spad" 1535332 1535346 1535741 1535746) (-913 "PMKERNEL.spad" 1534899 1534911 1535322 1535327) (-912 "PMINS.spad" 1534475 1534485 1534889 1534894) (-911 "PMFS.spad" 1534048 1534066 1534465 1534470) (-910 "PMDOWN.spad" 1533334 1533348 1534038 1534043) (-909 "PMASS.spad" 1532346 1532354 1533324 1533329) (-908 "PMASSFS.spad" 1531315 1531331 1532336 1532341) (-907 "PLOTTOOL.spad" 1531095 1531103 1531305 1531310) (-906 "PLOT.spad" 1525926 1525934 1531085 1531090) (-905 "PLOT3D.spad" 1522346 1522354 1525916 1525921) (-904 "PLOT1.spad" 1521487 1521497 1522336 1522341) (-903 "PLEQN.spad" 1508703 1508730 1521477 1521482) (-902 "PINTERP.spad" 1508319 1508338 1508693 1508698) (-901 "PINTERPA.spad" 1508101 1508117 1508309 1508314) (-900 "PI.spad" 1507708 1507716 1508075 1508096) (-899 "PID.spad" 1506664 1506672 1507634 1507703) (-898 "PICOERCE.spad" 1506321 1506331 1506654 1506659) (-897 "PGROEB.spad" 1504918 1504932 1506311 1506316) (-896 "PGE.spad" 1496171 1496179 1504908 1504913) (-895 "PGCD.spad" 1495053 1495070 1496161 1496166) (-894 "PFRPAC.spad" 1494196 1494206 1495043 1495048) (-893 "PFR.spad" 1490853 1490863 1494098 1494191) (-892 "PFOTOOLS.spad" 1490111 1490127 1490843 1490848) (-891 "PFOQ.spad" 1489481 1489499 1490101 1490106) (-890 "PFO.spad" 1488900 1488927 1489471 1489476) (-889 "PF.spad" 1488474 1488486 1488705 1488798) (-888 "PFECAT.spad" 1486140 1486148 1488400 1488469) (-887 "PFECAT.spad" 1483834 1483844 1486096 1486101) (-886 "PFBRU.spad" 1481704 1481716 1483824 1483829) (-885 "PFBR.spad" 1479242 1479265 1481694 1481699) (-884 "PERM.spad" 1474923 1474933 1479072 1479087) (-883 "PERMGRP.spad" 1469659 1469669 1474913 1474918) (-882 "PERMCAT.spad" 1468211 1468221 1469639 1469654) (-881 "PERMAN.spad" 1466743 1466757 1468201 1468206) (-880 "PENDTREE.spad" 1466016 1466026 1466372 1466377) (-879 "PDRING.spad" 1464507 1464517 1465996 1466011) (-878 "PDRING.spad" 1463006 1463018 1464497 1464502) (-877 "PDEPROB.spad" 1461963 1461971 1462996 1463001) (-876 "PDEPACK.spad" 1455965 1455973 1461953 1461958) (-875 "PDECOMP.spad" 1455427 1455444 1455955 1455960) (-874 "PDECAT.spad" 1453781 1453789 1455417 1455422) (-873 "PCOMP.spad" 1453632 1453645 1453771 1453776) (-872 "PBWLB.spad" 1452214 1452231 1453622 1453627) (-871 "PATTERN.spad" 1446645 1446655 1452204 1452209) (-870 "PATTERN2.spad" 1446381 1446393 1446635 1446640) (-869 "PATTERN1.spad" 1444683 1444699 1446371 1446376) (-868 "PATRES.spad" 1442230 1442242 1444673 1444678) (-867 "PATRES2.spad" 1441892 1441906 1442220 1442225) (-866 "PATMATCH.spad" 1440049 1440080 1441600 1441605) (-865 "PATMAB.spad" 1439474 1439484 1440039 1440044) (-864 "PATLRES.spad" 1438558 1438572 1439464 1439469) (-863 "PATAB.spad" 1438322 1438332 1438548 1438553) (-862 "PARTPERM.spad" 1435684 1435692 1438312 1438317) (-861 "PARSURF.spad" 1435112 1435140 1435674 1435679) (-860 "PARSU2.spad" 1434907 1434923 1435102 1435107) (-859 "script-parser.spad" 1434427 1434435 1434897 1434902) (-858 "PARSCURV.spad" 1433855 1433883 1434417 1434422) (-857 "PARSC2.spad" 1433644 1433660 1433845 1433850) (-856 "PARPCURV.spad" 1433102 1433130 1433634 1433639) (-855 "PARPC2.spad" 1432891 1432907 1433092 1433097) (-854 "PAN2EXPR.spad" 1432303 1432311 1432881 1432886) (-853 "PALETTE.spad" 1431273 1431281 1432293 1432298) (-852 "PAIR.spad" 1430256 1430269 1430861 1430866) (-851 "PADICRC.spad" 1427586 1427604 1428761 1428854) (-850 "PADICRAT.spad" 1425601 1425613 1425822 1425915) (-849 "PADIC.spad" 1425296 1425308 1425527 1425596) (-848 "PADICCT.spad" 1423837 1423849 1425222 1425291) (-847 "PADEPAC.spad" 1422516 1422535 1423827 1423832) (-846 "PADE.spad" 1421256 1421272 1422506 1422511) (-845 "OWP.spad" 1420240 1420270 1421114 1421181) (-844 "OVAR.spad" 1420021 1420044 1420230 1420235) (-843 "OUT.spad" 1419105 1419113 1420011 1420016) (-842 "OUTFORM.spad" 1408401 1408409 1419095 1419100) (-841 "OUTBFILE.spad" 1407819 1407827 1408391 1408396) (-840 "OUTBCON.spad" 1407097 1407105 1407809 1407814) (-839 "OUTBCON.spad" 1406373 1406383 1407087 1407092) (-838 "OSI.spad" 1405848 1405856 1406363 1406368) (-837 "OSGROUP.spad" 1405766 1405774 1405838 1405843) (-836 "ORTHPOL.spad" 1404227 1404237 1405683 1405688) (-835 "OREUP.spad" 1403585 1403613 1403907 1403946) (-834 "ORESUP.spad" 1402884 1402908 1403265 1403304) (-833 "OREPCTO.spad" 1400703 1400715 1402804 1402809) (-832 "OREPCAT.spad" 1394760 1394770 1400659 1400698) (-831 "OREPCAT.spad" 1388707 1388719 1394608 1394613) (-830 "ORDSET.spad" 1387873 1387881 1388697 1388702) (-829 "ORDSET.spad" 1387037 1387047 1387863 1387868) (-828 "ORDRING.spad" 1386427 1386435 1387017 1387032) (-827 "ORDRING.spad" 1385825 1385835 1386417 1386422) (-826 "ORDMON.spad" 1385680 1385688 1385815 1385820) (-825 "ORDFUNS.spad" 1384806 1384822 1385670 1385675) (-824 "ORDFIN.spad" 1384740 1384748 1384796 1384801) (-823 "ORDCOMP.spad" 1383205 1383215 1384287 1384316) (-822 "ORDCOMP2.spad" 1382490 1382502 1383195 1383200) (-821 "OPTPROB.spad" 1381070 1381078 1382480 1382485) (-820 "OPTPACK.spad" 1373455 1373463 1381060 1381065) (-819 "OPTCAT.spad" 1371130 1371138 1373445 1373450) (-818 "OPQUERY.spad" 1370679 1370687 1371120 1371125) (-817 "OP.spad" 1370421 1370431 1370501 1370568) (-816 "ONECOMP.spad" 1369166 1369176 1369968 1369997) (-815 "ONECOMP2.spad" 1368584 1368596 1369156 1369161) (-814 "OMSERVER.spad" 1367586 1367594 1368574 1368579) (-813 "OMSAGG.spad" 1367362 1367372 1367530 1367581) (-812 "OMPKG.spad" 1365974 1365982 1367352 1367357) (-811 "OM.spad" 1364939 1364947 1365964 1365969) (-810 "OMLO.spad" 1364364 1364376 1364825 1364864) (-809 "OMEXPR.spad" 1364198 1364208 1364354 1364359) (-808 "OMERR.spad" 1363741 1363749 1364188 1364193) (-807 "OMERRK.spad" 1362775 1362783 1363731 1363736) (-806 "OMENC.spad" 1362119 1362127 1362765 1362770) (-805 "OMDEV.spad" 1356408 1356416 1362109 1362114) (-804 "OMCONN.spad" 1355817 1355825 1356398 1356403) (-803 "OINTDOM.spad" 1355580 1355588 1355743 1355812) (-802 "OFMONOID.spad" 1351767 1351777 1355570 1355575) (-801 "ODVAR.spad" 1351028 1351038 1351757 1351762) (-800 "ODR.spad" 1350476 1350502 1350840 1350989) (-799 "ODPOL.spad" 1347822 1347832 1348162 1348289) (-798 "ODP.spad" 1338943 1338963 1339316 1339447) (-797 "ODETOOLS.spad" 1337526 1337545 1338933 1338938) (-796 "ODESYS.spad" 1335176 1335193 1337516 1337521) (-795 "ODERTRIC.spad" 1331117 1331134 1335133 1335138) (-794 "ODERED.spad" 1330504 1330528 1331107 1331112) (-793 "ODERAT.spad" 1328055 1328072 1330494 1330499) (-792 "ODEPRRIC.spad" 1324946 1324968 1328045 1328050) (-791 "ODEPROB.spad" 1324145 1324153 1324936 1324941) (-790 "ODEPRIM.spad" 1321419 1321441 1324135 1324140) (-789 "ODEPAL.spad" 1320795 1320819 1321409 1321414) (-788 "ODEPACK.spad" 1307397 1307405 1320785 1320790) (-787 "ODEINT.spad" 1306828 1306844 1307387 1307392) (-786 "ODEIFTBL.spad" 1304223 1304231 1306818 1306823) (-785 "ODEEF.spad" 1299590 1299606 1304213 1304218) (-784 "ODECONST.spad" 1299109 1299127 1299580 1299585) (-783 "ODECAT.spad" 1297705 1297713 1299099 1299104) (-782 "OCT.spad" 1295843 1295853 1296559 1296598) (-781 "OCTCT2.spad" 1295487 1295508 1295833 1295838) (-780 "OC.spad" 1293261 1293271 1295443 1295482) (-779 "OC.spad" 1290760 1290772 1292944 1292949) (-778 "OCAMON.spad" 1290608 1290616 1290750 1290755) (-777 "OASGP.spad" 1290423 1290431 1290598 1290603) (-776 "OAMONS.spad" 1289943 1289951 1290413 1290418) (-775 "OAMON.spad" 1289804 1289812 1289933 1289938) (-774 "OAGROUP.spad" 1289666 1289674 1289794 1289799) (-773 "NUMTUBE.spad" 1289253 1289269 1289656 1289661) (-772 "NUMQUAD.spad" 1277115 1277123 1289243 1289248) (-771 "NUMODE.spad" 1268251 1268259 1277105 1277110) (-770 "NUMINT.spad" 1265809 1265817 1268241 1268246) (-769 "NUMFMT.spad" 1264649 1264657 1265799 1265804) (-768 "NUMERIC.spad" 1256721 1256731 1264454 1264459) (-767 "NTSCAT.spad" 1255211 1255227 1256677 1256716) (-766 "NTPOLFN.spad" 1254756 1254766 1255128 1255133) (-765 "NSUP.spad" 1247766 1247776 1252306 1252459) (-764 "NSUP2.spad" 1247158 1247170 1247756 1247761) (-763 "NSMP.spad" 1243353 1243372 1243661 1243788) (-762 "NREP.spad" 1241725 1241739 1243343 1243348) (-761 "NPCOEF.spad" 1240971 1240991 1241715 1241720) (-760 "NORMRETR.spad" 1240569 1240608 1240961 1240966) (-759 "NORMPK.spad" 1238471 1238490 1240559 1240564) (-758 "NORMMA.spad" 1238159 1238185 1238461 1238466) (-757 "NONE.spad" 1237900 1237908 1238149 1238154) (-756 "NONE1.spad" 1237576 1237586 1237890 1237895) (-755 "NODE1.spad" 1237045 1237061 1237566 1237571) (-754 "NNI.spad" 1235932 1235940 1237019 1237040) (-753 "NLINSOL.spad" 1234554 1234564 1235922 1235927) (-752 "NIPROB.spad" 1233037 1233045 1234544 1234549) (-751 "NFINTBAS.spad" 1230497 1230514 1233027 1233032) (-750 "NETCLT.spad" 1230471 1230482 1230487 1230492) (-749 "NCODIV.spad" 1228669 1228685 1230461 1230466) (-748 "NCNTFRAC.spad" 1228311 1228325 1228659 1228664) (-747 "NCEP.spad" 1226471 1226485 1228301 1228306) (-746 "NASRING.spad" 1226067 1226075 1226461 1226466) (-745 "NASRING.spad" 1225661 1225671 1226057 1226062) (-744 "NARNG.spad" 1225005 1225013 1225651 1225656) (-743 "NARNG.spad" 1224347 1224357 1224995 1225000) (-742 "NAGSP.spad" 1223420 1223428 1224337 1224342) (-741 "NAGS.spad" 1212945 1212953 1223410 1223415) (-740 "NAGF07.spad" 1211338 1211346 1212935 1212940) (-739 "NAGF04.spad" 1205570 1205578 1211328 1211333) (-738 "NAGF02.spad" 1199379 1199387 1205560 1205565) (-737 "NAGF01.spad" 1194982 1194990 1199369 1199374) (-736 "NAGE04.spad" 1188442 1188450 1194972 1194977) (-735 "NAGE02.spad" 1178784 1178792 1188432 1188437) (-734 "NAGE01.spad" 1174668 1174676 1178774 1178779) (-733 "NAGD03.spad" 1172588 1172596 1174658 1174663) (-732 "NAGD02.spad" 1165119 1165127 1172578 1172583) (-731 "NAGD01.spad" 1159232 1159240 1165109 1165114) (-730 "NAGC06.spad" 1155019 1155027 1159222 1159227) (-729 "NAGC05.spad" 1153488 1153496 1155009 1155014) (-728 "NAGC02.spad" 1152743 1152751 1153478 1153483) (-727 "NAALG.spad" 1152278 1152288 1152711 1152738) (-726 "NAALG.spad" 1151833 1151845 1152268 1152273) (-725 "MULTSQFR.spad" 1148791 1148808 1151823 1151828) (-724 "MULTFACT.spad" 1148174 1148191 1148781 1148786) (-723 "MTSCAT.spad" 1146208 1146229 1148072 1148169) (-722 "MTHING.spad" 1145865 1145875 1146198 1146203) (-721 "MSYSCMD.spad" 1145299 1145307 1145855 1145860) (-720 "MSET.spad" 1143241 1143251 1145005 1145044) (-719 "MSETAGG.spad" 1143074 1143084 1143197 1143236) (-718 "MRING.spad" 1140045 1140057 1142782 1142849) (-717 "MRF2.spad" 1139613 1139627 1140035 1140040) (-716 "MRATFAC.spad" 1139159 1139176 1139603 1139608) (-715 "MPRFF.spad" 1137189 1137208 1139149 1139154) (-714 "MPOLY.spad" 1134624 1134639 1134983 1135110) (-713 "MPCPF.spad" 1133888 1133907 1134614 1134619) (-712 "MPC3.spad" 1133703 1133743 1133878 1133883) (-711 "MPC2.spad" 1133345 1133378 1133693 1133698) (-710 "MONOTOOL.spad" 1131680 1131697 1133335 1133340) (-709 "MONOID.spad" 1130999 1131007 1131670 1131675) (-708 "MONOID.spad" 1130316 1130326 1130989 1130994) (-707 "MONOGEN.spad" 1129062 1129075 1130176 1130311) (-706 "MONOGEN.spad" 1127830 1127845 1128946 1128951) (-705 "MONADWU.spad" 1125844 1125852 1127820 1127825) (-704 "MONADWU.spad" 1123856 1123866 1125834 1125839) (-703 "MONAD.spad" 1123000 1123008 1123846 1123851) (-702 "MONAD.spad" 1122142 1122152 1122990 1122995) (-701 "MOEBIUS.spad" 1120828 1120842 1122122 1122137) (-700 "MODULE.spad" 1120698 1120708 1120796 1120823) (-699 "MODULE.spad" 1120588 1120600 1120688 1120693) (-698 "MODRING.spad" 1119919 1119958 1120568 1120583) (-697 "MODOP.spad" 1118578 1118590 1119741 1119808) (-696 "MODMONOM.spad" 1118110 1118128 1118568 1118573) (-695 "MODMON.spad" 1114812 1114828 1115588 1115741) (-694 "MODFIELD.spad" 1114170 1114209 1114714 1114807) (-693 "MMLFORM.spad" 1113030 1113038 1114160 1114165) (-692 "MMAP.spad" 1112770 1112804 1113020 1113025) (-691 "MLO.spad" 1111197 1111207 1112726 1112765) (-690 "MLIFT.spad" 1109769 1109786 1111187 1111192) (-689 "MKUCFUNC.spad" 1109302 1109320 1109759 1109764) (-688 "MKRECORD.spad" 1108904 1108917 1109292 1109297) (-687 "MKFUNC.spad" 1108285 1108295 1108894 1108899) (-686 "MKFLCFN.spad" 1107241 1107251 1108275 1108280) (-685 "MKCHSET.spad" 1107017 1107027 1107231 1107236) (-684 "MKBCFUNC.spad" 1106502 1106520 1107007 1107012) (-683 "MINT.spad" 1105941 1105949 1106404 1106497) (-682 "MHROWRED.spad" 1104442 1104452 1105931 1105936) (-681 "MFLOAT.spad" 1102958 1102966 1104332 1104437) (-680 "MFINFACT.spad" 1102358 1102380 1102948 1102953) (-679 "MESH.spad" 1100090 1100098 1102348 1102353) (-678 "MDDFACT.spad" 1098283 1098293 1100080 1100085) (-677 "MDAGG.spad" 1097558 1097568 1098251 1098278) (-676 "MCMPLX.spad" 1093544 1093552 1094158 1094347) (-675 "MCDEN.spad" 1092752 1092764 1093534 1093539) (-674 "MCALCFN.spad" 1089854 1089880 1092742 1092747) (-673 "MAYBE.spad" 1089103 1089114 1089844 1089849) (-672 "MATSTOR.spad" 1086379 1086389 1089093 1089098) (-671 "MATRIX.spad" 1085083 1085093 1085567 1085594) (-670 "MATLIN.spad" 1082409 1082433 1084967 1084972) (-669 "MATCAT.spad" 1073982 1074004 1082365 1082404) (-668 "MATCAT.spad" 1065439 1065463 1073824 1073829) (-667 "MATCAT2.spad" 1064707 1064755 1065429 1065434) (-666 "MAPPKG3.spad" 1063606 1063620 1064697 1064702) (-665 "MAPPKG2.spad" 1062940 1062952 1063596 1063601) (-664 "MAPPKG1.spad" 1061758 1061768 1062930 1062935) (-663 "MAPPAST.spad" 1061071 1061079 1061748 1061753) (-662 "MAPHACK3.spad" 1060879 1060893 1061061 1061066) (-661 "MAPHACK2.spad" 1060644 1060656 1060869 1060874) (-660 "MAPHACK1.spad" 1060274 1060284 1060634 1060639) (-659 "MAGMA.spad" 1058064 1058081 1060264 1060269) (-658 "MACROAST.spad" 1057643 1057651 1058054 1058059) (-657 "M3D.spad" 1055339 1055349 1057021 1057026) (-656 "LZSTAGG.spad" 1052557 1052567 1055319 1055334) (-655 "LZSTAGG.spad" 1049783 1049795 1052547 1052552) (-654 "LWORD.spad" 1046488 1046505 1049773 1049778) (-653 "LSTAST.spad" 1046272 1046280 1046478 1046483) (-652 "LSQM.spad" 1044498 1044512 1044896 1044947) (-651 "LSPP.spad" 1044031 1044048 1044488 1044493) (-650 "LSMP.spad" 1042871 1042899 1044021 1044026) (-649 "LSMP1.spad" 1040675 1040689 1042861 1042866) (-648 "LSAGG.spad" 1040332 1040342 1040631 1040670) (-647 "LSAGG.spad" 1040021 1040033 1040322 1040327) (-646 "LPOLY.spad" 1038975 1038994 1039877 1039946) (-645 "LPEFRAC.spad" 1038232 1038242 1038965 1038970) (-644 "LO.spad" 1037633 1037647 1038166 1038193) (-643 "LOGIC.spad" 1037235 1037243 1037623 1037628) (-642 "LOGIC.spad" 1036835 1036845 1037225 1037230) (-641 "LODOOPS.spad" 1035753 1035765 1036825 1036830) (-640 "LODO.spad" 1035137 1035153 1035433 1035472) (-639 "LODOF.spad" 1034181 1034198 1035094 1035099) (-638 "LODOCAT.spad" 1032839 1032849 1034137 1034176) (-637 "LODOCAT.spad" 1031495 1031507 1032795 1032800) (-636 "LODO2.spad" 1030768 1030780 1031175 1031214) (-635 "LODO1.spad" 1030168 1030178 1030448 1030487) (-634 "LODEEF.spad" 1028940 1028958 1030158 1030163) (-633 "LNAGG.spad" 1024732 1024742 1028920 1028935) (-632 "LNAGG.spad" 1020498 1020510 1024688 1024693) (-631 "LMOPS.spad" 1017234 1017251 1020488 1020493) (-630 "LMODULE.spad" 1016876 1016886 1017224 1017229) (-629 "LMDICT.spad" 1016159 1016169 1016427 1016454) (-628 "LITERAL.spad" 1016065 1016076 1016149 1016154) (-627 "LIST.spad" 1013783 1013793 1015212 1015239) (-626 "LIST3.spad" 1013074 1013088 1013773 1013778) (-625 "LIST2.spad" 1011714 1011726 1013064 1013069) (-624 "LIST2MAP.spad" 1008591 1008603 1011704 1011709) (-623 "LINEXP.spad" 1008023 1008033 1008571 1008586) (-622 "LINDEP.spad" 1006800 1006812 1007935 1007940) (-621 "LIMITRF.spad" 1004714 1004724 1006790 1006795) (-620 "LIMITPS.spad" 1003597 1003610 1004704 1004709) (-619 "LIE.spad" 1001611 1001623 1002887 1003032) (-618 "LIECAT.spad" 1001087 1001097 1001537 1001606) (-617 "LIECAT.spad" 1000591 1000603 1001043 1001048) (-616 "LIB.spad" 998639 998647 999250 999265) (-615 "LGROBP.spad" 995992 996011 998629 998634) (-614 "LF.spad" 994911 994927 995982 995987) (-613 "LFCAT.spad" 993930 993938 994901 994906) (-612 "LEXTRIPK.spad" 989433 989448 993920 993925) (-611 "LEXP.spad" 987436 987463 989413 989428) (-610 "LETAST.spad" 987135 987143 987426 987431) (-609 "LEADCDET.spad" 985519 985536 987125 987130) (-608 "LAZM3PK.spad" 984223 984245 985509 985514) (-607 "LAUPOL.spad" 982912 982925 983816 983885) (-606 "LAPLACE.spad" 982485 982501 982902 982907) (-605 "LA.spad" 981925 981939 982407 982446) (-604 "LALG.spad" 981701 981711 981905 981920) (-603 "LALG.spad" 981485 981497 981691 981696) (-602 "KTVLOGIC.spad" 980908 980916 981475 981480) (-601 "KOVACIC.spad" 979621 979638 980898 980903) (-600 "KONVERT.spad" 979343 979353 979611 979616) (-599 "KOERCE.spad" 979080 979090 979333 979338) (-598 "KERNEL.spad" 977615 977625 978864 978869) (-597 "KERNEL2.spad" 977318 977330 977605 977610) (-596 "KDAGG.spad" 976409 976431 977286 977313) (-595 "KDAGG.spad" 975520 975544 976399 976404) (-594 "KAFILE.spad" 974483 974499 974718 974745) (-593 "JORDAN.spad" 972310 972322 973773 973918) (-592 "JOINAST.spad" 972004 972012 972300 972305) (-591 "JAVACODE.spad" 971770 971778 971994 971999) (-590 "IXAGG.spad" 969883 969907 971750 971765) (-589 "IXAGG.spad" 967861 967887 969730 969735) (-588 "IVECTOR.spad" 966632 966647 966787 966814) (-587 "ITUPLE.spad" 965777 965787 966622 966627) (-586 "ITRIGMNP.spad" 964588 964607 965767 965772) (-585 "ITFUN3.spad" 964082 964096 964578 964583) (-584 "ITFUN2.spad" 963812 963824 964072 964077) (-583 "ITAYLOR.spad" 961604 961619 963648 963773) (-582 "ISUPS.spad" 954015 954030 960578 960675) (-581 "ISUMP.spad" 953512 953528 954005 954010) (-580 "ISTRING.spad" 952515 952528 952681 952708) (-579 "ISAST.spad" 952234 952242 952505 952510) (-578 "IRURPK.spad" 950947 950966 952224 952229) (-577 "IRSN.spad" 948907 948915 950937 950942) (-576 "IRRF2F.spad" 947382 947392 948863 948868) (-575 "IRREDFFX.spad" 946983 946994 947372 947377) (-574 "IROOT.spad" 945314 945324 946973 946978) (-573 "IR.spad" 943103 943117 945169 945196) (-572 "IR2.spad" 942123 942139 943093 943098) (-571 "IR2F.spad" 941323 941339 942113 942118) (-570 "IPRNTPK.spad" 941083 941091 941313 941318) (-569 "IPF.spad" 940648 940660 940888 940981) (-568 "IPADIC.spad" 940409 940435 940574 940643) (-567 "IP4ADDR.spad" 939957 939965 940399 940404) (-566 "IOMODE.spad" 939578 939586 939947 939952) (-565 "IOBFILE.spad" 938939 938947 939568 939573) (-564 "IOBCON.spad" 938804 938812 938929 938934) (-563 "INVLAPLA.spad" 938449 938465 938794 938799) (-562 "INTTR.spad" 931695 931712 938439 938444) (-561 "INTTOOLS.spad" 929406 929422 931269 931274) (-560 "INTSLPE.spad" 928712 928720 929396 929401) (-559 "INTRVL.spad" 928278 928288 928626 928707) (-558 "INTRF.spad" 926642 926656 928268 928273) (-557 "INTRET.spad" 926074 926084 926632 926637) (-556 "INTRAT.spad" 924749 924766 926064 926069) (-555 "INTPM.spad" 923112 923128 924392 924397) (-554 "INTPAF.spad" 920880 920898 923044 923049) (-553 "INTPACK.spad" 911190 911198 920870 920875) (-552 "INT.spad" 910551 910559 911044 911185) (-551 "INTHERTR.spad" 909817 909834 910541 910546) (-550 "INTHERAL.spad" 909483 909507 909807 909812) (-549 "INTHEORY.spad" 905896 905904 909473 909478) (-548 "INTG0.spad" 899359 899377 905828 905833) (-547 "INTFTBL.spad" 893388 893396 899349 899354) (-546 "INTFACT.spad" 892447 892457 893378 893383) (-545 "INTEF.spad" 890762 890778 892437 892442) (-544 "INTDOM.spad" 889377 889385 890688 890757) (-543 "INTDOM.spad" 888054 888064 889367 889372) (-542 "INTCAT.spad" 886307 886317 887968 888049) (-541 "INTBIT.spad" 885810 885818 886297 886302) (-540 "INTALG.spad" 884992 885019 885800 885805) (-539 "INTAF.spad" 884484 884500 884982 884987) (-538 "INTABL.spad" 883002 883033 883165 883192) (-537 "INS.spad" 880469 880477 882904 882997) (-536 "INS.spad" 878022 878032 880459 880464) (-535 "INPSIGN.spad" 877456 877469 878012 878017) (-534 "INPRODPF.spad" 876522 876541 877446 877451) (-533 "INPRODFF.spad" 875580 875604 876512 876517) (-532 "INNMFACT.spad" 874551 874568 875570 875575) (-531 "INMODGCD.spad" 874035 874065 874541 874546) (-530 "INFSP.spad" 872320 872342 874025 874030) (-529 "INFPROD0.spad" 871370 871389 872310 872315) (-528 "INFORM.spad" 868531 868539 871360 871365) (-527 "INFORM1.spad" 868156 868166 868521 868526) (-526 "INFINITY.spad" 867708 867716 868146 868151) (-525 "INETCLTS.spad" 867685 867693 867698 867703) (-524 "INEP.spad" 866217 866239 867675 867680) (-523 "INDE.spad" 865946 865963 866207 866212) (-522 "INCRMAPS.spad" 865367 865377 865936 865941) (-521 "INBFILE.spad" 864449 864457 865357 865362) (-520 "INBFF.spad" 860219 860230 864439 864444) (-519 "INBCON.spad" 859518 859526 860209 860214) (-518 "INBCON.spad" 858815 858825 859508 859513) (-517 "INAST.spad" 858480 858488 858805 858810) (-516 "IMPTAST.spad" 858188 858196 858470 858475) (-515 "IMATRIX.spad" 857133 857159 857645 857672) (-514 "IMATQF.spad" 856227 856271 857089 857094) (-513 "IMATLIN.spad" 854832 854856 856183 856188) (-512 "ILIST.spad" 853488 853503 854015 854042) (-511 "IIARRAY2.spad" 852876 852914 853095 853122) (-510 "IFF.spad" 852286 852302 852557 852650) (-509 "IFAST.spad" 851900 851908 852276 852281) (-508 "IFARRAY.spad" 849387 849402 851083 851110) (-507 "IFAMON.spad" 849249 849266 849343 849348) (-506 "IEVALAB.spad" 848638 848650 849239 849244) (-505 "IEVALAB.spad" 848025 848039 848628 848633) (-504 "IDPO.spad" 847823 847835 848015 848020) (-503 "IDPOAMS.spad" 847579 847591 847813 847818) (-502 "IDPOAM.spad" 847299 847311 847569 847574) (-501 "IDPC.spad" 846233 846245 847289 847294) (-500 "IDPAM.spad" 845978 845990 846223 846228) (-499 "IDPAG.spad" 845725 845737 845968 845973) (-498 "IDENT.spad" 845642 845650 845715 845720) (-497 "IDECOMP.spad" 842879 842897 845632 845637) (-496 "IDEAL.spad" 837802 837841 842814 842819) (-495 "ICDEN.spad" 836953 836969 837792 837797) (-494 "ICARD.spad" 836142 836150 836943 836948) (-493 "IBPTOOLS.spad" 834735 834752 836132 836137) (-492 "IBITS.spad" 833934 833947 834371 834398) (-491 "IBATOOL.spad" 830809 830828 833924 833929) (-490 "IBACHIN.spad" 829296 829311 830799 830804) (-489 "IARRAY2.spad" 828284 828310 828903 828930) (-488 "IARRAY1.spad" 827329 827344 827467 827494) (-487 "IAN.spad" 825542 825550 827145 827238) (-486 "IALGFACT.spad" 825143 825176 825532 825537) (-485 "HYPCAT.spad" 824567 824575 825133 825138) (-484 "HYPCAT.spad" 823989 823999 824557 824562) (-483 "HOSTNAME.spad" 823797 823805 823979 823984) (-482 "HOAGG.spad" 821055 821065 823777 823792) (-481 "HOAGG.spad" 818098 818110 820822 820827) (-480 "HEXADEC.spad" 815967 815975 816565 816658) (-479 "HEUGCD.spad" 814982 814993 815957 815962) (-478 "HELLFDIV.spad" 814572 814596 814972 814977) (-477 "HEAP.spad" 813964 813974 814179 814206) (-476 "HEADAST.spad" 813495 813503 813954 813959) (-475 "HDP.spad" 804612 804628 804989 805120) (-474 "HDMP.spad" 801788 801803 802406 802533) (-473 "HB.spad" 800025 800033 801778 801783) (-472 "HASHTBL.spad" 798495 798526 798706 798733) (-471 "HASAST.spad" 798211 798219 798485 798490) (-470 "HACKPI.spad" 797694 797702 798113 798206) (-469 "GTSET.spad" 796633 796649 797340 797367) (-468 "GSTBL.spad" 795152 795187 795326 795341) (-467 "GSERIES.spad" 792319 792346 793284 793433) (-466 "GROUP.spad" 791588 791596 792299 792314) (-465 "GROUP.spad" 790865 790875 791578 791583) (-464 "GROEBSOL.spad" 789353 789374 790855 790860) (-463 "GRMOD.spad" 787924 787936 789343 789348) (-462 "GRMOD.spad" 786493 786507 787914 787919) (-461 "GRIMAGE.spad" 779098 779106 786483 786488) (-460 "GRDEF.spad" 777477 777485 779088 779093) (-459 "GRAY.spad" 775936 775944 777467 777472) (-458 "GRALG.spad" 774983 774995 775926 775931) (-457 "GRALG.spad" 774028 774042 774973 774978) (-456 "GPOLSET.spad" 773482 773505 773710 773737) (-455 "GOSPER.spad" 772747 772765 773472 773477) (-454 "GMODPOL.spad" 771885 771912 772715 772742) (-453 "GHENSEL.spad" 770954 770968 771875 771880) (-452 "GENUPS.spad" 767055 767068 770944 770949) (-451 "GENUFACT.spad" 766632 766642 767045 767050) (-450 "GENPGCD.spad" 766216 766233 766622 766627) (-449 "GENMFACT.spad" 765668 765687 766206 766211) (-448 "GENEEZ.spad" 763607 763620 765658 765663) (-447 "GDMP.spad" 760625 760642 761401 761528) (-446 "GCNAALG.spad" 754520 754547 760419 760486) (-445 "GCDDOM.spad" 753692 753700 754446 754515) (-444 "GCDDOM.spad" 752926 752936 753682 753687) (-443 "GB.spad" 750444 750482 752882 752887) (-442 "GBINTERN.spad" 746464 746502 750434 750439) (-441 "GBF.spad" 742221 742259 746454 746459) (-440 "GBEUCLID.spad" 740095 740133 742211 742216) (-439 "GAUSSFAC.spad" 739392 739400 740085 740090) (-438 "GALUTIL.spad" 737714 737724 739348 739353) (-437 "GALPOLYU.spad" 736160 736173 737704 737709) (-436 "GALFACTU.spad" 734325 734344 736150 736155) (-435 "GALFACT.spad" 724458 724469 734315 734320) (-434 "FVFUN.spad" 721471 721479 724438 724453) (-433 "FVC.spad" 720513 720521 721451 721466) (-432 "FUNCTION.spad" 720362 720374 720503 720508) (-431 "FT.spad" 718574 718582 720352 720357) (-430 "FTEM.spad" 717737 717745 718564 718569) (-429 "FSUPFACT.spad" 716637 716656 717673 717678) (-428 "FST.spad" 714723 714731 716627 716632) (-427 "FSRED.spad" 714201 714217 714713 714718) (-426 "FSPRMELT.spad" 713025 713041 714158 714163) (-425 "FSPECF.spad" 711102 711118 713015 713020) (-424 "FS.spad" 705152 705162 710865 711097) (-423 "FS.spad" 698992 699004 704707 704712) (-422 "FSINT.spad" 698650 698666 698982 698987) (-421 "FSERIES.spad" 697837 697849 698470 698569) (-420 "FSCINT.spad" 697150 697166 697827 697832) (-419 "FSAGG.spad" 696255 696265 697094 697145) (-418 "FSAGG.spad" 695334 695346 696175 696180) (-417 "FSAGG2.spad" 694033 694049 695324 695329) (-416 "FS2UPS.spad" 688422 688456 694023 694028) (-415 "FS2.spad" 688067 688083 688412 688417) (-414 "FS2EXPXP.spad" 687190 687213 688057 688062) (-413 "FRUTIL.spad" 686132 686142 687180 687185) (-412 "FR.spad" 679826 679836 685156 685225) (-411 "FRNAALG.spad" 674913 674923 679768 679821) (-410 "FRNAALG.spad" 670012 670024 674869 674874) (-409 "FRNAAF2.spad" 669466 669484 670002 670007) (-408 "FRMOD.spad" 668860 668890 669397 669402) (-407 "FRIDEAL.spad" 668055 668076 668840 668855) (-406 "FRIDEAL2.spad" 667657 667689 668045 668050) (-405 "FRETRCT.spad" 667168 667178 667647 667652) (-404 "FRETRCT.spad" 666545 666557 667026 667031) (-403 "FRAMALG.spad" 664873 664886 666501 666540) (-402 "FRAMALG.spad" 663233 663248 664863 664868) (-401 "FRAC.spad" 660332 660342 660735 660908) (-400 "FRAC2.spad" 659935 659947 660322 660327) (-399 "FR2.spad" 659269 659281 659925 659930) (-398 "FPS.spad" 656078 656086 659159 659264) (-397 "FPS.spad" 652915 652925 655998 656003) (-396 "FPC.spad" 651957 651965 652817 652910) (-395 "FPC.spad" 651085 651095 651947 651952) (-394 "FPATMAB.spad" 650837 650847 651065 651080) (-393 "FPARFRAC.spad" 649310 649327 650827 650832) (-392 "FORTRAN.spad" 647816 647859 649300 649305) (-391 "FORT.spad" 646745 646753 647806 647811) (-390 "FORTFN.spad" 643905 643913 646725 646740) (-389 "FORTCAT.spad" 643579 643587 643885 643900) (-388 "FORMULA.spad" 640917 640925 643569 643574) (-387 "FORMULA1.spad" 640396 640406 640907 640912) (-386 "FORDER.spad" 640087 640111 640386 640391) (-385 "FOP.spad" 639288 639296 640077 640082) (-384 "FNLA.spad" 638712 638734 639256 639283) (-383 "FNCAT.spad" 637040 637048 638702 638707) (-382 "FNAME.spad" 636932 636940 637030 637035) (-381 "FMTC.spad" 636730 636738 636858 636927) (-380 "FMONOID.spad" 633785 633795 636686 636691) (-379 "FM.spad" 633480 633492 633719 633746) (-378 "FMFUN.spad" 630500 630508 633460 633475) (-377 "FMC.spad" 629542 629550 630480 630495) (-376 "FMCAT.spad" 627196 627214 629510 629537) (-375 "FM1.spad" 626553 626565 627130 627157) (-374 "FLOATRP.spad" 624274 624288 626543 626548) (-373 "FLOAT.spad" 617438 617446 624140 624269) (-372 "FLOATCP.spad" 614855 614869 617428 617433) (-371 "FLINEXP.spad" 614567 614577 614835 614850) (-370 "FLINEXP.spad" 614233 614245 614503 614508) (-369 "FLASORT.spad" 613553 613565 614223 614228) (-368 "FLALG.spad" 611199 611218 613479 613548) (-367 "FLAGG.spad" 608205 608215 611167 611194) (-366 "FLAGG.spad" 605124 605136 608088 608093) (-365 "FLAGG2.spad" 603805 603821 605114 605119) (-364 "FINRALG.spad" 601834 601847 603761 603800) (-363 "FINRALG.spad" 599789 599804 601718 601723) (-362 "FINITE.spad" 598941 598949 599779 599784) (-361 "FINAALG.spad" 587922 587932 598883 598936) (-360 "FINAALG.spad" 576915 576927 587878 587883) (-359 "FILE.spad" 576498 576508 576905 576910) (-358 "FILECAT.spad" 575016 575033 576488 576493) (-357 "FIELD.spad" 574422 574430 574918 575011) (-356 "FIELD.spad" 573914 573924 574412 574417) (-355 "FGROUP.spad" 572523 572533 573894 573909) (-354 "FGLMICPK.spad" 571310 571325 572513 572518) (-353 "FFX.spad" 570685 570700 571026 571119) (-352 "FFSLPE.spad" 570174 570195 570675 570680) (-351 "FFPOLY.spad" 561426 561437 570164 570169) (-350 "FFPOLY2.spad" 560486 560503 561416 561421) (-349 "FFP.spad" 559883 559903 560202 560295) (-348 "FF.spad" 559331 559347 559564 559657) (-347 "FFNBX.spad" 557843 557863 559047 559140) (-346 "FFNBP.spad" 556356 556373 557559 557652) (-345 "FFNB.spad" 554821 554842 556037 556130) (-344 "FFINTBAS.spad" 552235 552254 554811 554816) (-343 "FFIELDC.spad" 549810 549818 552137 552230) (-342 "FFIELDC.spad" 547471 547481 549800 549805) (-341 "FFHOM.spad" 546219 546236 547461 547466) (-340 "FFF.spad" 543654 543665 546209 546214) (-339 "FFCGX.spad" 542501 542521 543370 543463) (-338 "FFCGP.spad" 541390 541410 542217 542310) (-337 "FFCG.spad" 540182 540203 541071 541164) (-336 "FFCAT.spad" 533209 533231 540021 540177) (-335 "FFCAT.spad" 526315 526339 533129 533134) (-334 "FFCAT2.spad" 526060 526100 526305 526310) (-333 "FEXPR.spad" 517769 517815 525816 525855) (-332 "FEVALAB.spad" 517475 517485 517759 517764) (-331 "FEVALAB.spad" 516966 516978 517252 517257) (-330 "FDIV.spad" 516408 516432 516956 516961) (-329 "FDIVCAT.spad" 514450 514474 516398 516403) (-328 "FDIVCAT.spad" 512490 512516 514440 514445) (-327 "FDIV2.spad" 512144 512184 512480 512485) (-326 "FCPAK1.spad" 510697 510705 512134 512139) (-325 "FCOMP.spad" 510076 510086 510687 510692) (-324 "FC.spad" 499901 499909 510066 510071) (-323 "FAXF.spad" 492836 492850 499803 499896) (-322 "FAXF.spad" 485823 485839 492792 492797) (-321 "FARRAY.spad" 483969 483979 485006 485033) (-320 "FAMR.spad" 482089 482101 483867 483964) (-319 "FAMR.spad" 480193 480207 481973 481978) (-318 "FAMONOID.spad" 479843 479853 480147 480152) (-317 "FAMONC.spad" 478065 478077 479833 479838) (-316 "FAGROUP.spad" 477671 477681 477961 477988) (-315 "FACUTIL.spad" 475867 475884 477661 477666) (-314 "FACTFUNC.spad" 475043 475053 475857 475862) (-313 "EXPUPXS.spad" 471876 471899 473175 473324) (-312 "EXPRTUBE.spad" 469104 469112 471866 471871) (-311 "EXPRODE.spad" 465976 465992 469094 469099) (-310 "EXPR.spad" 461251 461261 461965 462372) (-309 "EXPR2UPS.spad" 457343 457356 461241 461246) (-308 "EXPR2.spad" 457046 457058 457333 457338) (-307 "EXPEXPAN.spad" 453984 454009 454618 454711) (-306 "EXIT.spad" 453655 453663 453974 453979) (-305 "EXITAST.spad" 453391 453399 453645 453650) (-304 "EVALCYC.spad" 452849 452863 453381 453386) (-303 "EVALAB.spad" 452413 452423 452839 452844) (-302 "EVALAB.spad" 451975 451987 452403 452408) (-301 "EUCDOM.spad" 449517 449525 451901 451970) (-300 "EUCDOM.spad" 447121 447131 449507 449512) (-299 "ESTOOLS.spad" 438961 438969 447111 447116) (-298 "ESTOOLS2.spad" 438562 438576 438951 438956) (-297 "ESTOOLS1.spad" 438247 438258 438552 438557) (-296 "ES.spad" 430794 430802 438237 438242) (-295 "ES.spad" 423247 423257 430692 430697) (-294 "ESCONT.spad" 420020 420028 423237 423242) (-293 "ESCONT1.spad" 419769 419781 420010 420015) (-292 "ES2.spad" 419264 419280 419759 419764) (-291 "ES1.spad" 418830 418846 419254 419259) (-290 "ERROR.spad" 416151 416159 418820 418825) (-289 "EQTBL.spad" 414623 414645 414832 414859) (-288 "EQ.spad" 409497 409507 412296 412408) (-287 "EQ2.spad" 409213 409225 409487 409492) (-286 "EP.spad" 405527 405537 409203 409208) (-285 "ENV.spad" 404229 404237 405517 405522) (-284 "ENTIRER.spad" 403897 403905 404173 404224) (-283 "EMR.spad" 403098 403139 403823 403892) (-282 "ELTAGG.spad" 401338 401357 403088 403093) (-281 "ELTAGG.spad" 399542 399563 401294 401299) (-280 "ELTAB.spad" 398989 399007 399532 399537) (-279 "ELFUTS.spad" 398368 398387 398979 398984) (-278 "ELEMFUN.spad" 398057 398065 398358 398363) (-277 "ELEMFUN.spad" 397744 397754 398047 398052) (-276 "ELAGG.spad" 395675 395685 397712 397739) (-275 "ELAGG.spad" 393555 393567 395594 395599) (-274 "ELABEXPR.spad" 392486 392494 393545 393550) (-273 "EFUPXS.spad" 389262 389292 392442 392447) (-272 "EFULS.spad" 386098 386121 389218 389223) (-271 "EFSTRUC.spad" 384053 384069 386088 386093) (-270 "EF.spad" 378819 378835 384043 384048) (-269 "EAB.spad" 377095 377103 378809 378814) (-268 "E04UCFA.spad" 376631 376639 377085 377090) (-267 "E04NAFA.spad" 376208 376216 376621 376626) (-266 "E04MBFA.spad" 375788 375796 376198 376203) (-265 "E04JAFA.spad" 375324 375332 375778 375783) (-264 "E04GCFA.spad" 374860 374868 375314 375319) (-263 "E04FDFA.spad" 374396 374404 374850 374855) (-262 "E04DGFA.spad" 373932 373940 374386 374391) (-261 "E04AGNT.spad" 369774 369782 373922 373927) (-260 "DVARCAT.spad" 366459 366469 369764 369769) (-259 "DVARCAT.spad" 363142 363154 366449 366454) (-258 "DSMP.spad" 360573 360587 360878 361005) (-257 "DROPT.spad" 354518 354526 360563 360568) (-256 "DROPT1.spad" 354181 354191 354508 354513) (-255 "DROPT0.spad" 349008 349016 354171 354176) (-254 "DRAWPT.spad" 347163 347171 348998 349003) (-253 "DRAW.spad" 339763 339776 347153 347158) (-252 "DRAWHACK.spad" 339071 339081 339753 339758) (-251 "DRAWCX.spad" 336513 336521 339061 339066) (-250 "DRAWCURV.spad" 336050 336065 336503 336508) (-249 "DRAWCFUN.spad" 325222 325230 336040 336045) (-248 "DQAGG.spad" 323378 323388 325178 325217) (-247 "DPOLCAT.spad" 318719 318735 323246 323373) (-246 "DPOLCAT.spad" 314146 314164 318675 318680) (-245 "DPMO.spad" 307449 307465 307587 307888) (-244 "DPMM.spad" 300765 300783 300890 301191) (-243 "DOMAIN.spad" 300036 300044 300755 300760) (-242 "DMP.spad" 297258 297273 297830 297957) (-241 "DLP.spad" 296606 296616 297248 297253) (-240 "DLIST.spad" 295018 295028 295789 295816) (-239 "DLAGG.spad" 293419 293429 294998 295013) (-238 "DIVRING.spad" 292961 292969 293363 293414) (-237 "DIVRING.spad" 292547 292557 292951 292956) (-236 "DISPLAY.spad" 290727 290735 292537 292542) (-235 "DIRPROD.spad" 281581 281597 282221 282352) (-234 "DIRPROD2.spad" 280389 280407 281571 281576) (-233 "DIRPCAT.spad" 279319 279335 280241 280384) (-232 "DIRPCAT.spad" 277990 278008 278914 278919) (-231 "DIOSP.spad" 276815 276823 277980 277985) (-230 "DIOPS.spad" 275787 275797 276783 276810) (-229 "DIOPS.spad" 274745 274757 275743 275748) (-228 "DIFRING.spad" 274037 274045 274725 274740) (-227 "DIFRING.spad" 273337 273347 274027 274032) (-226 "DIFEXT.spad" 272496 272506 273317 273332) (-225 "DIFEXT.spad" 271572 271584 272395 272400) (-224 "DIAGG.spad" 271190 271200 271540 271567) (-223 "DIAGG.spad" 270828 270840 271180 271185) (-222 "DHMATRIX.spad" 269132 269142 270285 270312) (-221 "DFSFUN.spad" 262540 262548 269122 269127) (-220 "DFLOAT.spad" 259261 259269 262430 262535) (-219 "DFINTTLS.spad" 257470 257486 259251 259256) (-218 "DERHAM.spad" 255380 255412 257450 257465) (-217 "DEQUEUE.spad" 254698 254708 254987 255014) (-216 "DEGRED.spad" 254313 254327 254688 254693) (-215 "DEFINTRF.spad" 251838 251848 254303 254308) (-214 "DEFINTEF.spad" 250334 250350 251828 251833) (-213 "DEFAST.spad" 249702 249710 250324 250329) (-212 "DECIMAL.spad" 247583 247591 248169 248262) (-211 "DDFACT.spad" 245382 245399 247573 247578) (-210 "DBLRESP.spad" 244980 245004 245372 245377) (-209 "DBASE.spad" 243552 243562 244970 244975) (-208 "DATAARY.spad" 243014 243027 243542 243547) (-207 "D03FAFA.spad" 242842 242850 243004 243009) (-206 "D03EEFA.spad" 242662 242670 242832 242837) (-205 "D03AGNT.spad" 241742 241750 242652 242657) (-204 "D02EJFA.spad" 241204 241212 241732 241737) (-203 "D02CJFA.spad" 240682 240690 241194 241199) (-202 "D02BHFA.spad" 240172 240180 240672 240677) (-201 "D02BBFA.spad" 239662 239670 240162 240167) (-200 "D02AGNT.spad" 234466 234474 239652 239657) (-199 "D01WGTS.spad" 232785 232793 234456 234461) (-198 "D01TRNS.spad" 232762 232770 232775 232780) (-197 "D01GBFA.spad" 232284 232292 232752 232757) (-196 "D01FCFA.spad" 231806 231814 232274 232279) (-195 "D01ASFA.spad" 231274 231282 231796 231801) (-194 "D01AQFA.spad" 230720 230728 231264 231269) (-193 "D01APFA.spad" 230144 230152 230710 230715) (-192 "D01ANFA.spad" 229638 229646 230134 230139) (-191 "D01AMFA.spad" 229148 229156 229628 229633) (-190 "D01ALFA.spad" 228688 228696 229138 229143) (-189 "D01AKFA.spad" 228214 228222 228678 228683) (-188 "D01AJFA.spad" 227737 227745 228204 228209) (-187 "D01AGNT.spad" 223796 223804 227727 227732) (-186 "CYCLOTOM.spad" 223302 223310 223786 223791) (-185 "CYCLES.spad" 220134 220142 223292 223297) (-184 "CVMP.spad" 219551 219561 220124 220129) (-183 "CTRIGMNP.spad" 218041 218057 219541 219546) (-182 "CTOR.spad" 217484 217492 218031 218036) (-181 "CTORKIND.spad" 217099 217107 217474 217479) (-180 "CTORCALL.spad" 216687 216695 217089 217094) (-179 "CSTTOOLS.spad" 215930 215943 216677 216682) (-178 "CRFP.spad" 209634 209647 215920 215925) (-177 "CRCEAST.spad" 209354 209362 209624 209629) (-176 "CRAPACK.spad" 208397 208407 209344 209349) (-175 "CPMATCH.spad" 207897 207912 208322 208327) (-174 "CPIMA.spad" 207602 207621 207887 207892) (-173 "COORDSYS.spad" 202495 202505 207592 207597) (-172 "CONTOUR.spad" 201897 201905 202485 202490) (-171 "CONTFRAC.spad" 197509 197519 201799 201892) (-170 "CONDUIT.spad" 197267 197275 197499 197504) (-169 "COMRING.spad" 196941 196949 197205 197262) (-168 "COMPPROP.spad" 196455 196463 196931 196936) (-167 "COMPLPAT.spad" 196222 196237 196445 196450) (-166 "COMPLEX.spad" 190258 190268 190502 190751) (-165 "COMPLEX2.spad" 189971 189983 190248 190253) (-164 "COMPFACT.spad" 189573 189587 189961 189966) (-163 "COMPCAT.spad" 187699 187709 189307 189568) (-162 "COMPCAT.spad" 185518 185530 187128 187133) (-161 "COMMUPC.spad" 185264 185282 185508 185513) (-160 "COMMONOP.spad" 184797 184805 185254 185259) (-159 "COMM.spad" 184606 184614 184787 184792) (-158 "COMMAAST.spad" 184369 184377 184596 184601) (-157 "COMBOPC.spad" 183274 183282 184359 184364) (-156 "COMBINAT.spad" 182019 182029 183264 183269) (-155 "COMBF.spad" 179387 179403 182009 182014) (-154 "COLOR.spad" 178224 178232 179377 179382) (-153 "COLONAST.spad" 177890 177898 178214 178219) (-152 "CMPLXRT.spad" 177599 177616 177880 177885) (-151 "CLLCTAST.spad" 177261 177269 177589 177594) (-150 "CLIP.spad" 173353 173361 177251 177256) (-149 "CLIF.spad" 171992 172008 173309 173348) (-148 "CLAGG.spad" 168467 168477 171972 171987) (-147 "CLAGG.spad" 164823 164835 168330 168335) (-146 "CINTSLPE.spad" 164148 164161 164813 164818) (-145 "CHVAR.spad" 162226 162248 164138 164143) (-144 "CHARZ.spad" 162141 162149 162206 162221) (-143 "CHARPOL.spad" 161649 161659 162131 162136) (-142 "CHARNZ.spad" 161402 161410 161629 161644) (-141 "CHAR.spad" 159270 159278 161392 161397) (-140 "CFCAT.spad" 158586 158594 159260 159265) (-139 "CDEN.spad" 157744 157758 158576 158581) (-138 "CCLASS.spad" 155893 155901 157155 157194) (-137 "CATEGORY.spad" 155672 155680 155883 155888) (-136 "CATAST.spad" 155299 155307 155662 155667) (-135 "CASEAST.spad" 155013 155021 155289 155294) (-134 "CARTEN.spad" 150116 150140 155003 155008) (-133 "CARTEN2.spad" 149502 149529 150106 150111) (-132 "CARD.spad" 146791 146799 149476 149497) (-131 "CAPSLAST.spad" 146565 146573 146781 146786) (-130 "CACHSET.spad" 146187 146195 146555 146560) (-129 "CABMON.spad" 145740 145748 146177 146182) (-128 "BYTE.spad" 144914 144922 145730 145735) (-127 "BYTEBUF.spad" 142736 142744 144083 144110) (-126 "BTREE.spad" 141805 141815 142343 142370) (-125 "BTOURN.spad" 140808 140818 141412 141439) (-124 "BTCAT.spad" 140184 140194 140764 140803) (-123 "BTCAT.spad" 139592 139604 140174 140179) (-122 "BTAGG.spad" 138702 138710 139548 139587) (-121 "BTAGG.spad" 137844 137854 138692 138697) (-120 "BSTREE.spad" 136579 136589 137451 137478) (-119 "BRILL.spad" 134774 134785 136569 136574) (-118 "BRAGG.spad" 133688 133698 134754 134769) (-117 "BRAGG.spad" 132576 132588 133644 133649) (-116 "BPADICRT.spad" 130557 130569 130812 130905) (-115 "BPADIC.spad" 130221 130233 130483 130552) (-114 "BOUNDZRO.spad" 129877 129894 130211 130216) (-113 "BOP.spad" 125341 125349 129867 129872) (-112 "BOP1.spad" 122727 122737 125297 125302) (-111 "BOOLEAN.spad" 122051 122059 122717 122722) (-110 "BMODULE.spad" 121763 121775 122019 122046) (-109 "BITS.spad" 121182 121190 121399 121426) (-108 "BINDING.spad" 120601 120609 121172 121177) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2272386 2272391 2272396 2272401) (-2 NIL 2272366 2272371 2272376 2272381) (-1 NIL 2272346 2272351 2272356 2272361) (0 NIL 2272326 2272331 2272336 2272341) (-1265 "ZMOD.spad" 2272135 2272148 2272264 2272321) (-1264 "ZLINDEP.spad" 2271179 2271190 2272125 2272130) (-1263 "ZDSOLVE.spad" 2261028 2261050 2271169 2271174) (-1262 "YSTREAM.spad" 2260521 2260532 2261018 2261023) (-1261 "XRPOLY.spad" 2259741 2259761 2260377 2260446) (-1260 "XPR.spad" 2257470 2257483 2259459 2259558) (-1259 "XPOLY.spad" 2257025 2257036 2257326 2257395) (-1258 "XPOLYC.spad" 2256342 2256358 2256951 2257020) (-1257 "XPBWPOLY.spad" 2254779 2254799 2256122 2256191) (-1256 "XF.spad" 2253240 2253255 2254681 2254774) (-1255 "XF.spad" 2251681 2251698 2253124 2253129) (-1254 "XFALG.spad" 2248705 2248721 2251607 2251676) (-1253 "XEXPPKG.spad" 2247956 2247982 2248695 2248700) (-1252 "XDPOLY.spad" 2247570 2247586 2247812 2247881) (-1251 "XALG.spad" 2247168 2247179 2247526 2247565) (-1250 "WUTSET.spad" 2243007 2243024 2246814 2246841) (-1249 "WP.spad" 2242021 2242065 2242865 2242932) (-1248 "WHILEAST.spad" 2241819 2241828 2242011 2242016) (-1247 "WHEREAST.spad" 2241490 2241499 2241809 2241814) (-1246 "WFFINTBS.spad" 2239053 2239075 2241480 2241485) (-1245 "WEIER.spad" 2237267 2237278 2239043 2239048) (-1244 "VSPACE.spad" 2236940 2236951 2237235 2237262) (-1243 "VSPACE.spad" 2236633 2236646 2236930 2236935) (-1242 "VOID.spad" 2236223 2236232 2236623 2236628) (-1241 "VIEW.spad" 2233845 2233854 2236213 2236218) (-1240 "VIEWDEF.spad" 2229042 2229051 2233835 2233840) (-1239 "VIEW3D.spad" 2212877 2212886 2229032 2229037) (-1238 "VIEW2D.spad" 2200614 2200623 2212867 2212872) (-1237 "VECTOR.spad" 2199289 2199300 2199540 2199567) (-1236 "VECTOR2.spad" 2197916 2197929 2199279 2199284) (-1235 "VECTCAT.spad" 2195804 2195815 2197872 2197911) (-1234 "VECTCAT.spad" 2193512 2193525 2195582 2195587) (-1233 "VARIABLE.spad" 2193292 2193307 2193502 2193507) (-1232 "UTYPE.spad" 2192926 2192935 2193272 2193287) (-1231 "UTSODETL.spad" 2192219 2192243 2192882 2192887) (-1230 "UTSODE.spad" 2190407 2190427 2192209 2192214) (-1229 "UTS.spad" 2185196 2185224 2188874 2188971) (-1228 "UTSCAT.spad" 2182647 2182663 2185094 2185191) (-1227 "UTSCAT.spad" 2179742 2179760 2182191 2182196) (-1226 "UTS2.spad" 2179335 2179370 2179732 2179737) (-1225 "URAGG.spad" 2173957 2173968 2179315 2179330) (-1224 "URAGG.spad" 2168553 2168566 2173913 2173918) (-1223 "UPXSSING.spad" 2166196 2166222 2167634 2167767) (-1222 "UPXS.spad" 2163223 2163251 2164328 2164477) (-1221 "UPXSCONS.spad" 2160980 2161000 2161355 2161504) (-1220 "UPXSCCA.spad" 2159438 2159458 2160826 2160975) (-1219 "UPXSCCA.spad" 2158038 2158060 2159428 2159433) (-1218 "UPXSCAT.spad" 2156619 2156635 2157884 2158033) (-1217 "UPXS2.spad" 2156160 2156213 2156609 2156614) (-1216 "UPSQFREE.spad" 2154572 2154586 2156150 2156155) (-1215 "UPSCAT.spad" 2152165 2152189 2154470 2154567) (-1214 "UPSCAT.spad" 2149464 2149490 2151771 2151776) (-1213 "UPOLYC.spad" 2144442 2144453 2149306 2149459) (-1212 "UPOLYC.spad" 2139312 2139325 2144178 2144183) (-1211 "UPOLYC2.spad" 2138781 2138800 2139302 2139307) (-1210 "UP.spad" 2135823 2135838 2136331 2136484) (-1209 "UPMP.spad" 2134713 2134726 2135813 2135818) (-1208 "UPDIVP.spad" 2134276 2134290 2134703 2134708) (-1207 "UPDECOMP.spad" 2132513 2132527 2134266 2134271) (-1206 "UPCDEN.spad" 2131720 2131736 2132503 2132508) (-1205 "UP2.spad" 2131082 2131103 2131710 2131715) (-1204 "UNISEG.spad" 2130435 2130446 2131001 2131006) (-1203 "UNISEG2.spad" 2129928 2129941 2130391 2130396) (-1202 "UNIFACT.spad" 2129029 2129041 2129918 2129923) (-1201 "ULS.spad" 2119581 2119609 2120674 2121103) (-1200 "ULSCONS.spad" 2113618 2113638 2113990 2114139) (-1199 "ULSCCAT.spad" 2111215 2111235 2113438 2113613) (-1198 "ULSCCAT.spad" 2108946 2108968 2111171 2111176) (-1197 "ULSCAT.spad" 2107162 2107178 2108792 2108941) (-1196 "ULS2.spad" 2106674 2106727 2107152 2107157) (-1195 "UFD.spad" 2105739 2105748 2106600 2106669) (-1194 "UFD.spad" 2104866 2104877 2105729 2105734) (-1193 "UDVO.spad" 2103713 2103722 2104856 2104861) (-1192 "UDPO.spad" 2101140 2101151 2103669 2103674) (-1191 "TYPE.spad" 2101062 2101071 2101120 2101135) (-1190 "TYPEAST.spad" 2100981 2100990 2101052 2101057) (-1189 "TWOFACT.spad" 2099631 2099646 2100971 2100976) (-1188 "TUPLE.spad" 2099017 2099028 2099530 2099535) (-1187 "TUBETOOL.spad" 2095854 2095863 2099007 2099012) (-1186 "TUBE.spad" 2094495 2094512 2095844 2095849) (-1185 "TS.spad" 2093084 2093100 2094060 2094157) (-1184 "TSETCAT.spad" 2080199 2080216 2093040 2093079) (-1183 "TSETCAT.spad" 2067312 2067331 2080155 2080160) (-1182 "TRMANIP.spad" 2061678 2061695 2067018 2067023) (-1181 "TRIMAT.spad" 2060637 2060662 2061668 2061673) (-1180 "TRIGMNIP.spad" 2059154 2059171 2060627 2060632) (-1179 "TRIGCAT.spad" 2058666 2058675 2059144 2059149) (-1178 "TRIGCAT.spad" 2058176 2058187 2058656 2058661) (-1177 "TREE.spad" 2056747 2056758 2057783 2057810) (-1176 "TRANFUN.spad" 2056578 2056587 2056737 2056742) (-1175 "TRANFUN.spad" 2056407 2056418 2056568 2056573) (-1174 "TOPSP.spad" 2056081 2056090 2056397 2056402) (-1173 "TOOLSIGN.spad" 2055744 2055755 2056071 2056076) (-1172 "TEXTFILE.spad" 2054301 2054310 2055734 2055739) (-1171 "TEX.spad" 2051318 2051327 2054291 2054296) (-1170 "TEX1.spad" 2050874 2050885 2051308 2051313) (-1169 "TEMUTL.spad" 2050429 2050438 2050864 2050869) (-1168 "TBCMPPK.spad" 2048522 2048545 2050419 2050424) (-1167 "TBAGG.spad" 2047546 2047569 2048490 2048517) (-1166 "TBAGG.spad" 2046590 2046615 2047536 2047541) (-1165 "TANEXP.spad" 2045966 2045977 2046580 2046585) (-1164 "TABLE.spad" 2044377 2044400 2044647 2044674) (-1163 "TABLEAU.spad" 2043858 2043869 2044367 2044372) (-1162 "TABLBUMP.spad" 2040641 2040652 2043848 2043853) (-1161 "SYSTEM.spad" 2039915 2039924 2040631 2040636) (-1160 "SYSSOLP.spad" 2037388 2037399 2039905 2039910) (-1159 "SYNTAX.spad" 2033658 2033667 2037378 2037383) (-1158 "SYMTAB.spad" 2031714 2031723 2033648 2033653) (-1157 "SYMS.spad" 2027699 2027708 2031704 2031709) (-1156 "SYMPOLY.spad" 2026706 2026717 2026788 2026915) (-1155 "SYMFUNC.spad" 2026181 2026192 2026696 2026701) (-1154 "SYMBOL.spad" 2023517 2023526 2026171 2026176) (-1153 "SWITCH.spad" 2020274 2020283 2023507 2023512) (-1152 "SUTS.spad" 2017173 2017201 2018741 2018838) (-1151 "SUPXS.spad" 2014187 2014215 2015305 2015454) (-1150 "SUP.spad" 2010956 2010967 2011737 2011890) (-1149 "SUPFRACF.spad" 2010061 2010079 2010946 2010951) (-1148 "SUP2.spad" 2009451 2009464 2010051 2010056) (-1147 "SUMRF.spad" 2008417 2008428 2009441 2009446) (-1146 "SUMFS.spad" 2008050 2008067 2008407 2008412) (-1145 "SULS.spad" 1998589 1998617 1999695 2000124) (-1144 "SUCHTAST.spad" 1998358 1998367 1998579 1998584) (-1143 "SUCH.spad" 1998038 1998053 1998348 1998353) (-1142 "SUBSPACE.spad" 1990045 1990060 1998028 1998033) (-1141 "SUBRESP.spad" 1989205 1989219 1990001 1990006) (-1140 "STTF.spad" 1985304 1985320 1989195 1989200) (-1139 "STTFNC.spad" 1981772 1981788 1985294 1985299) (-1138 "STTAYLOR.spad" 1974170 1974181 1981653 1981658) (-1137 "STRTBL.spad" 1972675 1972692 1972824 1972851) (-1136 "STRING.spad" 1972084 1972093 1972098 1972125) (-1135 "STRICAT.spad" 1971860 1971869 1972040 1972079) (-1134 "STREAM.spad" 1968628 1968639 1971385 1971400) (-1133 "STREAM3.spad" 1968173 1968188 1968618 1968623) (-1132 "STREAM2.spad" 1967241 1967254 1968163 1968168) (-1131 "STREAM1.spad" 1966945 1966956 1967231 1967236) (-1130 "STINPROD.spad" 1965851 1965867 1966935 1966940) (-1129 "STEP.spad" 1965052 1965061 1965841 1965846) (-1128 "STBL.spad" 1963578 1963606 1963745 1963760) (-1127 "STAGG.spad" 1962643 1962654 1963558 1963573) (-1126 "STAGG.spad" 1961716 1961729 1962633 1962638) (-1125 "STACK.spad" 1961067 1961078 1961323 1961350) (-1124 "SREGSET.spad" 1958771 1958788 1960713 1960740) (-1123 "SRDCMPK.spad" 1957316 1957336 1958761 1958766) (-1122 "SRAGG.spad" 1952401 1952410 1957272 1957311) (-1121 "SRAGG.spad" 1947518 1947529 1952391 1952396) (-1120 "SQMATRIX.spad" 1945134 1945152 1946050 1946137) (-1119 "SPLTREE.spad" 1939686 1939699 1944570 1944597) (-1118 "SPLNODE.spad" 1936274 1936287 1939676 1939681) (-1117 "SPFCAT.spad" 1935051 1935060 1936264 1936269) (-1116 "SPECOUT.spad" 1933601 1933610 1935041 1935046) (-1115 "SPADXPT.spad" 1925730 1925739 1933581 1933596) (-1114 "spad-parser.spad" 1925195 1925204 1925720 1925725) (-1113 "SPADAST.spad" 1924896 1924905 1925185 1925190) (-1112 "SPACEC.spad" 1908909 1908920 1924886 1924891) (-1111 "SPACE3.spad" 1908685 1908696 1908899 1908904) (-1110 "SORTPAK.spad" 1908230 1908243 1908641 1908646) (-1109 "SOLVETRA.spad" 1905987 1905998 1908220 1908225) (-1108 "SOLVESER.spad" 1904507 1904518 1905977 1905982) (-1107 "SOLVERAD.spad" 1900517 1900528 1904497 1904502) (-1106 "SOLVEFOR.spad" 1898937 1898955 1900507 1900512) (-1105 "SNTSCAT.spad" 1898525 1898542 1898893 1898932) (-1104 "SMTS.spad" 1896785 1896811 1898090 1898187) (-1103 "SMP.spad" 1894224 1894244 1894614 1894741) (-1102 "SMITH.spad" 1893067 1893092 1894214 1894219) (-1101 "SMATCAT.spad" 1891165 1891195 1892999 1893062) (-1100 "SMATCAT.spad" 1889207 1889239 1891043 1891048) (-1099 "SKAGG.spad" 1888156 1888167 1889163 1889202) (-1098 "SINT.spad" 1886464 1886473 1888022 1888151) (-1097 "SIMPAN.spad" 1886192 1886201 1886454 1886459) (-1096 "SIG.spad" 1885520 1885529 1886182 1886187) (-1095 "SIGNRF.spad" 1884628 1884639 1885510 1885515) (-1094 "SIGNEF.spad" 1883897 1883914 1884618 1884623) (-1093 "SIGAST.spad" 1883278 1883287 1883887 1883892) (-1092 "SHP.spad" 1881196 1881211 1883234 1883239) (-1091 "SHDP.spad" 1872181 1872208 1872690 1872821) (-1090 "SGROUP.spad" 1871789 1871798 1872171 1872176) (-1089 "SGROUP.spad" 1871395 1871406 1871779 1871784) (-1088 "SGCF.spad" 1864276 1864285 1871385 1871390) (-1087 "SFRTCAT.spad" 1863192 1863209 1864232 1864271) (-1086 "SFRGCD.spad" 1862255 1862275 1863182 1863187) (-1085 "SFQCMPK.spad" 1856892 1856912 1862245 1862250) (-1084 "SFORT.spad" 1856327 1856341 1856882 1856887) (-1083 "SEXOF.spad" 1856170 1856210 1856317 1856322) (-1082 "SEX.spad" 1856062 1856071 1856160 1856165) (-1081 "SEXCAT.spad" 1853166 1853206 1856052 1856057) (-1080 "SET.spad" 1851466 1851477 1852587 1852626) (-1079 "SETMN.spad" 1849900 1849917 1851456 1851461) (-1078 "SETCAT.spad" 1849385 1849394 1849890 1849895) (-1077 "SETCAT.spad" 1848868 1848879 1849375 1849380) (-1076 "SETAGG.spad" 1845377 1845388 1848836 1848863) (-1075 "SETAGG.spad" 1841906 1841919 1845367 1845372) (-1074 "SEQAST.spad" 1841609 1841618 1841896 1841901) (-1073 "SEGXCAT.spad" 1840721 1840734 1841589 1841604) (-1072 "SEG.spad" 1840534 1840545 1840640 1840645) (-1071 "SEGCAT.spad" 1839353 1839364 1840514 1840529) (-1070 "SEGBIND.spad" 1838425 1838436 1839308 1839313) (-1069 "SEGBIND2.spad" 1838121 1838134 1838415 1838420) (-1068 "SEGAST.spad" 1837835 1837844 1838111 1838116) (-1067 "SEG2.spad" 1837260 1837273 1837791 1837796) (-1066 "SDVAR.spad" 1836536 1836547 1837250 1837255) (-1065 "SDPOL.spad" 1833926 1833937 1834217 1834344) (-1064 "SCPKG.spad" 1832005 1832016 1833916 1833921) (-1063 "SCOPE.spad" 1831150 1831159 1831995 1832000) (-1062 "SCACHE.spad" 1829832 1829843 1831140 1831145) (-1061 "SASTCAT.spad" 1829741 1829750 1829822 1829827) (-1060 "SAOS.spad" 1829613 1829622 1829731 1829736) (-1059 "SAERFFC.spad" 1829326 1829346 1829603 1829608) (-1058 "SAE.spad" 1827501 1827517 1828112 1828247) (-1057 "SAEFACT.spad" 1827202 1827222 1827491 1827496) (-1056 "RURPK.spad" 1824843 1824859 1827192 1827197) (-1055 "RULESET.spad" 1824284 1824308 1824833 1824838) (-1054 "RULE.spad" 1822488 1822512 1824274 1824279) (-1053 "RULECOLD.spad" 1822340 1822353 1822478 1822483) (-1052 "RSTRCAST.spad" 1822057 1822066 1822330 1822335) (-1051 "RSETGCD.spad" 1818435 1818455 1822047 1822052) (-1050 "RSETCAT.spad" 1808207 1808224 1818391 1818430) (-1049 "RSETCAT.spad" 1798011 1798030 1808197 1808202) (-1048 "RSDCMPK.spad" 1796463 1796483 1798001 1798006) (-1047 "RRCC.spad" 1794847 1794877 1796453 1796458) (-1046 "RRCC.spad" 1793229 1793261 1794837 1794842) (-1045 "RPTAST.spad" 1792931 1792940 1793219 1793224) (-1044 "RPOLCAT.spad" 1772291 1772306 1792799 1792926) (-1043 "RPOLCAT.spad" 1751365 1751382 1771875 1771880) (-1042 "ROUTINE.spad" 1747228 1747237 1750012 1750039) (-1041 "ROMAN.spad" 1746460 1746469 1747094 1747223) (-1040 "ROIRC.spad" 1745540 1745572 1746450 1746455) (-1039 "RNS.spad" 1744443 1744452 1745442 1745535) (-1038 "RNS.spad" 1743432 1743443 1744433 1744438) (-1037 "RNG.spad" 1743167 1743176 1743422 1743427) (-1036 "RMODULE.spad" 1742805 1742816 1743157 1743162) (-1035 "RMCAT2.spad" 1742213 1742270 1742795 1742800) (-1034 "RMATRIX.spad" 1740892 1740911 1741380 1741419) (-1033 "RMATCAT.spad" 1736413 1736444 1740836 1740887) (-1032 "RMATCAT.spad" 1731836 1731869 1736261 1736266) (-1031 "RINTERP.spad" 1731724 1731744 1731826 1731831) (-1030 "RING.spad" 1731081 1731090 1731704 1731719) (-1029 "RING.spad" 1730446 1730457 1731071 1731076) (-1028 "RIDIST.spad" 1729830 1729839 1730436 1730441) (-1027 "RGCHAIN.spad" 1728409 1728425 1729315 1729342) (-1026 "RGBCSPC.spad" 1728190 1728202 1728399 1728404) (-1025 "RGBCMDL.spad" 1727720 1727732 1728180 1728185) (-1024 "RF.spad" 1725334 1725345 1727710 1727715) (-1023 "RFFACTOR.spad" 1724796 1724807 1725324 1725329) (-1022 "RFFACT.spad" 1724531 1724543 1724786 1724791) (-1021 "RFDIST.spad" 1723519 1723528 1724521 1724526) (-1020 "RETSOL.spad" 1722936 1722949 1723509 1723514) (-1019 "RETRACT.spad" 1722285 1722296 1722926 1722931) (-1018 "RETRACT.spad" 1721632 1721645 1722275 1722280) (-1017 "RETAST.spad" 1721444 1721453 1721622 1721627) (-1016 "RESULT.spad" 1719504 1719513 1720091 1720118) (-1015 "RESRING.spad" 1718851 1718898 1719442 1719499) (-1014 "RESLATC.spad" 1718175 1718186 1718841 1718846) (-1013 "REPSQ.spad" 1717904 1717915 1718165 1718170) (-1012 "REP.spad" 1715456 1715465 1717894 1717899) (-1011 "REPDB.spad" 1715161 1715172 1715446 1715451) (-1010 "REP2.spad" 1704733 1704744 1715003 1715008) (-1009 "REP1.spad" 1698723 1698734 1704683 1704688) (-1008 "REGSET.spad" 1696520 1696537 1698369 1698396) (-1007 "REF.spad" 1695849 1695860 1696475 1696480) (-1006 "REDORDER.spad" 1695025 1695042 1695839 1695844) (-1005 "RECLOS.spad" 1693808 1693828 1694512 1694605) (-1004 "REALSOLV.spad" 1692940 1692949 1693798 1693803) (-1003 "REAL.spad" 1692812 1692821 1692930 1692935) (-1002 "REAL0Q.spad" 1690094 1690109 1692802 1692807) (-1001 "REAL0.spad" 1686922 1686937 1690084 1690089) (-1000 "RDUCEAST.spad" 1686643 1686652 1686912 1686917) (-999 "RDIV.spad" 1686295 1686319 1686633 1686638) (-998 "RDIST.spad" 1685859 1685869 1686285 1686290) (-997 "RDETRS.spad" 1684656 1684673 1685849 1685854) (-996 "RDETR.spad" 1682764 1682781 1684646 1684651) (-995 "RDEEFS.spad" 1681838 1681854 1682754 1682759) (-994 "RDEEF.spad" 1680835 1680851 1681828 1681833) (-993 "RCFIELD.spad" 1678022 1678030 1680737 1680830) (-992 "RCFIELD.spad" 1675295 1675305 1678012 1678017) (-991 "RCAGG.spad" 1673198 1673208 1675275 1675290) (-990 "RCAGG.spad" 1671038 1671050 1673117 1673122) (-989 "RATRET.spad" 1670399 1670409 1671028 1671033) (-988 "RATFACT.spad" 1670092 1670103 1670389 1670394) (-987 "RANDSRC.spad" 1669412 1669420 1670082 1670087) (-986 "RADUTIL.spad" 1669167 1669175 1669402 1669407) (-985 "RADIX.spad" 1665957 1665970 1667634 1667727) (-984 "RADFF.spad" 1664371 1664407 1664489 1664645) (-983 "RADCAT.spad" 1663965 1663973 1664361 1664366) (-982 "RADCAT.spad" 1663557 1663567 1663955 1663960) (-981 "QUEUE.spad" 1662900 1662910 1663164 1663191) (-980 "QUAT.spad" 1661482 1661492 1661824 1661889) (-979 "QUATCT2.spad" 1661101 1661119 1661472 1661477) (-978 "QUATCAT.spad" 1659266 1659276 1661031 1661096) (-977 "QUATCAT.spad" 1657182 1657194 1658949 1658954) (-976 "QUAGG.spad" 1655996 1656006 1657138 1657177) (-975 "QQUTAST.spad" 1655765 1655773 1655986 1655991) (-974 "QFORM.spad" 1655228 1655242 1655755 1655760) (-973 "QFCAT.spad" 1653919 1653929 1655118 1655223) (-972 "QFCAT.spad" 1652213 1652225 1653414 1653419) (-971 "QFCAT2.spad" 1651904 1651920 1652203 1652208) (-970 "QEQUAT.spad" 1651461 1651469 1651894 1651899) (-969 "QCMPACK.spad" 1646208 1646227 1651451 1651456) (-968 "QALGSET.spad" 1642283 1642315 1646122 1646127) (-967 "QALGSET2.spad" 1640279 1640297 1642273 1642278) (-966 "PWFFINTB.spad" 1637589 1637610 1640269 1640274) (-965 "PUSHVAR.spad" 1636918 1636937 1637579 1637584) (-964 "PTRANFN.spad" 1633044 1633054 1636908 1636913) (-963 "PTPACK.spad" 1630132 1630142 1633034 1633039) (-962 "PTFUNC2.spad" 1629953 1629967 1630122 1630127) (-961 "PTCAT.spad" 1629035 1629045 1629909 1629948) (-960 "PSQFR.spad" 1628342 1628366 1629025 1629030) (-959 "PSEUDLIN.spad" 1627200 1627210 1628332 1628337) (-958 "PSETPK.spad" 1612633 1612649 1627078 1627083) (-957 "PSETCAT.spad" 1606541 1606564 1612601 1612628) (-956 "PSETCAT.spad" 1600435 1600460 1606497 1606502) (-955 "PSCURVE.spad" 1599418 1599426 1600425 1600430) (-954 "PSCAT.spad" 1598185 1598214 1599316 1599413) (-953 "PSCAT.spad" 1597042 1597073 1598175 1598180) (-952 "PRTITION.spad" 1595885 1595893 1597032 1597037) (-951 "PRTDAST.spad" 1595604 1595612 1595875 1595880) (-950 "PRS.spad" 1585166 1585183 1595560 1595565) (-949 "PRQAGG.spad" 1584585 1584595 1585122 1585161) (-948 "PROPLOG.spad" 1583988 1583996 1584575 1584580) (-947 "PROPFRML.spad" 1581906 1581917 1583978 1583983) (-946 "PROPERTY.spad" 1581400 1581408 1581896 1581901) (-945 "PRODUCT.spad" 1579080 1579092 1579366 1579421) (-944 "PR.spad" 1577466 1577478 1578171 1578298) (-943 "PRINT.spad" 1577218 1577226 1577456 1577461) (-942 "PRIMES.spad" 1575469 1575479 1577208 1577213) (-941 "PRIMELT.spad" 1573450 1573464 1575459 1575464) (-940 "PRIMCAT.spad" 1573073 1573081 1573440 1573445) (-939 "PRIMARR.spad" 1572078 1572088 1572256 1572283) (-938 "PRIMARR2.spad" 1570801 1570813 1572068 1572073) (-937 "PREASSOC.spad" 1570173 1570185 1570791 1570796) (-936 "PPCURVE.spad" 1569310 1569318 1570163 1570168) (-935 "PORTNUM.spad" 1569085 1569093 1569300 1569305) (-934 "POLYROOT.spad" 1567857 1567879 1569041 1569046) (-933 "POLY.spad" 1565154 1565164 1565671 1565798) (-932 "POLYLIFT.spad" 1564415 1564438 1565144 1565149) (-931 "POLYCATQ.spad" 1562517 1562539 1564405 1564410) (-930 "POLYCAT.spad" 1555923 1555944 1562385 1562512) (-929 "POLYCAT.spad" 1548631 1548654 1555095 1555100) (-928 "POLY2UP.spad" 1548079 1548093 1548621 1548626) (-927 "POLY2.spad" 1547674 1547686 1548069 1548074) (-926 "POLUTIL.spad" 1546615 1546644 1547630 1547635) (-925 "POLTOPOL.spad" 1545363 1545378 1546605 1546610) (-924 "POINT.spad" 1544202 1544212 1544289 1544316) (-923 "PNTHEORY.spad" 1540868 1540876 1544192 1544197) (-922 "PMTOOLS.spad" 1539625 1539639 1540858 1540863) (-921 "PMSYM.spad" 1539170 1539180 1539615 1539620) (-920 "PMQFCAT.spad" 1538757 1538771 1539160 1539165) (-919 "PMPRED.spad" 1538226 1538240 1538747 1538752) (-918 "PMPREDFS.spad" 1537670 1537692 1538216 1538221) (-917 "PMPLCAT.spad" 1536740 1536758 1537602 1537607) (-916 "PMLSAGG.spad" 1536321 1536335 1536730 1536735) (-915 "PMKERNEL.spad" 1535888 1535900 1536311 1536316) (-914 "PMINS.spad" 1535464 1535474 1535878 1535883) (-913 "PMFS.spad" 1535037 1535055 1535454 1535459) (-912 "PMDOWN.spad" 1534323 1534337 1535027 1535032) (-911 "PMASS.spad" 1533335 1533343 1534313 1534318) (-910 "PMASSFS.spad" 1532304 1532320 1533325 1533330) (-909 "PLOTTOOL.spad" 1532084 1532092 1532294 1532299) (-908 "PLOT.spad" 1526915 1526923 1532074 1532079) (-907 "PLOT3D.spad" 1523335 1523343 1526905 1526910) (-906 "PLOT1.spad" 1522476 1522486 1523325 1523330) (-905 "PLEQN.spad" 1509692 1509719 1522466 1522471) (-904 "PINTERP.spad" 1509308 1509327 1509682 1509687) (-903 "PINTERPA.spad" 1509090 1509106 1509298 1509303) (-902 "PI.spad" 1508697 1508705 1509064 1509085) (-901 "PID.spad" 1507653 1507661 1508623 1508692) (-900 "PICOERCE.spad" 1507310 1507320 1507643 1507648) (-899 "PGROEB.spad" 1505907 1505921 1507300 1507305) (-898 "PGE.spad" 1497160 1497168 1505897 1505902) (-897 "PGCD.spad" 1496042 1496059 1497150 1497155) (-896 "PFRPAC.spad" 1495185 1495195 1496032 1496037) (-895 "PFR.spad" 1491842 1491852 1495087 1495180) (-894 "PFOTOOLS.spad" 1491100 1491116 1491832 1491837) (-893 "PFOQ.spad" 1490470 1490488 1491090 1491095) (-892 "PFO.spad" 1489889 1489916 1490460 1490465) (-891 "PF.spad" 1489463 1489475 1489694 1489787) (-890 "PFECAT.spad" 1487129 1487137 1489389 1489458) (-889 "PFECAT.spad" 1484823 1484833 1487085 1487090) (-888 "PFBRU.spad" 1482693 1482705 1484813 1484818) (-887 "PFBR.spad" 1480231 1480254 1482683 1482688) (-886 "PERM.spad" 1475912 1475922 1480061 1480076) (-885 "PERMGRP.spad" 1470648 1470658 1475902 1475907) (-884 "PERMCAT.spad" 1469200 1469210 1470628 1470643) (-883 "PERMAN.spad" 1467732 1467746 1469190 1469195) (-882 "PENDTREE.spad" 1467005 1467015 1467361 1467366) (-881 "PDRING.spad" 1465496 1465506 1466985 1467000) (-880 "PDRING.spad" 1463995 1464007 1465486 1465491) (-879 "PDEPROB.spad" 1462952 1462960 1463985 1463990) (-878 "PDEPACK.spad" 1456954 1456962 1462942 1462947) (-877 "PDECOMP.spad" 1456416 1456433 1456944 1456949) (-876 "PDECAT.spad" 1454770 1454778 1456406 1456411) (-875 "PCOMP.spad" 1454621 1454634 1454760 1454765) (-874 "PBWLB.spad" 1453203 1453220 1454611 1454616) (-873 "PATTERN.spad" 1447634 1447644 1453193 1453198) (-872 "PATTERN2.spad" 1447370 1447382 1447624 1447629) (-871 "PATTERN1.spad" 1445672 1445688 1447360 1447365) (-870 "PATRES.spad" 1443219 1443231 1445662 1445667) (-869 "PATRES2.spad" 1442881 1442895 1443209 1443214) (-868 "PATMATCH.spad" 1441038 1441069 1442589 1442594) (-867 "PATMAB.spad" 1440463 1440473 1441028 1441033) (-866 "PATLRES.spad" 1439547 1439561 1440453 1440458) (-865 "PATAB.spad" 1439311 1439321 1439537 1439542) (-864 "PARTPERM.spad" 1436673 1436681 1439301 1439306) (-863 "PARSURF.spad" 1436101 1436129 1436663 1436668) (-862 "PARSU2.spad" 1435896 1435912 1436091 1436096) (-861 "script-parser.spad" 1435416 1435424 1435886 1435891) (-860 "PARSCURV.spad" 1434844 1434872 1435406 1435411) (-859 "PARSC2.spad" 1434633 1434649 1434834 1434839) (-858 "PARPCURV.spad" 1434091 1434119 1434623 1434628) (-857 "PARPC2.spad" 1433880 1433896 1434081 1434086) (-856 "PAN2EXPR.spad" 1433292 1433300 1433870 1433875) (-855 "PALETTE.spad" 1432262 1432270 1433282 1433287) (-854 "PAIR.spad" 1431245 1431258 1431850 1431855) (-853 "PADICRC.spad" 1428575 1428593 1429750 1429843) (-852 "PADICRAT.spad" 1426590 1426602 1426811 1426904) (-851 "PADIC.spad" 1426285 1426297 1426516 1426585) (-850 "PADICCT.spad" 1424826 1424838 1426211 1426280) (-849 "PADEPAC.spad" 1423505 1423524 1424816 1424821) (-848 "PADE.spad" 1422245 1422261 1423495 1423500) (-847 "OWP.spad" 1421229 1421259 1422103 1422170) (-846 "OVAR.spad" 1421010 1421033 1421219 1421224) (-845 "OUT.spad" 1420094 1420102 1421000 1421005) (-844 "OUTFORM.spad" 1409390 1409398 1420084 1420089) (-843 "OUTBFILE.spad" 1408808 1408816 1409380 1409385) (-842 "OUTBCON.spad" 1408086 1408094 1408798 1408803) (-841 "OUTBCON.spad" 1407362 1407372 1408076 1408081) (-840 "OSI.spad" 1406837 1406845 1407352 1407357) (-839 "OSGROUP.spad" 1406755 1406763 1406827 1406832) (-838 "ORTHPOL.spad" 1405216 1405226 1406672 1406677) (-837 "OREUP.spad" 1404574 1404602 1404896 1404935) (-836 "ORESUP.spad" 1403873 1403897 1404254 1404293) (-835 "OREPCTO.spad" 1401692 1401704 1403793 1403798) (-834 "OREPCAT.spad" 1395749 1395759 1401648 1401687) (-833 "OREPCAT.spad" 1389696 1389708 1395597 1395602) (-832 "ORDSET.spad" 1388862 1388870 1389686 1389691) (-831 "ORDSET.spad" 1388026 1388036 1388852 1388857) (-830 "ORDRING.spad" 1387416 1387424 1388006 1388021) (-829 "ORDRING.spad" 1386814 1386824 1387406 1387411) (-828 "ORDMON.spad" 1386669 1386677 1386804 1386809) (-827 "ORDFUNS.spad" 1385795 1385811 1386659 1386664) (-826 "ORDFIN.spad" 1385729 1385737 1385785 1385790) (-825 "ORDCOMP.spad" 1384194 1384204 1385276 1385305) (-824 "ORDCOMP2.spad" 1383479 1383491 1384184 1384189) (-823 "OPTPROB.spad" 1382059 1382067 1383469 1383474) (-822 "OPTPACK.spad" 1374444 1374452 1382049 1382054) (-821 "OPTCAT.spad" 1372119 1372127 1374434 1374439) (-820 "OPQUERY.spad" 1371668 1371676 1372109 1372114) (-819 "OP.spad" 1371410 1371420 1371490 1371557) (-818 "ONECOMP.spad" 1370155 1370165 1370957 1370986) (-817 "ONECOMP2.spad" 1369573 1369585 1370145 1370150) (-816 "OMSERVER.spad" 1368575 1368583 1369563 1369568) (-815 "OMSAGG.spad" 1368351 1368361 1368519 1368570) (-814 "OMPKG.spad" 1366963 1366971 1368341 1368346) (-813 "OM.spad" 1365928 1365936 1366953 1366958) (-812 "OMLO.spad" 1365353 1365365 1365814 1365853) (-811 "OMEXPR.spad" 1365187 1365197 1365343 1365348) (-810 "OMERR.spad" 1364730 1364738 1365177 1365182) (-809 "OMERRK.spad" 1363764 1363772 1364720 1364725) (-808 "OMENC.spad" 1363108 1363116 1363754 1363759) (-807 "OMDEV.spad" 1357397 1357405 1363098 1363103) (-806 "OMCONN.spad" 1356806 1356814 1357387 1357392) (-805 "OINTDOM.spad" 1356569 1356577 1356732 1356801) (-804 "OFMONOID.spad" 1352756 1352766 1356559 1356564) (-803 "ODVAR.spad" 1352017 1352027 1352746 1352751) (-802 "ODR.spad" 1351465 1351491 1351829 1351978) (-801 "ODPOL.spad" 1348811 1348821 1349151 1349278) (-800 "ODP.spad" 1339932 1339952 1340305 1340436) (-799 "ODETOOLS.spad" 1338515 1338534 1339922 1339927) (-798 "ODESYS.spad" 1336165 1336182 1338505 1338510) (-797 "ODERTRIC.spad" 1332106 1332123 1336122 1336127) (-796 "ODERED.spad" 1331493 1331517 1332096 1332101) (-795 "ODERAT.spad" 1329044 1329061 1331483 1331488) (-794 "ODEPRRIC.spad" 1325935 1325957 1329034 1329039) (-793 "ODEPROB.spad" 1325134 1325142 1325925 1325930) (-792 "ODEPRIM.spad" 1322408 1322430 1325124 1325129) (-791 "ODEPAL.spad" 1321784 1321808 1322398 1322403) (-790 "ODEPACK.spad" 1308386 1308394 1321774 1321779) (-789 "ODEINT.spad" 1307817 1307833 1308376 1308381) (-788 "ODEIFTBL.spad" 1305212 1305220 1307807 1307812) (-787 "ODEEF.spad" 1300579 1300595 1305202 1305207) (-786 "ODECONST.spad" 1300098 1300116 1300569 1300574) (-785 "ODECAT.spad" 1298694 1298702 1300088 1300093) (-784 "OCT.spad" 1296832 1296842 1297548 1297587) (-783 "OCTCT2.spad" 1296476 1296497 1296822 1296827) (-782 "OC.spad" 1294250 1294260 1296432 1296471) (-781 "OC.spad" 1291749 1291761 1293933 1293938) (-780 "OCAMON.spad" 1291597 1291605 1291739 1291744) (-779 "OASGP.spad" 1291412 1291420 1291587 1291592) (-778 "OAMONS.spad" 1290932 1290940 1291402 1291407) (-777 "OAMON.spad" 1290793 1290801 1290922 1290927) (-776 "OAGROUP.spad" 1290655 1290663 1290783 1290788) (-775 "NUMTUBE.spad" 1290242 1290258 1290645 1290650) (-774 "NUMQUAD.spad" 1278104 1278112 1290232 1290237) (-773 "NUMODE.spad" 1269240 1269248 1278094 1278099) (-772 "NUMINT.spad" 1266798 1266806 1269230 1269235) (-771 "NUMFMT.spad" 1265638 1265646 1266788 1266793) (-770 "NUMERIC.spad" 1257710 1257720 1265443 1265448) (-769 "NTSCAT.spad" 1256200 1256216 1257666 1257705) (-768 "NTPOLFN.spad" 1255745 1255755 1256117 1256122) (-767 "NSUP.spad" 1248755 1248765 1253295 1253448) (-766 "NSUP2.spad" 1248147 1248159 1248745 1248750) (-765 "NSMP.spad" 1244342 1244361 1244650 1244777) (-764 "NREP.spad" 1242714 1242728 1244332 1244337) (-763 "NPCOEF.spad" 1241960 1241980 1242704 1242709) (-762 "NORMRETR.spad" 1241558 1241597 1241950 1241955) (-761 "NORMPK.spad" 1239460 1239479 1241548 1241553) (-760 "NORMMA.spad" 1239148 1239174 1239450 1239455) (-759 "NONE.spad" 1238889 1238897 1239138 1239143) (-758 "NONE1.spad" 1238565 1238575 1238879 1238884) (-757 "NODE1.spad" 1238034 1238050 1238555 1238560) (-756 "NNI.spad" 1236921 1236929 1238008 1238029) (-755 "NLINSOL.spad" 1235543 1235553 1236911 1236916) (-754 "NIPROB.spad" 1234026 1234034 1235533 1235538) (-753 "NFINTBAS.spad" 1231486 1231503 1234016 1234021) (-752 "NETCLT.spad" 1231460 1231471 1231476 1231481) (-751 "NCODIV.spad" 1229658 1229674 1231450 1231455) (-750 "NCNTFRAC.spad" 1229300 1229314 1229648 1229653) (-749 "NCEP.spad" 1227460 1227474 1229290 1229295) (-748 "NASRING.spad" 1227056 1227064 1227450 1227455) (-747 "NASRING.spad" 1226650 1226660 1227046 1227051) (-746 "NARNG.spad" 1225994 1226002 1226640 1226645) (-745 "NARNG.spad" 1225336 1225346 1225984 1225989) (-744 "NAGSP.spad" 1224409 1224417 1225326 1225331) (-743 "NAGS.spad" 1213934 1213942 1224399 1224404) (-742 "NAGF07.spad" 1212327 1212335 1213924 1213929) (-741 "NAGF04.spad" 1206559 1206567 1212317 1212322) (-740 "NAGF02.spad" 1200368 1200376 1206549 1206554) (-739 "NAGF01.spad" 1195971 1195979 1200358 1200363) (-738 "NAGE04.spad" 1189431 1189439 1195961 1195966) (-737 "NAGE02.spad" 1179773 1179781 1189421 1189426) (-736 "NAGE01.spad" 1175657 1175665 1179763 1179768) (-735 "NAGD03.spad" 1173577 1173585 1175647 1175652) (-734 "NAGD02.spad" 1166108 1166116 1173567 1173572) (-733 "NAGD01.spad" 1160221 1160229 1166098 1166103) (-732 "NAGC06.spad" 1156008 1156016 1160211 1160216) (-731 "NAGC05.spad" 1154477 1154485 1155998 1156003) (-730 "NAGC02.spad" 1153732 1153740 1154467 1154472) (-729 "NAALG.spad" 1153267 1153277 1153700 1153727) (-728 "NAALG.spad" 1152822 1152834 1153257 1153262) (-727 "MULTSQFR.spad" 1149780 1149797 1152812 1152817) (-726 "MULTFACT.spad" 1149163 1149180 1149770 1149775) (-725 "MTSCAT.spad" 1147197 1147218 1149061 1149158) (-724 "MTHING.spad" 1146854 1146864 1147187 1147192) (-723 "MSYSCMD.spad" 1146288 1146296 1146844 1146849) (-722 "MSET.spad" 1144230 1144240 1145994 1146033) (-721 "MSETAGG.spad" 1144063 1144073 1144186 1144225) (-720 "MRING.spad" 1141034 1141046 1143771 1143838) (-719 "MRF2.spad" 1140602 1140616 1141024 1141029) (-718 "MRATFAC.spad" 1140148 1140165 1140592 1140597) (-717 "MPRFF.spad" 1138178 1138197 1140138 1140143) (-716 "MPOLY.spad" 1135613 1135628 1135972 1136099) (-715 "MPCPF.spad" 1134877 1134896 1135603 1135608) (-714 "MPC3.spad" 1134692 1134732 1134867 1134872) (-713 "MPC2.spad" 1134334 1134367 1134682 1134687) (-712 "MONOTOOL.spad" 1132669 1132686 1134324 1134329) (-711 "MONOID.spad" 1131988 1131996 1132659 1132664) (-710 "MONOID.spad" 1131305 1131315 1131978 1131983) (-709 "MONOGEN.spad" 1130051 1130064 1131165 1131300) (-708 "MONOGEN.spad" 1128819 1128834 1129935 1129940) (-707 "MONADWU.spad" 1126833 1126841 1128809 1128814) (-706 "MONADWU.spad" 1124845 1124855 1126823 1126828) (-705 "MONAD.spad" 1123989 1123997 1124835 1124840) (-704 "MONAD.spad" 1123131 1123141 1123979 1123984) (-703 "MOEBIUS.spad" 1121817 1121831 1123111 1123126) (-702 "MODULE.spad" 1121687 1121697 1121785 1121812) (-701 "MODULE.spad" 1121577 1121589 1121677 1121682) (-700 "MODRING.spad" 1120908 1120947 1121557 1121572) (-699 "MODOP.spad" 1119567 1119579 1120730 1120797) (-698 "MODMONOM.spad" 1119099 1119117 1119557 1119562) (-697 "MODMON.spad" 1115801 1115817 1116577 1116730) (-696 "MODFIELD.spad" 1115159 1115198 1115703 1115796) (-695 "MMLFORM.spad" 1114019 1114027 1115149 1115154) (-694 "MMAP.spad" 1113759 1113793 1114009 1114014) (-693 "MLO.spad" 1112186 1112196 1113715 1113754) (-692 "MLIFT.spad" 1110758 1110775 1112176 1112181) (-691 "MKUCFUNC.spad" 1110291 1110309 1110748 1110753) (-690 "MKRECORD.spad" 1109893 1109906 1110281 1110286) (-689 "MKFUNC.spad" 1109274 1109284 1109883 1109888) (-688 "MKFLCFN.spad" 1108230 1108240 1109264 1109269) (-687 "MKCHSET.spad" 1108006 1108016 1108220 1108225) (-686 "MKBCFUNC.spad" 1107491 1107509 1107996 1108001) (-685 "MINT.spad" 1106930 1106938 1107393 1107486) (-684 "MHROWRED.spad" 1105431 1105441 1106920 1106925) (-683 "MFLOAT.spad" 1103947 1103955 1105321 1105426) (-682 "MFINFACT.spad" 1103347 1103369 1103937 1103942) (-681 "MESH.spad" 1101079 1101087 1103337 1103342) (-680 "MDDFACT.spad" 1099272 1099282 1101069 1101074) (-679 "MDAGG.spad" 1098547 1098557 1099240 1099267) (-678 "MCMPLX.spad" 1094533 1094541 1095147 1095336) (-677 "MCDEN.spad" 1093741 1093753 1094523 1094528) (-676 "MCALCFN.spad" 1090843 1090869 1093731 1093736) (-675 "MAYBE.spad" 1090092 1090103 1090833 1090838) (-674 "MATSTOR.spad" 1087368 1087378 1090082 1090087) (-673 "MATRIX.spad" 1086072 1086082 1086556 1086583) (-672 "MATLIN.spad" 1083398 1083422 1085956 1085961) (-671 "MATCAT.spad" 1074971 1074993 1083354 1083393) (-670 "MATCAT.spad" 1066428 1066452 1074813 1074818) (-669 "MATCAT2.spad" 1065696 1065744 1066418 1066423) (-668 "MAPPKG3.spad" 1064595 1064609 1065686 1065691) (-667 "MAPPKG2.spad" 1063929 1063941 1064585 1064590) (-666 "MAPPKG1.spad" 1062747 1062757 1063919 1063924) (-665 "MAPPAST.spad" 1062060 1062068 1062737 1062742) (-664 "MAPHACK3.spad" 1061868 1061882 1062050 1062055) (-663 "MAPHACK2.spad" 1061633 1061645 1061858 1061863) (-662 "MAPHACK1.spad" 1061263 1061273 1061623 1061628) (-661 "MAGMA.spad" 1059053 1059070 1061253 1061258) (-660 "MACROAST.spad" 1058632 1058640 1059043 1059048) (-659 "M3D.spad" 1056328 1056338 1058010 1058015) (-658 "LZSTAGG.spad" 1053546 1053556 1056308 1056323) (-657 "LZSTAGG.spad" 1050772 1050784 1053536 1053541) (-656 "LWORD.spad" 1047477 1047494 1050762 1050767) (-655 "LSTAST.spad" 1047261 1047269 1047467 1047472) (-654 "LSQM.spad" 1045487 1045501 1045885 1045936) (-653 "LSPP.spad" 1045020 1045037 1045477 1045482) (-652 "LSMP.spad" 1043860 1043888 1045010 1045015) (-651 "LSMP1.spad" 1041664 1041678 1043850 1043855) (-650 "LSAGG.spad" 1041321 1041331 1041620 1041659) (-649 "LSAGG.spad" 1041010 1041022 1041311 1041316) (-648 "LPOLY.spad" 1039964 1039983 1040866 1040935) (-647 "LPEFRAC.spad" 1039221 1039231 1039954 1039959) (-646 "LO.spad" 1038622 1038636 1039155 1039182) (-645 "LOGIC.spad" 1038224 1038232 1038612 1038617) (-644 "LOGIC.spad" 1037824 1037834 1038214 1038219) (-643 "LODOOPS.spad" 1036742 1036754 1037814 1037819) (-642 "LODO.spad" 1036126 1036142 1036422 1036461) (-641 "LODOF.spad" 1035170 1035187 1036083 1036088) (-640 "LODOCAT.spad" 1033828 1033838 1035126 1035165) (-639 "LODOCAT.spad" 1032484 1032496 1033784 1033789) (-638 "LODO2.spad" 1031757 1031769 1032164 1032203) (-637 "LODO1.spad" 1031157 1031167 1031437 1031476) (-636 "LODEEF.spad" 1029929 1029947 1031147 1031152) (-635 "LNAGG.spad" 1025721 1025731 1029909 1029924) (-634 "LNAGG.spad" 1021487 1021499 1025677 1025682) (-633 "LMOPS.spad" 1018223 1018240 1021477 1021482) (-632 "LMODULE.spad" 1017865 1017875 1018213 1018218) (-631 "LMDICT.spad" 1017148 1017158 1017416 1017443) (-630 "LITERAL.spad" 1017054 1017065 1017138 1017143) (-629 "LIST.spad" 1014772 1014782 1016201 1016228) (-628 "LIST3.spad" 1014063 1014077 1014762 1014767) (-627 "LIST2.spad" 1012703 1012715 1014053 1014058) (-626 "LIST2MAP.spad" 1009580 1009592 1012693 1012698) (-625 "LINEXP.spad" 1009012 1009022 1009560 1009575) (-624 "LINDEP.spad" 1007789 1007801 1008924 1008929) (-623 "LIMITRF.spad" 1005703 1005713 1007779 1007784) (-622 "LIMITPS.spad" 1004586 1004599 1005693 1005698) (-621 "LIE.spad" 1002600 1002612 1003876 1004021) (-620 "LIECAT.spad" 1002076 1002086 1002526 1002595) (-619 "LIECAT.spad" 1001580 1001592 1002032 1002037) (-618 "LIB.spad" 999628 999636 1000239 1000254) (-617 "LGROBP.spad" 996981 997000 999618 999623) (-616 "LF.spad" 995900 995916 996971 996976) (-615 "LFCAT.spad" 994919 994927 995890 995895) (-614 "LEXTRIPK.spad" 990422 990437 994909 994914) (-613 "LEXP.spad" 988425 988452 990402 990417) (-612 "LETAST.spad" 988124 988132 988415 988420) (-611 "LEADCDET.spad" 986508 986525 988114 988119) (-610 "LAZM3PK.spad" 985212 985234 986498 986503) (-609 "LAUPOL.spad" 983901 983914 984805 984874) (-608 "LAPLACE.spad" 983474 983490 983891 983896) (-607 "LA.spad" 982914 982928 983396 983435) (-606 "LALG.spad" 982690 982700 982894 982909) (-605 "LALG.spad" 982474 982486 982680 982685) (-604 "KVTFROM.spad" 982083 982093 982464 982469) (-603 "KTVLOGIC.spad" 981506 981514 982073 982078) (-602 "KRCFROM.spad" 981122 981132 981496 981501) (-601 "KOVACIC.spad" 979835 979852 981112 981117) (-600 "KONVERT.spad" 979557 979567 979825 979830) (-599 "KOERCE.spad" 979294 979304 979547 979552) (-598 "KERNEL.spad" 977829 977839 979078 979083) (-597 "KERNEL2.spad" 977532 977544 977819 977824) (-596 "KDAGG.spad" 976623 976645 977500 977527) (-595 "KDAGG.spad" 975734 975758 976613 976618) (-594 "KAFILE.spad" 974697 974713 974932 974959) (-593 "JORDAN.spad" 972524 972536 973987 974132) (-592 "JOINAST.spad" 972218 972226 972514 972519) (-591 "JAVACODE.spad" 971984 971992 972208 972213) (-590 "IXAGG.spad" 970097 970121 971964 971979) (-589 "IXAGG.spad" 968075 968101 969944 969949) (-588 "IVECTOR.spad" 966846 966861 967001 967028) (-587 "ITUPLE.spad" 965991 966001 966836 966841) (-586 "ITRIGMNP.spad" 964802 964821 965981 965986) (-585 "ITFUN3.spad" 964296 964310 964792 964797) (-584 "ITFUN2.spad" 964026 964038 964286 964291) (-583 "ITAYLOR.spad" 961818 961833 963862 963987) (-582 "ISUPS.spad" 954229 954244 960792 960889) (-581 "ISUMP.spad" 953726 953742 954219 954224) (-580 "ISTRING.spad" 952729 952742 952895 952922) (-579 "ISAST.spad" 952448 952456 952719 952724) (-578 "IRURPK.spad" 951161 951180 952438 952443) (-577 "IRSN.spad" 949121 949129 951151 951156) (-576 "IRRF2F.spad" 947596 947606 949077 949082) (-575 "IRREDFFX.spad" 947197 947208 947586 947591) (-574 "IROOT.spad" 945528 945538 947187 947192) (-573 "IR.spad" 943317 943331 945383 945410) (-572 "IR2.spad" 942337 942353 943307 943312) (-571 "IR2F.spad" 941537 941553 942327 942332) (-570 "IPRNTPK.spad" 941297 941305 941527 941532) (-569 "IPF.spad" 940862 940874 941102 941195) (-568 "IPADIC.spad" 940623 940649 940788 940857) (-567 "IP4ADDR.spad" 940171 940179 940613 940618) (-566 "IOMODE.spad" 939792 939800 940161 940166) (-565 "IOBFILE.spad" 939153 939161 939782 939787) (-564 "IOBCON.spad" 939018 939026 939143 939148) (-563 "INVLAPLA.spad" 938663 938679 939008 939013) (-562 "INTTR.spad" 931909 931926 938653 938658) (-561 "INTTOOLS.spad" 929620 929636 931483 931488) (-560 "INTSLPE.spad" 928926 928934 929610 929615) (-559 "INTRVL.spad" 928492 928502 928840 928921) (-558 "INTRF.spad" 926856 926870 928482 928487) (-557 "INTRET.spad" 926288 926298 926846 926851) (-556 "INTRAT.spad" 924963 924980 926278 926283) (-555 "INTPM.spad" 923326 923342 924606 924611) (-554 "INTPAF.spad" 921094 921112 923258 923263) (-553 "INTPACK.spad" 911404 911412 921084 921089) (-552 "INT.spad" 910765 910773 911258 911399) (-551 "INTHERTR.spad" 910031 910048 910755 910760) (-550 "INTHERAL.spad" 909697 909721 910021 910026) (-549 "INTHEORY.spad" 906110 906118 909687 909692) (-548 "INTG0.spad" 899573 899591 906042 906047) (-547 "INTFTBL.spad" 893602 893610 899563 899568) (-546 "INTFACT.spad" 892661 892671 893592 893597) (-545 "INTEF.spad" 890976 890992 892651 892656) (-544 "INTDOM.spad" 889591 889599 890902 890971) (-543 "INTDOM.spad" 888268 888278 889581 889586) (-542 "INTCAT.spad" 886521 886531 888182 888263) (-541 "INTBIT.spad" 886024 886032 886511 886516) (-540 "INTALG.spad" 885206 885233 886014 886019) (-539 "INTAF.spad" 884698 884714 885196 885201) (-538 "INTABL.spad" 883216 883247 883379 883406) (-537 "INS.spad" 880683 880691 883118 883211) (-536 "INS.spad" 878236 878246 880673 880678) (-535 "INPSIGN.spad" 877670 877683 878226 878231) (-534 "INPRODPF.spad" 876736 876755 877660 877665) (-533 "INPRODFF.spad" 875794 875818 876726 876731) (-532 "INNMFACT.spad" 874765 874782 875784 875789) (-531 "INMODGCD.spad" 874249 874279 874755 874760) (-530 "INFSP.spad" 872534 872556 874239 874244) (-529 "INFPROD0.spad" 871584 871603 872524 872529) (-528 "INFORM.spad" 868745 868753 871574 871579) (-527 "INFORM1.spad" 868370 868380 868735 868740) (-526 "INFINITY.spad" 867922 867930 868360 868365) (-525 "INETCLTS.spad" 867899 867907 867912 867917) (-524 "INEP.spad" 866431 866453 867889 867894) (-523 "INDE.spad" 866160 866177 866421 866426) (-522 "INCRMAPS.spad" 865581 865591 866150 866155) (-521 "INBFILE.spad" 864653 864661 865571 865576) (-520 "INBFF.spad" 860423 860434 864643 864648) (-519 "INBCON.spad" 859722 859730 860413 860418) (-518 "INBCON.spad" 859019 859029 859712 859717) (-517 "INAST.spad" 858684 858692 859009 859014) (-516 "IMPTAST.spad" 858392 858400 858674 858679) (-515 "IMATRIX.spad" 857337 857363 857849 857876) (-514 "IMATQF.spad" 856431 856475 857293 857298) (-513 "IMATLIN.spad" 855036 855060 856387 856392) (-512 "ILIST.spad" 853692 853707 854219 854246) (-511 "IIARRAY2.spad" 853080 853118 853299 853326) (-510 "IFF.spad" 852490 852506 852761 852854) (-509 "IFAST.spad" 852104 852112 852480 852485) (-508 "IFARRAY.spad" 849591 849606 851287 851314) (-507 "IFAMON.spad" 849453 849470 849547 849552) (-506 "IEVALAB.spad" 848842 848854 849443 849448) (-505 "IEVALAB.spad" 848229 848243 848832 848837) (-504 "IDPO.spad" 848027 848039 848219 848224) (-503 "IDPOAMS.spad" 847783 847795 848017 848022) (-502 "IDPOAM.spad" 847503 847515 847773 847778) (-501 "IDPC.spad" 846437 846449 847493 847498) (-500 "IDPAM.spad" 846182 846194 846427 846432) (-499 "IDPAG.spad" 845929 845941 846172 846177) (-498 "IDENT.spad" 845846 845854 845919 845924) (-497 "IDECOMP.spad" 843083 843101 845836 845841) (-496 "IDEAL.spad" 838006 838045 843018 843023) (-495 "ICDEN.spad" 837157 837173 837996 838001) (-494 "ICARD.spad" 836346 836354 837147 837152) (-493 "IBPTOOLS.spad" 834939 834956 836336 836341) (-492 "IBITS.spad" 834138 834151 834575 834602) (-491 "IBATOOL.spad" 831013 831032 834128 834133) (-490 "IBACHIN.spad" 829500 829515 831003 831008) (-489 "IARRAY2.spad" 828488 828514 829107 829134) (-488 "IARRAY1.spad" 827533 827548 827671 827698) (-487 "IAN.spad" 825746 825754 827349 827442) (-486 "IALGFACT.spad" 825347 825380 825736 825741) (-485 "HYPCAT.spad" 824771 824779 825337 825342) (-484 "HYPCAT.spad" 824193 824203 824761 824766) (-483 "HOSTNAME.spad" 824001 824009 824183 824188) (-482 "HOAGG.spad" 821259 821269 823981 823996) (-481 "HOAGG.spad" 818302 818314 821026 821031) (-480 "HEXADEC.spad" 816171 816179 816769 816862) (-479 "HEUGCD.spad" 815186 815197 816161 816166) (-478 "HELLFDIV.spad" 814776 814800 815176 815181) (-477 "HEAP.spad" 814168 814178 814383 814410) (-476 "HEADAST.spad" 813699 813707 814158 814163) (-475 "HDP.spad" 804816 804832 805193 805324) (-474 "HDMP.spad" 801992 802007 802610 802737) (-473 "HB.spad" 800229 800237 801982 801987) (-472 "HASHTBL.spad" 798699 798730 798910 798937) (-471 "HASAST.spad" 798415 798423 798689 798694) (-470 "HACKPI.spad" 797898 797906 798317 798410) (-469 "GTSET.spad" 796837 796853 797544 797571) (-468 "GSTBL.spad" 795356 795391 795530 795545) (-467 "GSERIES.spad" 792523 792550 793488 793637) (-466 "GROUP.spad" 791792 791800 792503 792518) (-465 "GROUP.spad" 791069 791079 791782 791787) (-464 "GROEBSOL.spad" 789557 789578 791059 791064) (-463 "GRMOD.spad" 788128 788140 789547 789552) (-462 "GRMOD.spad" 786697 786711 788118 788123) (-461 "GRIMAGE.spad" 779302 779310 786687 786692) (-460 "GRDEF.spad" 777681 777689 779292 779297) (-459 "GRAY.spad" 776140 776148 777671 777676) (-458 "GRALG.spad" 775187 775199 776130 776135) (-457 "GRALG.spad" 774232 774246 775177 775182) (-456 "GPOLSET.spad" 773686 773709 773914 773941) (-455 "GOSPER.spad" 772951 772969 773676 773681) (-454 "GMODPOL.spad" 772089 772116 772919 772946) (-453 "GHENSEL.spad" 771158 771172 772079 772084) (-452 "GENUPS.spad" 767259 767272 771148 771153) (-451 "GENUFACT.spad" 766836 766846 767249 767254) (-450 "GENPGCD.spad" 766420 766437 766826 766831) (-449 "GENMFACT.spad" 765872 765891 766410 766415) (-448 "GENEEZ.spad" 763811 763824 765862 765867) (-447 "GDMP.spad" 760829 760846 761605 761732) (-446 "GCNAALG.spad" 754724 754751 760623 760690) (-445 "GCDDOM.spad" 753896 753904 754650 754719) (-444 "GCDDOM.spad" 753130 753140 753886 753891) (-443 "GB.spad" 750648 750686 753086 753091) (-442 "GBINTERN.spad" 746668 746706 750638 750643) (-441 "GBF.spad" 742425 742463 746658 746663) (-440 "GBEUCLID.spad" 740299 740337 742415 742420) (-439 "GAUSSFAC.spad" 739596 739604 740289 740294) (-438 "GALUTIL.spad" 737918 737928 739552 739557) (-437 "GALPOLYU.spad" 736364 736377 737908 737913) (-436 "GALFACTU.spad" 734529 734548 736354 736359) (-435 "GALFACT.spad" 724662 724673 734519 734524) (-434 "FVFUN.spad" 721675 721683 724642 724657) (-433 "FVC.spad" 720717 720725 721655 721670) (-432 "FUNCTION.spad" 720566 720578 720707 720712) (-431 "FT.spad" 718778 718786 720556 720561) (-430 "FTEM.spad" 717941 717949 718768 718773) (-429 "FSUPFACT.spad" 716841 716860 717877 717882) (-428 "FST.spad" 714927 714935 716831 716836) (-427 "FSRED.spad" 714405 714421 714917 714922) (-426 "FSPRMELT.spad" 713229 713245 714362 714367) (-425 "FSPECF.spad" 711306 711322 713219 713224) (-424 "FS.spad" 705356 705366 711069 711301) (-423 "FS.spad" 699196 699208 704911 704916) (-422 "FSINT.spad" 698854 698870 699186 699191) (-421 "FSERIES.spad" 698041 698053 698674 698773) (-420 "FSCINT.spad" 697354 697370 698031 698036) (-419 "FSAGG.spad" 696459 696469 697298 697349) (-418 "FSAGG.spad" 695538 695550 696379 696384) (-417 "FSAGG2.spad" 694237 694253 695528 695533) (-416 "FS2UPS.spad" 688626 688660 694227 694232) (-415 "FS2.spad" 688271 688287 688616 688621) (-414 "FS2EXPXP.spad" 687394 687417 688261 688266) (-413 "FRUTIL.spad" 686336 686346 687384 687389) (-412 "FR.spad" 680030 680040 685360 685429) (-411 "FRNAALG.spad" 675117 675127 679972 680025) (-410 "FRNAALG.spad" 670216 670228 675073 675078) (-409 "FRNAAF2.spad" 669670 669688 670206 670211) (-408 "FRMOD.spad" 669064 669094 669601 669606) (-407 "FRIDEAL.spad" 668259 668280 669044 669059) (-406 "FRIDEAL2.spad" 667861 667893 668249 668254) (-405 "FRETRCT.spad" 667372 667382 667851 667856) (-404 "FRETRCT.spad" 666749 666761 667230 667235) (-403 "FRAMALG.spad" 665077 665090 666705 666744) (-402 "FRAMALG.spad" 663437 663452 665067 665072) (-401 "FRAC.spad" 660536 660546 660939 661112) (-400 "FRAC2.spad" 660139 660151 660526 660531) (-399 "FR2.spad" 659473 659485 660129 660134) (-398 "FPS.spad" 656282 656290 659363 659468) (-397 "FPS.spad" 653119 653129 656202 656207) (-396 "FPC.spad" 652161 652169 653021 653114) (-395 "FPC.spad" 651289 651299 652151 652156) (-394 "FPATMAB.spad" 651041 651051 651269 651284) (-393 "FPARFRAC.spad" 649514 649531 651031 651036) (-392 "FORTRAN.spad" 648020 648063 649504 649509) (-391 "FORT.spad" 646949 646957 648010 648015) (-390 "FORTFN.spad" 644109 644117 646929 646944) (-389 "FORTCAT.spad" 643783 643791 644089 644104) (-388 "FORMULA.spad" 641121 641129 643773 643778) (-387 "FORMULA1.spad" 640600 640610 641111 641116) (-386 "FORDER.spad" 640291 640315 640590 640595) (-385 "FOP.spad" 639492 639500 640281 640286) (-384 "FNLA.spad" 638916 638938 639460 639487) (-383 "FNCAT.spad" 637244 637252 638906 638911) (-382 "FNAME.spad" 637136 637144 637234 637239) (-381 "FMTC.spad" 636934 636942 637062 637131) (-380 "FMONOID.spad" 633989 633999 636890 636895) (-379 "FM.spad" 633684 633696 633923 633950) (-378 "FMFUN.spad" 630704 630712 633664 633679) (-377 "FMC.spad" 629746 629754 630684 630699) (-376 "FMCAT.spad" 627400 627418 629714 629741) (-375 "FM1.spad" 626757 626769 627334 627361) (-374 "FLOATRP.spad" 624478 624492 626747 626752) (-373 "FLOAT.spad" 617642 617650 624344 624473) (-372 "FLOATCP.spad" 615059 615073 617632 617637) (-371 "FLINEXP.spad" 614771 614781 615039 615054) (-370 "FLINEXP.spad" 614437 614449 614707 614712) (-369 "FLASORT.spad" 613757 613769 614427 614432) (-368 "FLALG.spad" 611403 611422 613683 613752) (-367 "FLAGG.spad" 608409 608419 611371 611398) (-366 "FLAGG.spad" 605328 605340 608292 608297) (-365 "FLAGG2.spad" 604009 604025 605318 605323) (-364 "FINRALG.spad" 602038 602051 603965 604004) (-363 "FINRALG.spad" 599993 600008 601922 601927) (-362 "FINITE.spad" 599145 599153 599983 599988) (-361 "FINAALG.spad" 588126 588136 599087 599140) (-360 "FINAALG.spad" 577119 577131 588082 588087) (-359 "FILE.spad" 576702 576712 577109 577114) (-358 "FILECAT.spad" 575220 575237 576692 576697) (-357 "FIELD.spad" 574626 574634 575122 575215) (-356 "FIELD.spad" 574118 574128 574616 574621) (-355 "FGROUP.spad" 572727 572737 574098 574113) (-354 "FGLMICPK.spad" 571514 571529 572717 572722) (-353 "FFX.spad" 570889 570904 571230 571323) (-352 "FFSLPE.spad" 570378 570399 570879 570884) (-351 "FFPOLY.spad" 561630 561641 570368 570373) (-350 "FFPOLY2.spad" 560690 560707 561620 561625) (-349 "FFP.spad" 560087 560107 560406 560499) (-348 "FF.spad" 559535 559551 559768 559861) (-347 "FFNBX.spad" 558047 558067 559251 559344) (-346 "FFNBP.spad" 556560 556577 557763 557856) (-345 "FFNB.spad" 555025 555046 556241 556334) (-344 "FFINTBAS.spad" 552439 552458 555015 555020) (-343 "FFIELDC.spad" 550014 550022 552341 552434) (-342 "FFIELDC.spad" 547675 547685 550004 550009) (-341 "FFHOM.spad" 546423 546440 547665 547670) (-340 "FFF.spad" 543858 543869 546413 546418) (-339 "FFCGX.spad" 542705 542725 543574 543667) (-338 "FFCGP.spad" 541594 541614 542421 542514) (-337 "FFCG.spad" 540386 540407 541275 541368) (-336 "FFCAT.spad" 533413 533435 540225 540381) (-335 "FFCAT.spad" 526519 526543 533333 533338) (-334 "FFCAT2.spad" 526264 526304 526509 526514) (-333 "FEXPR.spad" 517973 518019 526020 526059) (-332 "FEVALAB.spad" 517679 517689 517963 517968) (-331 "FEVALAB.spad" 517170 517182 517456 517461) (-330 "FDIV.spad" 516612 516636 517160 517165) (-329 "FDIVCAT.spad" 514654 514678 516602 516607) (-328 "FDIVCAT.spad" 512694 512720 514644 514649) (-327 "FDIV2.spad" 512348 512388 512684 512689) (-326 "FCPAK1.spad" 510901 510909 512338 512343) (-325 "FCOMP.spad" 510280 510290 510891 510896) (-324 "FC.spad" 500105 500113 510270 510275) (-323 "FAXF.spad" 493040 493054 500007 500100) (-322 "FAXF.spad" 486027 486043 492996 493001) (-321 "FARRAY.spad" 484173 484183 485210 485237) (-320 "FAMR.spad" 482293 482305 484071 484168) (-319 "FAMR.spad" 480397 480411 482177 482182) (-318 "FAMONOID.spad" 480047 480057 480351 480356) (-317 "FAMONC.spad" 478269 478281 480037 480042) (-316 "FAGROUP.spad" 477875 477885 478165 478192) (-315 "FACUTIL.spad" 476071 476088 477865 477870) (-314 "FACTFUNC.spad" 475247 475257 476061 476066) (-313 "EXPUPXS.spad" 472080 472103 473379 473528) (-312 "EXPRTUBE.spad" 469308 469316 472070 472075) (-311 "EXPRODE.spad" 466180 466196 469298 469303) (-310 "EXPR.spad" 461455 461465 462169 462576) (-309 "EXPR2UPS.spad" 457547 457560 461445 461450) (-308 "EXPR2.spad" 457250 457262 457537 457542) (-307 "EXPEXPAN.spad" 454188 454213 454822 454915) (-306 "EXIT.spad" 453859 453867 454178 454183) (-305 "EXITAST.spad" 453595 453603 453849 453854) (-304 "EVALCYC.spad" 453053 453067 453585 453590) (-303 "EVALAB.spad" 452617 452627 453043 453048) (-302 "EVALAB.spad" 452179 452191 452607 452612) (-301 "EUCDOM.spad" 449721 449729 452105 452174) (-300 "EUCDOM.spad" 447325 447335 449711 449716) (-299 "ESTOOLS.spad" 439165 439173 447315 447320) (-298 "ESTOOLS2.spad" 438766 438780 439155 439160) (-297 "ESTOOLS1.spad" 438451 438462 438756 438761) (-296 "ES.spad" 430998 431006 438441 438446) (-295 "ES.spad" 423451 423461 430896 430901) (-294 "ESCONT.spad" 420224 420232 423441 423446) (-293 "ESCONT1.spad" 419973 419985 420214 420219) (-292 "ES2.spad" 419468 419484 419963 419968) (-291 "ES1.spad" 419034 419050 419458 419463) (-290 "ERROR.spad" 416355 416363 419024 419029) (-289 "EQTBL.spad" 414827 414849 415036 415063) (-288 "EQ.spad" 409701 409711 412500 412612) (-287 "EQ2.spad" 409417 409429 409691 409696) (-286 "EP.spad" 405731 405741 409407 409412) (-285 "ENV.spad" 404433 404441 405721 405726) (-284 "ENTIRER.spad" 404101 404109 404377 404428) (-283 "EMR.spad" 403302 403343 404027 404096) (-282 "ELTAGG.spad" 401542 401561 403292 403297) (-281 "ELTAGG.spad" 399746 399767 401498 401503) (-280 "ELTAB.spad" 399193 399211 399736 399741) (-279 "ELFUTS.spad" 398572 398591 399183 399188) (-278 "ELEMFUN.spad" 398261 398269 398562 398567) (-277 "ELEMFUN.spad" 397948 397958 398251 398256) (-276 "ELAGG.spad" 395879 395889 397916 397943) (-275 "ELAGG.spad" 393759 393771 395798 395803) (-274 "ELABEXPR.spad" 392690 392698 393749 393754) (-273 "EFUPXS.spad" 389466 389496 392646 392651) (-272 "EFULS.spad" 386302 386325 389422 389427) (-271 "EFSTRUC.spad" 384257 384273 386292 386297) (-270 "EF.spad" 379023 379039 384247 384252) (-269 "EAB.spad" 377299 377307 379013 379018) (-268 "E04UCFA.spad" 376835 376843 377289 377294) (-267 "E04NAFA.spad" 376412 376420 376825 376830) (-266 "E04MBFA.spad" 375992 376000 376402 376407) (-265 "E04JAFA.spad" 375528 375536 375982 375987) (-264 "E04GCFA.spad" 375064 375072 375518 375523) (-263 "E04FDFA.spad" 374600 374608 375054 375059) (-262 "E04DGFA.spad" 374136 374144 374590 374595) (-261 "E04AGNT.spad" 369978 369986 374126 374131) (-260 "DVARCAT.spad" 366663 366673 369968 369973) (-259 "DVARCAT.spad" 363346 363358 366653 366658) (-258 "DSMP.spad" 360777 360791 361082 361209) (-257 "DROPT.spad" 354722 354730 360767 360772) (-256 "DROPT1.spad" 354385 354395 354712 354717) (-255 "DROPT0.spad" 349212 349220 354375 354380) (-254 "DRAWPT.spad" 347367 347375 349202 349207) (-253 "DRAW.spad" 339967 339980 347357 347362) (-252 "DRAWHACK.spad" 339275 339285 339957 339962) (-251 "DRAWCX.spad" 336717 336725 339265 339270) (-250 "DRAWCURV.spad" 336254 336269 336707 336712) (-249 "DRAWCFUN.spad" 325426 325434 336244 336249) (-248 "DQAGG.spad" 323582 323592 325382 325421) (-247 "DPOLCAT.spad" 318923 318939 323450 323577) (-246 "DPOLCAT.spad" 314350 314368 318879 318884) (-245 "DPMO.spad" 307653 307669 307791 308092) (-244 "DPMM.spad" 300969 300987 301094 301395) (-243 "DOMAIN.spad" 300240 300248 300959 300964) (-242 "DMP.spad" 297462 297477 298034 298161) (-241 "DLP.spad" 296810 296820 297452 297457) (-240 "DLIST.spad" 295222 295232 295993 296020) (-239 "DLAGG.spad" 293623 293633 295202 295217) (-238 "DIVRING.spad" 293165 293173 293567 293618) (-237 "DIVRING.spad" 292751 292761 293155 293160) (-236 "DISPLAY.spad" 290931 290939 292741 292746) (-235 "DIRPROD.spad" 281785 281801 282425 282556) (-234 "DIRPROD2.spad" 280593 280611 281775 281780) (-233 "DIRPCAT.spad" 279523 279539 280445 280588) (-232 "DIRPCAT.spad" 278194 278212 279118 279123) (-231 "DIOSP.spad" 277019 277027 278184 278189) (-230 "DIOPS.spad" 275991 276001 276987 277014) (-229 "DIOPS.spad" 274949 274961 275947 275952) (-228 "DIFRING.spad" 274241 274249 274929 274944) (-227 "DIFRING.spad" 273541 273551 274231 274236) (-226 "DIFEXT.spad" 272700 272710 273521 273536) (-225 "DIFEXT.spad" 271776 271788 272599 272604) (-224 "DIAGG.spad" 271394 271404 271744 271771) (-223 "DIAGG.spad" 271032 271044 271384 271389) (-222 "DHMATRIX.spad" 269336 269346 270489 270516) (-221 "DFSFUN.spad" 262744 262752 269326 269331) (-220 "DFLOAT.spad" 259465 259473 262634 262739) (-219 "DFINTTLS.spad" 257674 257690 259455 259460) (-218 "DERHAM.spad" 255584 255616 257654 257669) (-217 "DEQUEUE.spad" 254902 254912 255191 255218) (-216 "DEGRED.spad" 254517 254531 254892 254897) (-215 "DEFINTRF.spad" 252042 252052 254507 254512) (-214 "DEFINTEF.spad" 250538 250554 252032 252037) (-213 "DEFAST.spad" 249906 249914 250528 250533) (-212 "DECIMAL.spad" 247787 247795 248373 248466) (-211 "DDFACT.spad" 245586 245603 247777 247782) (-210 "DBLRESP.spad" 245184 245208 245576 245581) (-209 "DBASE.spad" 243756 243766 245174 245179) (-208 "DATAARY.spad" 243218 243231 243746 243751) (-207 "D03FAFA.spad" 243046 243054 243208 243213) (-206 "D03EEFA.spad" 242866 242874 243036 243041) (-205 "D03AGNT.spad" 241946 241954 242856 242861) (-204 "D02EJFA.spad" 241408 241416 241936 241941) (-203 "D02CJFA.spad" 240886 240894 241398 241403) (-202 "D02BHFA.spad" 240376 240384 240876 240881) (-201 "D02BBFA.spad" 239866 239874 240366 240371) (-200 "D02AGNT.spad" 234670 234678 239856 239861) (-199 "D01WGTS.spad" 232989 232997 234660 234665) (-198 "D01TRNS.spad" 232966 232974 232979 232984) (-197 "D01GBFA.spad" 232488 232496 232956 232961) (-196 "D01FCFA.spad" 232010 232018 232478 232483) (-195 "D01ASFA.spad" 231478 231486 232000 232005) (-194 "D01AQFA.spad" 230924 230932 231468 231473) (-193 "D01APFA.spad" 230348 230356 230914 230919) (-192 "D01ANFA.spad" 229842 229850 230338 230343) (-191 "D01AMFA.spad" 229352 229360 229832 229837) (-190 "D01ALFA.spad" 228892 228900 229342 229347) (-189 "D01AKFA.spad" 228418 228426 228882 228887) (-188 "D01AJFA.spad" 227941 227949 228408 228413) (-187 "D01AGNT.spad" 224000 224008 227931 227936) (-186 "CYCLOTOM.spad" 223506 223514 223990 223995) (-185 "CYCLES.spad" 220338 220346 223496 223501) (-184 "CVMP.spad" 219755 219765 220328 220333) (-183 "CTRIGMNP.spad" 218245 218261 219745 219750) (-182 "CTOR.spad" 217688 217696 218235 218240) (-181 "CTORKIND.spad" 217303 217311 217678 217683) (-180 "CTORCALL.spad" 216891 216899 217293 217298) (-179 "CSTTOOLS.spad" 216134 216147 216881 216886) (-178 "CRFP.spad" 209838 209851 216124 216129) (-177 "CRCEAST.spad" 209558 209566 209828 209833) (-176 "CRAPACK.spad" 208601 208611 209548 209553) (-175 "CPMATCH.spad" 208101 208116 208526 208531) (-174 "CPIMA.spad" 207806 207825 208091 208096) (-173 "COORDSYS.spad" 202699 202709 207796 207801) (-172 "CONTOUR.spad" 202101 202109 202689 202694) (-171 "CONTFRAC.spad" 197713 197723 202003 202096) (-170 "CONDUIT.spad" 197471 197479 197703 197708) (-169 "COMRING.spad" 197145 197153 197409 197466) (-168 "COMPPROP.spad" 196659 196667 197135 197140) (-167 "COMPLPAT.spad" 196426 196441 196649 196654) (-166 "COMPLEX.spad" 190462 190472 190706 190955) (-165 "COMPLEX2.spad" 190175 190187 190452 190457) (-164 "COMPFACT.spad" 189777 189791 190165 190170) (-163 "COMPCAT.spad" 187903 187913 189511 189772) (-162 "COMPCAT.spad" 185722 185734 187332 187337) (-161 "COMMUPC.spad" 185468 185486 185712 185717) (-160 "COMMONOP.spad" 185001 185009 185458 185463) (-159 "COMM.spad" 184810 184818 184991 184996) (-158 "COMMAAST.spad" 184573 184581 184800 184805) (-157 "COMBOPC.spad" 183478 183486 184563 184568) (-156 "COMBINAT.spad" 182223 182233 183468 183473) (-155 "COMBF.spad" 179591 179607 182213 182218) (-154 "COLOR.spad" 178428 178436 179581 179586) (-153 "COLONAST.spad" 178094 178102 178418 178423) (-152 "CMPLXRT.spad" 177803 177820 178084 178089) (-151 "CLLCTAST.spad" 177465 177473 177793 177798) (-150 "CLIP.spad" 173557 173565 177455 177460) (-149 "CLIF.spad" 172196 172212 173513 173552) (-148 "CLAGG.spad" 168671 168681 172176 172191) (-147 "CLAGG.spad" 165027 165039 168534 168539) (-146 "CINTSLPE.spad" 164352 164365 165017 165022) (-145 "CHVAR.spad" 162430 162452 164342 164347) (-144 "CHARZ.spad" 162345 162353 162410 162425) (-143 "CHARPOL.spad" 161853 161863 162335 162340) (-142 "CHARNZ.spad" 161606 161614 161833 161848) (-141 "CHAR.spad" 159474 159482 161596 161601) (-140 "CFCAT.spad" 158790 158798 159464 159469) (-139 "CDEN.spad" 157948 157962 158780 158785) (-138 "CCLASS.spad" 156097 156105 157359 157398) (-137 "CATEGORY.spad" 155876 155884 156087 156092) (-136 "CATAST.spad" 155503 155511 155866 155871) (-135 "CASEAST.spad" 155217 155225 155493 155498) (-134 "CARTEN.spad" 150320 150344 155207 155212) (-133 "CARTEN2.spad" 149706 149733 150310 150315) (-132 "CARD.spad" 146995 147003 149680 149701) (-131 "CAPSLAST.spad" 146769 146777 146985 146990) (-130 "CACHSET.spad" 146391 146399 146759 146764) (-129 "CABMON.spad" 145944 145952 146381 146386) (-128 "BYTE.spad" 145118 145126 145934 145939) (-127 "BYTEBUF.spad" 142940 142948 144287 144314) (-126 "BTREE.spad" 142009 142019 142547 142574) (-125 "BTOURN.spad" 141012 141022 141616 141643) (-124 "BTCAT.spad" 140388 140398 140968 141007) (-123 "BTCAT.spad" 139796 139808 140378 140383) (-122 "BTAGG.spad" 138906 138914 139752 139791) (-121 "BTAGG.spad" 138048 138058 138896 138901) (-120 "BSTREE.spad" 136783 136793 137655 137682) (-119 "BRILL.spad" 134978 134989 136773 136778) (-118 "BRAGG.spad" 133892 133902 134958 134973) (-117 "BRAGG.spad" 132780 132792 133848 133853) (-116 "BPADICRT.spad" 130761 130773 131016 131109) (-115 "BPADIC.spad" 130425 130437 130687 130756) (-114 "BOUNDZRO.spad" 130081 130098 130415 130420) (-113 "BOP.spad" 125545 125553 130071 130076) (-112 "BOP1.spad" 122931 122941 125501 125506) (-111 "BOOLEAN.spad" 122255 122263 122921 122926) (-110 "BMODULE.spad" 121967 121979 122223 122250) (-109 "BITS.spad" 121386 121394 121603 121630) (-108 "BINDING.spad" 120805 120813 121376 121381) (-107 "BINARY.spad" 118695 118703 119272 119365) (-106 "BGAGG.spad" 117880 117890 118663 118690) (-105 "BGAGG.spad" 117085 117097 117870 117875) (-104 "BFUNCT.spad" 116649 116657 117065 117080) (-103 "BEZOUT.spad" 115783 115810 116599 116604) (-102 "BBTREE.spad" 112602 112612 115390 115417) (-101 "BASTYPE.spad" 112274 112282 112592 112597) (-100 "BASTYPE.spad" 111944 111954 112264 112269) (-99 "BALFACT.spad" 111384 111396 111934 111939) (-98 "AUTOMOR.spad" 110831 110840 111364 111379) (-97 "ATTREG.spad" 107550 107557 110583 110826) (-96 "ATTRBUT.spad" 103573 103580 107530 107545) (-95 "ATTRAST.spad" 103290 103297 103563 103568) (-94 "ATRIG.spad" 102760 102767 103280 103285) (-93 "ATRIG.spad" 102228 102237 102750 102755) (-92 "ASTCAT.spad" 102030 102037 102218 102223) (-91 "ASTCAT.spad" 101830 101839 102020 102025) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index f19bbf48..5f64d13b 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,168 +1,168 @@ -(145211 . 3433818811) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(145211 . 3436147959) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#2| |#2|) . T)) ((((-552)) . T)) -((($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2| |#2|) . T) ((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552))))) +((($ $) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) ((|#2| |#2|) . T) ((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#2|) . T)) -((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) -(|has| |#1| (-888)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((($) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) ((|#2|) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +(|has| |#1| (-890)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((($) . T) (((-401 (-552))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-141)) . T)) -((((-528)) . T) (((-1134)) . T) (((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) -(((|#1|) . T)) -((((-220)) . T) (((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) -((($ $) . T) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -(-1559 (|has| |#1| (-803)) (|has| |#1| (-830))) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(|has| |#1| (-828)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-528)) . T) (((-1136)) . T) (((-220)) . T) (((-373)) . T) (((-873 (-373))) . T)) +(((|#1|) . T)) +((((-220)) . T) (((-844)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) . T)) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) +((($ $) . T) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +(-4029 (|has| |#1| (-805)) (|has| |#1| (-832))) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +((((-844)) . T)) +((((-844)) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-830)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) |has| |#1| (-1076))) -((((-842)) . T) (((-1157)) . T)) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-844)) . T)) +((((-844)) |has| |#1| (-1078))) +((((-844)) . T) (((-1159)) . T)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(((|#2| (-475 (-1383 |#1|) (-754))) . T)) -(((|#1| (-523 (-1152))) . T)) -(((#0=(-849 |#1|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) -((((-1134)) . T) (((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(((|#2| (-475 (-2657 |#1|) (-756))) . T)) +(((|#1| (-523 (-1154))) . T)) +(((#0=(-851 |#1|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((((-1136)) . T) (((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (|has| |#4| (-362)) (|has| |#3| (-362)) (((|#1|) . T)) -((((-849 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-851 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-544)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) ((($) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) ((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) -((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) +((((-844)) . T)) ((((-401 (-552))) . T) (($) . T)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -((((-842)) . T)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1229 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#1|) . T) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) (((|#1|) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) -(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) ((($ $) . T)) (((|#2|) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) ((($) . T)) (|has| |#1| (-362)) (((|#1|) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) -((((-842)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) (((|#1| |#1|) . T)) (|has| |#1| (-544)) -(((|#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) (((-1152) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1152) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) (((-1154) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1154) |#2|)))) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(|has| |#1| (-1076)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(|has| |#1| (-1076)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(|has| |#1| (-828)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(|has| |#1| (-1078)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(|has| |#1| (-1078)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(|has| |#1| (-830)) ((($) . T) (((-401 (-552))) . T)) (((|#1|) . T)) ((((-552) (-128)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((((-128)) . T)) -(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) -(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +(-4029 (|has| |#4| (-778)) (|has| |#4| (-830))) +(-4029 (|has| |#4| (-778)) (|has| |#4| (-830))) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1076)) -(|has| |#1| (-1076)) -(((|#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) . T)) +(|has| |#1| (-1078)) +(|has| |#1| (-1078)) +(((|#1| (-1154) (-1066 (-1154)) (-523 (-1066 (-1154)))) . T)) ((((-552) |#1|) . T)) ((((-552)) . T)) ((((-552)) . T)) -((((-889 |#1|)) . T)) +((((-891 |#1|)) . T)) (((|#1| (-523 |#2|)) . T)) ((((-552)) . T)) ((((-552)) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(((|#1| (-754)) . T)) -(|has| |#2| (-776)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(|has| |#2| (-828)) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(((|#1| (-756)) . T)) +(|has| |#2| (-778)) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(|has| |#2| (-830)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1134) |#1|) . T)) +((((-1136) |#1|) . T)) ((((-552) (-128)) . T)) (((|#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -(((|#3| (-754)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +(((|#3| (-756)) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(|has| |#1| (-1076)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-1078)) ((((-401 (-552))) . T) (((-552)) . T)) -((((-1152) |#2|) |has| |#2| (-506 (-1152) |#2|)) ((|#2| |#2|) |has| |#2| (-303 |#2|))) +((((-1154) |#2|) |has| |#2| (-506 (-1154) |#2|)) ((|#2| |#2|) |has| |#2| (-303 |#2|))) ((((-401 (-552))) . T) (((-552)) . T)) (((|#1|) . T) (($) . T)) ((((-552)) . T)) ((((-552)) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) ((((-552)) . T)) ((((-552)) . T)) -(((#0=(-681) (-1148 #0#)) . T)) +(((#0=(-683) (-1150 #0#)) . T)) ((((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) ((((-552) |#1|) . T)) @@ -171,271 +171,271 @@ (|has| |#2| (-357)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-1134) |#1|) . T)) +((((-844)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-1136) |#1|) . T)) (((|#3| |#3|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1| |#1|) . T)) -(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -(((|#1|) . T)) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030)))) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-552) |#1|) . T)) -((((-842)) . T)) -((((-166 (-220))) |has| |#1| (-1001)) (((-166 (-373))) |has| |#1| (-1001)) (((-528)) |has| |#1| (-600 (-528))) (((-1148 |#1|)) . T) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((((-844)) . T)) +((((-166 (-220))) |has| |#1| (-1003)) (((-166 (-373))) |has| |#1| (-1003)) (((-528)) |has| |#1| (-600 (-528))) (((-1150 |#1|)) . T) (((-873 (-552))) |has| |#1| (-600 (-873 (-552)))) (((-873 (-373))) |has| |#1| (-600 (-873 (-373))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) . T)) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) (|has| |#1| (-357)) ((((-128)) . T)) -(-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) -(-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) -(-1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +(-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) +(-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) +(-4029 (|has| |#4| (-169)) (|has| |#4| (-830)) (|has| |#4| (-1030))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T)) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) (((|#1|) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) (|has| |#1| (-544)) -((((-681)) . T)) +((((-683)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-981)) (|has| |#1| (-1174))) +(-12 (|has| |#1| (-983)) (|has| |#1| (-1176))) (((|#2|) . T) (($) . T) (((-401 (-552))) . T)) -(-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))) +(-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))) ((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1152 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) -(((|#3| |#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($ $) |has| |#3| (-169))) -(((|#4| |#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028))) (($ $) |has| |#4| (-169))) +(((|#3| |#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030))) (($ $) |has| |#3| (-169))) +(((|#4| |#4|) -4029 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1030))) (($ $) |has| |#4| (-169))) (((|#1|) . T)) (((|#2|) . T)) -((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) -((((-842)) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-873 (-373))) |has| |#2| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#2| (-600 (-873 (-552))))) +((((-844)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-842)) . T)) -((((-528)) |has| |#1| (-600 (-528))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552))))) -(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($) |has| |#3| (-169))) -(((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028))) (($) |has| |#4| (-169))) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-844)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-873 (-373))) |has| |#1| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#1| (-600 (-873 (-552))))) +(((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030))) (($) |has| |#3| (-169))) +(((|#4|) -4029 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1030))) (($) |has| |#4| (-169))) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-552)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) ((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) ((((-401 $) (-401 $)) |has| |#2| (-544)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-888)) -((((-1134) (-52)) . T)) -((((-552)) |has| #0=(-401 |#2|) (-623 (-552))) ((#0#) . T)) -((((-528)) . T) (((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +((((-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-890)) +((((-1136) (-52)) . T)) +((((-552)) |has| #0=(-401 |#2|) (-625 (-552))) ((#0#) . T)) +((((-528)) . T) (((-220)) . T) (((-373)) . T) (((-873 (-373))) . T)) +((((-844)) . T)) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) (((|#1|) |has| |#1| (-169))) (((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-401 (-552))) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) -(|has| |#1| (-830)) -(|has| |#1| (-1076)) +((((-844)) . T)) +(|has| |#1| (-832)) +(|has| |#1| (-1078)) (((|#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) . T) (((-1157)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T) (((-1159)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-228)) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(((|#1| (-523 (-801 (-1152)))) . T)) -(((|#1| (-950)) . T)) -(((#0=(-849 |#1|) $) |has| #0# (-280 #0# #0#))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1| (-523 (-803 (-1154)))) . T)) +(((|#1| (-952)) . T)) +(((#0=(-851 |#1|) $) |has| #0# (-280 #0# #0#))) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1127)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) -(|has| (-1221 |#1| |#2| |#3| |#4|) (-142)) -(|has| (-1221 |#1| |#2| |#3| |#4|) (-144)) +(|has| |#1| (-1129)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) +(|has| (-1223 |#1| |#2| |#3| |#4|) (-142)) +(|has| (-1223 |#1| |#2| |#3| |#4|) (-144)) (|has| |#1| (-142)) (|has| |#1| (-144)) (((|#1|) |has| |#1| (-169))) -((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) +((((-1154)) -12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (((|#2|) . T)) -(|has| |#1| (-1076)) -((((-1134) |#1|) . T)) +(|has| |#1| (-1078)) +((((-1136) |#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) (|has| |#2| (-362)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1028))) -((((-842)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#2|) |has| |#2| (-1030))) +((((-844)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((#0=(-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) #0#) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) ((((-552) |#1|) . T)) -((((-842)) . T)) -((((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373))))) (((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) -((((-842)) . T)) +((((-844)) . T)) +((((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))) (((-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373))))) (((-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) +((((-844)) . T)) ((($) . T)) -((((-842)) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T)) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) -((((-842)) . T)) -(|has| (-1220 |#2| |#3| |#4|) (-144)) -(|has| (-1220 |#2| |#3| |#4|) (-142)) -(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T)) +((((-844)) . T)) +(|has| (-1222 |#2| |#3| |#4|) (-144)) +(|has| (-1222 |#2| |#3| |#4|) (-142)) +(((|#2|) |has| |#2| (-1078)) (((-552)) -12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (((-401 (-552))) -12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (((|#1|) . T)) -(|has| |#1| (-1076)) -((((-842)) . T)) +(|has| |#1| (-1078)) +((((-844)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) (((|#1|) . T)) ((((-552) |#1|) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) -((((-842)) |has| |#1| (-1076))) -(-1559 (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-889 |#1|)) . T)) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) +((((-844)) |has| |#1| (-1078))) +(-4029 (|has| |#1| (-466)) (|has| |#1| (-711)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030)) (|has| |#1| (-1090))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-891 |#1|)) . T)) ((((-401 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-552) |#1|))) ((((-401 (-552))) . T) (($) . T)) -(|has| |#1| (-830)) +(|has| |#1| (-832)) (((|#1|) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) (|has| |#1| (-357)) -(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) +(-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-357)) ((((-552)) . T)) -(|has| |#1| (-15 * (|#1| (-754) |#1|))) -((((-1118 |#2| (-401 (-931 |#1|)))) . T) (((-401 (-931 |#1|))) . T)) +(|has| |#1| (-15 * (|#1| (-756) |#1|))) +((((-1120 |#2| (-401 (-933 |#1|)))) . T) (((-401 (-933 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) (((|#1|) . T)) ((((-552) |#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#2|) . T)) -(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-4029 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) (((|#1|) . T)) -((((-1152)) -12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) -(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) -(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((((-1154)) -12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) +(-4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) ((($ $) |has| |#1| (-544))) -(((#0=(-681) (-1148 #0#)) . T)) -((((-842)) . T) (((-1235 |#4|)) . T)) -((((-842)) . T) (((-1235 |#3|)) . T)) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +(((#0=(-683) (-1150 #0#)) . T)) +((((-844)) . T) (((-1237 |#4|)) . T)) +((((-844)) . T) (((-1237 |#3|)) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) ((($) |has| |#1| (-544))) -((((-842)) . T)) -((($) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1227 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) -(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) -(((|#3|) |has| |#3| (-1028))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(|has| |#1| (-1076)) -(((|#2| (-802 |#1|)) . T)) +((((-844)) . T)) +((($) . T)) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1229 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1229 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) +(((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +(((|#3|) |has| |#3| (-1030))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#1| (-1078)) +(((|#2| (-804 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-357)) ((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1058) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-889 |#1|)) . T)) +(((#0=(-1060) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-891 |#1|)) . T)) ((((-141)) . T)) ((((-141)) . T)) -(((|#3|) |has| |#3| (-1076)) (((-552)) -12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (((-401 (-552))) -12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#3|) |has| |#3| (-1078)) (((-552)) -12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078))) (((-401 (-552))) -12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078)))) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) (|has| |#1| (-357)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) -((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(|has| |#2| (-803)) -(|has| |#1| (-38 (-401 (-552)))) -(|has| |#1| (-828)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) +((((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#2| (-805)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-830)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((((-528)) |has| |#1| (-600 (-528)))) (((|#1| |#2|) . T)) -((((-1152)) -12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) -((((-1134) |#1|) . T)) +((((-1154)) -12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) +((((-1136) |#1|) . T)) (((|#1| |#2| |#3| (-523 |#3|)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) (|has| |#1| (-362)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((((-552)) . T)) ((((-552)) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -((((-842)) . T)) -((((-842)) . T)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) -((((-1152) #0=(-849 |#1|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +((((-844)) . T)) +((((-844)) . T)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1030))) +((((-1154) #0=(-851 |#1|)) |has| #0# (-506 (-1154) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) (((|#1|) . T)) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) ((((-401 (-552))) . T) (((-552)) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-552)) . T) (((-401 (-552))) . T)) @@ -447,95 +447,95 @@ (((|#1|) . T)) (((|#1|) . T)) (((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) |has| |#1| (-544))) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-552)) . T) (((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-552) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-846 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1152) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1154) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-169))) -((($) -1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) -(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) +((($) -4029 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +(((|#2| |#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($ $) |has| |#2| (-169))) ((((-141)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-362)) (|has| |#2| (-362))) -((((-842)) . T)) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) +((((-844)) . T)) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($) |has| |#2| (-169))) (((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-1076)) +((((-844)) . T)) +(|has| |#1| (-1078)) (|has| $ (-144)) ((((-552) |#1|) . T)) -((($) -1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((($) -4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (|has| |#1| (-357)) -(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) +(-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-357)) -(|has| |#1| (-15 * (|#1| (-754) |#1|))) -(((|#1|) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(((|#2| (-523 (-844 |#1|))) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(|has| |#1| (-15 * (|#1| (-756) |#1|))) +(((|#1|) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-844)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(((|#2| (-523 (-846 |#1|))) . T)) +((((-844)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) . T)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((((-569 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-849 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) +((((-851 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-1154)) -12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-552) |#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1150 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) -(((|#2|) |has| |#2| (-1028))) -(|has| |#1| (-1076)) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) -(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1152 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T)) +(((|#2|) |has| |#2| (-1030))) +(|has| |#1| (-1078)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1152 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) +(((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) |has| |#1| (-169)) (($) . T)) (((|#1|) . T)) -(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((((-842)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((((-844)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) -(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) +(((#0=(-1060) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) ((($) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) (((|#1|) . T)) (((|#2|) |has| |#1| (-357))) -(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) +(((|#2|) |has| |#2| (-1078)) (((-552)) -12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (((-401 (-552))) -12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((((-552) |#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-401 |#2|) |#3|) . T)) (((|#1| (-401 (-552))) . T)) ((((-401 (-552))) . T) (($) . T)) @@ -543,144 +543,144 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T) (((-1157)) . T)) +((((-844)) . T) (((-1159)) . T)) (|has| |#1| (-142)) (|has| |#1| (-144)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((((-401 (-552))) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) -(((|#2| |#3| (-844 |#1|)) . T)) -((((-1152)) |has| |#2| (-879 (-1152)))) +(((|#2| |#3| (-846 |#1|)) . T)) +((((-1154)) |has| |#2| (-881 (-1154)))) (((|#1|) . T)) (((|#1| (-523 |#2|) |#2|) . T)) -(((|#1| (-754) (-1058)) . T)) +(((|#1| (-756) (-1060)) . T)) ((((-401 (-552))) |has| |#2| (-357)) (($) . T)) -(((|#1| (-523 (-1064 (-1152))) (-1064 (-1152))) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#1| (-523 (-1066 (-1154))) (-1066 (-1154))) . T)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(|has| |#2| (-776)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(|has| |#2| (-778)) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) -(|has| |#2| (-828)) -((((-872 |#1|)) . T) (((-802 |#1|)) . T)) -((((-802 (-1152))) . T)) +(|has| |#2| (-830)) +((((-874 |#1|)) . T) (((-804 |#1|)) . T)) +((((-804 (-1154))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-627 (-552))) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-629 (-552))) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) (|has| |#1| (-228)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-1227 |#1| |#2| |#3|) $) -12 (|has| (-1227 |#1| |#2| |#3|) (-280 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-1229 |#1| |#2| |#3|) $) -12 (|has| (-1229 |#1| |#2| |#3|) (-280 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1116 |#1| |#2|)) |has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +((((-1118 |#1| |#2|)) |has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#2|) . T) (((-552)) |has| |#2| (-1019 (-552))) (((-401 (-552))) |has| |#2| (-1019 (-401 (-552))))) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#2|) . T)) -((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) +((((-844)) -4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-844))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) (((-1237 |#2|)) . T)) (((|#1|) |has| |#1| (-169))) ((((-552)) . T)) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((((-552) (-141)) . T)) -((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +((($) -4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030)))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) (((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) (((|#2|) |has| |#1| (-357))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| (-523 #0=(-1152)) #0#) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| (-523 #0=(-1154)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-169)) (|has| |#3| (-169)) -(((#0=(-401 (-931 |#1|)) #0#) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(|has| |#1| (-1076)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(|has| |#1| (-1076)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +(((#0=(-401 (-933 |#1|)) #0#) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(|has| |#1| (-1078)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(|has| |#1| (-1078)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-842)) . T) (((-1157)) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-844)) . T) (((-1159)) . T)) (((|#1| |#1|) |has| |#1| (-169))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1|) . T)) -((((-401 (-931 |#1|))) . T)) +((((-401 (-933 |#1|))) . T)) (((|#1|) |has| |#1| (-169))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1028)) (((-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +((((-844)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1030)) (((-552)) -12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))) (((|#1| |#2|) . T)) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -(|has| |#3| (-776)) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -(|has| |#3| (-828)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) -(((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| (-1132 |#1|)) |has| |#1| (-828))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-711)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +(|has| |#3| (-778)) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +(|has| |#3| (-830)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) +(((|#2|) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#1| (-1134 |#1|)) |has| |#1| (-830))) ((((-552) |#2|) . T)) -(|has| |#1| (-1076)) -(((|#1|) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-1127))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(|has| |#1| (-1076)) -(((|#2|) . T)) -((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) -(((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)))) -(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) -((((-842)) . T)) -(((|#1|) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) -((($ $) . T) ((#0=(-1152) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-801 (-1152)) |#1|) . T) ((#1# $) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(|has| |#1| (-1078)) +(((|#1|) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-1129))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(|has| |#1| (-1078)) +(((|#2|) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-873 (-373))) |has| |#2| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#2| (-600 (-873 (-552))))) +(((|#4|) -4029 (|has| |#4| (-169)) (|has| |#4| (-357)))) +(((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)))) +((((-844)) . T)) +(((|#1|) . T)) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-890))) +((($ $) . T) ((#0=(-1154) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-803 (-1154)) |#1|) . T) ((#1# $) . T)) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) ((((-552) |#2|) . T)) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((($) -1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) ((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028)))) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((($) -4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) ((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030)))) ((((-552) |#1|) . T)) (|has| (-401 |#2|) (-144)) (|has| (-401 |#2|) (-142)) @@ -688,55 +688,55 @@ (|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-401 (-552))) . T)) -((((-842)) . T)) +((((-844)) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-842)) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-844)) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) (|has| |#1| (-38 (-401 (-552)))) -((((-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-382) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) (|has| |#1| (-38 (-401 (-552)))) -(|has| |#2| (-1127)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-1188)) . T) (((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) +(|has| |#2| (-1129)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-1190)) . T) (((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) (((|#1|) . T)) -((((-382) (-1134)) . T)) +((((-382) (-1136)) . T)) (|has| |#1| (-544)) ((((-115 |#1|)) . T)) ((((-552) |#1|) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#2|) . T)) -((((-842)) . T)) -((((-802 |#1|)) . T)) +((((-844)) . T)) +((((-804 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) -((((-1152) (-52)) . T)) +((((-1154) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-544)) (((|#1|) |has| |#1| (-169))) -((((-842)) . T)) +((((-844)) . T)) ((((-528)) |has| |#1| (-600 (-528)))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) (((|#2|) |has| |#2| (-303 |#2|))) (((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1148 |#1|)) . T)) +(((|#1| (-1150 |#1|)) . T)) (|has| $ (-144)) (((|#2|) . T)) (((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) ((($) . T) (((-552)) . T) (((-401 (-552))) . T)) (|has| |#2| (-362)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) @@ -744,98 +744,98 @@ (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((((-552)) . T) (((-401 (-552))) . T) (($) . T)) -((((-1150 |#1| |#2| |#3|) $) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-1152 |#1| |#2| |#3|) $) -12 (|has| (-1152 |#1| |#2| |#3|) (-280 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((($ $) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((#0=(-1227 |#1| |#2| |#3|) #0#) -12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1152) #0#) -12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -(-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((#0=(-1229 |#1| |#2| |#3|) #0#) -12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1154) #0#) -12 (|has| (-1229 |#1| |#2| |#3|) (-506 (-1154) (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +(-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((((-401 (-552))) . T) (((-552)) . T)) ((((-552) (-141)) . T)) ((((-141)) . T)) (((|#1|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) ((((-111)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((((-111)) . T)) (((|#1|) . T)) -((((-528)) |has| |#1| (-600 (-528))) (((-220)) . #0=(|has| |#1| (-1001))) (((-373)) . #0#)) -((((-842)) . T)) -(|has| |#1| (-803)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(|has| |#1| (-830)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +((((-528)) |has| |#1| (-600 (-528))) (((-220)) . #0=(|has| |#1| (-1003))) (((-373)) . #0#)) +((((-844)) . T)) +(|has| |#1| (-805)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(|has| |#1| (-832)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) (|has| |#1| (-544)) -(|has| |#1| (-888)) -(((|#1|) . T)) -(|has| |#1| (-1076)) -((((-842)) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +(|has| |#1| (-890)) +(((|#1|) . T)) +(|has| |#1| (-1078)) +((((-844)) . T)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#1| (-1237 |#1|) (-1237 |#1|)) . T)) ((((-552) (-141)) . T)) ((($) . T)) -(-1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-1157)) . T) (((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-1076)) -(((|#1| (-950)) . T)) +(-4029 (|has| |#4| (-169)) (|has| |#4| (-830)) (|has| |#4| (-1030))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-1159)) . T) (((-844)) . T)) +((((-844)) . T)) +(|has| |#1| (-1078)) +(((|#1| (-952)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) (((|#1|) . T)) -(|has| |#2| (-776)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(|has| |#2| (-778)) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(|has| |#2| (-828)) -(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) -(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(|has| |#2| (-830)) +(-12 (|has| |#1| (-778)) (|has| |#2| (-778))) +(-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) -((((-842)) . T)) +((((-844)) . T)) (|has| |#1| (-343)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-401 (-552))) . T) (($) . T)) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) -(|has| |#1| (-811)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -(|has| |#1| (-1076)) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) +(|has| |#1| (-813)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +(|has| |#1| (-1078)) (((|#1| $) |has| |#1| (-280 |#1| |#1|))) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((($) |has| |#1| (-544))) -(((|#4|) |has| |#4| (-1076))) -(((|#3|) |has| |#3| (-1076))) +(((|#4|) |has| |#4| (-1078))) +(((|#3|) |has| |#3| (-1078))) (|has| |#3| (-362)) -(((|#1|) . T) (((-842)) . T)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -((((-842)) . T)) +(((|#1|) . T) (((-844)) . T)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1229 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +((((-844)) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) (((|#1| |#2|) . T)) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1| |#1|) |has| |#1| (-169))) @@ -843,68 +843,68 @@ (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) ((((-401 (-552))) . T) (((-552)) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) ((((-141)) . T)) (((|#1|) . T)) -((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) +((($) -4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030)))) ((((-141)) . T)) ((((-141)) . T)) (((|#1| |#2| |#3|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) (|has| $ (-144)) (|has| $ (-144)) -(|has| |#1| (-1076)) -((((-842)) . T)) +(|has| |#1| (-1078)) +((((-844)) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1028)) (|has| |#1| (-1088))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1030)) (|has| |#1| (-1090))) ((($ $) |has| |#1| (-280 $ $)) ((|#1| $) |has| |#1| (-280 |#1| |#1|))) (((|#1| (-401 (-552))) . T)) (((|#1|) . T)) -((((-1152)) . T)) +((((-1154)) . T)) (|has| |#1| (-544)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (|has| |#1| (-544)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T)) +((((-844)) . T)) (|has| |#2| (-142)) (|has| |#2| (-144)) (((|#2|) . T) (($) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) -(|has| |#4| (-828)) -(((|#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) . T)) -(|has| |#3| (-828)) +(|has| |#4| (-830)) +(((|#2| (-235 (-2657 |#1|) (-756)) (-846 |#1|)) . T)) +(|has| |#3| (-830)) (((|#1| (-523 |#3|) |#3|) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) (((#0=(-401 (-552)) #0#) |has| |#2| (-357)) (($ $) . T)) -((((-849 |#1|)) . T)) +((((-851 |#1|)) . T)) (|has| |#1| (-144)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-142)) ((((-401 (-552))) |has| |#2| (-357)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-343)) (|has| |#1| (-362))) -((((-1118 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-343)) (|has| |#1| (-362))) +((((-1120 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-169)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -((((-842)) . T)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1030))) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +((((-844)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-681)) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-683)) . T)) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (|has| |#1| (-544)) (((|#1|) . T)) (((|#1|) . T)) @@ -912,53 +912,53 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1152) (-52)) . T)) +((((-1154) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-842)) . T)) -((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1| (-552)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1| (-401 (-552))) . T)) (((|#3|) . T) (((-598 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) -(((#0=(-1150 |#1| |#2| |#3|) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1152) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +(((#0=(-1152 |#1| |#2| |#3|) #0#) -12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1154) #0#) -12 (|has| (-1152 |#1| |#2| |#3|) (-506 (-1154) (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) -((((-842)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) +((((-844)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1152) (-52)) . T)) +((((-1154) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-811)) -(|has| |#1| (-1076)) -(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) -((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) -((((-754)) . T)) +((($ $) . T) ((#0=(-846 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-813)) +(|has| |#1| (-1078)) +(((|#2| |#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($ $) |has| |#2| (-169))) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)))) +((((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($) |has| |#2| (-169))) +((((-756)) . T)) ((((-552)) . T)) (|has| |#1| (-544)) -((((-842)) . T)) -(((|#1| (-401 (-552)) (-1058)) . T)) +((((-844)) . T)) +(((|#1| (-401 (-552)) (-1060)) . T)) (|has| |#1| (-142)) (((|#1|) . T)) (|has| |#1| (-544)) @@ -966,257 +966,257 @@ ((((-115 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-144)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) -((((-871 (-552))) . T) (((-871 (-373))) . T) (((-528)) . T) (((-1152)) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-842)) . T) (((-1157)) . T)) -((($) . T)) -((((-842)) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) +((((-873 (-552))) . T) (((-873 (-373))) . T) (((-528)) . T) (((-1154)) . T)) +((((-844)) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-844)) . T) (((-1159)) . T)) +((($) . T)) +((((-844)) . T)) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) (((|#2|) |has| |#2| (-169))) -((($) -1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) -((((-849 |#1|)) . T)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) -(-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) -(|has| |#2| (-1127)) -(((#0=(-52)) . T) (((-2 (|:| -3998 (-1152)) (|:| -2162 #0#))) . T)) +((($) -4029 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +((((-851 |#1|)) . T)) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) +(-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) +(|has| |#2| (-1129)) +(((#0=(-52)) . T) (((-2 (|:| -2670 (-1154)) (|:| -3360 #0#))) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -(((|#1| (-552) (-1058)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| (-401 (-552)) (-1058)) . T)) -((($) -1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +(((|#1| (-552) (-1060)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| (-401 (-552)) (-1060)) . T)) +((($) -4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((((-552) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-362)) (-12 (|has| |#1| (-362)) (|has| |#2| (-362))) -((((-842)) . T)) -((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +((((-844)) . T)) +((((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (((|#1|) . T)) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1152 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) +((((-844)) . T)) (|has| |#1| (-343)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (|has| |#1| (-544)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) ((((-401 (-552))) . T) (((-552)) . T)) ((((-552)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) ((($) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-849 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -((((-842)) . T)) -(((|#3| |#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($ $) |has| |#3| (-169))) -(|has| |#1| (-1001)) -((((-842)) . T)) -(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($) |has| |#3| (-169))) +((((-851 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-844)) . T)) +(((|#3| |#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030))) (($ $) |has| |#3| (-169))) +(|has| |#1| (-1003)) +((((-844)) . T)) +(((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030))) (($) |has| |#3| (-169))) ((((-552) (-111)) . T)) (((|#1|) |has| |#1| (-303 |#1|))) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) -((((-1152) $) |has| |#1| (-506 (-1152) $)) (($ $) |has| |#1| (-303 $)) ((|#1| |#1|) |has| |#1| (-303 |#1|)) (((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|))) -((((-1152)) |has| |#1| (-879 (-1152)))) -(-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343))) +((((-1154) $) |has| |#1| (-506 (-1154) $)) (($ $) |has| |#1| (-303 $)) ((|#1| |#1|) |has| |#1| (-303 |#1|)) (((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|))) +((((-1154)) |has| |#1| (-881 (-1154)))) +(-4029 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-382) |#1|) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-1076)) -((((-842)) . T)) -((((-842)) . T)) -((((-889 |#1|)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-1078)) +((((-844)) . T)) +((((-844)) . T)) +((((-891 |#1|)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-849 |#1|)) |has| #0# (-303 #0#))) +(((#0=(-851 |#1|)) |has| #0# (-303 #0#))) (((|#1| |#2|) . T)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (((|#1|) . T)) -(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-12 (|has| |#1| (-778)) (|has| |#2| (-778))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(|has| |#1| (-1174)) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(|has| |#1| (-1176)) (((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) ((((-401 (-552))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1028))) -(((|#3|) |has| |#3| (-1028))) +(((|#4|) |has| |#4| (-1030))) +(((|#3|) |has| |#3| (-1030))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (|has| |#1| (-357)) ((((-552)) . T) (((-401 (-552))) . T) (($) . T)) -((($ $) . T) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((($ $) . T) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-552) |#3|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-528)) |has| |#3| (-600 (-528)))) -((((-671 |#3|)) . T) (((-842)) . T)) +((((-673 |#3|)) . T) (((-844)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-828)) -(|has| |#1| (-828)) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) -((($) . T)) -(((#0=(-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) -(|has| |#2| (-830)) -((($) . T)) -(((|#2|) |has| |#2| (-1076))) -((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) -(|has| |#1| (-830)) (|has| |#1| (-830)) -((((-1134) (-52)) . T)) (|has| |#1| (-830)) -((((-842)) . T)) -((((-552)) |has| #0=(-401 |#2|) (-623 (-552))) ((#0#) . T)) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) +((($) . T)) +(((#0=(-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) #0#) |has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) +(|has| |#2| (-832)) +((($) . T)) +(((|#2|) |has| |#2| (-1078))) +((((-844)) -4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-844))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) (((-1237 |#2|)) . T)) +(|has| |#1| (-832)) +(|has| |#1| (-832)) +((((-1136) (-52)) . T)) +(|has| |#1| (-832)) +((((-844)) . T)) +((((-552)) |has| #0=(-401 |#2|) (-625 (-552))) ((#0#) . T)) ((((-552) (-141)) . T)) -((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) +((((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((|#1| |#2|) . T)) ((((-401 (-552))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-842)) . T)) -((((-889 |#1|)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-844)) . T)) +((((-891 |#1|)) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) -(|has| |#1| (-828)) +(|has| |#1| (-830)) (|has| |#1| (-357)) -(|has| |#1| (-828)) +(|has| |#1| (-830)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-828)) -((((-1152)) |has| |#1| (-879 (-1152)))) -(((|#1| (-1152)) . T)) -(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) -((((-842)) . T) (((-1157)) . T)) +(|has| |#1| (-830)) +((((-1154)) |has| |#1| (-881 (-1154)))) +(((|#1| (-1154)) . T)) +(((|#1| (-1237 |#1|) (-1237 |#1|)) . T)) +((((-844)) . T) (((-1159)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1076)) -(((|#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) . T)) -((((-401 (-931 |#1|))) . T)) +(|has| |#1| (-1078)) +(((|#1| (-1154) (-803 (-1154)) (-523 (-803 (-1154)))) . T)) +((((-401 (-933 |#1|))) . T)) ((((-528)) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) +((((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-169))) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890)))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) (((|#1|) . T)) -((((-528)) |has| |#1| (-600 (-528))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552))))) -((((-842)) . T)) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(|has| |#2| (-828)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) +((((-528)) |has| |#1| (-600 (-528))) (((-873 (-373))) |has| |#1| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#1| (-600 (-873 (-552))))) +((((-844)) . T)) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(|has| |#2| (-830)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1030))) (|has| |#1| (-544)) -(|has| |#1| (-1127)) -((((-1134) |#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-552))) (((-552)) |has| |#1| (-1017 (-552))) (((-1152)) |has| |#1| (-1017 (-1152))) ((|#1|) . T)) +(|has| |#1| (-1129)) +((((-1136) |#1|) . T)) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-552))) (((-552)) |has| |#1| (-1019 (-552))) (((-1154)) |has| |#1| (-1019 (-1154))) ((|#1|) . T)) ((((-552) |#2|) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-867 (-552))) (((-373)) |has| |#1| (-867 (-373)))) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) (((|#1|) . T)) -((((-627 |#4|)) . T) (((-842)) . T)) +((((-629 |#4|)) . T) (((-844)) . T)) ((((-528)) |has| |#4| (-600 (-528)))) ((((-528)) |has| |#4| (-600 (-528)))) -((((-842)) . T) (((-627 |#4|)) . T)) -((($) |has| |#1| (-828))) +((((-844)) . T) (((-629 |#4|)) . T)) +((($) |has| |#1| (-830))) (((|#1|) . T)) -((((-627 |#4|)) . T) (((-842)) . T)) +((((-629 |#4|)) . T) (((-844)) . T)) ((((-528)) |has| |#4| (-600 (-528)))) (((|#1|) . T)) (((|#2|) . T)) -((((-1152)) |has| (-401 |#2|) (-879 (-1152)))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +((((-1154)) |has| (-401 |#2|) (-881 (-1154)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-842)) -1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-599 (-842))) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) (((-1235 |#3|)) . T)) +((((-844)) -4029 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-599 (-844))) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-711)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030)) (|has| |#3| (-1078))) (((-1237 |#3|)) . T)) ((((-552) |#2|) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-1134) (-1152) (-552) (-220) (-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-38 (-401 (-552)))) -(|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(((|#2| |#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($ $) |has| |#2| (-169))) +((((-844)) . T)) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((|#2|) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-1136) (-1154) (-552) (-220) (-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-844)) . T)) ((((-552) (-111)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-111)) . T)) ((((-111)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-111)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T)) +((((-844)) . T)) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1030))) (($) |has| |#2| (-169))) (|has| $ (-144)) ((((-401 |#2|)) . T)) -((((-401 (-552))) |has| #0=(-401 |#2|) (-1017 (-401 (-552)))) (((-552)) |has| #0# (-1017 (-552))) ((#0#) . T)) +((((-401 (-552))) |has| #0=(-401 |#2|) (-1019 (-401 (-552)))) (((-552)) |has| #0# (-1019 (-552))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-169))) (|has| |#2| (-142)) @@ -1224,21 +1224,21 @@ (((|#3|) |has| |#3| (-169))) (|has| |#1| (-144)) (|has| |#1| (-142)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-228)) -((((-842)) . T) (((-1157)) . T)) -((((-1152) (-52)) . T)) -((((-842)) . T)) -((((-842)) . T) (((-1157)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-1154) (-52)) . T)) +((((-844)) . T)) +((((-844)) . T) (((-1159)) . T)) (((|#1| |#1|) . T)) -((((-1152)) |has| |#2| (-879 (-1152)))) +((((-1154)) |has| |#2| (-881 (-1154)))) ((((-128)) . T)) ((((-552) (-111)) . T)) (|has| |#1| (-544)) @@ -1254,145 +1254,145 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) -((((-842)) . T)) -((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-978 |#1|)) . T) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-844)) . T)) +((((-528)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-980 |#1|)) . T) ((|#1|) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((((-401 (-552))) . T) (((-401 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1148 |#1|)) . T)) +(((|#1| (-1150 |#1|)) . T)) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-830)) +(|has| |#1| (-832)) (((|#2|) . T)) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) ((((-552) |#2|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#2|) . T)) ((((-552) |#3|) . T)) (((|#2|) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T)) -(|has| |#1| (-1076)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +((((-844)) . T)) +(|has| |#1| (-1078)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (|has| |#1| (-38 (-401 (-552)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#2| |#2|) . T)) (|has| |#2| (-357)) -(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) +(((|#2|) . T) (((-552)) |has| |#2| (-1019 (-552))) (((-401 (-552))) |has| |#2| (-1019 (-401 (-552))))) (((|#2|) . T)) -((((-1134) (-52)) . T)) +((((-1136) (-52)) . T)) (((|#2|) |has| |#2| (-169))) ((((-552) |#3|) . T)) ((((-552) (-141)) . T)) ((((-141)) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-111)) . T)) (|has| |#1| (-144)) (((|#1|) . T)) (|has| |#1| (-142)) ((($) . T)) (|has| |#1| (-544)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) -((((-842)) . T)) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) -((((-1134) (-52)) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) +((((-844)) . T)) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) +((((-1136) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1| |#2|) . T)) ((((-552) (-141)) . T)) -(((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(|has| |#1| (-830)) -(((|#2| (-754) (-1058)) . T)) +(((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#1| (-832)) +(((|#2| (-756) (-1060)) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) -(|has| |#1| (-774)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) +(|has| |#1| (-776)) (((|#1|) |has| |#1| (-169))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#1| (-144)) (-12 (|has| |#1| (-357)) (|has| |#2| (-144)))) -(-1559 (|has| |#1| (-142)) (-12 (|has| |#1| (-357)) (|has| |#2| (-142)))) +(-4029 (|has| |#1| (-144)) (-12 (|has| |#1| (-357)) (|has| |#2| (-144)))) +(-4029 (|has| |#1| (-142)) (-12 (|has| |#1| (-357)) (|has| |#2| (-142)))) (((|#4|) . T)) (|has| |#1| (-142)) -((((-1134) |#1|) . T)) +((((-1136) |#1|) . T)) (|has| |#1| (-144)) (((|#1|) . T)) ((((-552)) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-844)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#3|) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-842)) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(((|#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076))) (((-937 |#1|)) . T)) -(|has| |#1| (-828)) -(|has| |#1| (-828)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-844)) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(((|#1|) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078))) (((-939 |#1|)) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (|has| |#2| (-357)) (((|#1|) |has| |#1| (-169))) -(((|#2|) |has| |#2| (-1028))) -((((-1134) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) -(((|#2| (-872 |#1|)) . T)) +(((|#2|) |has| |#2| (-1030))) +((((-1136) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) +(((|#2| (-874 |#1|)) . T)) ((($) . T)) -((((-382) (-1134)) . T)) +((((-382) (-1136)) . T)) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 #0#))) . T)) +((((-844)) -4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-844))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) (((-1237 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2670 (-1136)) (|:| -3360 #0#))) . T)) (((|#1|) . T)) -((((-842)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-844)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) ((((-141)) . T)) (|has| |#2| (-142)) (|has| |#2| (-144)) (|has| |#1| (-466)) -(-1559 (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-466)) (|has| |#1| (-711)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) (|has| |#1| (-357)) -((((-842)) . T)) +((((-844)) . T)) (|has| |#1| (-38 (-401 (-552)))) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((($) |has| |#1| (-544))) -(|has| |#1| (-828)) -(|has| |#1| (-828)) -((((-842)) . T)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +((((-844)) . T)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1229 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1| |#2|) . T)) -((((-1152)) |has| |#1| (-879 (-1152)))) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-1076)) -(((|#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) . T)) +((((-1154)) |has| |#1| (-881 (-1154)))) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-844)) . T)) +((((-844)) . T)) +(|has| |#1| (-1078)) +(((|#2| (-475 (-2657 |#1|) (-756)) (-846 |#1|)) . T)) ((((-401 (-552))) . #0=(|has| |#2| (-357))) (($) . #0#)) -(((|#1| (-523 (-1152)) (-1152)) . T)) +(((|#1| (-523 (-1154)) (-1154)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1406,63 +1406,63 @@ (|has| |#1| (-144)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-1152) (-52)) . T)) +(((|#1|) . T) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-1154) (-52)) . T)) ((($ $) . T)) (((|#1| (-552)) . T)) -((((-889 |#1|)) . T)) -(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028))) (($) -1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)))) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -(|has| |#1| (-830)) -(|has| |#1| (-830)) +((((-891 |#1|)) . T)) +(((|#1|) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1030))) (($) -4029 (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030)))) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +(|has| |#1| (-832)) +(|has| |#1| (-832)) ((((-552) |#2|) . T)) ((((-552)) . T)) -((((-1227 |#1| |#2| |#3|)) -12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -(|has| |#1| (-830)) -((((-671 |#2|)) . T) (((-842)) . T)) +((((-1229 |#1| |#2| |#3|)) -12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +(|has| |#1| (-832)) +((((-673 |#2|)) . T) (((-844)) . T)) (((|#1| |#2|) . T)) -((((-401 (-931 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +((((-401 (-933 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (((|#1|) |has| |#1| (-169))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(|has| |#2| (-830)) -(|has| |#1| (-830)) -(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) -(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-888))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(|has| |#2| (-832)) +(|has| |#1| (-832)) +(((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)))) +(-4029 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-890))) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) ((((-552) |#2|) . T)) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)))) (|has| |#1| (-343)) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) ((($) . T) (((-401 (-552))) . T)) ((((-552) (-111)) . T)) -(|has| |#1| (-803)) -(|has| |#1| (-803)) +(|has| |#1| (-805)) +(|has| |#1| (-805)) (((|#1|) . T)) -(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-828)) -(|has| |#1| (-828)) -(|has| |#1| (-828)) +(-4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (|has| |#1| (-38 (-401 (-552)))) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) (|has| |#1| (-38 (-401 (-552)))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-1154)) |has| |#1| (-881 (-1154))) (((-1060)) . T)) (((|#1|) . T)) -(|has| |#1| (-828)) -(((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(|has| |#1| (-1076)) -((((-842)) . T) (((-1157)) . T)) +(|has| |#1| (-830)) +(((#0=(-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) #0#) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(|has| |#1| (-1078)) +((((-844)) . T) (((-1159)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) @@ -1472,14 +1472,14 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-523 |#2|) |#2|) . T)) -((((-842)) . T)) -((((-141)) . T) (((-754)) . T) (((-842)) . T)) -(((|#1| (-754) (-1058)) . T)) +((((-844)) . T)) +((((-141)) . T) (((-756)) . T) (((-844)) . T)) +(((|#1| (-756) (-1060)) . T)) (((|#3|) . T)) (((|#1|) . T)) ((((-141)) . T)) (((|#2|) |has| |#2| (-169))) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) (((|#1|) . T)) (|has| |#1| (-142)) (|has| |#1| (-144)) @@ -1488,66 +1488,66 @@ (((|#3|) |has| |#3| (-357))) (((|#1|) . T)) (((|#2|) |has| |#1| (-357))) -((((-842)) . T)) +((((-844)) . T)) (((|#2|) . T)) -(((|#1| (-1148 |#1|)) . T)) -((((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +(((|#1| (-1150 |#1|)) . T)) +((((-1060)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) ((($) . T) ((|#1|) . T) (((-401 (-552))) . T)) (((|#2|) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -((($) |has| |#1| (-828))) -(|has| |#1| (-888)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +((($) |has| |#1| (-830))) +(|has| |#1| (-890)) +((((-844)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((#0=(-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) #0#) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) -(|has| |#1| (-830)) +(((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)))) +(|has| |#1| (-832)) (|has| |#1| (-544)) ((((-569 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-803))) (-12 (|has| |#1| (-357)) (|has| |#2| (-830)))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -((((-889 |#1|)) . T)) +(-4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-805))) (-12 (|has| |#1| (-357)) (|has| |#2| (-832)))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +((((-891 |#1|)) . T)) (((|#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-754)) . T)) +(((|#1| (-756)) . T)) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1152 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544)))) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) -((((-654 |#1|)) . T)) +((((-656 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-842)) . T) (((-1157)) . T)) +((((-844)) . T) (((-1159)) . T)) ((((-528)) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2|) . T)) -(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -(|has| |#1| (-1174)) -(|has| |#1| (-1174)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) -(|has| |#1| (-1174)) -(|has| |#1| (-1174)) +((((-844)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#2|) . T)) +(-4029 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-711)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030)) (|has| |#3| (-1078))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +(|has| |#1| (-1176)) +(|has| |#1| (-1176)) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) +(|has| |#1| (-1176)) +(|has| |#1| (-1176)) (((|#3| |#3|) . T)) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) ((($) . T) (((-401 (-552))) . T) (((-401 |#1|)) . T) ((|#1|) . T)) @@ -1556,181 +1556,181 @@ (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) -((((-1134) (-52)) . T)) -(|has| |#1| (-1076)) -(-1559 (|has| |#2| (-803)) (|has| |#2| (-830))) +((((-1136) (-52)) . T)) +(|has| |#1| (-1078)) +(-4029 (|has| |#2| (-805)) (|has| |#2| (-832))) (((|#1|) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((($) . T)) -((((-1150 |#1| |#2| |#3|)) -12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -((((-842)) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1152 |#1| |#2| |#3|)) -12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +((((-844)) . T)) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((($) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -((((-842)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(|has| |#2| (-888)) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +((((-844)) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(|has| |#2| (-890)) (|has| |#1| (-357)) -(((|#2|) |has| |#2| (-1076))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(((|#2|) |has| |#2| (-1078))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) ((($) . T) ((|#2|) . T)) -((((-528)) . T) (((-401 (-1148 (-552)))) . T) (((-220)) . T) (((-373)) . T)) -((((-373)) . T) (((-220)) . T) (((-842)) . T)) -(|has| |#1| (-888)) -(|has| |#1| (-888)) -(|has| |#1| (-888)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-528)) . T) (((-401 (-1150 (-552)))) . T) (((-220)) . T) (((-373)) . T)) +((((-373)) . T) (((-220)) . T) (((-844)) . T)) +(|has| |#1| (-890)) +(|has| |#1| (-890)) +(|has| |#1| (-890)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) ((($ $) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((($ $) . T)) ((((-552) (-111)) . T)) ((($) . T)) (((|#1|) . T)) ((((-552)) . T)) ((((-111)) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (|has| |#1| (-38 (-401 (-552)))) (((|#1| (-552)) . T)) ((($) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) (((|#1|) . T)) ((((-552)) . T)) (((|#1| |#2|) . T)) -((((-1152)) |has| |#1| (-1028))) +((((-1154)) |has| |#1| (-1030))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1| (-552)) . T)) -(((|#1| (-1227 |#1| |#2| |#3|)) . T)) +(((|#1| (-1229 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-401 (-552))) . T)) -(((|#1| (-1199 |#1| |#2| |#3|)) . T)) -(((|#1| (-754)) . T)) +(((|#1| (-1201 |#1| |#2| |#3|)) . T)) +(((|#1| (-756)) . T)) (((|#1|) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-842)) . T)) -(|has| |#1| (-1076)) -((((-1134) |#1|) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-844)) . T)) +(|has| |#1| (-1078)) +((((-1136) |#1|) . T)) ((($) . T)) (|has| |#2| (-144)) (|has| |#2| (-142)) -(((|#1| (-523 (-801 (-1152))) (-801 (-1152))) . T)) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1028))) +(((|#1| (-523 (-803 (-1154))) (-803 (-1154))) . T)) +((((-844)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1030))) ((((-552) (-111)) . T)) -((((-842)) |has| |#1| (-1076))) +((((-844)) |has| |#1| (-1078))) (|has| |#2| (-169)) ((((-552)) . T)) -(|has| |#2| (-828)) +(|has| |#2| (-830)) (((|#1|) . T)) ((((-552)) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-343))) +((((-844)) . T)) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-343))) (|has| |#1| (-144)) -((((-842)) . T)) +((((-844)) . T)) (((|#3|) . T)) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-842)) . T)) -((((-1220 |#2| |#3| |#4|)) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-842)) . T)) -((((-48)) -12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (((-598 $)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) -1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))) (((-401 (-931 |#1|))) |has| |#1| (-544)) (((-931 |#1|)) |has| |#1| (-1028)) (((-1152)) . T)) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-844)) . T)) +((((-1222 |#2| |#3| |#4|)) . T) (((-1223 |#1| |#2| |#3| |#4|)) . T)) +((((-844)) . T)) +((((-48)) -12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552)))) (((-598 $)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) -4029 (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552)))) (|has| |#1| (-1019 (-401 (-552))))) (((-401 (-933 |#1|))) |has| |#1| (-544)) (((-933 |#1|)) |has| |#1| (-1030)) (((-1154)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-754)) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +(((|#1| (-756)) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) (((|#1|) |has| |#1| (-303 |#1|))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) +((((-552)) |has| |#1| (-867 (-552))) (((-373)) |has| |#1| (-867 (-373)))) (((|#1|) . T)) (|has| |#1| (-544)) (((|#1|) . T)) -((((-842)) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +((((-844)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((|#1|) |has| |#1| (-169))) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (((|#1|) . T)) -(((|#3|) |has| |#3| (-1076))) -(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) -((((-1220 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1078))) +(((|#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-357)))) +((((-1222 |#2| |#3| |#4|)) . T)) ((((-111)) . T)) -(|has| |#1| (-803)) -(|has| |#1| (-803)) -(((|#1| (-552) (-1058)) . T)) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +(((|#1| (-552) (-1060)) . T)) ((($) |has| |#1| (-303 $)) ((|#1|) |has| |#1| (-303 |#1|))) -(|has| |#1| (-828)) -(|has| |#1| (-828)) -(((|#1| (-552) (-1058)) . T)) -(-1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -(((|#1| (-401 (-552)) (-1058)) . T)) -(((|#1| (-754) (-1058)) . T)) (|has| |#1| (-830)) -(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +(|has| |#1| (-830)) +(((|#1| (-552) (-1060)) . T)) +(-4029 (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +(((|#1| (-401 (-552)) (-1060)) . T)) +(((|#1| (-756) (-1060)) . T)) +(|has| |#1| (-832)) +(((#0=(-891 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) (|has| |#2| (-142)) (|has| |#2| (-144)) (((|#2|) . T)) (|has| |#1| (-142)) (|has| |#1| (-144)) -(|has| |#1| (-1076)) -((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) +((((-891 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-1078)) (((|#1|) . T)) -(|has| |#1| (-1076)) -((((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-623 (-552)))) ((|#2|) |has| |#1| (-357))) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(|has| |#1| (-1078)) +((((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-625 (-552)))) ((|#2|) |has| |#1| (-357))) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) -((((-842)) . T)) -(|has| |#3| (-828)) -((((-842)) . T)) -((((-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) -((((-842)) . T)) -(((|#1| |#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028)))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) +((((-844)) . T)) +(|has| |#3| (-830)) +((((-844)) . T)) +((((-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) +((((-844)) . T)) +(((|#1| |#1|) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1030)))) (((|#1|) . T)) ((((-552)) . T)) ((((-552)) . T)) -(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028)))) +(((|#1|) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1030)))) (((|#2|) |has| |#2| (-357))) ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) -(|has| |#1| (-830)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-832)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) -((((-842)) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) |has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-890))) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-552)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) (|has| |#1| (-38 (-401 (-552)))) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) ((((-552)) . T) (($) . T) (((-401 (-552))) . T)) (|has| |#1| (-228)) (((|#1|) . T)) (((|#1| (-552)) . T)) -(|has| |#1| (-828)) -(((|#1| (-1150 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-830)) +(((|#1| (-1152 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| (-401 (-552))) . T)) -(((|#1| (-1143 |#1| |#2| |#3|)) . T)) -(((|#1| (-754)) . T)) +(((|#1| (-1145 |#1| |#2| |#3|)) . T)) +(((|#1| (-756)) . T)) (((|#1|) . T)) (((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#1|) . T)) @@ -1744,43 +1744,43 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) . T) (($ $) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| (-401 |#2|) (-228)) -(|has| |#1| (-888)) -(((|#2|) |has| |#2| (-1028))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(|has| |#1| (-890)) +(((|#2|) |has| |#2| (-1030))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (|has| |#1| (-357)) (((|#1|) |has| |#1| (-169))) (((|#1| |#1|) . T)) -((((-849 |#1|)) . T)) -((((-842)) . T)) +((((-851 |#1|)) . T)) +((((-844)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1076))) -(|has| |#2| (-830)) +(((|#2|) |has| |#2| (-1078))) +(|has| |#2| (-832)) (((|#1|) . T)) ((((-401 (-552))) . T) (((-552)) . T) (((-598 $)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T)) -(|has| |#1| (-830)) -((((-842)) . T)) +(|has| |#1| (-832)) +((((-844)) . T)) (((|#1| (-523 |#2|) |#2|) . T)) -(((|#1| (-552) (-1058)) . T)) -((((-889 |#1|)) . T)) -((((-842)) . T)) +(((|#1| (-552) (-1060)) . T)) +((((-891 |#1|)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-401 (-552)) (-1058)) . T)) -(((|#1| (-754) (-1058)) . T)) +(((|#1| (-401 (-552)) (-1060)) . T)) +(((|#1| (-756) (-1060)) . T)) (((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-552)) -1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))) (((-401 (-552))) . T)) +(((|#1|) . T) (((-552)) -4029 (|has| (-401 (-552)) (-1019 (-552))) (|has| |#1| (-1019 (-552)))) (((-401 (-552))) . T)) (((|#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) @@ -1788,53 +1788,53 @@ (((|#1|) . T)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) (|has| |#2| (-228)) -(((|#2| (-523 (-844 |#1|)) (-844 |#1|)) . T)) -((((-842)) . T)) +(((|#2| (-523 (-846 |#1|)) (-846 |#1|)) . T)) +((((-844)) . T)) ((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) +((((-844)) . T)) (((|#1| |#3|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) |has| |#1| (-169))) -((((-681)) . T)) -((((-681)) . T)) +((((-683)) . T)) +((((-683)) . T)) (((|#2|) |has| |#2| (-169))) -(|has| |#2| (-828)) -((((-111)) |has| |#1| (-1076)) (((-842)) -1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076)))) +(|has| |#2| (-830)) +((((-111)) |has| |#1| (-1078)) (((-844)) -4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-711)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030)) (|has| |#1| (-1090)) (|has| |#1| (-1078)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) -((((-842)) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) . T)) +((((-844)) . T)) ((((-552) |#1|) . T)) -((((-842)) . T)) -((((-681)) . T) (((-401 (-552))) . T) (((-552)) . T)) +((((-844)) . T)) +((((-683)) . T) (((-401 (-552))) . T) (((-552)) . T)) (((|#1| |#1|) |has| |#1| (-169))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) ((((-373)) . T)) -((((-681)) . T)) +((((-683)) . T)) ((((-401 (-552))) . #0=(|has| |#2| (-357))) (($) . #0#)) (((|#1|) |has| |#1| (-169))) -((((-401 (-931 |#1|))) . T)) +((((-401 (-933 |#1|))) . T)) (((|#2| |#2|) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#2|) . T)) -(|has| |#2| (-830)) -(|has| |#2| (-888)) -(|has| |#1| (-888)) +(|has| |#2| (-832)) +(|has| |#2| (-890)) +(|has| |#1| (-890)) (|has| |#1| (-357)) -(|has| |#1| (-830)) -(((|#3|) |has| |#3| (-1028))) -((((-1152)) |has| |#2| (-879 (-1152)))) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-832)) +(((|#3|) |has| |#3| (-1030))) +((((-1154)) |has| |#2| (-881 (-1154)))) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((((-401 (-552))) . T) (($) . T)) (|has| |#1| (-466)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-357)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1028)) (|has| |#1| (-1088))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1030)) (|has| |#1| (-1090))) (|has| |#1| (-38 (-401 (-552)))) ((((-115 |#1|)) . T)) ((((-115 |#1|)) . T)) @@ -1844,8 +1844,8 @@ ((($) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(((|#2|) . T) (((-842)) . T)) -(((|#2|) . T) (((-842)) . T)) +(((|#2|) . T) (((-844)) . T)) +(((|#2|) . T) (((-844)) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) @@ -1854,65 +1854,65 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(|has| |#1| (-830)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +(|has| |#1| (-832)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) ((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) ((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (((|#2|) . T)) (((|#3|) . T)) ((((-115 |#1|)) . T)) (|has| |#1| (-362)) -(|has| |#1| (-830)) -(((|#2|) . T) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +(|has| |#1| (-832)) +(((|#2|) . T) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) ((((-115 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) . T)) ((((-552)) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) |has| |#1| (-600 (-528))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-373)) . #0=(|has| |#1| (-1001))) (((-220)) . #0#)) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-873 (-552))) |has| |#1| (-600 (-873 (-552)))) (((-873 (-373))) |has| |#1| (-600 (-873 (-373)))) (((-373)) . #0=(|has| |#1| (-1003))) (((-220)) . #0#)) (((|#1|) |has| |#1| (-357))) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((($ $) . T) (((-598 $) $) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -((($) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T)) -((($) -1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +((($) . T) (((-1223 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T)) +((($) -4029 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-544))) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-357)) ((((-373)) . T) (((-552)) . T) (((-401 (-552))) . T)) -((((-627 (-763 |#1| (-844 |#2|)))) . T) (((-842)) . T)) -((((-528)) |has| (-763 |#1| (-844 |#2|)) (-600 (-528)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-629 (-765 |#1| (-846 |#2|)))) . T) (((-844)) . T)) +((((-528)) |has| (-765 |#1| (-846 |#2|)) (-600 (-528)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((((-373)) . T)) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) -((((-842)) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) +((((-844)) . T)) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-890))) (((|#1|) . T)) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(|has| |#1| (-832)) +(|has| |#1| (-832)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) -(|has| |#1| (-1076)) -((((-842)) . T)) -((((-1152)) . T) (((-842)) . T) (((-1157)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) +(|has| |#1| (-1078)) +((((-844)) . T)) +((((-1154)) . T) (((-844)) . T) (((-1159)) . T)) ((((-401 (-552))) . T) (((-552)) . T) (((-598 $)) . T)) (|has| |#1| (-142)) (|has| |#1| (-144)) ((((-552)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(((#0=(-1220 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552)))) (($) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(((#0=(-1222 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552)))) (($) . T)) ((((-552)) . T)) (|has| |#1| (-357)) -(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) -(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) +(-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) +(-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) (|has| |#1| (-357)) (|has| |#1| (-142)) (|has| |#1| (-144)) @@ -1921,44 +1921,44 @@ (|has| |#1| (-228)) (|has| |#1| (-357)) (((|#3|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-552)) |has| |#2| (-623 (-552))) ((|#2|) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-552)) |has| |#2| (-625 (-552))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) (((|#3|) |has| |#3| (-169))) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) -((((-842)) . T)) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) +((((-844)) . T)) ((((-552)) . T)) (((|#1| $) |has| |#1| (-280 |#1| |#1|))) ((((-401 (-552))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-284)) (|has| |#1| (-357))) ((#0=(-401 (-552)) #0#) |has| |#1| (-357))) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-284)) (|has| |#1| (-357))) ((#0=(-401 (-552)) #0#) |has| |#1| (-357))) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) ((($) . T)) ((((-552) |#1|) . T)) -((((-1152)) |has| (-401 |#2|) (-879 (-1152)))) -(((|#1|) . T) (($) -1559 (|has| |#1| (-284)) (|has| |#1| (-357))) (((-401 (-552))) |has| |#1| (-357))) +((((-1154)) |has| (-401 |#2|) (-881 (-1154)))) +(((|#1|) . T) (($) -4029 (|has| |#1| (-284)) (|has| |#1| (-357))) (((-401 (-552))) |has| |#1| (-357))) ((((-528)) |has| |#2| (-600 (-528)))) -((((-671 |#2|)) . T) (((-842)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -((((-849 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -((((-842)) . T)) -((((-842)) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#2|) |has| |#2| (-1028))) +((((-673 |#2|)) . T) (((-844)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +((((-851 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-4029 (|has| |#4| (-778)) (|has| |#4| (-830))) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +((((-844)) . T)) +((((-844)) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#2|) |has| |#2| (-1030))) (((|#1|) . T)) ((((-401 |#2|)) . T)) (((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) ((((-552) |#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -1966,19 +1966,19 @@ ((((-401 (-552))) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) ((((-401 (-552))) . T) (($) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-1193))) -((($) . T)) -((((-401 (-552))) |has| #0=(-401 |#2|) (-1017 (-401 (-552)))) (((-552)) |has| #0# (-1017 (-552))) ((#0#) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) -(((|#1| (-754)) . T)) -(|has| |#1| (-830)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-1195))) +((($) . T)) +((((-401 (-552))) |has| #0=(-401 |#2|) (-1019 (-401 (-552)))) (((-552)) |has| #0# (-1019 (-552))) ((#0#) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) +(((|#1| (-756)) . T)) +(|has| |#1| (-832)) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((((-552)) . T)) (|has| |#1| (-38 (-401 (-552)))) -((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(|has| |#1| (-828)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(|has| |#1| (-830)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) @@ -1998,98 +1998,98 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -((((-1134)) . T) (((-1152)) . T) (((-220)) . T) (((-552)) . T)) +((((-1136)) . T) (((-1154)) . T) (((-220)) . T) (((-552)) . T)) (((|#1| |#2|) . T)) ((((-141)) . T)) -((((-763 |#1| (-844 |#2|))) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -(|has| |#1| (-1174)) -((((-842)) . T)) +((((-765 |#1| (-846 |#2|))) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +(|has| |#1| (-1176)) +((((-844)) . T)) (((|#1|) . T)) -(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) -((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|))) +(-4029 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-711)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030)) (|has| |#3| (-1078))) +((((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|))) (((|#2|) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-889 |#1|)) . T)) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-891 |#1|)) . T)) ((($) . T)) -((((-401 (-931 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-401 (-933 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((((-528)) |has| |#4| (-600 (-528)))) -((((-842)) . T) (((-627 |#4|)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-844)) . T) (((-629 |#4|)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1|) . T)) -(|has| |#1| (-828)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) -(|has| |#1| (-1076)) -(|has| |#1| (-357)) (|has| |#1| (-830)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) |has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) +(|has| |#1| (-1078)) +(|has| |#1| (-357)) +(|has| |#1| (-832)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-401 (-552))) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) (|has| |#1| (-142)) (|has| |#1| (-144)) -(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) -(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) +(-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) +(-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-144)) (|has| |#1| (-142)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) -(|has| |#1| (-828)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) +(|has| |#1| (-830)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -(|has| |#1| (-1076)) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-1078)) (((|#1|) . T) (($) . T) (((-401 (-552))) . T) (((-552)) . T)) (|has| |#2| (-142)) (|has| |#2| (-144)) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -(|has| |#1| (-1076)) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-1078)) (((|#2|) |has| |#2| (-169))) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-357))) ((((-401 |#2|)) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-528)) |has| |#1| (-600 (-528)))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(((|#1|) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)))) ((((-310 |#1|)) . T)) (((|#2|) |has| |#2| (-357))) (((|#2|) . T)) -((((-401 (-552))) . T) (((-681)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((#0=(-763 |#1| (-844 |#2|)) #0#) |has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|))))) -((((-844 |#1|)) . T)) +((((-401 (-552))) . T) (((-683)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((#0=(-765 |#1| (-846 |#2|)) #0#) |has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|))))) +((((-846 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) (((|#2|) . T)) -((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) -((((-1152)) |has| |#1| (-879 (-1152))) (((-1064 (-1152))) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1154)) |has| |#1| (-881 (-1154))) (((-1060)) . T)) +((((-1154)) |has| |#1| (-881 (-1154))) (((-1066 (-1154))) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (|has| |#1| (-38 (-401 (-552)))) -(((|#4|) |has| |#4| (-1028)) (((-552)) -12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028)))) -(((|#3|) |has| |#3| (-1028)) (((-552)) -12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) +(((|#4|) |has| |#4| (-1030)) (((-552)) -12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030)))) +(((|#3|) |has| |#3| (-1030)) (((-552)) -12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030)))) (|has| |#1| (-142)) (|has| |#1| (-144)) ((($ $) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-711)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030)) (|has| |#1| (-1090)) (|has| |#1| (-1078))) (|has| |#1| (-544)) (((|#2|) . T)) ((((-552)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1|) . T)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) ((((-569 |#1|)) . T)) ((($) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) @@ -2097,35 +2097,35 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-842)) . T)) -(((|#2|) |has| |#2| (-6 (-4368 "*")))) +((((-844)) . T)) +(((|#2|) |has| |#2| (-6 (-4370 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +((((-401 (-552))) |has| |#2| (-1019 (-401 (-552)))) (((-552)) |has| |#2| (-1019 (-552))) ((|#2|) . T) (((-846 |#1|)) . T)) ((($) . T) (((-115 |#1|)) . T) (((-401 (-552))) . T)) -((((-1101 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -((((-1148 |#1|)) . T) (((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -((((-1101 |#1| (-1152))) . T) (((-1064 (-1152))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-1152)) . T)) -(|has| |#1| (-1076)) +((((-1103 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +((((-1150 |#1|)) . T) (((-1060)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +((((-1103 |#1| (-1154))) . T) (((-1066 (-1154))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-1154)) . T)) +(|has| |#1| (-1078)) ((($) . T)) -(|has| |#1| (-1076)) -((((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))) (((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) +(|has| |#1| (-1078)) +((((-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#2| (-867 (-552)))) (((-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#2| (-867 (-373))))) (((|#1| |#2|) . T)) -((((-1152) |#1|) . T)) +((((-1154) |#1|) . T)) (((|#4|) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-1152) (-52)) . T)) -((((-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) -((((-842)) . T)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) -(((#0=(-1221 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-1154) (-52)) . T)) +((((-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T)) +((((-844)) . T)) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-711)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030)) (|has| |#2| (-1078))) +(((#0=(-1223 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-169)) ((#0=(-401 (-552)) #0#) |has| |#1| (-544)) (($ $) |has| |#1| (-544))) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-544)) (($) |has| |#1| (-544))) (|has| |#1| (-357)) (|has| |#1| (-142)) @@ -2134,224 +2134,224 @@ (|has| |#1| (-142)) ((((-401 (-552))) . T) (($) . T)) (((|#3|) |has| |#3| (-357))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) -((((-1152)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) +((((-1154)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (((|#2| |#3|) . T)) -(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-4029 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) (((|#1| (-523 |#2|)) . T)) -(((|#1| (-754)) . T)) -(((|#1| (-523 (-1064 (-1152)))) . T)) +(((|#1| (-756)) . T)) +(((|#1| (-523 (-1066 (-1154)))) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -(|has| |#2| (-888)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -((((-842)) . T)) -((($ $) . T) ((#0=(-1220 |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) |has| #0# (-38 (-401 (-552))))) -((((-889 |#1|)) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +(|has| |#2| (-890)) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +((((-844)) . T)) +((($ $) . T) ((#0=(-1222 |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) |has| #0# (-38 (-401 (-552))))) +((((-891 |#1|)) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((($) . T) (((-401 (-552))) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T)) ((($) . T)) -(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (|has| |#1| (-357)) (|has| |#1| (-357)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -(-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357)) (|has| |#1| (-343))) -(-1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) -((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((($) . T) ((#0=(-1222 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +(-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030))) +((((-552)) |has| |#1| (-625 (-552))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) ((((-111)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) +(((|#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|))) . T)) (|has| |#2| (-357)) -(|has| |#1| (-830)) +(|has| |#1| (-832)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-1076)) +((((-844)) . T)) +(|has| |#1| (-1078)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-803)) +(|has| |#2| (-805)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-842)) . T)) -(((|#1| (-523 (-1152))) . T)) +((((-844)) . T)) +(((|#1| (-523 (-1154))) . T)) (((|#1|) |has| |#1| (-169))) -((((-842)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) -(((|#2|) -1559 (|has| |#2| (-6 (-4368 "*"))) (|has| |#2| (-169)))) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(|has| |#2| (-830)) -(|has| |#2| (-888)) -(|has| |#1| (-888)) +((((-844)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) +(((|#2|) -4029 (|has| |#2| (-6 (-4370 "*"))) (|has| |#2| (-169)))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(|has| |#2| (-832)) +(|has| |#2| (-890)) +(|has| |#1| (-890)) (((|#2|) |has| |#2| (-169))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) . T) (((-552)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) (((|#1| (-401 (-552))) . T)) (((|#1|) . T)) -(-1559 (|has| |#1| (-284)) (|has| |#1| (-357))) +(-4029 (|has| |#1| (-284)) (|has| |#1| (-357))) ((((-141)) . T)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) -(|has| |#1| (-828)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#1| (-830)) +((((-844)) . T)) +((((-844)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-528)) |has| |#1| (-600 (-528))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373))))) -((((-1152) (-52)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-873 (-552))) |has| |#1| (-600 (-873 (-552)))) (((-873 (-373))) |has| |#1| (-600 (-873 (-373))))) +((((-1154) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-627 (-141))) . T) (((-1134)) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) -((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(|has| |#1| (-830)) -((((-842)) . T)) +((((-844)) . T)) +((((-629 (-141))) . T) (((-1136)) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) +((((-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-832)) +((((-844)) . T)) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) . T)) +((((-844)) . T)) (((|#2|) |has| |#2| (-357))) -((((-842)) . T)) +((((-844)) . T)) ((((-528)) |has| |#4| (-600 (-528)))) -((((-842)) . T) (((-627 |#4|)) . T)) +((((-844)) . T) (((-629 |#4|)) . T)) (((|#2|) . T)) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -(-1559 (|has| |#4| (-169)) (|has| |#4| (-709)) (|has| |#4| (-828)) (|has| |#4| (-1028))) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-1152) (-52)) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(-4029 (|has| |#4| (-169)) (|has| |#4| (-711)) (|has| |#4| (-830)) (|has| |#4| (-1030))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-711)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-1154) (-52)) . T)) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(|has| |#1| (-888)) -(|has| |#1| (-888)) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(|has| |#1| (-890)) +(|has| |#1| (-890)) (((|#2|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-552)) . T)) (((#0=(-401 (-552)) #0#) . T) (($ $) . T)) ((((-401 (-552))) . T) (($) . T)) -(((|#1| (-401 (-552)) (-1058)) . T)) -(|has| |#1| (-1076)) +(((|#1| (-401 (-552)) (-1060)) . T)) +(|has| |#1| (-1078)) (|has| |#1| (-544)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(|has| |#1| (-803)) -(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(|has| |#1| (-805)) +(((#0=(-891 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) ((((-401 |#2|)) . T)) -(|has| |#1| (-828)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(|has| |#1| (-830)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) . T) ((#1=(-552) #1#) . T) (($ $) . T)) -((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) +((((-891 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +(((|#2|) |has| |#2| (-1030)) (((-552)) -12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) (((|#2|) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3998 (-1152)) (|:| -2162 #0#))) . T)) +((((-844)) . T)) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2670 (-1154)) (|:| -3360 #0#))) . T)) (|has| |#1| (-343)) ((((-552)) . T)) -((((-842)) . T)) -(((#0=(-1221 |#1| |#2| |#3| |#4|) $) |has| #0# (-280 #0# #0#))) +((((-844)) . T)) +(((#0=(-1223 |#1| |#2| |#3| |#4|) $) |has| #0# (-280 #0# #0#))) (|has| |#1| (-357)) -(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -(((#0=(-401 (-552)) #0#) . T) ((#1=(-681) #1#) . T) (($ $) . T)) +(((#0=(-1060) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +(((#0=(-401 (-552)) #0#) . T) ((#1=(-683) #1#) . T) (($ $) . T)) ((((-310 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) (((|#1|) . T)) -(((|#1|) -1559 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) -1559 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#1|) -4029 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#1|) -4029 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) (((|#2|) . T)) -((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +((((-401 (-552))) . T) (((-683)) . T) (($) . T)) ((((-567)) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-228)) -((((-844 |#1|)) . T)) -((((-1152)) |has| |#1| (-879 (-1152))) ((|#3|) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-1001))) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-842)) . T)) +((((-846 |#1|)) . T)) +((((-1154)) |has| |#1| (-881 (-1154))) ((|#3|) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-1003))) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-844)) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) ((((-401 (-552))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) ((((-552)) . T)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) ((((-552)) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-569 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) ((($) . T) (((-401 (-552))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +(((|#1| (-1237 |#1|) (-1237 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((#0=(-115 |#1|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) -((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) -((((-1101 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((|#2|) . T)) +((((-401 (-552))) |has| |#2| (-1019 (-401 (-552)))) (((-552)) |has| |#2| (-1019 (-552))) ((|#2|) . T) (((-846 |#1|)) . T)) +((((-1103 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-654 |#1|)) . T)) +((((-656 |#1|)) . T)) ((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) ((((-115 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -((((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) (((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373))))) +((((-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#3| (-867 (-552)))) (((-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#3| (-867 (-373))))) (((|#2|) . T) ((|#6|) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) ((((-141)) . T)) @@ -2359,48 +2359,48 @@ ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) -(|has| |#2| (-888)) -(|has| |#1| (-888)) -(|has| |#1| (-888)) +(|has| |#2| (-890)) +(|has| |#1| (-890)) +(|has| |#1| (-890)) (((|#4|) . T)) -(|has| |#2| (-1001)) +(|has| |#2| (-1003)) ((($) . T)) -(|has| |#1| (-888)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-890)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-357)) -((((-889 |#1|)) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-891 |#1|)) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) -(-1559 (|has| |#1| (-362)) (|has| |#1| (-830))) +(-4029 (|has| |#1| (-362)) (|has| |#1| (-832))) (((|#1|) . T)) -((((-842)) . T)) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-844)) . T)) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) ((((-401 |#2|) |#3|) . T)) ((($) . T) (((-401 (-552))) . T)) -((((-754) |#1|) . T)) -(((|#2| (-235 (-1383 |#1|) (-754))) . T)) +((((-756) |#1|) . T)) +(((|#2| (-235 (-2657 |#1|) (-756))) . T)) (((|#1| (-523 |#3|)) . T)) ((((-401 (-552))) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -((((-842)) . T)) -(((#0=(-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) -(|has| |#1| (-888)) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +((((-844)) . T)) +(((#0=(-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) #0#) |has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) +(|has| |#1| (-890)) (|has| |#2| (-357)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) ((((-373)) . T) (((-552)) . T)) (((#0=(-401 (-552)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (|has| |#1| (-544)) ((((-401 (-552))) . T) (($) . T)) ((($) . T)) @@ -2408,13 +2408,13 @@ (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) (|has| |#1| (-38 (-401 (-552)))) -(-12 (|has| |#1| (-537)) (|has| |#1| (-811))) -((((-842)) . T)) -((((-1152)) -1559 (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))) (-12 (|has| |#1| (-357)) (|has| |#2| (-879 (-1152)))))) +(-12 (|has| |#1| (-537)) (|has| |#1| (-813))) +((((-844)) . T)) +((((-1154)) -4029 (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))) (-12 (|has| |#1| (-357)) (|has| |#2| (-881 (-1154)))))) (|has| |#1| (-357)) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (|has| |#1| (-357)) ((((-401 (-552))) . T) (($) . T)) ((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) @@ -2422,55 +2422,55 @@ (((|#1|) . T)) (((|#2|) |has| |#1| (-357))) (((|#2|) |has| |#1| (-357))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -(((|#2|) . T) (((-1152)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-1152)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) (((-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552))))) +(((|#2|) . T) (((-1154)) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-1154)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-552)))) (((-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-552))))) (((|#2|) . T)) -((((-1152) #0=(-1221 |#1| |#2| |#3| |#4|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) +((((-1154) #0=(-1223 |#1| |#2| |#3| |#4|)) |has| #0# (-506 (-1154) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) ((((-598 $) $) . T) (($ $) . T)) -((((-166 (-220))) . T) (((-166 (-373))) . T) (((-1148 (-681))) . T) (((-871 (-373))) . T)) -((((-842)) . T)) +((((-166 (-220))) . T) (((-166 (-373))) . T) (((-1150 (-683))) . T) (((-873 (-373))) . T)) +((((-844)) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) (|has| (-401 |#2|) (-228)) (((|#1| (-401 (-552))) . T)) ((($ $) . T)) -((((-1152)) |has| |#2| (-879 (-1152)))) +((((-1154)) |has| |#2| (-881 (-1154)))) ((($) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-401 (-552))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) (((|#2|) |has| |#1| (-357))) -((((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-373)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-552))))) +((((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-867 (-373)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-867 (-552))))) (|has| |#1| (-357)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (|has| |#1| (-357)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) (|has| |#1| (-357)) (|has| |#1| (-544)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (((|#3|) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (((|#2|) . T)) (((|#2|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (|has| |#1| (-38 (-401 (-552)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) -((((-1134) |#1|) . T)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +((((-1136) |#1|) . T)) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-362))) (|has| |#1| (-144)) ((((-569 |#1|)) . T)) ((($) . T)) @@ -2478,77 +2478,77 @@ (|has| |#1| (-544)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-343))) (|has| |#1| (-144)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T)) -((((-401 (-552))) |has| |#2| (-1017 (-552))) (((-552)) |has| |#2| (-1017 (-552))) (((-1152)) |has| |#2| (-1017 (-1152))) ((|#2|) . T)) +((((-401 (-552))) |has| |#2| (-1019 (-552))) (((-552)) |has| |#2| (-1019 (-552))) (((-1154)) |has| |#2| (-1019 (-1154))) ((|#2|) . T)) (((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) -((((-1116 |#1| |#2|)) . T)) +((((-1118 |#1| |#2|)) . T)) (((|#1| (-552)) . T)) (((|#1| (-401 (-552))) . T)) -((((-552)) |has| |#2| (-865 (-552))) (((-373)) |has| |#2| (-865 (-373)))) +((((-552)) |has| |#2| (-867 (-552))) (((-373)) |has| |#2| (-867 (-373)))) (((|#2|) . T)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) ((((-111)) . T)) (((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-1152) (-52)) . T)) +((((-844)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-1154) (-52)) . T)) ((((-401 |#2|)) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -(|has| |#1| (-1076)) -(|has| |#1| (-774)) -(|has| |#1| (-774)) +(|has| |#1| (-1078)) +(|has| |#1| (-776)) +(|has| |#1| (-776)) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-113)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-220)) . T) (((-373)) . T) (((-873 (-373))) . T)) +((((-844)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544)) (((-401 (-552))) |has| |#1| (-544))) -((((-842)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#2|) . T)) -((((-842)) . T)) -(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +((((-844)) . T)) +(((#0=(-891 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-891 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) (|has| |#1| (-357)) (((|#2|) . T)) ((((-552)) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-552)) . T)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) ((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-1134)) . T) (((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) -((((-842)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-1136)) . T) (((-528)) . T) (((-552)) . T) (((-873 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-844)) . T)) (|has| |#1| (-144)) (|has| |#1| (-142)) -((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) +((($) . T) ((#0=(-1222 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076))) -(|has| |#1| (-1127)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-711)) (|has| |#1| (-881 (-1154))) (|has| |#1| (-1030)) (|has| |#1| (-1090)) (|has| |#1| (-1078))) +(|has| |#1| (-1129)) ((((-552) |#1|) . T)) (((|#1|) . T)) (((#0=(-115 |#1|) $) |has| #0# (-280 #0# #0#))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) ((((-113)) . T) ((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1| |#2|) . T)) -((((-1152) |#1|) . T)) +((((-1154) |#1|) . T)) (((|#1|) |has| |#1| (-303 |#1|))) ((((-552) |#1|) . T)) (((|#1|) . T)) @@ -2556,56 +2556,56 @@ (((|#1|) . T)) (|has| |#1| (-544)) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) ((((-373)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-544)) -(|has| |#1| (-1076)) -((((-763 |#1| (-844 |#2|))) |has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|))))) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(|has| |#1| (-1078)) +((((-765 |#1| (-846 |#2|))) |has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|))))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-888)) +(|has| |#2| (-890)) (((|#1| (-523 |#2|)) . T)) -(((|#1| (-754)) . T)) +(((|#1| (-756)) . T)) (|has| |#1| (-228)) -(((|#1| (-523 (-1064 (-1152)))) . T)) +(((|#1| (-523 (-1066 (-1154)))) . T)) (|has| |#2| (-357)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) -((((-842)) . T)) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -((((-842)) . T)) -((((-1096)) . T) (((-842)) . T)) -((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) +((((-844)) . T)) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +((((-844)) . T)) +((((-1098)) . T) (((-844)) . T)) +((((-844)) . T)) (((|#1|) . T)) ((($ $) . T) (((-598 $) $) . T)) (((|#1|) . T)) ((((-552)) . T)) (((|#3|) . T)) -((((-842)) . T)) -(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) -(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +((((-844)) . T)) +(-4029 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1030))) (((#0=(-569 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1|) |has| |#1| (-169))) -(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +(((|#1| (-1237 |#1|) (-1237 |#1|)) . T)) ((((-569 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) ((($) . T) (((-401 (-552))) . T)) ((($) . T) (((-401 (-552))) . T)) -(((|#2|) |has| |#2| (-6 (-4368 "*")))) +(((|#2|) |has| |#2| (-6 (-4370 "*")))) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-288 |#3|)) . T)) -(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) @@ -2613,519 +2613,519 @@ (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) (((|#1|) . T) (((-401 (-552))) . T) (($) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) (((|#2|) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(|has| |#2| (-888)) -(|has| |#1| (-888)) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T)) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#2| (-890)) +(|has| |#1| (-890)) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) -((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) (((|#1|) . T)) -((((-1152)) . T) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-1154)) . T) ((|#1|) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (((#0=(-401 (-552)) #0#) . T)) ((((-401 (-552))) . T)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (((|#1|) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((((-528)) . T)) -((((-842)) . T)) -((((-1152)) |has| |#2| (-879 (-1152))) (((-1058)) . T)) -((((-1220 |#2| |#3| |#4|)) . T)) -((((-889 |#1|)) . T)) +((((-844)) . T)) +((((-1154)) |has| |#2| (-881 (-1154))) (((-1060)) . T)) +((((-1222 |#2| |#3| |#4|)) . T)) +((((-891 |#1|)) . T)) ((($) . T) (((-401 (-552))) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) -((((-842)) . T)) -(|has| |#1| (-1193)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) +((((-844)) . T)) +(|has| |#1| (-1195)) (((|#2|) . T)) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) -((((-1152)) |has| |#1| (-879 (-1152)))) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) -(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((((-1154)) |has| |#1| (-881 (-1154)))) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) ((($) . T) (((-401 (-552))) . T)) (((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) -((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +(((|#2|) |has| |#2| (-1030)) (((-552)) -12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-544)))) (|has| |#1| (-544)) (((|#1|) |has| |#1| (-357))) ((((-552)) . T)) -(|has| |#1| (-774)) -(|has| |#1| (-774)) -((((-1152) #0=(-115 |#1|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) -(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) -((((-1058)) . T) ((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) +(|has| |#1| (-776)) +(|has| |#1| (-776)) +((((-1154) #0=(-115 |#1|)) |has| #0# (-506 (-1154) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) +(((|#2|) . T) (((-552)) |has| |#2| (-1019 (-552))) (((-401 (-552))) |has| |#2| (-1019 (-401 (-552))))) +((((-1060)) . T) ((|#2|) . T) (((-552)) |has| |#2| (-1019 (-552))) (((-401 (-552))) |has| |#2| (-1019 (-401 (-552))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-552) (-754)) . T) ((|#3| (-754)) . T)) +((((-552) (-756)) . T) ((|#3| (-756)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-842)) . T)) -(|has| |#2| (-803)) -(|has| |#2| (-803)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) -(((|#1|) . T)) -((((-849 |#1|)) . T)) -((((-849 |#1|)) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-888))) -((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-844)) . T)) +(|has| |#2| (-805)) +(|has| |#2| (-805)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +((((-552)) |has| |#1| (-867 (-552))) (((-373)) |has| |#1| (-867 (-373)))) +(((|#1|) . T)) +((((-851 |#1|)) . T)) +((((-851 |#1|)) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-890))) +((((-401 (-552))) . T) (((-683)) . T) (($) . T)) (|has| |#1| (-357)) (|has| |#1| (-357)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (|has| |#1| (-357)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-844 |#1|)) . T)) +((((-846 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-754)) . T)) -((((-1152)) . T)) -((((-849 |#1|)) . T)) -(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-842)) . T)) +(((|#2| (-756)) . T)) +((((-1154)) . T)) +((((-851 |#1|)) . T)) +(-4029 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-844)) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) -(-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))) -((((-849 |#1|)) . T)) +(-4029 (|has| |#2| (-778)) (|has| |#2| (-830))) +(-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))) +((((-851 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) ((($ $) . T) (((-598 $) $) . T)) ((($) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-552)) . T)) (((|#2|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T) ((|#2|) . T) (((-401 (-552))) . T)) -(|has| |#1| (-1076)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(|has| |#2| (-888)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) -((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) -((((-842)) . T)) -((((-842)) . T)) -(((|#3|) |has| |#3| (-1028)) (((-552)) -12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) -((((-1101 |#1| |#2|)) . T) (((-931 |#1|)) |has| |#2| (-600 (-1152))) (((-842)) . T)) -((((-931 |#1|)) |has| |#2| (-600 (-1152))) (((-1134)) -12 (|has| |#1| (-1017 (-552))) (|has| |#2| (-600 (-1152)))) (((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552))))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) -((((-1148 |#1|)) . T) (((-842)) . T)) -((((-842)) . T)) -((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +(|has| |#1| (-1078)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-844)) . T)) +(|has| |#2| (-890)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-873 (-373))) |has| |#2| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#2| (-600 (-873 (-552))))) +((((-844)) . T)) +((((-844)) . T)) +(((|#3|) |has| |#3| (-1030)) (((-552)) -12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030)))) +((((-1103 |#1| |#2|)) . T) (((-933 |#1|)) |has| |#2| (-600 (-1154))) (((-844)) . T)) +((((-933 |#1|)) |has| |#2| (-600 (-1154))) (((-1136)) -12 (|has| |#1| (-1019 (-552))) (|has| |#2| (-600 (-1154)))) (((-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552))))) (((-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) +((((-1150 |#1|)) . T) (((-844)) . T)) +((((-844)) . T)) +((((-401 (-552))) |has| |#2| (-1019 (-401 (-552)))) (((-552)) |has| |#2| (-1019 (-552))) ((|#2|) . T) (((-846 |#1|)) . T)) ((((-115 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T) (((-1152)) . T)) -((((-842)) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T) (((-1154)) . T)) +((((-844)) . T)) ((((-552)) . T)) ((($) . T)) -((((-373)) |has| |#1| (-865 (-373))) (((-552)) |has| |#1| (-865 (-552)))) +((((-373)) |has| |#1| (-867 (-373))) (((-552)) |has| |#1| (-867 (-552)))) ((((-552)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) ((((-552)) . T) (((-401 (-552))) . T)) (((|#1|) |has| |#1| (-303 |#1|))) -((((-842)) . T)) +((((-844)) . T)) ((((-373)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-401 (-552))) . T) (($) . T)) ((((-401 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1076)) -(((|#2| (-475 (-1383 |#1|) (-754))) . T)) +(|has| |#1| (-1078)) +(((|#2| (-475 (-2657 |#1|) (-756))) . T)) ((((-552) |#1|) . T)) -((((-1134)) . T) (((-842)) . T)) +((((-1136)) . T) (((-844)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-523 (-1152))) . T)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((|#1| (-523 (-1154))) . T)) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) ((((-552)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +((((-1154)) |has| |#1| (-881 (-1154))) (((-1060)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-625 (-552)))) (|has| |#1| (-544)) ((($) . T) (((-401 (-552))) . T)) ((($) . T)) ((($) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) (((|#1|) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-842)) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-844)) . T)) ((((-141)) . T)) (((|#1|) . T) (((-401 (-552))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#1|) . T)) -(|has| |#1| (-1127)) -(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) +(|has| |#1| (-1129)) +(((|#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|))) . T)) (((|#1|) . T)) ((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -((((-842)) . T)) -((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T) ((|#2|) . T)) -((((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) -((((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373)))) (((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552))))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +((((-844)) . T)) +((((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-552)) |has| |#1| (-1019 (-552))) ((|#1|) . T) ((|#2|) . T)) +((((-1060)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552))))) +((((-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#2| (-867 (-373)))) (((-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#2| (-867 (-552))))) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) ((((-552) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) ((($) . T)) -((((-681)) . T)) -((((-763 |#1| (-844 |#2|))) . T)) +((((-683)) . T)) +((((-765 |#1| (-846 |#2|))) . T)) ((($) . T)) ((((-401 (-552))) . T) (($) . T)) -(|has| |#1| (-1076)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) +(|has| |#1| (-1078)) (|has| |#2| (-357)) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552)))) ((((-552)) . T)) -((((-1152)) -12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) -((((-1152)) -12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) +((((-1154)) -12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) +((((-1154)) -12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (((|#1|) . T)) (|has| |#1| (-228)) (((|#1| (-523 |#3|)) . T)) (|has| |#1| (-362)) -(((|#2| (-235 (-1383 |#1|) (-754))) . T)) +(((|#2| (-235 (-2657 |#1|) (-756))) . T)) (|has| |#1| (-362)) (|has| |#1| (-362)) (((|#1|) . T) (($) . T)) (((|#1| (-523 |#2|)) . T)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(((|#1| (-754)) . T)) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(((|#1| (-756)) . T)) (|has| |#1| (-544)) -(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-4029 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-842)) . T)) -(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) -(-1559 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-844)) . T)) +(-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))) +(-4029 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) (((|#1|) |has| |#1| (-169))) -(((|#4|) |has| |#4| (-1028))) -(((|#3|) |has| |#3| (-1028))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +(((|#4|) |has| |#4| (-1030))) +(((|#3|) |has| |#3| (-1030))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-805))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) ((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T) (((-401 (-552))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1076)) (((-552)) -12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076))) (((-401 (-552))) -12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076)))) -(((|#3|) |has| |#3| (-1076)) (((-552)) -12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (((-401 (-552))) -12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) +(((|#4|) |has| |#4| (-1078)) (((-552)) -12 (|has| |#4| (-1019 (-552))) (|has| |#4| (-1078))) (((-401 (-552))) -12 (|has| |#4| (-1019 (-401 (-552)))) (|has| |#4| (-1078)))) +(((|#3|) |has| |#3| (-1078)) (((-552)) -12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078))) (((-401 (-552))) -12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078)))) (|has| |#2| (-357)) -(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) +(((|#2|) |has| |#2| (-1030)) (((-552)) -12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((|#1|) . T)) (|has| |#2| (-357)) -(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#2| |#2|) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#2|) . T)) -((((-842)) |has| |#1| (-1076))) +((((-844)) |has| |#1| (-1078))) ((($) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-803)) -(|has| |#2| (-803)) +(|has| |#2| (-805)) +(|has| |#2| (-805)) (|has| |#1| (-357)) (|has| |#1| (-357)) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-357)) (((|#1|) |has| |#2| (-411 |#1|))) (((|#1|) |has| |#2| (-411 |#1|))) -((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-891 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-1188)) . T) (((-842)) . T) (((-1157)) . T)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-1190)) . T) (((-844)) . T) (((-1159)) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) |has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((((-552) |#1|) . T)) (((|#1|) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -((((-1152)) |has| |#1| (-879 (-1152))) (((-801 (-1152))) . T)) -(-1559 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-802 |#1|)) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +((((-1154)) |has| |#1| (-881 (-1154))) (((-803 (-1154))) . T)) +(-4029 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-778)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-804 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-844)) . T)) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-711)) (|has| |#3| (-830)) (|has| |#3| (-1030))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-401 (-552)))) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-844)) . T)) +((((-1223 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544)) (((-401 (-552))) |has| |#1| (-544))) -(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(((|#2|) . T) (((-552)) |has| |#2| (-625 (-552)))) (|has| |#1| (-357)) -(-1559 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (-12 (|has| |#1| (-357)) (|has| |#2| (-228)))) +(-4029 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (-12 (|has| |#1| (-357)) (|has| |#2| (-228)))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-357)) (((|#1|) . T)) -(((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) +(((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) ((((-552) |#1|) . T)) ((((-310 |#1|)) . T)) -(((#0=(-681) (-1148 #0#)) . T)) -((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) +(((#0=(-683) (-1150 #0#)) . T)) +((((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-828)) -((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1101 |#1| (-1152))) . T) (((-801 (-1152))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-1152)) . T)) +(|has| |#1| (-830)) +((($ $) . T) ((#0=(-846 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1103 |#1| (-1154))) . T) (((-803 (-1154))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1019 (-552))) (((-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) (((-1154)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1152) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-1064 (-1152)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1060) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1154) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-1066 (-1154)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) -(|has| |#2| (-888)) -((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) +(|has| |#2| (-890)) +((($) . T) ((#0=(-1222 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) ((((-552) |#1|) . T)) -(((#0=(-1221 |#1| |#2| |#3| |#4|)) |has| #0# (-303 #0#))) +(((#0=(-1223 |#1| |#2| |#3| |#4|)) |has| #0# (-303 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2| |#2|) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2| |#2|) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) (|has| |#2| (-228)) (|has| $ (-144)) -((((-842)) . T)) -((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-828)) +((((-844)) . T)) +((($) . T) (((-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-844)) . T)) +(|has| |#1| (-830)) ((((-128)) . T)) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) ((((-401 |#2|) |#3|) . T)) (((|#1|) . T)) ((((-128)) . T)) -((((-842)) . T)) -(((|#2| (-654 |#1|)) . T)) -(-12 (|has| |#1| (-301)) (|has| |#1| (-888))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-844)) . T)) +(((|#2| (-656 |#1|)) . T)) +(-12 (|has| |#1| (-301)) (|has| |#1| (-890))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#4|) . T)) (|has| |#1| (-544)) -((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) ((|#1|) . T)) -((((-1152)) -1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) -(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +((($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) ((|#1|) . T)) +((((-1154)) -4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) +(((|#1|) . T) (($) -4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) ((((-552) |#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) (((|#1|) . T)) -(((|#1| (-523 (-801 (-1152)))) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#1| (-523 (-803 (-1154)))) . T)) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#1|) . T)) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) (((|#1|) . T)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) -((($) . T) (((-849 |#1|)) . T) (((-401 (-552))) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) +((($) . T) (((-851 |#1|)) . T) (((-401 (-552))) . T)) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) (|has| |#1| (-544)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-401 |#2|)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-401 (-552)) #0#) . T) (($ $) . T)) ((((-552)) . T)) -((((-842)) . T)) +((((-844)) . T)) (((|#2|) . T) (((-401 (-552))) . T) (($) . T)) ((((-569 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) -((((-842)) . T)) +((((-844)) . T)) ((((-401 (-552))) . T) (($) . T)) ((((-552) |#1|) . T)) -((((-842)) . T)) -((($ $) . T) (((-1152) $) . T)) -((((-1227 |#1| |#2| |#3|)) . T)) -((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) -((((-842)) . T)) -((((-842)) . T)) -((((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528))))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T) (((-842)) . T) (((-1157)) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) +((((-844)) . T)) +((($ $) . T) (((-1154) $) . T)) +((((-1229 |#1| |#2| |#3|)) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-873 (-373))) |has| |#2| (-600 (-873 (-373)))) (((-873 (-552))) |has| |#2| (-600 (-873 (-552))))) +((((-844)) . T)) +((((-844)) . T)) +((((-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#3| (-600 (-873 (-552))))) (((-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#3| (-600 (-873 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528))))) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +(((|#1|) . T) (((-844)) . T) (((-1159)) . T)) +((((-844)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|))) . T)) (((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) -((((-842)) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-844)) . T)) +((((-1229 |#1| |#2| |#3|)) |has| |#1| (-357))) (|has| |#1| (-357)) -((((-1227 |#1| |#2| |#3|)) . T) (((-1199 |#1| |#2| |#3|)) . T)) -((((-1152)) . T) (((-842)) . T)) -((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-1229 |#1| |#2| |#3|)) . T) (((-1201 |#1| |#2| |#3|)) . T)) +((((-1154)) . T) (((-844)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -((((-1080)) . T)) -((((-842)) . T)) -((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-1082)) . T)) +((((-844)) . T)) +((($) -4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) ((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) ((($) . T)) -((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(|has| |#2| (-888)) -(|has| |#1| (-888)) +((($) -4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#2| (-890)) +(|has| |#1| (-890)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-169))) -((((-681)) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-683)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1|) |has| |#1| (-169))) (((|#1|) |has| |#1| (-169))) ((((-401 (-552))) . T) (($) . T)) (((|#1| (-552)) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) (|has| |#1| (-357)) (|has| |#1| (-357)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-169)) (|has| |#1| (-544))) (((|#1| (-552)) . T)) (((|#1| (-401 (-552))) . T)) -(((|#1| (-754)) . T)) +(((|#1| (-756)) . T)) ((((-401 (-552))) . T)) (((|#1| (-523 |#2|) |#2|) . T)) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) -(|has| |#1| (-1076)) +(|has| |#1| (-1078)) ((((-552) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-871 (-373))) . T) (((-871 (-552))) . T) (((-1152)) . T) (((-528)) . T)) +((((-873 (-373))) . T) (((-873 (-552))) . T) (((-1154)) . T) (((-528)) . T)) (((|#1|) . T)) -((((-842)) . T)) -(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) +((((-844)) . T)) +(-4029 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-778)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +(-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))) ((((-552)) . T)) ((((-552)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) -((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) -(-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) +(-4029 (|has| |#2| (-169)) (|has| |#2| (-711)) (|has| |#2| (-830)) (|has| |#2| (-1030))) +((((-1154)) -12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) +(-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-357)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-228)) -((((-842)) . T)) -(((|#1| (-754) (-1058)) . T)) +((((-844)) . T)) +(((|#1| (-756) (-1060)) . T)) ((((-552) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) ((((-115 |#1|)) . T)) ((((-401 (-552))) . T) (((-552)) . T)) -(((|#2|) |has| |#2| (-1028))) +(((|#2|) |has| |#2| (-1030))) ((((-401 (-552))) . T) (($) . T)) (((|#2|) . T)) ((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((((-552)) . T)) ((((-552)) . T)) -((((-1134) (-1152) (-552) (-220) (-842)) . T)) +((((-1136) (-1154) (-552) (-220) (-844)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1559 (|has| |#1| (-343)) (|has| |#1| (-362))) +(-4029 (|has| |#1| (-343)) (|has| |#1| (-362))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-842)) . T)) +((((-844)) . T)) ((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) -(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) +(((|#2|) |has| |#2| (-1078)) (((-552)) -12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (((-401 (-552))) -12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((((-528)) |has| |#1| (-600 (-528)))) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-832)) (|has| |#1| (-1078)))) ((($) . T) (((-401 (-552))) . T)) -(|has| |#1| (-888)) -(|has| |#1| (-888)) -((((-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) (((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) (((-871 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-373))))) (((-871 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-552))))) (((-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528))))) -((((-842)) . T)) -((((-842)) . T)) +(|has| |#1| (-890)) +(|has| |#1| (-890)) +((((-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1003))) (((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1003))) (((-873 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-873 (-373))))) (((-873 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-873 (-552))))) (((-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528))))) +((((-844)) . T)) +((((-844)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-169))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) (((|#2|) . T)) -(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(-4029 (|has| |#1| (-21)) (|has| |#1| (-830))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) -1559 (-12 (|has| |#1| (-599 (-842))) (|has| |#2| (-599 (-842)))) (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) +((((-844)) -4029 (-12 (|has| |#1| (-599 (-844))) (|has| |#2| (-599 (-844)))) (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))))) ((((-401 |#2|) |#3|) . T)) ((((-401 (-552))) . T) (($) . T)) (|has| |#1| (-38 (-401 (-552)))) @@ -3133,142 +3133,142 @@ ((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (|has| (-401 |#2|) (-144)) (|has| (-401 |#2|) (-142)) -((((-681)) . T)) +((((-683)) . T)) (((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) (((#0=(-552) #0#) . T)) ((($) . T) (((-401 (-552))) . T)) -(-1559 (|has| |#4| (-169)) (|has| |#4| (-709)) (|has| |#4| (-828)) (|has| |#4| (-1028))) -(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) -((((-842)) . T) (((-1157)) . T)) -(|has| |#4| (-776)) -(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) -(|has| |#4| (-828)) -(|has| |#3| (-776)) -(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) -(|has| |#3| (-828)) +(-4029 (|has| |#4| (-169)) (|has| |#4| (-711)) (|has| |#4| (-830)) (|has| |#4| (-1030))) +(-4029 (|has| |#3| (-169)) (|has| |#3| (-711)) (|has| |#3| (-830)) (|has| |#3| (-1030))) +((((-844)) . T) (((-1159)) . T)) +(|has| |#4| (-778)) +(-4029 (|has| |#4| (-778)) (|has| |#4| (-830))) +(|has| |#4| (-830)) +(|has| |#3| (-778)) +(-4029 (|has| |#3| (-778)) (|has| |#3| (-830))) +(|has| |#3| (-830)) ((((-552)) . T)) (((|#2|) . T)) -((((-1152)) -1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) -((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-1154)) -4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) +((((-1154)) -12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-844 |#1|)) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-1116 |#1| |#2|)) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-846 |#1|)) . T)) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-1118 |#1| |#2|)) . T)) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1001)) -(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) -((((-842)) . T)) -((((-528)) |has| |#2| (-600 (-528))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-373)) . #0=(|has| |#2| (-1001))) (((-220)) . #0#)) -((((-1152) (-52)) . T)) +(|has| |#1| (-1003)) +(((|#2|) . T) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) +((((-844)) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-873 (-552))) |has| |#2| (-600 (-873 (-552)))) (((-873 (-373))) |has| |#2| (-600 (-873 (-373)))) (((-373)) . #0=(|has| |#2| (-1003))) (((-220)) . #0#)) +((((-1154) (-52)) . T)) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (((|#2|) . T)) ((($ $) . T)) -((((-401 (-552))) . T) (((-681)) . T) (($) . T)) -((((-1150 |#1| |#2| |#3|)) . T)) -((((-1150 |#1| |#2| |#3|)) . T) (((-1143 |#1| |#2| |#3|)) . T)) -((((-842)) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-401 (-552))) . T) (((-683)) . T) (($) . T)) +((((-1152 |#1| |#2| |#3|)) . T)) +((((-1152 |#1| |#2| |#3|)) . T) (((-1145 |#1| |#2| |#3|)) . T)) +((((-844)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) ((((-552) |#1|) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-1152 |#1| |#2| |#3|)) |has| |#1| (-357))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-357)) -(((|#3|) . T) ((|#2|) . T) (($) -1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) ((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028)))) -(((|#2|) . T) (($) -1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) ((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028)))) +(((|#3|) . T) ((|#2|) . T) (($) -4029 (|has| |#4| (-169)) (|has| |#4| (-830)) (|has| |#4| (-1030))) ((|#4|) -4029 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1030)))) +(((|#2|) . T) (($) -4029 (|has| |#3| (-169)) (|has| |#3| (-830)) (|has| |#3| (-1030))) ((|#3|) -4029 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1030)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-357)) ((((-115 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-401 (-552))) |has| |#2| (-1019 (-401 (-552)))) (((-552)) |has| |#2| (-1019 (-552))) ((|#2|) . T) (((-846 |#1|)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1|) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) -((((-128)) . T) (((-842)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) +((((-128)) . T) (((-844)) . T)) ((((-552) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-890))) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((((-844)) . T)) +((((-844)) . T)) +((((-844)) . T)) (((|#1| (-523 |#2|)) . T)) -((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) . T)) ((((-552) (-128)) . T)) (((|#1| (-552)) . T)) (((|#1| (-401 (-552))) . T)) -(((|#1| (-754)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) +(((|#1| (-756)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) ((((-115 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) -(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) -(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) -((($) . T)) -(((|#2| (-523 (-844 |#1|))) . T)) -((((-842)) . T) (((-1157)) . T)) -((((-842)) . T) (((-1157)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) +(-4029 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-890))) +(-4029 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-890))) +((($) . T)) +(((|#2| (-523 (-846 |#1|))) . T)) +((((-844)) . T) (((-1159)) . T)) +((((-844)) . T) (((-1159)) . T)) ((((-552) |#1|) . T)) -((((-842)) . T) (((-1157)) . T)) +((((-844)) . T) (((-1159)) . T)) (((|#2|) . T)) -(((|#2| (-754)) . T)) -((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#2| (-756)) . T)) +((((-844)) -4029 (|has| |#1| (-599 (-844))) (|has| |#1| (-1078)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1134) |#1|) . T)) +((((-1136) |#1|) . T)) ((((-401 |#2|)) . T)) -((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#2| $) |has| |#2| (-280 |#2| |#2|))) -(((|#1| (-627 |#1|)) |has| |#1| (-828))) -(-1559 (|has| |#1| (-228)) (|has| |#1| (-343))) -(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-1076)) +(((|#1| (-629 |#1|)) |has| |#1| (-830))) +(-4029 (|has| |#1| (-228)) (|has| |#1| (-343))) +(-4029 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-1078)) (((|#1|) . T)) ((((-401 (-552))) . T) (($) . T)) -((((-978 |#1|)) . T) ((|#1|) . T) (((-552)) -1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552)))) (((-401 (-552))) -1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -((((-1152)) |has| |#1| (-879 (-1152)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-980 |#1|)) . T) ((|#1|) . T) (((-552)) -4029 (|has| (-980 |#1|) (-1019 (-552))) (|has| |#1| (-1019 (-552)))) (((-401 (-552))) -4029 (|has| (-980 |#1|) (-1019 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +((((-1154)) |has| |#1| (-881 (-1154)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (((|#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1116 |#1| |#2|) #0#) |has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((#0=(-1118 |#1| |#2|) #0#) |has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((#0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) #0#) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) (((#0=(-115 |#1|)) |has| #0# (-303 #0#))) ((($ $) . T)) -(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) -((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) +(-4029 (|has| |#1| (-832)) (|has| |#1| (-1078))) +((($ $) . T) ((#0=(-846 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-228)) ((|#2| |#1|) |has| |#1| (-228)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-471 . -1076) T) ((-258 . -506) 145102) ((-242 . -506) 145045) ((-240 . -1076) 144995) ((-559 . -110) 144980) ((-523 . -23) T) ((-136 . -1076) T) ((-135 . -1076) T) ((-116 . -303) 144937) ((-131 . -1076) T) ((-472 . -506) 144729) ((-676 . -101) T) ((-1117 . -506) 144648) ((-384 . -129) T) ((-1248 . -955) 144617) ((-31 . -92) T) ((-588 . -482) 144601) ((-605 . -129) T) ((-802 . -826) T) ((-515 . -56) 144551) ((-58 . -506) 144484) ((-511 . -506) 144417) ((-412 . -879) 144376) ((-166 . -1028) T) ((-508 . -506) 144309) ((-489 . -506) 144242) ((-488 . -506) 144175) ((-782 . -1017) 143958) ((-681 . -38) 143923) ((-337 . -343) T) ((-1070 . -1069) 143907) ((-1070 . -1076) 143885) ((-166 . -238) 143836) ((-166 . -228) 143787) ((-1070 . -1071) 143745) ((-851 . -280) 143703) ((-220 . -778) T) ((-220 . -775) T) ((-676 . -278) NIL) ((-1126 . -1165) 143682) ((-401 . -971) 143666) ((-683 . -21) T) ((-683 . -25) T) ((-1250 . -630) 143640) ((-310 . -157) 143619) ((-310 . -140) 143598) ((-1126 . -106) 143548) ((-132 . -25) T) ((-40 . -226) 143525) ((-115 . -21) T) ((-115 . -25) T) ((-594 . -282) 143501) ((-468 . -282) 143480) ((-1208 . -1028) T) ((-835 . -1028) T) ((-782 . -332) 143464) ((-116 . -1127) NIL) ((-90 . -599) 143396) ((-470 . -129) T) ((-580 . -1189) T) ((-1208 . -320) 143373) ((-559 . -1028) T) ((-1208 . -228) T) ((-644 . -700) 143357) ((-1072 . -599) 143323) ((-937 . -282) 143300) ((-59 . -34) T) ((-1066 . -599) 143266) ((-1050 . -599) 143232) ((-1039 . -778) T) ((-1039 . -775) T) ((-799 . -709) T) ((-714 . -47) 143197) ((-607 . -38) 143184) ((-349 . -284) T) ((-346 . -284) T) ((-338 . -284) T) ((-258 . -284) 143115) ((-242 . -284) 143046) ((-1043 . -599) 143012) ((-1015 . -599) 142978) ((-1003 . -101) T) ((-998 . -599) 142944) ((-407 . -709) T) ((-116 . -38) 142889) ((-610 . -599) 142855) ((-407 . -466) T) ((-476 . -599) 142821) ((-348 . -101) T) ((-213 . -599) 142787) ((-1183 . -1035) T) ((-694 . -1035) T) ((-1150 . -47) 142764) ((-1149 . -47) 142734) ((-1143 . -47) 142711) ((-127 . -282) 142686) ((-1014 . -148) 142632) ((-889 . -284) T) ((-1102 . -47) 142604) ((-676 . -303) NIL) ((-507 . -599) 142586) ((-502 . -599) 142568) ((-500 . -599) 142550) ((-321 . -1076) 142500) ((-695 . -445) 142431) ((-48 . -101) T) ((-1219 . -280) 142416) ((-1198 . -280) 142336) ((-627 . -648) 142320) ((-627 . -633) 142304) ((-333 . -21) T) ((-333 . -25) T) ((-40 . -343) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-627 . -367) 142288) ((-588 . -280) 142265) ((-591 . -599) 142232) ((-382 . -101) T) ((-1096 . -140) T) ((-125 . -599) 142164) ((-853 . -1076) T) ((-640 . -405) 142148) ((-697 . -599) 142130) ((-182 . -599) 142112) ((-154 . -599) 142094) ((-159 . -599) 142076) ((-1250 . -709) T) ((-1078 . -34) T) ((-850 . -778) NIL) ((-850 . -775) NIL) ((-838 . -830) T) ((-714 . -865) NIL) ((-1259 . -129) T) ((-375 . -129) T) ((-883 . -101) T) ((-714 . -1017) 141952) ((-523 . -129) T) ((-1063 . -405) 141936) ((-979 . -482) 141920) ((-116 . -394) 141897) ((-1143 . -1189) 141876) ((-765 . -405) 141860) ((-763 . -405) 141844) ((-922 . -34) T) ((-676 . -1127) NIL) ((-245 . -630) 141679) ((-244 . -630) 141501) ((-800 . -899) 141480) ((-447 . -405) 141464) ((-588 . -19) 141448) ((-1122 . -1182) 141417) ((-1143 . -865) NIL) ((-1143 . -863) 141369) ((-588 . -590) 141346) ((-1175 . -599) 141278) ((-1151 . -599) 141260) ((-61 . -389) T) ((-1149 . -1017) 141195) ((-1143 . -1017) 141161) ((-676 . -38) 141111) ((-467 . -280) 141096) ((-714 . -371) 141080) ((-640 . -1035) T) ((-1219 . -981) 141046) ((-1198 . -981) 141012) ((-1040 . -1165) 140987) ((-851 . -600) 140794) ((-851 . -599) 140776) ((-1162 . -482) 140713) ((-412 . -1001) 140691) ((-48 . -303) 140678) ((-1040 . -106) 140624) ((-472 . -482) 140561) ((-512 . -1189) T) ((-1143 . -332) 140513) ((-1117 . -482) 140484) ((-1143 . -371) 140436) ((-1063 . -1035) T) ((-431 . -101) T) ((-180 . -1076) T) ((-245 . -34) T) ((-244 . -34) T) ((-765 . -1035) T) ((-763 . -1035) T) ((-714 . -879) 140413) ((-447 . -1035) T) ((-58 . -482) 140397) ((-1013 . -1034) 140371) ((-511 . -482) 140355) ((-508 . -482) 140339) ((-489 . -482) 140323) ((-488 . -482) 140307) ((-240 . -506) 140240) ((-1013 . -110) 140207) ((-1150 . -879) 140120) ((-1149 . -879) 140026) ((-1143 . -879) 139859) ((-652 . -1088) T) ((-1102 . -879) 139843) ((-628 . -92) T) ((-348 . -1127) T) ((-316 . -1034) 139825) ((-245 . -774) 139804) ((-245 . -777) 139755) ((-245 . -776) 139734) ((-244 . -774) 139713) ((-244 . -777) 139664) ((-244 . -776) 139643) ((-31 . -599) 139609) ((-50 . -1035) T) ((-245 . -709) 139519) ((-244 . -709) 139429) ((-1183 . -1076) T) ((-652 . -23) T) ((-569 . -1035) T) ((-510 . -1035) T) ((-373 . -1034) 139394) ((-316 . -110) 139369) ((-72 . -377) T) ((-72 . -389) T) ((-1003 . -38) 139306) ((-676 . -394) 139288) ((-98 . -101) T) ((-694 . -1076) T) ((-982 . -142) 139260) ((-982 . -144) 139232) ((-373 . -110) 139188) ((-313 . -1193) 139167) ((-467 . -981) 139133) ((-348 . -38) 139098) ((-40 . -364) 139070) ((-852 . -599) 138942) ((-126 . -124) 138926) ((-120 . -124) 138910) ((-817 . -1034) 138880) ((-816 . -21) 138832) ((-810 . -1034) 138816) ((-816 . -25) 138768) ((-313 . -544) 138719) ((-552 . -811) T) ((-235 . -1189) T) ((-817 . -110) 138684) ((-810 . -110) 138663) ((-1219 . -599) 138645) ((-1198 . -599) 138627) ((-1198 . -600) 138298) ((-1148 . -888) 138277) ((-1101 . -888) 138256) ((-48 . -38) 138221) ((-1257 . -1088) T) ((-588 . -599) 138133) ((-588 . -600) 138094) ((-1255 . -1088) T) ((-235 . -1017) 137921) ((-1148 . -630) 137846) ((-1101 . -630) 137771) ((-701 . -599) 137753) ((-834 . -630) 137727) ((-483 . -1076) T) ((-1257 . -23) T) ((-1255 . -23) T) ((-1013 . -1028) T) ((-1162 . -280) 137706) ((-166 . -362) 137657) ((-983 . -1189) T) ((-44 . -23) T) ((-472 . -280) 137636) ((-573 . -1076) T) ((-1122 . -1085) 137605) ((-1080 . -1079) 137557) ((-384 . -21) T) ((-384 . -25) T) ((-149 . -1088) T) ((-1263 . -101) T) ((-983 . -863) 137539) ((-983 . -865) 137521) ((-1183 . -700) 137418) ((-607 . -226) 137402) ((-605 . -21) T) ((-283 . -544) T) ((-605 . -25) T) ((-1169 . -1076) T) ((-694 . -700) 137367) ((-235 . -371) 137336) ((-983 . -1017) 137296) ((-373 . -1028) T) ((-218 . -1035) T) ((-116 . -226) 137273) ((-58 . -280) 137250) ((-149 . -23) T) ((-508 . -280) 137227) ((-321 . -506) 137160) ((-488 . -280) 137137) ((-373 . -238) T) ((-373 . -228) T) ((-817 . -1028) T) ((-810 . -1028) T) ((-695 . -928) 137106) ((-683 . -830) T) ((-467 . -599) 137088) ((-810 . -228) 137067) ((-132 . -830) T) ((-640 . -1076) T) ((-1162 . -590) 137046) ((-538 . -1165) 137025) ((-330 . -1076) T) ((-313 . -357) 137004) ((-401 . -144) 136983) ((-401 . -142) 136962) ((-943 . -1088) 136861) ((-235 . -879) 136793) ((-798 . -1088) 136703) ((-636 . -832) 136687) ((-472 . -590) 136666) ((-538 . -106) 136616) ((-983 . -371) 136598) ((-983 . -332) 136580) ((-96 . -1076) T) ((-943 . -23) 136391) ((-470 . -21) T) ((-470 . -25) T) ((-798 . -23) 136261) ((-1152 . -599) 136243) ((-58 . -19) 136227) ((-1152 . -600) 136149) ((-1148 . -709) T) ((-1101 . -709) T) ((-508 . -19) 136133) ((-488 . -19) 136117) ((-58 . -590) 136094) ((-1063 . -1076) T) ((-880 . -101) 136072) ((-834 . -709) T) ((-765 . -1076) T) ((-508 . -590) 136049) ((-488 . -590) 136026) ((-763 . -1076) T) ((-763 . -1042) 135993) ((-454 . -1076) T) ((-447 . -1076) T) ((-573 . -700) 135968) ((-631 . -1076) T) ((-983 . -879) NIL) ((-1227 . -47) 135945) ((-611 . -1088) T) ((-652 . -129) T) ((-1221 . -101) T) ((-1220 . -47) 135915) ((-1199 . -47) 135892) ((-1183 . -169) 135843) ((-1056 . -1193) 135794) ((-269 . -1076) T) ((-84 . -434) T) ((-84 . -389) T) ((-1149 . -301) 135773) ((-1143 . -301) 135752) ((-50 . -1076) T) ((-1056 . -544) 135703) ((-694 . -169) T) ((-582 . -47) 135680) ((-220 . -630) 135645) ((-569 . -1076) T) ((-510 . -1076) T) ((-353 . -1193) T) ((-347 . -1193) T) ((-339 . -1193) T) ((-480 . -803) T) ((-480 . -899) T) ((-313 . -1088) T) ((-107 . -1193) T) ((-333 . -830) T) ((-212 . -899) T) ((-212 . -803) T) ((-697 . -1034) 135615) ((-353 . -544) T) ((-347 . -544) T) ((-339 . -544) T) ((-107 . -544) T) ((-640 . -700) 135585) ((-1143 . -1001) NIL) ((-313 . -23) T) ((-66 . -1189) T) ((-979 . -599) 135517) ((-676 . -226) 135499) ((-697 . -110) 135464) ((-627 . -34) T) ((-240 . -482) 135448) ((-1078 . -1074) 135432) ((-168 . -1076) T) ((-931 . -888) 135411) ((-474 . -888) 135390) ((-1263 . -1127) T) ((-1259 . -21) T) ((-1259 . -25) T) ((-1257 . -129) T) ((-1255 . -129) T) ((-1063 . -700) 135239) ((-1039 . -630) 135226) ((-931 . -630) 135151) ((-765 . -700) 134980) ((-528 . -599) 134962) ((-528 . -600) 134943) ((-763 . -700) 134792) ((-1248 . -101) T) ((-1053 . -101) T) ((-375 . -25) T) ((-375 . -21) T) ((-474 . -630) 134717) ((-454 . -700) 134688) ((-447 . -700) 134537) ((-966 . -101) T) ((-1231 . -599) 134503) ((-1220 . -1017) 134438) ((-1199 . -1189) 134417) ((-720 . -101) T) ((-1199 . -865) NIL) ((-1199 . -863) 134369) ((-1162 . -600) NIL) ((-1162 . -599) 134351) ((-523 . -25) T) ((-1118 . -1099) 134296) ((-1025 . -1182) 134225) ((-880 . -303) 134163) ((-337 . -1035) T) ((-138 . -101) T) ((-44 . -129) T) ((-283 . -1088) T) ((-663 . -92) T) ((-658 . -92) T) ((-646 . -599) 134145) ((-628 . -599) 134098) ((-471 . -92) T) ((-349 . -599) 134080) ((-346 . -599) 134062) ((-338 . -599) 134044) ((-258 . -600) 133792) ((-258 . -599) 133774) ((-242 . -599) 133756) ((-242 . -600) 133617) ((-136 . -92) T) ((-135 . -92) T) ((-131 . -92) T) ((-1199 . -1017) 133583) ((-1183 . -506) 133550) ((-1117 . -599) 133532) ((-802 . -837) T) ((-802 . -709) T) ((-588 . -282) 133509) ((-569 . -700) 133474) ((-472 . -600) NIL) ((-472 . -599) 133456) ((-510 . -700) 133401) ((-310 . -101) T) ((-307 . -101) T) ((-283 . -23) T) ((-149 . -129) T) ((-380 . -709) T) ((-851 . -1034) 133353) ((-889 . -599) 133335) ((-889 . -600) 133317) ((-851 . -110) 133255) ((-134 . -101) T) ((-113 . -101) T) ((-695 . -1211) 133239) ((-697 . -1028) T) ((-676 . -343) NIL) ((-511 . -599) 133171) ((-373 . -778) T) ((-218 . -1076) T) ((-373 . -775) T) ((-220 . -777) T) ((-220 . -774) T) ((-58 . -600) 133132) ((-58 . -599) 133044) ((-220 . -709) T) ((-508 . -600) 133005) ((-508 . -599) 132917) ((-489 . -599) 132849) ((-488 . -600) 132810) ((-488 . -599) 132722) ((-1056 . -357) 132673) ((-40 . -405) 132650) ((-76 . -1189) T) ((-850 . -888) NIL) ((-353 . -323) 132634) ((-353 . -357) T) ((-347 . -323) 132618) ((-347 . -357) T) ((-339 . -323) 132602) ((-339 . -357) T) ((-310 . -278) 132581) ((-107 . -357) T) ((-69 . -1189) T) ((-1199 . -332) 132533) ((-850 . -630) 132478) ((-1199 . -371) 132430) ((-943 . -129) 132285) ((-798 . -129) 132155) ((-937 . -633) 132139) ((-1063 . -169) 132050) ((-937 . -367) 132034) ((-1039 . -777) T) ((-1039 . -774) T) ((-765 . -169) 131925) ((-763 . -169) 131836) ((-799 . -47) 131798) ((-1039 . -709) T) ((-321 . -482) 131782) ((-931 . -709) T) ((-447 . -169) 131693) ((-240 . -280) 131670) ((-474 . -709) T) ((-1248 . -303) 131608) ((-1227 . -879) 131521) ((-1220 . -879) 131427) ((-1219 . -1034) 131262) ((-1199 . -879) 131095) ((-1198 . -1034) 130903) ((-1183 . -284) 130882) ((-1122 . -148) 130866) ((-1096 . -101) T) ((-1094 . -1076) T) ((-1056 . -23) T) ((-1051 . -101) T) ((-906 . -934) T) ((-720 . -303) 130804) ((-74 . -1189) T) ((-30 . -934) T) ((-166 . -888) 130757) ((-646 . -376) 130729) ((-111 . -824) T) ((-1 . -599) 130711) ((-1056 . -1088) T) ((-127 . -633) 130693) ((-50 . -604) 130677) ((-982 . -403) 130649) ((-582 . -879) 130562) ((-432 . -101) T) ((-138 . -303) NIL) ((-127 . -367) 130544) ((-851 . -1028) T) ((-816 . -830) 130523) ((-80 . -1189) T) ((-694 . -284) T) ((-40 . -1035) T) ((-569 . -169) T) ((-510 . -169) T) ((-503 . -599) 130505) ((-166 . -630) 130415) ((-499 . -599) 130397) ((-345 . -144) 130379) ((-345 . -142) T) ((-353 . -1088) T) ((-347 . -1088) T) ((-339 . -1088) T) ((-983 . -301) T) ((-893 . -301) T) ((-851 . -238) T) ((-107 . -1088) T) ((-851 . -228) 130358) ((-1219 . -110) 130179) ((-1198 . -110) 129968) ((-240 . -1223) 129952) ((-552 . -828) T) ((-353 . -23) T) ((-348 . -343) T) ((-310 . -303) 129939) ((-307 . -303) 129880) ((-347 . -23) T) ((-313 . -129) T) ((-339 . -23) T) ((-983 . -1001) T) ((-107 . -23) T) ((-240 . -590) 129857) ((-1221 . -38) 129749) ((-1208 . -888) 129728) ((-111 . -1076) T) ((-1014 . -101) T) ((-1208 . -630) 129653) ((-850 . -777) NIL) ((-835 . -630) 129627) ((-850 . -774) NIL) ((-799 . -865) NIL) ((-850 . -709) T) ((-1063 . -506) 129500) ((-765 . -506) 129447) ((-763 . -506) 129399) ((-559 . -630) 129386) ((-799 . -1017) 129214) ((-447 . -506) 129157) ((-382 . -383) T) ((-59 . -1189) T) ((-605 . -830) 129136) ((-492 . -643) T) ((-1122 . -955) 129105) ((-982 . -445) T) ((-681 . -828) T) ((-502 . -775) T) ((-467 . -1034) 128940) ((-337 . -1076) T) ((-307 . -1127) NIL) ((-283 . -129) T) ((-388 . -1076) T) ((-676 . -364) 128907) ((-849 . -1035) T) ((-218 . -604) 128884) ((-321 . -280) 128861) ((-467 . -110) 128682) ((-1219 . -1028) T) ((-1198 . -1028) T) ((-799 . -371) 128666) ((-166 . -709) T) ((-636 . -101) T) ((-1219 . -238) 128645) ((-1219 . -228) 128597) ((-1198 . -228) 128502) ((-1198 . -238) 128481) ((-982 . -396) NIL) ((-652 . -623) 128429) ((-310 . -38) 128339) ((-307 . -38) 128268) ((-68 . -599) 128250) ((-313 . -485) 128216) ((-1162 . -282) 128195) ((-1089 . -1088) 128105) ((-82 . -1189) T) ((-60 . -599) 128087) ((-472 . -282) 128066) ((-1250 . -1017) 128043) ((-1140 . -1076) T) ((-1089 . -23) 127913) ((-799 . -879) 127849) ((-1208 . -709) T) ((-1078 . -1189) T) ((-1063 . -284) 127780) ((-945 . -1076) T) ((-872 . -101) T) ((-765 . -284) 127691) ((-321 . -19) 127675) ((-58 . -282) 127652) ((-763 . -284) 127583) ((-835 . -709) T) ((-116 . -828) NIL) ((-508 . -282) 127560) ((-321 . -590) 127537) ((-488 . -282) 127514) ((-447 . -284) 127445) ((-1014 . -303) 127296) ((-559 . -709) T) ((-663 . -599) 127246) ((-658 . -599) 127212) ((-644 . -599) 127194) ((-471 . -599) 127160) ((-240 . -600) 127121) ((-240 . -599) 127033) ((-208 . -101) T) ((-136 . -599) 126999) ((-135 . -599) 126965) ((-131 . -599) 126931) ((-1123 . -34) T) ((-922 . -1189) T) ((-337 . -700) 126876) ((-652 . -25) T) ((-652 . -21) T) ((-467 . -1028) T) ((-619 . -411) 126841) ((-593 . -411) 126806) ((-1096 . -1127) T) ((-569 . -284) T) ((-510 . -284) T) ((-1220 . -301) 126785) ((-467 . -228) 126737) ((-467 . -238) 126716) ((-1199 . -301) 126695) ((-1199 . -1001) NIL) ((-1056 . -129) T) ((-851 . -778) 126674) ((-141 . -101) T) ((-40 . -1076) T) ((-851 . -775) 126653) ((-627 . -989) 126637) ((-568 . -1035) T) ((-552 . -1035) T) ((-487 . -1035) T) ((-401 . -445) T) ((-353 . -129) T) ((-310 . -394) 126621) ((-307 . -394) 126582) ((-347 . -129) T) ((-339 . -129) T) ((-1157 . -1076) T) ((-1096 . -38) 126569) ((-1070 . -599) 126536) ((-107 . -129) T) ((-933 . -1076) T) ((-900 . -1076) T) ((-754 . -1076) T) ((-654 . -1076) T) ((-498 . -1059) T) ((-683 . -144) T) ((-115 . -144) T) ((-1257 . -21) T) ((-1257 . -25) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-646 . -1034) 126520) ((-523 . -830) T) ((-492 . -830) T) ((-349 . -1034) 126472) ((-346 . -1034) 126424) ((-338 . -1034) 126376) ((-245 . -1189) T) ((-244 . -1189) T) ((-258 . -1034) 126219) ((-242 . -1034) 126062) ((-646 . -110) 126041) ((-349 . -110) 125979) ((-346 . -110) 125917) ((-338 . -110) 125855) ((-258 . -110) 125684) ((-242 . -110) 125513) ((-800 . -1193) 125492) ((-607 . -405) 125476) ((-44 . -21) T) ((-44 . -25) T) ((-798 . -623) 125382) ((-800 . -544) 125361) ((-245 . -1017) 125188) ((-244 . -1017) 125015) ((-125 . -118) 124999) ((-889 . -1034) 124964) ((-681 . -1035) T) ((-695 . -101) T) ((-337 . -169) T) ((-149 . -21) T) ((-149 . -25) T) ((-87 . -599) 124946) ((-889 . -110) 124902) ((-40 . -700) 124847) ((-849 . -1076) T) ((-321 . -600) 124808) ((-321 . -599) 124720) ((-1198 . -775) 124673) ((-1198 . -778) 124626) ((-245 . -371) 124595) ((-244 . -371) 124564) ((-636 . -38) 124534) ((-594 . -34) T) ((-475 . -1088) 124444) ((-468 . -34) T) ((-1089 . -129) 124314) ((-943 . -25) 124125) ((-853 . -599) 124107) ((-943 . -21) 124062) ((-798 . -21) 123972) ((-798 . -25) 123823) ((-607 . -1035) T) ((-1154 . -544) 123802) ((-1148 . -47) 123779) ((-349 . -1028) T) ((-346 . -1028) T) ((-475 . -23) 123649) ((-338 . -1028) T) ((-242 . -1028) T) ((-258 . -1028) T) ((-1101 . -47) 123621) ((-116 . -1035) T) ((-1013 . -630) 123595) ((-937 . -34) T) ((-349 . -228) 123574) ((-349 . -238) T) ((-346 . -228) 123553) ((-346 . -238) T) ((-242 . -320) 123510) ((-338 . -228) 123489) ((-338 . -238) T) ((-258 . -320) 123461) ((-258 . -228) 123440) ((-1132 . -148) 123424) ((-245 . -879) 123356) ((-244 . -879) 123288) ((-1058 . -830) T) ((-1202 . -1189) T) ((-408 . -1088) T) ((-1032 . -23) T) ((-889 . -1028) T) ((-316 . -630) 123270) ((-1003 . -828) T) ((-1183 . -981) 123236) ((-1149 . -899) 123215) ((-1143 . -899) 123194) ((-1143 . -803) NIL) ((-889 . -238) T) ((-800 . -357) 123173) ((-379 . -23) T) ((-126 . -1076) 123151) ((-120 . -1076) 123129) ((-889 . -228) T) ((-127 . -34) T) ((-373 . -630) 123094) ((-849 . -700) 123081) ((-1025 . -148) 123046) ((-40 . -169) T) ((-676 . -405) 123028) ((-695 . -303) 123015) ((-817 . -630) 122975) ((-810 . -630) 122949) ((-313 . -25) T) ((-313 . -21) T) ((-640 . -280) 122928) ((-568 . -1076) T) ((-552 . -1076) T) ((-487 . -1076) T) ((-240 . -282) 122905) ((-307 . -226) 122866) ((-1148 . -865) NIL) ((-1101 . -865) 122725) ((-128 . -830) T) ((-1148 . -1017) 122605) ((-1101 . -1017) 122488) ((-180 . -599) 122470) ((-834 . -1017) 122366) ((-765 . -280) 122293) ((-800 . -1088) T) ((-1013 . -709) T) ((-588 . -633) 122277) ((-1025 . -955) 122206) ((-978 . -101) T) ((-800 . -23) T) ((-695 . -1127) 122184) ((-676 . -1035) T) ((-588 . -367) 122168) ((-345 . -445) T) ((-337 . -284) T) ((-1236 . -1076) T) ((-243 . -1076) T) ((-393 . -101) T) ((-283 . -21) T) ((-283 . -25) T) ((-355 . -709) T) ((-693 . -1076) T) ((-681 . -1076) T) ((-355 . -466) T) ((-1183 . -599) 122150) ((-1148 . -371) 122134) ((-1101 . -371) 122118) ((-1003 . -405) 122080) ((-138 . -224) 122062) ((-373 . -777) T) ((-373 . -774) T) ((-849 . -169) T) ((-373 . -709) T) ((-694 . -599) 122044) ((-695 . -38) 121873) ((-1235 . -1233) 121857) ((-345 . -396) T) ((-1235 . -1076) 121807) ((-568 . -700) 121794) ((-552 . -700) 121781) ((-487 . -700) 121746) ((-310 . -613) 121725) ((-817 . -709) T) ((-810 . -709) T) ((-627 . -1189) T) ((-1056 . -623) 121673) ((-1148 . -879) 121616) ((-1101 . -879) 121600) ((-644 . -1034) 121584) ((-107 . -623) 121566) ((-475 . -129) 121436) ((-1154 . -1088) T) ((-931 . -47) 121405) ((-607 . -1076) T) ((-644 . -110) 121384) ((-483 . -599) 121350) ((-321 . -282) 121327) ((-474 . -47) 121284) ((-1154 . -23) T) ((-116 . -1076) T) ((-102 . -101) 121262) ((-1247 . -1088) T) ((-1032 . -129) T) ((-1003 . -1035) T) ((-802 . -1017) 121246) ((-982 . -707) 121218) ((-1247 . -23) T) ((-681 . -700) 121183) ((-573 . -599) 121165) ((-380 . -1017) 121149) ((-348 . -1035) T) ((-379 . -129) T) ((-318 . -1017) 121133) ((-220 . -865) 121115) ((-983 . -899) T) ((-90 . -34) T) ((-983 . -803) T) ((-893 . -899) T) ((-480 . -1193) T) ((-1169 . -599) 121097) ((-1081 . -1076) T) ((-212 . -1193) T) ((-978 . -303) 121062) ((-220 . -1017) 121022) ((-40 . -284) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-1096 . -811) T) ((-480 . -544) T) ((-353 . -25) T) ((-212 . -544) T) ((-353 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-697 . -630) 120982) ((-339 . -25) T) ((-339 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1035) T) ((-568 . -169) T) ((-552 . -169) T) ((-487 . -169) T) ((-640 . -599) 120964) ((-720 . -719) 120948) ((-330 . -599) 120930) ((-67 . -377) T) ((-67 . -389) T) ((-1078 . -106) 120914) ((-1039 . -865) 120896) ((-931 . -865) 120821) ((-635 . -1088) T) ((-607 . -700) 120808) ((-474 . -865) NIL) ((-1122 . -101) T) ((-1039 . -1017) 120790) ((-96 . -599) 120772) ((-470 . -144) T) ((-931 . -1017) 120652) ((-116 . -700) 120597) ((-635 . -23) T) ((-474 . -1017) 120473) ((-1063 . -600) NIL) ((-1063 . -599) 120455) ((-765 . -600) NIL) ((-765 . -599) 120416) ((-763 . -600) 120050) ((-763 . -599) 119964) ((-1089 . -623) 119870) ((-454 . -599) 119852) ((-447 . -599) 119834) ((-447 . -600) 119695) ((-1014 . -224) 119641) ((-851 . -888) 119620) ((-125 . -34) T) ((-800 . -129) T) ((-631 . -599) 119602) ((-566 . -101) T) ((-349 . -1254) 119586) ((-346 . -1254) 119570) ((-338 . -1254) 119554) ((-126 . -506) 119487) ((-120 . -506) 119420) ((-503 . -775) T) ((-503 . -778) T) ((-502 . -777) T) ((-102 . -303) 119358) ((-217 . -101) 119336) ((-676 . -1076) T) ((-681 . -169) T) ((-851 . -630) 119288) ((-64 . -378) T) ((-269 . -599) 119270) ((-64 . -389) T) ((-931 . -371) 119254) ((-849 . -284) T) ((-50 . -599) 119236) ((-978 . -38) 119184) ((-569 . -599) 119166) ((-474 . -371) 119150) ((-569 . -600) 119132) ((-510 . -599) 119114) ((-889 . -1254) 119101) ((-850 . -1189) T) ((-683 . -445) T) ((-487 . -506) 119067) ((-480 . -357) T) ((-349 . -362) 119046) ((-346 . -362) 119025) ((-338 . -362) 119004) ((-212 . -357) T) ((-697 . -709) T) ((-115 . -445) T) ((-1258 . -1249) 118988) ((-850 . -863) 118965) ((-850 . -865) NIL) ((-943 . -830) 118864) ((-798 . -830) 118815) ((-636 . -638) 118799) ((-1175 . -34) T) ((-168 . -599) 118781) ((-1089 . -21) 118691) ((-1089 . -25) 118542) ((-850 . -1017) 118519) ((-931 . -879) 118500) ((-1208 . -47) 118477) ((-889 . -362) T) ((-58 . -633) 118461) ((-508 . -633) 118445) ((-474 . -879) 118422) ((-70 . -434) T) ((-70 . -389) T) ((-488 . -633) 118406) ((-58 . -367) 118390) ((-607 . -169) T) ((-508 . -367) 118374) ((-488 . -367) 118358) ((-810 . -691) 118342) ((-1148 . -301) 118321) ((-1154 . -129) T) ((-116 . -169) T) ((-1122 . -303) 118259) ((-166 . -1189) T) ((-619 . -727) 118243) ((-593 . -727) 118227) ((-1247 . -129) T) ((-1220 . -899) 118206) ((-1199 . -899) 118185) ((-1199 . -803) NIL) ((-676 . -700) 118135) ((-1198 . -888) 118088) ((-1003 . -1076) T) ((-850 . -371) 118065) ((-850 . -332) 118042) ((-884 . -1088) T) ((-166 . -863) 118026) ((-166 . -865) 117951) ((-480 . -1088) T) ((-348 . -1076) T) ((-212 . -1088) T) ((-75 . -434) T) ((-75 . -389) T) ((-166 . -1017) 117847) ((-313 . -830) T) ((-1235 . -506) 117780) ((-1219 . -630) 117677) ((-1198 . -630) 117547) ((-851 . -777) 117526) ((-851 . -774) 117505) ((-851 . -709) T) ((-480 . -23) T) ((-218 . -599) 117487) ((-171 . -445) T) ((-217 . -303) 117425) ((-85 . -434) T) ((-85 . -389) T) ((-212 . -23) T) ((-1259 . -1252) 117404) ((-568 . -284) T) ((-552 . -284) T) ((-659 . -1017) 117388) ((-487 . -284) T) ((-134 . -463) 117343) ((-48 . -1076) T) ((-695 . -226) 117327) ((-850 . -879) NIL) ((-1208 . -865) NIL) ((-868 . -101) T) ((-864 . -101) T) ((-382 . -1076) T) ((-166 . -371) 117311) ((-166 . -332) 117295) ((-1208 . -1017) 117175) ((-835 . -1017) 117071) ((-1118 . -101) T) ((-635 . -129) T) ((-116 . -506) 116979) ((-644 . -775) 116958) ((-644 . -778) 116937) ((-559 . -1017) 116919) ((-288 . -1242) 116889) ((-845 . -101) T) ((-942 . -544) 116868) ((-1183 . -1034) 116751) ((-475 . -623) 116657) ((-883 . -1076) T) ((-1003 . -700) 116594) ((-694 . -1034) 116559) ((-602 . -101) T) ((-588 . -34) T) ((-1123 . -1189) T) ((-1183 . -110) 116428) ((-467 . -630) 116325) ((-348 . -700) 116270) ((-166 . -879) 116229) ((-681 . -284) T) ((-676 . -169) T) ((-694 . -110) 116185) ((-1263 . -1035) T) ((-1208 . -371) 116169) ((-412 . -1193) 116147) ((-1094 . -599) 116129) ((-307 . -828) NIL) ((-412 . -544) T) ((-220 . -301) T) ((-1198 . -774) 116082) ((-1198 . -777) 116035) ((-1219 . -709) T) ((-1198 . -709) T) ((-48 . -700) 116000) ((-220 . -1001) T) ((-345 . -1242) 115977) ((-1221 . -405) 115943) ((-701 . -709) T) ((-1208 . -879) 115886) ((-111 . -599) 115868) ((-111 . -600) 115850) ((-701 . -466) T) ((-475 . -21) 115760) ((-126 . -482) 115744) ((-120 . -482) 115728) ((-475 . -25) 115579) ((-607 . -284) T) ((-573 . -1034) 115554) ((-431 . -1076) T) ((-1039 . -301) T) ((-116 . -284) T) ((-1080 . -101) T) ((-982 . -101) T) ((-573 . -110) 115522) ((-1118 . -303) 115460) ((-1183 . -1028) T) ((-1039 . -1001) T) ((-65 . -1189) T) ((-1032 . -25) T) ((-1032 . -21) T) ((-694 . -1028) T) ((-379 . -21) T) ((-379 . -25) T) ((-676 . -506) NIL) ((-1003 . -169) T) ((-694 . -238) T) ((-1039 . -537) T) ((-498 . -101) T) ((-494 . -101) T) ((-348 . -169) T) ((-337 . -599) 115442) ((-388 . -599) 115424) ((-467 . -709) T) ((-1096 . -828) T) ((-871 . -1017) 115392) ((-107 . -830) T) ((-640 . -1034) 115376) ((-480 . -129) T) ((-1221 . -1035) T) ((-212 . -129) T) ((-1132 . -101) 115354) ((-98 . -1076) T) ((-240 . -648) 115338) ((-240 . -633) 115322) ((-640 . -110) 115301) ((-310 . -405) 115285) ((-240 . -367) 115269) ((-1135 . -230) 115216) ((-978 . -226) 115200) ((-73 . -1189) T) ((-48 . -169) T) ((-683 . -381) T) ((-683 . -140) T) ((-1258 . -101) T) ((-1063 . -1034) 115043) ((-258 . -888) 115022) ((-242 . -888) 115001) ((-765 . -1034) 114824) ((-763 . -1034) 114667) ((-594 . -1189) T) ((-1140 . -599) 114649) ((-1063 . -110) 114478) ((-1025 . -101) T) ((-468 . -1189) T) ((-454 . -1034) 114449) ((-447 . -1034) 114292) ((-646 . -630) 114276) ((-850 . -301) T) ((-765 . -110) 114085) ((-763 . -110) 113914) ((-349 . -630) 113866) ((-346 . -630) 113818) ((-338 . -630) 113770) ((-258 . -630) 113695) ((-242 . -630) 113620) ((-1134 . -830) T) ((-1064 . -1017) 113604) ((-454 . -110) 113565) ((-447 . -110) 113394) ((-1052 . -1017) 113371) ((-979 . -34) T) ((-945 . -599) 113353) ((-937 . -1189) T) ((-125 . -989) 113337) ((-942 . -1088) T) ((-850 . -1001) NIL) ((-718 . -1088) T) ((-698 . -1088) T) ((-1235 . -482) 113321) ((-1118 . -38) 113281) ((-942 . -23) T) ((-823 . -101) T) ((-800 . -21) T) ((-800 . -25) T) ((-718 . -23) T) ((-698 . -23) T) ((-109 . -643) T) ((-889 . -630) 113246) ((-569 . -1034) 113211) ((-510 . -1034) 113156) ((-222 . -56) 113114) ((-446 . -23) T) ((-401 . -101) T) ((-257 . -101) T) ((-676 . -284) T) ((-845 . -38) 113084) ((-569 . -110) 113040) ((-510 . -110) 112969) ((-412 . -1088) T) ((-310 . -1035) 112859) ((-307 . -1035) T) ((-127 . -1189) T) ((-640 . -1028) T) ((-1263 . -1076) T) ((-166 . -301) 112790) ((-412 . -23) T) ((-40 . -599) 112772) ((-40 . -600) 112756) ((-107 . -971) 112738) ((-115 . -848) 112722) ((-48 . -506) 112688) ((-1175 . -989) 112672) ((-1157 . -599) 112654) ((-1162 . -34) T) ((-933 . -599) 112620) ((-900 . -599) 112602) ((-1089 . -830) 112553) ((-754 . -599) 112535) ((-654 . -599) 112517) ((-1132 . -303) 112455) ((-472 . -34) T) ((-1068 . -1189) T) ((-470 . -445) T) ((-1063 . -1028) T) ((-1117 . -34) T) ((-765 . -1028) T) ((-763 . -1028) T) ((-629 . -230) 112439) ((-616 . -230) 112385) ((-1208 . -301) 112364) ((-1063 . -320) 112325) ((-447 . -1028) T) ((-1154 . -21) T) ((-1063 . -228) 112304) ((-765 . -320) 112281) ((-765 . -228) T) ((-763 . -320) 112253) ((-714 . -1193) 112232) ((-321 . -633) 112216) ((-1154 . -25) T) ((-58 . -34) T) ((-511 . -34) T) ((-508 . -34) T) ((-447 . -320) 112195) ((-321 . -367) 112179) ((-489 . -34) T) ((-488 . -34) T) ((-982 . -1127) NIL) ((-714 . -544) 112110) ((-619 . -101) T) ((-593 . -101) T) ((-349 . -709) T) ((-346 . -709) T) ((-338 . -709) T) ((-258 . -709) T) ((-242 . -709) T) ((-1025 . -303) 112018) ((-880 . -1076) 111996) ((-50 . -1028) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-1150 . -544) 111975) ((-1149 . -1193) 111954) ((-569 . -1028) T) ((-510 . -1028) T) ((-1143 . -1193) 111933) ((-355 . -1017) 111917) ((-316 . -1017) 111901) ((-1003 . -284) T) ((-373 . -865) 111883) ((-1149 . -544) 111834) ((-1143 . -544) 111785) ((-982 . -38) 111730) ((-782 . -1088) T) ((-889 . -709) T) ((-569 . -238) T) ((-569 . -228) T) ((-510 . -228) T) ((-510 . -238) T) ((-1102 . -544) 111709) ((-348 . -284) T) ((-629 . -677) 111693) ((-373 . -1017) 111653) ((-1096 . -1035) T) ((-102 . -124) 111637) ((-782 . -23) T) ((-1235 . -280) 111614) ((-401 . -303) 111579) ((-1257 . -1252) 111555) ((-1255 . -1252) 111534) ((-1221 . -1076) T) ((-849 . -599) 111516) ((-817 . -1017) 111485) ((-198 . -770) T) ((-197 . -770) T) ((-196 . -770) T) ((-195 . -770) T) ((-194 . -770) T) ((-193 . -770) T) ((-192 . -770) T) ((-191 . -770) T) ((-190 . -770) T) ((-189 . -770) T) ((-487 . -981) T) ((-268 . -819) T) ((-267 . -819) T) ((-266 . -819) T) ((-265 . -819) T) ((-48 . -284) T) ((-264 . -819) T) ((-263 . -819) T) ((-262 . -819) T) ((-188 . -770) T) ((-598 . -830) T) ((-636 . -405) 111469) ((-109 . -830) T) ((-635 . -21) T) ((-635 . -25) T) ((-1258 . -38) 111439) ((-116 . -280) 111390) ((-1235 . -19) 111374) ((-1235 . -590) 111351) ((-1248 . -1076) T) ((-1053 . -1076) T) ((-966 . -1076) T) ((-942 . -129) T) ((-720 . -1076) T) ((-718 . -129) T) ((-698 . -129) T) ((-503 . -776) T) ((-401 . -1127) 111329) ((-446 . -129) T) ((-503 . -777) T) ((-218 . -1028) T) ((-288 . -101) 111111) ((-138 . -1076) T) ((-681 . -981) T) ((-90 . -1189) T) ((-126 . -599) 111043) ((-120 . -599) 110975) ((-1263 . -169) T) ((-1149 . -357) 110954) ((-1143 . -357) 110933) ((-310 . -1076) T) ((-412 . -129) T) ((-307 . -1076) T) ((-401 . -38) 110885) ((-1109 . -101) T) ((-1221 . -700) 110777) ((-636 . -1035) T) ((-1111 . -1230) T) ((-313 . -142) 110756) ((-313 . -144) 110735) ((-134 . -1076) T) ((-113 . -1076) T) ((-838 . -101) T) ((-568 . -599) 110717) ((-552 . -600) 110616) ((-552 . -599) 110598) ((-487 . -599) 110580) ((-487 . -600) 110525) ((-478 . -23) T) ((-475 . -830) 110476) ((-480 . -623) 110458) ((-944 . -599) 110440) ((-212 . -623) 110422) ((-220 . -398) T) ((-644 . -630) 110406) ((-1148 . -899) 110385) ((-714 . -1088) T) ((-345 . -101) T) ((-1188 . -1059) T) ((-801 . -830) T) ((-714 . -23) T) ((-337 . -1034) 110330) ((-1134 . -1133) T) ((-1123 . -106) 110314) ((-1150 . -1088) T) ((-1149 . -1088) T) ((-507 . -1017) 110298) ((-1143 . -1088) T) ((-1102 . -1088) T) ((-337 . -110) 110227) ((-983 . -1193) T) ((-125 . -1189) T) ((-893 . -1193) T) ((-676 . -280) NIL) ((-1236 . -599) 110209) ((-1150 . -23) T) ((-1149 . -23) T) ((-1143 . -23) T) ((-983 . -544) T) ((-1118 . -226) 110193) ((-893 . -544) T) ((-1102 . -23) T) ((-243 . -599) 110175) ((-1051 . -1076) T) ((-782 . -129) T) ((-693 . -599) 110157) ((-310 . -700) 110067) ((-307 . -700) 109996) ((-681 . -599) 109978) ((-681 . -600) 109923) ((-401 . -394) 109907) ((-432 . -1076) T) ((-480 . -25) T) ((-480 . -21) T) ((-1096 . -1076) T) ((-212 . -25) T) ((-212 . -21) T) ((-695 . -405) 109891) ((-697 . -1017) 109860) ((-1235 . -599) 109772) ((-1235 . -600) 109733) ((-1221 . -169) T) ((-240 . -34) T) ((-905 . -953) T) ((-1175 . -1189) T) ((-644 . -774) 109712) ((-644 . -777) 109691) ((-392 . -389) T) ((-515 . -101) 109669) ((-1014 . -1076) T) ((-217 . -974) 109653) ((-496 . -101) T) ((-607 . -599) 109635) ((-45 . -830) NIL) ((-607 . -600) 109612) ((-1014 . -596) 109587) ((-880 . -506) 109520) ((-337 . -1028) T) ((-116 . -600) NIL) ((-116 . -599) 109502) ((-851 . -1189) T) ((-652 . -411) 109486) ((-652 . -1099) 109431) ((-492 . -148) 109413) ((-337 . -228) T) ((-337 . -238) T) ((-40 . -1034) 109358) ((-851 . -863) 109342) ((-851 . -865) 109267) ((-695 . -1035) T) ((-676 . -981) NIL) ((-3 . |UnionCategory|) T) ((-1219 . -47) 109237) ((-1198 . -47) 109214) ((-1117 . -989) 109185) ((-220 . -899) T) ((-40 . -110) 109114) ((-851 . -1017) 108978) ((-1096 . -700) 108965) ((-1081 . -599) 108947) ((-1056 . -144) 108926) ((-1056 . -142) 108877) ((-983 . -357) T) ((-313 . -1177) 108843) ((-373 . -301) T) ((-313 . -1174) 108809) ((-310 . -169) 108788) ((-307 . -169) T) ((-982 . -226) 108765) ((-893 . -357) T) ((-569 . -1254) 108752) ((-510 . -1254) 108729) ((-353 . -144) 108708) ((-353 . -142) 108659) ((-347 . -144) 108638) ((-347 . -142) 108589) ((-594 . -1165) 108565) ((-339 . -144) 108544) ((-339 . -142) 108495) ((-313 . -35) 108461) ((-468 . -1165) 108440) ((0 . |EnumerationCategory|) T) ((-313 . -94) 108406) ((-373 . -1001) T) ((-107 . -144) T) ((-107 . -142) NIL) ((-45 . -230) 108356) ((-636 . -1076) T) ((-594 . -106) 108303) ((-478 . -129) T) ((-468 . -106) 108253) ((-235 . -1088) 108163) ((-851 . -371) 108147) ((-851 . -332) 108131) ((-235 . -23) 108001) ((-1039 . -899) T) ((-1039 . -803) T) ((-569 . -362) T) ((-510 . -362) T) ((-345 . -1127) T) ((-321 . -34) T) ((-44 . -411) 107985) ((-852 . -1189) T) ((-384 . -727) 107969) ((-1248 . -506) 107902) ((-714 . -129) T) ((-1227 . -544) 107881) ((-1220 . -1193) 107860) ((-1220 . -544) 107811) ((-1199 . -1193) 107790) ((-305 . -1059) T) ((-1199 . -544) 107741) ((-720 . -506) 107674) ((-1198 . -1189) 107653) ((-1198 . -865) 107526) ((-872 . -1076) T) ((-141 . -824) T) ((-1198 . -863) 107496) ((-673 . -599) 107478) ((-1150 . -129) T) ((-515 . -303) 107416) ((-1149 . -129) T) ((-138 . -506) NIL) ((-1143 . -129) T) ((-1102 . -129) T) ((-1003 . -981) T) ((-983 . -23) T) ((-345 . -38) 107381) ((-983 . -1088) T) ((-893 . -1088) T) ((-81 . -599) 107363) ((-40 . -1028) T) ((-849 . -1034) 107350) ((-982 . -343) NIL) ((-851 . -879) 107309) ((-683 . -101) T) ((-950 . -23) T) ((-588 . -1189) T) ((-893 . -23) T) ((-849 . -110) 107294) ((-421 . -1088) T) ((-208 . -1076) T) ((-467 . -47) 107264) ((-132 . -101) T) ((-40 . -228) 107236) ((-40 . -238) T) ((-115 . -101) T) ((-583 . -544) 107215) ((-582 . -544) 107194) ((-676 . -599) 107176) ((-676 . -600) 107084) ((-310 . -506) 107050) ((-307 . -506) 106942) ((-1219 . -1017) 106926) ((-1198 . -1017) 106712) ((-978 . -405) 106696) ((-421 . -23) T) ((-1096 . -169) T) ((-1221 . -284) T) ((-636 . -700) 106666) ((-141 . -1076) T) ((-48 . -981) T) ((-401 . -226) 106650) ((-289 . -230) 106600) ((-850 . -899) T) ((-850 . -803) NIL) ((-844 . -830) T) ((-1198 . -332) 106570) ((-1198 . -371) 106540) ((-217 . -1097) 106524) ((-1235 . -282) 106501) ((-1183 . -630) 106426) ((-942 . -21) T) ((-942 . -25) T) ((-718 . -21) T) ((-718 . -25) T) ((-698 . -21) T) ((-698 . -25) T) ((-694 . -630) 106391) ((-446 . -21) T) ((-446 . -25) T) ((-333 . -101) T) ((-171 . -101) T) ((-978 . -1035) T) ((-849 . -1028) T) ((-757 . -101) T) ((-1220 . -357) 106370) ((-1219 . -879) 106276) ((-1199 . -357) 106255) ((-1198 . -879) 106106) ((-1003 . -599) 106088) ((-401 . -811) 106041) ((-1150 . -485) 106007) ((-166 . -899) 105938) ((-1149 . -485) 105904) ((-1143 . -485) 105870) ((-695 . -1076) T) ((-1102 . -485) 105836) ((-568 . -1034) 105823) ((-552 . -1034) 105810) ((-487 . -1034) 105775) ((-310 . -284) 105754) ((-307 . -284) T) ((-348 . -599) 105736) ((-412 . -25) T) ((-412 . -21) T) ((-98 . -280) 105715) ((-568 . -110) 105700) ((-552 . -110) 105685) ((-487 . -110) 105641) ((-1152 . -865) 105608) ((-880 . -482) 105592) ((-48 . -599) 105574) ((-48 . -600) 105519) ((-235 . -129) 105389) ((-1208 . -899) 105368) ((-799 . -1193) 105347) ((-1014 . -506) 105191) ((-382 . -599) 105173) ((-799 . -544) 105104) ((-573 . -630) 105079) ((-258 . -47) 105051) ((-242 . -47) 105008) ((-523 . -501) 104985) ((-979 . -1189) T) ((-681 . -1034) 104950) ((-1227 . -1088) T) ((-1220 . -1088) T) ((-1199 . -1088) T) ((-982 . -364) 104922) ((-111 . -362) T) ((-467 . -879) 104828) ((-1227 . -23) T) ((-1220 . -23) T) ((-883 . -599) 104810) ((-90 . -106) 104794) ((-1183 . -709) T) ((-884 . -830) 104745) ((-683 . -1127) T) ((-681 . -110) 104701) ((-1199 . -23) T) ((-583 . -1088) T) ((-582 . -1088) T) ((-695 . -700) 104530) ((-694 . -709) T) ((-1096 . -284) T) ((-983 . -129) T) ((-480 . -830) T) ((-950 . -129) T) ((-893 . -129) T) ((-782 . -25) T) ((-212 . -830) T) ((-782 . -21) T) ((-568 . -1028) T) ((-552 . -1028) T) ((-487 . -1028) T) ((-583 . -23) T) ((-337 . -1254) 104507) ((-313 . -445) 104486) ((-333 . -303) 104473) ((-582 . -23) T) ((-421 . -129) T) ((-640 . -630) 104447) ((-240 . -989) 104431) ((-851 . -301) T) ((-1259 . -1249) 104415) ((-754 . -775) T) ((-754 . -778) T) ((-683 . -38) 104402) ((-552 . -228) T) ((-487 . -238) T) ((-487 . -228) T) ((-1126 . -230) 104352) ((-1063 . -888) 104331) ((-115 . -38) 104318) ((-204 . -783) T) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-851 . -1001) 104296) ((-1248 . -482) 104280) ((-765 . -888) 104259) ((-763 . -888) 104238) ((-1162 . -1189) T) ((-447 . -888) 104217) ((-720 . -482) 104201) ((-1063 . -630) 104126) ((-765 . -630) 104051) ((-607 . -1034) 104038) ((-472 . -1189) T) ((-337 . -362) T) ((-138 . -482) 104020) ((-763 . -630) 103945) ((-1117 . -1189) T) ((-454 . -630) 103916) ((-258 . -865) 103775) ((-242 . -865) NIL) ((-116 . -1034) 103720) ((-447 . -630) 103645) ((-646 . -1017) 103622) ((-607 . -110) 103607) ((-349 . -1017) 103591) ((-346 . -1017) 103575) ((-338 . -1017) 103559) ((-258 . -1017) 103403) ((-242 . -1017) 103279) ((-116 . -110) 103208) ((-58 . -1189) T) ((-511 . -1189) T) ((-508 . -1189) T) ((-489 . -1189) T) ((-488 . -1189) T) ((-431 . -599) 103190) ((-428 . -599) 103172) ((-3 . -101) T) ((-1006 . -1182) 103141) ((-816 . -101) T) ((-671 . -56) 103099) ((-681 . -1028) T) ((-50 . -630) 103073) ((-283 . -445) T) ((-469 . -1182) 103042) ((0 . -101) T) ((-569 . -630) 103007) ((-510 . -630) 102952) ((-49 . -101) T) ((-889 . -1017) 102939) ((-681 . -238) T) ((-1056 . -403) 102918) ((-714 . -623) 102866) ((-978 . -1076) T) ((-695 . -169) 102757) ((-480 . -971) 102739) ((-258 . -371) 102723) ((-242 . -371) 102707) ((-393 . -1076) T) ((-333 . -38) 102691) ((-1005 . -101) 102669) ((-212 . -971) 102651) ((-171 . -38) 102583) ((-1219 . -301) 102562) ((-1198 . -301) 102541) ((-640 . -709) T) ((-98 . -599) 102523) ((-1143 . -623) 102475) ((-478 . -25) T) ((-478 . -21) T) ((-1198 . -1001) 102427) ((-607 . -1028) T) ((-373 . -398) T) ((-384 . -101) T) ((-258 . -879) 102373) ((-242 . -879) 102350) ((-116 . -1028) T) ((-799 . -1088) T) ((-1063 . -709) T) ((-607 . -228) 102329) ((-605 . -101) T) ((-765 . -709) T) ((-763 . -709) T) ((-407 . -1088) T) ((-116 . -238) T) ((-40 . -362) NIL) ((-116 . -228) NIL) ((-447 . -709) T) ((-799 . -23) T) ((-714 . -25) T) ((-714 . -21) T) ((-685 . -830) T) ((-1053 . -280) 102308) ((-77 . -390) T) ((-77 . -389) T) ((-525 . -750) 102290) ((-676 . -1034) 102240) ((-1227 . -129) T) ((-1220 . -129) T) ((-1199 . -129) T) ((-1118 . -405) 102224) ((-619 . -361) 102156) ((-593 . -361) 102088) ((-1132 . -1125) 102072) ((-102 . -1076) 102050) ((-1150 . -25) T) ((-1150 . -21) T) ((-1149 . -21) T) ((-978 . -700) 101998) ((-218 . -630) 101965) ((-676 . -110) 101899) ((-50 . -709) T) ((-1149 . -25) T) ((-345 . -343) T) ((-1143 . -21) T) ((-1056 . -445) 101850) ((-1143 . -25) T) ((-695 . -506) 101797) ((-569 . -709) T) ((-510 . -709) T) ((-1102 . -21) T) ((-1102 . -25) T) ((-583 . -129) T) ((-582 . -129) T) ((-353 . -445) T) ((-347 . -445) T) ((-339 . -445) T) ((-467 . -301) 101776) ((-307 . -280) 101711) ((-107 . -445) T) ((-78 . -434) T) ((-78 . -389) T) ((-470 . -101) T) ((-1263 . -599) 101693) ((-1263 . -600) 101675) ((-1056 . -396) 101654) ((-1014 . -482) 101585) ((-552 . -778) T) ((-552 . -775) T) ((-1040 . -230) 101531) ((-353 . -396) 101482) ((-347 . -396) 101433) ((-339 . -396) 101384) ((-1250 . -1088) T) ((-1250 . -23) T) ((-1237 . -101) T) ((-172 . -599) 101366) ((-1118 . -1035) T) ((-652 . -727) 101350) ((-1154 . -142) 101329) ((-1154 . -144) 101308) ((-1122 . -1076) T) ((-1122 . -1048) 101277) ((-68 . -1189) T) ((-1003 . -1034) 101214) ((-845 . -1035) T) ((-235 . -623) 101120) ((-676 . -1028) T) ((-348 . -1034) 101065) ((-60 . -1189) T) ((-1003 . -110) 100981) ((-880 . -599) 100913) ((-676 . -238) T) ((-676 . -228) NIL) ((-823 . -828) 100892) ((-681 . -778) T) ((-681 . -775) T) ((-982 . -405) 100869) ((-348 . -110) 100798) ((-373 . -899) T) ((-401 . -828) 100777) ((-695 . -284) 100688) ((-218 . -709) T) ((-1227 . -485) 100654) ((-1220 . -485) 100620) ((-1199 . -485) 100586) ((-566 . -1076) T) ((-310 . -981) 100565) ((-217 . -1076) 100543) ((-313 . -952) 100505) ((-104 . -101) T) ((-48 . -1034) 100470) ((-1259 . -101) T) ((-375 . -101) T) ((-48 . -110) 100426) ((-983 . -623) 100408) ((-1221 . -599) 100390) ((-523 . -101) T) ((-492 . -101) T) ((-1109 . -1110) 100374) ((-149 . -1242) 100358) ((-240 . -1189) T) ((-1188 . -101) T) ((-1148 . -1193) 100337) ((-1101 . -1193) 100316) ((-235 . -21) 100226) ((-235 . -25) 100077) ((-126 . -118) 100061) ((-120 . -118) 100045) ((-44 . -727) 100029) ((-1148 . -544) 99940) ((-1101 . -544) 99871) ((-1014 . -280) 99846) ((-1142 . -1059) T) ((-973 . -1059) T) ((-799 . -129) T) ((-116 . -778) NIL) ((-116 . -775) NIL) ((-349 . -301) T) ((-346 . -301) T) ((-338 . -301) T) ((-1070 . -1189) T) ((-245 . -1088) 99756) ((-244 . -1088) 99666) ((-1003 . -1028) T) ((-982 . -1035) T) ((-337 . -630) 99611) ((-605 . -38) 99595) ((-1248 . -599) 99557) ((-1248 . -600) 99518) ((-1053 . -599) 99500) ((-1003 . -238) T) ((-348 . -1028) T) ((-798 . -1242) 99470) ((-245 . -23) T) ((-244 . -23) T) ((-966 . -599) 99452) ((-720 . -600) 99413) ((-720 . -599) 99395) ((-782 . -830) 99374) ((-978 . -506) 99286) ((-348 . -228) T) ((-348 . -238) T) ((-1135 . -148) 99233) ((-983 . -25) T) ((-138 . -600) 99192) ((-138 . -599) 99174) ((-889 . -301) T) ((-983 . -21) T) ((-950 . -25) T) ((-893 . -21) T) ((-893 . -25) T) ((-421 . -21) T) ((-421 . -25) T) ((-823 . -405) 99158) ((-48 . -1028) T) ((-1257 . -1249) 99142) ((-1255 . -1249) 99126) ((-1014 . -590) 99101) ((-310 . -600) 98962) ((-310 . -599) 98944) ((-307 . -600) NIL) ((-307 . -599) 98926) ((-48 . -238) T) ((-48 . -228) T) ((-636 . -280) 98887) ((-538 . -230) 98837) ((-134 . -599) 98819) ((-113 . -599) 98801) ((-470 . -38) 98766) ((-1259 . -1256) 98745) ((-1250 . -129) T) ((-1258 . -1035) T) ((-1058 . -101) T) ((-87 . -1189) T) ((-492 . -303) NIL) ((-979 . -106) 98729) ((-868 . -1076) T) ((-864 . -1076) T) ((-1235 . -633) 98713) ((-1235 . -367) 98697) ((-321 . -1189) T) ((-580 . -830) T) ((-1118 . -1076) T) ((-1118 . -1031) 98637) ((-102 . -506) 98570) ((-906 . -599) 98552) ((-337 . -709) T) ((-30 . -599) 98534) ((-845 . -1076) T) ((-823 . -1035) 98513) ((-40 . -630) 98458) ((-220 . -1193) T) ((-401 . -1035) T) ((-1134 . -148) 98440) ((-978 . -284) 98391) ((-602 . -1076) T) ((-220 . -544) T) ((-313 . -1216) 98375) ((-313 . -1213) 98345) ((-1162 . -1165) 98324) ((-1051 . -599) 98306) ((-629 . -148) 98290) ((-616 . -148) 98236) ((-1162 . -106) 98186) ((-472 . -1165) 98165) ((-480 . -144) T) ((-480 . -142) NIL) ((-1096 . -600) 98080) ((-432 . -599) 98062) ((-212 . -144) T) ((-212 . -142) NIL) ((-1096 . -599) 98044) ((-128 . -101) T) ((-52 . -101) T) ((-1199 . -623) 97996) ((-472 . -106) 97946) ((-972 . -23) T) ((-1259 . -38) 97916) ((-1148 . -1088) T) ((-1101 . -1088) T) ((-1039 . -1193) T) ((-305 . -101) T) ((-834 . -1088) T) ((-931 . -1193) 97895) ((-474 . -1193) 97874) ((-714 . -830) 97853) ((-1039 . -544) T) ((-931 . -544) 97784) ((-1148 . -23) T) ((-1101 . -23) T) ((-834 . -23) T) ((-474 . -544) 97715) ((-1118 . -700) 97647) ((-1122 . -506) 97580) ((-1014 . -600) NIL) ((-1014 . -599) 97562) ((-95 . -1059) T) ((-845 . -700) 97532) ((-1183 . -47) 97501) ((-244 . -129) T) ((-245 . -129) T) ((-1080 . -1076) T) ((-982 . -1076) T) ((-61 . -599) 97483) ((-1143 . -830) NIL) ((-1003 . -775) T) ((-1003 . -778) T) ((-1263 . -1034) 97470) ((-1263 . -110) 97455) ((-849 . -630) 97442) ((-1227 . -25) T) ((-1227 . -21) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-1006 . -148) 97426) ((-851 . -803) 97405) ((-851 . -899) T) ((-695 . -280) 97332) ((-583 . -21) T) ((-583 . -25) T) ((-582 . -21) T) ((-40 . -709) T) ((-217 . -506) 97265) ((-582 . -25) T) ((-469 . -148) 97249) ((-456 . -148) 97233) ((-900 . -777) T) ((-900 . -709) T) ((-754 . -776) T) ((-754 . -777) T) ((-498 . -1076) T) ((-494 . -1076) T) ((-754 . -709) T) ((-220 . -357) T) ((-1132 . -1076) 97211) ((-850 . -1193) T) ((-636 . -599) 97193) ((-850 . -544) T) ((-676 . -362) NIL) ((-353 . -1242) 97177) ((-652 . -101) T) ((-347 . -1242) 97161) ((-339 . -1242) 97145) ((-1258 . -1076) T) ((-512 . -830) 97124) ((-800 . -445) 97103) ((-1025 . -1076) T) ((-1025 . -1048) 97032) ((-1006 . -955) 97001) ((-802 . -1088) T) ((-982 . -700) 96946) ((-380 . -1088) T) ((-469 . -955) 96915) ((-456 . -955) 96884) ((-109 . -148) 96866) ((-72 . -599) 96848) ((-872 . -599) 96830) ((-1056 . -707) 96809) ((-1263 . -1028) T) ((-799 . -623) 96757) ((-288 . -1035) 96699) ((-166 . -1193) 96604) ((-220 . -1088) T) ((-318 . -23) T) ((-1143 . -971) 96556) ((-823 . -1076) T) ((-1221 . -1034) 96461) ((-1102 . -723) 96440) ((-1219 . -899) 96419) ((-1198 . -899) 96398) ((-849 . -709) T) ((-166 . -544) 96309) ((-568 . -630) 96296) ((-552 . -630) 96283) ((-401 . -1076) T) ((-257 . -1076) T) ((-208 . -599) 96265) ((-487 . -630) 96230) ((-220 . -23) T) ((-1198 . -803) 96183) ((-1257 . -101) T) ((-348 . -1254) 96160) ((-1255 . -101) T) ((-1221 . -110) 96052) ((-141 . -599) 96034) ((-972 . -129) T) ((-44 . -101) T) ((-235 . -830) 95985) ((-1208 . -1193) 95964) ((-102 . -482) 95948) ((-1258 . -700) 95918) ((-1063 . -47) 95879) ((-1039 . -1088) T) ((-931 . -1088) T) ((-126 . -34) T) ((-120 . -34) T) ((-765 . -47) 95856) ((-763 . -47) 95828) ((-1208 . -544) 95739) ((-348 . -362) T) ((-474 . -1088) T) ((-1148 . -129) T) ((-1101 . -129) T) ((-447 . -47) 95718) ((-850 . -357) T) ((-834 . -129) T) ((-149 . -101) T) ((-1039 . -23) T) ((-931 . -23) T) ((-559 . -544) T) ((-799 . -25) T) ((-799 . -21) T) ((-1118 . -506) 95651) ((-579 . -1059) T) ((-573 . -1017) 95635) ((-474 . -23) T) ((-345 . -1035) T) ((-1183 . -879) 95616) ((-652 . -303) 95554) ((-1089 . -1242) 95524) ((-681 . -630) 95489) ((-982 . -169) T) ((-942 . -142) 95468) ((-619 . -1076) T) ((-593 . -1076) T) ((-942 . -144) 95447) ((-983 . -830) T) ((-718 . -144) 95426) ((-718 . -142) 95405) ((-950 . -830) T) ((-467 . -899) 95384) ((-310 . -1034) 95294) ((-307 . -1034) 95223) ((-978 . -280) 95181) ((-401 . -700) 95133) ((-683 . -828) T) ((-1221 . -1028) T) ((-310 . -110) 95029) ((-307 . -110) 94942) ((-943 . -101) T) ((-798 . -101) 94732) ((-695 . -600) NIL) ((-695 . -599) 94714) ((-640 . -1017) 94610) ((-1221 . -320) 94554) ((-1014 . -282) 94529) ((-568 . -709) T) ((-552 . -777) T) ((-166 . -357) 94480) ((-552 . -774) T) ((-552 . -709) T) ((-487 . -709) T) ((-1122 . -482) 94464) ((-1063 . -865) NIL) ((-850 . -1088) T) ((-116 . -888) NIL) ((-1257 . -1256) 94440) ((-1255 . -1256) 94419) ((-765 . -865) NIL) ((-763 . -865) 94278) ((-1250 . -25) T) ((-1250 . -21) T) ((-1186 . -101) 94256) ((-1082 . -389) T) ((-607 . -630) 94243) ((-447 . -865) NIL) ((-657 . -101) 94221) ((-1063 . -1017) 94048) ((-850 . -23) T) ((-765 . -1017) 93907) ((-763 . -1017) 93764) ((-116 . -630) 93709) ((-447 . -1017) 93585) ((-631 . -1017) 93569) ((-611 . -101) T) ((-217 . -482) 93553) ((-1235 . -34) T) ((-619 . -700) 93537) ((-593 . -700) 93521) ((-652 . -38) 93481) ((-313 . -101) T) ((-84 . -599) 93463) ((-50 . -1017) 93447) ((-1096 . -1034) 93434) ((-1063 . -371) 93418) ((-765 . -371) 93402) ((-59 . -56) 93364) ((-681 . -777) T) ((-681 . -774) T) ((-569 . -1017) 93351) ((-510 . -1017) 93328) ((-681 . -709) T) ((-318 . -129) T) ((-310 . -1028) 93218) ((-307 . -1028) T) ((-166 . -1088) T) ((-763 . -371) 93202) ((-45 . -148) 93152) ((-983 . -971) 93134) ((-447 . -371) 93118) ((-401 . -169) T) ((-310 . -238) 93097) ((-307 . -238) T) ((-307 . -228) NIL) ((-288 . -1076) 92879) ((-220 . -129) T) ((-1096 . -110) 92864) ((-166 . -23) T) ((-782 . -144) 92843) ((-782 . -142) 92822) ((-245 . -623) 92728) ((-244 . -623) 92634) ((-313 . -278) 92600) ((-1132 . -506) 92533) ((-1109 . -1076) T) ((-220 . -1037) T) ((-798 . -303) 92471) ((-1063 . -879) 92406) ((-765 . -879) 92349) ((-763 . -879) 92333) ((-1257 . -38) 92303) ((-1255 . -38) 92273) ((-1208 . -1088) T) ((-835 . -1088) T) ((-447 . -879) 92250) ((-838 . -1076) T) ((-1208 . -23) T) ((-559 . -1088) T) ((-835 . -23) T) ((-607 . -709) T) ((-349 . -899) T) ((-346 . -899) T) ((-283 . -101) T) ((-338 . -899) T) ((-1039 . -129) T) ((-949 . -1059) T) ((-931 . -129) T) ((-116 . -777) NIL) ((-116 . -774) NIL) ((-116 . -709) T) ((-676 . -888) NIL) ((-1025 . -506) 92151) ((-474 . -129) T) ((-559 . -23) T) ((-657 . -303) 92089) ((-619 . -744) T) ((-593 . -744) T) ((-1199 . -830) NIL) ((-982 . -284) T) ((-245 . -21) T) ((-676 . -630) 92039) ((-345 . -1076) T) ((-245 . -25) T) ((-244 . -21) T) ((-244 . -25) T) ((-149 . -38) 92023) ((-2 . -101) T) ((-889 . -899) T) ((-475 . -1242) 91993) ((-218 . -1017) 91970) ((-1096 . -1028) T) ((-694 . -301) T) ((-288 . -700) 91912) ((-683 . -1035) T) ((-480 . -445) T) ((-401 . -506) 91824) ((-212 . -445) T) ((-1096 . -228) T) ((-289 . -148) 91774) ((-978 . -600) 91735) ((-978 . -599) 91717) ((-968 . -599) 91699) ((-115 . -1035) T) ((-636 . -1034) 91683) ((-220 . -485) T) ((-393 . -599) 91665) ((-393 . -600) 91642) ((-1032 . -1242) 91612) ((-636 . -110) 91591) ((-1118 . -482) 91575) ((-798 . -38) 91545) ((-62 . -434) T) ((-62 . -389) T) ((-1135 . -101) T) ((-850 . -129) T) ((-477 . -101) 91523) ((-1263 . -362) T) ((-1056 . -101) T) ((-1038 . -101) T) ((-345 . -700) 91468) ((-714 . -144) 91447) ((-714 . -142) 91426) ((-1003 . -630) 91363) ((-515 . -1076) 91341) ((-353 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-107 . -101) T) ((-496 . -1076) T) ((-348 . -630) 91286) ((-1148 . -623) 91234) ((-1101 . -623) 91182) ((-379 . -501) 91161) ((-816 . -828) 91140) ((-373 . -1193) T) ((-676 . -709) T) ((-333 . -1035) T) ((-1199 . -971) 91092) ((-171 . -1035) T) ((-102 . -599) 91024) ((-1150 . -142) 91003) ((-1150 . -144) 90982) ((-373 . -544) T) ((-1149 . -144) 90961) ((-1149 . -142) 90940) ((-1143 . -142) 90847) ((-401 . -284) T) ((-1143 . -144) 90754) ((-1102 . -144) 90733) ((-1102 . -142) 90712) ((-313 . -38) 90553) ((-166 . -129) T) ((-307 . -778) NIL) ((-307 . -775) NIL) ((-636 . -1028) T) ((-48 . -630) 90518) ((-1142 . -101) T) ((-973 . -101) T) ((-972 . -21) T) ((-126 . -989) 90502) ((-120 . -989) 90486) ((-972 . -25) T) ((-880 . -118) 90470) ((-1134 . -101) T) ((-799 . -830) 90449) ((-1208 . -129) T) ((-1148 . -25) T) ((-1148 . -21) T) ((-835 . -129) T) ((-1101 . -25) T) ((-1101 . -21) T) ((-834 . -25) T) ((-834 . -21) T) ((-765 . -301) 90428) ((-629 . -101) 90406) ((-616 . -101) T) ((-1135 . -303) 90201) ((-559 . -129) T) ((-605 . -828) 90180) ((-1132 . -482) 90164) ((-1126 . -148) 90114) ((-1122 . -599) 90076) ((-1122 . -600) 90037) ((-1003 . -774) T) ((-1003 . -777) T) ((-1003 . -709) T) ((-477 . -303) 89975) ((-446 . -411) 89945) ((-345 . -169) T) ((-283 . -38) 89932) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-337 . -1017) 89909) ((-207 . -101) T) ((-206 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-198 . -101) T) ((-197 . -101) T) ((-695 . -1034) 89732) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-348 . -709) T) ((-695 . -110) 89541) ((-652 . -226) 89525) ((-569 . -301) T) ((-510 . -301) T) ((-288 . -506) 89474) ((-107 . -303) NIL) ((-71 . -389) T) ((-1089 . -101) 89264) ((-816 . -405) 89248) ((-1096 . -778) T) ((-1096 . -775) T) ((-683 . -1076) T) ((-566 . -599) 89230) ((-373 . -357) T) ((-166 . -485) 89208) ((-217 . -599) 89140) ((-132 . -1076) T) ((-115 . -1076) T) ((-48 . -709) T) ((-1025 . -482) 89105) ((-498 . -92) T) ((-138 . -419) 89087) ((-138 . -362) T) ((-1006 . -101) T) ((-504 . -501) 89066) ((-469 . -101) T) ((-456 . -101) T) ((-1013 . -1088) T) ((-1157 . -1017) 89001) ((-1150 . -35) 88967) ((-1150 . -94) 88933) ((-1150 . -1177) 88899) ((-1150 . -1174) 88865) ((-1134 . -303) NIL) ((-88 . -390) T) ((-88 . -389) T) ((-1056 . -1127) 88844) ((-1149 . -1174) 88810) ((-1149 . -1177) 88776) ((-1013 . -23) T) ((-1149 . -94) 88742) ((-559 . -485) T) ((-1149 . -35) 88708) ((-1143 . -1174) 88674) ((-1143 . -1177) 88640) ((-1143 . -94) 88606) ((-355 . -1088) T) ((-353 . -1127) 88585) ((-347 . -1127) 88564) ((-339 . -1127) 88543) ((-1143 . -35) 88509) ((-1102 . -35) 88475) ((-1102 . -94) 88441) ((-107 . -1127) T) ((-1102 . -1177) 88407) ((-816 . -1035) 88386) ((-629 . -303) 88324) ((-616 . -303) 88175) ((-1102 . -1174) 88141) ((-695 . -1028) T) ((-1039 . -623) 88123) ((-1056 . -38) 87991) ((-931 . -623) 87939) ((-983 . -144) T) ((-983 . -142) NIL) ((-373 . -1088) T) ((-318 . -25) T) ((-316 . -23) T) ((-922 . -830) 87918) ((-695 . -320) 87895) ((-474 . -623) 87843) ((-40 . -1017) 87731) ((-683 . -700) 87718) ((-695 . -228) T) ((-333 . -1076) T) ((-171 . -1076) T) ((-325 . -830) T) ((-412 . -445) 87668) ((-373 . -23) T) ((-353 . -38) 87633) ((-347 . -38) 87598) ((-339 . -38) 87563) ((-79 . -434) T) ((-79 . -389) T) ((-220 . -25) T) ((-220 . -21) T) ((-817 . -1088) T) ((-107 . -38) 87513) ((-810 . -1088) T) ((-757 . -1076) T) ((-115 . -700) 87500) ((-654 . -1017) 87484) ((-598 . -101) T) ((-817 . -23) T) ((-810 . -23) T) ((-1132 . -280) 87461) ((-1089 . -303) 87399) ((-1078 . -230) 87383) ((-63 . -390) T) ((-63 . -389) T) ((-109 . -101) T) ((-40 . -371) 87360) ((-95 . -101) T) ((-635 . -832) 87344) ((-1111 . -1059) T) ((-1039 . -21) T) ((-1039 . -25) T) ((-798 . -226) 87313) ((-931 . -25) T) ((-931 . -21) T) ((-605 . -1035) T) ((-474 . -25) T) ((-474 . -21) T) ((-1006 . -303) 87251) ((-868 . -599) 87233) ((-864 . -599) 87215) ((-245 . -830) 87166) ((-244 . -830) 87117) ((-515 . -506) 87050) ((-850 . -623) 87027) ((-469 . -303) 86965) ((-456 . -303) 86903) ((-345 . -284) T) ((-1132 . -1223) 86887) ((-1118 . -599) 86849) ((-1118 . -600) 86810) ((-1116 . -101) T) ((-978 . -1034) 86706) ((-40 . -879) 86658) ((-1132 . -590) 86635) ((-1263 . -630) 86622) ((-1040 . -148) 86568) ((-851 . -1193) T) ((-978 . -110) 86450) ((-333 . -700) 86434) ((-845 . -599) 86416) ((-171 . -700) 86348) ((-401 . -280) 86306) ((-851 . -544) T) ((-107 . -394) 86288) ((-83 . -378) T) ((-83 . -389) T) ((-683 . -169) T) ((-602 . -599) 86270) ((-98 . -709) T) ((-475 . -101) 86060) ((-98 . -466) T) ((-115 . -169) T) ((-1089 . -38) 86030) ((-166 . -623) 85978) ((-1032 . -101) T) ((-850 . -25) T) ((-798 . -233) 85957) ((-850 . -21) T) ((-801 . -101) T) ((-408 . -101) T) ((-379 . -101) T) ((-109 . -303) NIL) ((-222 . -101) 85935) ((-126 . -1189) T) ((-120 . -1189) T) ((-1013 . -129) T) ((-652 . -361) 85919) ((-978 . -1028) T) ((-1208 . -623) 85867) ((-1080 . -599) 85849) ((-982 . -599) 85831) ((-507 . -23) T) ((-502 . -23) T) ((-337 . -301) T) ((-500 . -23) T) ((-316 . -129) T) ((-3 . -1076) T) ((-982 . -600) 85815) ((-978 . -238) 85794) ((-978 . -228) 85773) ((-1263 . -709) T) ((-1227 . -142) 85752) ((-816 . -1076) T) ((-1227 . -144) 85731) ((-1220 . -144) 85710) ((-1220 . -142) 85689) ((-1219 . -1193) 85668) ((-1199 . -142) 85575) ((-1199 . -144) 85482) ((-1198 . -1193) 85461) ((-373 . -129) T) ((-552 . -865) 85443) ((0 . -1076) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1076) T) ((-1221 . -630) 85348) ((-1219 . -544) 85299) ((-697 . -1088) T) ((-1198 . -544) 85250) ((-552 . -1017) 85232) ((-582 . -144) 85211) ((-582 . -142) 85190) ((-487 . -1017) 85133) ((-1111 . -1113) T) ((-86 . -378) T) ((-86 . -389) T) ((-851 . -357) T) ((-817 . -129) T) ((-810 . -129) T) ((-697 . -23) T) ((-498 . -599) 85083) ((-494 . -599) 85065) ((-1259 . -1035) T) ((-373 . -1037) T) ((-1005 . -1076) 85043) ((-880 . -34) T) ((-475 . -303) 84981) ((-579 . -101) T) ((-1132 . -600) 84942) ((-1132 . -599) 84874) ((-1148 . -830) 84853) ((-45 . -101) T) ((-1101 . -830) 84832) ((-800 . -101) T) ((-1208 . -25) T) ((-1208 . -21) T) ((-835 . -25) T) ((-44 . -361) 84816) ((-835 . -21) T) ((-714 . -445) 84767) ((-1258 . -599) 84749) ((-1032 . -303) 84687) ((-653 . -1059) T) ((-592 . -1059) T) ((-384 . -1076) T) ((-559 . -25) T) ((-559 . -21) T) ((-177 . -1059) T) ((-158 . -1059) T) ((-153 . -1059) T) ((-151 . -1059) T) ((-605 . -1076) T) ((-681 . -865) 84669) ((-1235 . -1189) T) ((-222 . -303) 84607) ((-141 . -362) T) ((-1025 . -600) 84549) ((-1025 . -599) 84492) ((-307 . -888) NIL) ((-681 . -1017) 84437) ((-694 . -899) T) ((-467 . -1193) 84416) ((-1149 . -445) 84395) ((-1143 . -445) 84374) ((-324 . -101) T) ((-851 . -1088) T) ((-310 . -630) 84195) ((-307 . -630) 84124) ((-467 . -544) 84075) ((-333 . -506) 84041) ((-538 . -148) 83991) ((-40 . -301) T) ((-823 . -599) 83973) ((-683 . -284) T) ((-851 . -23) T) ((-373 . -485) T) ((-1056 . -226) 83943) ((-504 . -101) T) ((-401 . -600) 83750) ((-401 . -599) 83732) ((-257 . -599) 83714) ((-115 . -284) T) ((-1221 . -709) T) ((-1219 . -357) 83693) ((-1198 . -357) 83672) ((-1248 . -34) T) ((-116 . -1189) T) ((-107 . -226) 83654) ((-1154 . -101) T) ((-470 . -1076) T) ((-515 . -482) 83638) ((-720 . -34) T) ((-475 . -38) 83608) ((-138 . -34) T) ((-116 . -863) 83585) ((-116 . -865) NIL) ((-607 . -1017) 83468) ((-627 . -830) 83447) ((-1247 . -101) T) ((-289 . -101) T) ((-695 . -362) 83426) ((-116 . -1017) 83403) ((-384 . -700) 83387) ((-605 . -700) 83371) ((-45 . -303) 83175) ((-799 . -142) 83154) ((-799 . -144) 83133) ((-1258 . -376) 83112) ((-802 . -830) T) ((-1237 . -1076) T) ((-1135 . -224) 83059) ((-380 . -830) 83038) ((-1227 . -1177) 83004) ((-1227 . -1174) 82970) ((-1220 . -1174) 82936) ((-507 . -129) T) ((-1220 . -1177) 82902) ((-1199 . -1174) 82868) ((-1199 . -1177) 82834) ((-1227 . -35) 82800) ((-1227 . -94) 82766) ((-619 . -599) 82735) ((-593 . -599) 82704) ((-220 . -830) T) ((-1220 . -94) 82670) ((-1220 . -35) 82636) ((-1219 . -1088) T) ((-1096 . -630) 82623) ((-1199 . -94) 82589) ((-1198 . -1088) T) ((-580 . -148) 82571) ((-1056 . -343) 82550) ((-171 . -284) T) ((-116 . -371) 82527) ((-116 . -332) 82504) ((-1199 . -35) 82470) ((-849 . -301) T) ((-307 . -777) NIL) ((-307 . -774) NIL) ((-310 . -709) 82319) ((-307 . -709) T) ((-467 . -357) 82298) ((-353 . -343) 82277) ((-347 . -343) 82256) ((-339 . -343) 82235) ((-310 . -466) 82214) ((-1219 . -23) T) ((-1198 . -23) T) ((-701 . -1088) T) ((-697 . -129) T) ((-635 . -101) T) ((-470 . -700) 82179) ((-45 . -276) 82129) ((-104 . -1076) T) ((-67 . -599) 82111) ((-949 . -101) T) ((-844 . -101) T) ((-607 . -879) 82070) ((-1259 . -1076) T) ((-375 . -1076) T) ((-1188 . -1076) T) ((-1089 . -226) 82039) ((-81 . -1189) T) ((-1039 . -830) T) ((-931 . -830) 82018) ((-116 . -879) NIL) ((-765 . -899) 81997) ((-696 . -830) T) ((-523 . -1076) T) ((-492 . -1076) T) ((-349 . -1193) T) ((-346 . -1193) T) ((-338 . -1193) T) ((-258 . -1193) 81976) ((-242 . -1193) 81955) ((-525 . -840) T) ((-474 . -830) 81934) ((-1118 . -1034) 81918) ((-384 . -744) T) ((-1134 . -811) T) ((-676 . -1189) T) ((-349 . -544) T) ((-346 . -544) T) ((-338 . -544) T) ((-258 . -544) 81849) ((-242 . -544) 81780) ((-517 . -1059) T) ((-1118 . -110) 81759) ((-446 . -727) 81729) ((-845 . -1034) 81699) ((-800 . -38) 81641) ((-676 . -863) 81623) ((-676 . -865) 81605) ((-289 . -303) 81409) ((-889 . -1193) T) ((-652 . -405) 81393) ((-845 . -110) 81358) ((-676 . -1017) 81303) ((-983 . -445) T) ((-889 . -544) T) ((-525 . -599) 81285) ((-569 . -899) T) ((-467 . -1088) T) ((-510 . -899) T) ((-1132 . -282) 81262) ((-893 . -445) T) ((-64 . -599) 81244) ((-616 . -224) 81190) ((-467 . -23) T) ((-1096 . -777) T) ((-851 . -129) T) ((-1096 . -774) T) ((-1250 . -1252) 81169) ((-1096 . -709) T) ((-636 . -630) 81143) ((-288 . -599) 80884) ((-1014 . -34) T) ((-798 . -828) 80863) ((-568 . -301) T) ((-552 . -301) T) ((-487 . -301) T) ((-1259 . -700) 80833) ((-676 . -371) 80815) ((-676 . -332) 80797) ((-470 . -169) T) ((-375 . -700) 80767) ((-850 . -830) NIL) ((-552 . -1001) T) ((-487 . -1001) T) ((-1109 . -599) 80749) ((-1089 . -233) 80728) ((-209 . -101) T) ((-1126 . -101) T) ((-70 . -599) 80710) ((-1118 . -1028) T) ((-1154 . -38) 80607) ((-838 . -599) 80589) ((-552 . -537) T) ((-652 . -1035) T) ((-714 . -928) 80542) ((-1118 . -228) 80521) ((-1058 . -1076) T) ((-1013 . -25) T) ((-1013 . -21) T) ((-982 . -1034) 80466) ((-884 . -101) T) ((-845 . -1028) T) ((-676 . -879) NIL) ((-349 . -323) 80450) ((-349 . -357) T) ((-346 . -323) 80434) ((-346 . -357) T) ((-338 . -323) 80418) ((-338 . -357) T) ((-480 . -101) T) ((-1247 . -38) 80388) ((-515 . -669) 80338) ((-212 . -101) T) ((-1003 . -1017) 80218) ((-982 . -110) 80147) ((-1150 . -952) 80116) ((-1149 . -952) 80078) ((-512 . -148) 80062) ((-1056 . -364) 80041) ((-345 . -599) 80023) ((-316 . -21) T) ((-348 . -1017) 80000) ((-316 . -25) T) ((-1143 . -952) 79969) ((-1102 . -952) 79936) ((-75 . -599) 79918) ((-681 . -301) T) ((-166 . -830) 79897) ((-889 . -357) T) ((-373 . -25) T) ((-373 . -21) T) ((-889 . -323) 79884) ((-85 . -599) 79866) ((-681 . -1001) T) ((-659 . -830) T) ((-1219 . -129) T) ((-1198 . -129) T) ((-880 . -989) 79850) ((-817 . -21) T) ((-48 . -1017) 79793) ((-817 . -25) T) ((-810 . -25) T) ((-810 . -21) T) ((-1257 . -1035) T) ((-1255 . -1035) T) ((-636 . -709) T) ((-1258 . -1034) 79777) ((-1208 . -830) 79756) ((-798 . -405) 79725) ((-102 . -118) 79709) ((-128 . -1076) T) ((-52 . -1076) T) ((-905 . -599) 79691) ((-850 . -971) 79668) ((-806 . -101) T) ((-1258 . -110) 79647) ((-635 . -38) 79617) ((-559 . -830) T) ((-349 . -1088) T) ((-346 . -1088) T) ((-338 . -1088) T) ((-258 . -1088) T) ((-242 . -1088) T) ((-607 . -301) 79596) ((-1126 . -303) 79400) ((-516 . -1059) T) ((-305 . -1076) T) ((-646 . -23) T) ((-475 . -226) 79369) ((-149 . -1035) T) ((-349 . -23) T) ((-346 . -23) T) ((-338 . -23) T) ((-116 . -301) T) ((-258 . -23) T) ((-242 . -23) T) ((-982 . -1028) T) ((-695 . -888) 79348) ((-982 . -228) 79320) ((-982 . -238) T) ((-116 . -1001) NIL) ((-889 . -1088) T) ((-1220 . -445) 79299) ((-1199 . -445) 79278) ((-515 . -599) 79210) ((-695 . -630) 79135) ((-401 . -1034) 79087) ((-496 . -599) 79069) ((-889 . -23) T) ((-480 . -303) NIL) ((-467 . -129) T) ((-212 . -303) NIL) ((-401 . -110) 79007) ((-798 . -1035) 78937) ((-720 . -1074) 78921) ((-1219 . -485) 78887) ((-1198 . -485) 78853) ((-138 . -1074) 78835) ((-470 . -284) T) ((-1258 . -1028) T) ((-1040 . -101) T) ((-492 . -506) NIL) ((-685 . -101) T) ((-475 . -233) 78814) ((-1148 . -142) 78793) ((-1148 . -144) 78772) ((-1101 . -144) 78751) ((-1101 . -142) 78730) ((-619 . -1034) 78714) ((-593 . -1034) 78698) ((-652 . -1076) T) ((-652 . -1031) 78638) ((-1150 . -1226) 78622) ((-1150 . -1213) 78599) ((-480 . -1127) T) ((-1149 . -1218) 78560) ((-1149 . -1213) 78530) ((-1149 . -1216) 78514) ((-212 . -1127) T) ((-337 . -899) T) ((-801 . -260) 78498) ((-619 . -110) 78477) ((-593 . -110) 78456) ((-1143 . -1197) 78417) ((-823 . -1028) 78396) ((-1143 . -1213) 78373) ((-507 . -25) T) ((-487 . -296) T) ((-503 . -23) T) ((-502 . -25) T) ((-500 . -25) T) ((-499 . -23) T) ((-1143 . -1195) 78357) ((-401 . -1028) T) ((-313 . -1035) T) ((-676 . -301) T) ((-107 . -828) T) ((-401 . -238) T) ((-401 . -228) 78336) ((-695 . -709) T) ((-480 . -38) 78286) ((-212 . -38) 78236) ((-467 . -485) 78202) ((-1134 . -1120) T) ((-1077 . -101) T) ((-683 . -599) 78184) ((-683 . -600) 78099) ((-697 . -21) T) ((-697 . -25) T) ((-1111 . -101) T) ((-132 . -599) 78081) ((-115 . -599) 78063) ((-154 . -25) T) ((-1257 . -1076) T) ((-851 . -623) 78011) ((-1255 . -1076) T) ((-942 . -101) T) ((-718 . -101) T) ((-698 . -101) T) ((-446 . -101) T) ((-799 . -445) 77962) ((-44 . -1076) T) ((-1064 . -830) T) ((-646 . -129) T) ((-1040 . -303) 77813) ((-652 . -700) 77797) ((-283 . -1035) T) ((-349 . -129) T) ((-346 . -129) T) ((-338 . -129) T) ((-258 . -129) T) ((-242 . -129) T) ((-412 . -101) T) ((-149 . -1076) T) ((-45 . -224) 77747) ((-937 . -830) 77726) ((-978 . -630) 77664) ((-235 . -1242) 77634) ((-1003 . -301) T) ((-288 . -1034) 77555) ((-889 . -129) T) ((-40 . -899) T) ((-480 . -394) 77537) ((-348 . -301) T) ((-212 . -394) 77519) ((-1056 . -405) 77503) ((-288 . -110) 77419) ((-851 . -25) T) ((-851 . -21) T) ((-333 . -599) 77401) ((-1221 . -47) 77345) ((-220 . -144) T) ((-171 . -599) 77327) ((-1089 . -828) 77306) ((-757 . -599) 77288) ((-127 . -830) T) ((-594 . -230) 77235) ((-468 . -230) 77185) ((-1257 . -700) 77155) ((-48 . -301) T) ((-1255 . -700) 77125) ((-943 . -1076) T) ((-798 . -1076) 76915) ((-306 . -101) T) ((-880 . -1189) T) ((-48 . -1001) T) ((-1198 . -623) 76823) ((-671 . -101) 76801) ((-44 . -700) 76785) ((-538 . -101) T) ((-66 . -377) T) ((-66 . -389) T) ((-644 . -23) T) ((-652 . -744) T) ((-1186 . -1076) 76763) ((-345 . -1034) 76708) ((-657 . -1076) 76686) ((-1039 . -144) T) ((-931 . -144) 76665) ((-931 . -142) 76644) ((-782 . -101) T) ((-149 . -700) 76628) ((-474 . -144) 76607) ((-474 . -142) 76586) ((-345 . -110) 76515) ((-1056 . -1035) T) ((-316 . -830) 76494) ((-1227 . -952) 76463) ((-611 . -1076) T) ((-1220 . -952) 76425) ((-503 . -129) T) ((-499 . -129) T) ((-289 . -224) 76375) ((-353 . -1035) T) ((-347 . -1035) T) ((-339 . -1035) T) ((-288 . -1028) 76317) ((-1199 . -952) 76286) ((-373 . -830) T) ((-107 . -1035) T) ((-978 . -709) T) ((-849 . -899) T) ((-823 . -778) 76265) ((-823 . -775) 76244) ((-412 . -303) 76183) ((-461 . -101) T) ((-582 . -952) 76152) ((-313 . -1076) T) ((-401 . -778) 76131) ((-401 . -775) 76110) ((-492 . -482) 76092) ((-1221 . -1017) 76058) ((-1219 . -21) T) ((-1219 . -25) T) ((-1198 . -21) T) ((-1198 . -25) T) ((-798 . -700) 76000) ((-681 . -398) T) ((-1248 . -1189) T) ((-592 . -101) T) ((-1089 . -405) 75969) ((-982 . -362) NIL) ((-653 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-151 . -101) T) ((-102 . -34) T) ((-720 . -1189) T) ((-44 . -744) T) ((-580 . -101) T) ((-76 . -390) T) ((-76 . -389) T) ((-635 . -638) 75953) ((-138 . -1189) T) ((-850 . -144) T) ((-850 . -142) NIL) ((-1188 . -92) T) ((-345 . -1028) T) ((-69 . -377) T) ((-69 . -389) T) ((-1141 . -101) T) ((-652 . -506) 75886) ((-671 . -303) 75824) ((-942 . -38) 75721) ((-718 . -38) 75691) ((-538 . -303) 75495) ((-310 . -1189) T) ((-345 . -228) T) ((-345 . -238) T) ((-307 . -1189) T) ((-283 . -1076) T) ((-1156 . -599) 75477) ((-694 . -1193) T) ((-1132 . -633) 75461) ((-1183 . -544) 75440) ((-694 . -544) T) ((-310 . -863) 75424) ((-310 . -865) 75349) ((-307 . -863) 75310) ((-307 . -865) NIL) ((-782 . -303) 75275) ((-313 . -700) 75116) ((-318 . -317) 75093) ((-478 . -101) T) ((-467 . -25) T) ((-467 . -21) T) ((-412 . -38) 75067) ((-310 . -1017) 74730) ((-220 . -1174) T) ((-220 . -1177) T) ((-3 . -599) 74712) ((-307 . -1017) 74642) ((-2 . -1076) T) ((-2 . |RecordCategory|) T) ((-816 . -599) 74624) ((-1089 . -1035) 74554) ((-568 . -899) T) ((-552 . -803) T) ((-552 . -899) T) ((-487 . -899) T) ((-134 . -1017) 74538) ((-220 . -94) T) ((-74 . -434) T) ((-74 . -389) T) ((0 . -599) 74520) ((-166 . -144) 74499) ((-166 . -142) 74450) ((-220 . -35) T) ((-49 . -599) 74432) ((-470 . -1035) T) ((-480 . -226) 74414) ((-477 . -947) 74398) ((-475 . -828) 74377) ((-212 . -226) 74359) ((-80 . -434) T) ((-80 . -389) T) ((-1122 . -34) T) ((-798 . -169) 74338) ((-714 . -101) T) ((-1005 . -599) 74305) ((-492 . -280) 74280) ((-310 . -371) 74249) ((-307 . -371) 74210) ((-307 . -332) 74171) ((-1061 . -599) 74153) ((-799 . -928) 74100) ((-644 . -129) T) ((-1208 . -142) 74079) ((-1208 . -144) 74058) ((-1150 . -101) T) ((-1149 . -101) T) ((-1143 . -101) T) ((-1135 . -1076) T) ((-1102 . -101) T) ((-217 . -34) T) ((-283 . -700) 74045) ((-1135 . -596) 74021) ((-580 . -303) NIL) ((-477 . -1076) 73999) ((-384 . -599) 73981) ((-502 . -830) T) ((-1126 . -224) 73931) ((-1227 . -1226) 73915) ((-1227 . -1213) 73892) ((-1220 . -1218) 73853) ((-1220 . -1213) 73823) ((-1220 . -1216) 73807) ((-1199 . -1197) 73768) ((-1199 . -1213) 73745) ((-605 . -599) 73727) ((-1199 . -1195) 73711) ((-681 . -899) T) ((-1150 . -278) 73677) ((-1149 . -278) 73643) ((-1143 . -278) 73609) ((-1056 . -1076) T) ((-1038 . -1076) T) ((-48 . -296) T) ((-310 . -879) 73575) ((-307 . -879) NIL) ((-1038 . -1045) 73554) ((-1096 . -865) 73536) ((-782 . -38) 73520) ((-258 . -623) 73468) ((-242 . -623) 73416) ((-683 . -1034) 73403) ((-582 . -1213) 73380) ((-1102 . -278) 73346) ((-313 . -169) 73277) ((-353 . -1076) T) ((-347 . -1076) T) ((-339 . -1076) T) ((-492 . -19) 73259) ((-1096 . -1017) 73241) ((-1078 . -148) 73225) ((-107 . -1076) T) ((-115 . -1034) 73212) ((-694 . -357) T) ((-492 . -590) 73187) ((-683 . -110) 73172) ((-430 . -101) T) ((-45 . -1125) 73122) ((-115 . -110) 73107) ((-619 . -703) T) ((-593 . -703) T) ((-798 . -506) 73040) ((-1014 . -1189) T) ((-922 . -148) 73024) ((-517 . -101) T) ((-512 . -101) 72974) ((-1148 . -445) 72905) ((-1142 . -1076) T) ((-1063 . -1193) 72884) ((-765 . -1193) 72863) ((-763 . -1193) 72842) ((-61 . -1189) T) ((-470 . -599) 72794) ((-470 . -600) 72716) ((-1134 . -1076) T) ((-1118 . -630) 72690) ((-1101 . -445) 72641) ((-1063 . -544) 72572) ((-475 . -405) 72541) ((-607 . -899) 72520) ((-447 . -1193) 72499) ((-973 . -1076) T) ((-765 . -544) 72410) ((-392 . -599) 72392) ((-763 . -544) 72323) ((-714 . -303) 72310) ((-657 . -506) 72243) ((-646 . -25) T) ((-646 . -21) T) ((-447 . -544) 72174) ((-116 . -899) T) ((-116 . -803) NIL) ((-349 . -25) T) ((-349 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-338 . -25) T) ((-338 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-82 . -378) T) ((-82 . -389) T) ((-242 . -25) T) ((-242 . -21) T) ((-1237 . -599) 72156) ((-1183 . -1088) T) ((-1183 . -23) T) ((-1143 . -303) 72041) ((-1102 . -303) 72028) ((-1056 . -700) 71896) ((-845 . -630) 71856) ((-922 . -959) 71840) ((-889 . -21) T) ((-283 . -169) T) ((-889 . -25) T) ((-305 . -92) T) ((-851 . -830) 71791) ((-694 . -1088) T) ((-694 . -23) T) ((-629 . -1076) 71769) ((-616 . -596) 71744) ((-616 . -1076) T) ((-569 . -1193) T) ((-510 . -1193) T) ((-569 . -544) T) ((-510 . -544) T) ((-353 . -700) 71696) ((-347 . -700) 71648) ((-339 . -700) 71600) ((-333 . -1034) 71584) ((-171 . -110) 71495) ((-171 . -1034) 71427) ((-107 . -700) 71377) ((-333 . -110) 71356) ((-268 . -1076) T) ((-267 . -1076) T) ((-266 . -1076) T) ((-265 . -1076) T) ((-683 . -1028) T) ((-264 . -1076) T) ((-263 . -1076) T) ((-262 . -1076) T) ((-207 . -1076) T) ((-206 . -1076) T) ((-204 . -1076) T) ((-166 . -1177) 71334) ((-166 . -1174) 71312) ((-203 . -1076) T) ((-202 . -1076) T) ((-115 . -1028) T) ((-201 . -1076) T) ((-198 . -1076) T) ((-683 . -228) T) ((-197 . -1076) T) ((-196 . -1076) T) ((-195 . -1076) T) ((-194 . -1076) T) ((-193 . -1076) T) ((-192 . -1076) T) ((-191 . -1076) T) ((-190 . -1076) T) ((-189 . -1076) T) ((-188 . -1076) T) ((-235 . -101) 71102) ((-166 . -35) 71080) ((-166 . -94) 71058) ((-636 . -1017) 70954) ((-475 . -1035) 70884) ((-1089 . -1076) 70674) ((-1118 . -34) T) ((-652 . -482) 70658) ((-72 . -1189) T) ((-104 . -599) 70640) ((-1259 . -599) 70622) ((-375 . -599) 70604) ((-714 . -38) 70453) ((-559 . -1177) T) ((-559 . -1174) T) ((-523 . -599) 70435) ((-512 . -303) 70373) ((-492 . -599) 70355) ((-492 . -600) 70337) ((-1188 . -599) 70303) ((-1143 . -1127) NIL) ((-1006 . -1048) 70272) ((-1006 . -1076) T) ((-983 . -101) T) ((-950 . -101) T) ((-893 . -101) T) ((-872 . -1017) 70249) ((-1118 . -709) T) ((-982 . -630) 70194) ((-469 . -1076) T) ((-456 . -1076) T) ((-573 . -23) T) ((-559 . -35) T) ((-559 . -94) T) ((-421 . -101) T) ((-1040 . -224) 70140) ((-1150 . -38) 70037) ((-845 . -709) T) ((-676 . -899) T) ((-503 . -25) T) ((-499 . -21) T) ((-499 . -25) T) ((-1149 . -38) 69878) ((-333 . -1028) T) ((-1143 . -38) 69674) ((-1056 . -169) T) ((-171 . -1028) T) ((-1102 . -38) 69571) ((-695 . -47) 69548) ((-353 . -169) T) ((-347 . -169) T) ((-511 . -56) 69522) ((-489 . -56) 69472) ((-345 . -1254) 69449) ((-220 . -445) T) ((-313 . -284) 69400) ((-339 . -169) T) ((-171 . -238) T) ((-1198 . -830) 69299) ((-107 . -169) T) ((-851 . -971) 69283) ((-640 . -1088) T) ((-569 . -357) T) ((-569 . -323) 69270) ((-510 . -323) 69247) ((-510 . -357) T) ((-310 . -301) 69226) ((-307 . -301) T) ((-588 . -830) 69205) ((-1089 . -700) 69147) ((-512 . -276) 69131) ((-640 . -23) T) ((-412 . -226) 69115) ((-307 . -1001) NIL) ((-330 . -23) T) ((-102 . -989) 69099) ((-45 . -36) 69078) ((-598 . -1076) T) ((-345 . -362) T) ((-516 . -101) T) ((-487 . -27) T) ((-235 . -303) 69016) ((-1063 . -1088) T) ((-1258 . -630) 68990) ((-765 . -1088) T) ((-763 . -1088) T) ((-447 . -1088) T) ((-1039 . -445) T) ((-931 . -445) 68941) ((-1091 . -1059) T) ((-109 . -1076) T) ((-1063 . -23) T) ((-800 . -1035) T) ((-765 . -23) T) ((-763 . -23) T) ((-474 . -445) 68892) ((-1135 . -506) 68675) ((-375 . -376) 68654) ((-1154 . -405) 68638) ((-454 . -23) T) ((-447 . -23) T) ((-95 . -1076) T) ((-477 . -506) 68571) ((-283 . -284) T) ((-1058 . -599) 68553) ((-401 . -888) 68532) ((-50 . -1088) T) ((-1003 . -899) T) ((-982 . -709) T) ((-695 . -865) NIL) ((-569 . -1088) T) ((-510 . -1088) T) ((-823 . -630) 68505) ((-1183 . -129) T) ((-1143 . -394) 68457) ((-983 . -303) NIL) ((-798 . -482) 68441) ((-348 . -899) T) ((-1132 . -34) T) ((-401 . -630) 68393) ((-50 . -23) T) ((-694 . -129) T) ((-695 . -1017) 68273) ((-569 . -23) T) ((-107 . -506) NIL) ((-510 . -23) T) ((-166 . -403) 68244) ((-1116 . -1076) T) ((-1250 . -1249) 68228) ((-683 . -778) T) ((-683 . -775) T) ((-1096 . -301) T) ((-373 . -144) T) ((-274 . -599) 68210) ((-1198 . -971) 68180) ((-48 . -899) T) ((-657 . -482) 68164) ((-245 . -1242) 68134) ((-244 . -1242) 68104) ((-1152 . -830) T) ((-1089 . -169) 68083) ((-1096 . -1001) T) ((-1025 . -34) T) ((-817 . -144) 68062) ((-817 . -142) 68041) ((-720 . -106) 68025) ((-598 . -130) T) ((-475 . -1076) 67815) ((-1154 . -1035) T) ((-850 . -445) T) ((-84 . -1189) T) ((-235 . -38) 67785) ((-138 . -106) 67767) ((-695 . -371) 67751) ((-1096 . -537) T) ((-567 . -101) T) ((-384 . -1034) 67735) ((-1258 . -709) T) ((-1148 . -928) 67704) ((-128 . -599) 67656) ((-52 . -599) 67638) ((-1101 . -928) 67605) ((-635 . -405) 67589) ((-1247 . -1035) T) ((-605 . -1034) 67573) ((-644 . -25) T) ((-644 . -21) T) ((-1134 . -506) NIL) ((-1227 . -101) T) ((-1220 . -101) T) ((-384 . -110) 67552) ((-217 . -248) 67536) ((-1199 . -101) T) ((-1032 . -1076) T) ((-983 . -1127) T) ((-1032 . -1031) 67476) ((-801 . -1076) T) ((-337 . -1193) T) ((-619 . -630) 67460) ((-605 . -110) 67439) ((-593 . -630) 67423) ((-583 . -101) T) ((-573 . -129) T) ((-582 . -101) T) ((-408 . -1076) T) ((-379 . -1076) T) ((-305 . -599) 67389) ((-222 . -1076) 67367) ((-629 . -506) 67300) ((-616 . -506) 67144) ((-816 . -1028) 67123) ((-627 . -148) 67107) ((-337 . -544) T) ((-695 . -879) 67050) ((-538 . -224) 67000) ((-1227 . -278) 66966) ((-1056 . -284) 66917) ((-480 . -828) T) ((-218 . -1088) T) ((-1220 . -278) 66883) ((-1199 . -278) 66849) ((-983 . -38) 66799) ((-212 . -828) T) ((-1183 . -485) 66765) ((-893 . -38) 66717) ((-823 . -777) 66696) ((-823 . -774) 66675) ((-823 . -709) 66654) ((-353 . -284) T) ((-347 . -284) T) ((-339 . -284) T) ((-166 . -445) 66585) ((-421 . -38) 66569) ((-107 . -284) T) ((-218 . -23) T) ((-401 . -777) 66548) ((-401 . -774) 66527) ((-401 . -709) T) ((-492 . -282) 66502) ((-470 . -1034) 66467) ((-640 . -129) T) ((-1089 . -506) 66400) ((-330 . -129) T) ((-166 . -396) 66379) ((-475 . -700) 66321) ((-798 . -280) 66298) ((-470 . -110) 66254) ((-635 . -1035) T) ((-1208 . -445) 66185) ((-1246 . -1059) T) ((-1245 . -1059) T) ((-1063 . -129) T) ((-1032 . -700) 66127) ((-258 . -830) 66106) ((-242 . -830) 66085) ((-765 . -129) T) ((-763 . -129) T) ((-559 . -445) T) ((-1006 . -506) 66018) ((-605 . -1028) T) ((-579 . -1076) T) ((-525 . -170) T) ((-454 . -129) T) ((-447 . -129) T) ((-45 . -1076) T) ((-379 . -700) 65988) ((-800 . -1076) T) ((-469 . -506) 65921) ((-456 . -506) 65854) ((-446 . -361) 65824) ((-45 . -596) 65803) ((-310 . -296) T) ((-652 . -599) 65765) ((-58 . -830) 65744) ((-1199 . -303) 65629) ((-983 . -394) 65611) ((-798 . -590) 65588) ((-508 . -830) 65567) ((-488 . -830) 65546) ((-40 . -1193) T) ((-978 . -1017) 65442) ((-50 . -129) T) ((-569 . -129) T) ((-510 . -129) T) ((-288 . -630) 65302) ((-337 . -323) 65279) ((-337 . -357) T) ((-316 . -317) 65256) ((-313 . -280) 65241) ((-40 . -544) T) ((-373 . -1174) T) ((-373 . -1177) T) ((-1014 . -1165) 65216) ((-1162 . -230) 65166) ((-1143 . -226) 65118) ((-324 . -1076) T) ((-373 . -94) T) ((-373 . -35) T) ((-1014 . -106) 65064) ((-470 . -1028) T) ((-472 . -230) 65014) ((-1135 . -482) 64948) ((-1259 . -1034) 64932) ((-375 . -1034) 64916) ((-470 . -238) T) ((-799 . -101) T) ((-697 . -144) 64895) ((-697 . -142) 64874) ((-477 . -482) 64858) ((-478 . -329) 64827) ((-1259 . -110) 64806) ((-504 . -1076) T) ((-475 . -169) 64785) ((-978 . -371) 64769) ((-407 . -101) T) ((-375 . -110) 64748) ((-978 . -332) 64732) ((-273 . -962) 64716) ((-272 . -962) 64700) ((-1257 . -599) 64682) ((-1255 . -599) 64664) ((-109 . -506) NIL) ((-1148 . -1211) 64648) ((-834 . -832) 64632) ((-1154 . -1076) T) ((-102 . -1189) T) ((-931 . -928) 64593) ((-800 . -700) 64535) ((-1199 . -1127) NIL) ((-474 . -928) 64480) ((-1039 . -140) T) ((-59 . -101) 64458) ((-44 . -599) 64440) ((-77 . -599) 64422) ((-345 . -630) 64367) ((-1247 . -1076) T) ((-503 . -830) T) ((-337 . -1088) T) ((-289 . -1076) T) ((-978 . -879) 64326) ((-289 . -596) 64305) ((-1227 . -38) 64202) ((-1220 . -38) 64043) ((-480 . -1035) T) ((-1199 . -38) 63839) ((-212 . -1035) T) ((-337 . -23) T) ((-149 . -599) 63821) ((-816 . -778) 63800) ((-816 . -775) 63779) ((-583 . -38) 63752) ((-582 . -38) 63649) ((-849 . -544) T) ((-218 . -129) T) ((-313 . -981) 63615) ((-78 . -599) 63597) ((-695 . -301) 63576) ((-288 . -709) 63478) ((-807 . -101) T) ((-844 . -824) T) ((-288 . -466) 63457) ((-1250 . -101) T) ((-40 . -357) T) ((-851 . -144) 63436) ((-851 . -142) 63415) ((-1134 . -482) 63397) ((-1259 . -1028) T) ((-475 . -506) 63330) ((-1122 . -1189) T) ((-943 . -599) 63312) ((-629 . -482) 63296) ((-616 . -482) 63227) ((-798 . -599) 62958) ((-48 . -27) T) ((-1154 . -700) 62855) ((-635 . -1076) T) ((-841 . -840) T) ((-430 . -358) 62829) ((-1078 . -101) T) ((-949 . -1076) T) ((-844 . -1076) T) ((-799 . -303) 62816) ((-525 . -519) T) ((-525 . -564) T) ((-1255 . -376) 62788) ((-1032 . -506) 62721) ((-1135 . -280) 62697) ((-235 . -226) 62666) ((-1247 . -700) 62636) ((-1142 . -92) T) ((-973 . -92) T) ((-800 . -169) 62615) ((-222 . -506) 62548) ((-605 . -778) 62527) ((-605 . -775) 62506) ((-1186 . -599) 62418) ((-217 . -1189) T) ((-657 . -599) 62350) ((-1132 . -989) 62334) ((-922 . -101) 62284) ((-345 . -709) T) ((-841 . -599) 62266) ((-1199 . -394) 62218) ((-1089 . -482) 62202) ((-59 . -303) 62140) ((-325 . -101) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-40 . -1088) T) ((-694 . -21) T) ((-611 . -599) 62122) ((-507 . -317) 62101) ((-694 . -25) T) ((-107 . -280) NIL) ((-900 . -1088) T) ((-40 . -23) T) ((-754 . -1088) T) ((-552 . -1193) T) ((-487 . -1193) T) ((-313 . -599) 62083) ((-983 . -226) 62065) ((-166 . -163) 62049) ((-568 . -544) T) ((-552 . -544) T) ((-487 . -544) T) ((-754 . -23) T) ((-1219 . -144) 62028) ((-1135 . -590) 62004) ((-1219 . -142) 61983) ((-1006 . -482) 61967) ((-1198 . -142) 61892) ((-1198 . -144) 61817) ((-1250 . -1256) 61796) ((-469 . -482) 61780) ((-456 . -482) 61764) ((-515 . -34) T) ((-635 . -700) 61734) ((-111 . -946) T) ((-644 . -830) 61713) ((-1154 . -169) 61664) ((-359 . -101) T) ((-235 . -233) 61643) ((-245 . -101) T) ((-244 . -101) T) ((-1208 . -928) 61612) ((-240 . -830) 61591) ((-799 . -38) 61440) ((-45 . -506) 61232) ((-1134 . -280) 61207) ((-209 . -1076) T) ((-1126 . -1076) T) ((-1126 . -596) 61186) ((-573 . -25) T) ((-573 . -21) T) ((-1078 . -303) 61124) ((-942 . -405) 61108) ((-681 . -1193) T) ((-616 . -280) 61083) ((-1063 . -623) 61031) ((-765 . -623) 60979) ((-763 . -623) 60927) ((-337 . -129) T) ((-283 . -599) 60909) ((-681 . -544) T) ((-884 . -1076) T) ((-849 . -1088) T) ((-447 . -623) 60857) ((-884 . -882) 60841) ((-373 . -445) T) ((-480 . -1076) T) ((-683 . -630) 60828) ((-922 . -303) 60766) ((-212 . -1076) T) ((-310 . -899) 60745) ((-307 . -899) T) ((-307 . -803) NIL) ((-384 . -703) T) ((-849 . -23) T) ((-115 . -630) 60732) ((-467 . -142) 60711) ((-412 . -405) 60695) ((-467 . -144) 60674) ((-109 . -482) 60656) ((-2 . -599) 60638) ((-181 . -101) T) ((-1134 . -19) 60620) ((-1134 . -590) 60595) ((-640 . -21) T) ((-640 . -25) T) ((-580 . -1120) T) ((-1089 . -280) 60572) ((-330 . -25) T) ((-330 . -21) T) ((-487 . -357) T) ((-1250 . -38) 60542) ((-1118 . -1189) T) ((-616 . -590) 60517) ((-1063 . -25) T) ((-1063 . -21) T) ((-523 . -775) T) ((-523 . -778) T) ((-116 . -1193) T) ((-942 . -1035) T) ((-607 . -544) T) ((-765 . -25) T) ((-765 . -21) T) ((-763 . -21) T) ((-763 . -25) T) ((-718 . -1035) T) ((-698 . -1035) T) ((-652 . -1034) 60501) ((-509 . -1059) T) ((-454 . -25) T) ((-116 . -544) T) ((-454 . -21) T) ((-447 . -25) T) ((-447 . -21) T) ((-1118 . -1017) 60397) ((-800 . -284) 60376) ((-806 . -1076) T) ((-945 . -946) T) ((-652 . -110) 60355) ((-289 . -506) 60147) ((-1257 . -1034) 60131) ((-1255 . -1034) 60115) ((-1219 . -1174) 60081) ((-245 . -303) 60019) ((-244 . -303) 59957) ((-1202 . -101) 59935) ((-1135 . -600) NIL) ((-1135 . -599) 59917) ((-1219 . -1177) 59883) ((-1199 . -226) 59835) ((-1198 . -1174) 59801) ((-95 . -92) T) ((-1198 . -1177) 59767) ((-1118 . -371) 59751) ((-1096 . -803) T) ((-1096 . -899) T) ((-1089 . -590) 59728) ((-1056 . -600) 59712) ((-477 . -599) 59644) ((-798 . -282) 59621) ((-594 . -148) 59568) ((-412 . -1035) T) ((-480 . -700) 59518) ((-475 . -482) 59502) ((-321 . -830) 59481) ((-333 . -630) 59455) ((-50 . -21) T) ((-50 . -25) T) ((-212 . -700) 59405) ((-166 . -707) 59376) ((-171 . -630) 59308) ((-569 . -21) T) ((-569 . -25) T) ((-510 . -25) T) ((-510 . -21) T) ((-468 . -148) 59258) ((-1056 . -599) 59240) ((-1038 . -599) 59222) ((-972 . -101) T) ((-842 . -101) T) ((-782 . -405) 59186) ((-40 . -129) T) ((-681 . -357) T) ((-207 . -874) T) ((-683 . -777) T) ((-683 . -774) T) ((-568 . -1088) T) ((-552 . -1088) T) ((-487 . -1088) T) ((-683 . -709) T) ((-353 . -599) 59168) ((-347 . -599) 59150) ((-339 . -599) 59132) ((-65 . -390) T) ((-65 . -389) T) ((-107 . -600) 59062) ((-107 . -599) 59044) ((-206 . -874) T) ((-937 . -148) 59028) ((-1219 . -94) 58994) ((-754 . -129) T) ((-132 . -709) T) ((-115 . -709) T) ((-1219 . -35) 58960) ((-1032 . -482) 58944) ((-568 . -23) T) ((-552 . -23) T) ((-487 . -23) T) ((-1198 . -94) 58910) ((-1198 . -35) 58876) ((-1148 . -101) T) ((-1101 . -101) T) ((-834 . -101) T) ((-222 . -482) 58860) ((-1257 . -110) 58839) ((-1255 . -110) 58818) ((-44 . -1034) 58802) ((-1208 . -1211) 58786) ((-835 . -832) 58770) ((-1154 . -284) 58749) ((-109 . -280) 58724) ((-127 . -148) 58706) ((-1118 . -879) 58665) ((-44 . -110) 58644) ((-1157 . -1230) T) ((-1142 . -599) 58610) ((-652 . -1028) T) ((-1134 . -600) NIL) ((-1134 . -599) 58592) ((-1040 . -596) 58567) ((-1040 . -1076) T) ((-973 . -599) 58533) ((-73 . -434) T) ((-73 . -389) T) ((-652 . -228) 58512) ((-149 . -1034) 58496) ((-559 . -542) 58480) ((-349 . -144) 58459) ((-349 . -142) 58410) ((-346 . -144) 58389) ((-685 . -1076) T) ((-346 . -142) 58340) ((-338 . -144) 58319) ((-338 . -142) 58270) ((-258 . -142) 58249) ((-258 . -144) 58228) ((-245 . -38) 58198) ((-242 . -144) 58177) ((-116 . -357) T) ((-242 . -142) 58156) ((-244 . -38) 58126) ((-149 . -110) 58105) ((-982 . -1017) 57993) ((-1143 . -828) NIL) ((-676 . -1193) T) ((-782 . -1035) T) ((-681 . -1088) T) ((-1257 . -1028) T) ((-1255 . -1028) T) ((-1132 . -1189) T) ((-982 . -371) 57970) ((-889 . -142) T) ((-889 . -144) 57952) ((-849 . -129) T) ((-798 . -1034) 57849) ((-676 . -544) T) ((-681 . -23) T) ((-629 . -599) 57781) ((-629 . -600) 57742) ((-616 . -600) NIL) ((-616 . -599) 57724) ((-480 . -169) T) ((-218 . -21) T) ((-212 . -169) T) ((-218 . -25) T) ((-467 . -1177) 57690) ((-467 . -1174) 57656) ((-268 . -599) 57638) ((-267 . -599) 57620) ((-266 . -599) 57602) ((-265 . -599) 57584) ((-264 . -599) 57566) ((-492 . -633) 57548) ((-263 . -599) 57530) ((-333 . -709) T) ((-262 . -599) 57512) ((-109 . -19) 57494) ((-171 . -709) T) ((-492 . -367) 57476) ((-207 . -599) 57458) ((-512 . -1125) 57442) ((-492 . -122) T) ((-109 . -590) 57417) ((-206 . -599) 57399) ((-467 . -35) 57365) ((-467 . -94) 57331) ((-204 . -599) 57313) ((-203 . -599) 57295) ((-202 . -599) 57277) ((-201 . -599) 57259) ((-198 . -599) 57241) ((-197 . -599) 57223) ((-196 . -599) 57205) ((-195 . -599) 57187) ((-194 . -599) 57169) ((-193 . -599) 57151) ((-192 . -599) 57133) ((-528 . -1079) 57085) ((-191 . -599) 57067) ((-190 . -599) 57049) ((-45 . -482) 56986) ((-189 . -599) 56968) ((-188 . -599) 56950) ((-1091 . -101) T) ((-798 . -110) 56840) ((-627 . -101) 56790) ((-475 . -280) 56767) ((-1089 . -599) 56498) ((-1077 . -1076) T) ((-1025 . -1189) T) ((-1258 . -1017) 56482) ((-607 . -1088) T) ((-1148 . -303) 56469) ((-1111 . -1076) T) ((-1101 . -303) 56456) ((-1072 . -1059) T) ((-1066 . -1059) T) ((-1050 . -1059) T) ((-1043 . -1059) T) ((-1015 . -1059) T) ((-998 . -1059) T) ((-116 . -1088) T) ((-802 . -101) T) ((-610 . -1059) T) ((-607 . -23) T) ((-1126 . -506) 56248) ((-476 . -1059) T) ((-982 . -879) 56200) ((-380 . -101) T) ((-318 . -101) T) ((-213 . -1059) T) ((-942 . -1076) T) ((-149 . -1028) T) ((-714 . -405) 56184) ((-116 . -23) T) ((-718 . -1076) T) ((-698 . -1076) T) ((-685 . -130) T) ((-446 . -1076) T) ((-401 . -1189) T) ((-310 . -424) 56168) ((-579 . -92) T) ((-1006 . -600) 56129) ((-1003 . -1193) T) ((-220 . -101) T) ((-1006 . -599) 56091) ((-799 . -226) 56075) ((-1003 . -544) T) ((-816 . -630) 56048) ((-348 . -1193) T) ((-469 . -599) 56010) ((-469 . -600) 55971) ((-456 . -600) 55932) ((-456 . -599) 55894) ((-401 . -863) 55878) ((-313 . -1034) 55713) ((-401 . -865) 55638) ((-823 . -1017) 55534) ((-480 . -506) NIL) ((-475 . -590) 55511) ((-348 . -544) T) ((-212 . -506) NIL) ((-851 . -445) T) ((-412 . -1076) T) ((-401 . -1017) 55375) ((-313 . -110) 55196) ((-676 . -357) T) ((-220 . -278) T) ((-48 . -1193) T) ((-798 . -1028) 55126) ((-568 . -129) T) ((-552 . -129) T) ((-487 . -129) T) ((-48 . -544) T) ((-1135 . -282) 55102) ((-1148 . -1127) 55080) ((-310 . -27) 55059) ((-1039 . -101) T) ((-798 . -228) 55011) ((-235 . -828) 54990) ((-931 . -101) T) ((-696 . -101) T) ((-289 . -482) 54927) ((-474 . -101) T) ((-714 . -1035) T) ((-598 . -599) 54909) ((-598 . -600) 54770) ((-401 . -371) 54754) ((-401 . -332) 54738) ((-1148 . -38) 54567) ((-1101 . -38) 54416) ((-834 . -38) 54386) ((-384 . -630) 54370) ((-627 . -303) 54308) ((-942 . -700) 54205) ((-718 . -700) 54175) ((-217 . -106) 54159) ((-45 . -280) 54084) ((-605 . -630) 54058) ((-306 . -1076) T) ((-283 . -1034) 54045) ((-109 . -599) 54027) ((-109 . -600) 54009) ((-446 . -700) 53979) ((-799 . -247) 53918) ((-671 . -1076) 53896) ((-538 . -1076) T) ((-1150 . -1035) T) ((-1149 . -1035) T) ((-1143 . -1035) T) ((-283 . -110) 53881) ((-1102 . -1035) T) ((-538 . -596) 53860) ((-95 . -599) 53826) ((-983 . -828) T) ((-222 . -669) 53784) ((-676 . -1088) T) ((-1183 . -723) 53760) ((-313 . -1028) T) ((-337 . -25) T) ((-337 . -21) T) ((-401 . -879) 53719) ((-67 . -1189) T) ((-816 . -777) 53698) ((-412 . -700) 53672) ((-782 . -1076) T) ((-816 . -774) 53651) ((-681 . -129) T) ((-695 . -899) 53630) ((-676 . -23) T) ((-480 . -284) T) ((-816 . -709) 53609) ((-313 . -228) 53561) ((-313 . -238) 53540) ((-212 . -284) T) ((-1003 . -357) T) ((-1219 . -445) 53519) ((-1198 . -445) 53498) ((-348 . -323) 53475) ((-348 . -357) T) ((-1116 . -599) 53457) ((-45 . -1223) 53407) ((-850 . -101) T) ((-627 . -276) 53391) ((-681 . -1037) T) ((-1246 . -101) T) ((-470 . -630) 53356) ((-461 . -1076) T) ((-45 . -590) 53281) ((-1245 . -101) T) ((-1134 . -282) 53256) ((-40 . -623) 53195) ((-48 . -357) T) ((-1082 . -599) 53177) ((-1063 . -830) 53156) ((-616 . -282) 53131) ((-765 . -830) 53110) ((-763 . -830) 53089) ((-475 . -599) 52820) ((-235 . -405) 52789) ((-931 . -303) 52776) ((-447 . -830) 52755) ((-64 . -1189) T) ((-1040 . -506) 52599) ((-607 . -129) T) ((-474 . -303) 52586) ((-592 . -1076) T) ((-116 . -129) T) ((-653 . -1076) T) ((-283 . -1028) T) ((-177 . -1076) T) ((-158 . -1076) T) ((-153 . -1076) T) ((-151 . -1076) T) ((-446 . -744) T) ((-31 . -1059) T) ((-942 . -169) 52537) ((-949 . -92) T) ((-1056 . -1034) 52447) ((-605 . -777) 52426) ((-580 . -1076) T) ((-605 . -774) 52405) ((-605 . -709) T) ((-289 . -280) 52384) ((-288 . -1189) T) ((-1032 . -599) 52346) ((-1032 . -600) 52307) ((-1003 . -1088) T) ((-166 . -101) T) ((-269 . -830) T) ((-1141 . -1076) T) ((-801 . -599) 52289) ((-1089 . -282) 52266) ((-1078 . -224) 52250) ((-982 . -301) T) ((-782 . -700) 52234) ((-353 . -1034) 52186) ((-348 . -1088) T) ((-347 . -1034) 52138) ((-408 . -599) 52120) ((-379 . -599) 52102) ((-339 . -1034) 52054) ((-222 . -599) 51986) ((-1056 . -110) 51882) ((-1003 . -23) T) ((-107 . -1034) 51832) ((-877 . -101) T) ((-821 . -101) T) ((-791 . -101) T) ((-752 . -101) T) ((-659 . -101) T) ((-467 . -445) 51811) ((-412 . -169) T) ((-353 . -110) 51749) ((-347 . -110) 51687) ((-339 . -110) 51625) ((-245 . -226) 51594) ((-244 . -226) 51563) ((-348 . -23) T) ((-70 . -1189) T) ((-220 . -38) 51528) ((-107 . -110) 51462) ((-40 . -25) T) ((-40 . -21) T) ((-652 . -703) T) ((-166 . -278) 51440) ((-48 . -1088) T) ((-900 . -25) T) ((-754 . -25) T) ((-1126 . -482) 51377) ((-478 . -1076) T) ((-1259 . -630) 51351) ((-1208 . -101) T) ((-835 . -101) T) ((-235 . -1035) 51281) ((-1039 . -1127) T) ((-943 . -775) 51234) ((-375 . -630) 51218) ((-48 . -23) T) ((-943 . -778) 51171) ((-798 . -778) 51122) ((-798 . -775) 51073) ((-289 . -590) 51052) ((-470 . -709) T) ((-559 . -101) T) ((-850 . -303) 51009) ((-635 . -280) 50988) ((-111 . -643) T) ((-75 . -1189) T) ((-1039 . -38) 50975) ((-646 . -368) 50954) ((-931 . -38) 50803) ((-714 . -1076) T) ((-474 . -38) 50652) ((-85 . -1189) T) ((-559 . -278) T) ((-579 . -599) 50618) ((-1199 . -828) NIL) ((-1150 . -1076) T) ((-1149 . -1076) T) ((-345 . -1017) 50595) ((-1056 . -1028) T) ((-983 . -1035) T) ((-45 . -599) 50577) ((-45 . -600) NIL) ((-893 . -1035) T) ((-800 . -599) 50559) ((-1143 . -1076) T) ((-1123 . -101) 50537) ((-1056 . -238) 50488) ((-421 . -1035) T) ((-353 . -1028) T) ((-359 . -358) 50465) ((-347 . -1028) T) ((-339 . -1028) T) ((-245 . -233) 50444) ((-244 . -233) 50423) ((-1056 . -228) 50348) ((-1102 . -1076) T) ((-288 . -879) 50307) ((-107 . -1028) T) ((-676 . -129) T) ((-412 . -506) 50149) ((-353 . -228) 50128) ((-353 . -238) T) ((-44 . -703) T) ((-347 . -228) 50107) ((-347 . -238) T) ((-339 . -228) 50086) ((-339 . -238) T) ((-166 . -303) 50051) ((-107 . -238) T) ((-107 . -228) T) ((-313 . -775) T) ((-849 . -21) T) ((-849 . -25) T) ((-401 . -301) T) ((-492 . -34) T) ((-109 . -282) 50026) ((-1089 . -1034) 49923) ((-850 . -1127) NIL) ((-324 . -599) 49905) ((-401 . -1001) 49883) ((-1089 . -110) 49773) ((-673 . -1230) T) ((-430 . -1076) T) ((-1259 . -709) T) ((-62 . -599) 49755) ((-850 . -38) 49700) ((-515 . -1189) T) ((-588 . -148) 49684) ((-504 . -599) 49666) ((-1208 . -303) 49653) ((-714 . -700) 49502) ((-523 . -776) T) ((-523 . -777) T) ((-552 . -623) 49484) ((-487 . -623) 49444) ((-349 . -445) T) ((-346 . -445) T) ((-338 . -445) T) ((-258 . -445) 49395) ((-517 . -1076) T) ((-512 . -1076) 49345) ((-242 . -445) 49296) ((-1126 . -280) 49275) ((-1154 . -599) 49257) ((-671 . -506) 49190) ((-942 . -284) 49169) ((-538 . -506) 48961) ((-1148 . -226) 48945) ((-166 . -1127) 48924) ((-1247 . -599) 48906) ((-1150 . -700) 48803) ((-1149 . -700) 48644) ((-871 . -101) T) ((-1143 . -700) 48440) ((-1102 . -700) 48337) ((-1132 . -656) 48321) ((-349 . -396) 48272) ((-346 . -396) 48223) ((-338 . -396) 48174) ((-1003 . -129) T) ((-782 . -506) 48086) ((-289 . -600) NIL) ((-289 . -599) 48068) ((-889 . -445) T) ((-943 . -362) 48021) ((-798 . -362) 48000) ((-502 . -501) 47979) ((-500 . -501) 47958) ((-480 . -280) NIL) ((-475 . -282) 47935) ((-412 . -284) T) ((-348 . -129) T) ((-212 . -280) NIL) ((-676 . -485) NIL) ((-98 . -1088) T) ((-166 . -38) 47763) ((-1219 . -952) 47725) ((-1123 . -303) 47663) ((-1198 . -952) 47632) ((-889 . -396) T) ((-1089 . -1028) 47562) ((-1221 . -544) T) ((-1126 . -590) 47541) ((-111 . -830) T) ((-1040 . -482) 47472) ((-568 . -21) T) ((-568 . -25) T) ((-552 . -21) T) ((-552 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-1208 . -1127) 47450) ((-1089 . -228) 47402) ((-48 . -129) T) ((-1170 . -101) T) ((-235 . -1076) 47192) ((-850 . -394) 47169) ((-1064 . -101) T) ((-1052 . -101) T) ((-594 . -101) T) ((-468 . -101) T) ((-1208 . -38) 46998) ((-835 . -38) 46968) ((-714 . -169) 46879) ((-635 . -599) 46861) ((-628 . -1059) T) ((-559 . -38) 46848) ((-949 . -599) 46814) ((-937 . -101) 46764) ((-844 . -599) 46746) ((-844 . -600) 46668) ((-580 . -506) NIL) ((-1227 . -1035) T) ((-1220 . -1035) T) ((-1199 . -1035) T) ((-583 . -1035) T) ((-582 . -1035) T) ((-1263 . -1088) T) ((-1150 . -169) 46619) ((-1149 . -169) 46550) ((-1143 . -169) 46481) ((-1102 . -169) 46432) ((-983 . -1076) T) ((-950 . -1076) T) ((-893 . -1076) T) ((-1183 . -144) 46411) ((-782 . -780) 46395) ((-681 . -25) T) ((-681 . -21) T) ((-116 . -623) 46372) ((-683 . -865) 46354) ((-421 . -1076) T) ((-310 . -1193) 46333) ((-307 . -1193) T) ((-166 . -394) 46317) ((-1183 . -142) 46296) ((-467 . -952) 46258) ((-127 . -101) T) ((-71 . -599) 46240) ((-107 . -778) T) ((-107 . -775) T) ((-310 . -544) 46219) ((-683 . -1017) 46201) ((-307 . -544) T) ((-1263 . -23) T) ((-132 . -1017) 46183) ((-475 . -1034) 46080) ((-45 . -282) 46005) ((-235 . -700) 45947) ((-509 . -101) T) ((-475 . -110) 45837) ((-1068 . -101) 45815) ((-1013 . -101) T) ((-627 . -811) 45794) ((-714 . -506) 45737) ((-1032 . -1034) 45721) ((-1111 . -92) T) ((-1040 . -280) 45696) ((-607 . -21) T) ((-607 . -25) T) ((-516 . -1076) T) ((-355 . -101) T) ((-316 . -101) T) ((-652 . -630) 45670) ((-379 . -1034) 45654) ((-1032 . -110) 45633) ((-799 . -405) 45617) ((-116 . -25) T) ((-88 . -599) 45599) ((-116 . -21) T) ((-594 . -303) 45394) ((-468 . -303) 45198) ((-1126 . -600) NIL) ((-379 . -110) 45177) ((-373 . -101) T) ((-209 . -599) 45159) ((-1126 . -599) 45141) ((-983 . -700) 45091) ((-1143 . -506) 44860) ((-893 . -700) 44812) ((-1102 . -506) 44782) ((-345 . -301) T) ((-1162 . -148) 44732) ((-937 . -303) 44670) ((-817 . -101) T) ((-421 . -700) 44654) ((-220 . -811) T) ((-810 . -101) T) ((-808 . -101) T) ((-472 . -148) 44604) ((-1219 . -1218) 44583) ((-1096 . -1193) T) ((-333 . -1017) 44550) ((-1219 . -1213) 44520) ((-1219 . -1216) 44504) ((-1198 . -1197) 44483) ((-79 . -599) 44465) ((-884 . -599) 44447) ((-1198 . -1213) 44424) ((-1096 . -544) T) ((-900 . -830) T) ((-754 . -830) T) ((-480 . -600) 44354) ((-480 . -599) 44336) ((-373 . -278) T) ((-654 . -830) T) ((-1198 . -1195) 44320) ((-1221 . -1088) T) ((-212 . -600) 44250) ((-212 . -599) 44232) ((-1257 . -630) 44206) ((-1040 . -590) 44181) ((-58 . -148) 44165) ((-508 . -148) 44149) ((-488 . -148) 44133) ((-353 . -1254) 44117) ((-347 . -1254) 44101) ((-339 . -1254) 44085) ((-310 . -357) 44064) ((-307 . -357) T) ((-475 . -1028) 43994) ((-676 . -623) 43976) ((-1255 . -630) 43950) ((-127 . -303) NIL) ((-1221 . -23) T) ((-671 . -482) 43934) ((-63 . -599) 43916) ((-1089 . -778) 43867) ((-1089 . -775) 43818) ((-538 . -482) 43755) ((-652 . -34) T) ((-475 . -228) 43707) ((-289 . -282) 43686) ((-235 . -169) 43665) ((-799 . -1035) T) ((-44 . -630) 43623) ((-1056 . -362) 43574) ((-714 . -284) 43505) ((-512 . -506) 43438) ((-800 . -1034) 43389) ((-1063 . -142) 43368) ((-353 . -362) 43347) ((-347 . -362) 43326) ((-339 . -362) 43305) ((-1063 . -144) 43284) ((-850 . -226) 43261) ((-800 . -110) 43203) ((-765 . -142) 43182) ((-765 . -144) 43161) ((-258 . -928) 43128) ((-245 . -828) 43107) ((-242 . -928) 43052) ((-244 . -828) 43031) ((-763 . -142) 43010) ((-763 . -144) 42989) ((-149 . -630) 42963) ((-567 . -1076) T) ((-447 . -144) 42942) ((-447 . -142) 42921) ((-652 . -709) T) ((-806 . -599) 42903) ((-1227 . -1076) T) ((-1220 . -1076) T) ((-1199 . -1076) T) ((-1183 . -1177) 42869) ((-1183 . -1174) 42835) ((-1150 . -284) 42814) ((-1149 . -284) 42765) ((-1143 . -284) 42716) ((-1102 . -284) 42695) ((-333 . -879) 42676) ((-983 . -169) T) ((-893 . -169) T) ((-583 . -1076) T) ((-582 . -1076) T) ((-676 . -21) T) ((-676 . -25) T) ((-467 . -1216) 42660) ((-467 . -1213) 42630) ((-412 . -280) 42558) ((-310 . -1088) 42407) ((-307 . -1088) T) ((-1183 . -35) 42373) ((-1183 . -94) 42339) ((-83 . -599) 42321) ((-90 . -101) 42299) ((-1263 . -129) T) ((-569 . -142) T) ((-569 . -144) 42281) ((-510 . -144) 42263) ((-510 . -142) T) ((-310 . -23) 42115) ((-40 . -336) 42089) ((-307 . -23) T) ((-1134 . -633) 42071) ((-1250 . -1035) T) ((-1134 . -367) 42053) ((-798 . -630) 41901) ((-1072 . -101) T) ((-1066 . -101) T) ((-1050 . -101) T) ((-166 . -226) 41885) ((-1043 . -101) T) ((-1015 . -101) T) ((-998 . -101) T) ((-580 . -482) 41867) ((-610 . -101) T) ((-235 . -506) 41800) ((-476 . -101) T) ((-1257 . -709) T) ((-1255 . -709) T) ((-213 . -101) T) ((-1154 . -1034) 41683) ((-1154 . -110) 41552) ((-841 . -170) T) ((-800 . -1028) T) ((-663 . -1059) T) ((-658 . -1059) T) ((-507 . -101) T) ((-502 . -101) T) ((-48 . -623) 41512) ((-500 . -101) T) ((-471 . -1059) T) ((-1247 . -1034) 41482) ((-136 . -1059) T) ((-135 . -1059) T) ((-131 . -1059) T) ((-1013 . -38) 41466) ((-800 . -228) T) ((-800 . -238) 41445) ((-1247 . -110) 41410) ((-1227 . -700) 41307) ((-538 . -280) 41286) ((-1220 . -700) 41127) ((-1208 . -226) 41111) ((-592 . -92) T) ((-1040 . -600) NIL) ((-1040 . -599) 41093) ((-653 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-151 . -92) T) ((-1199 . -700) 40889) ((-982 . -899) T) ((-685 . -599) 40858) ((-149 . -709) T) ((-1089 . -362) 40837) ((-983 . -506) NIL) ((-245 . -405) 40806) ((-244 . -405) 40775) ((-1003 . -25) T) ((-1003 . -21) T) ((-583 . -700) 40748) ((-582 . -700) 40645) ((-782 . -280) 40603) ((-125 . -101) 40581) ((-816 . -1017) 40477) ((-166 . -811) 40456) ((-313 . -630) 40353) ((-798 . -34) T) ((-697 . -101) T) ((-1096 . -1088) T) ((-1005 . -1189) T) ((-373 . -38) 40318) ((-348 . -25) T) ((-348 . -21) T) ((-182 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-349 . -1242) 40302) ((-346 . -1242) 40286) ((-338 . -1242) 40270) ((-166 . -343) 40249) ((-552 . -830) T) ((-487 . -830) T) ((-1096 . -23) T) ((-86 . -599) 40231) ((-683 . -301) T) ((-817 . -38) 40201) ((-810 . -38) 40171) ((-1221 . -129) T) ((-1126 . -282) 40150) ((-943 . -776) 40103) ((-943 . -777) 40056) ((-798 . -774) 40035) ((-115 . -301) T) ((-90 . -303) 39973) ((-657 . -34) T) ((-538 . -590) 39952) ((-48 . -25) T) ((-48 . -21) T) ((-798 . -777) 39903) ((-798 . -776) 39882) ((-683 . -1001) T) ((-635 . -1034) 39866) ((-943 . -709) 39765) ((-798 . -709) 39675) ((-943 . -466) 39628) ((-475 . -778) 39579) ((-475 . -775) 39530) ((-889 . -1242) 39517) ((-1154 . -1028) T) ((-635 . -110) 39496) ((-1154 . -320) 39473) ((-1175 . -101) 39451) ((-1077 . -599) 39433) ((-683 . -537) T) ((-799 . -1076) T) ((-1247 . -1028) T) ((-407 . -1076) T) ((-1111 . -599) 39399) ((-245 . -1035) 39329) ((-244 . -1035) 39259) ((-283 . -630) 39246) ((-580 . -280) 39221) ((-671 . -669) 39179) ((-942 . -599) 39161) ((-851 . -101) T) ((-718 . -599) 39143) ((-698 . -599) 39125) ((-1227 . -169) 39076) ((-1220 . -169) 39007) ((-1199 . -169) 38938) ((-681 . -830) T) ((-983 . -284) T) ((-446 . -599) 38920) ((-611 . -709) T) ((-59 . -1076) 38898) ((-240 . -148) 38882) ((-893 . -284) T) ((-1003 . -991) T) ((-611 . -466) T) ((-695 . -1193) 38861) ((-583 . -169) 38840) ((-582 . -169) 38791) ((-1235 . -830) 38770) ((-695 . -544) 38681) ((-401 . -899) T) ((-401 . -803) 38660) ((-313 . -777) T) ((-313 . -709) T) ((-412 . -599) 38642) ((-412 . -600) 38549) ((-627 . -1125) 38533) ((-109 . -633) 38515) ((-171 . -301) T) ((-125 . -303) 38453) ((-109 . -367) 38435) ((-392 . -1189) T) ((-310 . -129) 38306) ((-307 . -129) T) ((-68 . -389) T) ((-109 . -122) T) ((-512 . -482) 38290) ((-636 . -1088) T) ((-580 . -19) 38272) ((-60 . -434) T) ((-60 . -389) T) ((-807 . -1076) T) ((-580 . -590) 38247) ((-470 . -1017) 38207) ((-635 . -1028) T) ((-636 . -23) T) ((-1250 . -1076) T) ((-31 . -101) T) ((-799 . -700) 38056) ((-565 . -840) T) ((-116 . -830) NIL) ((-1148 . -405) 38040) ((-1101 . -405) 38024) ((-834 . -405) 38008) ((-852 . -101) 37959) ((-1219 . -101) T) ((-1199 . -506) 37728) ((-1198 . -101) T) ((-1175 . -303) 37666) ((-517 . -92) T) ((-1150 . -280) 37651) ((-306 . -599) 37633) ((-1149 . -280) 37618) ((-1078 . -1076) T) ((-1056 . -630) 37528) ((-671 . -599) 37460) ((-283 . -709) T) ((-107 . -888) NIL) ((-671 . -600) 37421) ((-587 . -599) 37403) ((-565 . -599) 37385) ((-538 . -600) NIL) ((-538 . -599) 37367) ((-521 . -599) 37349) ((-1143 . -280) 37197) ((-480 . -1034) 37147) ((-694 . -445) T) ((-503 . -501) 37126) ((-499 . -501) 37105) ((-212 . -1034) 37055) ((-353 . -630) 37007) ((-347 . -630) 36959) ((-220 . -828) T) ((-339 . -630) 36911) ((-588 . -101) 36861) ((-475 . -362) 36840) ((-107 . -630) 36790) ((-480 . -110) 36724) ((-235 . -482) 36708) ((-337 . -144) 36690) ((-337 . -142) T) ((-166 . -364) 36661) ((-922 . -1233) 36645) ((-212 . -110) 36579) ((-851 . -303) 36544) ((-922 . -1076) 36494) ((-782 . -600) 36455) ((-782 . -599) 36437) ((-701 . -101) T) ((-325 . -1076) T) ((-1096 . -129) T) ((-697 . -38) 36407) ((-310 . -485) 36386) ((-492 . -1189) T) ((-1219 . -278) 36352) ((-1198 . -278) 36318) ((-321 . -148) 36302) ((-1040 . -282) 36277) ((-1250 . -700) 36247) ((-1135 . -34) T) ((-1259 . -1017) 36224) ((-461 . -599) 36206) ((-477 . -34) T) ((-375 . -1017) 36190) ((-1148 . -1035) T) ((-1101 . -1035) T) ((-834 . -1035) T) ((-1039 . -828) T) ((-799 . -169) 36101) ((-512 . -280) 36078) ((-116 . -971) 36055) ((-1227 . -284) 36034) ((-1170 . -358) 36008) ((-1064 . -260) 35992) ((-653 . -599) 35958) ((-592 . -599) 35908) ((-467 . -101) T) ((-177 . -599) 35874) ((-153 . -599) 35840) ((-151 . -599) 35806) ((-359 . -1076) T) ((-245 . -1076) T) ((-244 . -1076) T) ((-158 . -599) 35772) ((-1220 . -284) 35723) ((-1199 . -284) 35674) ((-851 . -1127) 35652) ((-1150 . -981) 35618) ((-594 . -358) 35558) ((-1149 . -981) 35524) ((-594 . -224) 35471) ((-580 . -599) 35453) ((-580 . -600) NIL) ((-676 . -830) T) ((-468 . -224) 35403) ((-480 . -1028) T) ((-1143 . -981) 35369) ((-87 . -433) T) ((-87 . -389) T) ((-212 . -1028) T) ((-1102 . -981) 35335) ((-1056 . -709) T) ((-695 . -1088) T) ((-583 . -284) 35314) ((-582 . -284) 35293) ((-480 . -238) T) ((-480 . -228) T) ((-212 . -238) T) ((-212 . -228) T) ((-1141 . -599) 35275) ((-851 . -38) 35227) ((-353 . -709) T) ((-347 . -709) T) ((-339 . -709) T) ((-107 . -777) T) ((-107 . -774) T) ((-512 . -1223) 35211) ((-107 . -709) T) ((-695 . -23) T) ((-1263 . -25) T) ((-467 . -278) 35177) ((-1263 . -21) T) ((-1198 . -303) 35116) ((-1152 . -101) T) ((-40 . -142) 35088) ((-40 . -144) 35060) ((-512 . -590) 35037) ((-1089 . -630) 34885) ((-588 . -303) 34823) ((-45 . -633) 34773) ((-45 . -648) 34723) ((-45 . -367) 34673) ((-1134 . -34) T) ((-850 . -828) NIL) ((-636 . -129) T) ((-478 . -599) 34655) ((-235 . -280) 34632) ((-181 . -1076) T) ((-629 . -34) T) ((-616 . -34) T) ((-1063 . -445) 34583) ((-799 . -506) 34457) ((-765 . -445) 34388) ((-763 . -445) 34339) ((-447 . -445) 34290) ((-931 . -405) 34274) ((-714 . -599) 34256) ((-245 . -700) 34198) ((-244 . -700) 34140) ((-714 . -600) 34001) ((-474 . -405) 33985) ((-333 . -296) T) ((-516 . -92) T) ((-345 . -899) T) ((-979 . -101) 33963) ((-1003 . -830) T) ((-59 . -506) 33896) ((-1198 . -1127) 33848) ((-983 . -280) NIL) ((-220 . -1035) T) ((-373 . -811) T) ((-1089 . -34) T) ((-569 . -445) T) ((-510 . -445) T) ((-1202 . -1069) 33832) ((-1202 . -1076) 33810) ((-235 . -590) 33787) ((-1202 . -1071) 33744) ((-1150 . -599) 33726) ((-1149 . -599) 33708) ((-1143 . -599) 33690) ((-1143 . -600) NIL) ((-1102 . -599) 33672) ((-851 . -394) 33656) ((-528 . -101) T) ((-1219 . -38) 33497) ((-1198 . -38) 33311) ((-849 . -144) T) ((-569 . -396) T) ((-48 . -830) T) ((-510 . -396) T) ((-1231 . -101) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1089 . -774) 33290) ((-1089 . -777) 33241) ((-1089 . -776) 33220) ((-972 . -1076) T) ((-1006 . -34) T) ((-842 . -1076) T) ((-1089 . -709) 33130) ((-646 . -101) T) ((-628 . -101) T) ((-538 . -282) 33109) ((-1162 . -101) T) ((-469 . -34) T) ((-456 . -34) T) ((-349 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-258 . -101) T) ((-242 . -101) T) ((-470 . -301) T) ((-1039 . -1035) T) ((-931 . -1035) T) ((-310 . -623) 33015) ((-307 . -623) 32976) ((-474 . -1035) T) ((-472 . -101) T) ((-430 . -599) 32958) ((-1148 . -1076) T) ((-1101 . -1076) T) ((-834 . -1076) T) ((-1117 . -101) T) ((-799 . -284) 32889) ((-942 . -1034) 32772) ((-470 . -1001) T) ((-718 . -1034) 32742) ((-446 . -1034) 32712) ((-1123 . -1097) 32696) ((-1078 . -506) 32629) ((-942 . -110) 32498) ((-889 . -101) T) ((-718 . -110) 32463) ((-517 . -599) 32429) ((-58 . -101) 32379) ((-512 . -600) 32340) ((-512 . -599) 32252) ((-511 . -101) 32230) ((-508 . -101) 32180) ((-489 . -101) 32158) ((-488 . -101) 32108) ((-446 . -110) 32071) ((-245 . -169) 32050) ((-244 . -169) 32029) ((-412 . -1034) 32003) ((-1183 . -952) 31965) ((-978 . -1088) T) ((-922 . -506) 31898) ((-480 . -778) T) ((-467 . -38) 31739) ((-412 . -110) 31706) ((-480 . -775) T) ((-979 . -303) 31644) ((-212 . -778) T) ((-212 . -775) T) ((-978 . -23) T) ((-695 . -129) T) ((-1198 . -394) 31614) ((-310 . -25) 31466) ((-166 . -405) 31450) ((-310 . -21) 31321) ((-307 . -25) T) ((-307 . -21) T) ((-844 . -362) T) ((-109 . -34) T) ((-475 . -630) 31169) ((-850 . -1035) T) ((-580 . -282) 31144) ((-568 . -144) T) ((-552 . -144) T) ((-487 . -144) T) ((-1148 . -700) 30973) ((-1101 . -700) 30822) ((-1096 . -623) 30804) ((-834 . -700) 30774) ((-652 . -1189) T) ((-1 . -101) T) ((-235 . -599) 30505) ((-1091 . -1076) T) ((-1208 . -405) 30489) ((-1162 . -303) 30293) ((-942 . -1028) T) ((-718 . -1028) T) ((-698 . -1028) T) ((-627 . -1076) 30243) ((-1032 . -630) 30227) ((-835 . -405) 30211) ((-503 . -101) T) ((-499 . -101) T) ((-242 . -303) 30198) ((-258 . -303) 30185) ((-942 . -320) 30164) ((-379 . -630) 30148) ((-472 . -303) 29952) ((-245 . -506) 29885) ((-652 . -1017) 29781) ((-244 . -506) 29714) ((-1117 . -303) 29640) ((-802 . -1076) T) ((-782 . -1034) 29624) ((-1227 . -280) 29609) ((-1220 . -280) 29594) ((-1199 . -280) 29442) ((-380 . -1076) T) ((-318 . -1076) T) ((-412 . -1028) T) ((-166 . -1035) T) ((-58 . -303) 29380) ((-782 . -110) 29359) ((-582 . -280) 29344) ((-511 . -303) 29282) ((-508 . -303) 29220) ((-489 . -303) 29158) ((-488 . -303) 29096) ((-412 . -228) 29075) ((-475 . -34) T) ((-983 . -600) 29005) ((-220 . -1076) T) ((-983 . -599) 28987) ((-950 . -599) 28969) ((-950 . -600) 28944) ((-893 . -599) 28926) ((-681 . -144) T) ((-683 . -899) T) ((-683 . -803) T) ((-421 . -599) 28908) ((-1096 . -21) T) ((-1096 . -25) T) ((-652 . -371) 28892) ((-115 . -899) T) ((-851 . -226) 28876) ((-77 . -1189) T) ((-125 . -124) 28860) ((-1032 . -34) T) ((-1257 . -1017) 28834) ((-1255 . -1017) 28791) ((-1208 . -1035) T) ((-835 . -1035) T) ((-475 . -774) 28770) ((-349 . -1127) 28749) ((-346 . -1127) 28728) ((-338 . -1127) 28707) ((-475 . -777) 28658) ((-475 . -776) 28637) ((-222 . -34) T) ((-475 . -709) 28547) ((-59 . -482) 28531) ((-559 . -1035) T) ((-1148 . -169) 28422) ((-1101 . -169) 28333) ((-1039 . -1076) T) ((-1063 . -928) 28278) ((-931 . -1076) T) ((-800 . -630) 28229) ((-765 . -928) 28198) ((-696 . -1076) T) ((-763 . -928) 28165) ((-508 . -276) 28149) ((-652 . -879) 28108) ((-474 . -1076) T) ((-447 . -928) 28075) ((-78 . -1189) T) ((-349 . -38) 28040) ((-346 . -38) 28005) ((-338 . -38) 27970) ((-258 . -38) 27819) ((-242 . -38) 27668) ((-889 . -1127) T) ((-607 . -144) 27647) ((-607 . -142) 27626) ((-516 . -599) 27592) ((-116 . -144) T) ((-116 . -142) NIL) ((-408 . -709) T) ((-782 . -1028) T) ((-337 . -445) T) ((-1227 . -981) 27558) ((-1220 . -981) 27524) ((-1199 . -981) 27490) ((-889 . -38) 27455) ((-220 . -700) 27420) ((-313 . -47) 27390) ((-40 . -403) 27362) ((-137 . -599) 27344) ((-978 . -129) T) ((-798 . -1189) T) ((-171 . -899) T) ((-337 . -396) T) ((-512 . -282) 27321) ((-798 . -1017) 27148) ((-45 . -34) T) ((-663 . -101) T) ((-658 . -101) T) ((-644 . -101) T) ((-636 . -21) T) ((-636 . -25) T) ((-1198 . -226) 27118) ((-1078 . -482) 27102) ((-471 . -101) T) ((-657 . -1189) T) ((-240 . -101) 27052) ((-136 . -101) T) ((-135 . -101) T) ((-131 . -101) T) ((-850 . -1076) T) ((-1154 . -630) 26977) ((-1039 . -700) 26964) ((-714 . -1034) 26807) ((-1148 . -506) 26754) ((-931 . -700) 26603) ((-1101 . -506) 26555) ((-1246 . -1076) T) ((-1245 . -1076) T) ((-474 . -700) 26404) ((-66 . -599) 26386) ((-714 . -110) 26215) ((-922 . -482) 26199) ((-1247 . -630) 26159) ((-800 . -709) T) ((-1150 . -1034) 26042) ((-1149 . -1034) 25877) ((-1143 . -1034) 25667) ((-1102 . -1034) 25550) ((-982 . -1193) T) ((-1070 . -101) 25528) ((-798 . -371) 25497) ((-567 . -599) 25479) ((-982 . -544) T) ((-1150 . -110) 25348) ((-1149 . -110) 25169) ((-1143 . -110) 24938) ((-1102 . -110) 24807) ((-1081 . -1079) 24771) ((-373 . -828) T) ((-1227 . -599) 24753) ((-1220 . -599) 24735) ((-1199 . -599) 24717) ((-1199 . -600) NIL) ((-235 . -282) 24694) ((-40 . -445) T) ((-220 . -169) T) ((-166 . -1076) T) ((-676 . -144) T) ((-676 . -142) NIL) ((-583 . -599) 24676) ((-582 . -599) 24658) ((-877 . -1076) T) ((-821 . -1076) T) ((-791 . -1076) T) ((-752 . -1076) T) ((-640 . -832) 24642) ((-659 . -1076) T) ((-798 . -879) 24574) ((-40 . -396) NIL) ((-1096 . -643) T) ((-850 . -700) 24519) ((-245 . -482) 24503) ((-244 . -482) 24487) ((-695 . -623) 24435) ((-635 . -630) 24409) ((-289 . -34) T) ((-714 . -1028) T) ((-569 . -1242) 24396) ((-510 . -1242) 24373) ((-1208 . -1076) T) ((-1148 . -284) 24284) ((-1101 . -284) 24215) ((-1039 . -169) T) ((-835 . -1076) T) ((-931 . -169) 24126) ((-765 . -1211) 24110) ((-627 . -506) 24043) ((-76 . -599) 24025) ((-714 . -320) 23990) ((-1154 . -709) T) ((-559 . -1076) T) ((-474 . -169) 23901) ((-240 . -303) 23839) ((-1118 . -1088) T) ((-69 . -599) 23821) ((-1247 . -709) T) ((-1150 . -1028) T) ((-1149 . -1028) T) ((-321 . -101) 23771) ((-1143 . -1028) T) ((-1118 . -23) T) ((-1102 . -1028) T) ((-90 . -1097) 23755) ((-845 . -1088) T) ((-1150 . -228) 23714) ((-1149 . -238) 23693) ((-1149 . -228) 23645) ((-1143 . -228) 23532) ((-1143 . -238) 23511) ((-313 . -879) 23417) ((-845 . -23) T) ((-166 . -700) 23245) ((-401 . -1193) T) ((-1077 . -362) T) ((-1003 . -144) T) ((-982 . -357) T) ((-849 . -445) T) ((-922 . -280) 23222) ((-310 . -830) T) ((-307 . -830) NIL) ((-853 . -101) T) ((-695 . -25) T) ((-401 . -544) T) ((-695 . -21) T) ((-348 . -144) 23204) ((-348 . -142) T) ((-1123 . -1076) 23182) ((-446 . -703) T) ((-74 . -599) 23164) ((-113 . -830) T) ((-240 . -276) 23148) ((-235 . -1034) 23045) ((-80 . -599) 23027) ((-718 . -362) 22980) ((-1152 . -811) T) ((-720 . -230) 22964) ((-1135 . -1189) T) ((-138 . -230) 22946) ((-235 . -110) 22836) ((-1208 . -700) 22665) ((-48 . -144) T) ((-850 . -169) T) ((-835 . -700) 22635) ((-477 . -1189) T) ((-931 . -506) 22582) ((-635 . -709) T) ((-559 . -700) 22569) ((-1013 . -1035) T) ((-474 . -506) 22512) ((-922 . -19) 22496) ((-922 . -590) 22473) ((-799 . -600) NIL) ((-799 . -599) 22455) ((-983 . -1034) 22405) ((-407 . -599) 22387) ((-245 . -280) 22364) ((-244 . -280) 22341) ((-480 . -888) NIL) ((-310 . -29) 22311) ((-107 . -1189) T) ((-982 . -1088) T) ((-212 . -888) NIL) ((-893 . -1034) 22263) ((-1056 . -1017) 22159) ((-983 . -110) 22093) ((-720 . -677) 22077) ((-258 . -226) 22061) ((-421 . -1034) 22045) ((-373 . -1035) T) ((-982 . -23) T) ((-893 . -110) 21983) ((-676 . -1177) NIL) ((-480 . -630) 21933) ((-107 . -863) 21915) ((-107 . -865) 21897) ((-676 . -1174) NIL) ((-212 . -630) 21847) ((-353 . -1017) 21831) ((-347 . -1017) 21815) ((-321 . -303) 21753) ((-339 . -1017) 21737) ((-220 . -284) T) ((-421 . -110) 21716) ((-59 . -599) 21648) ((-166 . -169) T) ((-1096 . -830) T) ((-107 . -1017) 21608) ((-871 . -1076) T) ((-817 . -1035) T) ((-810 . -1035) T) ((-676 . -35) NIL) ((-676 . -94) NIL) ((-307 . -971) 21569) ((-180 . -101) T) ((-568 . -445) T) ((-552 . -445) T) ((-487 . -445) T) ((-401 . -357) T) ((-235 . -1028) 21499) ((-1126 . -34) T) ((-470 . -899) T) ((-978 . -623) 21447) ((-245 . -590) 21424) ((-244 . -590) 21401) ((-1056 . -371) 21385) ((-850 . -506) 21293) ((-235 . -228) 21245) ((-1134 . -1189) T) ((-807 . -599) 21227) ((-1258 . -1088) T) ((-1250 . -599) 21209) ((-1208 . -169) 21100) ((-107 . -371) 21082) ((-107 . -332) 21064) ((-1039 . -284) T) ((-931 . -284) 20995) ((-782 . -362) 20974) ((-629 . -1189) T) ((-616 . -1189) T) ((-474 . -284) 20905) ((-559 . -169) T) ((-321 . -276) 20889) ((-1258 . -23) T) ((-1183 . -101) T) ((-1170 . -1076) T) ((-1064 . -1076) T) ((-1052 . -1076) T) ((-82 . -599) 20871) ((-694 . -101) T) ((-349 . -343) 20850) ((-594 . -1076) T) ((-346 . -343) 20829) ((-338 . -343) 20808) ((-468 . -1076) T) ((-1162 . -224) 20758) ((-258 . -247) 20720) ((-1118 . -129) T) ((-594 . -596) 20696) ((-1056 . -879) 20629) ((-983 . -1028) T) ((-893 . -1028) T) ((-468 . -596) 20608) ((-1143 . -775) NIL) ((-1143 . -778) NIL) ((-1078 . -600) 20569) ((-472 . -224) 20519) ((-1078 . -599) 20501) ((-983 . -238) T) ((-983 . -228) T) ((-421 . -1028) T) ((-937 . -1076) 20451) ((-893 . -238) T) ((-845 . -129) T) ((-681 . -445) T) ((-823 . -1088) 20430) ((-107 . -879) NIL) ((-1183 . -278) 20396) ((-851 . -828) 20375) ((-1089 . -1189) T) ((-884 . -709) T) ((-166 . -506) 20287) ((-978 . -25) T) ((-884 . -466) T) ((-401 . -1088) T) ((-480 . -777) T) ((-480 . -774) T) ((-889 . -343) T) ((-480 . -709) T) ((-212 . -777) T) ((-212 . -774) T) ((-978 . -21) T) ((-212 . -709) T) ((-823 . -23) 20239) ((-313 . -301) 20218) ((-1014 . -230) 20164) ((-401 . -23) T) ((-922 . -600) 20125) ((-922 . -599) 20037) ((-627 . -482) 20021) ((-45 . -989) 19971) ((-602 . -946) T) ((-483 . -101) T) ((-325 . -599) 19953) ((-1089 . -1017) 19780) ((-580 . -633) 19762) ((-127 . -1076) T) ((-580 . -367) 19744) ((-337 . -1242) 19721) ((-1006 . -1189) T) ((-850 . -284) T) ((-1208 . -506) 19668) ((-469 . -1189) T) ((-456 . -1189) T) ((-573 . -101) T) ((-1148 . -280) 19595) ((-607 . -445) 19574) ((-979 . -974) 19558) ((-1250 . -376) 19530) ((-509 . -1076) T) ((-116 . -445) T) ((-1169 . -101) T) ((-1068 . -1076) 19508) ((-1013 . -1076) T) ((-1091 . -92) T) ((-872 . -830) T) ((-345 . -1193) T) ((-1227 . -1034) 19391) ((-1089 . -371) 19360) ((-1220 . -1034) 19195) ((-1199 . -1034) 18985) ((-1227 . -110) 18854) ((-1220 . -110) 18675) ((-1199 . -110) 18444) ((-1183 . -303) 18431) ((-345 . -544) T) ((-359 . -599) 18413) ((-283 . -301) T) ((-583 . -1034) 18386) ((-582 . -1034) 18269) ((-355 . -1076) T) ((-316 . -1076) T) ((-245 . -599) 18230) ((-244 . -599) 18191) ((-982 . -129) T) ((-619 . -23) T) ((-676 . -403) 18158) ((-593 . -23) T) ((-640 . -101) T) ((-583 . -110) 18129) ((-582 . -110) 17998) ((-373 . -1076) T) ((-330 . -101) T) ((-166 . -284) 17909) ((-1198 . -828) 17862) ((-697 . -1035) T) ((-1123 . -506) 17795) ((-1089 . -879) 17727) ((-817 . -1076) T) ((-810 . -1076) T) ((-808 . -1076) T) ((-96 . -101) T) ((-141 . -830) T) ((-598 . -863) 17711) ((-109 . -1189) T) ((-1063 . -101) T) ((-1040 . -34) T) ((-765 . -101) T) ((-763 . -101) T) ((-454 . -101) T) ((-447 . -101) T) ((-235 . -778) 17662) ((-235 . -775) 17613) ((-631 . -101) T) ((-1208 . -284) 17524) ((-646 . -618) 17508) ((-181 . -599) 17490) ((-627 . -280) 17467) ((-1013 . -700) 17451) ((-559 . -284) T) ((-942 . -630) 17376) ((-1258 . -129) T) ((-718 . -630) 17336) ((-698 . -630) 17323) ((-269 . -101) T) ((-446 . -630) 17253) ((-50 . -101) T) ((-569 . -101) T) ((-510 . -101) T) ((-1227 . -1028) T) ((-1220 . -1028) T) ((-1199 . -1028) T) ((-1227 . -228) 17212) ((-316 . -700) 17194) ((-1220 . -238) 17173) ((-1220 . -228) 17125) ((-1199 . -228) 17012) ((-1199 . -238) 16991) ((-1183 . -38) 16888) ((-983 . -778) T) ((-583 . -1028) T) ((-582 . -1028) T) ((-983 . -775) T) ((-950 . -778) T) ((-950 . -775) T) ((-851 . -1035) T) ((-849 . -848) 16872) ((-108 . -599) 16854) ((-676 . -445) T) ((-373 . -700) 16819) ((-412 . -630) 16793) ((-695 . -830) 16772) ((-694 . -38) 16737) ((-582 . -228) 16696) ((-40 . -707) 16668) ((-345 . -323) 16645) ((-345 . -357) T) ((-1056 . -301) 16596) ((-288 . -1088) 16477) ((-1082 . -1189) T) ((-168 . -101) T) ((-1202 . -599) 16444) ((-823 . -129) 16396) ((-627 . -1223) 16380) ((-817 . -700) 16350) ((-810 . -700) 16320) ((-475 . -1189) T) ((-353 . -301) T) ((-347 . -301) T) ((-339 . -301) T) ((-627 . -590) 16297) ((-401 . -129) T) ((-512 . -648) 16281) ((-107 . -301) T) ((-288 . -23) 16164) ((-512 . -633) 16148) ((-676 . -396) NIL) ((-512 . -367) 16132) ((-285 . -599) 16114) ((-90 . -1076) 16092) ((-107 . -1001) T) ((-552 . -140) T) ((-1235 . -148) 16076) ((-475 . -1017) 15903) ((-1221 . -142) 15864) ((-1221 . -144) 15825) ((-1032 . -1189) T) ((-972 . -599) 15807) ((-842 . -599) 15789) ((-799 . -1034) 15632) ((-1246 . -92) T) ((-1245 . -92) T) ((-1072 . -1076) T) ((-1066 . -1076) T) ((-1063 . -303) 15619) ((-1050 . -1076) T) ((-222 . -1189) T) ((-1043 . -1076) T) ((-1015 . -1076) T) ((-998 . -1076) T) ((-765 . -303) 15606) ((-763 . -303) 15593) ((-1148 . -600) NIL) ((-799 . -110) 15422) ((-1148 . -599) 15404) ((-610 . -1076) T) ((-565 . -170) T) ((-521 . -170) T) ((-447 . -303) 15391) ((-476 . -1076) T) ((-1101 . -599) 15373) ((-1101 . -600) 15121) ((-1013 . -169) T) ((-213 . -1076) T) ((-834 . -599) 15103) ((-922 . -282) 15080) ((-594 . -506) 14863) ((-801 . -1017) 14847) ((-468 . -506) 14639) ((-942 . -709) T) ((-718 . -709) T) ((-698 . -709) T) ((-345 . -1088) T) ((-1155 . -599) 14621) ((-218 . -101) T) ((-475 . -371) 14590) ((-507 . -1076) T) ((-502 . -1076) T) ((-500 . -1076) T) ((-782 . -630) 14564) ((-1003 . -445) T) ((-937 . -506) 14497) ((-345 . -23) T) ((-619 . -129) T) ((-593 . -129) T) ((-348 . -445) T) ((-235 . -362) 14476) ((-373 . -169) T) ((-1219 . -1035) T) ((-1198 . -1035) T) ((-220 . -981) T) ((-681 . -381) T) ((-412 . -709) T) ((-683 . -1193) T) ((-1118 . -623) 14424) ((-568 . -848) 14408) ((-1135 . -1165) 14384) ((-683 . -544) T) ((-125 . -1076) 14362) ((-1250 . -1034) 14346) ((-697 . -1076) T) ((-475 . -879) 14278) ((-182 . -1076) T) ((-640 . -38) 14248) ((-348 . -396) T) ((-310 . -144) 14227) ((-310 . -142) 14206) ((-127 . -506) NIL) ((-115 . -544) T) ((-307 . -144) 14162) ((-307 . -142) 14118) ((-48 . -445) T) ((-159 . -1076) T) ((-154 . -1076) T) ((-1135 . -106) 14065) ((-765 . -1127) 14043) ((-671 . -34) T) ((-1250 . -110) 14022) ((-538 . -34) T) ((-477 . -106) 14006) ((-245 . -282) 13983) ((-244 . -282) 13960) ((-850 . -280) 13911) ((-45 . -1189) T) ((-799 . -1028) T) ((-1154 . -47) 13888) ((-799 . -320) 13850) ((-1063 . -38) 13699) ((-799 . -228) 13678) ((-765 . -38) 13507) ((-763 . -38) 13356) ((-447 . -38) 13205) ((-1091 . -599) 13171) ((-1094 . -101) T) ((-627 . -600) 13132) ((-627 . -599) 13044) ((-569 . -1127) T) ((-510 . -1127) T) ((-1123 . -482) 13028) ((-1175 . -1076) 13006) ((-1118 . -25) T) ((-1118 . -21) T) ((-467 . -1035) T) ((-1199 . -775) NIL) ((-1199 . -778) NIL) ((-978 . -830) 12985) ((-802 . -599) 12967) ((-845 . -21) T) ((-845 . -25) T) ((-782 . -709) T) ((-171 . -1193) T) ((-569 . -38) 12932) ((-510 . -38) 12897) ((-380 . -599) 12879) ((-318 . -599) 12861) ((-166 . -280) 12819) ((-62 . -1189) T) ((-111 . -101) T) ((-851 . -1076) T) ((-171 . -544) T) ((-697 . -700) 12789) ((-288 . -129) 12672) ((-220 . -599) 12654) ((-220 . -600) 12584) ((-982 . -623) 12523) ((-1250 . -1028) T) ((-1096 . -144) T) ((-616 . -1165) 12498) ((-714 . -888) 12477) ((-580 . -34) T) ((-629 . -106) 12461) ((-616 . -106) 12407) ((-1208 . -280) 12334) ((-714 . -630) 12259) ((-289 . -1189) T) ((-1154 . -1017) 12155) ((-565 . -564) T) ((-565 . -519) T) ((-521 . -519) T) ((-1143 . -888) NIL) ((-1039 . -600) 12070) ((-1039 . -599) 12052) ((-931 . -599) 12034) ((-337 . -101) T) ((-244 . -1034) 11931) ((-245 . -1034) 11828) ((-388 . -101) T) ((-31 . -1076) T) ((-931 . -600) 11689) ((-696 . -599) 11671) ((-1248 . -1182) 11640) ((-474 . -599) 11622) ((-474 . -600) 11483) ((-242 . -405) 11467) ((-258 . -405) 11451) ((-244 . -110) 11341) ((-245 . -110) 11231) ((-1150 . -630) 11156) ((-1149 . -630) 11053) ((-1143 . -630) 10905) ((-1102 . -630) 10830) ((-345 . -129) T) ((-81 . -434) T) ((-81 . -389) T) ((-982 . -25) T) ((-982 . -21) T) ((-852 . -1076) 10781) ((-851 . -700) 10733) ((-373 . -284) T) ((-166 . -981) 10685) ((-676 . -381) T) ((-978 . -976) 10669) ((-683 . -1088) T) ((-676 . -163) 10651) ((-1219 . -1076) T) ((-1198 . -1076) T) ((-310 . -1174) 10630) ((-310 . -1177) 10609) ((-1140 . -101) T) ((-310 . -938) 10588) ((-132 . -1088) T) ((-115 . -1088) T) ((-588 . -1233) 10572) ((-683 . -23) T) ((-588 . -1076) 10522) ((-90 . -506) 10455) ((-171 . -357) T) ((-310 . -94) 10434) ((-310 . -35) 10413) ((-594 . -482) 10347) ((-132 . -23) T) ((-115 . -23) T) ((-945 . -101) T) ((-701 . -1076) T) ((-468 . -482) 10284) ((-401 . -623) 10232) ((-635 . -1017) 10128) ((-937 . -482) 10112) ((-349 . -1035) T) ((-346 . -1035) T) ((-338 . -1035) T) ((-258 . -1035) T) ((-242 . -1035) T) ((-850 . -600) NIL) ((-850 . -599) 10094) ((-1258 . -21) T) ((-1246 . -599) 10060) ((-1245 . -599) 10026) ((-559 . -981) T) ((-714 . -709) T) ((-1258 . -25) T) ((-245 . -1028) 9956) ((-244 . -1028) 9886) ((-71 . -1189) T) ((-245 . -228) 9838) ((-244 . -228) 9790) ((-40 . -101) T) ((-889 . -1035) T) ((-127 . -482) 9772) ((-1157 . -101) T) ((-1150 . -709) T) ((-1149 . -709) T) ((-1143 . -709) T) ((-1143 . -774) NIL) ((-1143 . -777) NIL) ((-933 . -101) T) ((-900 . -101) T) ((-1102 . -709) T) ((-754 . -101) T) ((-654 . -101) T) ((-467 . -1076) T) ((-333 . -1088) T) ((-171 . -1088) T) ((-313 . -899) 9751) ((-1219 . -700) 9592) ((-851 . -169) T) ((-1198 . -700) 9406) ((-823 . -21) 9358) ((-823 . -25) 9310) ((-240 . -1125) 9294) ((-125 . -506) 9227) ((-401 . -25) T) ((-401 . -21) T) ((-333 . -23) T) ((-166 . -600) 8993) ((-166 . -599) 8975) ((-171 . -23) T) ((-627 . -282) 8952) ((-512 . -34) T) ((-877 . -599) 8934) ((-88 . -1189) T) ((-821 . -599) 8916) ((-791 . -599) 8898) ((-752 . -599) 8880) ((-659 . -599) 8862) ((-235 . -630) 8710) ((-1152 . -1076) T) ((-1148 . -1034) 8533) ((-1126 . -1189) T) ((-1101 . -1034) 8376) ((-834 . -1034) 8360) ((-1148 . -110) 8169) ((-1101 . -110) 7998) ((-834 . -110) 7977) ((-1208 . -600) NIL) ((-1208 . -599) 7959) ((-337 . -1127) T) ((-835 . -599) 7941) ((-1052 . -280) 7920) ((-79 . -1189) T) ((-983 . -888) NIL) ((-594 . -280) 7896) ((-1175 . -506) 7829) ((-480 . -1189) T) ((-559 . -599) 7811) ((-468 . -280) 7790) ((-509 . -92) T) ((-212 . -1189) T) ((-1063 . -226) 7774) ((-283 . -899) T) ((-800 . -301) 7753) ((-849 . -101) T) ((-765 . -226) 7737) ((-983 . -630) 7687) ((-937 . -280) 7664) ((-893 . -630) 7616) ((-619 . -21) T) ((-619 . -25) T) ((-593 . -21) T) ((-337 . -38) 7581) ((-676 . -707) 7548) ((-480 . -863) 7530) ((-480 . -865) 7512) ((-467 . -700) 7353) ((-212 . -863) 7335) ((-63 . -1189) T) ((-212 . -865) 7317) ((-593 . -25) T) ((-421 . -630) 7291) ((-480 . -1017) 7251) ((-851 . -506) 7163) ((-212 . -1017) 7123) ((-235 . -34) T) ((-979 . -1076) 7101) ((-1219 . -169) 7032) ((-1198 . -169) 6963) ((-695 . -142) 6942) ((-695 . -144) 6921) ((-683 . -129) T) ((-134 . -458) 6898) ((-1123 . -599) 6830) ((-640 . -638) 6814) ((-127 . -280) 6789) ((-115 . -129) T) ((-470 . -1193) T) ((-594 . -590) 6765) ((-468 . -590) 6744) ((-330 . -329) 6713) ((-528 . -1076) T) ((-470 . -544) T) ((-1148 . -1028) T) ((-1101 . -1028) T) ((-834 . -1028) T) ((-235 . -774) 6692) ((-235 . -777) 6643) ((-235 . -776) 6622) ((-1148 . -320) 6599) ((-235 . -709) 6509) ((-937 . -19) 6493) ((-480 . -371) 6475) ((-480 . -332) 6457) ((-1101 . -320) 6429) ((-348 . -1242) 6406) ((-212 . -371) 6388) ((-212 . -332) 6370) ((-937 . -590) 6347) ((-1148 . -228) T) ((-646 . -1076) T) ((-628 . -1076) T) ((-1231 . -1076) T) ((-1162 . -1076) T) ((-1063 . -247) 6284) ((-349 . -1076) T) ((-346 . -1076) T) ((-338 . -1076) T) ((-258 . -1076) T) ((-242 . -1076) T) ((-83 . -1189) T) ((-126 . -101) 6262) ((-120 . -101) 6240) ((-1162 . -596) 6219) ((-472 . -1076) T) ((-1117 . -1076) T) ((-472 . -596) 6198) ((-245 . -778) 6149) ((-245 . -775) 6100) ((-244 . -778) 6051) ((-40 . -1127) NIL) ((-244 . -775) 6002) ((-127 . -19) 5984) ((-1056 . -899) 5935) ((-983 . -777) T) ((-983 . -774) T) ((-983 . -709) T) ((-950 . -777) T) ((-127 . -590) 5910) ((-893 . -709) T) ((-90 . -482) 5894) ((-480 . -879) NIL) ((-889 . -1076) T) ((-220 . -1034) 5859) ((-851 . -284) T) ((-212 . -879) NIL) ((-816 . -1088) 5838) ((-58 . -1076) 5788) ((-511 . -1076) 5766) ((-508 . -1076) 5716) ((-489 . -1076) 5694) ((-488 . -1076) 5644) ((-568 . -101) T) ((-552 . -101) T) ((-487 . -101) T) ((-467 . -169) 5575) ((-353 . -899) T) ((-347 . -899) T) ((-339 . -899) T) ((-220 . -110) 5531) ((-816 . -23) 5483) ((-421 . -709) T) ((-107 . -899) T) ((-40 . -38) 5428) ((-107 . -803) T) ((-569 . -343) T) ((-510 . -343) T) ((-1198 . -506) 5288) ((-310 . -445) 5267) ((-307 . -445) T) ((-817 . -280) 5246) ((-333 . -129) T) ((-171 . -129) T) ((-288 . -25) 5110) ((-288 . -21) 4993) ((-45 . -1165) 4972) ((-65 . -599) 4954) ((-871 . -599) 4936) ((-588 . -506) 4869) ((-45 . -106) 4819) ((-1078 . -419) 4803) ((-1078 . -362) 4782) ((-1040 . -1189) T) ((-1039 . -1034) 4769) ((-931 . -1034) 4612) ((-1236 . -101) T) ((-1235 . -101) 4562) ((-474 . -1034) 4405) ((-646 . -700) 4389) ((-1039 . -110) 4374) ((-931 . -110) 4203) ((-470 . -357) T) ((-349 . -700) 4155) ((-346 . -700) 4107) ((-338 . -700) 4059) ((-258 . -700) 3908) ((-242 . -700) 3757) ((-1227 . -630) 3682) ((-1199 . -888) NIL) ((-1072 . -92) T) ((-1066 . -92) T) ((-922 . -633) 3666) ((-1050 . -92) T) ((-474 . -110) 3495) ((-1043 . -92) T) ((-1015 . -92) T) ((-922 . -367) 3479) ((-243 . -101) T) ((-998 . -92) T) ((-73 . -599) 3461) ((-942 . -47) 3440) ((-605 . -1088) T) ((-1 . -1076) T) ((-693 . -101) T) ((-681 . -101) T) ((-1220 . -630) 3337) ((-610 . -92) T) ((-1170 . -599) 3319) ((-1064 . -599) 3301) ((-125 . -482) 3285) ((-476 . -92) T) ((-1052 . -599) 3267) ((-384 . -23) T) ((-86 . -1189) T) ((-213 . -92) T) ((-1199 . -630) 3119) ((-889 . -700) 3084) ((-605 . -23) T) ((-594 . -599) 3066) ((-594 . -600) NIL) ((-468 . -600) NIL) ((-468 . -599) 3048) ((-503 . -1076) T) ((-499 . -1076) T) ((-345 . -25) T) ((-345 . -21) T) ((-126 . -303) 2986) ((-120 . -303) 2924) ((-583 . -630) 2911) ((-220 . -1028) T) ((-582 . -630) 2836) ((-373 . -981) T) ((-220 . -238) T) ((-220 . -228) T) ((-937 . -600) 2797) ((-937 . -599) 2709) ((-849 . -38) 2696) ((-1219 . -284) 2647) ((-1198 . -284) 2598) ((-1096 . -445) T) ((-494 . -830) T) ((-310 . -1115) 2577) ((-978 . -144) 2556) ((-978 . -142) 2535) ((-487 . -303) 2522) ((-289 . -1165) 2501) ((-470 . -1088) T) ((-850 . -1034) 2446) ((-607 . -101) T) ((-1175 . -482) 2430) ((-245 . -362) 2409) ((-244 . -362) 2388) ((-1039 . -1028) T) ((-289 . -106) 2338) ((-127 . -600) NIL) ((-127 . -599) 2304) ((-116 . -101) T) ((-931 . -1028) T) ((-850 . -110) 2233) ((-470 . -23) T) ((-474 . -1028) T) ((-1039 . -228) T) ((-931 . -320) 2202) ((-474 . -320) 2159) ((-349 . -169) T) ((-346 . -169) T) ((-338 . -169) T) ((-258 . -169) 2070) ((-242 . -169) 1981) ((-942 . -1017) 1877) ((-718 . -1017) 1848) ((-509 . -599) 1814) ((-1081 . -101) T) ((-1068 . -599) 1781) ((-1013 . -599) 1763) ((-1227 . -709) T) ((-1220 . -709) T) ((-1199 . -774) NIL) ((-166 . -1034) 1673) ((-1199 . -777) NIL) ((-889 . -169) T) ((-1199 . -709) T) ((-1248 . -148) 1657) ((-982 . -336) 1631) ((-979 . -506) 1564) ((-823 . -830) 1543) ((-552 . -1127) T) ((-467 . -284) 1494) ((-583 . -709) T) ((-355 . -599) 1476) ((-316 . -599) 1458) ((-412 . -1017) 1354) ((-582 . -709) T) ((-401 . -830) 1305) ((-166 . -110) 1201) ((-816 . -129) 1153) ((-720 . -148) 1137) ((-1235 . -303) 1075) ((-480 . -301) T) ((-373 . -599) 1042) ((-512 . -989) 1026) ((-373 . -600) 940) ((-212 . -301) T) ((-138 . -148) 922) ((-697 . -280) 901) ((-480 . -1001) T) ((-568 . -38) 888) ((-552 . -38) 875) ((-487 . -38) 840) ((-212 . -1001) T) ((-850 . -1028) T) ((-817 . -599) 822) ((-810 . -599) 804) ((-808 . -599) 786) ((-799 . -888) 765) ((-1259 . -1088) T) ((-1208 . -1034) 588) ((-835 . -1034) 572) ((-850 . -238) T) ((-850 . -228) NIL) ((-671 . -1189) T) ((-1259 . -23) T) ((-799 . -630) 497) ((-538 . -1189) T) ((-412 . -332) 481) ((-559 . -1034) 468) ((-1208 . -110) 277) ((-683 . -623) 259) ((-835 . -110) 238) ((-375 . -23) T) ((-1162 . -506) 30) ((-644 . -1076) T) ((-663 . -1076) T) ((-658 . -1076) T))
\ No newline at end of file +(((-471 . -1078) T) ((-258 . -506) 145102) ((-242 . -506) 145045) ((-240 . -1078) 144995) ((-559 . -110) 144980) ((-523 . -23) T) ((-136 . -1078) T) ((-135 . -1078) T) ((-116 . -303) 144937) ((-131 . -1078) T) ((-472 . -506) 144729) ((-678 . -101) T) ((-1119 . -506) 144648) ((-384 . -129) T) ((-1250 . -957) 144617) ((-31 . -92) T) ((-588 . -482) 144601) ((-607 . -129) T) ((-804 . -828) T) ((-515 . -56) 144551) ((-58 . -506) 144484) ((-511 . -506) 144417) ((-412 . -881) 144376) ((-166 . -1030) T) ((-508 . -506) 144309) ((-489 . -506) 144242) ((-488 . -506) 144175) ((-784 . -1019) 143958) ((-683 . -38) 143923) ((-337 . -343) T) ((-1072 . -1071) 143907) ((-1072 . -1078) 143885) ((-166 . -238) 143836) ((-166 . -228) 143787) ((-1072 . -1073) 143745) ((-853 . -280) 143703) ((-220 . -780) T) ((-220 . -777) T) ((-678 . -278) NIL) ((-1128 . -1167) 143682) ((-401 . -973) 143666) ((-685 . -21) T) ((-685 . -25) T) ((-1252 . -632) 143640) ((-310 . -157) 143619) ((-310 . -140) 143598) ((-1128 . -106) 143548) ((-132 . -25) T) ((-40 . -226) 143525) ((-115 . -21) T) ((-115 . -25) T) ((-594 . -282) 143501) ((-468 . -282) 143480) ((-1210 . -1030) T) ((-837 . -1030) T) ((-784 . -332) 143464) ((-116 . -1129) NIL) ((-90 . -599) 143396) ((-470 . -129) T) ((-580 . -1191) T) ((-1210 . -320) 143373) ((-559 . -1030) T) ((-1210 . -228) T) ((-646 . -702) 143357) ((-1074 . -599) 143323) ((-939 . -282) 143300) ((-59 . -34) T) ((-1068 . -599) 143266) ((-1052 . -599) 143232) ((-1041 . -780) T) ((-1041 . -777) T) ((-801 . -711) T) ((-716 . -47) 143197) ((-609 . -38) 143184) ((-349 . -284) T) ((-346 . -284) T) ((-338 . -284) T) ((-258 . -284) 143115) ((-242 . -284) 143046) ((-1045 . -599) 143012) ((-1017 . -599) 142978) ((-1005 . -101) T) ((-1000 . -599) 142944) ((-407 . -711) T) ((-116 . -38) 142889) ((-612 . -599) 142855) ((-407 . -466) T) ((-476 . -599) 142821) ((-348 . -101) T) ((-213 . -599) 142787) ((-1185 . -1037) T) ((-696 . -1037) T) ((-1152 . -47) 142764) ((-1151 . -47) 142734) ((-1145 . -47) 142711) ((-127 . -282) 142686) ((-1016 . -148) 142632) ((-891 . -284) T) ((-1104 . -47) 142604) ((-678 . -303) NIL) ((-507 . -599) 142586) ((-502 . -599) 142568) ((-500 . -599) 142550) ((-321 . -1078) 142500) ((-697 . -445) 142431) ((-48 . -101) T) ((-1221 . -280) 142416) ((-1200 . -280) 142336) ((-629 . -650) 142320) ((-629 . -635) 142304) ((-333 . -21) T) ((-333 . -25) T) ((-40 . -343) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-629 . -367) 142288) ((-588 . -280) 142265) ((-591 . -599) 142232) ((-382 . -101) T) ((-1098 . -140) T) ((-125 . -599) 142164) ((-855 . -1078) T) ((-642 . -405) 142148) ((-699 . -599) 142130) ((-182 . -599) 142112) ((-154 . -599) 142094) ((-159 . -599) 142076) ((-1252 . -711) T) ((-1080 . -34) T) ((-852 . -780) NIL) ((-852 . -777) NIL) ((-840 . -832) T) ((-716 . -867) NIL) ((-1261 . -129) T) ((-375 . -129) T) ((-885 . -101) T) ((-716 . -1019) 141952) ((-523 . -129) T) ((-1065 . -405) 141936) ((-981 . -482) 141920) ((-116 . -394) 141897) ((-1145 . -1191) 141876) ((-767 . -405) 141860) ((-765 . -405) 141844) ((-924 . -34) T) ((-678 . -1129) NIL) ((-245 . -632) 141679) ((-244 . -632) 141501) ((-802 . -901) 141480) ((-447 . -405) 141464) ((-588 . -19) 141448) ((-1124 . -1184) 141417) ((-1145 . -867) NIL) ((-1145 . -865) 141369) ((-588 . -590) 141346) ((-1177 . -599) 141278) ((-1153 . -599) 141260) ((-61 . -389) T) ((-1151 . -1019) 141195) ((-1145 . -1019) 141161) ((-678 . -38) 141111) ((-467 . -280) 141096) ((-716 . -371) 141080) ((-642 . -1037) T) ((-1221 . -983) 141046) ((-1200 . -983) 141012) ((-1042 . -1167) 140987) ((-853 . -600) 140794) ((-853 . -599) 140776) ((-1164 . -482) 140713) ((-412 . -1003) 140691) ((-48 . -303) 140678) ((-1042 . -106) 140624) ((-472 . -482) 140561) ((-512 . -1191) T) ((-1145 . -332) 140513) ((-1119 . -482) 140484) ((-1145 . -371) 140436) ((-1065 . -1037) T) ((-431 . -101) T) ((-180 . -1078) T) ((-245 . -34) T) ((-244 . -34) T) ((-767 . -1037) T) ((-765 . -1037) T) ((-716 . -881) 140413) ((-447 . -1037) T) ((-58 . -482) 140397) ((-1015 . -1036) 140371) ((-511 . -482) 140355) ((-508 . -482) 140339) ((-489 . -482) 140323) ((-488 . -482) 140307) ((-240 . -506) 140240) ((-1015 . -110) 140207) ((-1152 . -881) 140120) ((-1151 . -881) 140026) ((-1145 . -881) 139859) ((-654 . -1090) T) ((-1104 . -881) 139843) ((-630 . -92) T) ((-348 . -1129) T) ((-316 . -1036) 139825) ((-245 . -776) 139804) ((-245 . -779) 139755) ((-245 . -778) 139734) ((-244 . -776) 139713) ((-244 . -779) 139664) ((-244 . -778) 139643) ((-31 . -599) 139609) ((-50 . -1037) T) ((-245 . -711) 139519) ((-244 . -711) 139429) ((-1185 . -1078) T) ((-654 . -23) T) ((-569 . -1037) T) ((-510 . -1037) T) ((-373 . -1036) 139394) ((-316 . -110) 139369) ((-72 . -377) T) ((-72 . -389) T) ((-1005 . -38) 139306) ((-678 . -394) 139288) ((-98 . -101) T) ((-696 . -1078) T) ((-984 . -142) 139260) ((-984 . -144) 139232) ((-373 . -110) 139188) ((-313 . -1195) 139167) ((-467 . -983) 139133) ((-348 . -38) 139098) ((-40 . -364) 139070) ((-854 . -599) 138942) ((-126 . -124) 138926) ((-120 . -124) 138910) ((-819 . -1036) 138880) ((-818 . -21) 138832) ((-812 . -1036) 138816) ((-818 . -25) 138768) ((-313 . -544) 138719) ((-552 . -813) T) ((-235 . -1191) T) ((-819 . -110) 138684) ((-812 . -110) 138663) ((-1221 . -599) 138645) ((-1200 . -599) 138627) ((-1200 . -600) 138298) ((-1150 . -890) 138277) ((-1103 . -890) 138256) ((-48 . -38) 138221) ((-1259 . -1090) T) ((-588 . -599) 138133) ((-588 . -600) 138094) ((-1257 . -1090) T) ((-235 . -1019) 137921) ((-1150 . -632) 137846) ((-1103 . -632) 137771) ((-703 . -599) 137753) ((-836 . -632) 137727) ((-483 . -1078) T) ((-1259 . -23) T) ((-1257 . -23) T) ((-1015 . -1030) T) ((-1164 . -280) 137706) ((-166 . -362) 137657) ((-985 . -1191) T) ((-44 . -23) T) ((-472 . -280) 137636) ((-573 . -1078) T) ((-1124 . -1087) 137605) ((-1082 . -1081) 137557) ((-384 . -21) T) ((-384 . -25) T) ((-149 . -1090) T) ((-1265 . -101) T) ((-985 . -865) 137539) ((-985 . -867) 137521) ((-1185 . -702) 137418) ((-609 . -226) 137402) ((-607 . -21) T) ((-283 . -544) T) ((-607 . -25) T) ((-1171 . -1078) T) ((-696 . -702) 137367) ((-235 . -371) 137336) ((-985 . -1019) 137296) ((-373 . -1030) T) ((-218 . -1037) T) ((-116 . -226) 137273) ((-58 . -280) 137250) ((-149 . -23) T) ((-508 . -280) 137227) ((-321 . -506) 137160) ((-488 . -280) 137137) ((-373 . -238) T) ((-373 . -228) T) ((-819 . -1030) T) ((-812 . -1030) T) ((-697 . -930) 137106) ((-685 . -832) T) ((-467 . -599) 137088) ((-812 . -228) 137067) ((-132 . -832) T) ((-642 . -1078) T) ((-1164 . -590) 137046) ((-538 . -1167) 137025) ((-330 . -1078) T) ((-313 . -357) 137004) ((-401 . -144) 136983) ((-401 . -142) 136962) ((-945 . -1090) 136861) ((-235 . -881) 136793) ((-800 . -1090) 136703) ((-638 . -834) 136687) ((-472 . -590) 136666) ((-538 . -106) 136616) ((-985 . -371) 136598) ((-985 . -332) 136580) ((-96 . -1078) T) ((-945 . -23) 136391) ((-470 . -21) T) ((-470 . -25) T) ((-800 . -23) 136261) ((-1154 . -599) 136243) ((-58 . -19) 136227) ((-1154 . -600) 136149) ((-1150 . -711) T) ((-1103 . -711) T) ((-508 . -19) 136133) ((-488 . -19) 136117) ((-58 . -590) 136094) ((-1065 . -1078) T) ((-882 . -101) 136072) ((-836 . -711) T) ((-767 . -1078) T) ((-508 . -590) 136049) ((-488 . -590) 136026) ((-765 . -1078) T) ((-765 . -1044) 135993) ((-454 . -1078) T) ((-447 . -1078) T) ((-573 . -702) 135968) ((-633 . -1078) T) ((-985 . -881) NIL) ((-1229 . -47) 135945) ((-613 . -1090) T) ((-654 . -129) T) ((-1223 . -101) T) ((-1222 . -47) 135915) ((-1201 . -47) 135892) ((-1185 . -169) 135843) ((-1058 . -1195) 135794) ((-269 . -1078) T) ((-84 . -434) T) ((-84 . -389) T) ((-1151 . -301) 135773) ((-1145 . -301) 135752) ((-50 . -1078) T) ((-1058 . -544) 135703) ((-696 . -169) T) ((-582 . -47) 135680) ((-220 . -632) 135645) ((-569 . -1078) T) ((-510 . -1078) T) ((-353 . -1195) T) ((-347 . -1195) T) ((-339 . -1195) T) ((-480 . -805) T) ((-480 . -901) T) ((-313 . -1090) T) ((-107 . -1195) T) ((-333 . -832) T) ((-212 . -901) T) ((-212 . -805) T) ((-699 . -1036) 135615) ((-353 . -544) T) ((-347 . -544) T) ((-339 . -544) T) ((-107 . -544) T) ((-642 . -702) 135585) ((-1145 . -1003) NIL) ((-313 . -23) T) ((-66 . -1191) T) ((-981 . -599) 135517) ((-678 . -226) 135499) ((-699 . -110) 135464) ((-629 . -34) T) ((-240 . -482) 135448) ((-1080 . -1076) 135432) ((-168 . -1078) T) ((-933 . -890) 135411) ((-474 . -890) 135390) ((-1265 . -1129) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-1259 . -129) T) ((-1257 . -129) T) ((-1065 . -702) 135239) ((-1041 . -632) 135226) ((-933 . -632) 135151) ((-767 . -702) 134980) ((-528 . -599) 134962) ((-528 . -600) 134943) ((-765 . -702) 134792) ((-1250 . -101) T) ((-1055 . -101) T) ((-375 . -25) T) ((-375 . -21) T) ((-474 . -632) 134717) ((-454 . -702) 134688) ((-447 . -702) 134537) ((-968 . -101) T) ((-1233 . -599) 134503) ((-1222 . -1019) 134438) ((-1201 . -1191) 134417) ((-722 . -101) T) ((-1201 . -867) NIL) ((-1201 . -865) 134369) ((-1164 . -600) NIL) ((-1164 . -599) 134351) ((-523 . -25) T) ((-1120 . -1101) 134296) ((-1027 . -1184) 134225) ((-882 . -303) 134163) ((-337 . -1037) T) ((-138 . -101) T) ((-44 . -129) T) ((-283 . -1090) T) ((-665 . -92) T) ((-660 . -92) T) ((-648 . -599) 134145) ((-630 . -599) 134098) ((-471 . -92) T) ((-349 . -599) 134080) ((-346 . -599) 134062) ((-338 . -599) 134044) ((-258 . -600) 133792) ((-258 . -599) 133774) ((-242 . -599) 133756) ((-242 . -600) 133617) ((-136 . -92) T) ((-135 . -92) T) ((-131 . -92) T) ((-1201 . -1019) 133583) ((-1185 . -506) 133550) ((-1119 . -599) 133532) ((-804 . -839) T) ((-804 . -711) T) ((-588 . -282) 133509) ((-569 . -702) 133474) ((-472 . -600) NIL) ((-472 . -599) 133456) ((-510 . -702) 133401) ((-310 . -101) T) ((-307 . -101) T) ((-283 . -23) T) ((-149 . -129) T) ((-380 . -711) T) ((-853 . -1036) 133353) ((-891 . -599) 133335) ((-891 . -600) 133317) ((-853 . -110) 133255) ((-134 . -101) T) ((-113 . -101) T) ((-697 . -1213) 133239) ((-699 . -1030) T) ((-678 . -343) NIL) ((-511 . -599) 133171) ((-373 . -780) T) ((-218 . -1078) T) ((-373 . -777) T) ((-220 . -779) T) ((-220 . -776) T) ((-58 . -600) 133132) ((-58 . -599) 133044) ((-220 . -711) T) ((-508 . -600) 133005) ((-508 . -599) 132917) ((-489 . -599) 132849) ((-488 . -600) 132810) ((-488 . -599) 132722) ((-1058 . -357) 132673) ((-40 . -405) 132650) ((-76 . -1191) T) ((-852 . -890) NIL) ((-353 . -323) 132634) ((-353 . -357) T) ((-347 . -323) 132618) ((-347 . -357) T) ((-339 . -323) 132602) ((-339 . -357) T) ((-310 . -278) 132581) ((-107 . -357) T) ((-69 . -1191) T) ((-1201 . -332) 132533) ((-852 . -632) 132478) ((-1201 . -371) 132430) ((-945 . -129) 132285) ((-800 . -129) 132155) ((-939 . -635) 132139) ((-1065 . -169) 132050) ((-939 . -367) 132034) ((-1041 . -779) T) ((-1041 . -776) T) ((-767 . -169) 131925) ((-765 . -169) 131836) ((-801 . -47) 131798) ((-1041 . -711) T) ((-321 . -482) 131782) ((-933 . -711) T) ((-447 . -169) 131693) ((-240 . -280) 131670) ((-474 . -711) T) ((-1250 . -303) 131608) ((-1229 . -881) 131521) ((-1222 . -881) 131427) ((-1221 . -1036) 131262) ((-1201 . -881) 131095) ((-1200 . -1036) 130903) ((-1185 . -284) 130882) ((-1124 . -148) 130866) ((-1098 . -101) T) ((-1096 . -1078) T) ((-1058 . -23) T) ((-1053 . -101) T) ((-908 . -936) T) ((-722 . -303) 130804) ((-74 . -1191) T) ((-30 . -936) T) ((-166 . -890) 130757) ((-648 . -376) 130729) ((-111 . -826) T) ((-1 . -599) 130711) ((-1058 . -1090) T) ((-127 . -635) 130693) ((-50 . -606) 130677) ((-984 . -403) 130649) ((-582 . -881) 130562) ((-432 . -101) T) ((-138 . -303) NIL) ((-127 . -367) 130544) ((-853 . -1030) T) ((-818 . -832) 130523) ((-80 . -1191) T) ((-696 . -284) T) ((-40 . -1037) T) ((-569 . -169) T) ((-510 . -169) T) ((-503 . -599) 130505) ((-166 . -632) 130415) ((-499 . -599) 130397) ((-345 . -144) 130379) ((-345 . -142) T) ((-353 . -1090) T) ((-347 . -1090) T) ((-339 . -1090) T) ((-985 . -301) T) ((-895 . -301) T) ((-853 . -238) T) ((-107 . -1090) T) ((-853 . -228) 130358) ((-1221 . -110) 130179) ((-1200 . -110) 129968) ((-240 . -1225) 129952) ((-552 . -830) T) ((-353 . -23) T) ((-348 . -343) T) ((-310 . -303) 129939) ((-307 . -303) 129880) ((-347 . -23) T) ((-313 . -129) T) ((-339 . -23) T) ((-985 . -1003) T) ((-107 . -23) T) ((-240 . -590) 129857) ((-1223 . -38) 129749) ((-1210 . -890) 129728) ((-111 . -1078) T) ((-1016 . -101) T) ((-1210 . -632) 129653) ((-852 . -779) NIL) ((-837 . -632) 129627) ((-852 . -776) NIL) ((-801 . -867) NIL) ((-852 . -711) T) ((-1065 . -506) 129500) ((-767 . -506) 129447) ((-765 . -506) 129399) ((-559 . -632) 129386) ((-801 . -1019) 129214) ((-447 . -506) 129157) ((-382 . -383) T) ((-59 . -1191) T) ((-607 . -832) 129136) ((-492 . -645) T) ((-1124 . -957) 129105) ((-984 . -445) T) ((-683 . -830) T) ((-502 . -777) T) ((-467 . -1036) 128940) ((-337 . -1078) T) ((-307 . -1129) NIL) ((-283 . -129) T) ((-388 . -1078) T) ((-678 . -364) 128907) ((-851 . -1037) T) ((-218 . -606) 128884) ((-321 . -280) 128861) ((-467 . -110) 128682) ((-1221 . -1030) T) ((-1200 . -1030) T) ((-801 . -371) 128666) ((-166 . -711) T) ((-638 . -101) T) ((-1221 . -238) 128645) ((-1221 . -228) 128597) ((-1200 . -228) 128502) ((-1200 . -238) 128481) ((-984 . -396) NIL) ((-654 . -625) 128429) ((-310 . -38) 128339) ((-307 . -38) 128268) ((-68 . -599) 128250) ((-313 . -485) 128216) ((-1164 . -282) 128195) ((-1091 . -1090) 128105) ((-82 . -1191) T) ((-60 . -599) 128087) ((-472 . -282) 128066) ((-1252 . -1019) 128043) ((-1142 . -1078) T) ((-1091 . -23) 127913) ((-801 . -881) 127849) ((-1210 . -711) T) ((-1080 . -1191) T) ((-1065 . -284) 127780) ((-947 . -1078) T) ((-874 . -101) T) ((-767 . -284) 127691) ((-321 . -19) 127675) ((-58 . -282) 127652) ((-765 . -284) 127583) ((-837 . -711) T) ((-116 . -830) NIL) ((-508 . -282) 127560) ((-321 . -590) 127537) ((-488 . -282) 127514) ((-447 . -284) 127445) ((-1016 . -303) 127296) ((-559 . -711) T) ((-665 . -599) 127246) ((-660 . -599) 127212) ((-646 . -599) 127194) ((-471 . -599) 127160) ((-240 . -600) 127121) ((-240 . -599) 127033) ((-208 . -101) T) ((-136 . -599) 126999) ((-135 . -599) 126965) ((-131 . -599) 126931) ((-1125 . -34) T) ((-924 . -1191) T) ((-337 . -702) 126876) ((-654 . -25) T) ((-654 . -21) T) ((-467 . -1030) T) ((-621 . -411) 126841) ((-593 . -411) 126806) ((-1098 . -1129) T) ((-569 . -284) T) ((-510 . -284) T) ((-1222 . -301) 126785) ((-467 . -228) 126737) ((-467 . -238) 126716) ((-1201 . -301) 126695) ((-1201 . -1003) NIL) ((-1058 . -129) T) ((-853 . -780) 126674) ((-141 . -101) T) ((-40 . -1078) T) ((-853 . -777) 126653) ((-629 . -991) 126637) ((-568 . -1037) T) ((-552 . -1037) T) ((-487 . -1037) T) ((-401 . -445) T) ((-353 . -129) T) ((-310 . -394) 126621) ((-307 . -394) 126582) ((-347 . -129) T) ((-339 . -129) T) ((-1159 . -1078) T) ((-1098 . -38) 126569) ((-1072 . -599) 126536) ((-107 . -129) T) ((-935 . -1078) T) ((-902 . -1078) T) ((-756 . -1078) T) ((-656 . -1078) T) ((-498 . -1061) T) ((-685 . -144) T) ((-115 . -144) T) ((-1259 . -21) T) ((-1259 . -25) T) ((-1257 . -21) T) ((-1257 . -25) T) ((-648 . -1036) 126520) ((-523 . -832) T) ((-492 . -832) T) ((-349 . -1036) 126472) ((-346 . -1036) 126424) ((-338 . -1036) 126376) ((-245 . -1191) T) ((-244 . -1191) T) ((-258 . -1036) 126219) ((-242 . -1036) 126062) ((-648 . -110) 126041) ((-349 . -110) 125979) ((-346 . -110) 125917) ((-338 . -110) 125855) ((-258 . -110) 125684) ((-242 . -110) 125513) ((-802 . -1195) 125492) ((-609 . -405) 125476) ((-44 . -21) T) ((-44 . -25) T) ((-800 . -625) 125382) ((-802 . -544) 125361) ((-245 . -1019) 125188) ((-244 . -1019) 125015) ((-125 . -118) 124999) ((-891 . -1036) 124964) ((-683 . -1037) T) ((-697 . -101) T) ((-337 . -169) T) ((-149 . -21) T) ((-149 . -25) T) ((-87 . -599) 124946) ((-891 . -110) 124902) ((-40 . -702) 124847) ((-851 . -1078) T) ((-321 . -600) 124808) ((-321 . -599) 124720) ((-1200 . -777) 124673) ((-1200 . -780) 124626) ((-245 . -371) 124595) ((-244 . -371) 124564) ((-638 . -38) 124534) ((-594 . -34) T) ((-475 . -1090) 124444) ((-468 . -34) T) ((-1091 . -129) 124314) ((-945 . -25) 124125) ((-855 . -599) 124107) ((-945 . -21) 124062) ((-800 . -21) 123972) ((-800 . -25) 123823) ((-609 . -1037) T) ((-1156 . -544) 123802) ((-1150 . -47) 123779) ((-349 . -1030) T) ((-346 . -1030) T) ((-475 . -23) 123649) ((-338 . -1030) T) ((-242 . -1030) T) ((-258 . -1030) T) ((-1103 . -47) 123621) ((-116 . -1037) T) ((-1015 . -632) 123595) ((-939 . -34) T) ((-349 . -228) 123574) ((-349 . -238) T) ((-346 . -228) 123553) ((-346 . -238) T) ((-242 . -320) 123510) ((-338 . -228) 123489) ((-338 . -238) T) ((-258 . -320) 123461) ((-258 . -228) 123440) ((-1134 . -148) 123424) ((-245 . -881) 123356) ((-244 . -881) 123288) ((-1060 . -832) T) ((-1204 . -1191) T) ((-408 . -1090) T) ((-1034 . -23) T) ((-891 . -1030) T) ((-316 . -632) 123270) ((-1005 . -830) T) ((-1185 . -983) 123236) ((-1151 . -901) 123215) ((-1145 . -901) 123194) ((-1145 . -805) NIL) ((-891 . -238) T) ((-802 . -357) 123173) ((-379 . -23) T) ((-126 . -1078) 123151) ((-120 . -1078) 123129) ((-891 . -228) T) ((-127 . -34) T) ((-373 . -632) 123094) ((-851 . -702) 123081) ((-1027 . -148) 123046) ((-40 . -169) T) ((-678 . -405) 123028) ((-697 . -303) 123015) ((-819 . -632) 122975) ((-812 . -632) 122949) ((-313 . -25) T) ((-313 . -21) T) ((-642 . -280) 122928) ((-568 . -1078) T) ((-552 . -1078) T) ((-487 . -1078) T) ((-240 . -282) 122905) ((-307 . -226) 122866) ((-1150 . -867) NIL) ((-1103 . -867) 122725) ((-128 . -832) T) ((-1150 . -1019) 122605) ((-1103 . -1019) 122488) ((-180 . -599) 122470) ((-836 . -1019) 122366) ((-767 . -280) 122293) ((-802 . -1090) T) ((-1015 . -711) T) ((-588 . -635) 122277) ((-1027 . -957) 122206) ((-980 . -101) T) ((-802 . -23) T) ((-697 . -1129) 122184) ((-678 . -1037) T) ((-588 . -367) 122168) ((-345 . -445) T) ((-337 . -284) T) ((-1238 . -1078) T) ((-243 . -1078) T) ((-393 . -101) T) ((-283 . -21) T) ((-283 . -25) T) ((-355 . -711) T) ((-695 . -1078) T) ((-683 . -1078) T) ((-355 . -466) T) ((-1185 . -599) 122150) ((-1150 . -371) 122134) ((-1103 . -371) 122118) ((-1005 . -405) 122080) ((-138 . -224) 122062) ((-373 . -779) T) ((-373 . -776) T) ((-851 . -169) T) ((-373 . -711) T) ((-696 . -599) 122044) ((-697 . -38) 121873) ((-1237 . -1235) 121857) ((-345 . -396) T) ((-1237 . -1078) 121807) ((-568 . -702) 121794) ((-552 . -702) 121781) ((-487 . -702) 121746) ((-310 . -615) 121725) ((-819 . -711) T) ((-812 . -711) T) ((-629 . -1191) T) ((-1058 . -625) 121673) ((-1150 . -881) 121616) ((-1103 . -881) 121600) ((-646 . -1036) 121584) ((-107 . -625) 121566) ((-475 . -129) 121436) ((-1156 . -1090) T) ((-933 . -47) 121405) ((-609 . -1078) T) ((-646 . -110) 121384) ((-483 . -599) 121350) ((-321 . -282) 121327) ((-474 . -47) 121284) ((-1156 . -23) T) ((-116 . -1078) T) ((-102 . -101) 121262) ((-1249 . -1090) T) ((-1034 . -129) T) ((-1005 . -1037) T) ((-804 . -1019) 121246) ((-984 . -709) 121218) ((-1249 . -23) T) ((-683 . -702) 121183) ((-573 . -599) 121165) ((-380 . -1019) 121149) ((-348 . -1037) T) ((-379 . -129) T) ((-318 . -1019) 121133) ((-220 . -867) 121115) ((-985 . -901) T) ((-90 . -34) T) ((-985 . -805) T) ((-895 . -901) T) ((-480 . -1195) T) ((-1171 . -599) 121097) ((-1083 . -1078) T) ((-212 . -1195) T) ((-980 . -303) 121062) ((-220 . -1019) 121022) ((-40 . -284) T) ((-1058 . -21) T) ((-1058 . -25) T) ((-1098 . -813) T) ((-480 . -544) T) ((-353 . -25) T) ((-212 . -544) T) ((-353 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-699 . -632) 120982) ((-339 . -25) T) ((-339 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1037) T) ((-568 . -169) T) ((-552 . -169) T) ((-487 . -169) T) ((-642 . -599) 120964) ((-722 . -721) 120948) ((-330 . -599) 120930) ((-67 . -377) T) ((-67 . -389) T) ((-1080 . -106) 120914) ((-1041 . -867) 120896) ((-933 . -867) 120821) ((-637 . -1090) T) ((-609 . -702) 120808) ((-474 . -867) NIL) ((-1124 . -101) T) ((-1041 . -1019) 120790) ((-96 . -599) 120772) ((-470 . -144) T) ((-933 . -1019) 120652) ((-116 . -702) 120597) ((-637 . -23) T) ((-474 . -1019) 120473) ((-1065 . -600) NIL) ((-1065 . -599) 120455) ((-767 . -600) NIL) ((-767 . -599) 120416) ((-765 . -600) 120050) ((-765 . -599) 119964) ((-1091 . -625) 119870) ((-454 . -599) 119852) ((-447 . -599) 119834) ((-447 . -600) 119695) ((-1016 . -224) 119641) ((-853 . -890) 119620) ((-125 . -34) T) ((-802 . -129) T) ((-633 . -599) 119602) ((-566 . -101) T) ((-349 . -1256) 119586) ((-346 . -1256) 119570) ((-338 . -1256) 119554) ((-126 . -506) 119487) ((-120 . -506) 119420) ((-503 . -777) T) ((-503 . -780) T) ((-502 . -779) T) ((-102 . -303) 119358) ((-217 . -101) 119336) ((-678 . -1078) T) ((-683 . -169) T) ((-853 . -632) 119288) ((-64 . -378) T) ((-269 . -599) 119270) ((-64 . -389) T) ((-933 . -371) 119254) ((-851 . -284) T) ((-50 . -599) 119236) ((-980 . -38) 119184) ((-569 . -599) 119166) ((-474 . -371) 119150) ((-569 . -600) 119132) ((-510 . -599) 119114) ((-891 . -1256) 119101) ((-852 . -1191) T) ((-685 . -445) T) ((-487 . -506) 119067) ((-480 . -357) T) ((-349 . -362) 119046) ((-346 . -362) 119025) ((-338 . -362) 119004) ((-212 . -357) T) ((-699 . -711) T) ((-115 . -445) T) ((-1260 . -1251) 118988) ((-852 . -865) 118965) ((-852 . -867) NIL) ((-945 . -832) 118864) ((-800 . -832) 118815) ((-638 . -640) 118799) ((-1177 . -34) T) ((-168 . -599) 118781) ((-1091 . -21) 118691) ((-1091 . -25) 118542) ((-852 . -1019) 118519) ((-933 . -881) 118500) ((-1210 . -47) 118477) ((-891 . -362) T) ((-58 . -635) 118461) ((-508 . -635) 118445) ((-474 . -881) 118422) ((-70 . -434) T) ((-70 . -389) T) ((-488 . -635) 118406) ((-58 . -367) 118390) ((-609 . -169) T) ((-508 . -367) 118374) ((-488 . -367) 118358) ((-812 . -693) 118342) ((-1150 . -301) 118321) ((-1156 . -129) T) ((-116 . -169) T) ((-1124 . -303) 118259) ((-166 . -1191) T) ((-621 . -729) 118243) ((-593 . -729) 118227) ((-1249 . -129) T) ((-1222 . -901) 118206) ((-1201 . -901) 118185) ((-1201 . -805) NIL) ((-678 . -702) 118135) ((-1200 . -890) 118088) ((-1005 . -1078) T) ((-852 . -371) 118065) ((-852 . -332) 118042) ((-886 . -1090) T) ((-166 . -865) 118026) ((-166 . -867) 117951) ((-480 . -1090) T) ((-348 . -1078) T) ((-212 . -1090) T) ((-75 . -434) T) ((-75 . -389) T) ((-166 . -1019) 117847) ((-313 . -832) T) ((-1237 . -506) 117780) ((-1221 . -632) 117677) ((-1200 . -632) 117547) ((-853 . -779) 117526) ((-853 . -776) 117505) ((-853 . -711) T) ((-480 . -23) T) ((-218 . -599) 117487) ((-171 . -445) T) ((-217 . -303) 117425) ((-85 . -434) T) ((-85 . -389) T) ((-212 . -23) T) ((-1261 . -1254) 117404) ((-568 . -284) T) ((-552 . -284) T) ((-661 . -1019) 117388) ((-487 . -284) T) ((-134 . -463) 117343) ((-48 . -1078) T) ((-697 . -226) 117327) ((-852 . -881) NIL) ((-1210 . -867) NIL) ((-870 . -101) T) ((-866 . -101) T) ((-382 . -1078) T) ((-166 . -371) 117311) ((-166 . -332) 117295) ((-1210 . -1019) 117175) ((-837 . -1019) 117071) ((-1120 . -101) T) ((-637 . -129) T) ((-116 . -506) 116979) ((-646 . -777) 116958) ((-646 . -780) 116937) ((-559 . -1019) 116919) ((-288 . -1244) 116889) ((-847 . -101) T) ((-944 . -544) 116868) ((-1185 . -1036) 116751) ((-475 . -625) 116657) ((-885 . -1078) T) ((-1005 . -702) 116594) ((-696 . -1036) 116559) ((-603 . -101) T) ((-588 . -34) T) ((-1125 . -1191) T) ((-1185 . -110) 116428) ((-467 . -632) 116325) ((-348 . -702) 116270) ((-166 . -881) 116229) ((-683 . -284) T) ((-678 . -169) T) ((-696 . -110) 116185) ((-1265 . -1037) T) ((-1210 . -371) 116169) ((-412 . -1195) 116147) ((-1096 . -599) 116129) ((-307 . -830) NIL) ((-412 . -544) T) ((-220 . -301) T) ((-1200 . -776) 116082) ((-1200 . -779) 116035) ((-1221 . -711) T) ((-1200 . -711) T) ((-48 . -702) 116000) ((-220 . -1003) T) ((-345 . -1244) 115977) ((-1223 . -405) 115943) ((-703 . -711) T) ((-1210 . -881) 115886) ((-111 . -599) 115868) ((-111 . -600) 115850) ((-703 . -466) T) ((-475 . -21) 115760) ((-126 . -482) 115744) ((-120 . -482) 115728) ((-475 . -25) 115579) ((-609 . -284) T) ((-573 . -1036) 115554) ((-431 . -1078) T) ((-1041 . -301) T) ((-116 . -284) T) ((-1082 . -101) T) ((-984 . -101) T) ((-573 . -110) 115522) ((-1120 . -303) 115460) ((-1185 . -1030) T) ((-1041 . -1003) T) ((-65 . -1191) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-696 . -1030) T) ((-379 . -21) T) ((-379 . -25) T) ((-678 . -506) NIL) ((-1005 . -169) T) ((-696 . -238) T) ((-1041 . -537) T) ((-498 . -101) T) ((-494 . -101) T) ((-348 . -169) T) ((-337 . -599) 115442) ((-388 . -599) 115424) ((-467 . -711) T) ((-1098 . -830) T) ((-873 . -1019) 115392) ((-107 . -832) T) ((-642 . -1036) 115376) ((-480 . -129) T) ((-1223 . -1037) T) ((-212 . -129) T) ((-1134 . -101) 115354) ((-98 . -1078) T) ((-240 . -650) 115338) ((-240 . -635) 115322) ((-642 . -110) 115301) ((-310 . -405) 115285) ((-240 . -367) 115269) ((-1137 . -230) 115216) ((-980 . -226) 115200) ((-73 . -1191) T) ((-48 . -169) T) ((-685 . -381) T) ((-685 . -140) T) ((-1260 . -101) T) ((-1065 . -1036) 115043) ((-258 . -890) 115022) ((-242 . -890) 115001) ((-767 . -1036) 114824) ((-765 . -1036) 114667) ((-594 . -1191) T) ((-1142 . -599) 114649) ((-1065 . -110) 114478) ((-1027 . -101) T) ((-468 . -1191) T) ((-454 . -1036) 114449) ((-447 . -1036) 114292) ((-648 . -632) 114276) ((-852 . -301) T) ((-767 . -110) 114085) ((-765 . -110) 113914) ((-349 . -632) 113866) ((-346 . -632) 113818) ((-338 . -632) 113770) ((-258 . -632) 113695) ((-242 . -632) 113620) ((-1136 . -832) T) ((-1066 . -1019) 113604) ((-454 . -110) 113565) ((-447 . -110) 113394) ((-1054 . -1019) 113371) ((-981 . -34) T) ((-947 . -599) 113353) ((-939 . -1191) T) ((-125 . -991) 113337) ((-944 . -1090) T) ((-852 . -1003) NIL) ((-720 . -1090) T) ((-700 . -1090) T) ((-1237 . -482) 113321) ((-1120 . -38) 113281) ((-944 . -23) T) ((-825 . -101) T) ((-802 . -21) T) ((-802 . -25) T) ((-720 . -23) T) ((-700 . -23) T) ((-109 . -645) T) ((-891 . -632) 113246) ((-569 . -1036) 113211) ((-510 . -1036) 113156) ((-222 . -56) 113114) ((-446 . -23) T) ((-401 . -101) T) ((-257 . -101) T) ((-678 . -284) T) ((-847 . -38) 113084) ((-569 . -110) 113040) ((-510 . -110) 112969) ((-412 . -1090) T) ((-310 . -1037) 112859) ((-307 . -1037) T) ((-127 . -1191) T) ((-642 . -1030) T) ((-1265 . -1078) T) ((-166 . -301) 112790) ((-412 . -23) T) ((-40 . -599) 112772) ((-40 . -600) 112756) ((-107 . -973) 112738) ((-115 . -850) 112722) ((-48 . -506) 112688) ((-1177 . -991) 112672) ((-1159 . -599) 112654) ((-1164 . -34) T) ((-935 . -599) 112620) ((-902 . -599) 112602) ((-1091 . -832) 112553) ((-756 . -599) 112535) ((-656 . -599) 112517) ((-1134 . -303) 112455) ((-472 . -34) T) ((-1070 . -1191) T) ((-470 . -445) T) ((-1065 . -1030) T) ((-1119 . -34) T) ((-767 . -1030) T) ((-765 . -1030) T) ((-631 . -230) 112439) ((-618 . -230) 112385) ((-1210 . -301) 112364) ((-1065 . -320) 112325) ((-447 . -1030) T) ((-1156 . -21) T) ((-1065 . -228) 112304) ((-767 . -320) 112281) ((-767 . -228) T) ((-765 . -320) 112253) ((-716 . -1195) 112232) ((-321 . -635) 112216) ((-1156 . -25) T) ((-58 . -34) T) ((-511 . -34) T) ((-508 . -34) T) ((-447 . -320) 112195) ((-321 . -367) 112179) ((-489 . -34) T) ((-488 . -34) T) ((-984 . -1129) NIL) ((-716 . -544) 112110) ((-621 . -101) T) ((-593 . -101) T) ((-349 . -711) T) ((-346 . -711) T) ((-338 . -711) T) ((-258 . -711) T) ((-242 . -711) T) ((-1027 . -303) 112018) ((-882 . -1078) 111996) ((-50 . -1030) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-1152 . -544) 111975) ((-1151 . -1195) 111954) ((-569 . -1030) T) ((-510 . -1030) T) ((-1145 . -1195) 111933) ((-355 . -1019) 111917) ((-316 . -1019) 111901) ((-1005 . -284) T) ((-373 . -867) 111883) ((-1151 . -544) 111834) ((-1145 . -544) 111785) ((-984 . -38) 111730) ((-784 . -1090) T) ((-891 . -711) T) ((-569 . -238) T) ((-569 . -228) T) ((-510 . -228) T) ((-510 . -238) T) ((-1104 . -544) 111709) ((-348 . -284) T) ((-631 . -679) 111693) ((-373 . -1019) 111653) ((-1098 . -1037) T) ((-102 . -124) 111637) ((-784 . -23) T) ((-1237 . -280) 111614) ((-401 . -303) 111579) ((-1259 . -1254) 111555) ((-1257 . -1254) 111534) ((-1223 . -1078) T) ((-851 . -599) 111516) ((-819 . -1019) 111485) ((-198 . -772) T) ((-197 . -772) T) ((-196 . -772) T) ((-195 . -772) T) ((-194 . -772) T) ((-193 . -772) T) ((-192 . -772) T) ((-191 . -772) T) ((-190 . -772) T) ((-189 . -772) T) ((-487 . -983) T) ((-268 . -821) T) ((-267 . -821) T) ((-266 . -821) T) ((-265 . -821) T) ((-48 . -284) T) ((-264 . -821) T) ((-263 . -821) T) ((-262 . -821) T) ((-188 . -772) T) ((-598 . -832) T) ((-638 . -405) 111469) ((-109 . -832) T) ((-637 . -21) T) ((-637 . -25) T) ((-1260 . -38) 111439) ((-116 . -280) 111390) ((-1237 . -19) 111374) ((-1237 . -590) 111351) ((-1250 . -1078) T) ((-1055 . -1078) T) ((-968 . -1078) T) ((-944 . -129) T) ((-722 . -1078) T) ((-720 . -129) T) ((-700 . -129) T) ((-503 . -778) T) ((-401 . -1129) 111329) ((-446 . -129) T) ((-503 . -779) T) ((-218 . -1030) T) ((-288 . -101) 111111) ((-138 . -1078) T) ((-683 . -983) T) ((-90 . -1191) T) ((-126 . -599) 111043) ((-120 . -599) 110975) ((-1265 . -169) T) ((-1151 . -357) 110954) ((-1145 . -357) 110933) ((-310 . -1078) T) ((-412 . -129) T) ((-307 . -1078) T) ((-401 . -38) 110885) ((-1111 . -101) T) ((-1223 . -702) 110777) ((-638 . -1037) T) ((-1113 . -1232) T) ((-313 . -142) 110756) ((-313 . -144) 110735) ((-134 . -1078) T) ((-113 . -1078) T) ((-840 . -101) T) ((-568 . -599) 110717) ((-552 . -600) 110616) ((-552 . -599) 110598) ((-487 . -599) 110580) ((-487 . -600) 110525) ((-478 . -23) T) ((-475 . -832) 110476) ((-480 . -625) 110458) ((-946 . -599) 110440) ((-212 . -625) 110422) ((-220 . -398) T) ((-646 . -632) 110406) ((-1150 . -901) 110385) ((-716 . -1090) T) ((-345 . -101) T) ((-1190 . -1061) T) ((-803 . -832) T) ((-716 . -23) T) ((-337 . -1036) 110330) ((-1136 . -1135) T) ((-1125 . -106) 110314) ((-1152 . -1090) T) ((-1151 . -1090) T) ((-507 . -1019) 110298) ((-1145 . -1090) T) ((-1104 . -1090) T) ((-337 . -110) 110227) ((-985 . -1195) T) ((-125 . -1191) T) ((-895 . -1195) T) ((-678 . -280) NIL) ((-1238 . -599) 110209) ((-1152 . -23) T) ((-1151 . -23) T) ((-1145 . -23) T) ((-985 . -544) T) ((-1120 . -226) 110193) ((-895 . -544) T) ((-1104 . -23) T) ((-243 . -599) 110175) ((-1053 . -1078) T) ((-784 . -129) T) ((-695 . -599) 110157) ((-310 . -702) 110067) ((-307 . -702) 109996) ((-683 . -599) 109978) ((-683 . -600) 109923) ((-401 . -394) 109907) ((-432 . -1078) T) ((-480 . -25) T) ((-480 . -21) T) ((-1098 . -1078) T) ((-212 . -25) T) ((-212 . -21) T) ((-697 . -405) 109891) ((-699 . -1019) 109860) ((-1237 . -599) 109772) ((-1237 . -600) 109733) ((-1223 . -169) T) ((-240 . -34) T) ((-907 . -955) T) ((-1177 . -1191) T) ((-646 . -776) 109712) ((-646 . -779) 109691) ((-392 . -389) T) ((-515 . -101) 109669) ((-1016 . -1078) T) ((-217 . -976) 109653) ((-496 . -101) T) ((-609 . -599) 109635) ((-45 . -832) NIL) ((-609 . -600) 109612) ((-1016 . -596) 109587) ((-882 . -506) 109520) ((-337 . -1030) T) ((-116 . -600) NIL) ((-116 . -599) 109502) ((-853 . -1191) T) ((-654 . -411) 109486) ((-654 . -1101) 109431) ((-492 . -148) 109413) ((-337 . -228) T) ((-337 . -238) T) ((-40 . -1036) 109358) ((-853 . -865) 109342) ((-853 . -867) 109267) ((-697 . -1037) T) ((-678 . -983) NIL) ((-3 . |UnionCategory|) T) ((-1221 . -47) 109237) ((-1200 . -47) 109214) ((-1119 . -991) 109185) ((-220 . -901) T) ((-40 . -110) 109114) ((-853 . -1019) 108978) ((-1098 . -702) 108965) ((-1083 . -599) 108947) ((-1058 . -144) 108926) ((-1058 . -142) 108877) ((-985 . -357) T) ((-313 . -1179) 108843) ((-373 . -301) T) ((-313 . -1176) 108809) ((-310 . -169) 108788) ((-307 . -169) T) ((-984 . -226) 108765) ((-895 . -357) T) ((-569 . -1256) 108752) ((-510 . -1256) 108729) ((-353 . -144) 108708) ((-353 . -142) 108659) ((-347 . -144) 108638) ((-347 . -142) 108589) ((-594 . -1167) 108565) ((-339 . -144) 108544) ((-339 . -142) 108495) ((-313 . -35) 108461) ((-468 . -1167) 108440) ((0 . |EnumerationCategory|) T) ((-313 . -94) 108406) ((-373 . -1003) T) ((-107 . -144) T) ((-107 . -142) NIL) ((-45 . -230) 108356) ((-638 . -1078) T) ((-594 . -106) 108303) ((-478 . -129) T) ((-468 . -106) 108253) ((-235 . -1090) 108163) ((-853 . -371) 108147) ((-853 . -332) 108131) ((-235 . -23) 108001) ((-1041 . -901) T) ((-1041 . -805) T) ((-569 . -362) T) ((-510 . -362) T) ((-345 . -1129) T) ((-321 . -34) T) ((-44 . -411) 107985) ((-854 . -1191) T) ((-384 . -729) 107969) ((-1250 . -506) 107902) ((-716 . -129) T) ((-1229 . -544) 107881) ((-1222 . -1195) 107860) ((-1222 . -544) 107811) ((-1201 . -1195) 107790) ((-305 . -1061) T) ((-1201 . -544) 107741) ((-722 . -506) 107674) ((-1200 . -1191) 107653) ((-1200 . -867) 107526) ((-874 . -1078) T) ((-141 . -826) T) ((-1200 . -865) 107496) ((-675 . -599) 107478) ((-1152 . -129) T) ((-515 . -303) 107416) ((-1151 . -129) T) ((-138 . -506) NIL) ((-1145 . -129) T) ((-1104 . -129) T) ((-1005 . -983) T) ((-985 . -23) T) ((-345 . -38) 107381) ((-985 . -1090) T) ((-895 . -1090) T) ((-81 . -599) 107363) ((-40 . -1030) T) ((-851 . -1036) 107350) ((-984 . -343) NIL) ((-853 . -881) 107309) ((-685 . -101) T) ((-952 . -23) T) ((-588 . -1191) T) ((-895 . -23) T) ((-851 . -110) 107294) ((-421 . -1090) T) ((-208 . -1078) T) ((-467 . -47) 107264) ((-132 . -101) T) ((-40 . -228) 107236) ((-40 . -238) T) ((-115 . -101) T) ((-583 . -544) 107215) ((-582 . -544) 107194) ((-678 . -599) 107176) ((-678 . -600) 107084) ((-310 . -506) 107050) ((-307 . -506) 106942) ((-1221 . -1019) 106926) ((-1200 . -1019) 106712) ((-980 . -405) 106696) ((-421 . -23) T) ((-1098 . -169) T) ((-1223 . -284) T) ((-638 . -702) 106666) ((-141 . -1078) T) ((-48 . -983) T) ((-401 . -226) 106650) ((-289 . -230) 106600) ((-852 . -901) T) ((-852 . -805) NIL) ((-846 . -832) T) ((-1200 . -332) 106570) ((-1200 . -371) 106540) ((-217 . -1099) 106524) ((-1237 . -282) 106501) ((-1185 . -632) 106426) ((-944 . -21) T) ((-944 . -25) T) ((-720 . -21) T) ((-720 . -25) T) ((-700 . -21) T) ((-700 . -25) T) ((-696 . -632) 106391) ((-446 . -21) T) ((-446 . -25) T) ((-333 . -101) T) ((-171 . -101) T) ((-980 . -1037) T) ((-851 . -1030) T) ((-759 . -101) T) ((-1222 . -357) 106370) ((-1221 . -881) 106276) ((-1201 . -357) 106255) ((-1200 . -881) 106106) ((-1005 . -599) 106088) ((-401 . -813) 106041) ((-1152 . -485) 106007) ((-166 . -901) 105938) ((-1151 . -485) 105904) ((-1145 . -485) 105870) ((-697 . -1078) T) ((-1104 . -485) 105836) ((-568 . -1036) 105823) ((-552 . -1036) 105810) ((-487 . -1036) 105775) ((-310 . -284) 105754) ((-307 . -284) T) ((-348 . -599) 105736) ((-412 . -25) T) ((-412 . -21) T) ((-98 . -280) 105715) ((-568 . -110) 105700) ((-552 . -110) 105685) ((-487 . -110) 105641) ((-1154 . -867) 105608) ((-882 . -482) 105592) ((-48 . -599) 105574) ((-48 . -600) 105519) ((-235 . -129) 105389) ((-1210 . -901) 105368) ((-801 . -1195) 105347) ((-1016 . -506) 105191) ((-382 . -599) 105173) ((-801 . -544) 105104) ((-573 . -632) 105079) ((-258 . -47) 105051) ((-242 . -47) 105008) ((-523 . -501) 104985) ((-981 . -1191) T) ((-683 . -1036) 104950) ((-1229 . -1090) T) ((-1222 . -1090) T) ((-1201 . -1090) T) ((-984 . -364) 104922) ((-111 . -362) T) ((-467 . -881) 104828) ((-1229 . -23) T) ((-1222 . -23) T) ((-885 . -599) 104810) ((-90 . -106) 104794) ((-1185 . -711) T) ((-886 . -832) 104745) ((-685 . -1129) T) ((-683 . -110) 104701) ((-1201 . -23) T) ((-583 . -1090) T) ((-582 . -1090) T) ((-697 . -702) 104530) ((-696 . -711) T) ((-1098 . -284) T) ((-985 . -129) T) ((-480 . -832) T) ((-952 . -129) T) ((-895 . -129) T) ((-784 . -25) T) ((-212 . -832) T) ((-784 . -21) T) ((-568 . -1030) T) ((-552 . -1030) T) ((-487 . -1030) T) ((-583 . -23) T) ((-337 . -1256) 104507) ((-313 . -445) 104486) ((-333 . -303) 104473) ((-582 . -23) T) ((-421 . -129) T) ((-642 . -632) 104447) ((-240 . -991) 104431) ((-853 . -301) T) ((-1261 . -1251) 104415) ((-756 . -777) T) ((-756 . -780) T) ((-685 . -38) 104402) ((-552 . -228) T) ((-487 . -238) T) ((-487 . -228) T) ((-1128 . -230) 104352) ((-1065 . -890) 104331) ((-115 . -38) 104318) ((-204 . -785) T) ((-203 . -785) T) ((-202 . -785) T) ((-201 . -785) T) ((-853 . -1003) 104296) ((-1250 . -482) 104280) ((-767 . -890) 104259) ((-765 . -890) 104238) ((-1164 . -1191) T) ((-447 . -890) 104217) ((-722 . -482) 104201) ((-1065 . -632) 104126) ((-767 . -632) 104051) ((-609 . -1036) 104038) ((-472 . -1191) T) ((-337 . -362) T) ((-138 . -482) 104020) ((-765 . -632) 103945) ((-1119 . -1191) T) ((-454 . -632) 103916) ((-258 . -867) 103775) ((-242 . -867) NIL) ((-116 . -1036) 103720) ((-447 . -632) 103645) ((-648 . -1019) 103622) ((-609 . -110) 103607) ((-349 . -1019) 103591) ((-346 . -1019) 103575) ((-338 . -1019) 103559) ((-258 . -1019) 103403) ((-242 . -1019) 103279) ((-116 . -110) 103208) ((-58 . -1191) T) ((-511 . -1191) T) ((-508 . -1191) T) ((-489 . -1191) T) ((-488 . -1191) T) ((-431 . -599) 103190) ((-428 . -599) 103172) ((-3 . -101) T) ((-1008 . -1184) 103141) ((-818 . -101) T) ((-673 . -56) 103099) ((-683 . -1030) T) ((-50 . -632) 103073) ((-283 . -445) T) ((-469 . -1184) 103042) ((0 . -101) T) ((-569 . -632) 103007) ((-510 . -632) 102952) ((-49 . -101) T) ((-891 . -1019) 102939) ((-683 . -238) T) ((-1058 . -403) 102918) ((-716 . -625) 102866) ((-980 . -1078) T) ((-697 . -169) 102757) ((-480 . -973) 102739) ((-258 . -371) 102723) ((-242 . -371) 102707) ((-393 . -1078) T) ((-333 . -38) 102691) ((-1007 . -101) 102669) ((-212 . -973) 102651) ((-171 . -38) 102583) ((-1221 . -301) 102562) ((-1200 . -301) 102541) ((-642 . -711) T) ((-98 . -599) 102523) ((-1145 . -625) 102475) ((-478 . -25) T) ((-478 . -21) T) ((-1200 . -1003) 102427) ((-609 . -1030) T) ((-373 . -398) T) ((-384 . -101) T) ((-258 . -881) 102373) ((-242 . -881) 102350) ((-116 . -1030) T) ((-801 . -1090) T) ((-1065 . -711) T) ((-609 . -228) 102329) ((-607 . -101) T) ((-767 . -711) T) ((-765 . -711) T) ((-407 . -1090) T) ((-116 . -238) T) ((-40 . -362) NIL) ((-116 . -228) NIL) ((-447 . -711) T) ((-801 . -23) T) ((-716 . -25) T) ((-716 . -21) T) ((-687 . -832) T) ((-1055 . -280) 102308) ((-77 . -390) T) ((-77 . -389) T) ((-525 . -752) 102290) ((-678 . -1036) 102240) ((-1229 . -129) T) ((-1222 . -129) T) ((-1201 . -129) T) ((-1120 . -405) 102224) ((-621 . -361) 102156) ((-593 . -361) 102088) ((-1134 . -1127) 102072) ((-102 . -1078) 102050) ((-1152 . -25) T) ((-1152 . -21) T) ((-1151 . -21) T) ((-980 . -702) 101998) ((-218 . -632) 101965) ((-678 . -110) 101899) ((-50 . -711) T) ((-1151 . -25) T) ((-345 . -343) T) ((-1145 . -21) T) ((-1058 . -445) 101850) ((-1145 . -25) T) ((-697 . -506) 101797) ((-569 . -711) T) ((-510 . -711) T) ((-1104 . -21) T) ((-1104 . -25) T) ((-583 . -129) T) ((-582 . -129) T) ((-353 . -445) T) ((-347 . -445) T) ((-339 . -445) T) ((-467 . -301) 101776) ((-307 . -280) 101711) ((-107 . -445) T) ((-78 . -434) T) ((-78 . -389) T) ((-470 . -101) T) ((-1265 . -599) 101693) ((-1265 . -600) 101675) ((-1058 . -396) 101654) ((-1016 . -482) 101585) ((-552 . -780) T) ((-552 . -777) T) ((-1042 . -230) 101531) ((-353 . -396) 101482) ((-347 . -396) 101433) ((-339 . -396) 101384) ((-1252 . -1090) T) ((-1252 . -23) T) ((-1239 . -101) T) ((-172 . -599) 101366) ((-1120 . -1037) T) ((-654 . -729) 101350) ((-1156 . -142) 101329) ((-1156 . -144) 101308) ((-1124 . -1078) T) ((-1124 . -1050) 101277) ((-68 . -1191) T) ((-1005 . -1036) 101214) ((-847 . -1037) T) ((-235 . -625) 101120) ((-678 . -1030) T) ((-348 . -1036) 101065) ((-60 . -1191) T) ((-1005 . -110) 100981) ((-882 . -599) 100913) ((-678 . -238) T) ((-678 . -228) NIL) ((-825 . -830) 100892) ((-683 . -780) T) ((-683 . -777) T) ((-984 . -405) 100869) ((-348 . -110) 100798) ((-373 . -901) T) ((-401 . -830) 100777) ((-697 . -284) 100688) ((-218 . -711) T) ((-1229 . -485) 100654) ((-1222 . -485) 100620) ((-1201 . -485) 100586) ((-566 . -1078) T) ((-310 . -983) 100565) ((-217 . -1078) 100543) ((-313 . -954) 100505) ((-104 . -101) T) ((-48 . -1036) 100470) ((-1261 . -101) T) ((-375 . -101) T) ((-48 . -110) 100426) ((-985 . -625) 100408) ((-1223 . -599) 100390) ((-523 . -101) T) ((-492 . -101) T) ((-1111 . -1112) 100374) ((-149 . -1244) 100358) ((-240 . -1191) T) ((-1190 . -101) T) ((-1150 . -1195) 100337) ((-1103 . -1195) 100316) ((-235 . -21) 100226) ((-235 . -25) 100077) ((-126 . -118) 100061) ((-120 . -118) 100045) ((-44 . -729) 100029) ((-1150 . -544) 99940) ((-1103 . -544) 99871) ((-1016 . -280) 99846) ((-1144 . -1061) T) ((-975 . -1061) T) ((-801 . -129) T) ((-116 . -780) NIL) ((-116 . -777) NIL) ((-349 . -301) T) ((-346 . -301) T) ((-338 . -301) T) ((-1072 . -1191) T) ((-245 . -1090) 99756) ((-244 . -1090) 99666) ((-1005 . -1030) T) ((-984 . -1037) T) ((-337 . -632) 99611) ((-607 . -38) 99595) ((-1250 . -599) 99557) ((-1250 . -600) 99518) ((-1055 . -599) 99500) ((-1005 . -238) T) ((-348 . -1030) T) ((-800 . -1244) 99470) ((-245 . -23) T) ((-244 . -23) T) ((-968 . -599) 99452) ((-722 . -600) 99413) ((-722 . -599) 99395) ((-784 . -832) 99374) ((-980 . -506) 99286) ((-348 . -228) T) ((-348 . -238) T) ((-1137 . -148) 99233) ((-985 . -25) T) ((-138 . -600) 99192) ((-138 . -599) 99174) ((-891 . -301) T) ((-985 . -21) T) ((-952 . -25) T) ((-895 . -21) T) ((-895 . -25) T) ((-421 . -21) T) ((-421 . -25) T) ((-825 . -405) 99158) ((-48 . -1030) T) ((-1259 . -1251) 99142) ((-1257 . -1251) 99126) ((-1016 . -590) 99101) ((-310 . -600) 98962) ((-310 . -599) 98944) ((-307 . -600) NIL) ((-307 . -599) 98926) ((-48 . -238) T) ((-48 . -228) T) ((-638 . -280) 98887) ((-538 . -230) 98837) ((-134 . -599) 98819) ((-113 . -599) 98801) ((-470 . -38) 98766) ((-1261 . -1258) 98745) ((-1252 . -129) T) ((-1260 . -1037) T) ((-1060 . -101) T) ((-87 . -1191) T) ((-492 . -303) NIL) ((-981 . -106) 98729) ((-870 . -1078) T) ((-866 . -1078) T) ((-1237 . -635) 98713) ((-1237 . -367) 98697) ((-321 . -1191) T) ((-580 . -832) T) ((-1120 . -1078) T) ((-1120 . -1033) 98637) ((-102 . -506) 98570) ((-908 . -599) 98552) ((-337 . -711) T) ((-30 . -599) 98534) ((-847 . -1078) T) ((-825 . -1037) 98513) ((-40 . -632) 98458) ((-220 . -1195) T) ((-401 . -1037) T) ((-1136 . -148) 98440) ((-980 . -284) 98391) ((-603 . -1078) T) ((-220 . -544) T) ((-313 . -1218) 98375) ((-313 . -1215) 98345) ((-1164 . -1167) 98324) ((-1053 . -599) 98306) ((-631 . -148) 98290) ((-618 . -148) 98236) ((-1164 . -106) 98186) ((-472 . -1167) 98165) ((-480 . -144) T) ((-480 . -142) NIL) ((-1098 . -600) 98080) ((-432 . -599) 98062) ((-212 . -144) T) ((-212 . -142) NIL) ((-1098 . -599) 98044) ((-128 . -101) T) ((-52 . -101) T) ((-1201 . -625) 97996) ((-472 . -106) 97946) ((-974 . -23) T) ((-1261 . -38) 97916) ((-1150 . -1090) T) ((-1103 . -1090) T) ((-1041 . -1195) T) ((-305 . -101) T) ((-836 . -1090) T) ((-933 . -1195) 97895) ((-474 . -1195) 97874) ((-716 . -832) 97853) ((-1041 . -544) T) ((-933 . -544) 97784) ((-1150 . -23) T) ((-1103 . -23) T) ((-836 . -23) T) ((-474 . -544) 97715) ((-1120 . -702) 97647) ((-1124 . -506) 97580) ((-1016 . -600) NIL) ((-1016 . -599) 97562) ((-95 . -1061) T) ((-847 . -702) 97532) ((-1185 . -47) 97501) ((-244 . -129) T) ((-245 . -129) T) ((-1082 . -1078) T) ((-984 . -1078) T) ((-61 . -599) 97483) ((-1145 . -832) NIL) ((-1005 . -777) T) ((-1005 . -780) T) ((-1265 . -1036) 97470) ((-1265 . -110) 97455) ((-851 . -632) 97442) ((-1229 . -25) T) ((-1229 . -21) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-1201 . -21) T) ((-1201 . -25) T) ((-1008 . -148) 97426) ((-853 . -805) 97405) ((-853 . -901) T) ((-697 . -280) 97332) ((-583 . -21) T) ((-583 . -25) T) ((-582 . -21) T) ((-40 . -711) T) ((-217 . -506) 97265) ((-582 . -25) T) ((-469 . -148) 97249) ((-456 . -148) 97233) ((-902 . -779) T) ((-902 . -711) T) ((-756 . -778) T) ((-756 . -779) T) ((-498 . -1078) T) ((-494 . -1078) T) ((-756 . -711) T) ((-220 . -357) T) ((-1134 . -1078) 97211) ((-852 . -1195) T) ((-638 . -599) 97193) ((-852 . -544) T) ((-678 . -362) NIL) ((-353 . -1244) 97177) ((-654 . -101) T) ((-347 . -1244) 97161) ((-339 . -1244) 97145) ((-1260 . -1078) T) ((-512 . -832) 97124) ((-802 . -445) 97103) ((-1027 . -1078) T) ((-1027 . -1050) 97032) ((-1008 . -957) 97001) ((-804 . -1090) T) ((-984 . -702) 96946) ((-380 . -1090) T) ((-469 . -957) 96915) ((-456 . -957) 96884) ((-109 . -148) 96866) ((-72 . -599) 96848) ((-874 . -599) 96830) ((-1058 . -709) 96809) ((-1265 . -1030) T) ((-801 . -625) 96757) ((-288 . -1037) 96699) ((-166 . -1195) 96604) ((-220 . -1090) T) ((-318 . -23) T) ((-1145 . -973) 96556) ((-825 . -1078) T) ((-1223 . -1036) 96461) ((-1104 . -725) 96440) ((-1221 . -901) 96419) ((-1200 . -901) 96398) ((-851 . -711) T) ((-166 . -544) 96309) ((-568 . -632) 96296) ((-552 . -632) 96283) ((-401 . -1078) T) ((-257 . -1078) T) ((-208 . -599) 96265) ((-487 . -632) 96230) ((-220 . -23) T) ((-1200 . -805) 96183) ((-1259 . -101) T) ((-348 . -1256) 96160) ((-1257 . -101) T) ((-1223 . -110) 96052) ((-141 . -599) 96034) ((-974 . -129) T) ((-44 . -101) T) ((-235 . -832) 95985) ((-1210 . -1195) 95964) ((-102 . -482) 95948) ((-1260 . -702) 95918) ((-1065 . -47) 95879) ((-1041 . -1090) T) ((-933 . -1090) T) ((-126 . -34) T) ((-120 . -34) T) ((-767 . -47) 95856) ((-765 . -47) 95828) ((-1210 . -544) 95739) ((-348 . -362) T) ((-474 . -1090) T) ((-1150 . -129) T) ((-1103 . -129) T) ((-447 . -47) 95718) ((-852 . -357) T) ((-836 . -129) T) ((-149 . -101) T) ((-1041 . -23) T) ((-933 . -23) T) ((-559 . -544) T) ((-801 . -25) T) ((-801 . -21) T) ((-1120 . -506) 95651) ((-579 . -1061) T) ((-573 . -1019) 95635) ((-474 . -23) T) ((-345 . -1037) T) ((-1185 . -881) 95616) ((-654 . -303) 95554) ((-1091 . -1244) 95524) ((-683 . -632) 95489) ((-984 . -169) T) ((-944 . -142) 95468) ((-621 . -1078) T) ((-593 . -1078) T) ((-944 . -144) 95447) ((-985 . -832) T) ((-720 . -144) 95426) ((-720 . -142) 95405) ((-952 . -832) T) ((-467 . -901) 95384) ((-310 . -1036) 95294) ((-307 . -1036) 95223) ((-980 . -280) 95181) ((-401 . -702) 95133) ((-685 . -830) T) ((-1223 . -1030) T) ((-310 . -110) 95029) ((-307 . -110) 94942) ((-945 . -101) T) ((-800 . -101) 94732) ((-697 . -600) NIL) ((-697 . -599) 94714) ((-642 . -1019) 94610) ((-1223 . -320) 94554) ((-1016 . -282) 94529) ((-568 . -711) T) ((-552 . -779) T) ((-166 . -357) 94480) ((-552 . -776) T) ((-552 . -711) T) ((-487 . -711) T) ((-1124 . -482) 94464) ((-1065 . -867) NIL) ((-852 . -1090) T) ((-116 . -890) NIL) ((-1259 . -1258) 94440) ((-1257 . -1258) 94419) ((-767 . -867) NIL) ((-765 . -867) 94278) ((-1252 . -25) T) ((-1252 . -21) T) ((-1188 . -101) 94256) ((-1084 . -389) T) ((-609 . -632) 94243) ((-447 . -867) NIL) ((-659 . -101) 94221) ((-1065 . -1019) 94048) ((-852 . -23) T) ((-767 . -1019) 93907) ((-765 . -1019) 93764) ((-116 . -632) 93709) ((-447 . -1019) 93585) ((-633 . -1019) 93569) ((-613 . -101) T) ((-217 . -482) 93553) ((-1237 . -34) T) ((-621 . -702) 93537) ((-593 . -702) 93521) ((-654 . -38) 93481) ((-313 . -101) T) ((-84 . -599) 93463) ((-50 . -1019) 93447) ((-1098 . -1036) 93434) ((-1065 . -371) 93418) ((-767 . -371) 93402) ((-59 . -56) 93364) ((-683 . -779) T) ((-683 . -776) T) ((-569 . -1019) 93351) ((-510 . -1019) 93328) ((-683 . -711) T) ((-318 . -129) T) ((-310 . -1030) 93218) ((-307 . -1030) T) ((-166 . -1090) T) ((-765 . -371) 93202) ((-45 . -148) 93152) ((-985 . -973) 93134) ((-447 . -371) 93118) ((-401 . -169) T) ((-310 . -238) 93097) ((-307 . -238) T) ((-307 . -228) NIL) ((-288 . -1078) 92879) ((-220 . -129) T) ((-1098 . -110) 92864) ((-166 . -23) T) ((-784 . -144) 92843) ((-784 . -142) 92822) ((-245 . -625) 92728) ((-244 . -625) 92634) ((-313 . -278) 92600) ((-1134 . -506) 92533) ((-1111 . -1078) T) ((-220 . -1039) T) ((-800 . -303) 92471) ((-1065 . -881) 92406) ((-767 . -881) 92349) ((-765 . -881) 92333) ((-1259 . -38) 92303) ((-1257 . -38) 92273) ((-1210 . -1090) T) ((-837 . -1090) T) ((-447 . -881) 92250) ((-840 . -1078) T) ((-1210 . -23) T) ((-559 . -1090) T) ((-837 . -23) T) ((-609 . -711) T) ((-349 . -901) T) ((-346 . -901) T) ((-283 . -101) T) ((-338 . -901) T) ((-1041 . -129) T) ((-951 . -1061) T) ((-933 . -129) T) ((-116 . -779) NIL) ((-116 . -776) NIL) ((-116 . -711) T) ((-678 . -890) NIL) ((-1027 . -506) 92151) ((-474 . -129) T) ((-559 . -23) T) ((-659 . -303) 92089) ((-621 . -746) T) ((-593 . -746) T) ((-1201 . -832) NIL) ((-984 . -284) T) ((-245 . -21) T) ((-678 . -632) 92039) ((-345 . -1078) T) ((-245 . -25) T) ((-244 . -21) T) ((-244 . -25) T) ((-149 . -38) 92023) ((-2 . -101) T) ((-891 . -901) T) ((-475 . -1244) 91993) ((-218 . -1019) 91970) ((-1098 . -1030) T) ((-696 . -301) T) ((-288 . -702) 91912) ((-685 . -1037) T) ((-480 . -445) T) ((-401 . -506) 91824) ((-212 . -445) T) ((-1098 . -228) T) ((-289 . -148) 91774) ((-980 . -600) 91735) ((-980 . -599) 91717) ((-970 . -599) 91699) ((-115 . -1037) T) ((-638 . -1036) 91683) ((-220 . -485) T) ((-393 . -599) 91665) ((-393 . -600) 91642) ((-1034 . -1244) 91612) ((-638 . -110) 91591) ((-1120 . -482) 91575) ((-800 . -38) 91545) ((-62 . -434) T) ((-62 . -389) T) ((-1137 . -101) T) ((-852 . -129) T) ((-477 . -101) 91523) ((-1265 . -362) T) ((-1058 . -101) T) ((-1040 . -101) T) ((-345 . -702) 91468) ((-716 . -144) 91447) ((-716 . -142) 91426) ((-1005 . -632) 91363) ((-515 . -1078) 91341) ((-353 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-107 . -101) T) ((-496 . -1078) T) ((-348 . -632) 91286) ((-1150 . -625) 91234) ((-1103 . -625) 91182) ((-379 . -501) 91161) ((-818 . -830) 91140) ((-373 . -1195) T) ((-678 . -711) T) ((-333 . -1037) T) ((-1201 . -973) 91092) ((-171 . -1037) T) ((-102 . -599) 91024) ((-1152 . -142) 91003) ((-1152 . -144) 90982) ((-373 . -544) T) ((-1151 . -144) 90961) ((-1151 . -142) 90940) ((-1145 . -142) 90847) ((-401 . -284) T) ((-1145 . -144) 90754) ((-1104 . -144) 90733) ((-1104 . -142) 90712) ((-313 . -38) 90553) ((-166 . -129) T) ((-307 . -780) NIL) ((-307 . -777) NIL) ((-638 . -1030) T) ((-48 . -632) 90518) ((-1144 . -101) T) ((-975 . -101) T) ((-974 . -21) T) ((-126 . -991) 90502) ((-120 . -991) 90486) ((-974 . -25) T) ((-882 . -118) 90470) ((-1136 . -101) T) ((-801 . -832) 90449) ((-1210 . -129) T) ((-1150 . -25) T) ((-1150 . -21) T) ((-837 . -129) T) ((-1103 . -25) T) ((-1103 . -21) T) ((-836 . -25) T) ((-836 . -21) T) ((-767 . -301) 90428) ((-631 . -101) 90406) ((-618 . -101) T) ((-1137 . -303) 90201) ((-559 . -129) T) ((-607 . -830) 90180) ((-1134 . -482) 90164) ((-1128 . -148) 90114) ((-1124 . -599) 90076) ((-1124 . -600) 90037) ((-1005 . -776) T) ((-1005 . -779) T) ((-1005 . -711) T) ((-477 . -303) 89975) ((-446 . -411) 89945) ((-345 . -169) T) ((-283 . -38) 89932) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-337 . -1019) 89909) ((-207 . -101) T) ((-206 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-198 . -101) T) ((-197 . -101) T) ((-697 . -1036) 89732) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-348 . -711) T) ((-697 . -110) 89541) ((-654 . -226) 89525) ((-569 . -301) T) ((-510 . -301) T) ((-288 . -506) 89474) ((-107 . -303) NIL) ((-71 . -389) T) ((-1091 . -101) 89264) ((-818 . -405) 89248) ((-1098 . -780) T) ((-1098 . -777) T) ((-685 . -1078) T) ((-566 . -599) 89230) ((-373 . -357) T) ((-166 . -485) 89208) ((-217 . -599) 89140) ((-132 . -1078) T) ((-115 . -1078) T) ((-48 . -711) T) ((-1027 . -482) 89105) ((-498 . -92) T) ((-138 . -419) 89087) ((-138 . -362) T) ((-1008 . -101) T) ((-504 . -501) 89066) ((-469 . -101) T) ((-456 . -101) T) ((-1015 . -1090) T) ((-1159 . -1019) 89001) ((-1152 . -35) 88967) ((-1152 . -94) 88933) ((-1152 . -1179) 88899) ((-1152 . -1176) 88865) ((-1136 . -303) NIL) ((-88 . -390) T) ((-88 . -389) T) ((-1058 . -1129) 88844) ((-1151 . -1176) 88810) ((-1151 . -1179) 88776) ((-1015 . -23) T) ((-1151 . -94) 88742) ((-559 . -485) T) ((-1151 . -35) 88708) ((-1145 . -1176) 88674) ((-1145 . -1179) 88640) ((-1145 . -94) 88606) ((-355 . -1090) T) ((-353 . -1129) 88585) ((-347 . -1129) 88564) ((-339 . -1129) 88543) ((-1145 . -35) 88509) ((-1104 . -35) 88475) ((-1104 . -94) 88441) ((-107 . -1129) T) ((-1104 . -1179) 88407) ((-818 . -1037) 88386) ((-631 . -303) 88324) ((-618 . -303) 88175) ((-1104 . -1176) 88141) ((-697 . -1030) T) ((-1041 . -625) 88123) ((-1058 . -38) 87991) ((-933 . -625) 87939) ((-985 . -144) T) ((-985 . -142) NIL) ((-373 . -1090) T) ((-318 . -25) T) ((-316 . -23) T) ((-924 . -832) 87918) ((-697 . -320) 87895) ((-474 . -625) 87843) ((-40 . -1019) 87731) ((-685 . -702) 87718) ((-697 . -228) T) ((-333 . -1078) T) ((-171 . -1078) T) ((-325 . -832) T) ((-412 . -445) 87668) ((-373 . -23) T) ((-353 . -38) 87633) ((-347 . -38) 87598) ((-339 . -38) 87563) ((-79 . -434) T) ((-79 . -389) T) ((-220 . -25) T) ((-220 . -21) T) ((-819 . -1090) T) ((-107 . -38) 87513) ((-812 . -1090) T) ((-759 . -1078) T) ((-115 . -702) 87500) ((-656 . -1019) 87484) ((-598 . -101) T) ((-819 . -23) T) ((-812 . -23) T) ((-1134 . -280) 87461) ((-1091 . -303) 87399) ((-1080 . -230) 87383) ((-63 . -390) T) ((-63 . -389) T) ((-109 . -101) T) ((-40 . -371) 87360) ((-95 . -101) T) ((-637 . -834) 87344) ((-1113 . -1061) T) ((-1041 . -21) T) ((-1041 . -25) T) ((-800 . -226) 87313) ((-933 . -25) T) ((-933 . -21) T) ((-607 . -1037) T) ((-474 . -25) T) ((-474 . -21) T) ((-1008 . -303) 87251) ((-870 . -599) 87233) ((-866 . -599) 87215) ((-245 . -832) 87166) ((-244 . -832) 87117) ((-515 . -506) 87050) ((-852 . -625) 87027) ((-469 . -303) 86965) ((-456 . -303) 86903) ((-345 . -284) T) ((-1134 . -1225) 86887) ((-1120 . -599) 86849) ((-1120 . -600) 86810) ((-1118 . -101) T) ((-980 . -1036) 86706) ((-40 . -881) 86658) ((-1134 . -590) 86635) ((-1265 . -632) 86622) ((-1042 . -148) 86568) ((-853 . -1195) T) ((-980 . -110) 86450) ((-333 . -702) 86434) ((-847 . -599) 86416) ((-171 . -702) 86348) ((-401 . -280) 86306) ((-853 . -544) T) ((-107 . -394) 86288) ((-83 . -378) T) ((-83 . -389) T) ((-685 . -169) T) ((-603 . -599) 86270) ((-98 . -711) T) ((-475 . -101) 86060) ((-98 . -466) T) ((-115 . -169) T) ((-1091 . -38) 86030) ((-166 . -625) 85978) ((-1034 . -101) T) ((-852 . -25) T) ((-800 . -233) 85957) ((-852 . -21) T) ((-803 . -101) T) ((-408 . -101) T) ((-379 . -101) T) ((-109 . -303) NIL) ((-222 . -101) 85935) ((-126 . -1191) T) ((-120 . -1191) T) ((-1015 . -129) T) ((-654 . -361) 85919) ((-980 . -1030) T) ((-1210 . -625) 85867) ((-1082 . -599) 85849) ((-984 . -599) 85831) ((-507 . -23) T) ((-502 . -23) T) ((-337 . -301) T) ((-500 . -23) T) ((-316 . -129) T) ((-3 . -1078) T) ((-984 . -600) 85815) ((-980 . -238) 85794) ((-980 . -228) 85773) ((-1265 . -711) T) ((-1229 . -142) 85752) ((-818 . -1078) T) ((-1229 . -144) 85731) ((-1222 . -144) 85710) ((-1222 . -142) 85689) ((-1221 . -1195) 85668) ((-1201 . -142) 85575) ((-1201 . -144) 85482) ((-1200 . -1195) 85461) ((-373 . -129) T) ((-552 . -867) 85443) ((0 . -1078) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1078) T) ((-1223 . -632) 85348) ((-1221 . -544) 85299) ((-699 . -1090) T) ((-1200 . -544) 85250) ((-552 . -1019) 85232) ((-582 . -144) 85211) ((-582 . -142) 85190) ((-487 . -1019) 85133) ((-1113 . -1115) T) ((-86 . -378) T) ((-86 . -389) T) ((-853 . -357) T) ((-819 . -129) T) ((-812 . -129) T) ((-699 . -23) T) ((-498 . -599) 85083) ((-494 . -599) 85065) ((-1261 . -1037) T) ((-373 . -1039) T) ((-1007 . -1078) 85043) ((-882 . -34) T) ((-475 . -303) 84981) ((-579 . -101) T) ((-1134 . -600) 84942) ((-1134 . -599) 84874) ((-1150 . -832) 84853) ((-45 . -101) T) ((-1103 . -832) 84832) ((-802 . -101) T) ((-1210 . -25) T) ((-1210 . -21) T) ((-837 . -25) T) ((-44 . -361) 84816) ((-837 . -21) T) ((-716 . -445) 84767) ((-1260 . -599) 84749) ((-1034 . -303) 84687) ((-655 . -1061) T) ((-592 . -1061) T) ((-384 . -1078) T) ((-559 . -25) T) ((-559 . -21) T) ((-177 . -1061) T) ((-158 . -1061) T) ((-153 . -1061) T) ((-151 . -1061) T) ((-607 . -1078) T) ((-683 . -867) 84669) ((-1237 . -1191) T) ((-222 . -303) 84607) ((-141 . -362) T) ((-1027 . -600) 84549) ((-1027 . -599) 84492) ((-307 . -890) NIL) ((-683 . -1019) 84437) ((-696 . -901) T) ((-467 . -1195) 84416) ((-1151 . -445) 84395) ((-1145 . -445) 84374) ((-324 . -101) T) ((-853 . -1090) T) ((-310 . -632) 84195) ((-307 . -632) 84124) ((-467 . -544) 84075) ((-333 . -506) 84041) ((-538 . -148) 83991) ((-40 . -301) T) ((-825 . -599) 83973) ((-685 . -284) T) ((-853 . -23) T) ((-373 . -485) T) ((-1058 . -226) 83943) ((-504 . -101) T) ((-401 . -600) 83750) ((-401 . -599) 83732) ((-257 . -599) 83714) ((-115 . -284) T) ((-1223 . -711) T) ((-1221 . -357) 83693) ((-1200 . -357) 83672) ((-1250 . -34) T) ((-116 . -1191) T) ((-107 . -226) 83654) ((-1156 . -101) T) ((-470 . -1078) T) ((-515 . -482) 83638) ((-722 . -34) T) ((-475 . -38) 83608) ((-138 . -34) T) ((-116 . -865) 83585) ((-116 . -867) NIL) ((-609 . -1019) 83468) ((-629 . -832) 83447) ((-1249 . -101) T) ((-289 . -101) T) ((-697 . -362) 83426) ((-116 . -1019) 83403) ((-384 . -702) 83387) ((-607 . -702) 83371) ((-45 . -303) 83175) ((-801 . -142) 83154) ((-801 . -144) 83133) ((-1260 . -376) 83112) ((-804 . -832) T) ((-1239 . -1078) T) ((-1137 . -224) 83059) ((-380 . -832) 83038) ((-1229 . -1179) 83004) ((-1229 . -1176) 82970) ((-1222 . -1176) 82936) ((-507 . -129) T) ((-1222 . -1179) 82902) ((-1201 . -1176) 82868) ((-1201 . -1179) 82834) ((-1229 . -35) 82800) ((-1229 . -94) 82766) ((-621 . -599) 82735) ((-593 . -599) 82704) ((-220 . -832) T) ((-1222 . -94) 82670) ((-1222 . -35) 82636) ((-1221 . -1090) T) ((-1098 . -632) 82623) ((-1201 . -94) 82589) ((-1200 . -1090) T) ((-580 . -148) 82571) ((-1058 . -343) 82550) ((-171 . -284) T) ((-116 . -371) 82527) ((-116 . -332) 82504) ((-1201 . -35) 82470) ((-851 . -301) T) ((-307 . -779) NIL) ((-307 . -776) NIL) ((-310 . -711) 82319) ((-307 . -711) T) ((-467 . -357) 82298) ((-353 . -343) 82277) ((-347 . -343) 82256) ((-339 . -343) 82235) ((-310 . -466) 82214) ((-1221 . -23) T) ((-1200 . -23) T) ((-703 . -1090) T) ((-699 . -129) T) ((-637 . -101) T) ((-470 . -702) 82179) ((-45 . -276) 82129) ((-104 . -1078) T) ((-67 . -599) 82111) ((-951 . -101) T) ((-846 . -101) T) ((-609 . -881) 82070) ((-1261 . -1078) T) ((-375 . -1078) T) ((-1190 . -1078) T) ((-1091 . -226) 82039) ((-81 . -1191) T) ((-1041 . -832) T) ((-933 . -832) 82018) ((-116 . -881) NIL) ((-767 . -901) 81997) ((-698 . -832) T) ((-523 . -1078) T) ((-492 . -1078) T) ((-349 . -1195) T) ((-346 . -1195) T) ((-338 . -1195) T) ((-258 . -1195) 81976) ((-242 . -1195) 81955) ((-525 . -842) T) ((-474 . -832) 81934) ((-1120 . -1036) 81918) ((-384 . -746) T) ((-1136 . -813) T) ((-678 . -1191) T) ((-349 . -544) T) ((-346 . -544) T) ((-338 . -544) T) ((-258 . -544) 81849) ((-242 . -544) 81780) ((-517 . -1061) T) ((-1120 . -110) 81759) ((-446 . -729) 81729) ((-847 . -1036) 81699) ((-802 . -38) 81641) ((-678 . -865) 81623) ((-678 . -867) 81605) ((-289 . -303) 81409) ((-891 . -1195) T) ((-654 . -405) 81393) ((-847 . -110) 81358) ((-678 . -1019) 81303) ((-985 . -445) T) ((-891 . -544) T) ((-525 . -599) 81285) ((-569 . -901) T) ((-467 . -1090) T) ((-510 . -901) T) ((-1134 . -282) 81262) ((-895 . -445) T) ((-64 . -599) 81244) ((-618 . -224) 81190) ((-467 . -23) T) ((-1098 . -779) T) ((-853 . -129) T) ((-1098 . -776) T) ((-1252 . -1254) 81169) ((-1098 . -711) T) ((-638 . -632) 81143) ((-288 . -599) 80884) ((-1016 . -34) T) ((-800 . -830) 80863) ((-568 . -301) T) ((-552 . -301) T) ((-487 . -301) T) ((-1261 . -702) 80833) ((-678 . -371) 80815) ((-678 . -332) 80797) ((-470 . -169) T) ((-375 . -702) 80767) ((-852 . -832) NIL) ((-552 . -1003) T) ((-487 . -1003) T) ((-1111 . -599) 80749) ((-1091 . -233) 80728) ((-209 . -101) T) ((-1128 . -101) T) ((-70 . -599) 80710) ((-1120 . -1030) T) ((-1156 . -38) 80607) ((-840 . -599) 80589) ((-552 . -537) T) ((-654 . -1037) T) ((-716 . -930) 80542) ((-1120 . -228) 80521) ((-1060 . -1078) T) ((-1015 . -25) T) ((-1015 . -21) T) ((-984 . -1036) 80466) ((-886 . -101) T) ((-847 . -1030) T) ((-678 . -881) NIL) ((-349 . -323) 80450) ((-349 . -357) T) ((-346 . -323) 80434) ((-346 . -357) T) ((-338 . -323) 80418) ((-338 . -357) T) ((-480 . -101) T) ((-1249 . -38) 80388) ((-515 . -671) 80338) ((-212 . -101) T) ((-1005 . -1019) 80218) ((-984 . -110) 80147) ((-1152 . -954) 80116) ((-1151 . -954) 80078) ((-512 . -148) 80062) ((-1058 . -364) 80041) ((-345 . -599) 80023) ((-316 . -21) T) ((-348 . -1019) 80000) ((-316 . -25) T) ((-1145 . -954) 79969) ((-1104 . -954) 79936) ((-75 . -599) 79918) ((-683 . -301) T) ((-166 . -832) 79897) ((-891 . -357) T) ((-373 . -25) T) ((-373 . -21) T) ((-891 . -323) 79884) ((-85 . -599) 79866) ((-683 . -1003) T) ((-661 . -832) T) ((-1221 . -129) T) ((-1200 . -129) T) ((-882 . -991) 79850) ((-819 . -21) T) ((-48 . -1019) 79793) ((-819 . -25) T) ((-812 . -25) T) ((-812 . -21) T) ((-1259 . -1037) T) ((-1257 . -1037) T) ((-638 . -711) T) ((-1260 . -1036) 79777) ((-1210 . -832) 79756) ((-800 . -405) 79725) ((-102 . -118) 79709) ((-128 . -1078) T) ((-52 . -1078) T) ((-907 . -599) 79691) ((-852 . -973) 79668) ((-808 . -101) T) ((-1260 . -110) 79647) ((-637 . -38) 79617) ((-559 . -832) T) ((-349 . -1090) T) ((-346 . -1090) T) ((-338 . -1090) T) ((-258 . -1090) T) ((-242 . -1090) T) ((-609 . -301) 79596) ((-1128 . -303) 79400) ((-516 . -1061) T) ((-305 . -1078) T) ((-648 . -23) T) ((-475 . -226) 79369) ((-149 . -1037) T) ((-349 . -23) T) ((-346 . -23) T) ((-338 . -23) T) ((-116 . -301) T) ((-258 . -23) T) ((-242 . -23) T) ((-984 . -1030) T) ((-697 . -890) 79348) ((-984 . -228) 79320) ((-984 . -238) T) ((-116 . -1003) NIL) ((-891 . -1090) T) ((-1222 . -445) 79299) ((-1201 . -445) 79278) ((-515 . -599) 79210) ((-697 . -632) 79135) ((-401 . -1036) 79087) ((-496 . -599) 79069) ((-891 . -23) T) ((-480 . -303) NIL) ((-467 . -129) T) ((-212 . -303) NIL) ((-401 . -110) 79007) ((-800 . -1037) 78937) ((-722 . -1076) 78921) ((-1221 . -485) 78887) ((-1200 . -485) 78853) ((-138 . -1076) 78835) ((-470 . -284) T) ((-1260 . -1030) T) ((-1042 . -101) T) ((-492 . -506) NIL) ((-687 . -101) T) ((-475 . -233) 78814) ((-1150 . -142) 78793) ((-1150 . -144) 78772) ((-1103 . -144) 78751) ((-1103 . -142) 78730) ((-621 . -1036) 78714) ((-593 . -1036) 78698) ((-654 . -1078) T) ((-654 . -1033) 78638) ((-1152 . -1228) 78622) ((-1152 . -1215) 78599) ((-480 . -1129) T) ((-1151 . -1220) 78560) ((-1151 . -1215) 78530) ((-1151 . -1218) 78514) ((-212 . -1129) T) ((-337 . -901) T) ((-803 . -260) 78498) ((-621 . -110) 78477) ((-593 . -110) 78456) ((-1145 . -1199) 78417) ((-825 . -1030) 78396) ((-1145 . -1215) 78373) ((-507 . -25) T) ((-487 . -296) T) ((-503 . -23) T) ((-502 . -25) T) ((-500 . -25) T) ((-499 . -23) T) ((-1145 . -1197) 78357) ((-401 . -1030) T) ((-313 . -1037) T) ((-678 . -301) T) ((-107 . -830) T) ((-401 . -238) T) ((-401 . -228) 78336) ((-697 . -711) T) ((-480 . -38) 78286) ((-212 . -38) 78236) ((-467 . -485) 78202) ((-1136 . -1122) T) ((-1079 . -101) T) ((-685 . -599) 78184) ((-685 . -600) 78099) ((-699 . -21) T) ((-699 . -25) T) ((-1113 . -101) T) ((-132 . -599) 78081) ((-115 . -599) 78063) ((-154 . -25) T) ((-1259 . -1078) T) ((-853 . -625) 78011) ((-1257 . -1078) T) ((-944 . -101) T) ((-720 . -101) T) ((-700 . -101) T) ((-446 . -101) T) ((-801 . -445) 77962) ((-44 . -1078) T) ((-1066 . -832) T) ((-648 . -129) T) ((-1042 . -303) 77813) ((-654 . -702) 77797) ((-283 . -1037) T) ((-349 . -129) T) ((-346 . -129) T) ((-338 . -129) T) ((-258 . -129) T) ((-242 . -129) T) ((-412 . -101) T) ((-149 . -1078) T) ((-45 . -224) 77747) ((-939 . -832) 77726) ((-980 . -632) 77664) ((-235 . -1244) 77634) ((-1005 . -301) T) ((-288 . -1036) 77555) ((-891 . -129) T) ((-40 . -901) T) ((-480 . -394) 77537) ((-348 . -301) T) ((-212 . -394) 77519) ((-1058 . -405) 77503) ((-288 . -110) 77419) ((-853 . -25) T) ((-853 . -21) T) ((-333 . -599) 77401) ((-1223 . -47) 77345) ((-220 . -144) T) ((-171 . -599) 77327) ((-1091 . -830) 77306) ((-759 . -599) 77288) ((-127 . -832) T) ((-594 . -230) 77235) ((-468 . -230) 77185) ((-1259 . -702) 77155) ((-48 . -301) T) ((-1257 . -702) 77125) ((-945 . -1078) T) ((-800 . -1078) 76915) ((-306 . -101) T) ((-882 . -1191) T) ((-48 . -1003) T) ((-1200 . -625) 76823) ((-673 . -101) 76801) ((-44 . -702) 76785) ((-538 . -101) T) ((-66 . -377) T) ((-66 . -389) T) ((-646 . -23) T) ((-654 . -746) T) ((-1188 . -1078) 76763) ((-345 . -1036) 76708) ((-659 . -1078) 76686) ((-1041 . -144) T) ((-933 . -144) 76665) ((-933 . -142) 76644) ((-784 . -101) T) ((-149 . -702) 76628) ((-474 . -144) 76607) ((-474 . -142) 76586) ((-345 . -110) 76515) ((-1058 . -1037) T) ((-316 . -832) 76494) ((-1229 . -954) 76463) ((-613 . -1078) T) ((-1222 . -954) 76425) ((-503 . -129) T) ((-499 . -129) T) ((-289 . -224) 76375) ((-353 . -1037) T) ((-347 . -1037) T) ((-339 . -1037) T) ((-288 . -1030) 76317) ((-1201 . -954) 76286) ((-373 . -832) T) ((-107 . -1037) T) ((-980 . -711) T) ((-851 . -901) T) ((-825 . -780) 76265) ((-825 . -777) 76244) ((-412 . -303) 76183) ((-461 . -101) T) ((-582 . -954) 76152) ((-313 . -1078) T) ((-401 . -780) 76131) ((-401 . -777) 76110) ((-492 . -482) 76092) ((-1223 . -1019) 76058) ((-1221 . -21) T) ((-1221 . -25) T) ((-1200 . -21) T) ((-1200 . -25) T) ((-800 . -702) 76000) ((-683 . -398) T) ((-1250 . -1191) T) ((-592 . -101) T) ((-1091 . -405) 75969) ((-984 . -362) NIL) ((-655 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-151 . -101) T) ((-102 . -34) T) ((-722 . -1191) T) ((-44 . -746) T) ((-580 . -101) T) ((-76 . -390) T) ((-76 . -389) T) ((-637 . -640) 75953) ((-138 . -1191) T) ((-852 . -144) T) ((-852 . -142) NIL) ((-1190 . -92) T) ((-345 . -1030) T) ((-69 . -377) T) ((-69 . -389) T) ((-1143 . -101) T) ((-654 . -506) 75886) ((-673 . -303) 75824) ((-944 . -38) 75721) ((-720 . -38) 75691) ((-538 . -303) 75495) ((-310 . -1191) T) ((-345 . -228) T) ((-345 . -238) T) ((-307 . -1191) T) ((-283 . -1078) T) ((-1158 . -599) 75477) ((-696 . -1195) T) ((-1134 . -635) 75461) ((-1185 . -544) 75440) ((-696 . -544) T) ((-310 . -865) 75424) ((-310 . -867) 75349) ((-307 . -865) 75310) ((-307 . -867) NIL) ((-784 . -303) 75275) ((-313 . -702) 75116) ((-318 . -317) 75093) ((-478 . -101) T) ((-467 . -25) T) ((-467 . -21) T) ((-412 . -38) 75067) ((-310 . -1019) 74730) ((-220 . -1176) T) ((-220 . -1179) T) ((-3 . -599) 74712) ((-307 . -1019) 74642) ((-2 . -1078) T) ((-2 . |RecordCategory|) T) ((-818 . -599) 74624) ((-1091 . -1037) 74554) ((-568 . -901) T) ((-552 . -805) T) ((-552 . -901) T) ((-487 . -901) T) ((-134 . -1019) 74538) ((-220 . -94) T) ((-74 . -434) T) ((-74 . -389) T) ((0 . -599) 74520) ((-166 . -144) 74499) ((-166 . -142) 74450) ((-220 . -35) T) ((-49 . -599) 74432) ((-470 . -1037) T) ((-480 . -226) 74414) ((-477 . -949) 74398) ((-475 . -830) 74377) ((-212 . -226) 74359) ((-80 . -434) T) ((-80 . -389) T) ((-1124 . -34) T) ((-800 . -169) 74338) ((-716 . -101) T) ((-1007 . -599) 74305) ((-492 . -280) 74280) ((-310 . -371) 74249) ((-307 . -371) 74210) ((-307 . -332) 74171) ((-1063 . -599) 74153) ((-801 . -930) 74100) ((-646 . -129) T) ((-1210 . -142) 74079) ((-1210 . -144) 74058) ((-1152 . -101) T) ((-1151 . -101) T) ((-1145 . -101) T) ((-1137 . -1078) T) ((-1104 . -101) T) ((-217 . -34) T) ((-283 . -702) 74045) ((-1137 . -596) 74021) ((-580 . -303) NIL) ((-477 . -1078) 73999) ((-384 . -599) 73981) ((-502 . -832) T) ((-1128 . -224) 73931) ((-1229 . -1228) 73915) ((-1229 . -1215) 73892) ((-1222 . -1220) 73853) ((-1222 . -1215) 73823) ((-1222 . -1218) 73807) ((-1201 . -1199) 73768) ((-1201 . -1215) 73745) ((-607 . -599) 73727) ((-1201 . -1197) 73711) ((-683 . -901) T) ((-1152 . -278) 73677) ((-1151 . -278) 73643) ((-1145 . -278) 73609) ((-1058 . -1078) T) ((-1040 . -1078) T) ((-48 . -296) T) ((-310 . -881) 73575) ((-307 . -881) NIL) ((-1040 . -1047) 73554) ((-1098 . -867) 73536) ((-784 . -38) 73520) ((-258 . -625) 73468) ((-242 . -625) 73416) ((-685 . -1036) 73403) ((-582 . -1215) 73380) ((-1104 . -278) 73346) ((-313 . -169) 73277) ((-353 . -1078) T) ((-347 . -1078) T) ((-339 . -1078) T) ((-492 . -19) 73259) ((-1098 . -1019) 73241) ((-1080 . -148) 73225) ((-107 . -1078) T) ((-115 . -1036) 73212) ((-696 . -357) T) ((-492 . -590) 73187) ((-685 . -110) 73172) ((-430 . -101) T) ((-45 . -1127) 73122) ((-115 . -110) 73107) ((-621 . -705) T) ((-593 . -705) T) ((-800 . -506) 73040) ((-1016 . -1191) T) ((-924 . -148) 73024) ((-517 . -101) T) ((-512 . -101) 72974) ((-1150 . -445) 72905) ((-1144 . -1078) T) ((-1065 . -1195) 72884) ((-767 . -1195) 72863) ((-765 . -1195) 72842) ((-61 . -1191) T) ((-470 . -599) 72794) ((-470 . -600) 72716) ((-1136 . -1078) T) ((-1120 . -632) 72690) ((-1103 . -445) 72641) ((-1065 . -544) 72572) ((-475 . -405) 72541) ((-609 . -901) 72520) ((-447 . -1195) 72499) ((-975 . -1078) T) ((-767 . -544) 72410) ((-392 . -599) 72392) ((-765 . -544) 72323) ((-716 . -303) 72310) ((-659 . -506) 72243) ((-648 . -25) T) ((-648 . -21) T) ((-447 . -544) 72174) ((-116 . -901) T) ((-116 . -805) NIL) ((-349 . -25) T) ((-349 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-338 . -25) T) ((-338 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-82 . -378) T) ((-82 . -389) T) ((-242 . -25) T) ((-242 . -21) T) ((-1239 . -599) 72156) ((-1185 . -1090) T) ((-1185 . -23) T) ((-1145 . -303) 72041) ((-1104 . -303) 72028) ((-1058 . -702) 71896) ((-847 . -632) 71856) ((-924 . -961) 71840) ((-891 . -21) T) ((-283 . -169) T) ((-891 . -25) T) ((-305 . -92) T) ((-853 . -832) 71791) ((-696 . -1090) T) ((-696 . -23) T) ((-631 . -1078) 71769) ((-618 . -596) 71744) ((-618 . -1078) T) ((-569 . -1195) T) ((-510 . -1195) T) ((-569 . -544) T) ((-510 . -544) T) ((-353 . -702) 71696) ((-347 . -702) 71648) ((-339 . -702) 71600) ((-333 . -1036) 71584) ((-171 . -110) 71495) ((-171 . -1036) 71427) ((-107 . -702) 71377) ((-333 . -110) 71356) ((-268 . -1078) T) ((-267 . -1078) T) ((-266 . -1078) T) ((-265 . -1078) T) ((-685 . -1030) T) ((-264 . -1078) T) ((-263 . -1078) T) ((-262 . -1078) T) ((-207 . -1078) T) ((-206 . -1078) T) ((-204 . -1078) T) ((-166 . -1179) 71334) ((-166 . -1176) 71312) ((-203 . -1078) T) ((-202 . -1078) T) ((-115 . -1030) T) ((-201 . -1078) T) ((-198 . -1078) T) ((-685 . -228) T) ((-197 . -1078) T) ((-196 . -1078) T) ((-195 . -1078) T) ((-194 . -1078) T) ((-193 . -1078) T) ((-192 . -1078) T) ((-191 . -1078) T) ((-190 . -1078) T) ((-189 . -1078) T) ((-188 . -1078) T) ((-235 . -101) 71102) ((-166 . -35) 71080) ((-166 . -94) 71058) ((-638 . -1019) 70954) ((-475 . -1037) 70884) ((-1091 . -1078) 70674) ((-1120 . -34) T) ((-654 . -482) 70658) ((-72 . -1191) T) ((-104 . -599) 70640) ((-1261 . -599) 70622) ((-375 . -599) 70604) ((-716 . -38) 70453) ((-559 . -1179) T) ((-559 . -1176) T) ((-523 . -599) 70435) ((-512 . -303) 70373) ((-492 . -599) 70355) ((-492 . -600) 70337) ((-1190 . -599) 70303) ((-1145 . -1129) NIL) ((-1008 . -1050) 70272) ((-1008 . -1078) T) ((-985 . -101) T) ((-952 . -101) T) ((-895 . -101) T) ((-874 . -1019) 70249) ((-1120 . -711) T) ((-984 . -632) 70194) ((-469 . -1078) T) ((-456 . -1078) T) ((-573 . -23) T) ((-559 . -35) T) ((-559 . -94) T) ((-421 . -101) T) ((-1042 . -224) 70140) ((-1152 . -38) 70037) ((-847 . -711) T) ((-678 . -901) T) ((-503 . -25) T) ((-499 . -21) T) ((-499 . -25) T) ((-1151 . -38) 69878) ((-333 . -1030) T) ((-1145 . -38) 69674) ((-1058 . -169) T) ((-171 . -1030) T) ((-1104 . -38) 69571) ((-697 . -47) 69548) ((-353 . -169) T) ((-347 . -169) T) ((-511 . -56) 69522) ((-489 . -56) 69472) ((-345 . -1256) 69449) ((-220 . -445) T) ((-313 . -284) 69400) ((-339 . -169) T) ((-171 . -238) T) ((-1200 . -832) 69299) ((-107 . -169) T) ((-853 . -973) 69283) ((-642 . -1090) T) ((-569 . -357) T) ((-569 . -323) 69270) ((-510 . -323) 69247) ((-510 . -357) T) ((-310 . -301) 69226) ((-307 . -301) T) ((-588 . -832) 69205) ((-1091 . -702) 69147) ((-512 . -276) 69131) ((-642 . -23) T) ((-412 . -226) 69115) ((-307 . -1003) NIL) ((-330 . -23) T) ((-102 . -991) 69099) ((-45 . -36) 69078) ((-598 . -1078) T) ((-345 . -362) T) ((-516 . -101) T) ((-487 . -27) T) ((-235 . -303) 69016) ((-1065 . -1090) T) ((-1260 . -632) 68990) ((-767 . -1090) T) ((-765 . -1090) T) ((-447 . -1090) T) ((-1041 . -445) T) ((-933 . -445) 68941) ((-1093 . -1061) T) ((-109 . -1078) T) ((-1065 . -23) T) ((-802 . -1037) T) ((-767 . -23) T) ((-765 . -23) T) ((-474 . -445) 68892) ((-1137 . -506) 68675) ((-375 . -376) 68654) ((-1156 . -405) 68638) ((-454 . -23) T) ((-447 . -23) T) ((-95 . -1078) T) ((-477 . -506) 68571) ((-283 . -284) T) ((-1060 . -599) 68553) ((-401 . -890) 68532) ((-50 . -1090) T) ((-1005 . -901) T) ((-984 . -711) T) ((-697 . -867) NIL) ((-569 . -1090) T) ((-510 . -1090) T) ((-825 . -632) 68505) ((-1185 . -129) T) ((-1145 . -394) 68457) ((-985 . -303) NIL) ((-800 . -482) 68441) ((-348 . -901) T) ((-1134 . -34) T) ((-401 . -632) 68393) ((-50 . -23) T) ((-696 . -129) T) ((-697 . -1019) 68273) ((-569 . -23) T) ((-107 . -506) NIL) ((-510 . -23) T) ((-166 . -403) 68244) ((-1118 . -1078) T) ((-1252 . -1251) 68228) ((-685 . -780) T) ((-685 . -777) T) ((-1098 . -301) T) ((-373 . -144) T) ((-274 . -599) 68210) ((-1200 . -973) 68180) ((-48 . -901) T) ((-659 . -482) 68164) ((-245 . -1244) 68134) ((-244 . -1244) 68104) ((-1154 . -832) T) ((-1091 . -169) 68083) ((-1098 . -1003) T) ((-1027 . -34) T) ((-819 . -144) 68062) ((-819 . -142) 68041) ((-722 . -106) 68025) ((-598 . -130) T) ((-475 . -1078) 67815) ((-1156 . -1037) T) ((-852 . -445) T) ((-84 . -1191) T) ((-235 . -38) 67785) ((-138 . -106) 67767) ((-697 . -371) 67751) ((-1098 . -537) T) ((-567 . -101) T) ((-384 . -1036) 67735) ((-1260 . -711) T) ((-1150 . -930) 67704) ((-128 . -599) 67656) ((-52 . -599) 67638) ((-1103 . -930) 67605) ((-637 . -405) 67589) ((-1249 . -1037) T) ((-607 . -1036) 67573) ((-646 . -25) T) ((-646 . -21) T) ((-1136 . -506) NIL) ((-1229 . -101) T) ((-1222 . -101) T) ((-384 . -110) 67552) ((-217 . -248) 67536) ((-1201 . -101) T) ((-1034 . -1078) T) ((-985 . -1129) T) ((-1034 . -1033) 67476) ((-803 . -1078) T) ((-337 . -1195) T) ((-621 . -632) 67460) ((-607 . -110) 67439) ((-593 . -632) 67423) ((-583 . -101) T) ((-573 . -129) T) ((-582 . -101) T) ((-408 . -1078) T) ((-379 . -1078) T) ((-305 . -599) 67389) ((-222 . -1078) 67367) ((-631 . -506) 67300) ((-618 . -506) 67144) ((-818 . -1030) 67123) ((-629 . -148) 67107) ((-337 . -544) T) ((-697 . -881) 67050) ((-538 . -224) 67000) ((-1229 . -278) 66966) ((-1058 . -284) 66917) ((-480 . -830) T) ((-218 . -1090) T) ((-1222 . -278) 66883) ((-1201 . -278) 66849) ((-985 . -38) 66799) ((-212 . -830) T) ((-1185 . -485) 66765) ((-895 . -38) 66717) ((-825 . -779) 66696) ((-825 . -776) 66675) ((-825 . -711) 66654) ((-353 . -284) T) ((-347 . -284) T) ((-339 . -284) T) ((-166 . -445) 66585) ((-421 . -38) 66569) ((-107 . -284) T) ((-218 . -23) T) ((-401 . -779) 66548) ((-401 . -776) 66527) ((-401 . -711) T) ((-492 . -282) 66502) ((-470 . -1036) 66467) ((-642 . -129) T) ((-1091 . -506) 66400) ((-330 . -129) T) ((-166 . -396) 66379) ((-475 . -702) 66321) ((-800 . -280) 66298) ((-470 . -110) 66254) ((-637 . -1037) T) ((-1210 . -445) 66185) ((-1248 . -1061) T) ((-1247 . -1061) T) ((-1065 . -129) T) ((-1034 . -702) 66127) ((-258 . -832) 66106) ((-242 . -832) 66085) ((-767 . -129) T) ((-765 . -129) T) ((-559 . -445) T) ((-1008 . -506) 66018) ((-607 . -1030) T) ((-579 . -1078) T) ((-525 . -170) T) ((-454 . -129) T) ((-447 . -129) T) ((-45 . -1078) T) ((-379 . -702) 65988) ((-802 . -1078) T) ((-469 . -506) 65921) ((-456 . -506) 65854) ((-446 . -361) 65824) ((-45 . -596) 65803) ((-310 . -296) T) ((-654 . -599) 65765) ((-58 . -832) 65744) ((-1201 . -303) 65629) ((-985 . -394) 65611) ((-800 . -590) 65588) ((-508 . -832) 65567) ((-488 . -832) 65546) ((-40 . -1195) T) ((-980 . -1019) 65442) ((-50 . -129) T) ((-569 . -129) T) ((-510 . -129) T) ((-288 . -632) 65302) ((-337 . -323) 65279) ((-337 . -357) T) ((-316 . -317) 65256) ((-313 . -280) 65241) ((-40 . -544) T) ((-373 . -1176) T) ((-373 . -1179) T) ((-1016 . -1167) 65216) ((-1164 . -230) 65166) ((-1145 . -226) 65118) ((-324 . -1078) T) ((-373 . -94) T) ((-373 . -35) T) ((-1016 . -106) 65064) ((-470 . -1030) T) ((-472 . -230) 65014) ((-1137 . -482) 64948) ((-1261 . -1036) 64932) ((-375 . -1036) 64916) ((-470 . -238) T) ((-801 . -101) T) ((-699 . -144) 64895) ((-699 . -142) 64874) ((-477 . -482) 64858) ((-478 . -329) 64827) ((-1261 . -110) 64806) ((-504 . -1078) T) ((-475 . -169) 64785) ((-980 . -371) 64769) ((-407 . -101) T) ((-375 . -110) 64748) ((-980 . -332) 64732) ((-273 . -964) 64716) ((-272 . -964) 64700) ((-1259 . -599) 64682) ((-1257 . -599) 64664) ((-109 . -506) NIL) ((-1150 . -1213) 64648) ((-836 . -834) 64632) ((-1156 . -1078) T) ((-102 . -1191) T) ((-933 . -930) 64593) ((-802 . -702) 64535) ((-1201 . -1129) NIL) ((-474 . -930) 64480) ((-1041 . -140) T) ((-59 . -101) 64458) ((-44 . -599) 64440) ((-77 . -599) 64422) ((-345 . -632) 64367) ((-1249 . -1078) T) ((-503 . -832) T) ((-337 . -1090) T) ((-289 . -1078) T) ((-980 . -881) 64326) ((-289 . -596) 64305) ((-1229 . -38) 64202) ((-1222 . -38) 64043) ((-480 . -1037) T) ((-1201 . -38) 63839) ((-212 . -1037) T) ((-337 . -23) T) ((-149 . -599) 63821) ((-818 . -780) 63800) ((-818 . -777) 63779) ((-583 . -38) 63752) ((-582 . -38) 63649) ((-851 . -544) T) ((-218 . -129) T) ((-313 . -983) 63615) ((-78 . -599) 63597) ((-697 . -301) 63576) ((-288 . -711) 63478) ((-809 . -101) T) ((-846 . -826) T) ((-288 . -466) 63457) ((-1252 . -101) T) ((-40 . -357) T) ((-853 . -144) 63436) ((-853 . -142) 63415) ((-1136 . -482) 63397) ((-1261 . -1030) T) ((-475 . -506) 63330) ((-1124 . -1191) T) ((-945 . -599) 63312) ((-631 . -482) 63296) ((-618 . -482) 63227) ((-800 . -599) 62958) ((-48 . -27) T) ((-1156 . -702) 62855) ((-637 . -1078) T) ((-843 . -842) T) ((-430 . -358) 62829) ((-1080 . -101) T) ((-951 . -1078) T) ((-846 . -1078) T) ((-801 . -303) 62816) ((-525 . -519) T) ((-525 . -564) T) ((-1257 . -376) 62788) ((-1034 . -506) 62721) ((-1137 . -280) 62697) ((-235 . -226) 62666) ((-1249 . -702) 62636) ((-1144 . -92) T) ((-975 . -92) T) ((-802 . -169) 62615) ((-222 . -506) 62548) ((-607 . -780) 62527) ((-607 . -777) 62506) ((-1188 . -599) 62418) ((-217 . -1191) T) ((-659 . -599) 62350) ((-1134 . -991) 62334) ((-924 . -101) 62284) ((-345 . -711) T) ((-843 . -599) 62266) ((-1201 . -394) 62218) ((-1091 . -482) 62202) ((-59 . -303) 62140) ((-325 . -101) T) ((-1185 . -21) T) ((-1185 . -25) T) ((-40 . -1090) T) ((-696 . -21) T) ((-613 . -599) 62122) ((-507 . -317) 62101) ((-696 . -25) T) ((-107 . -280) NIL) ((-902 . -1090) T) ((-40 . -23) T) ((-756 . -1090) T) ((-552 . -1195) T) ((-487 . -1195) T) ((-313 . -599) 62083) ((-985 . -226) 62065) ((-166 . -163) 62049) ((-568 . -544) T) ((-552 . -544) T) ((-487 . -544) T) ((-756 . -23) T) ((-1221 . -144) 62028) ((-1137 . -590) 62004) ((-1221 . -142) 61983) ((-1008 . -482) 61967) ((-1200 . -142) 61892) ((-1200 . -144) 61817) ((-1252 . -1258) 61796) ((-469 . -482) 61780) ((-456 . -482) 61764) ((-515 . -34) T) ((-637 . -702) 61734) ((-111 . -948) T) ((-646 . -832) 61713) ((-1156 . -169) 61664) ((-359 . -101) T) ((-235 . -233) 61643) ((-245 . -101) T) ((-244 . -101) T) ((-1210 . -930) 61612) ((-240 . -832) 61591) ((-801 . -38) 61440) ((-45 . -506) 61232) ((-1136 . -280) 61207) ((-209 . -1078) T) ((-1128 . -1078) T) ((-1128 . -596) 61186) ((-573 . -25) T) ((-573 . -21) T) ((-1080 . -303) 61124) ((-944 . -405) 61108) ((-683 . -1195) T) ((-618 . -280) 61083) ((-1065 . -625) 61031) ((-767 . -625) 60979) ((-765 . -625) 60927) ((-337 . -129) T) ((-283 . -599) 60909) ((-683 . -544) T) ((-886 . -1078) T) ((-851 . -1090) T) ((-447 . -625) 60857) ((-886 . -884) 60841) ((-373 . -445) T) ((-480 . -1078) T) ((-685 . -632) 60828) ((-924 . -303) 60766) ((-212 . -1078) T) ((-310 . -901) 60745) ((-307 . -901) T) ((-307 . -805) NIL) ((-384 . -705) T) ((-851 . -23) T) ((-115 . -632) 60732) ((-467 . -142) 60711) ((-412 . -405) 60695) ((-467 . -144) 60674) ((-109 . -482) 60656) ((-2 . -599) 60638) ((-181 . -101) T) ((-1136 . -19) 60620) ((-1136 . -590) 60595) ((-642 . -21) T) ((-642 . -25) T) ((-580 . -1122) T) ((-1091 . -280) 60572) ((-330 . -25) T) ((-330 . -21) T) ((-487 . -357) T) ((-1252 . -38) 60542) ((-1120 . -1191) T) ((-618 . -590) 60517) ((-1065 . -25) T) ((-1065 . -21) T) ((-523 . -777) T) ((-523 . -780) T) ((-116 . -1195) T) ((-944 . -1037) T) ((-609 . -544) T) ((-767 . -25) T) ((-767 . -21) T) ((-765 . -21) T) ((-765 . -25) T) ((-720 . -1037) T) ((-700 . -1037) T) ((-654 . -1036) 60501) ((-509 . -1061) T) ((-454 . -25) T) ((-116 . -544) T) ((-454 . -21) T) ((-447 . -25) T) ((-447 . -21) T) ((-1120 . -1019) 60397) ((-802 . -284) 60376) ((-808 . -1078) T) ((-947 . -948) T) ((-654 . -110) 60355) ((-289 . -506) 60147) ((-1259 . -1036) 60131) ((-1257 . -1036) 60115) ((-1221 . -1176) 60081) ((-245 . -303) 60019) ((-244 . -303) 59957) ((-1204 . -101) 59935) ((-1137 . -600) NIL) ((-1137 . -599) 59917) ((-1221 . -1179) 59883) ((-1201 . -226) 59835) ((-1200 . -1176) 59801) ((-95 . -92) T) ((-1200 . -1179) 59767) ((-1120 . -371) 59751) ((-1098 . -805) T) ((-1098 . -901) T) ((-1091 . -590) 59728) ((-1058 . -600) 59712) ((-477 . -599) 59644) ((-800 . -282) 59621) ((-594 . -148) 59568) ((-412 . -1037) T) ((-480 . -702) 59518) ((-475 . -482) 59502) ((-321 . -832) 59481) ((-333 . -632) 59455) ((-50 . -21) T) ((-50 . -25) T) ((-212 . -702) 59405) ((-166 . -709) 59376) ((-171 . -632) 59308) ((-569 . -21) T) ((-569 . -25) T) ((-510 . -25) T) ((-510 . -21) T) ((-468 . -148) 59258) ((-1058 . -599) 59240) ((-1040 . -599) 59222) ((-974 . -101) T) ((-844 . -101) T) ((-784 . -405) 59186) ((-40 . -129) T) ((-683 . -357) T) ((-207 . -876) T) ((-685 . -779) T) ((-685 . -776) T) ((-568 . -1090) T) ((-552 . -1090) T) ((-487 . -1090) T) ((-685 . -711) T) ((-353 . -599) 59168) ((-347 . -599) 59150) ((-339 . -599) 59132) ((-65 . -390) T) ((-65 . -389) T) ((-107 . -600) 59062) ((-107 . -599) 59044) ((-206 . -876) T) ((-939 . -148) 59028) ((-1221 . -94) 58994) ((-756 . -129) T) ((-132 . -711) T) ((-115 . -711) T) ((-1221 . -35) 58960) ((-1034 . -482) 58944) ((-568 . -23) T) ((-552 . -23) T) ((-487 . -23) T) ((-1200 . -94) 58910) ((-1200 . -35) 58876) ((-1150 . -101) T) ((-1103 . -101) T) ((-836 . -101) T) ((-222 . -482) 58860) ((-1259 . -110) 58839) ((-1257 . -110) 58818) ((-44 . -1036) 58802) ((-1210 . -1213) 58786) ((-837 . -834) 58770) ((-1156 . -284) 58749) ((-109 . -280) 58724) ((-127 . -148) 58706) ((-1120 . -881) 58665) ((-44 . -110) 58644) ((-1159 . -1232) T) ((-1144 . -599) 58610) ((-654 . -1030) T) ((-1136 . -600) NIL) ((-1136 . -599) 58592) ((-1042 . -596) 58567) ((-1042 . -1078) T) ((-975 . -599) 58533) ((-73 . -434) T) ((-73 . -389) T) ((-654 . -228) 58512) ((-149 . -1036) 58496) ((-559 . -542) 58480) ((-349 . -144) 58459) ((-349 . -142) 58410) ((-346 . -144) 58389) ((-687 . -1078) T) ((-346 . -142) 58340) ((-338 . -144) 58319) ((-338 . -142) 58270) ((-258 . -142) 58249) ((-258 . -144) 58228) ((-245 . -38) 58198) ((-242 . -144) 58177) ((-116 . -357) T) ((-242 . -142) 58156) ((-244 . -38) 58126) ((-149 . -110) 58105) ((-984 . -1019) 57993) ((-1145 . -830) NIL) ((-678 . -1195) T) ((-784 . -1037) T) ((-683 . -1090) T) ((-1259 . -1030) T) ((-1257 . -1030) T) ((-1134 . -1191) T) ((-984 . -371) 57970) ((-891 . -142) T) ((-891 . -144) 57952) ((-851 . -129) T) ((-800 . -1036) 57849) ((-678 . -544) T) ((-683 . -23) T) ((-631 . -599) 57781) ((-631 . -600) 57742) ((-618 . -600) NIL) ((-618 . -599) 57724) ((-480 . -169) T) ((-218 . -21) T) ((-212 . -169) T) ((-218 . -25) T) ((-467 . -1179) 57690) ((-467 . -1176) 57656) ((-268 . -599) 57638) ((-267 . -599) 57620) ((-266 . -599) 57602) ((-265 . -599) 57584) ((-264 . -599) 57566) ((-492 . -635) 57548) ((-263 . -599) 57530) ((-333 . -711) T) ((-262 . -599) 57512) ((-109 . -19) 57494) ((-171 . -711) T) ((-492 . -367) 57476) ((-207 . -599) 57458) ((-512 . -1127) 57442) ((-492 . -122) T) ((-109 . -590) 57417) ((-206 . -599) 57399) ((-467 . -35) 57365) ((-467 . -94) 57331) ((-204 . -599) 57313) ((-203 . -599) 57295) ((-202 . -599) 57277) ((-201 . -599) 57259) ((-198 . -599) 57241) ((-197 . -599) 57223) ((-196 . -599) 57205) ((-195 . -599) 57187) ((-194 . -599) 57169) ((-193 . -599) 57151) ((-192 . -599) 57133) ((-528 . -1081) 57085) ((-191 . -599) 57067) ((-190 . -599) 57049) ((-45 . -482) 56986) ((-189 . -599) 56968) ((-188 . -599) 56950) ((-1093 . -101) T) ((-800 . -110) 56840) ((-629 . -101) 56790) ((-475 . -280) 56767) ((-1091 . -599) 56498) ((-1079 . -1078) T) ((-1027 . -1191) T) ((-1260 . -1019) 56482) ((-609 . -1090) T) ((-1150 . -303) 56469) ((-1113 . -1078) T) ((-1103 . -303) 56456) ((-1074 . -1061) T) ((-1068 . -1061) T) ((-1052 . -1061) T) ((-1045 . -1061) T) ((-1017 . -1061) T) ((-1000 . -1061) T) ((-116 . -1090) T) ((-804 . -101) T) ((-612 . -1061) T) ((-609 . -23) T) ((-1128 . -506) 56248) ((-476 . -1061) T) ((-984 . -881) 56200) ((-380 . -101) T) ((-318 . -101) T) ((-213 . -1061) T) ((-944 . -1078) T) ((-149 . -1030) T) ((-716 . -405) 56184) ((-116 . -23) T) ((-720 . -1078) T) ((-700 . -1078) T) ((-687 . -130) T) ((-446 . -1078) T) ((-401 . -1191) T) ((-310 . -424) 56168) ((-579 . -92) T) ((-1008 . -600) 56129) ((-1005 . -1195) T) ((-220 . -101) T) ((-1008 . -599) 56091) ((-801 . -226) 56075) ((-1005 . -544) T) ((-818 . -632) 56048) ((-348 . -1195) T) ((-469 . -599) 56010) ((-469 . -600) 55971) ((-456 . -600) 55932) ((-456 . -599) 55894) ((-401 . -865) 55878) ((-313 . -1036) 55713) ((-401 . -867) 55638) ((-825 . -1019) 55534) ((-480 . -506) NIL) ((-475 . -590) 55511) ((-348 . -544) T) ((-212 . -506) NIL) ((-853 . -445) T) ((-412 . -1078) T) ((-401 . -1019) 55375) ((-313 . -110) 55196) ((-678 . -357) T) ((-220 . -278) T) ((-48 . -1195) T) ((-800 . -1030) 55126) ((-568 . -129) T) ((-552 . -129) T) ((-487 . -129) T) ((-48 . -544) T) ((-1137 . -282) 55102) ((-1150 . -1129) 55080) ((-310 . -27) 55059) ((-1041 . -101) T) ((-800 . -228) 55011) ((-235 . -830) 54990) ((-933 . -101) T) ((-698 . -101) T) ((-289 . -482) 54927) ((-474 . -101) T) ((-716 . -1037) T) ((-598 . -599) 54909) ((-598 . -600) 54770) ((-401 . -371) 54754) ((-401 . -332) 54738) ((-1150 . -38) 54567) ((-1103 . -38) 54416) ((-836 . -38) 54386) ((-384 . -632) 54370) ((-629 . -303) 54308) ((-944 . -702) 54205) ((-720 . -702) 54175) ((-217 . -106) 54159) ((-45 . -280) 54084) ((-607 . -632) 54058) ((-306 . -1078) T) ((-283 . -1036) 54045) ((-109 . -599) 54027) ((-109 . -600) 54009) ((-446 . -702) 53979) ((-801 . -247) 53918) ((-673 . -1078) 53896) ((-538 . -1078) T) ((-1152 . -1037) T) ((-1151 . -1037) T) ((-1145 . -1037) T) ((-283 . -110) 53881) ((-1104 . -1037) T) ((-538 . -596) 53860) ((-95 . -599) 53826) ((-985 . -830) T) ((-222 . -671) 53784) ((-678 . -1090) T) ((-1185 . -725) 53760) ((-313 . -1030) T) ((-337 . -25) T) ((-337 . -21) T) ((-401 . -881) 53719) ((-67 . -1191) T) ((-818 . -779) 53698) ((-412 . -702) 53672) ((-784 . -1078) T) ((-818 . -776) 53651) ((-683 . -129) T) ((-697 . -901) 53630) ((-678 . -23) T) ((-480 . -284) T) ((-818 . -711) 53609) ((-313 . -228) 53561) ((-313 . -238) 53540) ((-212 . -284) T) ((-1005 . -357) T) ((-1221 . -445) 53519) ((-1200 . -445) 53498) ((-348 . -323) 53475) ((-348 . -357) T) ((-1118 . -599) 53457) ((-45 . -1225) 53407) ((-852 . -101) T) ((-629 . -276) 53391) ((-683 . -1039) T) ((-1248 . -101) T) ((-470 . -632) 53356) ((-461 . -1078) T) ((-45 . -590) 53281) ((-1247 . -101) T) ((-1136 . -282) 53256) ((-40 . -625) 53195) ((-48 . -357) T) ((-1084 . -599) 53177) ((-1065 . -832) 53156) ((-618 . -282) 53131) ((-767 . -832) 53110) ((-765 . -832) 53089) ((-475 . -599) 52820) ((-235 . -405) 52789) ((-933 . -303) 52776) ((-447 . -832) 52755) ((-64 . -1191) T) ((-1042 . -506) 52599) ((-609 . -129) T) ((-474 . -303) 52586) ((-592 . -1078) T) ((-116 . -129) T) ((-655 . -1078) T) ((-283 . -1030) T) ((-177 . -1078) T) ((-158 . -1078) T) ((-153 . -1078) T) ((-151 . -1078) T) ((-446 . -746) T) ((-31 . -1061) T) ((-944 . -169) 52537) ((-951 . -92) T) ((-1058 . -1036) 52447) ((-607 . -779) 52426) ((-580 . -1078) T) ((-607 . -776) 52405) ((-607 . -711) T) ((-289 . -280) 52384) ((-288 . -1191) T) ((-1034 . -599) 52346) ((-1034 . -600) 52307) ((-1005 . -1090) T) ((-166 . -101) T) ((-269 . -832) T) ((-1143 . -1078) T) ((-803 . -599) 52289) ((-1091 . -282) 52266) ((-1080 . -224) 52250) ((-984 . -301) T) ((-784 . -702) 52234) ((-353 . -1036) 52186) ((-348 . -1090) T) ((-347 . -1036) 52138) ((-408 . -599) 52120) ((-379 . -599) 52102) ((-339 . -1036) 52054) ((-222 . -599) 51986) ((-1058 . -110) 51882) ((-1005 . -23) T) ((-107 . -1036) 51832) ((-879 . -101) T) ((-823 . -101) T) ((-793 . -101) T) ((-754 . -101) T) ((-661 . -101) T) ((-467 . -445) 51811) ((-412 . -169) T) ((-353 . -110) 51749) ((-347 . -110) 51687) ((-339 . -110) 51625) ((-245 . -226) 51594) ((-244 . -226) 51563) ((-348 . -23) T) ((-70 . -1191) T) ((-220 . -38) 51528) ((-107 . -110) 51462) ((-40 . -25) T) ((-40 . -21) T) ((-654 . -705) T) ((-166 . -278) 51440) ((-48 . -1090) T) ((-902 . -25) T) ((-756 . -25) T) ((-1128 . -482) 51377) ((-478 . -1078) T) ((-1261 . -632) 51351) ((-1210 . -101) T) ((-837 . -101) T) ((-235 . -1037) 51281) ((-1041 . -1129) T) ((-945 . -777) 51234) ((-375 . -632) 51218) ((-48 . -23) T) ((-945 . -780) 51171) ((-800 . -780) 51122) ((-800 . -777) 51073) ((-289 . -590) 51052) ((-470 . -711) T) ((-559 . -101) T) ((-852 . -303) 51009) ((-637 . -280) 50988) ((-111 . -645) T) ((-75 . -1191) T) ((-1041 . -38) 50975) ((-648 . -368) 50954) ((-933 . -38) 50803) ((-716 . -1078) T) ((-474 . -38) 50652) ((-85 . -1191) T) ((-559 . -278) T) ((-579 . -599) 50618) ((-1201 . -830) NIL) ((-1152 . -1078) T) ((-1151 . -1078) T) ((-345 . -1019) 50595) ((-1058 . -1030) T) ((-985 . -1037) T) ((-45 . -599) 50577) ((-45 . -600) NIL) ((-895 . -1037) T) ((-802 . -599) 50559) ((-1145 . -1078) T) ((-1125 . -101) 50537) ((-1058 . -238) 50488) ((-421 . -1037) T) ((-353 . -1030) T) ((-359 . -358) 50465) ((-347 . -1030) T) ((-339 . -1030) T) ((-245 . -233) 50444) ((-244 . -233) 50423) ((-1058 . -228) 50348) ((-1104 . -1078) T) ((-288 . -881) 50307) ((-107 . -1030) T) ((-678 . -129) T) ((-412 . -506) 50149) ((-353 . -228) 50128) ((-353 . -238) T) ((-44 . -705) T) ((-347 . -228) 50107) ((-347 . -238) T) ((-339 . -228) 50086) ((-339 . -238) T) ((-166 . -303) 50051) ((-107 . -238) T) ((-107 . -228) T) ((-313 . -777) T) ((-851 . -21) T) ((-851 . -25) T) ((-401 . -301) T) ((-492 . -34) T) ((-109 . -282) 50026) ((-1091 . -1036) 49923) ((-852 . -1129) NIL) ((-324 . -599) 49905) ((-401 . -1003) 49883) ((-1091 . -110) 49773) ((-675 . -1232) T) ((-430 . -1078) T) ((-1261 . -711) T) ((-62 . -599) 49755) ((-852 . -38) 49700) ((-515 . -1191) T) ((-588 . -148) 49684) ((-504 . -599) 49666) ((-1210 . -303) 49653) ((-716 . -702) 49502) ((-523 . -778) T) ((-523 . -779) T) ((-552 . -625) 49484) ((-487 . -625) 49444) ((-349 . -445) T) ((-346 . -445) T) ((-338 . -445) T) ((-258 . -445) 49395) ((-517 . -1078) T) ((-512 . -1078) 49345) ((-242 . -445) 49296) ((-1128 . -280) 49275) ((-1156 . -599) 49257) ((-673 . -506) 49190) ((-944 . -284) 49169) ((-538 . -506) 48961) ((-1150 . -226) 48945) ((-166 . -1129) 48924) ((-1249 . -599) 48906) ((-1152 . -702) 48803) ((-1151 . -702) 48644) ((-873 . -101) T) ((-1145 . -702) 48440) ((-1104 . -702) 48337) ((-1134 . -658) 48321) ((-349 . -396) 48272) ((-346 . -396) 48223) ((-338 . -396) 48174) ((-1005 . -129) T) ((-784 . -506) 48086) ((-289 . -600) NIL) ((-289 . -599) 48068) ((-891 . -445) T) ((-945 . -362) 48021) ((-800 . -362) 48000) ((-502 . -501) 47979) ((-500 . -501) 47958) ((-480 . -280) NIL) ((-475 . -282) 47935) ((-412 . -284) T) ((-348 . -129) T) ((-212 . -280) NIL) ((-678 . -485) NIL) ((-98 . -1090) T) ((-166 . -38) 47763) ((-1221 . -954) 47725) ((-1125 . -303) 47663) ((-1200 . -954) 47632) ((-891 . -396) T) ((-1091 . -1030) 47562) ((-1223 . -544) T) ((-1128 . -590) 47541) ((-111 . -832) T) ((-1042 . -482) 47472) ((-568 . -21) T) ((-568 . -25) T) ((-552 . -21) T) ((-552 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-1210 . -1129) 47450) ((-1091 . -228) 47402) ((-48 . -129) T) ((-1172 . -101) T) ((-235 . -1078) 47192) ((-852 . -394) 47169) ((-1066 . -101) T) ((-1054 . -101) T) ((-594 . -101) T) ((-468 . -101) T) ((-1210 . -38) 46998) ((-837 . -38) 46968) ((-716 . -169) 46879) ((-637 . -599) 46861) ((-630 . -1061) T) ((-559 . -38) 46848) ((-951 . -599) 46814) ((-939 . -101) 46764) ((-846 . -599) 46746) ((-846 . -600) 46668) ((-580 . -506) NIL) ((-1229 . -1037) T) ((-1222 . -1037) T) ((-1201 . -1037) T) ((-583 . -1037) T) ((-582 . -1037) T) ((-1265 . -1090) T) ((-1152 . -169) 46619) ((-1151 . -169) 46550) ((-1145 . -169) 46481) ((-1104 . -169) 46432) ((-985 . -1078) T) ((-952 . -1078) T) ((-895 . -1078) T) ((-1185 . -144) 46411) ((-784 . -782) 46395) ((-683 . -25) T) ((-683 . -21) T) ((-116 . -625) 46372) ((-685 . -867) 46354) ((-421 . -1078) T) ((-310 . -1195) 46333) ((-307 . -1195) T) ((-166 . -394) 46317) ((-1185 . -142) 46296) ((-467 . -954) 46258) ((-127 . -101) T) ((-71 . -599) 46240) ((-107 . -780) T) ((-107 . -777) T) ((-310 . -544) 46219) ((-685 . -1019) 46201) ((-307 . -544) T) ((-1265 . -23) T) ((-132 . -1019) 46183) ((-475 . -1036) 46080) ((-45 . -282) 46005) ((-235 . -702) 45947) ((-509 . -101) T) ((-475 . -110) 45837) ((-1070 . -101) 45815) ((-1015 . -101) T) ((-629 . -813) 45794) ((-716 . -506) 45737) ((-1034 . -1036) 45721) ((-1113 . -92) T) ((-1042 . -280) 45696) ((-609 . -21) T) ((-609 . -25) T) ((-516 . -1078) T) ((-355 . -101) T) ((-316 . -101) T) ((-654 . -632) 45670) ((-379 . -1036) 45654) ((-1034 . -110) 45633) ((-801 . -405) 45617) ((-116 . -25) T) ((-88 . -599) 45599) ((-116 . -21) T) ((-594 . -303) 45394) ((-468 . -303) 45198) ((-1128 . -600) NIL) ((-379 . -110) 45177) ((-373 . -101) T) ((-209 . -599) 45159) ((-1128 . -599) 45141) ((-985 . -702) 45091) ((-1145 . -506) 44860) ((-895 . -702) 44812) ((-1104 . -506) 44782) ((-345 . -301) T) ((-1164 . -148) 44732) ((-939 . -303) 44670) ((-819 . -101) T) ((-421 . -702) 44654) ((-220 . -813) T) ((-812 . -101) T) ((-810 . -101) T) ((-472 . -148) 44604) ((-1221 . -1220) 44583) ((-1098 . -1195) T) ((-333 . -1019) 44550) ((-1221 . -1215) 44520) ((-1221 . -1218) 44504) ((-1200 . -1199) 44483) ((-79 . -599) 44465) ((-886 . -599) 44447) ((-1200 . -1215) 44424) ((-1098 . -544) T) ((-902 . -832) T) ((-756 . -832) T) ((-480 . -600) 44354) ((-480 . -599) 44336) ((-373 . -278) T) ((-656 . -832) T) ((-1200 . -1197) 44320) ((-1223 . -1090) T) ((-212 . -600) 44250) ((-212 . -599) 44232) ((-1259 . -632) 44206) ((-1042 . -590) 44181) ((-58 . -148) 44165) ((-508 . -148) 44149) ((-488 . -148) 44133) ((-353 . -1256) 44117) ((-347 . -1256) 44101) ((-339 . -1256) 44085) ((-310 . -357) 44064) ((-307 . -357) T) ((-475 . -1030) 43994) ((-678 . -625) 43976) ((-1257 . -632) 43950) ((-127 . -303) NIL) ((-1223 . -23) T) ((-673 . -482) 43934) ((-63 . -599) 43916) ((-1091 . -780) 43867) ((-1091 . -777) 43818) ((-538 . -482) 43755) ((-654 . -34) T) ((-475 . -228) 43707) ((-289 . -282) 43686) ((-235 . -169) 43665) ((-801 . -1037) T) ((-44 . -632) 43623) ((-1058 . -362) 43574) ((-716 . -284) 43505) ((-512 . -506) 43438) ((-802 . -1036) 43389) ((-1065 . -142) 43368) ((-353 . -362) 43347) ((-347 . -362) 43326) ((-339 . -362) 43305) ((-1065 . -144) 43284) ((-852 . -226) 43261) ((-802 . -110) 43203) ((-767 . -142) 43182) ((-767 . -144) 43161) ((-258 . -930) 43128) ((-245 . -830) 43107) ((-242 . -930) 43052) ((-244 . -830) 43031) ((-765 . -142) 43010) ((-765 . -144) 42989) ((-149 . -632) 42963) ((-567 . -1078) T) ((-447 . -144) 42942) ((-447 . -142) 42921) ((-654 . -711) T) ((-808 . -599) 42903) ((-1229 . -1078) T) ((-1222 . -1078) T) ((-1201 . -1078) T) ((-1185 . -1179) 42869) ((-1185 . -1176) 42835) ((-1152 . -284) 42814) ((-1151 . -284) 42765) ((-1145 . -284) 42716) ((-1104 . -284) 42695) ((-333 . -881) 42676) ((-985 . -169) T) ((-895 . -169) T) ((-583 . -1078) T) ((-582 . -1078) T) ((-678 . -21) T) ((-678 . -25) T) ((-467 . -1218) 42660) ((-467 . -1215) 42630) ((-412 . -280) 42558) ((-310 . -1090) 42407) ((-307 . -1090) T) ((-1185 . -35) 42373) ((-1185 . -94) 42339) ((-83 . -599) 42321) ((-90 . -101) 42299) ((-1265 . -129) T) ((-569 . -142) T) ((-569 . -144) 42281) ((-510 . -144) 42263) ((-510 . -142) T) ((-310 . -23) 42115) ((-40 . -336) 42089) ((-307 . -23) T) ((-1136 . -635) 42071) ((-1252 . -1037) T) ((-1136 . -367) 42053) ((-800 . -632) 41901) ((-1074 . -101) T) ((-1068 . -101) T) ((-1052 . -101) T) ((-166 . -226) 41885) ((-1045 . -101) T) ((-1017 . -101) T) ((-1000 . -101) T) ((-580 . -482) 41867) ((-612 . -101) T) ((-235 . -506) 41800) ((-476 . -101) T) ((-1259 . -711) T) ((-1257 . -711) T) ((-213 . -101) T) ((-1156 . -1036) 41683) ((-1156 . -110) 41552) ((-843 . -170) T) ((-802 . -1030) T) ((-665 . -1061) T) ((-660 . -1061) T) ((-507 . -101) T) ((-502 . -101) T) ((-48 . -625) 41512) ((-500 . -101) T) ((-471 . -1061) T) ((-1249 . -1036) 41482) ((-136 . -1061) T) ((-135 . -1061) T) ((-131 . -1061) T) ((-1015 . -38) 41466) ((-802 . -228) T) ((-802 . -238) 41445) ((-1249 . -110) 41410) ((-1229 . -702) 41307) ((-538 . -280) 41286) ((-1222 . -702) 41127) ((-1210 . -226) 41111) ((-592 . -92) T) ((-1042 . -600) NIL) ((-1042 . -599) 41093) ((-655 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-151 . -92) T) ((-1201 . -702) 40889) ((-984 . -901) T) ((-687 . -599) 40858) ((-149 . -711) T) ((-1091 . -362) 40837) ((-985 . -506) NIL) ((-245 . -405) 40806) ((-244 . -405) 40775) ((-1005 . -25) T) ((-1005 . -21) T) ((-583 . -702) 40748) ((-582 . -702) 40645) ((-784 . -280) 40603) ((-125 . -101) 40581) ((-818 . -1019) 40477) ((-166 . -813) 40456) ((-313 . -632) 40353) ((-800 . -34) T) ((-699 . -101) T) ((-1098 . -1090) T) ((-1007 . -1191) T) ((-373 . -38) 40318) ((-348 . -25) T) ((-348 . -21) T) ((-182 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-349 . -1244) 40302) ((-346 . -1244) 40286) ((-338 . -1244) 40270) ((-166 . -343) 40249) ((-552 . -832) T) ((-487 . -832) T) ((-1098 . -23) T) ((-86 . -599) 40231) ((-685 . -301) T) ((-819 . -38) 40201) ((-812 . -38) 40171) ((-1223 . -129) T) ((-1128 . -282) 40150) ((-945 . -778) 40103) ((-945 . -779) 40056) ((-800 . -776) 40035) ((-115 . -301) T) ((-90 . -303) 39973) ((-659 . -34) T) ((-538 . -590) 39952) ((-48 . -25) T) ((-48 . -21) T) ((-800 . -779) 39903) ((-800 . -778) 39882) ((-685 . -1003) T) ((-637 . -1036) 39866) ((-945 . -711) 39765) ((-800 . -711) 39675) ((-945 . -466) 39628) ((-475 . -780) 39579) ((-475 . -777) 39530) ((-891 . -1244) 39517) ((-1156 . -1030) T) ((-637 . -110) 39496) ((-1156 . -320) 39473) ((-1177 . -101) 39451) ((-1079 . -599) 39433) ((-685 . -537) T) ((-801 . -1078) T) ((-1249 . -1030) T) ((-407 . -1078) T) ((-1113 . -599) 39399) ((-245 . -1037) 39329) ((-244 . -1037) 39259) ((-283 . -632) 39246) ((-580 . -280) 39221) ((-673 . -671) 39179) ((-944 . -599) 39161) ((-853 . -101) T) ((-720 . -599) 39143) ((-700 . -599) 39125) ((-1229 . -169) 39076) ((-1222 . -169) 39007) ((-1201 . -169) 38938) ((-683 . -832) T) ((-985 . -284) T) ((-446 . -599) 38920) ((-613 . -711) T) ((-59 . -1078) 38898) ((-240 . -148) 38882) ((-895 . -284) T) ((-1005 . -993) T) ((-613 . -466) T) ((-697 . -1195) 38861) ((-583 . -169) 38840) ((-582 . -169) 38791) ((-1237 . -832) 38770) ((-697 . -544) 38681) ((-401 . -901) T) ((-401 . -805) 38660) ((-313 . -779) T) ((-313 . -711) T) ((-412 . -599) 38642) ((-412 . -600) 38549) ((-629 . -1127) 38533) ((-109 . -635) 38515) ((-171 . -301) T) ((-125 . -303) 38453) ((-109 . -367) 38435) ((-392 . -1191) T) ((-310 . -129) 38306) ((-307 . -129) T) ((-68 . -389) T) ((-109 . -122) T) ((-512 . -482) 38290) ((-638 . -1090) T) ((-580 . -19) 38272) ((-60 . -434) T) ((-60 . -389) T) ((-809 . -1078) T) ((-580 . -590) 38247) ((-470 . -1019) 38207) ((-637 . -1030) T) ((-638 . -23) T) ((-1252 . -1078) T) ((-31 . -101) T) ((-801 . -702) 38056) ((-565 . -842) T) ((-116 . -832) NIL) ((-1150 . -405) 38040) ((-1103 . -405) 38024) ((-836 . -405) 38008) ((-854 . -101) 37959) ((-1221 . -101) T) ((-1201 . -506) 37728) ((-1200 . -101) T) ((-1177 . -303) 37666) ((-517 . -92) T) ((-1152 . -280) 37651) ((-306 . -599) 37633) ((-1151 . -280) 37618) ((-1080 . -1078) T) ((-1058 . -632) 37528) ((-673 . -599) 37460) ((-283 . -711) T) ((-107 . -890) NIL) ((-673 . -600) 37421) ((-587 . -599) 37403) ((-565 . -599) 37385) ((-538 . -600) NIL) ((-538 . -599) 37367) ((-521 . -599) 37349) ((-1145 . -280) 37197) ((-480 . -1036) 37147) ((-696 . -445) T) ((-503 . -501) 37126) ((-499 . -501) 37105) ((-212 . -1036) 37055) ((-353 . -632) 37007) ((-347 . -632) 36959) ((-220 . -830) T) ((-339 . -632) 36911) ((-588 . -101) 36861) ((-475 . -362) 36840) ((-107 . -632) 36790) ((-480 . -110) 36724) ((-235 . -482) 36708) ((-337 . -144) 36690) ((-337 . -142) T) ((-166 . -364) 36661) ((-924 . -1235) 36645) ((-212 . -110) 36579) ((-853 . -303) 36544) ((-924 . -1078) 36494) ((-784 . -600) 36455) ((-784 . -599) 36437) ((-703 . -101) T) ((-325 . -1078) T) ((-1098 . -129) T) ((-699 . -38) 36407) ((-310 . -485) 36386) ((-492 . -1191) T) ((-1221 . -278) 36352) ((-1200 . -278) 36318) ((-321 . -148) 36302) ((-1042 . -282) 36277) ((-1252 . -702) 36247) ((-1137 . -34) T) ((-1261 . -1019) 36224) ((-461 . -599) 36206) ((-477 . -34) T) ((-375 . -1019) 36190) ((-1150 . -1037) T) ((-1103 . -1037) T) ((-836 . -1037) T) ((-1041 . -830) T) ((-801 . -169) 36101) ((-512 . -280) 36078) ((-116 . -973) 36055) ((-1229 . -284) 36034) ((-1172 . -358) 36008) ((-1066 . -260) 35992) ((-655 . -599) 35958) ((-592 . -599) 35908) ((-467 . -101) T) ((-177 . -599) 35874) ((-153 . -599) 35840) ((-151 . -599) 35806) ((-359 . -1078) T) ((-245 . -1078) T) ((-244 . -1078) T) ((-158 . -599) 35772) ((-1222 . -284) 35723) ((-1201 . -284) 35674) ((-853 . -1129) 35652) ((-1152 . -983) 35618) ((-594 . -358) 35558) ((-1151 . -983) 35524) ((-594 . -224) 35471) ((-580 . -599) 35453) ((-580 . -600) NIL) ((-678 . -832) T) ((-468 . -224) 35403) ((-480 . -1030) T) ((-1145 . -983) 35369) ((-87 . -433) T) ((-87 . -389) T) ((-212 . -1030) T) ((-1104 . -983) 35335) ((-1058 . -711) T) ((-697 . -1090) T) ((-583 . -284) 35314) ((-582 . -284) 35293) ((-480 . -238) T) ((-480 . -228) T) ((-212 . -238) T) ((-212 . -228) T) ((-1143 . -599) 35275) ((-853 . -38) 35227) ((-353 . -711) T) ((-347 . -711) T) ((-339 . -711) T) ((-107 . -779) T) ((-107 . -776) T) ((-512 . -1225) 35211) ((-107 . -711) T) ((-697 . -23) T) ((-1265 . -25) T) ((-467 . -278) 35177) ((-1265 . -21) T) ((-1200 . -303) 35116) ((-1154 . -101) T) ((-40 . -142) 35088) ((-40 . -144) 35060) ((-512 . -590) 35037) ((-1091 . -632) 34885) ((-588 . -303) 34823) ((-45 . -635) 34773) ((-45 . -650) 34723) ((-45 . -367) 34673) ((-1136 . -34) T) ((-852 . -830) NIL) ((-638 . -129) T) ((-478 . -599) 34655) ((-235 . -280) 34632) ((-181 . -1078) T) ((-631 . -34) T) ((-618 . -34) T) ((-1065 . -445) 34583) ((-801 . -506) 34457) ((-767 . -445) 34388) ((-765 . -445) 34339) ((-447 . -445) 34290) ((-933 . -405) 34274) ((-716 . -599) 34256) ((-245 . -702) 34198) ((-244 . -702) 34140) ((-716 . -600) 34001) ((-474 . -405) 33985) ((-333 . -296) T) ((-516 . -92) T) ((-345 . -901) T) ((-981 . -101) 33963) ((-1005 . -832) T) ((-59 . -506) 33896) ((-1200 . -1129) 33848) ((-985 . -280) NIL) ((-220 . -1037) T) ((-373 . -813) T) ((-1091 . -34) T) ((-569 . -445) T) ((-510 . -445) T) ((-1204 . -1071) 33832) ((-1204 . -1078) 33810) ((-235 . -590) 33787) ((-1204 . -1073) 33744) ((-1152 . -599) 33726) ((-1151 . -599) 33708) ((-1145 . -599) 33690) ((-1145 . -600) NIL) ((-1104 . -599) 33672) ((-853 . -394) 33656) ((-528 . -101) T) ((-1221 . -38) 33497) ((-1200 . -38) 33311) ((-851 . -144) T) ((-569 . -396) T) ((-48 . -832) T) ((-510 . -396) T) ((-1233 . -101) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1091 . -776) 33290) ((-1091 . -779) 33241) ((-1091 . -778) 33220) ((-974 . -1078) T) ((-1008 . -34) T) ((-844 . -1078) T) ((-1091 . -711) 33130) ((-648 . -101) T) ((-630 . -101) T) ((-538 . -282) 33109) ((-1164 . -101) T) ((-469 . -34) T) ((-456 . -34) T) ((-349 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-258 . -101) T) ((-242 . -101) T) ((-470 . -301) T) ((-1041 . -1037) T) ((-933 . -1037) T) ((-310 . -625) 33015) ((-307 . -625) 32976) ((-474 . -1037) T) ((-472 . -101) T) ((-430 . -599) 32958) ((-1150 . -1078) T) ((-1103 . -1078) T) ((-836 . -1078) T) ((-1119 . -101) T) ((-801 . -284) 32889) ((-944 . -1036) 32772) ((-470 . -1003) T) ((-720 . -1036) 32742) ((-446 . -1036) 32712) ((-1125 . -1099) 32696) ((-1080 . -506) 32629) ((-944 . -110) 32498) ((-891 . -101) T) ((-720 . -110) 32463) ((-517 . -599) 32429) ((-58 . -101) 32379) ((-512 . -600) 32340) ((-512 . -599) 32252) ((-511 . -101) 32230) ((-508 . -101) 32180) ((-489 . -101) 32158) ((-488 . -101) 32108) ((-446 . -110) 32071) ((-245 . -169) 32050) ((-244 . -169) 32029) ((-412 . -1036) 32003) ((-1185 . -954) 31965) ((-980 . -1090) T) ((-924 . -506) 31898) ((-480 . -780) T) ((-467 . -38) 31739) ((-412 . -110) 31706) ((-480 . -777) T) ((-981 . -303) 31644) ((-212 . -780) T) ((-212 . -777) T) ((-980 . -23) T) ((-697 . -129) T) ((-1200 . -394) 31614) ((-310 . -25) 31466) ((-166 . -405) 31450) ((-310 . -21) 31321) ((-307 . -25) T) ((-307 . -21) T) ((-846 . -362) T) ((-109 . -34) T) ((-475 . -632) 31169) ((-852 . -1037) T) ((-580 . -282) 31144) ((-568 . -144) T) ((-552 . -144) T) ((-487 . -144) T) ((-1150 . -702) 30973) ((-1103 . -702) 30822) ((-1098 . -625) 30804) ((-836 . -702) 30774) ((-654 . -1191) T) ((-1 . -101) T) ((-235 . -599) 30505) ((-1093 . -1078) T) ((-1210 . -405) 30489) ((-1164 . -303) 30293) ((-944 . -1030) T) ((-720 . -1030) T) ((-700 . -1030) T) ((-629 . -1078) 30243) ((-1034 . -632) 30227) ((-837 . -405) 30211) ((-503 . -101) T) ((-499 . -101) T) ((-242 . -303) 30198) ((-258 . -303) 30185) ((-944 . -320) 30164) ((-379 . -632) 30148) ((-472 . -303) 29952) ((-245 . -506) 29885) ((-654 . -1019) 29781) ((-244 . -506) 29714) ((-1119 . -303) 29640) ((-804 . -1078) T) ((-784 . -1036) 29624) ((-1229 . -280) 29609) ((-1222 . -280) 29594) ((-1201 . -280) 29442) ((-380 . -1078) T) ((-318 . -1078) T) ((-412 . -1030) T) ((-166 . -1037) T) ((-58 . -303) 29380) ((-784 . -110) 29359) ((-582 . -280) 29344) ((-511 . -303) 29282) ((-508 . -303) 29220) ((-489 . -303) 29158) ((-488 . -303) 29096) ((-412 . -228) 29075) ((-475 . -34) T) ((-985 . -600) 29005) ((-220 . -1078) T) ((-985 . -599) 28987) ((-952 . -599) 28969) ((-952 . -600) 28944) ((-895 . -599) 28926) ((-683 . -144) T) ((-685 . -901) T) ((-685 . -805) T) ((-421 . -599) 28908) ((-1098 . -21) T) ((-1098 . -25) T) ((-654 . -371) 28892) ((-115 . -901) T) ((-853 . -226) 28876) ((-77 . -1191) T) ((-125 . -124) 28860) ((-1034 . -34) T) ((-1259 . -1019) 28834) ((-1257 . -1019) 28791) ((-1210 . -1037) T) ((-837 . -1037) T) ((-475 . -776) 28770) ((-349 . -1129) 28749) ((-346 . -1129) 28728) ((-338 . -1129) 28707) ((-475 . -779) 28658) ((-475 . -778) 28637) ((-222 . -34) T) ((-475 . -711) 28547) ((-59 . -482) 28531) ((-559 . -1037) T) ((-1150 . -169) 28422) ((-1103 . -169) 28333) ((-1041 . -1078) T) ((-1065 . -930) 28278) ((-933 . -1078) T) ((-802 . -632) 28229) ((-767 . -930) 28198) ((-698 . -1078) T) ((-765 . -930) 28165) ((-508 . -276) 28149) ((-654 . -881) 28108) ((-474 . -1078) T) ((-447 . -930) 28075) ((-78 . -1191) T) ((-349 . -38) 28040) ((-346 . -38) 28005) ((-338 . -38) 27970) ((-258 . -38) 27819) ((-242 . -38) 27668) ((-891 . -1129) T) ((-609 . -144) 27647) ((-609 . -142) 27626) ((-516 . -599) 27592) ((-116 . -144) T) ((-116 . -142) NIL) ((-408 . -711) T) ((-784 . -1030) T) ((-337 . -445) T) ((-1229 . -983) 27558) ((-1222 . -983) 27524) ((-1201 . -983) 27490) ((-891 . -38) 27455) ((-220 . -702) 27420) ((-313 . -47) 27390) ((-40 . -403) 27362) ((-137 . -599) 27344) ((-980 . -129) T) ((-800 . -1191) T) ((-171 . -901) T) ((-337 . -396) T) ((-512 . -282) 27321) ((-800 . -1019) 27148) ((-45 . -34) T) ((-665 . -101) T) ((-660 . -101) T) ((-646 . -101) T) ((-638 . -21) T) ((-638 . -25) T) ((-1200 . -226) 27118) ((-1080 . -482) 27102) ((-471 . -101) T) ((-659 . -1191) T) ((-240 . -101) 27052) ((-136 . -101) T) ((-135 . -101) T) ((-131 . -101) T) ((-852 . -1078) T) ((-1156 . -632) 26977) ((-1041 . -702) 26964) ((-716 . -1036) 26807) ((-1150 . -506) 26754) ((-933 . -702) 26603) ((-1103 . -506) 26555) ((-1248 . -1078) T) ((-1247 . -1078) T) ((-474 . -702) 26404) ((-66 . -599) 26386) ((-716 . -110) 26215) ((-924 . -482) 26199) ((-1249 . -632) 26159) ((-802 . -711) T) ((-1152 . -1036) 26042) ((-1151 . -1036) 25877) ((-1145 . -1036) 25667) ((-1104 . -1036) 25550) ((-984 . -1195) T) ((-1072 . -101) 25528) ((-800 . -371) 25497) ((-567 . -599) 25479) ((-984 . -544) T) ((-1152 . -110) 25348) ((-1151 . -110) 25169) ((-1145 . -110) 24938) ((-1104 . -110) 24807) ((-1083 . -1081) 24771) ((-373 . -830) T) ((-1229 . -599) 24753) ((-1222 . -599) 24735) ((-1201 . -599) 24717) ((-1201 . -600) NIL) ((-235 . -282) 24694) ((-40 . -445) T) ((-220 . -169) T) ((-166 . -1078) T) ((-678 . -144) T) ((-678 . -142) NIL) ((-583 . -599) 24676) ((-582 . -599) 24658) ((-879 . -1078) T) ((-823 . -1078) T) ((-793 . -1078) T) ((-754 . -1078) T) ((-642 . -834) 24642) ((-661 . -1078) T) ((-800 . -881) 24574) ((-40 . -396) NIL) ((-1098 . -645) T) ((-852 . -702) 24519) ((-245 . -482) 24503) ((-244 . -482) 24487) ((-697 . -625) 24435) ((-637 . -632) 24409) ((-289 . -34) T) ((-716 . -1030) T) ((-569 . -1244) 24396) ((-510 . -1244) 24373) ((-1210 . -1078) T) ((-1150 . -284) 24284) ((-1103 . -284) 24215) ((-1041 . -169) T) ((-837 . -1078) T) ((-933 . -169) 24126) ((-767 . -1213) 24110) ((-629 . -506) 24043) ((-76 . -599) 24025) ((-716 . -320) 23990) ((-1156 . -711) T) ((-559 . -1078) T) ((-474 . -169) 23901) ((-240 . -303) 23839) ((-1120 . -1090) T) ((-69 . -599) 23821) ((-1249 . -711) T) ((-1152 . -1030) T) ((-1151 . -1030) T) ((-321 . -101) 23771) ((-1145 . -1030) T) ((-1120 . -23) T) ((-1104 . -1030) T) ((-90 . -1099) 23755) ((-847 . -1090) T) ((-1152 . -228) 23714) ((-1151 . -238) 23693) ((-1151 . -228) 23645) ((-1145 . -228) 23532) ((-1145 . -238) 23511) ((-313 . -881) 23417) ((-847 . -23) T) ((-166 . -702) 23245) ((-401 . -1195) T) ((-1079 . -362) T) ((-1005 . -144) T) ((-984 . -357) T) ((-851 . -445) T) ((-924 . -280) 23222) ((-310 . -832) T) ((-307 . -832) NIL) ((-855 . -101) T) ((-697 . -25) T) ((-401 . -544) T) ((-697 . -21) T) ((-348 . -144) 23204) ((-348 . -142) T) ((-1125 . -1078) 23182) ((-446 . -705) T) ((-74 . -599) 23164) ((-113 . -832) T) ((-240 . -276) 23148) ((-235 . -1036) 23045) ((-80 . -599) 23027) ((-720 . -362) 22980) ((-1154 . -813) T) ((-722 . -230) 22964) ((-1137 . -1191) T) ((-138 . -230) 22946) ((-235 . -110) 22836) ((-1210 . -702) 22665) ((-48 . -144) T) ((-852 . -169) T) ((-837 . -702) 22635) ((-477 . -1191) T) ((-933 . -506) 22582) ((-637 . -711) T) ((-559 . -702) 22569) ((-1015 . -1037) T) ((-474 . -506) 22512) ((-924 . -19) 22496) ((-924 . -590) 22473) ((-801 . -600) NIL) ((-801 . -599) 22455) ((-985 . -1036) 22405) ((-407 . -599) 22387) ((-245 . -280) 22364) ((-244 . -280) 22341) ((-480 . -890) NIL) ((-310 . -29) 22311) ((-107 . -1191) T) ((-984 . -1090) T) ((-212 . -890) NIL) ((-895 . -1036) 22263) ((-1058 . -1019) 22159) ((-985 . -110) 22093) ((-722 . -679) 22077) ((-258 . -226) 22061) ((-421 . -1036) 22045) ((-373 . -1037) T) ((-984 . -23) T) ((-895 . -110) 21983) ((-678 . -1179) NIL) ((-480 . -632) 21933) ((-107 . -865) 21915) ((-107 . -867) 21897) ((-678 . -1176) NIL) ((-212 . -632) 21847) ((-353 . -1019) 21831) ((-347 . -1019) 21815) ((-321 . -303) 21753) ((-339 . -1019) 21737) ((-220 . -284) T) ((-421 . -110) 21716) ((-59 . -599) 21648) ((-166 . -169) T) ((-1098 . -832) T) ((-107 . -1019) 21608) ((-873 . -1078) T) ((-819 . -1037) T) ((-812 . -1037) T) ((-678 . -35) NIL) ((-678 . -94) NIL) ((-307 . -973) 21569) ((-180 . -101) T) ((-568 . -445) T) ((-552 . -445) T) ((-487 . -445) T) ((-401 . -357) T) ((-235 . -1030) 21499) ((-1128 . -34) T) ((-470 . -901) T) ((-980 . -625) 21447) ((-245 . -590) 21424) ((-244 . -590) 21401) ((-1058 . -371) 21385) ((-852 . -506) 21293) ((-235 . -228) 21245) ((-1136 . -1191) T) ((-809 . -599) 21227) ((-1260 . -1090) T) ((-1252 . -599) 21209) ((-1210 . -169) 21100) ((-107 . -371) 21082) ((-107 . -332) 21064) ((-1041 . -284) T) ((-933 . -284) 20995) ((-784 . -362) 20974) ((-631 . -1191) T) ((-618 . -1191) T) ((-474 . -284) 20905) ((-559 . -169) T) ((-321 . -276) 20889) ((-1260 . -23) T) ((-1185 . -101) T) ((-1172 . -1078) T) ((-1066 . -1078) T) ((-1054 . -1078) T) ((-82 . -599) 20871) ((-696 . -101) T) ((-349 . -343) 20850) ((-594 . -1078) T) ((-346 . -343) 20829) ((-338 . -343) 20808) ((-468 . -1078) T) ((-1164 . -224) 20758) ((-258 . -247) 20720) ((-1120 . -129) T) ((-594 . -596) 20696) ((-1058 . -881) 20629) ((-985 . -1030) T) ((-895 . -1030) T) ((-468 . -596) 20608) ((-1145 . -777) NIL) ((-1145 . -780) NIL) ((-1080 . -600) 20569) ((-472 . -224) 20519) ((-1080 . -599) 20501) ((-985 . -238) T) ((-985 . -228) T) ((-421 . -1030) T) ((-939 . -1078) 20451) ((-895 . -238) T) ((-847 . -129) T) ((-683 . -445) T) ((-825 . -1090) 20430) ((-107 . -881) NIL) ((-1185 . -278) 20396) ((-853 . -830) 20375) ((-1091 . -1191) T) ((-886 . -711) T) ((-166 . -506) 20287) ((-980 . -25) T) ((-886 . -466) T) ((-401 . -1090) T) ((-480 . -779) T) ((-480 . -776) T) ((-891 . -343) T) ((-480 . -711) T) ((-212 . -779) T) ((-212 . -776) T) ((-980 . -21) T) ((-212 . -711) T) ((-825 . -23) 20239) ((-313 . -301) 20218) ((-1016 . -230) 20164) ((-401 . -23) T) ((-924 . -600) 20125) ((-924 . -599) 20037) ((-629 . -482) 20021) ((-45 . -991) 19971) ((-603 . -948) T) ((-483 . -101) T) ((-325 . -599) 19953) ((-1091 . -1019) 19780) ((-580 . -635) 19762) ((-127 . -1078) T) ((-580 . -367) 19744) ((-337 . -1244) 19721) ((-1008 . -1191) T) ((-852 . -284) T) ((-1210 . -506) 19668) ((-469 . -1191) T) ((-456 . -1191) T) ((-573 . -101) T) ((-1150 . -280) 19595) ((-609 . -445) 19574) ((-981 . -976) 19558) ((-1252 . -376) 19530) ((-509 . -1078) T) ((-116 . -445) T) ((-1171 . -101) T) ((-1070 . -1078) 19508) ((-1015 . -1078) T) ((-1093 . -92) T) ((-874 . -832) T) ((-345 . -1195) T) ((-1229 . -1036) 19391) ((-1091 . -371) 19360) ((-1222 . -1036) 19195) ((-1201 . -1036) 18985) ((-1229 . -110) 18854) ((-1222 . -110) 18675) ((-1201 . -110) 18444) ((-1185 . -303) 18431) ((-345 . -544) T) ((-359 . -599) 18413) ((-283 . -301) T) ((-583 . -1036) 18386) ((-582 . -1036) 18269) ((-355 . -1078) T) ((-316 . -1078) T) ((-245 . -599) 18230) ((-244 . -599) 18191) ((-984 . -129) T) ((-621 . -23) T) ((-678 . -403) 18158) ((-593 . -23) T) ((-642 . -101) T) ((-583 . -110) 18129) ((-582 . -110) 17998) ((-373 . -1078) T) ((-330 . -101) T) ((-166 . -284) 17909) ((-1200 . -830) 17862) ((-699 . -1037) T) ((-1125 . -506) 17795) ((-1091 . -881) 17727) ((-819 . -1078) T) ((-812 . -1078) T) ((-810 . -1078) T) ((-96 . -101) T) ((-141 . -832) T) ((-598 . -865) 17711) ((-109 . -1191) T) ((-1065 . -101) T) ((-1042 . -34) T) ((-767 . -101) T) ((-765 . -101) T) ((-454 . -101) T) ((-447 . -101) T) ((-235 . -780) 17662) ((-235 . -777) 17613) ((-633 . -101) T) ((-1210 . -284) 17524) ((-648 . -620) 17508) ((-181 . -599) 17490) ((-629 . -280) 17467) ((-1015 . -702) 17451) ((-559 . -284) T) ((-944 . -632) 17376) ((-1260 . -129) T) ((-720 . -632) 17336) ((-700 . -632) 17323) ((-269 . -101) T) ((-446 . -632) 17253) ((-50 . -101) T) ((-569 . -101) T) ((-510 . -101) T) ((-1229 . -1030) T) ((-1222 . -1030) T) ((-1201 . -1030) T) ((-1229 . -228) 17212) ((-316 . -702) 17194) ((-1222 . -238) 17173) ((-1222 . -228) 17125) ((-1201 . -228) 17012) ((-1201 . -238) 16991) ((-1185 . -38) 16888) ((-985 . -780) T) ((-583 . -1030) T) ((-582 . -1030) T) ((-985 . -777) T) ((-952 . -780) T) ((-952 . -777) T) ((-853 . -1037) T) ((-851 . -850) 16872) ((-108 . -599) 16854) ((-678 . -445) T) ((-373 . -702) 16819) ((-412 . -632) 16793) ((-697 . -832) 16772) ((-696 . -38) 16737) ((-582 . -228) 16696) ((-40 . -709) 16668) ((-345 . -323) 16645) ((-345 . -357) T) ((-1058 . -301) 16596) ((-288 . -1090) 16477) ((-1084 . -1191) T) ((-168 . -101) T) ((-1204 . -599) 16444) ((-825 . -129) 16396) ((-629 . -1225) 16380) ((-819 . -702) 16350) ((-812 . -702) 16320) ((-475 . -1191) T) ((-353 . -301) T) ((-347 . -301) T) ((-339 . -301) T) ((-629 . -590) 16297) ((-401 . -129) T) ((-512 . -650) 16281) ((-107 . -301) T) ((-288 . -23) 16164) ((-512 . -635) 16148) ((-678 . -396) NIL) ((-512 . -367) 16132) ((-285 . -599) 16114) ((-90 . -1078) 16092) ((-107 . -1003) T) ((-552 . -140) T) ((-1237 . -148) 16076) ((-475 . -1019) 15903) ((-1223 . -142) 15864) ((-1223 . -144) 15825) ((-1034 . -1191) T) ((-974 . -599) 15807) ((-844 . -599) 15789) ((-801 . -1036) 15632) ((-1248 . -92) T) ((-1247 . -92) T) ((-1074 . -1078) T) ((-1068 . -1078) T) ((-1065 . -303) 15619) ((-1052 . -1078) T) ((-222 . -1191) T) ((-1045 . -1078) T) ((-1017 . -1078) T) ((-1000 . -1078) T) ((-767 . -303) 15606) ((-765 . -303) 15593) ((-1150 . -600) NIL) ((-801 . -110) 15422) ((-1150 . -599) 15404) ((-612 . -1078) T) ((-565 . -170) T) ((-521 . -170) T) ((-447 . -303) 15391) ((-476 . -1078) T) ((-1103 . -599) 15373) ((-1103 . -600) 15121) ((-1015 . -169) T) ((-213 . -1078) T) ((-836 . -599) 15103) ((-924 . -282) 15080) ((-594 . -506) 14863) ((-803 . -1019) 14847) ((-468 . -506) 14639) ((-944 . -711) T) ((-720 . -711) T) ((-700 . -711) T) ((-345 . -1090) T) ((-1157 . -599) 14621) ((-218 . -101) T) ((-475 . -371) 14590) ((-507 . -1078) T) ((-502 . -1078) T) ((-500 . -1078) T) ((-784 . -632) 14564) ((-1005 . -445) T) ((-939 . -506) 14497) ((-345 . -23) T) ((-621 . -129) T) ((-593 . -129) T) ((-348 . -445) T) ((-235 . -362) 14476) ((-373 . -169) T) ((-1221 . -1037) T) ((-1200 . -1037) T) ((-220 . -983) T) ((-683 . -381) T) ((-412 . -711) T) ((-685 . -1195) T) ((-1120 . -625) 14424) ((-568 . -850) 14408) ((-1137 . -1167) 14384) ((-685 . -544) T) ((-125 . -1078) 14362) ((-1252 . -1036) 14346) ((-699 . -1078) T) ((-475 . -881) 14278) ((-182 . -1078) T) ((-642 . -38) 14248) ((-348 . -396) T) ((-310 . -144) 14227) ((-310 . -142) 14206) ((-127 . -506) NIL) ((-115 . -544) T) ((-307 . -144) 14162) ((-307 . -142) 14118) ((-48 . -445) T) ((-159 . -1078) T) ((-154 . -1078) T) ((-1137 . -106) 14065) ((-767 . -1129) 14043) ((-673 . -34) T) ((-1252 . -110) 14022) ((-538 . -34) T) ((-477 . -106) 14006) ((-245 . -282) 13983) ((-244 . -282) 13960) ((-852 . -280) 13911) ((-45 . -1191) T) ((-801 . -1030) T) ((-1156 . -47) 13888) ((-801 . -320) 13850) ((-1065 . -38) 13699) ((-801 . -228) 13678) ((-767 . -38) 13507) ((-765 . -38) 13356) ((-447 . -38) 13205) ((-1093 . -599) 13171) ((-1096 . -101) T) ((-629 . -600) 13132) ((-629 . -599) 13044) ((-569 . -1129) T) ((-510 . -1129) T) ((-1125 . -482) 13028) ((-1177 . -1078) 13006) ((-1120 . -25) T) ((-1120 . -21) T) ((-467 . -1037) T) ((-1201 . -777) NIL) ((-1201 . -780) NIL) ((-980 . -832) 12985) ((-804 . -599) 12967) ((-847 . -21) T) ((-847 . -25) T) ((-784 . -711) T) ((-171 . -1195) T) ((-569 . -38) 12932) ((-510 . -38) 12897) ((-380 . -599) 12879) ((-318 . -599) 12861) ((-166 . -280) 12819) ((-62 . -1191) T) ((-111 . -101) T) ((-853 . -1078) T) ((-171 . -544) T) ((-699 . -702) 12789) ((-288 . -129) 12672) ((-220 . -599) 12654) ((-220 . -600) 12584) ((-984 . -625) 12523) ((-1252 . -1030) T) ((-1098 . -144) T) ((-618 . -1167) 12498) ((-716 . -890) 12477) ((-580 . -34) T) ((-631 . -106) 12461) ((-618 . -106) 12407) ((-1210 . -280) 12334) ((-716 . -632) 12259) ((-289 . -1191) T) ((-1156 . -1019) 12155) ((-565 . -564) T) ((-565 . -519) T) ((-521 . -519) T) ((-1145 . -890) NIL) ((-1041 . -600) 12070) ((-1041 . -599) 12052) ((-933 . -599) 12034) ((-337 . -101) T) ((-244 . -1036) 11931) ((-245 . -1036) 11828) ((-388 . -101) T) ((-31 . -1078) T) ((-933 . -600) 11689) ((-698 . -599) 11671) ((-1250 . -1184) 11640) ((-474 . -599) 11622) ((-474 . -600) 11483) ((-242 . -405) 11467) ((-258 . -405) 11451) ((-244 . -110) 11341) ((-245 . -110) 11231) ((-1152 . -632) 11156) ((-1151 . -632) 11053) ((-1145 . -632) 10905) ((-1104 . -632) 10830) ((-345 . -129) T) ((-81 . -434) T) ((-81 . -389) T) ((-984 . -25) T) ((-984 . -21) T) ((-854 . -1078) 10781) ((-853 . -702) 10733) ((-373 . -284) T) ((-166 . -983) 10685) ((-678 . -381) T) ((-980 . -978) 10669) ((-685 . -1090) T) ((-678 . -163) 10651) ((-1221 . -1078) T) ((-1200 . -1078) T) ((-310 . -1176) 10630) ((-310 . -1179) 10609) ((-1142 . -101) T) ((-310 . -940) 10588) ((-132 . -1090) T) ((-115 . -1090) T) ((-588 . -1235) 10572) ((-685 . -23) T) ((-588 . -1078) 10522) ((-90 . -506) 10455) ((-171 . -357) T) ((-310 . -94) 10434) ((-310 . -35) 10413) ((-594 . -482) 10347) ((-132 . -23) T) ((-115 . -23) T) ((-947 . -101) T) ((-703 . -1078) T) ((-468 . -482) 10284) ((-401 . -625) 10232) ((-637 . -1019) 10128) ((-939 . -482) 10112) ((-349 . -1037) T) ((-346 . -1037) T) ((-338 . -1037) T) ((-258 . -1037) T) ((-242 . -1037) T) ((-852 . -600) NIL) ((-852 . -599) 10094) ((-1260 . -21) T) ((-1248 . -599) 10060) ((-1247 . -599) 10026) ((-559 . -983) T) ((-716 . -711) T) ((-1260 . -25) T) ((-245 . -1030) 9956) ((-244 . -1030) 9886) ((-71 . -1191) T) ((-245 . -228) 9838) ((-244 . -228) 9790) ((-40 . -101) T) ((-891 . -1037) T) ((-127 . -482) 9772) ((-1159 . -101) T) ((-1152 . -711) T) ((-1151 . -711) T) ((-1145 . -711) T) ((-1145 . -776) NIL) ((-1145 . -779) NIL) ((-935 . -101) T) ((-902 . -101) T) ((-1104 . -711) T) ((-756 . -101) T) ((-656 . -101) T) ((-467 . -1078) T) ((-333 . -1090) T) ((-171 . -1090) T) ((-313 . -901) 9751) ((-1221 . -702) 9592) ((-853 . -169) T) ((-1200 . -702) 9406) ((-825 . -21) 9358) ((-825 . -25) 9310) ((-240 . -1127) 9294) ((-125 . -506) 9227) ((-401 . -25) T) ((-401 . -21) T) ((-333 . -23) T) ((-166 . -600) 8993) ((-166 . -599) 8975) ((-171 . -23) T) ((-629 . -282) 8952) ((-512 . -34) T) ((-879 . -599) 8934) ((-88 . -1191) T) ((-823 . -599) 8916) ((-793 . -599) 8898) ((-754 . -599) 8880) ((-661 . -599) 8862) ((-235 . -632) 8710) ((-1154 . -1078) T) ((-1150 . -1036) 8533) ((-1128 . -1191) T) ((-1103 . -1036) 8376) ((-836 . -1036) 8360) ((-1150 . -110) 8169) ((-1103 . -110) 7998) ((-836 . -110) 7977) ((-1210 . -600) NIL) ((-1210 . -599) 7959) ((-337 . -1129) T) ((-837 . -599) 7941) ((-1054 . -280) 7920) ((-79 . -1191) T) ((-985 . -890) NIL) ((-594 . -280) 7896) ((-1177 . -506) 7829) ((-480 . -1191) T) ((-559 . -599) 7811) ((-468 . -280) 7790) ((-509 . -92) T) ((-212 . -1191) T) ((-1065 . -226) 7774) ((-283 . -901) T) ((-802 . -301) 7753) ((-851 . -101) T) ((-767 . -226) 7737) ((-985 . -632) 7687) ((-939 . -280) 7664) ((-895 . -632) 7616) ((-621 . -21) T) ((-621 . -25) T) ((-593 . -21) T) ((-337 . -38) 7581) ((-678 . -709) 7548) ((-480 . -865) 7530) ((-480 . -867) 7512) ((-467 . -702) 7353) ((-212 . -865) 7335) ((-63 . -1191) T) ((-212 . -867) 7317) ((-593 . -25) T) ((-421 . -632) 7291) ((-480 . -1019) 7251) ((-853 . -506) 7163) ((-212 . -1019) 7123) ((-235 . -34) T) ((-981 . -1078) 7101) ((-1221 . -169) 7032) ((-1200 . -169) 6963) ((-697 . -142) 6942) ((-697 . -144) 6921) ((-685 . -129) T) ((-134 . -458) 6898) ((-1125 . -599) 6830) ((-642 . -640) 6814) ((-127 . -280) 6789) ((-115 . -129) T) ((-470 . -1195) T) ((-594 . -590) 6765) ((-468 . -590) 6744) ((-330 . -329) 6713) ((-528 . -1078) T) ((-470 . -544) T) ((-1150 . -1030) T) ((-1103 . -1030) T) ((-836 . -1030) T) ((-235 . -776) 6692) ((-235 . -779) 6643) ((-235 . -778) 6622) ((-1150 . -320) 6599) ((-235 . -711) 6509) ((-939 . -19) 6493) ((-480 . -371) 6475) ((-480 . -332) 6457) ((-1103 . -320) 6429) ((-348 . -1244) 6406) ((-212 . -371) 6388) ((-212 . -332) 6370) ((-939 . -590) 6347) ((-1150 . -228) T) ((-648 . -1078) T) ((-630 . -1078) T) ((-1233 . -1078) T) ((-1164 . -1078) T) ((-1065 . -247) 6284) ((-349 . -1078) T) ((-346 . -1078) T) ((-338 . -1078) T) ((-258 . -1078) T) ((-242 . -1078) T) ((-83 . -1191) T) ((-126 . -101) 6262) ((-120 . -101) 6240) ((-1164 . -596) 6219) ((-472 . -1078) T) ((-1119 . -1078) T) ((-472 . -596) 6198) ((-245 . -780) 6149) ((-245 . -777) 6100) ((-244 . -780) 6051) ((-40 . -1129) NIL) ((-244 . -777) 6002) ((-127 . -19) 5984) ((-1058 . -901) 5935) ((-985 . -779) T) ((-985 . -776) T) ((-985 . -711) T) ((-952 . -779) T) ((-127 . -590) 5910) ((-895 . -711) T) ((-90 . -482) 5894) ((-480 . -881) NIL) ((-891 . -1078) T) ((-220 . -1036) 5859) ((-853 . -284) T) ((-212 . -881) NIL) ((-818 . -1090) 5838) ((-58 . -1078) 5788) ((-511 . -1078) 5766) ((-508 . -1078) 5716) ((-489 . -1078) 5694) ((-488 . -1078) 5644) ((-568 . -101) T) ((-552 . -101) T) ((-487 . -101) T) ((-467 . -169) 5575) ((-353 . -901) T) ((-347 . -901) T) ((-339 . -901) T) ((-220 . -110) 5531) ((-818 . -23) 5483) ((-421 . -711) T) ((-107 . -901) T) ((-40 . -38) 5428) ((-107 . -805) T) ((-569 . -343) T) ((-510 . -343) T) ((-1200 . -506) 5288) ((-310 . -445) 5267) ((-307 . -445) T) ((-819 . -280) 5246) ((-333 . -129) T) ((-171 . -129) T) ((-288 . -25) 5110) ((-288 . -21) 4993) ((-45 . -1167) 4972) ((-65 . -599) 4954) ((-873 . -599) 4936) ((-588 . -506) 4869) ((-45 . -106) 4819) ((-1080 . -419) 4803) ((-1080 . -362) 4782) ((-1042 . -1191) T) ((-1041 . -1036) 4769) ((-933 . -1036) 4612) ((-1238 . -101) T) ((-1237 . -101) 4562) ((-474 . -1036) 4405) ((-648 . -702) 4389) ((-1041 . -110) 4374) ((-933 . -110) 4203) ((-470 . -357) T) ((-349 . -702) 4155) ((-346 . -702) 4107) ((-338 . -702) 4059) ((-258 . -702) 3908) ((-242 . -702) 3757) ((-1229 . -632) 3682) ((-1201 . -890) NIL) ((-1074 . -92) T) ((-1068 . -92) T) ((-924 . -635) 3666) ((-1052 . -92) T) ((-474 . -110) 3495) ((-1045 . -92) T) ((-1017 . -92) T) ((-924 . -367) 3479) ((-243 . -101) T) ((-1000 . -92) T) ((-73 . -599) 3461) ((-944 . -47) 3440) ((-607 . -1090) T) ((-1 . -1078) T) ((-695 . -101) T) ((-683 . -101) T) ((-1222 . -632) 3337) ((-612 . -92) T) ((-1172 . -599) 3319) ((-1066 . -599) 3301) ((-125 . -482) 3285) ((-476 . -92) T) ((-1054 . -599) 3267) ((-384 . -23) T) ((-86 . -1191) T) ((-213 . -92) T) ((-1201 . -632) 3119) ((-891 . -702) 3084) ((-607 . -23) T) ((-594 . -599) 3066) ((-594 . -600) NIL) ((-468 . -600) NIL) ((-468 . -599) 3048) ((-503 . -1078) T) ((-499 . -1078) T) ((-345 . -25) T) ((-345 . -21) T) ((-126 . -303) 2986) ((-120 . -303) 2924) ((-583 . -632) 2911) ((-220 . -1030) T) ((-582 . -632) 2836) ((-373 . -983) T) ((-220 . -238) T) ((-220 . -228) T) ((-939 . -600) 2797) ((-939 . -599) 2709) ((-851 . -38) 2696) ((-1221 . -284) 2647) ((-1200 . -284) 2598) ((-1098 . -445) T) ((-494 . -832) T) ((-310 . -1117) 2577) ((-980 . -144) 2556) ((-980 . -142) 2535) ((-487 . -303) 2522) ((-289 . -1167) 2501) ((-470 . -1090) T) ((-852 . -1036) 2446) ((-609 . -101) T) ((-1177 . -482) 2430) ((-245 . -362) 2409) ((-244 . -362) 2388) ((-1041 . -1030) T) ((-289 . -106) 2338) ((-127 . -600) NIL) ((-127 . -599) 2304) ((-116 . -101) T) ((-933 . -1030) T) ((-852 . -110) 2233) ((-470 . -23) T) ((-474 . -1030) T) ((-1041 . -228) T) ((-933 . -320) 2202) ((-474 . -320) 2159) ((-349 . -169) T) ((-346 . -169) T) ((-338 . -169) T) ((-258 . -169) 2070) ((-242 . -169) 1981) ((-944 . -1019) 1877) ((-720 . -1019) 1848) ((-509 . -599) 1814) ((-1083 . -101) T) ((-1070 . -599) 1781) ((-1015 . -599) 1763) ((-1229 . -711) T) ((-1222 . -711) T) ((-1201 . -776) NIL) ((-166 . -1036) 1673) ((-1201 . -779) NIL) ((-891 . -169) T) ((-1201 . -711) T) ((-1250 . -148) 1657) ((-984 . -336) 1631) ((-981 . -506) 1564) ((-825 . -832) 1543) ((-552 . -1129) T) ((-467 . -284) 1494) ((-583 . -711) T) ((-355 . -599) 1476) ((-316 . -599) 1458) ((-412 . -1019) 1354) ((-582 . -711) T) ((-401 . -832) 1305) ((-166 . -110) 1201) ((-818 . -129) 1153) ((-722 . -148) 1137) ((-1237 . -303) 1075) ((-480 . -301) T) ((-373 . -599) 1042) ((-512 . -991) 1026) ((-373 . -600) 940) ((-212 . -301) T) ((-138 . -148) 922) ((-699 . -280) 901) ((-480 . -1003) T) ((-568 . -38) 888) ((-552 . -38) 875) ((-487 . -38) 840) ((-212 . -1003) T) ((-852 . -1030) T) ((-819 . -599) 822) ((-812 . -599) 804) ((-810 . -599) 786) ((-801 . -890) 765) ((-1261 . -1090) T) ((-1210 . -1036) 588) ((-837 . -1036) 572) ((-852 . -238) T) ((-852 . -228) NIL) ((-673 . -1191) T) ((-1261 . -23) T) ((-801 . -632) 497) ((-538 . -1191) T) ((-412 . -332) 481) ((-559 . -1036) 468) ((-1210 . -110) 277) ((-685 . -625) 259) ((-837 . -110) 238) ((-375 . -23) T) ((-1164 . -506) 30) ((-646 . -1078) T) ((-665 . -1078) T) ((-660 . -1078) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 0b28009d..ab6f5f67 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3433818803) -(4369 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3436147951) +(4371 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -214,11 +214,11 @@ |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| - |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic| - |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| - |LaurentPolynomial| |LazardSetSolvingPackage| - |LeadingCoefDetermination| |LetAst| |LieExponentials| - |LexTriangularPackage| |LiouvillianFunctionCategory| + |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom| + |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra| + |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| + |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| + |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| @@ -471,659 +471,661 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |input| |fortranInteger| |mapDown!| |systemCommand| - |localAbs| |OMputEndAttr| |relerror| |empty?| |lcm| |print| - |iterationVar| |random| |iterators| |rationalFunction| |geometric| - |monic?| |library| |matrixGcd| |nextPrime| |seriesToOutputForm| - |gcdPrimitive| |makeEq| |cCos| |resolve| |s17dhf| |slash| |last| - |getOperands| |keys| |primeFactor| |explicitlyEmpty?| |list| |isOpen?| - |patternVariable| |selectOptimizationRoutines| - |extendedSubResultantGcd| |rootsOf| |assoc| |palgint| |append| - |stoseInvertibleSetsqfreg| |graphCurves| |dark| |doubleDisc| - |setPrologue!| |dec| |car| |laplace| |radicalEigenvector| |normal| - |rangeIsFinite| |normalize| |loopPoints| |basisOfCommutingElements| - |increase| |gcd| |hermite| |characteristicSerie| |minPol| |graphs| - |cdr| |rewriteSetByReducingWithParticularGenerators| |makeSin| - |subQuasiComponent?| |readLine!| |controlPanel| |getProperty| - |lfintegrate| |false| |f02aff| |OMunhandledSymbol| |changeName| - |subResultantGcd| |setDifference| |set| |dimensions| |mathieu11| - |space| |tan2trig| |stoseInternalLastSubResultant| |newLine| - |upperCase| |intensity| |leftOne| |nthRoot| |setIntersection| - |edf2efi| |monicModulo| |reducedQPowers| |ffactor| |trapezoidalo| - |fortranReal| |associatorDependence| |zeroSetSplit| |bumprow| - |removeSinhSq| |setUnion| |tubePointsDefault| |ocf2ocdf| |tablePow| - |UnVectorise| |var1StepsDefault| |quoted?| |element?| |setelt!| - |traverse| |initTable!| |primitivePart| |definingPolynomial| - |setFieldInfo| |monicLeftDivide| |generators| |normalizeAtInfinity| - |maximumExponent| |isPower| |#| |e01bgf| |polyRDE| |stFunc2| - |physicalLength| |s18adf| |nthExpon| |createZechTable| |GospersMethod| - |OMgetObject| |Gamma| |odd?| |output| |viewDeltaYDefault| |d01aqf| - |erf| |romberg| |coordinate| |sin2csc| |divideIfCan| |getCurve| - |raisePolynomial| |removeZeroes| |setProperties| |rightPower| - |setMaxPoints3D| |permutations| |plenaryPower| |triangularSystems| - |front| |dflist| |knownInfBasis| |primitive?| |top!| |ridHack1| - |bipolar| |pseudoRemainder| |f02akf| |imagJ| |derivative| - |stiffnessAndStabilityFactor| |partition| |leftTraceMatrix| - |possiblyNewVariety?| |flatten| |f01rcf| |OMgetVariable| |dilog| - |c06eaf| |points| |showClipRegion| |charClass| |clearCache| - |leadingSupport| |setClipValue| |merge!| |sorted?| |mapUnivariate| - |mainValue| |iibinom| |f02wef| |problemPoints| |sin| |palginfieldint| - |dAndcExp| |smith| |cyclicCopy| |inverseLaplace| |prod| |shift| - |idealiser| |rotate| |numberOfVariables| |cos| |expenseOfEvaluation| - |genericLeftTraceForm| |setsubMatrix!| |OMsend| |gbasis| - |removeSuperfluousCases| |parabolicCylindrical| |complexExpand| ~= - |cCsc| |tan| |iitan| |fracPart| |tableau| |iiabs| |rowEchelon| - |critMTonD1| |setrest!| |c06gqf| |viewPosDefault| |coerce| - |deepestTail| |cot| |sinhcosh| |property| |divisorCascade| - |primPartElseUnitCanonical!| |limit| |OMParseError?| - |inverseIntegralMatrixAtInfinity| |createMultiplicationTable| - |nullary| |numericIfCan| |construct| |expressIdealMember| |sec| - |coefficients| |pr2dmp| |hdmpToP| |reopen!| |quotientByP| |hash| - |froot| |powern| |argumentListOf| |csc| |find| |f04faf| |integral?| - |OMputSymbol| |even?| |negative?| |count| |spherical| |cyclic| - |besselI| |asin| |listOfMonoms| |e02ajf| |units| |firstSubsetGray| - F2FG |unparse| |lllp| |brillhartTrials| |monicRightFactorIfCan| - |henselFact| |acos| |writeBytes!| |mdeg| |iiasinh| |diff| - |squareFreePrim| |determinant| |has?| |module| |enterInCache| |atan| - |logical?| |impliesOperands| |stirling1| |ran| |bandedJacobian| |plot| - |outerProduct| |genericRightTrace| |lquo| |colorFunction| NOT - |factorSFBRlcUnit| |acot| |leftRankPolynomial| |enqueue!| |modularGcd| - |lyndon| |color| |stronglyReduce| |binarySearchTree| |declare| - |rowEchLocal| |write| |scalarTypeOf| OR |csubst| |asec| - |semiDiscriminantEuclidean| |numberOfHues| |saturate| - |coercePreimagesImages| |setRow!| |e04gcf| |save| - |createIrreduciblePoly| |branchIfCan| |radicalRoots| |directory| AND - |minPoints3D| |acsc| |cAcsch| |code| |makeSUP| |polynomialZeros| - |c06ecf| |e04fdf| |perfectNthRoot| |denominator| |sinh| |palglimint0| - |e02bbf| |Lazard| |expIfCan| |doubleRank| |pointLists| |previous| - |rightRecip| |cosh2sech| |safeFloor| |latex| |cosh| |bezoutMatrix| - |RittWuCompare| |rootPoly| |OMReadError?| |d01alf| |more?| |ScanRoman| - |atrapezoidal| |nonLinearPart| |integralDerivationMatrix| |tanh| - |rightCharacteristicPolynomial| |decomposeFunc| |nullity| |shiftRight| - |setfirst!| |viewDefaults| |lazyVariations| |coth| |fortranComplex| - |inconsistent?| |stoseInvertible?sqfreg| |cot2trig| - |changeWeightLevel| |operation| |zeroSquareMatrix| |dimensionsOf| - |coord| |ScanFloatIgnoreSpaces| |parabolic| |setMinPoints3D| |sech| - |showScalarValues| |changeNameToObjf| |setLabelValue| |integers| - |prime?| |OMreadStr| |internalLastSubResultant| |OMputError| - |discriminant| |yCoord| |iteratedInitials| |csch| |coHeight| - |basisOfRightAnnihilator| |algint| |HermiteIntegrate| |unknown| - |bfEntry| |unrankImproperPartitions0| |double?| |cSech| |cycles| |eq| - |asinh| |c06fqf| |imagk| |equiv| |sinhIfCan| |makeCos| |compBound| - |complexNumeric| |qroot| |acosh| |solveInField| |factorByRecursion| - |outputBinaryFile| |scalarMatrix| |setColumn!| |rightOne| - |integralBasisAtInfinity| |symbolTableOf| |dihedralGroup| |varList| * - |atanh| |call| |janko2| |fortranDouble| |moduleSum| |lyndonIfCan| - |OMUnknownCD?| |subCase?| |not| |cartesian| |lazyResidueClass| - |kernels| |factorSquareFree| |acoth| |cothIfCan| |maxrow| - |OMsupportsSymbol?| |pToHdmp| |totalDifferential| |tan2cot| |ef2edf| - |univariate| |create| |solve| |asech| |cap| |stoseInvertibleSetreg| - |tail| |gcdcofact| |coerceListOfPairs| |retract| |removeCosSq| - |eulerE| |brillhartIrreducible?| |range| |edf2df| |returns| |anfactor| - |epilogue| |LyndonCoordinates| |lazyPseudoQuotient| |allRootsOf| - |imagK| |diophantineSystem| |iicos| |multiple| |resize| - |doublyTransitive?| |leadingExponent| |port| |viewport3D| |iifact| - |nlde| |perfectNthPower?| |factor| |sylvesterMatrix| |applyQuote| - |dfRange| |argument| |OMconnOutDevice| |iiasec| |conjugates| |s21bdf| - |removeCoshSq| |sqrt| |uniform| |sincos| |lfinfieldint| - |mergeDifference| |semiSubResultantGcdEuclidean2| - |certainlySubVariety?| |minordet| |point| |alternating| |safeCeiling| - |c06gcf| |real| |fortranDoubleComplex| |pointData| |lowerPolynomial| - |whatInfinity| |f02axf| |putGraph| |linearPart| |radicalEigenvectors| - |elliptic| |imag| |ruleset| |showArrayValues| |stFuncN| |expint| - |zeroSetSplitIntoTriangularSystems| |monomialIntPoly| |hitherPlane| - |directProduct| |rightRemainder| |rk4| |totalGroebner| |legendreP| - |rootPower| |cyclotomicDecomposition| |realEigenvectors| |blue| - |tRange| |series| |c05pbf| |pascalTriangle| |multisect| |low| |d01asf| - |readIfCan!| |cyclicEntries| |accuracyIF| |groebnerFactorize| - |extractTop!| |f02fjf| |drawToScale| |destruct| |palgintegrate| - |suchThat| |leviCivitaSymbol| |leftMinimalPolynomial| |host| - |ellipticCylindrical| |primintegrate| |getlo| |zoom| |reducedSystem| - |plus| |f04asf| |ldf2vmf| |s17ajf| |cycleTail| |complexZeros| |rk4f| - |generateIrredPoly| |minimize| |medialSet| |checkRur| - |bipolarCylindrical| |iicsch| |baseRDE| |se2rfi| |min| - |evenInfiniteProduct| |continue| |rightAlternative?| |mapCoef| - |randomR| |commutative?| |leaves| |trailingCoefficient| - |fillPascalTriangle| |clearTheSymbolTable| |jacobi| |setMinPoints| - |external?| |pointSizeDefault| |signAround| |monomial| |palgextint0| - |optimize| |cAtanh| |polyRicDE| |OMputString| |byte| |fmecg| |redPol| - |measure| |multivariate| |nodeOf?| |times| |critB| |powers| FG2F - |distance| |bottom!| |prepareSubResAlgo| |cotIfCan| |showAll?| - |variables| |part?| |s17dcf| |leftNorm| |addPointLast| |expandPower| - |pointColor| |aspFilename| |/\\| |hex| |nullary?| |e02bef| - |hasPredicate?| |multiple?| |redPo| |permutation| - |setLegalFortranSourceExtensions| |singularitiesOf| |phiCoord| |\\/| - |bfKeys| |sequences| |resetAttributeButtons| |f04maf| |subSet| - |lieAlgebra?| |divideIfCan!| |ListOfTerms| |or| |getOperator| |e04dgf| - |removeRedundantFactorsInPols| |shallowExpand| |contours| |unitNormal| - |e02baf| |coefficient| |associatedEquations| |symbol?| - |internalAugment| |drawCurves| |ranges| |mapSolve| |style| |charpol| - |mapmult| |rquo| |null| |complement| |setAdaptive3D| |triangSolve| - |leadingIdeal| |root| |cAsec| |quartic| |s14baf| |taylor| - |discriminantEuclidean| |case| |cCsch| |reduceBasisAtInfinity| - |outputAsTex| |seriesSolve| |sumSquares| |pushuconst| |getDatabase| - |permutationRepresentation| |laurent| |radicalSolve| |Zero| |bitTruth| - |palgextint| |s13aaf| |alphabetic?| |mainVariable?| |iisqrt2| - |iiatanh| |puiseux| |ode1| |finite?| |One| |mainDefiningPolynomial| F - |deleteProperty!| |numberOfFactors| |parseString| |s18aff| |equality| - |createLowComplexityNormalBasis| |fill!| |headRemainder| |asinhIfCan| - |f01bsf| |bat1| |OMreadFile| |weierstrass| |fractionFreeGauss!| - |d01fcf| |inv| |indiceSubResultant| |next| |leftScalarTimes!| - |OMconnectTCP| |nextNormalPrimitivePoly| |ip4Address| |rootKerSimp| - |squareMatrix| |ground?| |s19aaf| |makeop| |trunc| - |solveLinearPolynomialEquation| |eigenvector| |subMatrix| - |prefixRagits| |gethi| |mulmod| |ground| |splitDenominator| |exprex| - |limitPlus| |Beta| |maxPoints3D| |setProperties!| |laurentIfCan| - |perfectSquare?| |OMencodingXML| |linearAssociatedOrder| - |leadingMonomial| |stoseSquareFreePart| |bubbleSort!| |monicDivide| - |elt| |c02agf| |doubleResultant| |s19adf| |overset?| |euler| - |transcendent?| |resultantEuclideannaif| |leadingCoefficient| - |stoseInvertible?reg| |showFortranOutputStack| |subHeight| |logGamma| - |probablyZeroDim?| |e02ddf| |largest| |tracePowMod| - |symmetricRemainder| |primitiveMonomials| - |purelyAlgebraicLeadingMonomial?| |callForm?| |resultantReduit| - |explogs2trigs| |complexLimit| |backOldPos| |OMputEndError| - |jordanAdmissible?| |acotIfCan| |updatF| |reductum| |ratPoly| - |leftLcm| |resultantEuclidean| |polygon?| |iExquo| |constant?| - |PollardSmallFactor| |optpair| |orOperands| |triangulate| - |reducedForm| |showTheSymbolTable| |mergeFactors| |putColorInfo| - |and?| |tree| |att2Result| |symmetricPower| |B1solve| |tanhIfCan| - |write!| |shellSort| |SturmHabichtMultiple| - |tableForDiscreteLogarithm| |airyAi| |recip| |deleteRoutine!| - |palgLODE| |list?| |FormatRoman| |constantOpIfCan| |char| |compose| - |identityMatrix| |quote| |lp| |nonQsign| |SFunction| |ord| |decimal| - |indicialEquation| |OMputBind| |radicalOfLeftTraceForm| - |primextintfrac| |li| |floor| |pomopo!| |cAcot| |plotPolar| - |repeatUntilLoop| |reseed| |selectMultiDimensionalRoutines| |d02kef| - |s21bcf| |degreeSubResultant| |is?| |level| |stripCommentsAndBlanks| - |rischNormalize| |applyRules| |mainCoefficients| |setleft!| - |currentScope| |definingEquations| |lift| |setCondition!| |HenselLift| - |numberOfImproperPartitions| |entries| |df2mf| |trigs| |wreath| - |inRadical?| |acothIfCan| BY |OMgetApp| |reduce| |normInvertible?| - |hclf| |lastSubResultantEuclidean| |df2st| |crest| |e04naf| |category| - |zero| |imports| |factors| |algDsolve| |float| |asinIfCan| - |nativeModuleExtension| |htrigs| |unravel| |imagi| |extendedIntegrate| - |domain| |currentEnv| |principal?| |wholeRagits| |constDsolve| - |listYoungTableaus| |listBranches| |zeroDimPrimary?| |torsionIfCan| - |printCode| |cAcoth| |And| |package| |quadraticNorm| - |orthonormalBasis| |homogeneous?| |queue| |diag| - |generalizedEigenvectors| |vertConcat| |superscript| |iisec| |Or| - |combineFeatureCompatibility| |splitLinear| |iidsum| |fixedDivisor| - LODO2FUN |inR?| |curve| |cos2sec| |rightNorm| |Not| |reindex| - |nsqfree| |singular?| |hasSolution?| |removeConstantTerm| - |pseudoDivide| |compound?| |critMonD1| |ddFact| |column| |binding| - |minrank| |clearDenominator| |polCase| |selectAndPolynomials| - |repeating| |s21bbf| |iiacsc| |genus| |entry| |headReduced?| |psolve| - |roughEqualIdeals?| |addmod| |sub| |modifyPointData| |scan| |integer?| - |cAsin| |subTriSet?| |monicDecomposeIfCan| |times!| |returnType!| - |findBinding| |cAsinh| |shallowCopy| |setProperty!| |bitCoef| |entry?| - |bracket| |cubic| |mkcomm| |iiacos| |factorList| |usingTable?| - |multinomial| |approximants| |constantCoefficientRicDE| |linear| - |extractPoint| |atanIfCan| |systemSizeIF| |f01mcf| - |SturmHabichtSequence| |superHeight| |zeroDim?| |algebraicVariables| - |fortranLiteralLine| |evaluate| |exponents| |cTanh| |extractProperty| - |sech2cosh| |roughBasicSet| |cschIfCan| |d01apf| |getMeasure| - |exponential| |transcendentalDecompose| |polynomial| |curry| - |extension| |eigenvalues| |integralMatrix| |delay| |sdf2lst| |close!| - |generator| |elColumn2!| |Aleph| |LiePolyIfCan| |constantIfCan| - |palgLODE0| |s01eaf| |numFunEvals3D| |expintegrate| |e02zaf| |options| - |escape| |swapRows!| |lifting1| |partialDenominators| |power!| - |prolateSpheroidal| |outputAsScript| |yCoordinates| |normFactors| - |top| |s18def| |condition| |f04jgf| |halfExtendedResultant1| - |irreducibleFactor| |squareFreePolynomial| - |removeRoughlyRedundantFactorsInPols| |untab| |inGroundField?| - |computeCycleLength| |pushucoef| |separant| |e02dff| |heapSort| - |vconcat| |multiEuclideanTree| |ramifiedAtInfinity?| |string| - |linearAssociatedLog| |implies?| |curve?| |dom| |fi2df| |figureUnits| - |remove!| |cycleRagits| |outputForm| |pade| |rule| |ratDsolve| - |selectOrPolynomials| |quatern| |primextendedint| |inrootof| - |setProperty| |exprHasLogarithmicWeights| |binaryTree| |iiasech| - |adjoint| |objectOf| |super| |schema| |linkToFortran| - |stopMusserTrials| |maxIndex| |collectUnder| |getProperties| - |component| |cosIfCan| |deepCopy| |shade| = |generalSqFr| |pdf2ef| - |dmpToHdmp| |solveLinearPolynomialEquationByFractions| - |semiIndiceSubResultantEuclidean| |lo| |BasicMethod| |irreducible?| - |useEisensteinCriterion?| |central?| |trueEqual| |reverseLex| |float?| - |magnitude| |createPrimitivePoly| |ODESolve| |incr| |stop| - |symmetric?| |regime| |chebyshevT| |mainMonomials| |fintegrate| < - |categoryFrame| |createMultiplicationMatrix| |pack!| |title| |OMread| - |evaluateInverse| |hi| |cCoth| |showTheRoutinesTable| |errorInfo| - |unvectorise| |interReduce| > |roughSubIdeal?| |mesh| |setStatus!| - |inverseColeman| |interpretString| |subNode?| |nodes| |commaSeparate| - |invertibleElseSplit?| |getVariableOrder| <= - |ScanFloatIgnoreSpacesIfCan| |represents| |OMgetEndBVar| - |jacobiIdentity?| |hcrf| |localReal?| |sumOfDivisors| |imagj| |norm| - |argscript| >= |e| |selectFiniteRoutines| |writable?| - |euclideanNormalForm| |mapGen| |userOrdered?| |index?| |width| - |factorSquareFreeByRecursion| |explicitlyFinite?| |term| |expandLog| - |explimitedint| |linears| |tube| |setLength!| - |initializeGroupForWordProblem| |internal?| |nonSingularModel| |vark| - |diagonal| |empty| |nextColeman| |singleFactorBound| |prime| - |OMputEndBVar| |maxrank| |df2ef| |simplify| |goto| |headAst| - |OMlistSymbols| + |lowerCase?| |mapBivariate| |f01brf| |number?| - |pmComplexintegrate| |compile| |pole?| |BumInSepFFE| |OMgetAttr| - |move| |dot| - |doubleComplex?| |shanksDiscLogAlgorithm| |d02gbf| - |leadingCoefficientRicDE| |extractIndex| |outputFloating| - |wordInStrongGenerators| |quotient| |dimension| |tanintegrate| / - |variationOfParameters| |curryLeft| |characteristicPolynomial| - |rational| |chiSquare1| UTS2UP |parent| |quasiComponent| |adaptive3D?| - |setEpilogue!| |coth2trigh| |absolutelyIrreducible?| |unexpand| - |lazyEvaluate| |sign| |branchPoint?| |connectTo| |fixedPointExquo| - |exists?| |build| |expextendedint| |oddintegers| |finiteBasis| - |choosemon| |eq?| |complexForm| |d01bbf| |nextSublist| - |normalizedAssociate| |optional| |e04mbf| |OMcloseConn| - |SturmHabichtCoefficients| |result| |scale| |genericLeftNorm| - |gramschmidt| |ldf2lst| |testModulus| |extendedint| |acschIfCan| - |vectorise| |OMgetEndObject| |unprotectedRemoveRedundantFactors| - |varselect| |factor1| |maxint| |consnewpol| |squareTop| |printHeader| - |generate| |fortran| |semiDegreeSubResultantEuclidean| - |squareFreeFactors| |collectQuasiMonic| |exponentialOrder| |rspace| - |printStatement| |generalTwoFactor| |companionBlocks| |e01sef| - |nextsubResultant2| |rootSimp| |s15aef| |setvalue!| |toroidal| - |leastAffineMultiple| |partialQuotients| |iFTable| |compiledFunction| - |rightUnits| |cAsech| |countRealRoots| |initiallyReduced?| - |hostPlatform| |generalLambert| |incrementBy| |denominators| - |normalizeIfCan| |squareFree| |exprHasAlgebraicWeight| |nthExponent| - |shiftRoots| |c06fuf| |normal?| |commutator| |capacity| - |createRandomElement| |expand| |OMopenString| |iiasin| |Ei| |reify| - |cyclicParents| |cylindrical| |true| |resetNew| |rectangularMatrix| - |moreAlgebraic?| |taylorQuoByVar| |univariate?| |filterWhile| - |sayLength| |screenResolution| |removeSinSq| |leftUnit| |constantLeft| - |mat| |implies| |push| |checkForZero| |reverse!| |and| |iipow| - |assign| |status| |filterUntil| |lambert| |rightTrace| |lex| |s20acf| - |legendre| |normalDenom| |decreasePrecision| |eigenMatrix| - |preprocess| |isOp| |children| |select| |leftMult| |hMonic| - |conditionsForIdempotents| |bsolve| |lazyIrreducibleFactors| - |position!| |xor| |differentialVariables| |isMult| |lexTriangular| - |imaginary| |iomode| |initial| |s17aef| |basisOfLeftNucleus| - |meshFun2Var| |subresultantSequence| |currentSubProgram| - |listConjugateBases| |multiEuclidean| |mathieu22| |viewThetaDefault| - |integralCoordinates| |poisson| |biRank| |d03faf| |string?| - |startStats!| |coth2tanh| |normalForm| |getMatch| - |lazyPremWithDefault| |toseInvertible?| |cSinh| - |LagrangeInterpolation| |zag| |OMgetSymbol| |KrullNumber| - |makeFloatFunction| |OMputFloat| |bag| |generic?| |prinpolINFO| - |startTableInvSet!| |decrease| |insertRoot!| |linearPolynomials| - |contains?| |rightQuotient| |makeSeries| |cosSinInfo| |crushedSet| - |polar| |sumOfSquares| SEGMENT |viewport2D| - |leftRegularRepresentation| |middle| |beauzamyBound| - |fullPartialFraction| |mainForm| |infinityNorm| |closeComponent| - |kovacic| |clearFortranOutputStack| |minPoly| |e02gaf| - |resetBadValues| |makeRecord| |script| |typeLists| |credPol| - |definingInequation| |factorial| |normalElement| |prem| |difference| - |permutationGroup| |fixPredicate| |conjugate| |enterPointData| |id| - |balancedFactorisation| |subst| |rotatex| |divisors| |mapMatrixIfCan| - |one?| |e02agf| |youngGroup| |nextPrimitivePoly| |primes| - |fortranLiteral| |OMgetError| |expPot| |mappingAst| |divergence| - |d01anf| |round| |sizePascalTriangle| |factorOfDegree| - |generalizedInverse| |makeResult| |rationalApproximation| |order| - |table| |tex| |areEquivalent?| |s18acf| |torsion?| |listexp| |Is| - |bivariateSLPEBR| |setPoly| |rootRadius| |scanOneDimSubspaces| - |d01ajf| |infRittWu?| |new| |numberOfComposites| - |cyclotomicFactorization| |mainCharacterization| - |inverseIntegralMatrix| |setValue!| |lastSubResultantElseSplit| - |inputBinaryFile| |intChoose| |rdHack1| |binaryTournament| - |tryFunctionalDecomposition?| |complexRoots| |concat| - |generalizedEigenvector| |exprToGenUPS| |weight| |f07fef| - |equivOperands| |cExp| |f04adf| |qualifier| |f04qaf| |fixedPoints| - |OMgetEndAtp| |partialFraction| |makingStats?| |zeroOf| - |factorGroebnerBasis| |insertMatch| |mainVariable| - |drawComplexVectorField| |outlineRender| |dioSolve| |multiset| - |objects| |closed?| |halfExtendedSubResultantGcd1| |doubleFloatFormat| - |digit| |bumptab1| |screenResolution3D| |categories| |karatsuba| - |df2fi| |numberOfFractionalTerms| |sort!| |reducedDiscriminant| - |numberOfNormalPoly| |e01daf| |base| |resultantReduitEuclidean| |sum| - |quickSort| |lazyPrem| |finiteBound| |rangePascalTriangle| |interval| - |elem?| |predicate| |minGbasis| |cot2tan| |unit| |euclideanSize| - |internalSubQuasiComponent?| |e02adf| |wholeRadix| |OMgetFloat| |cn| - |lifting| |setPredicates| |upperCase!| |basisOfNucleus| |contract| - |physicalLength!| |trivialIdeal?| |sinh2csch| |musserTrials| |augment| - |rename!| |product| |matrixConcat3D| |trapezoidal| |totolex| |d02bbf| - |primitiveElement| |An| |selectPDERoutines| |antiCommutator| - |strongGenerators| |viewpoint| |isPlus| |integrate| |enumerate| - |composite| |symbolTable| |sn| |leastPower| |leftRemainder| - |selectfirst| |incrementKthElement| |stoseIntegralLastSubResultant| - |genericLeftDiscriminant| |testDim| |nextLatticePermutation| - |frobenius| |exquo| |mr| |setTopPredicate| |readByteIfCan!| - |primlimintfrac| |getZechTable| |upDateBranches| |e02bcf| - |pushFortranOutputStack| |minimumExponent| |continuedFraction| - |leftFactorIfCan| |div| |lprop| |iroot| |left| |tanSum| |reset| - |digit?| |maxColIndex| |transform| |monicCompleteDecompose| |iicoth| - |var2StepsDefault| |popFortranOutputStack| |palgRDE0| |e01bff| - |toseSquareFreePart| |quo| |purelyAlgebraic?| |right| |nthFactor| - |surface| |newReduc| |mesh?| |sup| |curveColorPalette| - |leftCharacteristicPolynomial| |innerSolve| |bandedHessian| |setlast!| - |outputAsFortran| UP2UTS |besselY| |setOrder| |leftDiscriminant| - |cTan| |stFunc1| |parameters| |f02abf| |aCubic| |leftGcd| |rem| |mix| - |commutativeEquality| |target| |normDeriv2| |asechIfCan| - |genericLeftMinimalPolynomial| |removeDuplicates!| |s21baf| - |getMultiplicationTable| |dimensionOfIrreducibleRepresentation| - |coerceP| |functionIsOscillatory| |s17adf| |c06frf| |f02ajf| - |csch2sinh| |overbar| ~ |axes| |noKaratsuba| |constructorName| - |euclideanGroebner| |null?| |weakBiRank| |cPower| |clipSurface| - |d02gaf| |stosePrepareSubResAlgo| |cSin| |split| |tanNa| |xn| - |quasiRegular?| |infieldint| |functionIsFracPolynomial?| |open| - |OMputEndAtp| |rubiksGroup| |calcRanges| |viewWriteAvailable| - |clearTable!| |computeInt| |rightRankPolynomial| |sin?| - |sturmSequence| |rationalIfCan| |rst| |scripted?| |region| - |nextIrreduciblePoly| |simpsono| |oblateSpheroidal| |matrixDimensions| - |normalizedDivide| |outputList| |setref| |quasiMonic?| |solid?| - |quoByVar| |RemainderList| |hspace| |groebner| |stopTableGcd!| - |rightTraceMatrix| |f01qef| |copies| |myDegree| |completeHermite| - |chvar| |lSpaceBasis| |numberOfOperations| |log10| |lookup| - |viewPhiDefault| |alternatingGroup| |clikeUniv| |complete| - |compactFraction| |patternMatchTimes| |makeTerm| |normalise| |bitand| - |leftPower| |toseLastSubResultant| |routines| |exactQuotient| - |rewriteIdealWithQuasiMonicGenerators| - |standardBasisOfCyclicSubmodule| |halfExtendedSubResultantGcd2| - |update| |univcase| |back| |bitior| |fprindINFO| |orbit| |symbol| - |oddlambert| |distribute| |complementaryBasis| |c06fpf| - |primitivePart!| |solveid| |withPredicates| |makeViewport2D| |numer| - |linearDependenceOverZ| |expression| |components| |nextSubsetGray| - |whitePoint| |var2Steps| |autoReduced?| |arity| |swap| - |radicalEigenvalues| |denom| |overlap| |vector| |complexSolve| - |integer| |reduceByQuasiMonic| |tubeRadiusDefault| |mathieu24| - |algebraicSort| |getMultiplicationMatrix| |iiGamma| |groebgen| - |rootDirectory| |differentiate| |linear?| |setPosition| |normalDeriv| - |someBasis| |thenBranch| |mantissa| |mathieu12| |setelt| |pi| - |inverse| |failed| |over| |modularGcdPrimitive| |invmultisect| |basis| - |restorePrecision| |genericRightTraceForm| |nullSpace| - |lazyPseudoDivide| |infinity| |imagI| |btwFact| |s17dlf| - |complexEigenvalues| |position| |createPrimitiveNormalPoly| - |wordsForStrongGenerators| |reciprocalPolynomial| |iicot| |socf2socdf| - |copy| |basisOfMiddleNucleus| |ptFunc| |OMopenFile| - |getSyntaxFormsFromFile| |cyclic?| |d01amf| |e04jaf| |bezoutResultant| - |weighted| |positive?| |iiperm| |expenseOfEvaluationIF| |morphism| - |mkAnswer| |OMgetString| |bringDown| |f07fdf| |kernel| |atoms| - |localIntegralBasis| |c06gsf| |e01bef| |repSq| |nil| - |linearlyDependent?| |match?| |f04arf| |rur| |init| |OMmakeConn| - |drawComplex| |draw| |prevPrime| |autoCoerce| |leftExtendedGcd| - |principalIdeal| |delete!| |f02agf| |hasoln| |splitNodeOf!| |LiePoly| - |lazyPquo| |padicallyExpand| |univariatePolynomial| |Vectorise| - |returnTypeOf| |iicsc| |topPredicate| |rotate!| |lighting| |zero?| - |bumptab| |iprint| |meatAxe| |dictionary| |rightRegularRepresentation| - |approximate| |rowEch| |rightFactorCandidate| |quasiAlgebraicSet| - |e02def| |selectsecond| |LyndonWordsList1| |c06ebf| |hessian| - |subResultantsChain| |complex| |OMgetEndApp| |stirling2| |polyPart| - |fractRadix| |multiplyCoefficients| |makeObject| |f02xef| - |cyclePartition| |gcdprim| |charthRoot| |listLoops| - |setAttributeButtonStep| |lowerCase!| |goodPoint| |makeFR| |monomials| - |drawStyle| |functionIsContinuousAtEndPoints| |ReduceOrder| |e01bhf| - |rotatey| |printingInfo?| |makeMulti| |trim| |universe| |groebSolve| - |complexIntegrate| |fortranCarriageReturn| |coef| |properties| - |nothing| |interpret| |newTypeLists| |s13adf| |besselJ| - |explicitEntries?| |unrankImproperPartitions1| |lhs| |mapUp!| |digits| - |symmetricGroup| |member?| |shrinkable| |translate| - |createGenericMatrix| |taylorRep| |c06ekf| |replaceKthElement| |rhs| - |iitanh| |viewSizeDefault| |box| |integralRepresents| |exactQuotient!| - |chainSubResultants| |integral| |option?| |chineseRemainder| - |mathieu23| |lllip| |innerSolve1| |simpson| |ideal| |f04mcf| - |sechIfCan| |computeBasis| |monicRightDivide| |characteristicSet| - |endSubProgram| |diagonals| |f02aaf| |name| |rightFactorIfCan| - |members| |removeSuperfluousQuasiComponents| |resultant| |gradient| - |tanIfCan| |rightDiscriminant| |viewWriteDefault| |nthRootIfCan| - |body| |shiftLeft| |selectIntegrationRoutines| |tanh2trigh| |node| - |listOfLists| |gcdPolynomial| |completeSmith| |balancedBinaryTree| - |duplicates| |componentUpperBound| |coordinates| |head| |ode| - |genericRightNorm| |numberOfIrreduciblePoly| |dominantTerm| |rombergo| - |overlabel| |pointColorPalette| |errorKind| |idealiserMatrix| |pol| - |primPartElseUnitCanonical| |linearMatrix| |useSingleFactorBound?| - |fortranCharacter| |makeYoungTableau| |aQuadratic| |concat!| |d01gbf| - |infiniteProduct| |exp| |prepareDecompose| Y |droot| |trace2PowMod| - |basisOfRightNucloid| |predicates| |sqfree| |acscIfCan| |partitions| - |quasiRegular| |elementary| |readBytes!| |closedCurve?| |tubeRadius| - |d02ejf| |nand| |iiexp| |resetVariableOrder| |maxPoints| |center| - |unitNormalize| |e04ucf| |integralAtInfinity?| |axesColorDefault| - |interpolate| |high| |flexibleArray| |sumOfKthPowerDivisors| |c02aff| - |check| |getIdentifier| |bernoulliB| |clipPointsDefault| |roughBase?| - |var1Steps| |maxdeg| |term?| |mapdiv| |updatD| |f02awf| |rootSplit| - |asimpson| |identitySquareMatrix| |numericalIntegration| |aQuartic| - |subresultantVector| |radPoly| |diagonalMatrix| - |purelyTranscendental?| |showRegion| |domainOf| |ref| |clipParametric| - |selectODEIVPRoutines| |iisin| |integralMatrixAtInfinity| |dihedral| - |OMsupportsCD?| |zerosOf| |getGraph| |parts| |internalIntegrate0| - |highCommonTerms| |lyndon?| |critM| |compdegd| |retractable?| |sh| - |tValues| |cyclotomic| |f02bjf| |reduction| |d03edf| |mainContent| - |power| |uncouplingMatrices| |createNormalElement| |paraboloidal| - |atom?| |perspective| |complex?| |OMserve| |s17akf| - |rewriteSetWithReduction| |leadingIndex| |bit?| |exteriorDifferential| - |quadratic?| |f2df| |startPolynomial| |unitCanonical| - |sizeMultiplication| |expt| |goodnessOfFit| |prologue| |forLoop| - |rootOfIrreduciblePoly| |insert| |moebius| |useNagFunctions| - |zeroDimPrime?| |cCot| |supDimElseRittWu?| |antiAssociative?| - |OMconnInDevice| |coerceS| |nthr| |equation| |sturmVariationsOf| - |OMputEndApp| |rroot| |ignore?| |monomial?| |t| |clearTheFTable| - |stoseInvertible?| |insertTop!| |s18aef| |lazyIntegrate| |solveLinear| - |int| |ratDenom| |numberOfCycles| |totalDegree| - |removeRedundantFactors| |hasHi| |sts2stst| |lintgcd| |algintegrate| - |precision| |redpps| |connect| |fglmIfCan| |apply| |completeEval| - |UP2ifCan| |factorAndSplit| |currentCategoryFrame| |shufflein| - |iiacosh| |red| |palgint0| |viewZoomDefault| |constantOperator| |any?| - |showIntensityFunctions| |curveColor| |badNum| |clipBoolean| - |antiCommutative?| |swap!| |internalSubPolSet?| |size| - |integralLastSubResultant| |alphanumeric?| |validExponential| - |cyclicEqual?| |fortranLinkerArgs| |particularSolution| |obj| |c05nbf| - |c06gbf| |semiResultantEuclidean1| |prindINFO| |conditionP| - |symbolIfCan| |eval| |multiplyExponents| |intPatternMatch| - |approxNthRoot| |cache| |cyclicGroup| |stiffnessAndStabilityOfODEIF| - |buildSyntax| |abs| |graphState| |elliptic?| - |subResultantGcdEuclidean| |identification| |outputArgs| |say| - |extractBottom!| |approxSqrt| |leftZero| |complexElementary| |first| - |karatsubaDivide| |kind| |rightMinimalPolynomial| |simplifyLog| - |safetyMargin| |mainMonomial| |extendedEuclidean| |rootOf| - |LyndonWordsList| |resultantnaif| |rest| |quadraticForm| |copy!| |op| - |dmp2rfi| |iiacot| |lflimitedint| |pleskenSplit| |comp| |tanQ| - |flexible?| |mainKernel| |noncommutativeJordanAlgebra?| |substitute| - |show| |complexNumericIfCan| |newSubProgram| |innerEigenvectors| - |fixedPoint| |removeDuplicates| |generalInfiniteProduct| |leftFactor| - |dmpToP| |getCode| |elseBranch| |edf2ef| |s17ahf| |f01qdf| |rk4qc| - |s14abf| |parametric?| |semiSubResultantGcdEuclidean1| |intersect| - |cycleSplit!| |trace| |s19acf| |OMputVariable| |upperCase?| - |monomialIntegrate| |unary?| |tensorProduct| |coshIfCan| |baseRDEsys| - |internalIntegrate| GF2FG |besselK| |extractSplittingLeaf| |cAcosh| - |palgRDE| |lexGroebner| |remainder| |integralBasis| |singRicDE| - |modifyPoint| |removeRedundantFactorsInContents| |Frobenius| - |showSummary| |OMbindTCP| |recolor| |randomLC| |indicialEquations| - |minus!| |qelt| |basisOfCentroid| |child?| |union| |binomThmExpt| - |monomRDE| |any| |boundOfCauchy| |qsetelt| |increment| |ScanArabic| - |randnum| |isQuotient| |padicFraction| |delta| |powmod| |reverse| - |makeViewport3D| |showAttributes| |firstUncouplingMatrix| |setright!| - |factorials| |cRationalPower| |bothWays| |xRange| |toScale| - |createPrimitiveElement| |cscIfCan| |powerSum| |cup| |tower| - |groebner?| |inc| |ratpart| |yRange| |factorFraction| - |structuralConstants| |harmonic| |algebraicDecompose| |deref| - |associatedSystem| |vedf2vef| |rationalPower| |laguerreL| |zRange| - |aLinear| |e02dcf| |andOperands| |kroneckerDelta| - |selectSumOfSquaresRoutines| |map!| |limitedIntegrate| |minimumDegree| - |numericalOptimization| |pdct| |push!| |primlimitedint| |f02bbf| - |wholePart| |complexNormalize| |qsetelt!| |graphImage| - |constantKernel| |height| |iisqrt3| |thetaCoord| |maxRowIndex| - |eyeDistance| |f01maf| |s13acf| |ricDsolve| |modulus| - |leftAlternative?| |OMencodingSGML| |gderiv| |constant| |acoshIfCan| - |halfExtendedResultant2| |antisymmetricTensors| |iicosh| |infinite?| - |lambda| |content| |gcdcofactprim| |modularFactor| |readLineIfCan!| - |packageCall| |OMputAttr| |mkIntegral| |f04mbf| |rk4a| |printTypes| - |linearDependence| |bat| |f01ref| |changeThreshhold| |every?| - |insertBottom!| |minColIndex| |datalist| |lazyPseudoRemainder| - |ParCondList| |fractRagits| |map| |badValues| |repeating?| |acsch| - |linearAssociatedExp| |ramified?| |numberOfMonomials| |summation| - |aromberg| |formula| |addPoint2| |label| |algebraic?| |adaptive| - |ode2| |palglimint| |shuffle| |checkPrecision| |green| - |mainPrimitivePart| |bounds| |positiveRemainder| |d01gaf| |Hausdorff| - |clip| |solveRetract| |trigs2explogs| |cycleLength| - |intermediateResultsIF| |completeHensel| |asecIfCan| |nthCoef| - |fortranCompilerName| |setFormula!| |cardinality| |denomLODE| - |univariateSolve| |perfectSqrt| |ParCond| |showTheFTable| |invmod| - |rightDivide| |abelianGroup| |bernoulli| |nrows| |polygon| |convert| - |oneDimensionalArray| |setleaves!| |invertIfCan| |frst| |degree| - |partialNumerators| |roughUnitIdeal?| |jordanAlgebra?| - |rightExtendedGcd| |ncols| |lineColorDefault| |iilog| |elements| - |showAllElements| |coerceL| |secIfCan| |critBonD| |bits| |bytes| - |countRealRootsMultiple| |zeroDimensional?| |lazyGintegrate| |qfactor| - |e02daf| |insertionSort!| |rightScalarTimes!| |makeSketch| - |oddInfiniteProduct| |supersub| |possiblyInfinite?| |length| |pow| - |transpose| |plusInfinity| |debug3D| |sPol| |lfextendedint| |s17def| - |bitLength| |search| |d02raf| |addiag| |s14aaf| |scripts| |direction| - |qqq| |realElementary| |minusInfinity| |cycle| - |algebraicCoefficients?| |optional?| |minPoints| |PDESolve| - |symmetricTensors| |tubePoints| |prinshINFO| |key?| |solve1| |deriv| - |topFortranOutputStack| |commonDenominator| |arrayStack| - |complexEigenvectors| |graphStates| |mirror| |option| |reduceLODE| - |duplicates?| |pair?| |subset?| |submod| |hypergeometric0F1| - |selectPolynomials| |subscriptedVariables| |lexico| |simplifyExp| - |factorset| |updateStatus!| |f04atf| |setErrorBound| |c05adf| - |factorPolynomial| |semiResultantEuclidean2| |wrregime| |mindeg| - |triangular?| |innerint| |iiacoth| |subscript| |scopes| |quadratic| - |divisor| |radix| |associative?| |monomRDEsys| |nary?| - |symmetricSquare| |whileLoop| |minIndex| |pureLex| |hexDigit?| - |isConnected?| |OMputObject| |fTable| |deepestInitial| |comparison| - |type| |ptree| |getExplanations| |extendIfCan| - |indiceSubResultantEuclidean| |leastMonomial| |isobaric?| - |factorSquareFreePolynomial| |exQuo| |simpleBounds?| |outputSpacing| - |integerBound| |FormatArabic| |nor| |s17agf| |opeval| |cfirst| - |nilFactor| |OMputBVar| |nextPrimitiveNormalPoly| |read!| |stack| - |stronglyReduced?| |iidprod| |dequeue| |symmetricDifference| |s19abf| - |getGoodPrime| |binomial| |selectNonFiniteRoutines| |alternative?| - |swapColumns!| |subPolSet?| |rightTrim| |factorsOfCyclicGroupSize| - |polyred| |f04axf| |integerIfCan| |or?| |coleman| |digamma| |s18dcf| - |closedCurve| |leftTrim| |laurentRep| |basisOfLeftNucloid| |cSec| - |semiLastSubResultantEuclidean| |eigenvectors| - |semiResultantEuclideannaif| |divideExponents| |distdfact| - |pushNewContour| |error| |unitsColorDefault| |rootNormalize| - |inputOutputBinaryFile| |node?| |representationType| |lieAdmissible?| - |leftRank| |useSingleFactorBound| |sequence| |assert| - |leadingBasisTerm| |f07aef| |numeric| |convergents| |mkPrim| |revert| - |degreeSubResultantEuclidean| |lfunc| |OMgetAtp| |generalPosition| - |argumentList!| |radical| |iflist2Result| |distFact| |s15adf| - |acosIfCan| |belong?| |presub| |plus!| |moduloP| |OMsetEncoding| - |replace| |monom| |getBadValues| |subspace| |relativeApprox| |merge| - |nil?| |rewriteIdealWithHeadRemainder| |viewDeltaXDefault| |pattern| - |create3Space| |iiatan| |splitConstant| |const| |showTypeInOutput| - |lowerCase| |iisinh| |findCycle| RF2UTS |rules| |f01qcf| |denomRicDE| - |elRow2!| |critpOrder| |associates?| |processTemplate| |binary| - |common| |setEmpty!| |octon| |seed| |appendPoint| |zeroMatrix| - |separateFactors| |linSolve| |f01rdf| |bivariatePolynomials| - |expintfldpoly| |coerceImages| |exprHasWeightCosWXorSinWX| |airyBi| - |operators| |ceiling| |arg1| |numerator| |message| |infix| |directSum| - |real?| |cycleElt| |extensionDegree| |in?| |infieldIntegrate| |arg2| - |hue| |printInfo| |leaf?| |f2st| - |removeRoughlyRedundantFactorsInContents| |mapExponents| - |rationalPoints| |isExpt| |pdf2df| |idealSimplify| |rootBound| - |modTree| |paren| |numberOfPrimitivePoly| |changeVar| |s17dgf| - |OMputAtp| |omError| |conditions| |typeList| |getButtonValue| - |rischDEsys| |conjug| |laguerre| |midpoint| |tab| |changeMeasure| - |match| |generalizedContinuumHypothesisAssumed?| |fibonacci| - |horizConcat| |Nul| |outputFixed| |traceMatrix| |graeffe| |d02cjf| - |curryRight| |completeEchelonBasis| |pop!| |antisymmetric?| |cons| - |sparsityIF| |normalized?| |chiSquare| |setVariableOrder| |sncndn| - |bright| |point?| |extractClosed| |recoverAfterFail| |d03eef| - |firstNumer| |numberOfDivisors| |hermiteH| |rationalPoint?| |po| - |quasiMonicPolynomials| |singularAtInfinity?| |alphanumeric| - |LazardQuotient| |variable?| |removeRoughlyRedundantFactorsInPol| - |e02bdf| |rarrow| |exponential1| |minset| |logpart| - |nextsousResultant2| |hconcat| |diagonalProduct| |OMgetEndBind| - |OMencodingBinary| |numberOfChildren| |specialTrigs| ** |pastel| |row| - |void| |mapUnivariateIfCan| |sample| |leadingTerm| |character?| - |polarCoordinates| |qinterval| |indices| |reorder| |setAdaptive| - |OMlistCDs| |fortranTypeOf| |generic| |setClosed| |padecf| |split!| - |source| |birth| |Si| |pushdterm| |constantRight| |tanh2coth| |delete| - |e01sbf| EQ |cCosh| |collect| |exprToUPS| |LowTriBddDenomInv| - |relationsIdeal| |iter| |npcoef| |cross| |setprevious!| - |fortranLogical| |rootProduct| |initiallyReduce| |lfextlimint| - |virtualDegree| |f02aef| |addBadValue| |setTex!| |sqfrFactor| - |writeByteIfCan!| |simplifyPower| |primaryDecomp| |wordInGenerators| - |meshPar2Var| |colorDef| |multMonom| |stopTable!| |intcompBasis| - |isList| |refine| |numberOfComputedEntries| |sinIfCan| - |makeGraphImage| |expandTrigProducts| |wronskianMatrix| |square?| - |hyperelliptic| |rCoord| |twoFactor| |ksec| |internalInfRittWu?| - |OMgetEndError| |removeSquaresIfCan| |makeUnit| |totalLex| |insert!| - |pseudoQuotient| |csc2sin| |semicolonSeparate| |polygamma| |tubePlot| - |readable?| |stoseInvertibleSet| |OMgetBVar| |divide| - |increasePrecision| |ravel| |permanent| |taylorIfCan| - |clearTheIFTable| |unitVector| |log2| |less?| |powerAssociative?| - |setImagSteps| |reshape| |positiveSolve| |nthFlag| |pointPlot| - |reducedContinuedFraction| |s17aff| |OMputEndBind| |basicSet| |recur| - |setScreenResolution| |invertible?| |reflect| |createThreeSpace| - |hexDigit| |infLex?| |localUnquote| |noLinearFactor?| |xCoord| - |OMreceive| |realZeros| |rightUnit| |characteristic| |weights| - |limitedint| |key| |eisensteinIrreducible?| |iCompose| |subNodeOf?| - |rightZero| |substring?| |decompose| |neglist| - |indicialEquationAtInfinity| |pushup| |writeLine!| |leftQuotient| - |transcendenceDegree| GE |tab1| |rdregime| |squareFreePart| |addMatch| - |filename| |setchildren!| |discreteLog| |truncate| |presuper| - |rightExactQuotient| |hdmpToDmp| GT |critT| |suffix?| |redmat| - |unmakeSUP| |numerators| |not?| |dim| |size?| |sylvesterSequence| - |leader| |leftUnits| |isTimes| |addPoint| LE |ipow| |retractIfCan| - |printInfo!| |e04ycf| |OMclose| |parse| |squareFreeLexTriangular| - |e01sff| |symFunc| |prefix| LT |genericLeftTrace| |prefix?| - |OMputInteger| |mindegTerm| |generalizedContinuumHypothesisAssumed| - |double| |primintfldpoly| |pile| |bindings| |unit?| - |pointColorDefault| |getRef| |binaryFunction| |deepExpand| |test| - |diagonal?| |pToDmp| |normal01| |exponent| |listRepresentation| - |toseInvertibleSet| |derivationCoordinates| |defineProperty| - |contractSolve| |branchPointAtInfinity?| |univariatePolynomialsGcds| - |mightHaveRoots| |elRow1!| |prinb| |realSolve| |degreePartition| - |numberOfComponents| |conical| |computeCycleEntry| |minRowIndex| - |exprToXXP| |LazardQuotient2| |mapExpon| |f07adf| - |regularRepresentation| |bivariate?| |algSplitSimple| |rischDE| - |createLowComplexityTable| |max| |freeOf?| |outputGeneral| |s17acf| - |rewriteIdealWithRemainder| |eof?| |postfix| |OMgetBind| |atanhIfCan| - |failed?| |fullDisplay| |reduced?| |copyInto!| |moebiusMu| |infix?| - |cLog| |root?| |outputMeasure| |exp1| |iiacsch| |realEigenvalues| - |stopTableInvSet!| |createNormalPoly| |headReduce| |mask| - |basisOfLeftAnnihilator| |bombieriNorm| |declare!| |eulerPhi| - |initials| |s20adf| |factorsOfDegree| |OMUnknownSymbol?| |Lazard2| - |d02bhf| |UpTriBddDenomInv| |karatsubaOnce| |externalList| |leftTrace| - |useEisensteinCriterion| |extract!| |movedPoints| |log| - |subtractIfCan| |schwerpunkt| |cAcsc| |satisfy?| |SturmHabicht| - |setnext!| |groebnerIdeal| |second| |signatureAst| |OMgetInteger| - |byteBuffer| |mvar| |operator| |cycleEntry| |d01akf| - |irreducibleFactors| |getConstant| |index| |rank| |third| |orbits| - |OMwrite| |pushdown| |unaryFunction| |radicalSimplify| |inHallBasis?| - |mainExpression| |nextPartition| |internalDecompose| |inspect| |dn| - |removeZero| |extend| |rename| |depth| |rightRank| |roman| |Ci| - |nthFractionalTerm| |cyclicSubmodule| |matrix| |corrPoly| |rightMult| - |extendedResultant| |OMgetType| |scaleRoots| |symmetricProduct| - |coefChoose| |getPickedPoints| |llprop| |composites| |realRoots| - |e02ahf| |pair| |loadNativeModule| |inf| |linearlyDependentOverZ?| - |splitSquarefree| |separate| |makeCrit| |notelem| |OMputApp| - |mainVariables| |signature| |clipWithRanges| |OMgetEndAttr| |segment| - |heap| |messagePrint| |minimalPolynomial| |measure2Result| |exptMod| - |patternMatch| |bezoutDiscriminant| |constantToUnaryFunction| - |totalfract| |open?| |linGenPos| |rightGcd| |twist| |edf2fi| - |pmintegrate| |function| |internalZeroSetSplit| |jacobian| - |notOperand| |changeBase| |equiv?| |sizeLess?| |e01saf| |lists| |slex| - |setScreenResolution3D| |rational?| |setButtonValue| |endOfFile?| - |solid| |startTable!| |dequeue!| |flagFactor| - |genericRightDiscriminant| |collectUpper| - |removeIrreducibleRedundantFactors| |debug| |countable?| |child| - |genericPosition| |brace| |lazy?| |terms| |skewSFunction| |qPot| - |cAtan| |meshPar1Var| |makeVariable| D |e02akf| |rotatez| |light| - |createNormalPrimitivePoly| |setOfMinN| |sortConstraints| |lagrange| - |laplacian| |e01baf| |printStats!| |optAttributes| |setRealSteps| - |adaptive?| |zeroVector| |leftExactQuotient| |close| |block| - |anticoord| |basisOfRightNucleus| |chebyshevU| |vspace| |leftDivide| - |iisech| |midpoints| |computePowers| |OMencodingUnknown| |kmax| - |arguments| |isAbsolutelyIrreducible?| |rightLcm| |zCoord| |comment| - |pquo| |f02adf| |evenlambert| |quotedOperators| |value| |select!| - |parametersOf| |display| |supRittWu?| |tanAn| |primeFrobenius| - |setStatus| |e02aef| |associator| |sort| |mpsode| |firstDenom| |expr| - |lepol| |hasTopPredicate?| |stoseLastSubResultant| - |genericRightMinimalPolynomial| |identity| |extractIfCan| |makeprod| - |yellow| |logIfCan| |subResultantChain| |OMputEndObject| - |mainSquareFreePart| |invertibleSet| |rowEchelonLocal| - |semiResultantReduitEuclidean| |nextItem| |lastSubResultant| - |uniform01| |alphabetic| |irreducibleRepresentation| |basisOfCenter| - |getStream| |imagE| |startTableGcd!| |setMaxPoints| |getOrder| - |fractionPart| |cAcos| |nextNormalPoly| |blankSeparate| - |showTheIFTable| |solveLinearlyOverQ| |cond| - |solveLinearPolynomialEquationByRecursion| |leftRecip| |algebraicOf| - |sec2cos| |addMatchRestricted| |separateDegrees| - |univariatePolynomials| |remove| |numFunEvals| |variable| - |tryFunctionalDecomposition| |LyndonBasis| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |suffix?| |tableForDiscreteLogarithm| |mkPrim| + |numberOfComposites| |monicLeftDivide| |leadingExponent| |randnum| + |argscript| |OMputInteger| |getSyntaxFormsFromFile| |airyAi| |result| + |cyclotomicFactorization| |revert| |generators| |port| |lhs| + |padicFraction| |selectFiniteRoutines| |cyclic?| |mindegTerm| + |prefix?| |properties| |recip| |degreeSubResultantEuclidean| + |mainCharacterization| |sort| |writable?| |viewport3D| |powmod| |rhs| + |generalizedContinuumHypothesisAssumed| |d01amf| + |inverseIntegralMatrix| |deleteRoutine!| |lfunc| |translate| |iifact| + |euclideanNormalForm| |makeViewport3D| |primintfldpoly| |e04jaf| + |palgLODE| |OMgetAtp| |setValue!| |nlde| |mapGen| + |firstUncouplingMatrix| |bezoutResultant| |pile| |list?| + |generalPosition| |lastSubResultantElseSplit| |perfectNthPower?| + |setright!| |userOrdered?| |bindings| |weighted| |FormatRoman| + |inputBinaryFile| |argumentList!| |sylvesterMatrix| |random| + |factorials| |unit?| |index?| |double| |signature| |positive?| + |constantOpIfCan| |iflist2Result| |intChoose| |dfRange| + |cRationalPower| |factorSquareFreeByRecursion| |iiperm| + |pointColorDefault| |compose| |distFact| |rdHack1| |argument| + |bothWays| |explicitlyFinite?| |expenseOfEvaluationIF| |getRef| + |target| |identityMatrix| |binaryTournament| |s15adf| + |OMconnOutDevice| |toScale| |term| |morphism| |binaryFunction| |quote| + |tryFunctionalDecomposition?| |acosIfCan| |iiasec| + |createPrimitiveElement| |expandLog| |deepExpand| |mkAnswer| + |nonQsign| |complexRoots| |belong?| |explimitedint| |keys| |cscIfCan| + |OMgetString| |diagonal?| |SFunction| |generalizedEigenvector| + |presub| |RittWuCompare| |powerSum| |linears| |bringDown| |pToDmp| + |ord| |exprToGenUPS| |plus!| |rootPoly| |input| |retractIfCan| |cup| + |declare!| |tube| |f07fdf| |normal01| |decimal| |weight| |moduloP| + |library| |OMReadError?| |setLength!| |groebner?| |exponent| |atoms| + |f07fef| |OMsetEncoding| |d01alf| |ratpart| + |initializeGroupForWordProblem| |listRepresentation| + |localIntegralBasis| |iisqrt2| |getBadValues| |equivOperands| |more?| + |factorFraction| BY |internal?| |c06gsf| |toseInvertibleSet| |iiatanh| + |cExp| |subspace| |kind| |ScanRoman| |nonSingularModel| + |associatorDependence| |makeEq| |structuralConstants| + |derivationCoordinates| |e01bef| |ode1| |f04adf| |relativeApprox| + |atrapezoidal| |set| |cond| |repSq| |cCos| |op| |defineProperty| + |finite?| |merge| |qualifier| |nonLinearPart| |fortranLinkerArgs| + |printInfo| |halfExtendedResultant1| |expr| |linearlyDependent?| + |contractSolve| |mainDefiningPolynomial| |position| |f04qaf| |nil?| + |integralDerivationMatrix| |irreducibleFactor| |particularSolution| + |call| |segment| |branchPointAtInfinity?| |f04arf| |deleteProperty!| + |fixedPoints| |rewriteIdealWithHeadRemainder| + |rightCharacteristicPolynomial| |setelt| |c05nbf| + |squareFreePolynomial| |univariatePolynomialsGcds| |rur| + |numberOfFactors| |decomposeFunc| |map| |c06gbf| + |removeRoughlyRedundantFactorsInPols| |OMmakeConn| |mightHaveRoots| + |parseString| |factorset| |viewThetaDefault| |variable| |nullity| + |copy| |semiResultantEuclidean1| |untab| |drawComplex| |elRow1!| + |s18aff| |integralCoordinates| |updateStatus!| |prindINFO| + |shiftRight| |iterators| |inGroundField?| |prinb| |prevPrime| |union| + |equality| |f04atf| |poisson| |setfirst!| |computeCycleLength| + |conditionP| |match?| |createLowComplexityNormalBasis| |biRank| + |setErrorBound| |autoCoerce| |viewDefaults| |symbolIfCan| |pushucoef| + |twoFactor| |quoByVar| |fill!| |c05adf| |d03faf| |lazyVariations| + |convert| |separant| |multiplyExponents| |ksec| |RemainderList| + |headRemainder| |factorPolynomial| |string?| |fortranComplex| |show| + |intPatternMatch| |e02dff| |hspace| |internalInfRittWu?| |asinhIfCan| + |semiResultantEuclidean2| |startStats!| |inconsistent?| |heapSort| + |approxNthRoot| |groebner| |OMgetEndError| |f01bsf| |wrregime| + |coth2tanh| |leftExactQuotient| |stoseInvertible?sqfreg| |trace| + |vconcat| |cyclicGroup| |removeSquaresIfCan| |stopTableGcd!| |bat1| + |normalForm| |mindeg| |block| |cot2trig| |multiEuclideanTree| + |stiffnessAndStabilityOfODEIF| |rightTraceMatrix| |makeUnit| + |OMreadFile| |getMatch| |triangular?| |anticoord| |changeWeightLevel| + |ramifiedAtInfinity?| |buildSyntax| |f01qef| |totalLex| |weierstrass| + |innerint| |lazyPremWithDefault| |basisOfRightNucleus| + |zeroSquareMatrix| |linearAssociatedLog| |abs| |copies| |insert!| + |fractionFreeGauss!| |iiacoth| |toseInvertible?| |chebyshevU| + |dimensionsOf| |implies?| |graphState| |myDegree| |pseudoQuotient| + |d01fcf| |cSinh| |subscript| |vspace| |coord| |elliptic?| |curve?| + |completeHermite| |csc2sin| |indiceSubResultant| |scopes| + |LagrangeInterpolation| |leftDivide| |shift| |ScanFloatIgnoreSpaces| + |fi2df| |subResultantGcdEuclidean| |chvar| |semicolonSeparate| + |leftScalarTimes!| |zag| |quadratic| |iisech| = |parabolic| + |figureUnits| |identification| |lSpaceBasis| |polygamma| + |OMconnectTCP| |divisor| |OMgetSymbol| |midpoints| |setMinPoints3D| + |outputArgs| |remove!| |numberOfOperations| |tubePlot| + |nextNormalPrimitivePoly| |radix| |KrullNumber| |computePowers| < + |extractBottom!| |showScalarValues| |readable?| |cycleRagits| |lookup| + |plusInfinity| |ip4Address| |associative?| |makeFloatFunction| + |OMencodingUnknown| |changeNameToObjf| > |approxSqrt| |systemCommand| + |outputForm| |minusInfinity| |stoseInvertibleSet| |viewPhiDefault| + |rootKerSimp| |OMputFloat| |monomRDEsys| |kmax| <= |setLabelValue| + |stack| |leftZero| |pade| |OMgetBVar| |alternatingGroup| + |squareMatrix| |bag| |nary?| |isAbsolutelyIrreducible?| >= |integers| + |ratDsolve| |complexElementary| |divide| |clikeUniv| |s19aaf| + |symmetricSquare| |generic?| |rightLcm| |increasePrecision| |prime?| + |selectOrPolynomials| |karatsubaDivide| |complete| |normal| |times| + |makeop| |whileLoop| |prinpolINFO| |zCoord| |OMreadStr| + |rightMinimalPolynomial| |quatern| |permanent| |compactFraction| + |clearCache| |point| |trunc| |minIndex| |startTableInvSet!| |pquo| + + |internalLastSubResultant| |primextendedint| |simplifyLog| + |patternMatchTimes| |taylorIfCan| |solveLinearPolynomialEquation| + |decrease| |pureLex| |f02adf| |inrootof| - |symbolTable| |OMputError| + |type| |safetyMargin| |makeTerm| |clearTheIFTable| |eigenvector| + |insertRoot!| |hexDigit?| |evenlambert| / |discriminant| |setProperty| + |mainMonomial| |normalise| |unitVector| |series| |monom| |subMatrix| + |isConnected?| |linearPolynomials| |quotedOperators| |yCoord| + |exprHasLogarithmicWeights| |extendedEuclidean| |log2| |leftPower| + |prefixRagits| |contains?| |OMputObject| |select!| |iteratedInitials| + |binaryTree| |rootOf| |toseLastSubResultant| |less?| |gethi| |fTable| + |rightQuotient| |parametersOf| |iiasech| |debug| + |pushFortranOutputStack| |coHeight| |LyndonWordsList| |arg1| + |powerAssociative?| |routines| |common| |insert| |mulmod| + |explicitlyEmpty?| |makeSeries| |deepestInitial| |supRittWu?| D + |basisOfRightAnnihilator| |arg2| |adjoint| |resultantnaif| + |setImagSteps| |exactQuotient| |min| |isOpen?| |splitDenominator| + |comparison| |cosSinInfo| |tanAn| |algint| |objectOf| |quadraticForm| + |rewriteIdealWithQuasiMonicGenerators| |positiveSolve| |exprex| + |patternVariable| |tail| |crushedSet| |getExplanations| + |primeFrobenius| |datalist| |HermiteIntegrate| |copy!| |super| + |conditions| |nthFlag| |standardBasisOfCyclicSubmodule| |polar| + |selectOptimizationRoutines| |limitPlus| |outputList| |extendIfCan| + |setStatus| |flatten| |bfEntry| |dmp2rfi| |schema| |match| |pointPlot| + |halfExtendedSubResultantGcd2| |sumOfSquares| + |extendedSubResultantGcd| |rule| |Beta| |indiceSubResultantEuclidean| + |mr| |e02aef| |unrankImproperPartitions0| |iiacot| |linkToFortran| + |reducedContinuedFraction| |univcase| |rootsOf| |maxPoints3D| + |leastMonomial| |viewport2D| |error| |associator| |double?| + |stopMusserTrials| |lflimitedint| |zeroSetSplit| |s17aff| |back| + |mantissa| |setProperties!| |palgint| |isobaric?| + |leftRegularRepresentation| |assert| |mpsode| |pleskenSplit| |cSech| + |maxIndex| |bumprow| |fprindINFO| |OMputEndBind| + |stoseInvertibleSetsqfreg| |laurentIfCan| |factorSquareFreePolynomial| + |middle| |firstDenom| |cycles| |tanQ| |collectUnder| |orbit| + |basicSet| |perfectSquare?| |graphCurves| |beauzamyBound| |exQuo| + |lepol| |c06fqf| |removeSinhSq| |getProperties| |flexible?| |recur| + |oddlambert| |dark| |OMencodingXML| |simpleBounds?| + |fullPartialFraction| |hasTopPredicate?| |print| |tubePointsDefault| + |imagk| |mainKernel| |component| |distribute| |setScreenResolution| + |linearAssociatedOrder| |doubleDisc| |outputSpacing| |mainForm| + |stoseLastSubResultant| |resolve| |monicModulo| |equiv| + |noncommutativeJordanAlgebra?| |cosIfCan| |complementaryBasis| + |invertible?| |setPrologue!| |stoseSquareFreePart| |integerBound| + |infinityNorm| |genericRightMinimalPolynomial| |reducedQPowers| + |replace| |sinhIfCan| |void| |complexNumericIfCan| |deepCopy| + |reflect| |c06fpf| |laplace| |bubbleSort!| |FormatArabic| + |closeComponent| |identity| |makeCos| |physicalLength| |shade| + |newSubProgram| |primitivePart!| |createThreeSpace| + |radicalEigenvector| |monicDivide| |nor| |kovacic| |extractIfCan| + |outerProduct| |compBound| |innerEigenvectors| |s18adf| |generalSqFr| + |hexDigit| |solveid| |rangeIsFinite| |c02agf| + |clearFortranOutputStack| |s17agf| |makeprod| |pdf2ef| |fixedPoint| + |qroot| |nthExpon| |bright| |withPredicates| |infLex?| + |doubleResultant| |normalize| |minPoly| |opeval| |yellow| + |localUnquote| |createZechTable| |solveInField| |dmpToHdmp| + |generalInfiniteProduct| |showSummary| |makeViewport2D| |e02gaf| + |s19adf| |loopPoints| |checkPrecision| |cfirst| |logIfCan| + |factorByRecursion| |solveLinearPolynomialEquationByFractions| + |leftFactor| |noLinearFactor?| |linearDependenceOverZ| + |basisOfCommutingElements| |overset?| |nilFactor| |resetBadValues| + |subResultantChain| |showAttributes| |predicate| |dmpToP| + |semiIndiceSubResultantEuclidean| |xCoord| |components| |increase| + |euler| |OMputBVar| |typeLists| |init| |OMputEndObject| |mdeg| + |getCode| |operation| |BasicMethod| |nextSubsetGray| |OMreceive| + |hermite| |transcendent?| |nextPrimitiveNormalPoly| |credPol| + |mainSquareFreePart| |iiasinh| |irreducible?| |elseBranch| |realZeros| + |whitePoint| |characteristicSerie| |resultantEuclideannaif| |read!| + |definingInequation| |invertibleSet| |diff| |edf2ef| + |useEisensteinCriterion?| |var2Steps| |rightUnit| |minPol| |factorial| + |stronglyReduced?| |rowEchelonLocal| |squareFreePrim| |central?| |max| + |delete| |s17ahf| |characteristic| |autoReduced?| |hasPredicate?| + |graphs| |iidprod| |normalElement| |semiResultantReduitEuclidean| + |determinant| |trueEqual| |f01qdf| |arity| |weights| |/\\| |multiple?| + |rewriteSetByReducingWithParticularGenerators| |dequeue| |prem| + |constructorName| |nextItem| |has?| |rk4qc| |reverseLex| |swap| + |limitedint| |\\/| |redPo| |makeSin| |symmetricDifference| + |difference| |lastSubResultant| |module| |dec| + |eisensteinIrreducible?| |radicalEigenvalues| |permutation| + |subQuasiComponent?| |s19abf| |permutationGroup| |uniform01| |forLoop| + |enterInCache| |parameters| |bracket| |iCompose| |overlap| + |setLegalFortranSourceExtensions| |elt| |readLine!| |getGoodPrime| + |fixPredicate| |alphabetic| |logical?| |property| + |rootOfIrreduciblePoly| |cubic| |complexSolve| |subNodeOf?| + |singularitiesOf| |dim| |controlPanel| |conjugate| |binomial| + |irreducibleRepresentation| |impliesOperands| |mkcomm| |moebius| + |rightZero| |reduceByQuasiMonic| |phiCoord| |getProperty| + |basisOfCenter| |label| |stirling1| |iiacos| |useNagFunctions| + |decompose| |tubeRadiusDefault| |bfKeys| |normal?| |lfintegrate| + |coerceL| |getStream| |ran| |units| |factorList| |zeroDimPrime?| + |neglist| |mathieu24| |f02aff| |sequences| |commutator| |secIfCan| + |imagE| |bandedJacobian| |cCot| |usingTable?| + |indicialEquationAtInfinity| |algebraicSort| |resetAttributeButtons| + |capacity| |critBonD| |OMunhandledSymbol| |startTableGcd!| |plot| + |multinomial| |supDimElseRittWu?| |changeName| |f04maf| |bits| + |createRandomElement| |setMaxPoints| |approximants| + |genericRightTrace| |antiAssociative?| |rank| |f02abf| |sample| + |bytes| |subSet| |OMopenString| |subResultantGcd| |next| |getOrder| + |lquo| |constantCoefficientRicDE| |OMconnInDevice| |leadingTerm| + |aCubic| |iiasin| |lieAlgebra?| |quoted?| |countRealRootsMultiple| + |dimensions| |fractionPart| |colorFunction| |code| |coerceS| + |extractPoint| |character?| |leftGcd| |divideIfCan!| |element?| + |zeroDimensional?| |Ei| |mathieu11| |popFortranOutputStack| + |factorSFBRlcUnit| |nthr| |atanIfCan| |polarCoordinates| |mix| |reify| + |ListOfTerms| |space| |lazyGintegrate| |minimalPolynomial| |head| + |systemSizeIF| |subst| |leftRankPolynomial| |sturmVariationsOf| + |outputAsFortran| |qinterval| |commutativeEquality| |measure2Result| + |qfactor| |precision| |getOperator| |linear| |cyclicParents| + |tan2trig| GE |ode| |enqueue!| |f01mcf| |OMputEndApp| |indices| + |normDeriv2| |cylindrical| |genericRightNorm| |ptree| |e04dgf| + |second| |e02daf| |stoseInternalLastSubResultant| |exptMod| GT + |option| |modularGcd| |rroot| |SturmHabichtSequence| |lists| |reorder| + |asechIfCan| |numberOfIrreduciblePoly| |removeRedundantFactorsInPols| + |third| |polynomial| |insertionSort!| |resetNew| |patternMatch| LE + |lyndon| |ignore?| |superHeight| |genericLeftMinimalPolynomial| + |setAdaptive| |bezoutDiscriminant| |directory| |shallowExpand| + |rightTrim| |rightScalarTimes!| |rectangularMatrix| LT |dominantTerm| + |color| |zeroDim?| |monomial?| |removeDuplicates!| |OMlistCDs| + |contours| |leftTrim| |makeSketch| |moreAlgebraic?| + |constantToUnaryFunction| |rombergo| |stronglyReduce| |clearTheFTable| + |algebraicVariables| |s21baf| |fortranTypeOf| |unitNormal| + |taylorQuoByVar| |oddInfiniteProduct| |totalfract| |overlabel| + |binarySearchTree| |fortranLiteralLine| |stoseInvertible?| + |getMultiplicationTable| |generic| |e02baf| |supersub| |univariate?| + |pointColorPalette| |open?| |erf| |rowEchLocal| |insertTop!| + |evaluate| |dimensionOfIrreducibleRepresentation| |setClosed| + |coefficient| |sayLength| |possiblyInfinite?| |linGenPos| |errorKind| + |scalarTypeOf| |exponents| |s18aef| |coerceP| |padecf| + |associatedEquations| |pow| |screenResolution| |idealiserMatrix| + |rightGcd| |csubst| |cTanh| |lazyIntegrate| |functionIsOscillatory| + |split!| |lp| |newLine| |symbol?| |transpose| |removeSinSq| |pol| + |twist| |dilog| |semiDiscriminantEuclidean| |solveLinear| + |extractProperty| |s17adf| |birth| |leftUnit| |internalAugment| + |debug3D| |upperCase| |edf2fi| |primPartElseUnitCanonical| |sin| + |zero| |numberOfHues| |int| |sech2cosh| |Si| |c06frf| |drawCurves| + |sPol| |constantLeft| |linearMatrix| |pmintegrate| + |normalizeAtInfinity| |cos| |ratDenom| |saturate| |stop| + |roughBasicSet| |pushdterm| |f02ajf| |mat| |ranges| + |useSingleFactorBound?| |lfextendedint| |maximumExponent| + |internalZeroSetSplit| |And| |tan| |coercePreimagesImages| + |numberOfCycles| |cschIfCan| |constantRight| |csch2sinh| |formula| + |any| |mapSolve| |push| |s17def| |fortranCharacter| |jacobian| |Or| + |cot| |setRow!| |d01apf| |totalDegree| |overbar| |tanh2coth| + |checkForZero| |style| |bitLength| |pattern| |notOperand| + |makeYoungTableau| |Not| |sec| |e04gcf| |removeRedundantFactors| + |getMeasure| |e01sbf| |axes| |charpol| |reverse!| |d02raf| + |changeBase| |aQuadratic| |csc| |createIrreduciblePoly| |exponential| + |hasHi| |cCosh| |noKaratsuba| |mapmult| |iipow| |addiag| |equiv?| + |concat!| |euclideanGroebner| |asin| |branchIfCan| |height| + |transcendentalDecompose| |sts2stst| |collect| |loadNativeModule| + |nrows| |rquo| |s14aaf| |assign| |sizeLess?| |d01gbf| |acos| + |radicalRoots| |lintgcd| |curry| |exprToUPS| |null?| |ncols| + |complement| |function| |direction| |lambert| |e01saf| + |infiniteProduct| |message| |atan| |minPoints3D| |extension| + |algintegrate| |weakBiRank| |LowTriBddDenomInv| |setAdaptive3D| + |rightTrace| |qqq| |prepareDecompose| |slex| |acot| |cAcsch| + |eigenvalues| |redpps| |relationsIdeal| |cPower| |droot| + |realElementary| |triangSolve| |lex| |log| |setScreenResolution3D| + |eval| |asec| |makeSUP| |integralMatrix| |connect| |npcoef| + |clipSurface| |leadingIdeal| |s20acf| |cycle| |trace2PowMod| + |rational?| |acsc| |polynomialZeros| |fglmIfCan| |delay| |d02gaf| + |cross| |root| |legendre| |algebraicCoefficients?| + |basisOfRightNucloid| |setButtonValue| |sinh| |c06ecf| |sdf2lst| + |completeEval| |setprevious!| |stosePrepareSubResAlgo| |cons| |cAsec| + |normalDenom| |optional?| |predicates| |endOfFile?| |cosh| |e04fdf| + |close!| |UP2ifCan| |fortranLogical| |cSin| |quartic| + |decreasePrecision| |minPoints| |solid| |sqfree| |tanh| + |perfectNthRoot| |factorAndSplit| |elColumn2!| |rootProduct| |split| + |GospersMethod| |setelt!| |s14baf| |PDESolve| |eigenMatrix| + |acscIfCan| |startTable!| |level| |coth| |denominator| |implies| + |Aleph| |currentCategoryFrame| |tanNa| |initiallyReduce| |OMgetObject| + |traverse| |discriminantEuclidean| |symmetricTensors| |preprocess| + |partitions| |dequeue!| |sech| |leader| |palglimint0| |shufflein| + |LiePolyIfCan| |xn| |lfextlimint| |cCsch| |tubePoints| |isOp| + |flagFactor| |quasiRegular| |csch| |e02bbf| |xor| |iiacosh| + |constantIfCan| |virtualDegree| |quasiRegular?| + |reduceBasisAtInfinity| |prinshINFO| |children| |elementary| + |genericRightDiscriminant| |asinh| |Lazard| |palgLODE0| |red| + |infieldint| |f02aef| |source| |readBytes!| |outputAsTex| |key?| + |leftMult| |li| |collectUpper| |acosh| |ocf2ocdf| |expIfCan| + |palgint0| |s01eaf| |functionIsFracPolynomial?| |addBadValue| + |seriesSolve| |hMonic| |lcm| |solve1| + |removeIrreducibleRedundantFactors| |closedCurve?| |length| + |doubleRank| |tablePow| |numFunEvals3D| |viewZoomDefault| + |OMputEndAtp| |setTex!| |list| |countable?| |sumSquares| + |conditionsForIdempotents| |deriv| |tubeRadius| |scripts| |pointLists| + |close| |constantOperator| |expintegrate| |sqfrFactor| |rubiksGroup| + |car| |topFortranOutputStack| |pushuconst| |append| |bsolve| |d02ejf| + |child| |rightRecip| |any?| |e02zaf| |writeByteIfCan!| |calcRanges| + |cdr| |nand| |getDatabase| |lazyIrreducibleFactors| + |commonDenominator| |genericPosition| |gcd| |display| |cosh2sech| + |escape| |showIntensityFunctions| |simplifyPower| |viewWriteAvailable| + |arrayStack| |ravel| |setDifference| |leaves| |iiexp| + |permutationRepresentation| |position!| |false| |lazy?| |fortran| + |safeFloor| |curveColor| |swapRows!| |primaryDecomp| |clearTable!| + |setIntersection| |reshape| |radicalSolve| |differentialVariables| + |complexEigenvectors| |resetVariableOrder| |terms| |latex| |lifting1| + |badNum| |computeInt| |wordInGenerators| |setUnion| |bitTruth| + |isMult| |graphStates| |skewSFunction| |maxPoints| |bezoutMatrix| + |partialDenominators| |clipBoolean| |rightRankPolynomial| + |meshPar2Var| |apply| |palgextint| |intensity| |lexTriangular| + |mirror| |unitNormalize| |qPot| |antiCommutative?| |power!| |sin?| + |colorDef| |imaginary| |leftOne| |cAtan| |s13aaf| |reduceLODE| + |remove| |e04ucf| |#| |expenseOfEvaluation| |prolateSpheroidal| + |swap!| |multMonom| |sturmSequence| |size| |alphabetic?| |iomode| + |duplicates?| |integralAtInfinity?| |meshPar1Var| + |genericLeftTraceForm| |key| |test| |internalSubPolSet?| + |outputAsScript| |rationalIfCan| |stopTable!| |s17aef| |mainVariable?| + |update| |pair?| |last| |makeVariable| |axesColorDefault| + |setsubMatrix!| |yCoordinates| |integralLastSubResultant| + |intcompBasis| |rst| |assoc| |basisOfLeftNucleus| |e02akf| |subset?| + |geometric| |interpolate| |filename| |OMsend| |delta| |alphanumeric?| + |normFactors| |isList| |scripted?| |zoom| |first| |rotatez| |submod| + |meshFun2Var| |monic?| |high| |gbasis| |not?| |validExponential| + |s18def| |refine| |region| |reducedSystem| |rest| |hypergeometric0F1| + |matrixGcd| |flexibleArray| |subresultantSequence| |prefix| |light| + |removeSuperfluousCases| |parse| |f04jgf| |cyclicEqual?| + |nextIrreduciblePoly| |numberOfComputedEntries| |substitute| |f04asf| + |createNormalPrimitivePoly| |selectPolynomials| |currentSubProgram| + |sumOfKthPowerDivisors| |nextPrime| |parabolicCylindrical| |simpsono| + |sinIfCan| |removeDuplicates| |ldf2vmf| |subscriptedVariables| + |listConjugateBases| |c02aff| |setOfMinN| |complexExpand| + |quadraticNorm| |updatD| |oblateSpheroidal| |makeGraphImage| |s17ajf| + |sortConstraints| |multiEuclidean| |lexico| |check| |script| |cCsc| + |f02awf| |orthonormalBasis| |matrixDimensions| |expandTrigProducts| + |cycleTail| |mathieu22| |simplifyExp| |getIdentifier| |lagrange| + |iitan| |rootSplit| |homogeneous?| |normalizedDivide| + |wronskianMatrix| |complexZeros| |eq| |laplacian| |bernoulliB| + |fracPart| |lambda| |asimpson| |queue| |setref| |square?| |ffactor| + |iter| |rk4f| |choosemon| |lazyPseudoRemainder| |clipPointsDefault| + |e01baf| |tex| |tableau| |identitySquareMatrix| |diag| |hyperelliptic| + |quasiMonic?| |generateIrredPoly| |rules| |eq?| |ParCondList| + |roughBase?| |printStats!| |iiabs| |unknown| |generalizedEigenvectors| + |numericalIntegration| |solid?| |rCoord| |minimize| |fractRagits| + |complexForm| |var1Steps| |optAttributes| |rowEchelon| |vertConcat| + |aQuartic| |medialSet| |varList| |d01bbf| |badValues| |setRealSteps| + |maxdeg| |critMTonD1| |subresultantVector| |superscript| |An| + |omError| |checkRur| |nextSublist| |repeating?| |adaptive?| |term?| + |radPoly| |setrest!| |iisec| |retract| |selectPDERoutines| |typeList| + |bipolarCylindrical| |linearAssociatedExp| |normalizedAssociate| + |zeroVector| |mapdiv| |index| |c06gqf| |combineFeatureCompatibility| + |diagonalMatrix| |getButtonValue| |antiCommutator| |iicsch| + |ramified?| |e04mbf| |viewPosDefault| |splitLinear| + |purelyTranscendental?| |strongGenerators| |rischDEsys| |baseRDE| + |exp| |numberOfMonomials| |OMcloseConn| |complexIntegrate| |satisfy?| + |optimize| |deepestTail| |iidsum| |showRegion| |conjug| |viewpoint| + |se2rfi| |summation| |SturmHabichtCoefficients| + |fortranCarriageReturn| |SturmHabicht| |domainOf| |compile| |pair| + |sinhcosh| |fixedDivisor| |hash| |laguerre| |isPlus| + |evenInfiniteProduct| |aromberg| |scale| |setnext!| |newTypeLists| + |divisorCascade| |count| |ref| LODO2FUN |midpoint| |integrate| + |rightAlternative?| |genericLeftNorm| |qelt| |addPoint2| + |groebnerIdeal| |s13adf| |primPartElseUnitCanonical!| |clipParametric| + |inR?| |enumerate| |tab| |qsetelt| |mapCoef| |gramschmidt| + |algebraic?| |signatureAst| |besselJ| |limit| |selectODEIVPRoutines| + |curve| |changeMeasure| |composite| |ldf2lst| |randomR| |adaptive| + |xRange| |explicitEntries?| |OMgetInteger| |OMParseError?| |iisin| + |cos2sec| |generalizedContinuumHypothesisAssumed?| |sn| |commutative?| + |testModulus| |value| |yRange| |ode2| |byteBuffer| + |unrankImproperPartitions1| |inverseIntegralMatrixAtInfinity| + |integralMatrixAtInfinity| |rightNorm| |leastPower| |fibonacci| + |palglimint| |trailingCoefficient| |extendedint| |zRange| |mapUp!| + |mvar| |createMultiplicationTable| |reindex| |dihedral| |horizConcat| + |leftRemainder| |fillPascalTriangle| |map!| |shuffle| |acschIfCan| + |digits| |operator| |nullary| |nsqfree| |OMsupportsCD?| |Nul| + |selectfirst| |qsetelt!| |plus| |clearTheSymbolTable| |green| + |vectorise| |symmetricGroup| |cycleEntry| |numericIfCan| |zerosOf| + |singular?| |outputFixed| |incrementKthElement| |jacobi| + |OMgetEndObject| |mainPrimitivePart| |d01akf| |member?| + |expressIdealMember| |hasSolution?| |getGraph| |traceMatrix| + |stoseIntegralLastSubResultant| |setMinPoints| + |unprotectedRemoveRedundantFactors| |bounds| |shrinkable| + |irreducibleFactors| |coefficients| |internalIntegrate0| + |removeConstantTerm| |graeffe| |genericLeftDiscriminant| |external?| + |positiveRemainder| |varselect| |getConstant| |createGenericMatrix| + |sum| |pr2dmp| |highCommonTerms| |pseudoDivide| |testDim| |d02cjf| + |factor1| |pointSizeDefault| |d01gaf| |polyRDE| |orbits| |taylorRep| + |hdmpToP| |lyndon?| |compound?| |curryRight| |nextLatticePermutation| + |signAround| |maxint| |acsch| |Hausdorff| |c06ekf| |OMwrite| |initial| + |reopen!| |UnVectorise| |critM| |critMonD1| |frobenius| + |completeEchelonBasis| |palgextint0| |clip| |consnewpol| |pushdown| + |replaceKthElement| |quotientByP| |ddFact| |compdegd| + |setTopPredicate| |pop!| |cAtanh| |squareTop| |solveRetract| |iitanh| + |unaryFunction| |froot| |retractable?| |column| |readByteIfCan!| + |antisymmetric?| |box| |polyRicDE| |trigs2explogs| |printHeader| + |radicalSimplify| |viewSizeDefault| |powern| |binding| |sh| + |sparsityIF| |primlimintfrac| |OMputString| |trapezoidalo| + |semiDegreeSubResultantEuclidean| |cycleLength| |integralRepresents| + |inHallBasis?| |argumentListOf| |minrank| |tValues| |getZechTable| + |normalized?| |byte| |intermediateResultsIF| |fortranReal| + |exactQuotient!| |squareFreeFactors| |mainExpression| ~ |find| + |cyclotomic| |clearDenominator| |chiSquare| |upDateBranches| |search| + |fmecg| |completeHensel| |collectQuasiMonic| |chainSubResultants| + |nextPartition| |vector| |f04faf| |polCase| |f02bjf| |e02bcf| + |setVariableOrder| |exponentialOrder| |redPol| |open| |asecIfCan| + |integral| |internalDecompose| |differentiate| |integral?| |reduction| + |selectAndPolynomials| |sncndn| |minimumExponent| |measure| |nthCoef| + |rspace| |inspect| |option?| |OMputSymbol| |d03edf| |repeating| + |continuedFraction| |point?| |nodeOf?| |printStatement| + |fortranCompilerName| |dn| |chineseRemainder| |even?| |s21bbf| + |mainContent| |extractClosed| |leftFactorIfCan| |critB| |setFormula!| + |generalTwoFactor| |mathieu23| |removeZero| |negative?| |iiacsc| + |power| |recoverAfterFail| |lprop| |powers| |cardinality| + |companionBlocks| |lllip| |extend| |spherical| |parts| + |uncouplingMatrices| |genus| |iroot| |d03eef| FG2F |e01sef| + |denomLODE| |innerSolve1| |rename| |cyclic| |createNormalElement| + |headReduced?| |firstNumer| |tanSum| |distance| |nextsubResultant2| + |univariateSolve| |rightRank| |simpson| |besselI| |paraboloidal| + |psolve| |numberOfDivisors| |maxColIndex| |rootSimp| |bottom!| |ideal| + |perfectSqrt| |or| |roman| |listOfMonoms| |roughEqualIdeals?| |atom?| + |tree| |transform| |hermiteH| |prepareSubResAlgo| |s15aef| |ParCond| + |Ci| |f04mcf| |comp| |e02ajf| |addmod| |perspective| |rationalPoint?| + |monicCompleteDecompose| |cotIfCan| |showTheFTable| |setvalue!| + |nthFractionalTerm| |sechIfCan| |firstSubsetGray| |complex?| |sub| + |iicoth| |po| |showAll?| |toroidal| |invmod| |computeBasis| + |cyclicSubmodule| F2FG ~= |OMserve| |modifyPointData| + |quasiMonicPolynomials| |var2StepsDefault| |part?| + |leastAffineMultiple| |rightDivide| |corrPoly| |monicRightDivide| + |unparse| |coerce| |s17akf| |scan| |singularAtInfinity?| |palgRDE0| + |partialQuotients| |s17dcf| F |abelianGroup| |rightMult| + |characteristicSet| |alphanumeric| |lllp| |construct| |integer?| + |rewriteSetWithReduction| |e01bff| |reset| |leftNorm| |iFTable| + |bernoulli| |extendedResultant| |endSubProgram| |brillhartTrials| + |leadingIndex| |cAsin| |LazardQuotient| |toseSquareFreePart| + |addPointLast| |compiledFunction| |polygon| |OMgetType| |diagonals| + |bit?| |monicRightFactorIfCan| |subTriSet?| |variable?| + |purelyAlgebraic?| |write| |expandPower| |oneDimensionalArray| + |rightUnits| |scaleRoots| |f02aaf| |exteriorDifferential| |henselFact| + |save| |monicDecomposeIfCan| |nthFactor| + |removeRoughlyRedundantFactorsInPol| |pointColor| |setleaves!| + |cAsech| |symmetricProduct| |rightFactorIfCan| |writeBytes!| + |quadratic?| |times!| |e02bdf| |surface| |id| |null| |aspFilename| + |invertIfCan| |countRealRoots| |members| |coefChoose| |f2df| + |returnType!| |newReduc| |rarrow| |hex| |case| |frst| + |initiallyReduced?| |removeSuperfluousQuasiComponents| + |getPickedPoints| |Gamma| |startPolynomial| |findBinding| + |exponential1| |mesh?| |table| |nullary?| |Zero| |hostPlatform| + |degree| |llprop| |resultant| |odd?| |unitCanonical| |cAsinh| |sup| + |minset| |new| |e02bef| |One| |partialNumerators| |generalLambert| + |gradient| |composites| |viewDeltaYDefault| |sizeMultiplication| + |shallowCopy| |curveColorPalette| |logpart| |denominators| + |roughUnitIdeal?| |realRoots| |tanIfCan| |d01aqf| |setProperty!| + |expt| |leftCharacteristicPolynomial| |nextsousResultant2| + |conjugates| |jordanAlgebra?| |normalizeIfCan| ** |rightDiscriminant| + |e02ahf| |romberg| |bitCoef| |goodnessOfFit| |innerSolve| |hconcat| + |s21bdf| |char| |inf| |rightExtendedGcd| |squareFree| |reverse| + |viewWriteDefault| |coordinate| |entry?| |prologue| |bandedHessian| + |diagonalProduct| |removeCoshSq| |exprHasAlgebraicWeight| + |lineColorDefault| |nthRootIfCan| |linearlyDependentOverZ?| |sin2csc| + EQ |OMgetEndBind| |setlast!| |entry| |tower| |uniform| |iilog| + |nthExponent| |splitSquarefree| |shiftLeft| |divideIfCan| + |indicialEquation| |equation| |OMencodingBinary| UP2UTS |sincos| + |shiftRoots| |elements| |selectIntegrationRoutines| |separate| + |getCurve| |stFunc2| |OMputBind| |fortranInteger| |besselY| + |numberOfChildren| |lfinfieldint| |c06fuf| |showAllElements| + |makeCrit| |tanh2trigh| |raisePolynomial| |radicalOfLeftTraceForm| + |mapDown!| |specialTrigs| |setOrder| |mergeDifference| |category| + |notelem| |float| |listOfLists| |removeZeroes| |primextintfrac| + |leftDiscriminant| |localAbs| |pastel| |semiSubResultantGcdEuclidean2| + |harmonic| |vark| |domain| |OMputApp| |gcdPolynomial| |setProperties| + |floor| |cTan| |OMputEndAttr| |row| |complexNumeric| + |certainlySubVariety?| |left| |diagonal| |algebraicDecompose| + |package| |mainVariables| |completeSmith| |rightPower| |pomopo!| + |relerror| |mapUnivariateIfCan| |stFunc1| |minordet| |right| |deref| + |empty| |balancedBinaryTree| |clipWithRanges| |setMaxPoints3D| |cAcot| + |empty?| |comment| |alternating| |kernels| |associatedSystem| + |nextColeman| |duplicates| |OMgetEndAttr| |permutations| |plotPolar| + |OMgetEndAtp| |viewDeltaXDefault| |top| |safeCeiling| |univariate| + |vedf2vef| |singleFactorBound| |heap| |componentUpperBound| + |plenaryPower| |repeatUntilLoop| |partialFraction| |create3Space| + |iterationVar| |c06gcf| |initTable!| |prime| |rationalPower| + |messagePrint| |coordinates| |triangularSystems| |reseed| |iiatan| + |makingStats?| |rationalFunction| |fortranDoubleComplex| + |primitivePart| |OMputEndBVar| |laguerreL| |front| + |selectMultiDimensionalRoutines| |zeroOf| |splitConstant| |pointData| + |factor| |maxrank| |aLinear| |leftExtendedGcd| |realSolve| |dflist| + |d02kef| |factorGroebnerBasis| |const| |lowerPolynomial| |sqrt| + |df2ef| |e02dcf| |degreePartition| |principalIdeal| |knownInfBasis| + |s21bcf| |showTypeInOutput| |insertMatch| |whatInfinity| |real| + |andOperands| |simplify| |delete!| |numberOfComponents| |primitive?| + |degreeSubResultant| |mainVariable| |lowerCase| |f02axf| |imag| + |kroneckerDelta| |goto| |conical| |f02agf| |top!| |is?| |matrix| + |drawComplexVectorField| |iisinh| |directProduct| |putGraph| + |definingPolynomial| |headAst| |selectSumOfSquaresRoutines| + |computeCycleEntry| |hasoln| |ridHack1| |stripCommentsAndBlanks| + |findCycle| |outlineRender| |linearPart| |setFieldInfo| + |limitedIntegrate| |OMlistSymbols| |minRowIndex| |splitNodeOf!| + |bipolar| |rischNormalize| |dioSolve| RF2UTS |radicalEigenvectors| + |brace| |symbol| |lowerCase?| |minimumDegree| |LiePoly| |exprToXXP| + |pseudoRemainder| |applyRules| |multiset| |f01qcf| |elliptic| + |destruct| |expression| |mapBivariate| |numericalOptimization| + |LazardQuotient2| |lazyPquo| |f02akf| |mainCoefficients| |denomRicDE| + |closed?| |showArrayValues| |integer| |f01brf| |pdct| |mapExpon| + |padicallyExpand| |imagJ| |setleft!| |elRow2!| + |halfExtendedSubResultantGcd1| |stFuncN| |number?| |push!| |f07adf| + |univariatePolynomial| |derivative| |currentScope| |critpOrder| + |doubleFloatFormat| |expint| |pmComplexintegrate| |primlimitedint| + |regularRepresentation| |Vectorise| |stiffnessAndStabilityFactor| + |definingEquations| |digit| |associates?| |monomial| + |zeroSetSplitIntoTriangularSystems| |f02bbf| |pole?| |bivariate?| + |returnTypeOf| |partition| |setCondition!| |isQuotient| + |processTemplate| |bumptab1| |monomialIntPoly| |multivariate| + |wholePart| |BumInSepFFE| |iicsc| |algSplitSimple| |leftTraceMatrix| + |HenselLift| |binary| |screenResolution3D| |variables| |hitherPlane| + |OMgetAttr| |complexNormalize| |topPredicate| |rischDE| + |possiblyNewVariety?| |numberOfImproperPartitions| |setEmpty!| + |karatsuba| |rightRemainder| |graphImage| |move| + |createLowComplexityTable| |rotate!| |f01rcf| |entries| |df2fi| + |octon| |rk4| |constantKernel| |dot| |freeOf?| |lighting| + |OMgetVariable| |df2mf| |numberOfFractionalTerms| |seed| + |totalGroebner| |iisqrt3| |doubleComplex?| |outputGeneral| |zero?| + |c06eaf| |trigs| |sort!| |appendPoint| |legendreP| + |shanksDiscLogAlgorithm| |thetaCoord| |s17acf| |bumptab| |points| + |wreath| |zeroMatrix| |reducedDiscriminant| |rootPower| |taylor| + |d02gbf| |maxRowIndex| |iprint| |rewriteIdealWithRemainder| + |showClipRegion| |inRadical?| |numberOfNormalPoly| |separateFactors| + |obj| |digit?| |cyclotomicDecomposition| |laurent| + |leadingCoefficientRicDE| |eyeDistance| |eof?| |meatAxe| |charClass| + |arguments| |acothIfCan| |linSolve| |e01daf| |dictionary| + |realEigenvectors| |puiseux| |f01maf| |extractIndex| |postfix| |cache| + |leadingSupport| |OMgetApp| |f01rdf| |resultantReduitEuclidean| + |nothing| |blue| |outputFloating| |s13acf| + |rightRegularRepresentation| |OMgetBind| |setClipValue| + |normInvertible?| |quickSort| |bivariatePolynomials| |inv| |tRange| + |ricDsolve| |wordInStrongGenerators| |rowEch| |atanhIfCan| |merge!| + |hclf| |expintfldpoly| |lazyPrem| |ground?| |c05pbf| |quotient| + |modulus| |failed?| |rightFactorCandidate| |sorted?| |numeric| + |lastSubResultantEuclidean| |finiteBound| |coerceImages| |ground| + |pascalTriangle| |leftAlternative?| |dimension| |fullDisplay| + |quasiAlgebraicSet| |mapUnivariate| |radical| |df2st| + |exprHasWeightCosWXorSinWX| |rangePascalTriangle| |leadingMonomial| + |multisect| |tanintegrate| |OMencodingSGML| |e02def| |reduced?| + |mainValue| |crest| |interval| |airyBi| |leadingCoefficient| |low| + |variationOfParameters| |gderiv| |copyInto!| |selectsecond| |iibinom| + |e04naf| |operators| |elem?| |d01asf| |primitiveMonomials| |nthRoot| + |curryLeft| |acoshIfCan| |moebiusMu| |LyndonWordsList1| |f02wef| + |imports| |minGbasis| |ceiling| |edf2efi| |readIfCan!| |reductum| + |characteristicPolynomial| |halfExtendedResultant2| |cLog| |c06ebf| + |problemPoints| |factors| |numerator| |cot2tan| |true| |cyclicEntries| + |rational| |antisymmetricTensors| |hessian| |root?| |palginfieldint| + |algDsolve| |output| |unit| |infix| |say| |accuracyIF| |iicosh| + |outputMeasure| |chiSquare1| |subResultantsChain| |and| |dAndcExp| + |asinIfCan| |euclideanSize| |directSum| |groebnerFactorize| + |infinite?| UTS2UP |exp1| |OMgetEndApp| |smith| + |nativeModuleExtension| |internalSubQuasiComponent?| |real?| + |extractTop!| |content| |parent| |stirling2| |iiacsch| |cyclicCopy| + |htrigs| |cycleElt| |e02adf| |f02fjf| |gcdcofactprim| |quasiComponent| + |polyPart| |realEigenvalues| |inverseLaplace| |unravel| |wholeRadix| + |extensionDegree| |currentEnv| |drawToScale| |modularFactor| + |adaptive3D?| |fractRadix| |stopTableInvSet!| |prod| |imagi| |in?| + |OMgetFloat| |palgintegrate| |setEpilogue!| |readLineIfCan!| + |createNormalPoly| |multiplyCoefficients| |idealiser| + |extendedIntegrate| |infieldIntegrate| |lifting| |atanh| + |leviCivitaSymbol| |packageCall| |coth2trigh| |f02xef| |headReduce| + |rotate| |principal?| |setPredicates| |hue| |acoth| + |leftMinimalPolynomial| |absolutelyIrreducible?| |OMputAttr| + |basisOfLeftAnnihilator| |cyclePartition| |numberOfVariables| + |wholeRagits| |upperCase!| |leaf?| |asech| |inc| |host| |mkIntegral| + |unexpand| |bombieriNorm| |gcdprim| |constDsolve| |basisOfNucleus| + |f2st| |ellipticCylindrical| |lift| |lazyEvaluate| |f04mbf| |eulerPhi| + |charthRoot| |listYoungTableaus| |contract| + |removeRoughlyRedundantFactorsInContents| |multiple| |primintegrate| + |reduce| |rk4a| |sign| |initials| |listLoops| |getOperands| + |listBranches| |mapExponents| |physicalLength!| |applyQuote| |getlo| + |branchPoint?| |printTypes| |setAttributeButtonStep| |s20adf| + |primeFactor| |zeroDimPrimary?| |rationalPoints| |trivialIdeal?| + |linearDependence| |connectTo| |factorsOfDegree| |lowerCase!| |depth| + |torsionIfCan| |isExpt| |sinh2csch| |incrementBy| |outputBinaryFile| + |infix?| |bat| |fixedPointExquo| |goodPoint| |OMUnknownSymbol?| + |pdf2df| |printCode| |musserTrials| |condition| |mask| |ruleset| + |scalarMatrix| |expand| |exists?| |f01ref| |makeFR| |Lazard2| + |constant| |cAcoth| |idealSimplify| |augment| |setColumn!| + |filterWhile| |build| |changeThreshhold| |d02bhf| |monomials| + |rootBound| |rename!| |rightOne| |filterUntil| |every?| + |expextendedint| |seriesToOutputForm| |UpTriBddDenomInv| |drawStyle| + |stoseInvertible?reg| |modTree| |product| |suchThat| + |integralBasisAtInfinity| |select| |functionIsContinuousAtEndPoints| + |insertBottom!| |oddintegers| |gcdPrimitive| |karatsubaOnce| |options| + |showFortranOutputStack| |matrixConcat3D| |paren| |symbolTableOf| + |finiteBasis| |minColIndex| |ReduceOrder| |externalList| |exquo| + |subHeight| |numberOfPrimitivePoly| |trapezoidal| |dom| + |dihedralGroup| |leftTrace| |e01bhf| |div| |logGamma| |totolex| + |changeVar| |janko2| |s14abf| |float?| |rotatey| + |useEisensteinCriterion| |string| |quo| |probablyZeroDim?| |d02bbf| + |s17dgf| |s17dhf| |fortranDouble| |parametric?| |magnitude| |extract!| + |printingInfo?| |e02ddf| |OMputAtp| |slash| |primitiveElement| + |moduleSum| |createPrimitivePoly| |semiSubResultantGcdEuclidean1| + |makeMulti| |movedPoints| |rem| |largest| |lyndonIfCan| |makeRecord| + |ODESolve| |intersect| |subtractIfCan| |trim| |tracePowMod| |numer| + |selectNonFiniteRoutines| |enterPointData| NOT |OMUnknownCD?| |title| + |symmetric?| |cycleSplit!| |schwerpunkt| |universe| + |symmetricRemainder| |denom| |balancedFactorisation| |alternative?| OR + |subCase?| |s19acf| |regime| |groebSolve| |cAcsc| + |purelyAlgebraicLeadingMonomial?| |rotatex| |swapColumns!| AND + |cartesian| |OMputVariable| |chebyshevT| |callForm?| |pi| |divisors| + |subPolSet?| |center| |e| |lazyResidueClass| |upperCase?| + |mainMonomials| |getMultiplicationMatrix| |pushup| |infinity| |width| + |resultantReduit| |factorsOfCyclicGroupSize| |mapMatrixIfCan| + |factorSquareFree| |monomialIntegrate| |fintegrate| |iiGamma| + |writeLine!| |status| |explogs2trigs| |one?| |polyred| |unary?| + |cothIfCan| |categoryFrame| |log10| |groebgen| |leftQuotient| + |isPower| |complexLimit| |e02agf| |f04axf| |bitand| |maxrow| + |createMultiplicationMatrix| |tensorProduct| |rootDirectory| + |transcendenceDegree| |backOldPos| |e01bgf| |integerIfCan| |kernel| + |categories| |youngGroup| |cAcos| |bitior| |OMsupportsSymbol?| |pack!| + |coshIfCan| |linear?| |tab1| |draw| |OMputEndError| + |nextPrimitivePoly| |or?| |nextNormalPoly| |continue| |pToHdmp| + |OMread| |baseRDEsys| |setPosition| |rdregime| |not| + |jordanAdmissible?| |primes| |coleman| |blankSeparate| + |totalDifferential| |internalIntegrate| |evaluateInverse| + |normalDeriv| |squareFreePart| |acotIfCan| |fortranLiteral| |digamma| + |showTheIFTable| |tan2cot| |cCoth| GF2FG |someBasis| |addMatch| + |generator| |updatF| |optional| |s18dcf| |OMgetError| * + |solveLinearlyOverQ| |ef2edf| |showTheRoutinesTable| |besselK| + |thenBranch| |setchildren!| |ratPoly| |makeObject| |expPot| + |closedCurve| |solveLinearPolynomialEquationByRecursion| |interpret| + |create| |errorInfo| |extractSplittingLeaf| |discreteLog| |mathieu12| + |leftLcm| |mappingAst| |laurentRep| |leftRecip| |solve| |cAcosh| + |unvectorise| |inverse| |truncate| |coef| |resultantEuclidean| + |basisOfLeftNucloid| |divergence| |algebraicOf| |objects| |cap| + |palgRDE| |interReduce| |presuper| |over| |failed| |polygon?| |cSec| + |d01anf| |sec2cos| |base| |stoseInvertibleSetreg| |lexGroebner| + |roughSubIdeal?| |modularGcdPrimitive| |rightExactQuotient| |iExquo| + |var1StepsDefault| |semiLastSubResultantEuclidean| |round| + |addMatchRestricted| |gcdcofact| |remainder| |mesh| |hdmpToDmp| + |invmultisect| |constant?| |eigenvectors| |sizePascalTriangle| |node| + |separateDegrees| |coerceListOfPairs| |setStatus!| |integralBasis| + |critT| |basis| |PollardSmallFactor| |factorOfDegree| + |semiResultantEuclideannaif| |univariatePolynomials| |removeCosSq| + |singRicDE| |inverseColeman| |restorePrecision| |redmat| |lo| + |optpair| |generalizedInverse| |divideExponents| |numFunEvals| + |eulerE| |modifyPoint| |interpretString| |genericRightTraceForm| + |unmakeSUP| |incr| |orOperands| |distdfact| |makeResult| |cn| + |tryFunctionalDecomposition| |brillhartIrreducible?| + |removeRedundantFactorsInContents| |subNode?| |numerators| |nullSpace| + |hi| |triangulate| |rationalApproximation| |pushNewContour| + |LyndonBasis| |range| |nodes| |Frobenius| |size?| |lazyPseudoDivide| + |reducedForm| |order| |unitsColorDefault| |edf2df| |OMbindTCP| + |commaSeparate| |sylvesterSequence| |imagI| |showTheSymbolTable| + |rootNormalize| |areEquivalent?| |returns| |recolor| + |invertibleElseSplit?| |btwFact| |leftUnits| |mergeFactors| + |inputOutputBinaryFile| |s18acf| |anfactor| |randomLC| + |getVariableOrder| |s17dlf| |isTimes| |putColorInfo| |torsion?| + |node?| |epilogue| SEGMENT |ScanFloatIgnoreSpacesIfCan| + |indicialEquations| |complexEigenvalues| |addPoint| |and?| + |representationType| |listexp| |previous| |LyndonCoordinates| + |represents| |minus!| |ipow| |createPrimitiveNormalPoly| |att2Result| + |nil| |lieAdmissible?| |Is| |basisOfCentroid| |lazyPseudoQuotient| + |wordsForStrongGenerators| |OMgetEndBVar| |name| |printInfo!| + |symmetricPower| |leftRank| |bivariateSLPEBR| |reciprocalPolynomial| + |allRootsOf| |jacobiIdentity?| |child?| |e04ycf| |body| |B1solve| + |useSingleFactorBound| |setPoly| |declare| |imagK| |binomThmExpt| + |hcrf| |iicot| |OMclose| |tanhIfCan| |approximate| |rootRadius| + |sequence| |diophantineSystem| |localReal?| |monomRDE| |socf2socdf| + |squareFreeLexTriangular| |concat| |complex| |write!| + |leadingBasisTerm| |scanOneDimSubspaces| |basisOfMiddleNucleus| + |iicos| |sumOfDivisors| |boundOfCauchy| |e01sff| |t| |substring?| + |shellSort| |d01ajf| |f07aef| Y |resize| |increment| |imagj| |ptFunc| + |symFunc| |generate| |SturmHabichtMultiple| |convergents| |infRittWu?| + |doublyTransitive?| |ScanArabic| |norm| |genericLeftTrace| + |OMopenFile| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 4568d4f3..ecaebac3 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5195 +1,5203 @@ -(3180903 . 3433818827) -((-1439 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-2701 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-2950 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-1202 (-552)) |#2|) 34)) (-2519 (($ $) 59)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2967 (((-552) (-1 (-111) |#2|) $) 22) (((-552) |#2| $) NIL) (((-552) |#2| $ (-552)) 73)) (-3215 (((-627 |#2|) $) 13)) (-3759 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3463 (($ (-1 |#2| |#2|) $) 29)) (-3516 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3252 (($ |#2| $ (-552)) NIL) (($ $ $ (-552)) 50)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3509 (((-111) (-1 (-111) |#2|) $) 21)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL) (($ $ (-1202 (-552))) 49)) (-3907 (($ $ (-552)) 56) (($ $ (-1202 (-552))) 55)) (-1509 (((-754) (-1 (-111) |#2|) $) 26) (((-754) |#2| $) NIL)) (-4105 (($ $ $ (-552)) 52)) (-2973 (($ $) 51)) (-1490 (($ (-627 |#2|)) 53)) (-2668 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-627 $)) 62)) (-1477 (((-842) $) 69)) (-3299 (((-111) (-1 (-111) |#2|) $) 20)) (-2292 (((-111) $ $) 72)) (-2316 (((-111) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -1439 ((-111) |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) (-19 |#2|) (-1189)) (T -18)) +(3181245 . 3436147973) +((-3717 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-3646 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-1470 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-1204 (-552)) |#2|) 34)) (-2366 (($ $) 59)) (-3884 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1456 (((-552) (-1 (-111) |#2|) $) 22) (((-552) |#2| $) NIL) (((-552) |#2| $ (-552)) 73)) (-3138 (((-629 |#2|) $) 13)) (-1446 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2947 (($ (-1 |#2| |#2|) $) 29)) (-1477 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1759 (($ |#2| $ (-552)) NIL) (($ $ $ (-552)) 50)) (-3073 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3944 (((-111) (-1 (-111) |#2|) $) 21)) (-2060 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL) (($ $ (-1204 (-552))) 49)) (-2012 (($ $ (-552)) 56) (($ $ (-1204 (-552))) 55)) (-2885 (((-756) (-1 (-111) |#2|) $) 26) (((-756) |#2| $) NIL)) (-3747 (($ $ $ (-552)) 52)) (-1487 (($ $) 51)) (-3226 (($ (-629 |#2|)) 53)) (-4319 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-629 $)) 62)) (-3213 (((-844) $) 69)) (-2584 (((-111) (-1 (-111) |#2|) $) 20)) (-1613 (((-111) $ $) 72)) (-1632 (((-111) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1613 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -3747 (|#1| |#1| |#1| (-552))) (-15 -3717 ((-111) |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1470 (|#2| |#1| (-1204 (-552)) |#2|)) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -1470 (|#2| |#1| (-552) |#2|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -3138 ((-629 |#2|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1487 (|#1| |#1|))) (-19 |#2|) (-1191)) (T -18)) NIL -(-10 -8 (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -1439 ((-111) |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-19 |#1|) (-137) (-1189)) (T -19)) +(-10 -8 (-15 -1613 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -3747 (|#1| |#1| |#1| (-552))) (-15 -3717 ((-111) |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1470 (|#2| |#1| (-1204 (-552)) |#2|)) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -1470 (|#2| |#1| (-552) |#2|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -3138 ((-629 |#2|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1487 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| |#1| (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-1456 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 70)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 84 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 83 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) 85 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 82 (|has| |#1| (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-19 |#1|) (-137) (-1191)) (T -19)) NIL -(-13 (-367 |t#1|) (-10 -7 (-6 -4367))) -(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) -((-4136 (((-3 $ "failed") $ $) 12)) (-2396 (($ $) NIL) (($ $ $) 9)) (* (($ (-900) $) NIL) (($ (-754) $) 16) (($ (-552) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-21)) (T -20)) +(-13 (-367 |t#1|) (-10 -7 (-6 -4369))) +(((-34) . T) ((-101) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-832) |has| |#1| (-832)) ((-1078) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-1191) . T)) +((-4012 (((-3 $ "failed") $ $) 12)) (-1709 (($ $) NIL) (($ $ $) 9)) (* (($ (-902) $) NIL) (($ (-756) $) 16) (($ (-552) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -4012 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20))) +(-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -4012 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20))) (((-21) (-137)) (T -21)) -((-2396 (*1 *1 *1) (-4 *1 (-21))) (-2396 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552))))) -(-13 (-129) (-10 -8 (-15 -2396 ($ $)) (-15 -2396 ($ $ $)) (-15 * ($ (-552) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3024 (((-111) $) 10)) (-3887 (($) 15)) (* (($ (-900) $) 14) (($ (-754) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 * (|#1| (-900) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +((-1709 (*1 *1 *1) (-4 *1 (-21))) (-1709 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552))))) +(-13 (-129) (-10 -8 (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 * ($ (-552) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3643 (((-111) $) 10)) (-2130 (($) 15)) (* (($ (-902) $) 14) (($ (-756) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 -2130 (|#1|)) (-15 * (|#1| (-902) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 -2130 (|#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15))) (((-23) (-137)) (T -23)) -((-1922 (*1 *1) (-4 *1 (-23))) (-3887 (*1 *1) (-4 *1 (-23))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-754))))) -(-13 (-25) (-10 -8 (-15 (-1922) ($) -3488) (-15 -3887 ($) -3488) (-15 -3024 ((-111) $)) (-15 * ($ (-754) $)))) -(((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((* (($ (-900) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-900) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13))) +((-3297 (*1 *1) (-4 *1 (-23))) (-2130 (*1 *1) (-4 *1 (-23))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-756))))) +(-13 (-25) (-10 -8 (-15 (-3297) ($) -3930) (-15 -2130 ($) -3930) (-15 -3643 ((-111) $)) (-15 * ($ (-756) $)))) +(((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((* (($ (-902) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-902) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13))) (((-25) (-137)) (T -25)) -((-2384 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-900))))) -(-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ (-900) $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3213 (((-627 $) (-931 $)) 29) (((-627 $) (-1148 $)) 16) (((-627 $) (-1148 $) (-1152)) 20)) (-2682 (($ (-931 $)) 27) (($ (-1148 $)) 11) (($ (-1148 $) (-1152)) 54)) (-1304 (((-627 $) (-931 $)) 30) (((-627 $) (-1148 $)) 18) (((-627 $) (-1148 $) (-1152)) 19)) (-3348 (($ (-931 $)) 28) (($ (-1148 $)) 13) (($ (-1148 $) (-1152)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3213 (((-627 $) (-931 $)) 77) (((-627 $) (-1148 $)) 76) (((-627 $) (-1148 $) (-1152)) 75)) (-2682 (($ (-931 $)) 80) (($ (-1148 $)) 79) (($ (-1148 $) (-1152)) 78)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 89)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1304 (((-627 $) (-931 $)) 83) (((-627 $) (-1148 $)) 82) (((-627 $) (-1148 $) (-1152)) 81)) (-3348 (($ (-931 $)) 86) (($ (-1148 $)) 85) (($ (-1148 $) (-1152)) 84)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +((-1698 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-902))))) +(-13 (-1078) (-10 -8 (-15 -1698 ($ $ $)) (-15 * ($ (-902) $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2965 (((-629 $) (-933 $)) 29) (((-629 $) (-1150 $)) 16) (((-629 $) (-1150 $) (-1154)) 20)) (-3476 (($ (-933 $)) 27) (($ (-1150 $)) 11) (($ (-1150 $) (-1154)) 54)) (-1821 (((-629 $) (-933 $)) 30) (((-629 $) (-1150 $)) 18) (((-629 $) (-1150 $) (-1154)) 19)) (-1743 (($ (-933 $)) 28) (($ (-1150 $)) 13) (($ (-1150 $) (-1154)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2965 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -2965 ((-629 |#1|) (-1150 |#1|))) (-15 -2965 ((-629 |#1|) (-933 |#1|))) (-15 -3476 (|#1| (-1150 |#1|) (-1154))) (-15 -3476 (|#1| (-1150 |#1|))) (-15 -3476 (|#1| (-933 |#1|))) (-15 -1821 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -1821 ((-629 |#1|) (-1150 |#1|))) (-15 -1821 ((-629 |#1|) (-933 |#1|))) (-15 -1743 (|#1| (-1150 |#1|) (-1154))) (-15 -1743 (|#1| (-1150 |#1|))) (-15 -1743 (|#1| (-933 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2965 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -2965 ((-629 |#1|) (-1150 |#1|))) (-15 -2965 ((-629 |#1|) (-933 |#1|))) (-15 -3476 (|#1| (-1150 |#1|) (-1154))) (-15 -3476 (|#1| (-1150 |#1|))) (-15 -3476 (|#1| (-933 |#1|))) (-15 -1821 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -1821 ((-629 |#1|) (-1150 |#1|))) (-15 -1821 ((-629 |#1|) (-933 |#1|))) (-15 -1743 (|#1| (-1150 |#1|) (-1154))) (-15 -1743 (|#1| (-1150 |#1|))) (-15 -1743 (|#1| (-933 |#1|)))) +((-3202 (((-111) $ $) 7)) (-2965 (((-629 $) (-933 $)) 77) (((-629 $) (-1150 $)) 76) (((-629 $) (-1150 $) (-1154)) 75)) (-3476 (($ (-933 $)) 80) (($ (-1150 $)) 79) (($ (-1150 $) (-1154)) 78)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-3489 (($ $) 89)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-1821 (((-629 $) (-933 $)) 83) (((-629 $) (-1150 $)) 82) (((-629 $) (-1150 $) (-1154)) 81)) (-1743 (($ (-933 $)) 86) (($ (-1150 $)) 85) (($ (-1150 $) (-1154)) 84)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 88)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) (((-27) (-137)) (T -27)) -((-3348 (*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) (-3348 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) (-5 *2 (-627 *1))))) -(-13 (-357) (-981) (-10 -8 (-15 -3348 ($ (-931 $))) (-15 -3348 ($ (-1148 $))) (-15 -3348 ($ (-1148 $) (-1152))) (-15 -1304 ((-627 $) (-931 $))) (-15 -1304 ((-627 $) (-1148 $))) (-15 -1304 ((-627 $) (-1148 $) (-1152))) (-15 -2682 ($ (-931 $))) (-15 -2682 ($ (-1148 $))) (-15 -2682 ($ (-1148 $) (-1152))) (-15 -3213 ((-627 $) (-931 $))) (-15 -3213 ((-627 $) (-1148 $))) (-15 -3213 ((-627 $) (-1148 $) (-1152))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-981) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-3213 (((-627 $) (-931 $)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 $) (-1152)) 50) (((-627 $) $) 19) (((-627 $) $ (-1152)) 41)) (-2682 (($ (-931 $)) NIL) (($ (-1148 $)) NIL) (($ (-1148 $) (-1152)) 52) (($ $) 17) (($ $ (-1152)) 37)) (-1304 (((-627 $) (-931 $)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 $) (-1152)) 48) (((-627 $) $) 15) (((-627 $) $ (-1152)) 43)) (-3348 (($ (-931 $)) NIL) (($ (-1148 $)) NIL) (($ (-1148 $) (-1152)) NIL) (($ $) 12) (($ $ (-1152)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3213 ((-627 |#1|) |#1| (-1152))) (-15 -2682 (|#1| |#1| (-1152))) (-15 -3213 ((-627 |#1|) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -1304 ((-627 |#1|) |#1| (-1152))) (-15 -3348 (|#1| |#1| (-1152))) (-15 -1304 ((-627 |#1|) |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) (-29 |#2|) (-13 (-830) (-544))) (T -28)) -NIL -(-10 -8 (-15 -3213 ((-627 |#1|) |#1| (-1152))) (-15 -2682 (|#1| |#1| (-1152))) (-15 -3213 ((-627 |#1|) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -1304 ((-627 |#1|) |#1| (-1152))) (-15 -3348 (|#1| |#1| (-1152))) (-15 -1304 ((-627 |#1|) |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3213 (((-627 $) (-931 $)) 77) (((-627 $) (-1148 $)) 76) (((-627 $) (-1148 $) (-1152)) 75) (((-627 $) $) 123) (((-627 $) $ (-1152)) 121)) (-2682 (($ (-931 $)) 80) (($ (-1148 $)) 79) (($ (-1148 $) (-1152)) 78) (($ $) 124) (($ $ (-1152)) 122)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1152)) $) 198)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 230 (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-3443 (((-627 (-598 $)) $) 161)) (-4136 (((-3 $ "failed") $ $) 19)) (-2620 (($ $ (-627 (-598 $)) (-627 $)) 151) (($ $ (-627 (-288 $))) 150) (($ $ (-288 $)) 149)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 89)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1304 (((-627 $) (-931 $)) 83) (((-627 $) (-1148 $)) 82) (((-627 $) (-1148 $) (-1152)) 81) (((-627 $) $) 127) (((-627 $) $ (-1152)) 125)) (-3348 (($ (-931 $)) 86) (($ (-1148 $)) 85) (($ (-1148 $) (-1152)) 84) (($ $) 128) (($ $ (-1152)) 126)) (-4039 (((-3 (-931 |#1|) "failed") $) 248 (|has| |#1| (-1028))) (((-3 (-401 (-931 |#1|)) "failed") $) 232 (|has| |#1| (-544))) (((-3 |#1| "failed") $) 194) (((-3 (-552) "failed") $) 192 (|has| |#1| (-1017 (-552)))) (((-3 (-1152) "failed") $) 185) (((-3 (-598 $) "failed") $) 136) (((-3 (-401 (-552)) "failed") $) 120 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-931 |#1|) $) 249 (|has| |#1| (-1028))) (((-401 (-931 |#1|)) $) 233 (|has| |#1| (-544))) ((|#1| $) 195) (((-552) $) 191 (|has| |#1| (-1017 (-552)))) (((-1152) $) 186) (((-598 $) $) 137) (((-401 (-552)) $) 119 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) 53)) (-1800 (((-671 |#1|) (-671 $)) 238 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 237 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 118 (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (((-671 (-552)) (-671 $)) 117 (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 190 (|has| |#1| (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 189 (|has| |#1| (-865 (-552))))) (-3820 (($ (-627 $)) 155) (($ $) 154)) (-3795 (((-627 (-113)) $) 162)) (-4148 (((-113) (-113)) 163)) (-2624 (((-111) $) 30)) (-1394 (((-111) $) 183 (|has| $ (-1017 (-552))))) (-3798 (($ $) 215 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 214 (|has| |#1| (-1028)))) (-1352 (($ $ (-552)) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-2602 (((-1148 $) (-598 $)) 180 (|has| $ (-1028)))) (-1816 (($ $ $) 134)) (-4093 (($ $ $) 133)) (-3516 (($ (-1 $ $) (-598 $)) 169)) (-3362 (((-3 (-598 $) "failed") $) 159)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 160)) (-2991 (($ (-113) (-627 $)) 168) (($ (-113) $) 167)) (-4035 (((-3 (-627 $) "failed") $) 209 (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 218 (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 211 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 217 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 216 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 210 (|has| |#1| (-1088)))) (-2070 (((-111) $ (-1152)) 166) (((-111) $ (-113)) 165)) (-1951 (($ $) 67)) (-3476 (((-754) $) 158)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 196)) (-1970 ((|#1| $) 197)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4094 (((-111) $ (-1152)) 171) (((-111) $ $) 170)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-1507 (((-111) $) 182 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-1152) (-754) (-1 $ $)) 222 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) 221 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 220 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 219 (|has| |#1| (-1028))) (($ $ (-627 (-113)) (-627 $) (-1152)) 208 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 207 (|has| |#1| (-600 (-528)))) (($ $) 206 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) 205 (|has| |#1| (-600 (-528)))) (($ $ (-1152)) 204 (|has| |#1| (-600 (-528)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-627 $))) 178) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 177) (($ $ (-627 (-113)) (-627 (-1 $ $))) 176) (($ $ (-1152) (-1 $ $)) 175) (($ $ (-1152) (-1 $ (-627 $))) 174) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 173) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 172) (($ $ (-627 $) (-627 $)) 143) (($ $ $ $) 142) (($ $ (-288 $)) 141) (($ $ (-627 (-288 $))) 140) (($ $ (-627 (-598 $)) (-627 $)) 139) (($ $ (-598 $) $) 138)) (-2718 (((-754) $) 56)) (-1985 (($ (-113) (-627 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-2911 (($ $ $) 157) (($ $) 156)) (-2942 (($ $ (-1152)) 246 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 245 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 244 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) 243 (|has| |#1| (-1028)))) (-1583 (($ $) 225 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 224 (|has| |#1| (-544)))) (-1376 (($ $) 181 (|has| $ (-1028)))) (-3562 (((-528) $) 252 (|has| |#1| (-600 (-528)))) (($ (-412 $)) 223 (|has| |#1| (-544))) (((-871 (-373)) $) 188 (|has| |#1| (-600 (-871 (-373))))) (((-871 (-552)) $) 187 (|has| |#1| (-600 (-871 (-552)))))) (-2616 (($ $ $) 251 (|has| |#1| (-466)))) (-2493 (($ $ $) 250 (|has| |#1| (-466)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-931 |#1|)) 247 (|has| |#1| (-1028))) (($ (-401 (-931 |#1|))) 231 (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) 229 (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) 228 (|has| |#1| (-544))) (($ (-401 |#1|)) 227 (|has| |#1| (-544))) (($ (-1101 |#1| (-598 $))) 213 (|has| |#1| (-1028))) (($ |#1|) 193) (($ (-1152)) 184) (($ (-598 $)) 135)) (-3050 (((-3 $ "failed") $) 236 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3092 (($ (-627 $)) 153) (($ $) 152)) (-3749 (((-111) (-113)) 164)) (-3778 (((-111) $ $) 37)) (-1729 (($ (-1152) (-627 $)) 203) (($ (-1152) $ $ $ $) 202) (($ (-1152) $ $ $) 201) (($ (-1152) $ $) 200) (($ (-1152) $) 199)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1152)) 242 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 241 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 240 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) 239 (|has| |#1| (-1028)))) (-2351 (((-111) $ $) 131)) (-2329 (((-111) $ $) 130)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 132)) (-2316 (((-111) $ $) 129)) (-2407 (($ $ $) 62) (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 226 (|has| |#1| (-544)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) -(((-29 |#1|) (-137) (-13 (-830) (-544))) (T -29)) -((-3348 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) (-1304 (*1 *2 *1) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *4)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) (-2682 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) (-3213 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -3348 ($ $)) (-15 -1304 ((-627 $) $)) (-15 -3348 ($ $ (-1152))) (-15 -1304 ((-627 $) $ (-1152))) (-15 -2682 ($ $)) (-15 -3213 ((-627 $) $)) (-15 -2682 ($ $ (-1152))) (-15 -3213 ((-627 $) $ (-1152))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-238) . T) ((-284) . T) ((-301) . T) ((-303 $) . T) ((-296) . T) ((-357) . T) ((-371 |#1|) |has| |#1| (-1028)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-424 |#1|) . T) ((-445) . T) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) |has| |#1| (-169)) ((-630 $) . T) ((-623 (-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) ((-623 |#1|) |has| |#1| (-1028)) ((-700 #0#) . T) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-879 (-1152)) |has| |#1| (-1028)) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-899) . T) ((-981) . T) ((-1017 (-401 (-552))) -1559 (|has| |#1| (-1017 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) ((-1017 (-401 (-931 |#1|))) |has| |#1| (-544)) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-598 $)) . T) ((-1017 (-931 |#1|)) |has| |#1| (-1028)) ((-1017 (-1152)) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) |has| |#1| (-169)) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1189) . T) ((-1193) . T)) -((-3447 (((-1070 (-220)) $) NIL)) (-3437 (((-1070 (-220)) $) NIL)) (-3938 (($ $ (-220)) 125)) (-3589 (($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552)))) 83)) (-2116 (((-627 (-627 (-922 (-220)))) $) 137)) (-1477 (((-842) $) 149))) -(((-30) (-13 (-934) (-10 -8 (-15 -3589 ($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552))))) (-15 -3938 ($ $ (-220)))))) (T -30)) -((-3589 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-931 (-552))) (-5 *3 (-1152)) (-5 *4 (-1070 (-401 (-552)))) (-5 *1 (-30)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30))))) -(-13 (-934) (-10 -8 (-15 -3589 ($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552))))) (-15 -3938 ($ $ (-220))))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 11)) (-2705 (((-1111) $) 9)) (-2292 (((-111) $ $) NIL))) -(((-31) (-13 (-1059) (-10 -8 (-15 -2705 ((-1111) $)) (-15 -3122 ((-1111) $))))) (T -31)) -((-2705 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31))))) -(-13 (-1059) (-10 -8 (-15 -2705 ((-1111) $)) (-15 -3122 ((-1111) $)))) -((-3348 ((|#2| (-1148 |#2|) (-1152)) 43)) (-4148 (((-113) (-113)) 56)) (-2602 (((-1148 |#2|) (-598 |#2|)) 133 (|has| |#1| (-1017 (-552))))) (-2775 ((|#2| |#1| (-552)) 123 (|has| |#1| (-1017 (-552))))) (-2274 ((|#2| (-1148 |#2|) |#2|) 30)) (-3157 (((-842) (-627 |#2|)) 85)) (-1376 ((|#2| |#2|) 129 (|has| |#1| (-1017 (-552))))) (-3749 (((-111) (-113)) 18)) (** ((|#2| |#2| (-401 (-552))) 96 (|has| |#1| (-1017 (-552)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3348 (|#2| (-1148 |#2|) (-1152))) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2274 (|#2| (-1148 |#2|) |#2|)) (-15 -3157 ((-842) (-627 |#2|))) (IF (|has| |#1| (-1017 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -2602 ((-1148 |#2|) (-598 |#2|))) (-15 -1376 (|#2| |#2|)) (-15 -2775 (|#2| |#1| (-552)))) |%noBranch|)) (-13 (-830) (-544)) (-424 |#1|)) (T -32)) -((-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1017 *4)) (-4 *3 (-13 (-830) (-544))))) (-1376 (*1 *2 *2) (-12 (-4 *3 (-1017 (-552))) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1017 (-552))) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-1148 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1017 (-552))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-842)) (-5 *1 (-32 *4 *5)))) (-2274 (*1 *2 *3 *2) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *2)) (-5 *4 (-1152)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-830) (-544)))))) -(-10 -7 (-15 -3348 (|#2| (-1148 |#2|) (-1152))) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2274 (|#2| (-1148 |#2|) |#2|)) (-15 -3157 ((-842) (-627 |#2|))) (IF (|has| |#1| (-1017 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -2602 ((-1148 |#2|) (-598 |#2|))) (-15 -1376 (|#2| |#2|)) (-15 -2775 (|#2| |#1| (-552)))) |%noBranch|)) -((-4031 (((-111) $ (-754)) 16)) (-3887 (($) 10)) (-1602 (((-111) $ (-754)) 15)) (-3971 (((-111) $ (-754)) 14)) (-2432 (((-111) $ $) 8)) (-1275 (((-111) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3887 (|#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -1275 ((-111) |#1|)) (-15 -2432 ((-111) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3887 (|#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -1275 ((-111) |#1|)) (-15 -2432 ((-111) |#1| |#1|))) -((-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-1602 (((-111) $ (-754)) 9)) (-3971 (((-111) $ (-754)) 10)) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-2973 (($ $) 13)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +((-1743 (*1 *1 *2) (-12 (-5 *2 (-933 *1)) (-4 *1 (-27)))) (-1743 (*1 *1 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-27)))) (-1743 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 *1)) (-5 *3 (-1154)) (-4 *1 (-27)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *1)) (-5 *4 (-1154)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-933 *1)) (-4 *1 (-27)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-27)))) (-3476 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 *1)) (-5 *3 (-1154)) (-4 *1 (-27)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *1)) (-5 *4 (-1154)) (-4 *1 (-27)) (-5 *2 (-629 *1))))) +(-13 (-357) (-983) (-10 -8 (-15 -1743 ($ (-933 $))) (-15 -1743 ($ (-1150 $))) (-15 -1743 ($ (-1150 $) (-1154))) (-15 -1821 ((-629 $) (-933 $))) (-15 -1821 ((-629 $) (-1150 $))) (-15 -1821 ((-629 $) (-1150 $) (-1154))) (-15 -3476 ($ (-933 $))) (-15 -3476 ($ (-1150 $))) (-15 -3476 ($ (-1150 $) (-1154))) (-15 -2965 ((-629 $) (-933 $))) (-15 -2965 ((-629 $) (-1150 $))) (-15 -2965 ((-629 $) (-1150 $) (-1154))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-983) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-2965 (((-629 $) (-933 $)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-1150 $) (-1154)) 50) (((-629 $) $) 19) (((-629 $) $ (-1154)) 41)) (-3476 (($ (-933 $)) NIL) (($ (-1150 $)) NIL) (($ (-1150 $) (-1154)) 52) (($ $) 17) (($ $ (-1154)) 37)) (-1821 (((-629 $) (-933 $)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-1150 $) (-1154)) 48) (((-629 $) $) 15) (((-629 $) $ (-1154)) 43)) (-1743 (($ (-933 $)) NIL) (($ (-1150 $)) NIL) (($ (-1150 $) (-1154)) NIL) (($ $) 12) (($ $ (-1154)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2965 ((-629 |#1|) |#1| (-1154))) (-15 -3476 (|#1| |#1| (-1154))) (-15 -2965 ((-629 |#1|) |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1821 ((-629 |#1|) |#1| (-1154))) (-15 -1743 (|#1| |#1| (-1154))) (-15 -1821 ((-629 |#1|) |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -2965 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -2965 ((-629 |#1|) (-1150 |#1|))) (-15 -2965 ((-629 |#1|) (-933 |#1|))) (-15 -3476 (|#1| (-1150 |#1|) (-1154))) (-15 -3476 (|#1| (-1150 |#1|))) (-15 -3476 (|#1| (-933 |#1|))) (-15 -1821 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -1821 ((-629 |#1|) (-1150 |#1|))) (-15 -1821 ((-629 |#1|) (-933 |#1|))) (-15 -1743 (|#1| (-1150 |#1|) (-1154))) (-15 -1743 (|#1| (-1150 |#1|))) (-15 -1743 (|#1| (-933 |#1|)))) (-29 |#2|) (-13 (-832) (-544))) (T -28)) +NIL +(-10 -8 (-15 -2965 ((-629 |#1|) |#1| (-1154))) (-15 -3476 (|#1| |#1| (-1154))) (-15 -2965 ((-629 |#1|) |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1821 ((-629 |#1|) |#1| (-1154))) (-15 -1743 (|#1| |#1| (-1154))) (-15 -1821 ((-629 |#1|) |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -2965 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -2965 ((-629 |#1|) (-1150 |#1|))) (-15 -2965 ((-629 |#1|) (-933 |#1|))) (-15 -3476 (|#1| (-1150 |#1|) (-1154))) (-15 -3476 (|#1| (-1150 |#1|))) (-15 -3476 (|#1| (-933 |#1|))) (-15 -1821 ((-629 |#1|) (-1150 |#1|) (-1154))) (-15 -1821 ((-629 |#1|) (-1150 |#1|))) (-15 -1821 ((-629 |#1|) (-933 |#1|))) (-15 -1743 (|#1| (-1150 |#1|) (-1154))) (-15 -1743 (|#1| (-1150 |#1|))) (-15 -1743 (|#1| (-933 |#1|)))) +((-3202 (((-111) $ $) 7)) (-2965 (((-629 $) (-933 $)) 77) (((-629 $) (-1150 $)) 76) (((-629 $) (-1150 $) (-1154)) 75) (((-629 $) $) 123) (((-629 $) $ (-1154)) 121)) (-3476 (($ (-933 $)) 80) (($ (-1150 $)) 79) (($ (-1150 $) (-1154)) 78) (($ $) 124) (($ $ (-1154)) 122)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1154)) $) 198)) (-3449 (((-401 (-1150 $)) $ (-598 $)) 230 (|has| |#1| (-544)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-3361 (((-629 (-598 $)) $) 161)) (-4012 (((-3 $ "failed") $ $) 19)) (-2172 (($ $ (-629 (-598 $)) (-629 $)) 151) (($ $ (-629 (-288 $))) 150) (($ $ (-288 $)) 149)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-3489 (($ $) 89)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-1821 (((-629 $) (-933 $)) 83) (((-629 $) (-1150 $)) 82) (((-629 $) (-1150 $) (-1154)) 81) (((-629 $) $) 127) (((-629 $) $ (-1154)) 125)) (-1743 (($ (-933 $)) 86) (($ (-1150 $)) 85) (($ (-1150 $) (-1154)) 84) (($ $) 128) (($ $ (-1154)) 126)) (-1393 (((-3 (-933 |#1|) "failed") $) 248 (|has| |#1| (-1030))) (((-3 (-401 (-933 |#1|)) "failed") $) 232 (|has| |#1| (-544))) (((-3 |#1| "failed") $) 194) (((-3 (-552) "failed") $) 192 (|has| |#1| (-1019 (-552)))) (((-3 (-1154) "failed") $) 185) (((-3 (-598 $) "failed") $) 136) (((-3 (-401 (-552)) "failed") $) 120 (-4029 (-12 (|has| |#1| (-1019 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1019 (-401 (-552))))))) (-2832 (((-933 |#1|) $) 249 (|has| |#1| (-1030))) (((-401 (-933 |#1|)) $) 233 (|has| |#1| (-544))) ((|#1| $) 195) (((-552) $) 191 (|has| |#1| (-1019 (-552)))) (((-1154) $) 186) (((-598 $) $) 137) (((-401 (-552)) $) 119 (-4029 (-12 (|has| |#1| (-1019 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1019 (-401 (-552))))))) (-4006 (($ $ $) 53)) (-2714 (((-673 |#1|) (-673 $)) 238 (|has| |#1| (-1030))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 237 (|has| |#1| (-1030))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 118 (-4029 (-3792 (|has| |#1| (-1030)) (|has| |#1| (-625 (-552)))) (-3792 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))) (((-673 (-552)) (-673 $)) 117 (-4029 (-3792 (|has| |#1| (-1030)) (|has| |#1| (-625 (-552)))) (-3792 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))))) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 190 (|has| |#1| (-867 (-373)))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 189 (|has| |#1| (-867 (-552))))) (-3963 (($ (-629 $)) 155) (($ $) 154)) (-3751 (((-629 (-113)) $) 162)) (-2951 (((-113) (-113)) 163)) (-4065 (((-111) $) 30)) (-3302 (((-111) $) 183 (|has| $ (-1019 (-552))))) (-3773 (($ $) 215 (|has| |#1| (-1030)))) (-4015 (((-1103 |#1| (-598 $)) $) 214 (|has| |#1| (-1030)))) (-3755 (($ $ (-552)) 88)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-1941 (((-1150 $) (-598 $)) 180 (|has| $ (-1030)))) (-1772 (($ $ $) 134)) (-2011 (($ $ $) 133)) (-1477 (($ (-1 $ $) (-598 $)) 169)) (-1875 (((-3 (-598 $) "failed") $) 159)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3438 (((-629 (-598 $)) $) 160)) (-4086 (($ (-113) (-629 $)) 168) (($ (-113) $) 167)) (-4263 (((-3 (-629 $) "failed") $) 209 (|has| |#1| (-1090)))) (-4073 (((-3 (-2 (|:| |val| $) (|:| -1406 (-552))) "failed") $) 218 (|has| |#1| (-1030)))) (-2878 (((-3 (-629 $) "failed") $) 211 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-1154)) 217 (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-113)) 216 (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $) 210 (|has| |#1| (-1090)))) (-3515 (((-111) $ (-1154)) 166) (((-111) $ (-113)) 165)) (-3701 (($ $) 67)) (-2384 (((-756) $) 158)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 196)) (-3722 ((|#1| $) 197)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3633 (((-111) $ (-1154)) 171) (((-111) $ $) 170)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3117 (((-111) $) 182 (|has| $ (-1019 (-552))))) (-2432 (($ $ (-1154) (-756) (-1 $ $)) 222 (|has| |#1| (-1030))) (($ $ (-1154) (-756) (-1 $ (-629 $))) 221 (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ (-629 $)))) 220 (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ $))) 219 (|has| |#1| (-1030))) (($ $ (-629 (-113)) (-629 $) (-1154)) 208 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1154)) 207 (|has| |#1| (-600 (-528)))) (($ $) 206 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-1154))) 205 (|has| |#1| (-600 (-528)))) (($ $ (-1154)) 204 (|has| |#1| (-600 (-528)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-629 $))) 178) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) 177) (($ $ (-629 (-113)) (-629 (-1 $ $))) 176) (($ $ (-1154) (-1 $ $)) 175) (($ $ (-1154) (-1 $ (-629 $))) 174) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) 173) (($ $ (-629 (-1154)) (-629 (-1 $ $))) 172) (($ $ (-629 $) (-629 $)) 143) (($ $ $ $) 142) (($ $ (-288 $)) 141) (($ $ (-629 (-288 $))) 140) (($ $ (-629 (-598 $)) (-629 $)) 139) (($ $ (-598 $) $) 138)) (-3795 (((-756) $) 56)) (-2060 (($ (-113) (-629 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-1877 (($ $ $) 157) (($ $) 156)) (-3096 (($ $ (-1154)) 246 (|has| |#1| (-1030))) (($ $ (-629 (-1154))) 245 (|has| |#1| (-1030))) (($ $ (-1154) (-756)) 244 (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) 243 (|has| |#1| (-1030)))) (-2493 (($ $) 225 (|has| |#1| (-544)))) (-4026 (((-1103 |#1| (-598 $)) $) 224 (|has| |#1| (-544)))) (-3521 (($ $) 181 (|has| $ (-1030)))) (-1522 (((-528) $) 252 (|has| |#1| (-600 (-528)))) (($ (-412 $)) 223 (|has| |#1| (-544))) (((-873 (-373)) $) 188 (|has| |#1| (-600 (-873 (-373))))) (((-873 (-552)) $) 187 (|has| |#1| (-600 (-873 (-552)))))) (-2074 (($ $ $) 251 (|has| |#1| (-466)))) (-2104 (($ $ $) 250 (|has| |#1| (-466)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-933 |#1|)) 247 (|has| |#1| (-1030))) (($ (-401 (-933 |#1|))) 231 (|has| |#1| (-544))) (($ (-401 (-933 (-401 |#1|)))) 229 (|has| |#1| (-544))) (($ (-933 (-401 |#1|))) 228 (|has| |#1| (-544))) (($ (-401 |#1|)) 227 (|has| |#1| (-544))) (($ (-1103 |#1| (-598 $))) 213 (|has| |#1| (-1030))) (($ |#1|) 193) (($ (-1154)) 184) (($ (-598 $)) 135)) (-3878 (((-3 $ "failed") $) 236 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-3044 (($ (-629 $)) 153) (($ $) 152)) (-1374 (((-111) (-113)) 164)) (-3589 (((-111) $ $) 37)) (-3893 (($ (-1154) (-629 $)) 203) (($ (-1154) $ $ $ $) 202) (($ (-1154) $ $ $) 201) (($ (-1154) $ $) 200) (($ (-1154) $) 199)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1154)) 242 (|has| |#1| (-1030))) (($ $ (-629 (-1154))) 241 (|has| |#1| (-1030))) (($ $ (-1154) (-756)) 240 (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) 239 (|has| |#1| (-1030)))) (-1666 (((-111) $ $) 131)) (-1644 (((-111) $ $) 130)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 132)) (-1632 (((-111) $ $) 129)) (-1720 (($ $ $) 62) (($ (-1103 |#1| (-598 $)) (-1103 |#1| (-598 $))) 226 (|has| |#1| (-544)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) +(((-29 |#1|) (-137) (-13 (-832) (-544))) (T -29)) +((-1743 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-832) (-544))))) (-1821 (*1 *2 *1) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *3)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-832) (-544))))) (-1821 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *4)))) (-3476 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-832) (-544))))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *3)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-832) (-544))))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -1743 ($ $)) (-15 -1821 ((-629 $) $)) (-15 -1743 ($ $ (-1154))) (-15 -1821 ((-629 $) $ (-1154))) (-15 -3476 ($ $)) (-15 -2965 ((-629 $) $)) (-15 -3476 ($ $ (-1154))) (-15 -2965 ((-629 $) $ (-1154))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-873 (-373))) |has| |#1| (-600 (-873 (-373)))) ((-600 (-873 (-552))) |has| |#1| (-600 (-873 (-552)))) ((-238) . T) ((-284) . T) ((-301) . T) ((-303 $) . T) ((-296) . T) ((-357) . T) ((-371 |#1|) |has| |#1| (-1030)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-424 |#1|) . T) ((-445) . T) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) . T) ((-632 #0#) . T) ((-632 |#1|) |has| |#1| (-169)) ((-632 $) . T) ((-625 (-552)) -12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) ((-625 |#1|) |has| |#1| (-1030)) ((-702 #0#) . T) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) . T) ((-711) . T) ((-832) . T) ((-881 (-1154)) |has| |#1| (-1030)) ((-867 (-373)) |has| |#1| (-867 (-373))) ((-867 (-552)) |has| |#1| (-867 (-552))) ((-865 |#1|) . T) ((-901) . T) ((-983) . T) ((-1019 (-401 (-552))) -4029 (|has| |#1| (-1019 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552))))) ((-1019 (-401 (-933 |#1|))) |has| |#1| (-544)) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 (-598 $)) . T) ((-1019 (-933 |#1|)) |has| |#1| (-1030)) ((-1019 (-1154)) . T) ((-1019 |#1|) . T) ((-1036 #0#) . T) ((-1036 |#1|) |has| |#1| (-169)) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1191) . T) ((-1195) . T)) +((-2926 (((-1072 (-220)) $) NIL)) (-2915 (((-1072 (-220)) $) NIL)) (-2712 (($ $ (-220)) 125)) (-2236 (($ (-933 (-552)) (-1154) (-1154) (-1072 (-401 (-552))) (-1072 (-401 (-552)))) 83)) (-3890 (((-629 (-629 (-924 (-220)))) $) 137)) (-3213 (((-844) $) 149))) +(((-30) (-13 (-936) (-10 -8 (-15 -2236 ($ (-933 (-552)) (-1154) (-1154) (-1072 (-401 (-552))) (-1072 (-401 (-552))))) (-15 -2712 ($ $ (-220)))))) (T -30)) +((-2236 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-933 (-552))) (-5 *3 (-1154)) (-5 *4 (-1072 (-401 (-552)))) (-5 *1 (-30)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30))))) +(-13 (-936) (-10 -8 (-15 -2236 ($ (-933 (-552)) (-1154) (-1154) (-1072 (-401 (-552))) (-1072 (-401 (-552))))) (-15 -2712 ($ $ (-220))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 11)) (-4174 (((-1113) $) 9)) (-1613 (((-111) $ $) NIL))) +(((-31) (-13 (-1061) (-10 -8 (-15 -4174 ((-1113) $)) (-15 -4300 ((-1113) $))))) (T -31)) +((-4174 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-31)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-31))))) +(-13 (-1061) (-10 -8 (-15 -4174 ((-1113) $)) (-15 -4300 ((-1113) $)))) +((-1743 ((|#2| (-1150 |#2|) (-1154)) 43)) (-2951 (((-113) (-113)) 56)) (-1941 (((-1150 |#2|) (-598 |#2|)) 133 (|has| |#1| (-1019 (-552))))) (-3141 ((|#2| |#1| (-552)) 123 (|has| |#1| (-1019 (-552))))) (-1708 ((|#2| (-1150 |#2|) |#2|) 30)) (-2426 (((-844) (-629 |#2|)) 85)) (-3521 ((|#2| |#2|) 129 (|has| |#1| (-1019 (-552))))) (-1374 (((-111) (-113)) 18)) (** ((|#2| |#2| (-401 (-552))) 96 (|has| |#1| (-1019 (-552)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1743 (|#2| (-1150 |#2|) (-1154))) (-15 -2951 ((-113) (-113))) (-15 -1374 ((-111) (-113))) (-15 -1708 (|#2| (-1150 |#2|) |#2|)) (-15 -2426 ((-844) (-629 |#2|))) (IF (|has| |#1| (-1019 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -1941 ((-1150 |#2|) (-598 |#2|))) (-15 -3521 (|#2| |#2|)) (-15 -3141 (|#2| |#1| (-552)))) |%noBranch|)) (-13 (-832) (-544)) (-424 |#1|)) (T -32)) +((-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1019 *4)) (-4 *3 (-13 (-832) (-544))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-1019 (-552))) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1019 (-552))) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-1150 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1019 (-552))) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-844)) (-5 *1 (-32 *4 *5)))) (-1708 (*1 *2 *3 *2) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-32 *4 *2)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *2)) (-5 *4 (-1154)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-832) (-544)))))) +(-10 -7 (-15 -1743 (|#2| (-1150 |#2|) (-1154))) (-15 -2951 ((-113) (-113))) (-15 -1374 ((-111) (-113))) (-15 -1708 (|#2| (-1150 |#2|) |#2|)) (-15 -2426 ((-844) (-629 |#2|))) (IF (|has| |#1| (-1019 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -1941 ((-1150 |#2|) (-598 |#2|))) (-15 -3521 (|#2| |#2|)) (-15 -3141 (|#2| |#1| (-552)))) |%noBranch|)) +((-4238 (((-111) $ (-756)) 16)) (-2130 (($) 10)) (-1418 (((-111) $ (-756)) 15)) (-1745 (((-111) $ (-756)) 14)) (-2795 (((-111) $ $) 8)) (-3435 (((-111) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -2130 (|#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756))) (-15 -3435 ((-111) |#1|)) (-15 -2795 ((-111) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2130 (|#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756))) (-15 -3435 ((-111) |#1|)) (-15 -2795 ((-111) |#1| |#1|))) +((-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-1418 (((-111) $ (-756)) 9)) (-1745 (((-111) $ (-756)) 10)) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-1487 (($ $) 13)) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) (((-34) (-137)) (T -34)) -((-2432 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-2973 (*1 *1 *1) (-4 *1 (-34))) (-2373 (*1 *1) (-4 *1 (-34))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-3971 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-1602 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-4031 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-3887 (*1 *1) (-4 *1 (-34))) (-1383 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-34)) (-5 *2 (-754))))) -(-13 (-1189) (-10 -8 (-15 -2432 ((-111) $ $)) (-15 -2973 ($ $)) (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -3971 ((-111) $ (-754))) (-15 -1602 ((-111) $ (-754))) (-15 -4031 ((-111) $ (-754))) (-15 -3887 ($) -3488) (IF (|has| $ (-6 -4366)) (-15 -1383 ((-754) $)) |%noBranch|))) -(((-1189) . T)) -((-1673 (($ $) 11)) (-1652 (($ $) 10)) (-1697 (($ $) 9)) (-3519 (($ $) 8)) (-1686 (($ $) 7)) (-1661 (($ $) 6))) +((-2795 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-1487 (*1 *1 *1) (-4 *1 (-34))) (-3430 (*1 *1) (-4 *1 (-34))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-1745 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111)))) (-1418 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111)))) (-4238 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111)))) (-2130 (*1 *1) (-4 *1 (-34))) (-2657 (*1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-34)) (-5 *2 (-756))))) +(-13 (-1191) (-10 -8 (-15 -2795 ((-111) $ $)) (-15 -1487 ($ $)) (-15 -3430 ($)) (-15 -3435 ((-111) $)) (-15 -1745 ((-111) $ (-756))) (-15 -1418 ((-111) $ (-756))) (-15 -4238 ((-111) $ (-756))) (-15 -2130 ($) -3930) (IF (|has| $ (-6 -4368)) (-15 -2657 ((-756) $)) |%noBranch|))) +(((-1191) . T)) +((-3843 (($ $) 11)) (-2530 (($ $) 10)) (-3863 (($ $) 9)) (-3013 (($ $) 8)) (-3853 (($ $) 7)) (-2543 (($ $) 6))) (((-35) (-137)) (T -35)) -((-1673 (*1 *1 *1) (-4 *1 (-35))) (-1652 (*1 *1 *1) (-4 *1 (-35))) (-1697 (*1 *1 *1) (-4 *1 (-35))) (-3519 (*1 *1 *1) (-4 *1 (-35))) (-1686 (*1 *1 *1) (-4 *1 (-35))) (-1661 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -1661 ($ $)) (-15 -1686 ($ $)) (-15 -3519 ($ $)) (-15 -1697 ($ $)) (-15 -1652 ($ $)) (-15 -1673 ($ $)))) -((-1465 (((-111) $ $) 19 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-4288 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 125)) (-4155 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 148)) (-1700 (($ $) 146)) (-2642 (($) 72) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 71)) (-3305 (((-1240) $ |#1| |#1|) 99 (|has| $ (-6 -4367))) (((-1240) $ (-552) (-552)) 178 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 159 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2701 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 200 (|has| $ (-6 -4367))) (($ $) 199 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2472 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 134 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 155 (|has| $ (-6 -4367)))) (-2801 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 157 (|has| $ (-6 -4367)))) (-1612 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 153 (|has| $ (-6 -4367)))) (-2950 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 189 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-1202 (-552)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 160 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 158 (|has| $ (-6 -4367))) (($ $ "rest" $) 156 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 154 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 133 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 132 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 216)) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 175 (|has| $ (-6 -4366)))) (-4143 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 147)) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-2519 (($ $) 201 (|has| $ (-6 -4367)))) (-3429 (($ $) 211)) (-3351 (($ $ (-754)) 142) (($ $) 140)) (-2820 (($ $) 214 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3370 (($ $) 58 (-1559 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))) (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 220) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 215 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 174 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 176 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 173 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 172 (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 190 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 88) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 188)) (-3592 (((-111) $) 192)) (-2967 (((-552) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 208) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 207 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 206 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366))) (((-627 |#2|) $) 79 (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 114 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 123)) (-3726 (((-111) $ $) 131 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2655 (($ (-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 169)) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 96 (|has| |#1| (-830))) (((-552) $) 180 (|has| (-552) (-830)))) (-1816 (($ $ $) 198 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1438 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3759 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366))) (((-627 |#2|) $) 80 (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 115 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 95 (|has| |#1| (-830))) (((-552) $) 181 (|has| (-552) (-830)))) (-4093 (($ $ $) 197 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 110 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 109)) (-1299 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 225)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 128)) (-3810 (((-111) $) 124)) (-1595 (((-1134) $) 22 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1294 (($ $ (-754)) 145) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 143)) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 219) (($ $ $ (-552)) 218)) (-3252 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 162) (($ $ $ (-552)) 161)) (-3892 (((-627 |#1|) $) 93) (((-627 (-552)) $) 183)) (-2358 (((-111) |#1| $) 92) (((-111) (-552) $) 184)) (-1498 (((-1096) $) 21 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-3340 ((|#2| $) 97 (|has| |#1| (-830))) (($ $ (-754)) 139) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 137)) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51) (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 171)) (-1942 (($ $ |#2|) 98 (|has| $ (-6 -4367))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 179 (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-2361 (((-111) $) 191)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 112 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 121 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 120 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 119 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 118 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 182 (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2083 (((-627 |#2|) $) 91) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 185)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 187) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 186) (($ $ (-1202 (-552))) 165) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first") 138) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value") 126)) (-1848 (((-552) $ $) 129)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-3010 (($ $ (-552)) 222) (($ $ (-1202 (-552))) 221)) (-3907 (($ $ (-552)) 164) (($ $ (-1202 (-552))) 163)) (-2978 (((-111) $) 127)) (-1805 (($ $) 151)) (-3384 (($ $) 152 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 150)) (-4149 (($ $) 149)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) |#2| $) 81 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 113 (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) 202 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528)))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 170)) (-3151 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 224) (($ $ $) 223)) (-2668 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 168) (($ (-627 $)) 167) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 136) (($ $ $) 135)) (-1477 (((-842) $) 18 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))))) (-2535 (((-627 $) $) 122)) (-3415 (((-111) $ $) 130 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-1305 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") |#1| $) 108)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 111 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 195 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2329 (((-111) $ $) 194 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2292 (((-111) $ $) 20 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2340 (((-111) $ $) 196 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2316 (((-111) $ $) 193 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-36 |#1| |#2|) (-137) (-1076) (-1076)) (T -36)) -((-1305 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-2 (|:| -3998 *3) (|:| -2162 *4)))))) -(-13 (-1165 |t#1| |t#2|) (-648 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))) (-10 -8 (-15 -1305 ((-3 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #1=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 #2=(-552) #1#) . T) ((-280 |#1| |#2|) . T) ((-282 #2# #1#) . T) ((-282 |#1| |#2|) . T) ((-303 #1#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-276 #1#) . T) ((-367 #1#) . T) ((-482 #1#) . T) ((-482 |#2|) . T) ((-590 #2# #1#) . T) ((-590 |#1| |#2|) . T) ((-506 #1# #1#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-596 |#1| |#2|) . T) ((-633 #1#) . T) ((-648 #1#) . T) ((-830) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) ((-989 #1#) . T) ((-1076) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))) ((-1125 #1#) . T) ((-1165 |#1| |#2|) . T) ((-1189) . T) ((-1223 #1#) . T)) -((-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-38 |#2|) (-169)) (T -37)) -NIL -(-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3843 (*1 *1 *1) (-4 *1 (-35))) (-2530 (*1 *1 *1) (-4 *1 (-35))) (-3863 (*1 *1 *1) (-4 *1 (-35))) (-3013 (*1 *1 *1) (-4 *1 (-35))) (-3853 (*1 *1 *1) (-4 *1 (-35))) (-2543 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2543 ($ $)) (-15 -3853 ($ $)) (-15 -3013 ($ $)) (-15 -3863 ($ $)) (-15 -2530 ($ $)) (-15 -3843 ($ $)))) +((-3202 (((-111) $ $) 19 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2925 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 125)) (-2210 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 148)) (-1785 (($ $) 146)) (-3295 (($) 72) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 71)) (-2660 (((-1242) $ |#1| |#1|) 99 (|has| $ (-6 -4369))) (((-1242) $ (-552) (-552)) 178 (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 159 (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3646 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 200 (|has| $ (-6 -4369))) (($ $) 199 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-4238 (((-111) $ (-756)) 8)) (-3188 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 134 (|has| $ (-6 -4369)))) (-2830 (($ $ $) 155 (|has| $ (-6 -4369)))) (-3359 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 157 (|has| $ (-6 -4369)))) (-1505 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 153 (|has| $ (-6 -4369)))) (-1470 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 189 (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-1204 (-552)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 160 (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "last" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 158 (|has| $ (-6 -4369))) (($ $ "rest" $) 156 (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "first" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 154 (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "value" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 133 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 132 (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 45 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 216)) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 55 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 175 (|has| $ (-6 -4368)))) (-2196 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 147)) (-3078 (((-3 |#2| "failed") |#1| $) 61)) (-2130 (($) 7 T CONST)) (-2366 (($ $) 201 (|has| $ (-6 -4369)))) (-3344 (($ $) 211)) (-2715 (($ $ (-756)) 142) (($ $) 140)) (-2232 (($ $) 214 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-2738 (($ $) 58 (-4029 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))) (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 46 (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 220) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 215 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 54 (|has| $ (-6 -4368))) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 174 (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 56 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 53 (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 52 (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 176 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 173 (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 172 (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 190 (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) 88) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) 188)) (-2268 (((-111) $) 192)) (-1456 (((-552) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 208) (((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 207 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) (((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) 206 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 30 (|has| $ (-6 -4368))) (((-629 |#2|) $) 79 (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 114 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 123)) (-4266 (((-111) $ $) 131 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-3307 (($ (-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 169)) (-1418 (((-111) $ (-756)) 9)) (-1695 ((|#1| $) 96 (|has| |#1| (-832))) (((-552) $) 180 (|has| (-552) (-832)))) (-1772 (($ $ $) 198 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3707 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1446 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 29 (|has| $ (-6 -4368))) (((-629 |#2|) $) 80 (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 115 (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368)))) (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))))) (-1842 ((|#1| $) 95 (|has| |#1| (-832))) (((-552) $) 181 (|has| (-552) (-832)))) (-2011 (($ $ $) 197 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 34 (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4369))) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 110 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 109)) (-2563 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 225)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 128)) (-3862 (((-111) $) 124)) (-2623 (((-1136) $) 22 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2680 (($ $ (-756)) 145) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 143)) (-1376 (((-629 |#1|) $) 63)) (-2539 (((-111) |#1| $) 64)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 39)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 40) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) 219) (($ $ $ (-552)) 218)) (-1759 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) 162) (($ $ $ (-552)) 161)) (-2190 (((-629 |#1|) $) 93) (((-629 (-552)) $) 183)) (-1335 (((-111) |#1| $) 92) (((-111) (-552) $) 184)) (-2876 (((-1098) $) 21 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2702 ((|#2| $) 97 (|has| |#1| (-832))) (($ $ (-756)) 139) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 137)) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 51) (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 171)) (-1518 (($ $ |#2|) 98 (|has| $ (-6 -4369))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 179 (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 41)) (-1352 (((-111) $) 191)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 32 (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 112 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) 26 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 25 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 24 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 23 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 121 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 120 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 119 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) 118 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 182 (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-3627 (((-629 |#2|) $) 91) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 185)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 187) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) 186) (($ $ (-1204 (-552))) 165) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "first") 138) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "value") 126)) (-3153 (((-552) $ $) 129)) (-3680 (($) 49) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 48)) (-3502 (($ $ (-552)) 222) (($ $ (-1204 (-552))) 221)) (-2012 (($ $ (-552)) 164) (($ $ (-1204 (-552))) 163)) (-1289 (((-111) $) 127)) (-2760 (($ $) 151)) (-4022 (($ $) 152 (|has| $ (-6 -4369)))) (-3058 (((-756) $) 150)) (-2963 (($ $) 149)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 31 (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-756) |#2| $) 81 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 113 (|has| $ (-6 -4368)))) (-3747 (($ $ $ (-552)) 202 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528)))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 50) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 170)) (-2380 (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 224) (($ $ $) 223)) (-4319 (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 168) (($ (-629 $)) 167) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 136) (($ $ $) 135)) (-3213 (((-844) $) 18 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844)))))) (-2527 (((-629 $) $) 122)) (-4298 (((-111) $ $) 130 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 42)) (-2688 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") |#1| $) 108)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 33 (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 111 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 195 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1644 (((-111) $ $) 194 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1613 (((-111) $ $) 20 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1655 (((-111) $ $) 196 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1632 (((-111) $ $) 193 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-36 |#1| |#2|) (-137) (-1078) (-1078)) (T -36)) +((-2688 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-5 *2 (-2 (|:| -2670 *3) (|:| -3360 *4)))))) +(-13 (-1167 |t#1| |t#2|) (-650 (-2 (|:| -2670 |t#1|) (|:| -3360 |t#2|))) (-10 -8 (-15 -2688 ((-3 (-2 (|:| -2670 |t#1|) (|:| -3360 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((-101) -4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832))) ((-599 (-844)) -4029 (|has| |#2| (-1078)) (|has| |#2| (-599 (-844))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844)))) ((-148 #1=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((-600 (-528)) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 #2=(-552) #1#) . T) ((-280 |#1| |#2|) . T) ((-282 #2# #1#) . T) ((-282 |#1| |#2|) . T) ((-303 #1#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-276 #1#) . T) ((-367 #1#) . T) ((-482 #1#) . T) ((-482 |#2|) . T) ((-590 #2# #1#) . T) ((-590 |#1| |#2|) . T) ((-506 #1# #1#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-596 |#1| |#2|) . T) ((-635 #1#) . T) ((-650 #1#) . T) ((-832) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)) ((-991 #1#) . T) ((-1078) -4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832))) ((-1127 #1#) . T) ((-1167 |#1| |#2|) . T) ((-1191) . T) ((-1225 #1#) . T)) +((-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-38 |#2|) (-169)) (T -37)) +NIL +(-10 -8 (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-38 |#1|) (-137) (-169)) (T -38)) -((-1477 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) -(-13 (-1028) (-700 |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2843 (((-412 |#1|) |#1|) 41)) (-1727 (((-412 |#1|) |#1|) 30) (((-412 |#1|) |#1| (-627 (-48))) 33)) (-1720 (((-111) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1| (-627 (-48)))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2843 ((-412 |#1|) |#1|)) (-15 -1720 ((-111) |#1|))) (-1211 (-48))) (T -39)) -((-1720 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-2843 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48)))))) -(-10 -7 (-15 -1727 ((-412 |#1|) |#1| (-627 (-48)))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2843 ((-412 |#1|) |#1|)) (-15 -1720 ((-111) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3245 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) NIL) (((-671 (-401 |#2|))) NIL)) (-3385 (((-401 |#2|) $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) NIL (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) NIL)) (-2145 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) NIL) (($ (-1235 (-401 |#2|))) 57) (($ (-1235 |#2|) |#2|) 125)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) NIL) (((-671 (-401 |#2|)) (-671 $)) NIL)) (-1913 (((-1235 $) (-1235 $)) NIL)) (-2091 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-3814 (((-627 (-627 |#1|))) NIL (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) NIL)) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) NIL)) (-3521 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-2789 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-401 |#2|) (-357)))) (-1375 (($ $) NIL)) (-2740 (($) NIL (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) NIL (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) NIL (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) NIL)) (-4080 (((-754)) NIL)) (-1380 (((-1235 $) (-1235 $)) 102)) (-2349 (((-401 |#2|) $) NIL)) (-2370 (((-627 (-931 |#1|)) (-1152)) NIL (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) NIL (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) NIL)) (-1414 (((-1240) (-754)) 79)) (-1486 (((-671 (-401 |#2|))) 51)) (-2659 (((-671 (-401 |#2|))) 44)) (-1951 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 126)) (-3210 (((-671 (-401 |#2|))) 45)) (-2216 (((-671 (-401 |#2|))) 43)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 64)) (-1668 (((-1235 $)) 42)) (-3402 (((-1235 $)) 41)) (-3177 (((-111) $) NIL)) (-1505 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3002 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) NIL)) (-1498 (((-1096) $) NIL)) (-2161 (((-754)) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) NIL (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) NIL)) (-1758 (((-3 |#2| "failed")) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) NIL) (((-401 |#2|)) 39)) (-4018 (((-754) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 50)) (-3439 (($) NIL (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 |#2|)) $) 58) (((-671 (-401 |#2|)) (-1235 $)) 103)) (-3562 (((-1235 (-401 |#2|)) $) NIL) (($ (-1235 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-401 |#2|) (-1017 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3050 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) NIL)) (-3995 (((-754)) NIL)) (-4073 (((-111)) 37)) (-2423 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2957 (((-1235 $)) 93)) (-3778 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2419 (((-111)) NIL)) (-1922 (($) 16 T CONST)) (-1933 (($) 26 T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -1414 ((-1240) (-754))))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) |#3|) (T -40)) -((-1414 (*1 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *2 (-1240)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1211 (-401 *5))) (-14 *7 *6)))) -(-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -1414 ((-1240) (-754))))) -((-3195 ((|#2| |#2|) 48)) (-2470 ((|#2| |#2|) 120 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-3920 ((|#2| |#2|) 87 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-1772 ((|#2| |#2|) 88 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-1958 ((|#2| (-113) |#2| (-754)) 116 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-2015 (((-1148 |#2|) |#2|) 45)) (-3276 ((|#2| |#2| (-627 (-598 |#2|))) 18) ((|#2| |#2| (-627 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|)) (-15 -3276 (|#2| |#2| (-627 |#2|))) (-15 -3276 (|#2| |#2| (-627 (-598 |#2|)))) (-15 -2015 ((-1148 |#2|) |#2|)) (IF (|has| |#1| (-830)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1017 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1772 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -1958 (|#2| (-113) |#2| (-754)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-544) (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 |#1| (-598 $)) $)) (-15 -2929 ((-1101 |#1| (-598 $)) $)) (-15 -1477 ($ (-1101 |#1| (-598 $))))))) (T -41)) -((-1958 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-754)) (-4 *5 (-445)) (-4 *5 (-830)) (-4 *5 (-1017 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *5 (-598 $)) $)) (-15 -2929 ((-1101 *5 (-598 $)) $)) (-15 -1477 ($ (-1101 *5 (-598 $))))))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1148 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))))) (-3276 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-598 *2))) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3276 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3195 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) -(-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|)) (-15 -3276 (|#2| |#2| (-627 |#2|))) (-15 -3276 (|#2| |#2| (-627 (-598 |#2|)))) (-15 -2015 ((-1148 |#2|) |#2|)) (IF (|has| |#1| (-830)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1017 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1772 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -1958 (|#2| (-113) |#2| (-754)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1727 (((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))) 23) (((-412 |#3|) |#3| (-627 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3| (-627 (-48)))) (-15 -1727 ((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))))) (-830) (-776) (-928 (-48) |#2| |#1|)) (T -42)) -((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *7 (-928 (-48) *6 *5)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-928 (-48) *6 *5))))) -(-10 -7 (-15 -1727 ((-412 |#3|) |#3| (-627 (-48)))) (-15 -1727 ((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))))) -((-2837 (((-754) |#2|) 65)) (-4171 (((-754) |#2|) 68)) (-2057 (((-627 |#2|)) 33)) (-3729 (((-754) |#2|) 67)) (-1589 (((-754) |#2|) 64)) (-2561 (((-754) |#2|) 66)) (-3159 (((-627 (-671 |#1|))) 60)) (-4270 (((-627 |#2|)) 55)) (-1642 (((-627 |#2|) |#2|) 43)) (-2727 (((-627 |#2|)) 57)) (-2974 (((-627 |#2|)) 56)) (-3714 (((-627 (-671 |#1|))) 48)) (-2551 (((-627 |#2|)) 54)) (-4118 (((-627 |#2|) |#2|) 42)) (-1321 (((-627 |#2|)) 50)) (-3414 (((-627 (-671 |#1|))) 61)) (-4322 (((-627 |#2|)) 59)) (-2957 (((-1235 |#2|) (-1235 |#2|)) 84 (|has| |#1| (-301))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3729 ((-754) |#2|)) (-15 -4171 ((-754) |#2|)) (-15 -1589 ((-754) |#2|)) (-15 -2837 ((-754) |#2|)) (-15 -2561 ((-754) |#2|)) (-15 -1321 ((-627 |#2|))) (-15 -4118 ((-627 |#2|) |#2|)) (-15 -1642 ((-627 |#2|) |#2|)) (-15 -2551 ((-627 |#2|))) (-15 -4270 ((-627 |#2|))) (-15 -2974 ((-627 |#2|))) (-15 -2727 ((-627 |#2|))) (-15 -4322 ((-627 |#2|))) (-15 -3714 ((-627 (-671 |#1|)))) (-15 -3159 ((-627 (-671 |#1|)))) (-15 -3414 ((-627 (-671 |#1|)))) (-15 -2057 ((-627 |#2|))) (IF (|has| |#1| (-301)) (-15 -2957 ((-1235 |#2|) (-1235 |#2|))) |%noBranch|)) (-544) (-411 |#1|)) (T -43)) -((-2957 (*1 *2 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) (-2057 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3414 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3159 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3714 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4322 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2727 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2974 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4270 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2551 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1642 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1321 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2837 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(-10 -7 (-15 -3729 ((-754) |#2|)) (-15 -4171 ((-754) |#2|)) (-15 -1589 ((-754) |#2|)) (-15 -2837 ((-754) |#2|)) (-15 -2561 ((-754) |#2|)) (-15 -1321 ((-627 |#2|))) (-15 -4118 ((-627 |#2|) |#2|)) (-15 -1642 ((-627 |#2|) |#2|)) (-15 -2551 ((-627 |#2|))) (-15 -4270 ((-627 |#2|))) (-15 -2974 ((-627 |#2|))) (-15 -2727 ((-627 |#2|))) (-15 -4322 ((-627 |#2|))) (-15 -3714 ((-627 (-671 |#1|)))) (-15 -3159 ((-627 (-671 |#1|)))) (-15 -3414 ((-627 (-671 |#1|)))) (-15 -2057 ((-627 |#2|))) (IF (|has| |#1| (-301)) (-15 -2957 ((-1235 |#2|) (-1235 |#2|))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) NIL) (((-1235 (-671 |#1|))) 24)) (-2946 (((-1235 $)) 51)) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-2526 ((|#1| $) NIL)) (-3029 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-2856 (((-1148 (-931 |#1|))) NIL (|has| |#1| (-357)))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL)) (-3343 (((-1148 |#1|) $) NIL (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-1608 (((-1148 |#1|) $) NIL)) (-1819 (((-111)) 87)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) NIL)) (-2040 (((-3 $ "failed") $) 14 (|has| |#1| (-544)))) (-4154 (((-900)) 52)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) 89)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-4131 ((|#1| $) NIL)) (-2593 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1548 (((-1148 (-931 |#1|))) NIL (|has| |#1| (-357)))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL)) (-1794 (((-1148 |#1|) $) NIL (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-2798 (((-1148 |#1|) $) NIL)) (-3485 (((-111)) 86)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) 93)) (-2011 (((-111)) 92)) (-2344 (((-111)) 94)) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) 88)) (-1985 ((|#1| $ (-552)) 54)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) 28) (((-671 |#1|) (-1235 $)) NIL)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) NIL) (((-627 (-931 |#1|))) NIL)) (-2493 (($ $ $) NIL)) (-1822 (((-111)) 84)) (-1477 (((-842) $) 69) (($ (-1235 |#1|)) 22)) (-2957 (((-1235 $)) 45)) (-1360 (((-627 (-1235 |#1|))) NIL (|has| |#1| (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) 82)) (-3288 (($ (-671 |#1|) $) 18)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) 85)) (-3258 (((-111)) 83)) (-3699 (((-111)) 81)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1118 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-630 (-1118 |#2| |#1|)) (-10 -8 (-15 -1477 ($ (-1235 |#1|))))) (-357) (-900) (-627 (-1152)) (-1235 (-671 |#1|))) (T -44)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-14 *6 (-1235 (-671 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152)))))) -(-13 (-411 |#1|) (-630 (-1118 |#2| |#1|)) (-10 -8 (-15 -1477 ($ (-1235 |#1|))))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-4288 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-4155 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-1700 (($ $) NIL)) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367))) (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2701 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))))) (-4298 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2472 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 27 (|has| $ (-6 -4367)))) (-2801 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-1612 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 29 (|has| $ (-6 -4367)))) (-2950 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-1202 (-552)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-4143 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3602 (((-3 |#2| "failed") |#1| $) 37)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $ (-754)) NIL) (($ $) 24)) (-2820 (($ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 18 (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 18 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2655 (($ (-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830))) (((-552) $) 32 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1438 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3759 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830))) (((-552) $) 34 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1299 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) 42 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1294 (($ $ (-754)) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-1296 (((-627 |#1|) $) 20)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3252 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 |#1|) $) NIL) (((-627 (-552)) $) NIL)) (-2358 (((-111) |#1| $) NIL) (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830))) (($ $ (-754)) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 23)) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2083 (((-627 |#2|) $) NIL) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 17)) (-1275 (((-111) $) 16)) (-2373 (($) 13)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first") NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value") NIL)) (-1848 (((-552) $ $) NIL)) (-3028 (($) 12) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3010 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3151 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (($ $ $) NIL)) (-2668 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (($ (-627 $)) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 25) (($ $ $) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1305 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") |#1| $) 44)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2340 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1383 (((-754) $) 22 (|has| $ (-6 -4366))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1076) (-1076)) (T -45)) +((-3213 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) +(-13 (-1030) (-702 |t#1|) (-10 -8 (-15 -3213 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) . T) ((-711) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2483 (((-412 |#1|) |#1|) 41)) (-3479 (((-412 |#1|) |#1|) 30) (((-412 |#1|) |#1| (-629 (-48))) 33)) (-4344 (((-111) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -3479 ((-412 |#1|) |#1| (-629 (-48)))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -2483 ((-412 |#1|) |#1|)) (-15 -4344 ((-111) |#1|))) (-1213 (-48))) (T -39)) +((-4344 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48))))) (-2483 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48))))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48)))))) +(-10 -7 (-15 -3479 ((-412 |#1|) |#1| (-629 (-48)))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -2483 ((-412 |#1|) |#1|)) (-15 -4344 ((-111) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2684 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3303 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-1334 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2977 (((-673 (-401 |#2|)) (-1237 $)) NIL) (((-673 (-401 |#2|))) NIL)) (-1549 (((-401 |#2|) $) NIL)) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3343 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2393 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2663 (((-756)) NIL (|has| (-401 |#2|) (-362)))) (-3216 (((-111)) NIL)) (-2966 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| (-401 |#2|) (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-4278 (($ (-1237 (-401 |#2|)) (-1237 $)) NIL) (($ (-1237 (-401 |#2|))) 57) (($ (-1237 |#2|) |#2|) 125)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-4006 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3584 (((-673 (-401 |#2|)) $ (-1237 $)) NIL) (((-673 (-401 |#2|)) $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-401 |#2|))) (|:| |vec| (-1237 (-401 |#2|)))) (-673 $) (-1237 $)) NIL) (((-673 (-401 |#2|)) (-673 $)) NIL)) (-2525 (((-1237 $) (-1237 $)) NIL)) (-3884 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-1293 (((-3 $ "failed") $) NIL)) (-3901 (((-629 (-629 |#1|))) NIL (|has| |#1| (-362)))) (-3184 (((-111) |#1| |#1|) NIL)) (-2128 (((-902)) NIL)) (-1332 (($) NIL (|has| (-401 |#2|) (-362)))) (-1568 (((-111)) NIL)) (-2847 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3987 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| (-401 |#2|) (-357)))) (-3471 (($ $) NIL)) (-4000 (($) NIL (|has| (-401 |#2|) (-343)))) (-3504 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-1788 (($ $ (-756)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1677 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-4241 (((-902) $) NIL (|has| (-401 |#2|) (-343))) (((-818 (-902)) $) NIL (|has| (-401 |#2|) (-343)))) (-4065 (((-111) $) NIL)) (-3503 (((-756)) NIL)) (-2317 (((-1237 $) (-1237 $)) 102)) (-4346 (((-401 |#2|) $) NIL)) (-1429 (((-629 (-933 |#1|)) (-1154)) NIL (|has| |#1| (-357)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2169 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-902) $) NIL (|has| (-401 |#2|) (-362)))) (-3874 ((|#3| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2623 (((-1136) $) NIL)) (-3494 (((-1242) (-756)) 79)) (-2930 (((-673 (-401 |#2|))) 51)) (-1303 (((-673 (-401 |#2|))) 44)) (-3701 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3059 (($ (-1237 |#2|) |#2|) 126)) (-2931 (((-673 (-401 |#2|))) 45)) (-2435 (((-673 (-401 |#2|))) 43)) (-1459 (((-2 (|:| |num| (-673 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1493 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) 64)) (-3953 (((-1237 $)) 42)) (-4197 (((-1237 $)) 41)) (-2667 (((-111) $) NIL)) (-3097 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-1977 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-2840 (($ (-902)) NIL (|has| (-401 |#2|) (-362)))) (-2791 (((-3 |#2| "failed")) NIL)) (-2876 (((-1098) $) NIL)) (-3140 (((-756)) NIL)) (-4126 (($) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| (-401 |#2|) (-357)))) (-2594 (($ (-629 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-3479 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3969 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3795 (((-756) $) NIL (|has| (-401 |#2|) (-357)))) (-2060 ((|#1| $ |#1| |#1|) NIL)) (-3551 (((-3 |#2| "failed")) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1721 (((-401 |#2|) (-1237 $)) NIL) (((-401 |#2|)) 39)) (-4147 (((-756) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-756) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-3096 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1433 (((-673 (-401 |#2|)) (-1237 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-3521 ((|#3|) 50)) (-1368 (($) NIL (|has| (-401 |#2|) (-343)))) (-3464 (((-1237 (-401 |#2|)) $ (-1237 $)) NIL) (((-673 (-401 |#2|)) (-1237 $) (-1237 $)) NIL) (((-1237 (-401 |#2|)) $) 58) (((-673 (-401 |#2|)) (-1237 $)) 103)) (-1522 (((-1237 (-401 |#2|)) $) NIL) (($ (-1237 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-401 |#2|) (-343)))) (-1889 (((-1237 $) (-1237 $)) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-4029 (|has| (-401 |#2|) (-1019 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3878 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-3767 ((|#3| $) NIL)) (-2014 (((-756)) NIL)) (-1464 (((-111)) 37)) (-3895 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-4199 (((-1237 $)) 93)) (-3589 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3606 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3855 (((-111)) NIL)) (-3297 (($) 16 T CONST)) (-3309 (($) 26 T CONST)) (-1765 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-1242) (-756))))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) |#3|) (T -40)) +((-3494 (*1 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-357)) (-4 *5 (-1213 *4)) (-5 *2 (-1242)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1213 (-401 *5))) (-14 *7 *6)))) +(-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-1242) (-756))))) +((-2766 ((|#2| |#2|) 48)) (-3163 ((|#2| |#2|) 120 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-832)) (|has| |#1| (-1019 (-552)))))) (-2482 ((|#2| |#2|) 87 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-832)) (|has| |#1| (-1019 (-552)))))) (-3657 ((|#2| |#2|) 88 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-832)) (|has| |#1| (-1019 (-552)))))) (-1651 ((|#2| (-113) |#2| (-756)) 116 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-832)) (|has| |#1| (-1019 (-552)))))) (-4138 (((-1150 |#2|) |#2|) 45)) (-2319 ((|#2| |#2| (-629 (-598 |#2|))) 18) ((|#2| |#2| (-629 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2766 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2319 (|#2| |#2| |#2|)) (-15 -2319 (|#2| |#2| (-629 |#2|))) (-15 -2319 (|#2| |#2| (-629 (-598 |#2|)))) (-15 -4138 ((-1150 |#2|) |#2|)) (IF (|has| |#1| (-832)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1019 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -3657 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -3163 (|#2| |#2|)) (-15 -1651 (|#2| (-113) |#2| (-756)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-544) (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 |#1| (-598 $)) $)) (-15 -4026 ((-1103 |#1| (-598 $)) $)) (-15 -3213 ($ (-1103 |#1| (-598 $))))))) (T -41)) +((-1651 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-756)) (-4 *5 (-445)) (-4 *5 (-832)) (-4 *5 (-1019 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *5 (-598 $)) $)) (-15 -4026 ((-1103 *5 (-598 $)) $)) (-15 -3213 ($ (-1103 *5 (-598 $))))))))) (-3163 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $))))))))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $))))))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $))))))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1150 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) (-15 -4026 ((-1103 *4 (-598 $)) $)) (-15 -3213 ($ (-1103 *4 (-598 $))))))))) (-2319 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-598 *2))) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) (-15 -4026 ((-1103 *4 (-598 $)) $)) (-15 -3213 ($ (-1103 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-2319 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) (-15 -4026 ((-1103 *4 (-598 $)) $)) (-15 -3213 ($ (-1103 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-2319 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $))))))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $))))))))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) (-15 -4026 ((-1103 *3 (-598 $)) $)) (-15 -3213 ($ (-1103 *3 (-598 $)))))))))) +(-10 -7 (-15 -2766 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2319 (|#2| |#2| |#2|)) (-15 -2319 (|#2| |#2| (-629 |#2|))) (-15 -2319 (|#2| |#2| (-629 (-598 |#2|)))) (-15 -4138 ((-1150 |#2|) |#2|)) (IF (|has| |#1| (-832)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1019 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -3657 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -3163 (|#2| |#2|)) (-15 -1651 (|#2| (-113) |#2| (-756)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3479 (((-412 (-1150 |#3|)) (-1150 |#3|) (-629 (-48))) 23) (((-412 |#3|) |#3| (-629 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3479 ((-412 |#3|) |#3| (-629 (-48)))) (-15 -3479 ((-412 (-1150 |#3|)) (-1150 |#3|) (-629 (-48))))) (-832) (-778) (-930 (-48) |#2| |#1|)) (T -42)) +((-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-48))) (-4 *5 (-832)) (-4 *6 (-778)) (-4 *7 (-930 (-48) *6 *5)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-48))) (-4 *5 (-832)) (-4 *6 (-778)) (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-930 (-48) *6 *5))))) +(-10 -7 (-15 -3479 ((-412 |#3|) |#3| (-629 (-48)))) (-15 -3479 ((-412 (-1150 |#3|)) (-1150 |#3|) (-629 (-48))))) +((-2413 (((-756) |#2|) 65)) (-3156 (((-756) |#2|) 68)) (-3389 (((-629 |#2|)) 33)) (-4293 (((-756) |#2|) 67)) (-2557 (((-756) |#2|) 64)) (-1510 (((-756) |#2|) 66)) (-2453 (((-629 (-673 |#1|))) 60)) (-1575 (((-629 |#2|)) 55)) (-1766 (((-629 |#2|) |#2|) 43)) (-3871 (((-629 |#2|)) 57)) (-4324 (((-629 |#2|)) 56)) (-4160 (((-629 (-673 |#1|))) 48)) (-2689 (((-629 |#2|)) 54)) (-3857 (((-629 |#2|) |#2|) 42)) (-1962 (((-629 |#2|)) 50)) (-4286 (((-629 (-673 |#1|))) 61)) (-2084 (((-629 |#2|)) 59)) (-4199 (((-1237 |#2|) (-1237 |#2|)) 84 (|has| |#1| (-301))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -4293 ((-756) |#2|)) (-15 -3156 ((-756) |#2|)) (-15 -2557 ((-756) |#2|)) (-15 -2413 ((-756) |#2|)) (-15 -1510 ((-756) |#2|)) (-15 -1962 ((-629 |#2|))) (-15 -3857 ((-629 |#2|) |#2|)) (-15 -1766 ((-629 |#2|) |#2|)) (-15 -2689 ((-629 |#2|))) (-15 -1575 ((-629 |#2|))) (-15 -4324 ((-629 |#2|))) (-15 -3871 ((-629 |#2|))) (-15 -2084 ((-629 |#2|))) (-15 -4160 ((-629 (-673 |#1|)))) (-15 -2453 ((-629 (-673 |#1|)))) (-15 -4286 ((-629 (-673 |#1|)))) (-15 -3389 ((-629 |#2|))) (IF (|has| |#1| (-301)) (-15 -4199 ((-1237 |#2|) (-1237 |#2|))) |%noBranch|)) (-544) (-411 |#1|)) (T -43)) +((-4199 (*1 *2 *2) (-12 (-5 *2 (-1237 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) (-3389 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4286 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2453 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4160 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2084 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3871 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4324 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1575 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2689 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1962 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2413 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2557 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3156 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4293 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(-10 -7 (-15 -4293 ((-756) |#2|)) (-15 -3156 ((-756) |#2|)) (-15 -2557 ((-756) |#2|)) (-15 -2413 ((-756) |#2|)) (-15 -1510 ((-756) |#2|)) (-15 -1962 ((-629 |#2|))) (-15 -3857 ((-629 |#2|) |#2|)) (-15 -1766 ((-629 |#2|) |#2|)) (-15 -2689 ((-629 |#2|))) (-15 -1575 ((-629 |#2|))) (-15 -4324 ((-629 |#2|))) (-15 -3871 ((-629 |#2|))) (-15 -2084 ((-629 |#2|))) (-15 -4160 ((-629 (-673 |#1|)))) (-15 -2453 ((-629 (-673 |#1|)))) (-15 -4286 ((-629 (-673 |#1|)))) (-15 -3389 ((-629 |#2|))) (IF (|has| |#1| (-301)) (-15 -4199 ((-1237 |#2|) (-1237 |#2|))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3784 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1432 (((-1237 (-673 |#1|)) (-1237 $)) NIL) (((-1237 (-673 |#1|))) 24)) (-4124 (((-1237 $)) 51)) (-2130 (($) NIL T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (|has| |#1| (-544)))) (-2004 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-1561 (((-673 |#1|) (-1237 $)) NIL) (((-673 |#1|)) NIL)) (-2416 ((|#1| $) NIL)) (-3695 (((-673 |#1|) $ (-1237 $)) NIL) (((-673 |#1|) $) NIL)) (-2583 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-2637 (((-1150 (-933 |#1|))) NIL (|has| |#1| (-357)))) (-3422 (($ $ (-902)) NIL)) (-2932 ((|#1| $) NIL)) (-1688 (((-1150 |#1|) $) NIL (|has| |#1| (-544)))) (-3332 ((|#1| (-1237 $)) NIL) ((|#1|) NIL)) (-1469 (((-1150 |#1|) $) NIL)) (-2890 (((-111)) 87)) (-4278 (($ (-1237 |#1|) (-1237 $)) NIL) (($ (-1237 |#1|)) NIL)) (-1293 (((-3 $ "failed") $) 14 (|has| |#1| (-544)))) (-2128 (((-902)) 52)) (-1756 (((-111)) NIL)) (-3454 (($ $ (-902)) NIL)) (-1887 (((-111)) NIL)) (-2143 (((-111)) NIL)) (-4284 (((-111)) 89)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (|has| |#1| (-544)))) (-2299 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-3607 (((-673 |#1|) (-1237 $)) NIL) (((-673 |#1|)) NIL)) (-3975 ((|#1| $) NIL)) (-1837 (((-673 |#1|) $ (-1237 $)) NIL) (((-673 |#1|) $) NIL)) (-4152 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-2173 (((-1150 (-933 |#1|))) NIL (|has| |#1| (-357)))) (-1736 (($ $ (-902)) NIL)) (-3231 ((|#1| $) NIL)) (-3854 (((-1150 |#1|) $) NIL (|has| |#1| (-544)))) (-3400 ((|#1| (-1237 $)) NIL) ((|#1|) NIL)) (-3326 (((-1150 |#1|) $) NIL)) (-3724 (((-111)) 86)) (-2623 (((-1136) $) NIL)) (-3329 (((-111)) 93)) (-4108 (((-111)) 92)) (-4297 (((-111)) 94)) (-2876 (((-1098) $) NIL)) (-1864 (((-111)) 88)) (-2060 ((|#1| $ (-552)) 54)) (-3464 (((-1237 |#1|) $ (-1237 $)) 48) (((-673 |#1|) (-1237 $) (-1237 $)) NIL) (((-1237 |#1|) $) 28) (((-673 |#1|) (-1237 $)) NIL)) (-1522 (((-1237 |#1|) $) NIL) (($ (-1237 |#1|)) NIL)) (-2566 (((-629 (-933 |#1|)) (-1237 $)) NIL) (((-629 (-933 |#1|))) NIL)) (-2104 (($ $ $) NIL)) (-2923 (((-111)) 84)) (-3213 (((-844) $) 69) (($ (-1237 |#1|)) 22)) (-4199 (((-1237 $)) 45)) (-1430 (((-629 (-1237 |#1|))) NIL (|has| |#1| (-544)))) (-1826 (($ $ $ $) NIL)) (-1640 (((-111)) 82)) (-2639 (($ (-673 |#1|) $) 18)) (-2845 (($ $ $) NIL)) (-2646 (((-111)) 85)) (-2127 (((-111)) 83)) (-4028 (((-111)) 81)) (-3297 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1120 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-632 (-1120 |#2| |#1|)) (-10 -8 (-15 -3213 ($ (-1237 |#1|))))) (-357) (-902) (-629 (-1154)) (-1237 (-673 |#1|))) (T -44)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-357)) (-14 *6 (-1237 (-673 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-902)) (-14 *5 (-629 (-1154)))))) +(-13 (-411 |#1|) (-632 (-1120 |#2| |#1|)) (-10 -8 (-15 -3213 ($ (-1237 |#1|))))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2925 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2210 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1785 (($ $) NIL)) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369))) (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3646 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832))))) (-1296 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-3188 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369)))) (-2830 (($ $ $) 27 (|has| $ (-6 -4369)))) (-3359 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369)))) (-1505 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 29 (|has| $ (-6 -4369)))) (-1470 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-1204 (-552)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "last" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369))) (($ $ "rest" $) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "first" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "value" (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2196 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3078 (((-3 |#2| "failed") |#1| $) 37)) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2715 (($ $ (-756)) NIL) (($ $) 24)) (-2232 (($ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) NIL)) (-2268 (((-111) $) NIL)) (-1456 (((-552) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) (((-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 18 (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 18 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-3307 (($ (-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832))) (((-552) $) 32 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3707 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1446 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832))) (((-552) $) 34 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-2563 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) 42 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2680 (($ $ (-756)) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1376 (((-629 |#1|) $) 20)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-1759 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 |#1|) $) NIL) (((-629 (-552)) $) NIL)) (-1335 (((-111) |#1| $) NIL) (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832))) (($ $ (-756)) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 23)) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1352 (((-111) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-3627 (((-629 |#2|) $) NIL) (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 17)) (-3435 (((-111) $) 16)) (-3430 (($) 13)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ (-552)) NIL) (($ $ (-1204 (-552))) NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "first") NIL) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $ "value") NIL)) (-3153 (((-552) $ $) NIL)) (-3680 (($) 12) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3502 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-1289 (((-111) $) NIL)) (-2760 (($ $) NIL)) (-4022 (($ $) NIL (|has| $ (-6 -4369)))) (-3058 (((-756) $) NIL)) (-2963 (($ $) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2380 (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL) (($ $ $) NIL)) (-4319 (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL) (($ (-629 $)) NIL) (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 25) (($ $ $) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2688 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") |#1| $) 44)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1655 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-832)))) (-2657 (((-756) $) 22 (|has| $ (-6 -4368))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1078) (-1078)) (T -45)) NIL (-36 |#1| |#2|) -((-3267 (((-111) $) 12)) (-3516 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-401 (-552)) $) 25) (($ $ (-401 (-552))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3267 ((-111) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-47 |#2| |#3|) (-1028) (-775)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3267 ((-111) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-47 |#1| |#2|) (-137) (-1028) (-775)) (T -47)) -((-1993 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-111)))) (-1832 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-357))))) -(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (-15 -1993 (|t#1| $)) (-15 -1981 ($ $)) (-15 -3567 (|t#2| $)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3267 ((-111) $)) (-15 -1832 ($ |t#1| |t#2|)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-544)) (-6 (-544)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-6 (-38 (-401 (-552)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-2682 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-3024 (((-111) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-3443 (((-627 (-598 $)) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1304 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-3348 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-401 (-552)))) (|:| |vec| (-1235 (-401 (-552))))) (-671 $) (-1235 $)) NIL) (((-671 (-401 (-552))) (-671 $)) NIL)) (-2091 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) 14)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2918 (((-1101 (-552) (-598 $)) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (((-1148 $) (-1148 $) (-598 $)) NIL) (((-1148 $) (-1148 $) (-627 (-598 $))) NIL) (($ $ (-598 $)) NIL) (($ $ (-627 (-598 $))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2602 (((-1148 $) (-598 $)) NIL (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-1951 (($ $) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2718 (((-754) $) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-2929 (((-1101 (-552) (-598 $)) $) NIL)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-166 (-373)) $) NIL)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1101 (-552) (-598 $))) NIL)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 7 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 16)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $ $) 15) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) NIL) (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) -(((-48) (-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $))))))) (T -48)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2091 (*1 *1 *1) (-5 *1 (-48))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-627 (-598 (-48)))) (-5 *1 (-48)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-48)))) (-5 *1 (-48))))) -(-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $)))))) -((-1465 (((-111) $ $) NIL)) (-2809 (((-627 (-1152)) $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-3122 (((-1157) $) 18)) (-2292 (((-111) $ $) NIL))) -(((-49) (-13 (-1076) (-10 -8 (-15 -2809 ((-627 (-1152)) $)) (-15 -3122 ((-1157) $))))) (T -49)) -((-2809 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-49)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-49))))) -(-13 (-1076) (-10 -8 (-15 -2809 ((-627 (-1152)) $)) (-15 -3122 ((-1157) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 61)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3221 (((-111) $) 20)) (-4039 (((-3 |#1| "failed") $) 23)) (-1703 ((|#1| $) 24)) (-2014 (($ $) 28)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1993 ((|#1| $) 21)) (-3733 (($ $) 50)) (-1595 (((-1134) $) NIL)) (-2125 (((-111) $) 30)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) 48)) (-3154 (($ (-627 (-552))) 49)) (-3567 (((-754) $) 31)) (-1477 (((-842) $) 64) (($ (-552)) 45) (($ |#1|) 43)) (-1889 ((|#1| $ $) 19)) (-3995 (((-754)) 47)) (-1922 (($) 32 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-604 |#1|) (-1017 |#1|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 (|#1| $ $)) (-15 -2220 ($ (-754))) (-15 -3154 ($ (-627 (-552)))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-754) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)))) (-1028) (-627 (-1152))) (T -50)) -((-1993 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) (-1889 (*1 *2 *1 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-50 *3 *4)) (-14 *4 (-627 (-1152)))))) -(-13 (-604 |#1|) (-1017 |#1|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 (|#1| $ $)) (-15 -2220 ($ (-754))) (-15 -3154 ($ (-627 (-552)))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-754) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)))) -((-3221 (((-111) (-52)) 13)) (-4039 (((-3 |#1| "failed") (-52)) 21)) (-1703 ((|#1| (-52)) 22)) (-1477 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -1477 ((-52) |#1|)) (-15 -4039 ((-3 |#1| "failed") (-52))) (-15 -3221 ((-111) (-52))) (-15 -1703 (|#1| (-52)))) (-1189)) (T -51)) -((-1703 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1189)))) (-4039 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1189))))) -(-10 -7 (-15 -1477 ((-52) |#1|)) (-15 -4039 ((-3 |#1| "failed") (-52))) (-15 -3221 ((-111) (-52))) (-15 -1703 (|#1| (-52)))) -((-1465 (((-111) $ $) NIL)) (-3768 (((-1134) (-111)) 25)) (-2280 (((-842) $) 24)) (-3314 (((-757) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3205 (((-842) $) 16)) (-2262 (((-1080) $) 14)) (-1477 (((-842) $) 32)) (-3419 (($ (-1080) (-757)) 33)) (-2292 (((-111) $ $) 18))) -(((-52) (-13 (-1076) (-10 -8 (-15 -3419 ($ (-1080) (-757))) (-15 -3205 ((-842) $)) (-15 -2280 ((-842) $)) (-15 -2262 ((-1080) $)) (-15 -3314 ((-757) $)) (-15 -3768 ((-1134) (-111)))))) (T -52)) -((-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-757)) (-5 *1 (-52)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-52)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-52)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1134)) (-5 *1 (-52))))) -(-13 (-1076) (-10 -8 (-15 -3419 ($ (-1080) (-757))) (-15 -3205 ((-842) $)) (-15 -2280 ((-842) $)) (-15 -2262 ((-1080) $)) (-15 -3314 ((-757) $)) (-15 -3768 ((-1134) (-111))))) -((-3288 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3288 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1028) (-630 |#1|) (-832 |#1|)) (T -53)) -((-3288 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-630 *5)) (-4 *5 (-1028)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-832 *5))))) -(-10 -7 (-15 -3288 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3989 ((|#3| |#3| (-627 (-1152))) 35)) (-2074 ((|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900)) 22) ((|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|)) (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900))) (-15 -3989 (|#3| |#3| (-627 (-1152))))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -54)) -((-3989 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-2074 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 (-1052 *5 *6 *2))) (-5 *4 (-900)) (-4 *5 (-1076)) (-4 *6 (-13 (-1028) (-865 *5) (-830) (-600 (-871 *5)))) (-4 *2 (-13 (-424 *6) (-865 *5) (-600 (-871 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2074 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-1052 *4 *5 *2))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|)) (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900))) (-15 -3989 (|#3| |#3| (-627 (-1152))))) -((-4031 (((-111) $ (-754)) 23)) (-1566 (($ $ (-552) |#3|) 47)) (-1666 (($ $ (-552) |#4|) 51)) (-3884 ((|#3| $ (-552)) 60)) (-3215 (((-627 |#2|) $) 30)) (-1602 (((-111) $ (-754)) 25)) (-3082 (((-111) |#2| $) 55)) (-3463 (($ (-1 |#2| |#2|) $) 38)) (-3516 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3971 (((-111) $ (-754)) 24)) (-1942 (($ $ |#2|) 35)) (-3509 (((-111) (-1 (-111) |#2|) $) 19)) (-1985 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) 27)) (-1509 (((-754) (-1 (-111) |#2|) $) 28) (((-754) |#2| $) 57)) (-2973 (($ $) 34)) (-2152 ((|#4| $ (-552)) 63)) (-1477 (((-842) $) 69)) (-3299 (((-111) (-1 (-111) |#2|) $) 18)) (-2292 (((-111) $ $) 54)) (-1383 (((-754) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1666 (|#1| |#1| (-552) |#4|)) (-15 -1566 (|#1| |#1| (-552) |#3|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -2152 (|#4| |#1| (-552))) (-15 -3884 (|#3| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -2973 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1189) (-367 |#2|) (-367 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1666 (|#1| |#1| (-552) |#4|)) (-15 -1566 (|#1| |#1| (-552) |#3|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -2152 (|#4| |#1| (-552))) (-15 -3884 (|#3| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -2973 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) (-552) |#1|) 44)) (-1566 (($ $ (-552) |#2|) 42)) (-1666 (($ $ (-552) |#3|) 41)) (-3887 (($) 7 T CONST)) (-3884 ((|#2| $ (-552)) 46)) (-3473 ((|#1| $ (-552) (-552) |#1|) 43)) (-3413 ((|#1| $ (-552) (-552)) 48)) (-3215 (((-627 |#1|) $) 30)) (-3560 (((-754) $) 51)) (-2655 (($ (-754) (-754) |#1|) 57)) (-3572 (((-754) $) 50)) (-1602 (((-111) $ (-754)) 9)) (-4083 (((-552) $) 55)) (-3511 (((-552) $) 53)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 54)) (-2780 (((-552) $) 52)) (-3463 (($ (-1 |#1| |#1|) $) 34)) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) 56)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-2152 ((|#3| $ (-552)) 45)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-56 |#1| |#2| |#3|) (-137) (-1189) (-367 |t#1|) (-367 |t#1|)) (T -56)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2655 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-754)) (-4 *3 (-1189)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1942 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1189)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-754)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-754)))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1189)))) (-3413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-627 *3)))) (-2950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3473 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1566 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1189)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-1666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3516 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(-13 (-482 |t#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -2655 ($ (-754) (-754) |t#1|)) (-15 -1942 ($ $ |t#1|)) (-15 -4083 ((-552) $)) (-15 -3479 ((-552) $)) (-15 -3511 ((-552) $)) (-15 -2780 ((-552) $)) (-15 -3560 ((-754) $)) (-15 -3572 ((-754) $)) (-15 -1985 (|t#1| $ (-552) (-552))) (-15 -3413 (|t#1| $ (-552) (-552))) (-15 -1985 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3884 (|t#2| $ (-552))) (-15 -2152 (|t#3| $ (-552))) (-15 -3215 ((-627 |t#1|) $)) (-15 -2950 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3473 (|t#1| $ (-552) (-552) |t#1|)) (-15 -1566 ($ $ (-552) |t#2|)) (-15 -1666 ($ $ (-552) |t#3|)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3463 ($ (-1 |t#1| |t#1|) $)) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-2169 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-3516 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -2169 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3516 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1189) (-1189)) (T -57)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-57 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -2169 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3516 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3563 (($ (-627 |#1|)) 13) (($ (-754) |#1|) 14)) (-2655 (($ (-754) |#1|) 9)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 7)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3563 ($ (-627 |#1|))) (-15 -3563 ($ (-754) |#1|)))) (-1189)) (T -58)) -((-3563 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-58 *3)))) (-3563 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-58 *3)) (-4 *3 (-1189))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3563 ($ (-627 |#1|))) (-15 -3563 ($ (-754) |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL)) (-1566 (($ $ (-552) (-58 |#1|)) NIL)) (-1666 (($ $ (-552) (-58 |#1|)) NIL)) (-3887 (($) NIL T CONST)) (-3884 (((-58 |#1|) $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-58 |#1|) $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4367))) (-1189)) (T -59)) -NIL -(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4367))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 74) (((-3 $ "failed") (-1235 (-310 (-552)))) 63) (((-3 $ "failed") (-1235 (-931 (-373)))) 94) (((-3 $ "failed") (-1235 (-931 (-552)))) 84) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 52) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 39)) (-1703 (($ (-1235 (-310 (-373)))) 70) (($ (-1235 (-310 (-552)))) 59) (($ (-1235 (-931 (-373)))) 90) (($ (-1235 (-931 (-552)))) 80) (($ (-1235 (-401 (-931 (-373))))) 48) (($ (-1235 (-401 (-931 (-552))))) 32)) (-2802 (((-1240) $) 120)) (-1477 (((-842) $) 113) (($ (-627 (-324))) 103) (($ (-324)) 97) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 101) (($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681)))) 31))) -(((-60 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681))))))) (-1152)) (T -60)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681)))) (-5 *1 (-60 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681))))))) -((-2802 (((-1240) $) 53) (((-1240)) 54)) (-1477 (((-842) $) 50))) -(((-61 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -61)) -((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-61 *3)) (-14 *3 (-1152))))) -(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 144) (((-3 $ "failed") (-1235 (-310 (-552)))) 134) (((-3 $ "failed") (-1235 (-931 (-373)))) 164) (((-3 $ "failed") (-1235 (-931 (-552)))) 154) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 123) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 111)) (-1703 (($ (-1235 (-310 (-373)))) 140) (($ (-1235 (-310 (-552)))) 130) (($ (-1235 (-931 (-373)))) 160) (($ (-1235 (-931 (-552)))) 150) (($ (-1235 (-401 (-931 (-373))))) 119) (($ (-1235 (-401 (-931 (-552))))) 104)) (-2802 (((-1240) $) 97)) (-1477 (((-842) $) 91) (($ (-627 (-324))) 29) (($ (-324)) 34) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 32) (($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) 89))) -(((-62 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) (-1152)) (T -62)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) (-5 *1 (-62 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) -((-4039 (((-3 $ "failed") (-310 (-373))) 41) (((-3 $ "failed") (-310 (-552))) 46) (((-3 $ "failed") (-931 (-373))) 50) (((-3 $ "failed") (-931 (-552))) 54) (((-3 $ "failed") (-401 (-931 (-373)))) 36) (((-3 $ "failed") (-401 (-931 (-552)))) 29)) (-1703 (($ (-310 (-373))) 39) (($ (-310 (-552))) 44) (($ (-931 (-373))) 48) (($ (-931 (-552))) 52) (($ (-401 (-931 (-373)))) 34) (($ (-401 (-931 (-552)))) 26)) (-2802 (((-1240) $) 76)) (-1477 (((-842) $) 69) (($ (-627 (-324))) 61) (($ (-324)) 66) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 64) (($ (-333 (-1490 (QUOTE X)) (-1490) (-681))) 25))) -(((-63 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490) (-681)))))) (-1152)) (T -63)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490 (QUOTE X)) (-1490) (-681))) (-5 *1 (-63 *3)) (-14 *3 (-1152))))) -(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490) (-681)))))) -((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 109) (((-3 $ "failed") (-671 (-310 (-552)))) 97) (((-3 $ "failed") (-671 (-931 (-373)))) 131) (((-3 $ "failed") (-671 (-931 (-552)))) 120) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 85) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 71)) (-1703 (($ (-671 (-310 (-373)))) 105) (($ (-671 (-310 (-552)))) 93) (($ (-671 (-931 (-373)))) 127) (($ (-671 (-931 (-552)))) 116) (($ (-671 (-401 (-931 (-373))))) 81) (($ (-671 (-401 (-931 (-552))))) 64)) (-2802 (((-1240) $) 139)) (-1477 (((-842) $) 133) (($ (-627 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 31) (($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681)))) 54))) -(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681))))))) (-1152)) (T -64)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681)))) (-5 *1 (-64 *3)) (-14 *3 (-1152))))) -(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681))))))) -((-4039 (((-3 $ "failed") (-310 (-373))) 59) (((-3 $ "failed") (-310 (-552))) 64) (((-3 $ "failed") (-931 (-373))) 68) (((-3 $ "failed") (-931 (-552))) 72) (((-3 $ "failed") (-401 (-931 (-373)))) 54) (((-3 $ "failed") (-401 (-931 (-552)))) 47)) (-1703 (($ (-310 (-373))) 57) (($ (-310 (-552))) 62) (($ (-931 (-373))) 66) (($ (-931 (-552))) 70) (($ (-401 (-931 (-373)))) 52) (($ (-401 (-931 (-552)))) 44)) (-2802 (((-1240) $) 81)) (-1477 (((-842) $) 75) (($ (-627 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 31) (($ (-333 (-1490) (-1490 (QUOTE XC)) (-681))) 39))) -(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE XC)) (-681)))))) (-1152)) (T -65)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE XC)) (-681))) (-5 *1 (-65 *3)) (-14 *3 (-1152))))) -(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE XC)) (-681)))))) -((-2802 (((-1240) $) 63)) (-1477 (((-842) $) 57) (($ (-671 (-681))) 49) (($ (-627 (-324))) 48) (($ (-324)) 55) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 53))) -(((-66 |#1|) (-377) (-1152)) (T -66)) +((-2231 (((-111) $) 12)) (-1477 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-401 (-552)) $) 25) (($ $ (-401 (-552))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2231 ((-111) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) (-47 |#2| |#3|) (-1030) (-777)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2231 ((-111) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2231 (((-111) $) 60)) (-3590 (($ |#1| |#2|) 59)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3299 ((|#2| $) 62)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2266 ((|#1| $ |#2|) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-47 |#1| |#2|) (-137) (-1030) (-777)) (T -47)) +((-3743 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-111)))) (-3590 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *2 (-357))))) +(-13 (-1030) (-110 |t#1| |t#1|) (-10 -8 (-15 -3743 (|t#1| $)) (-15 -3733 ($ $)) (-15 -3299 (|t#2| $)) (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (-15 -2231 ((-111) $)) (-15 -3590 ($ |t#1| |t#2|)) (-15 -3766 ($ $)) (-15 -2266 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-357)) (-15 -1720 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-544)) (-6 (-544)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-6 (-38 (-401 (-552)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2965 (((-629 $) (-1150 $) (-1154)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-933 $)) NIL)) (-3476 (($ (-1150 $) (-1154)) NIL) (($ (-1150 $)) NIL) (($ (-933 $)) NIL)) (-3643 (((-111) $) 11)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-3361 (((-629 (-598 $)) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2172 (($ $ (-288 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1821 (((-629 $) (-1150 $) (-1154)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-933 $)) NIL)) (-1743 (($ (-1150 $) (-1154)) NIL) (($ (-1150 $)) NIL) (($ (-933 $)) NIL)) (-1393 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-2832 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-4006 (($ $ $) NIL)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-401 (-552)))) (|:| |vec| (-1237 (-401 (-552))))) (-673 $) (-1237 $)) NIL) (((-673 (-401 (-552))) (-673 $)) NIL)) (-3884 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-3963 (($ $) NIL) (($ (-629 $)) NIL)) (-3751 (((-629 (-113)) $) NIL)) (-2951 (((-113) (-113)) NIL)) (-4065 (((-111) $) 14)) (-3302 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-4015 (((-1103 (-552) (-598 $)) $) NIL)) (-3755 (($ $ (-552)) NIL)) (-4346 (((-1150 $) (-1150 $) (-598 $)) NIL) (((-1150 $) (-1150 $) (-629 (-598 $))) NIL) (($ $ (-598 $)) NIL) (($ $ (-629 (-598 $))) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1941 (((-1150 $) (-598 $)) NIL (|has| $ (-1030)))) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 $ $) (-598 $)) NIL)) (-1875 (((-3 (-598 $) "failed") $) NIL)) (-2552 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3438 (((-629 (-598 $)) $) NIL)) (-4086 (($ (-113) $) NIL) (($ (-113) (-629 $)) NIL)) (-3515 (((-111) $ (-113)) NIL) (((-111) $ (-1154)) NIL)) (-3701 (($ $) NIL)) (-2384 (((-756) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ (-629 $)) NIL) (($ $ $) NIL)) (-3633 (((-111) $ $) NIL) (((-111) $ (-1154)) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-1154) (-1 $ (-629 $))) NIL) (($ $ (-1154) (-1 $ $)) NIL) (($ $ (-629 (-113)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-113) (-1 $ (-629 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-3795 (((-756) $) NIL)) (-2060 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-629 $)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-1877 (($ $) NIL) (($ $ $) NIL)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-4026 (((-1103 (-552) (-598 $)) $) NIL)) (-3521 (($ $) NIL (|has| $ (-1030)))) (-1522 (((-373) $) NIL) (((-220) $) NIL) (((-166 (-373)) $) NIL)) (-3213 (((-844) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1103 (-552) (-598 $))) NIL)) (-2014 (((-756)) NIL)) (-3044 (($ $) NIL) (($ (-629 $)) NIL)) (-1374 (((-111) (-113)) NIL)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 7 T CONST)) (-3309 (($) 12 T CONST)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 16)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (-1709 (($ $ $) 15) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) NIL) (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL))) +(((-48) (-13 (-296) (-27) (-1019 (-552)) (-1019 (-401 (-552))) (-625 (-552)) (-1003) (-625 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -3213 ($ (-1103 (-552) (-598 $)))) (-15 -4015 ((-1103 (-552) (-598 $)) $)) (-15 -4026 ((-1103 (-552) (-598 $)) $)) (-15 -3884 ($ $)) (-15 -4346 ((-1150 $) (-1150 $) (-598 $))) (-15 -4346 ((-1150 $) (-1150 $) (-629 (-598 $)))) (-15 -4346 ($ $ (-598 $))) (-15 -4346 ($ $ (-629 (-598 $))))))) (T -48)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-3884 (*1 *1 *1) (-5 *1 (-48))) (-4346 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) (-4346 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 (-48))) (-5 *3 (-629 (-598 (-48)))) (-5 *1 (-48)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-598 (-48)))) (-5 *1 (-48))))) +(-13 (-296) (-27) (-1019 (-552)) (-1019 (-401 (-552))) (-625 (-552)) (-1003) (-625 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -3213 ($ (-1103 (-552) (-598 $)))) (-15 -4015 ((-1103 (-552) (-598 $)) $)) (-15 -4026 ((-1103 (-552) (-598 $)) $)) (-15 -3884 ($ $)) (-15 -4346 ((-1150 $) (-1150 $) (-598 $))) (-15 -4346 ((-1150 $) (-1150 $) (-629 (-598 $)))) (-15 -4346 ($ $ (-598 $))) (-15 -4346 ($ $ (-629 (-598 $)))))) +((-3202 (((-111) $ $) NIL)) (-2055 (((-629 (-1154)) $) 17)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 7)) (-4300 (((-1159) $) 18)) (-1613 (((-111) $ $) NIL))) +(((-49) (-13 (-1078) (-10 -8 (-15 -2055 ((-629 (-1154)) $)) (-15 -4300 ((-1159) $))))) (T -49)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-49)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-49))))) +(-13 (-1078) (-10 -8 (-15 -2055 ((-629 (-1154)) $)) (-15 -4300 ((-1159) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 61)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3040 (((-111) $) 20)) (-1393 (((-3 |#1| "failed") $) 23)) (-2832 ((|#1| $) 24)) (-3766 (($ $) 28)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3743 ((|#1| $) 21)) (-4322 (($ $) 50)) (-2623 (((-1136) $) NIL)) (-2767 (((-111) $) 30)) (-2876 (((-1098) $) NIL)) (-4126 (($ (-756)) 48)) (-2855 (($ (-629 (-552))) 49)) (-3299 (((-756) $) 31)) (-3213 (((-844) $) 64) (($ (-552)) 45) (($ |#1|) 43)) (-2266 ((|#1| $ $) 19)) (-2014 (((-756)) 47)) (-3297 (($) 32 T CONST)) (-3309 (($) 14 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 40)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-606 |#1|) (-1019 |#1|) (-10 -8 (-15 -3743 (|#1| $)) (-15 -4322 ($ $)) (-15 -3766 ($ $)) (-15 -2266 (|#1| $ $)) (-15 -4126 ($ (-756))) (-15 -2855 ($ (-629 (-552)))) (-15 -2767 ((-111) $)) (-15 -3040 ((-111) $)) (-15 -3299 ((-756) $)) (-15 -1477 ($ (-1 |#1| |#1|) $)))) (-1030) (-629 (-1154))) (T -50)) +((-3743 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-50 *2 *3)) (-14 *3 (-629 (-1154))))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1030)) (-14 *3 (-629 (-1154))))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1030)) (-14 *3 (-629 (-1154))))) (-2266 (*1 *2 *1 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-50 *2 *3)) (-14 *3 (-629 (-1154))))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-50 *3 *4)) (-14 *4 (-629 (-1154)))))) +(-13 (-606 |#1|) (-1019 |#1|) (-10 -8 (-15 -3743 (|#1| $)) (-15 -4322 ($ $)) (-15 -3766 ($ $)) (-15 -2266 (|#1| $ $)) (-15 -4126 ($ (-756))) (-15 -2855 ($ (-629 (-552)))) (-15 -2767 ((-111) $)) (-15 -3040 ((-111) $)) (-15 -3299 ((-756) $)) (-15 -1477 ($ (-1 |#1| |#1|) $)))) +((-3040 (((-111) (-52)) 13)) (-1393 (((-3 |#1| "failed") (-52)) 21)) (-2832 ((|#1| (-52)) 22)) (-3213 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -3213 ((-52) |#1|)) (-15 -1393 ((-3 |#1| "failed") (-52))) (-15 -3040 ((-111) (-52))) (-15 -2832 (|#1| (-52)))) (-1191)) (T -51)) +((-2832 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1191)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1191)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1191)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1191))))) +(-10 -7 (-15 -3213 ((-52) |#1|)) (-15 -1393 ((-3 |#1| "failed") (-52))) (-15 -3040 ((-111) (-52))) (-15 -2832 (|#1| (-52)))) +((-3202 (((-111) $ $) NIL)) (-3496 (((-1136) (-111)) 25)) (-1779 (((-844) $) 24)) (-3667 (((-759) $) 12)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2871 (((-844) $) 16)) (-3973 (((-1082) $) 14)) (-3213 (((-844) $) 32)) (-2339 (($ (-1082) (-759)) 33)) (-1613 (((-111) $ $) 18))) +(((-52) (-13 (-1078) (-10 -8 (-15 -2339 ($ (-1082) (-759))) (-15 -2871 ((-844) $)) (-15 -1779 ((-844) $)) (-15 -3973 ((-1082) $)) (-15 -3667 ((-759) $)) (-15 -3496 ((-1136) (-111)))))) (T -52)) +((-2339 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-759)) (-5 *1 (-52)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-52)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-52)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-52)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-52)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1136)) (-5 *1 (-52))))) +(-13 (-1078) (-10 -8 (-15 -2339 ($ (-1082) (-759))) (-15 -2871 ((-844) $)) (-15 -1779 ((-844) $)) (-15 -3973 ((-1082) $)) (-15 -3667 ((-759) $)) (-15 -3496 ((-1136) (-111))))) +((-2639 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2639 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1030) (-632 |#1|) (-834 |#1|)) (T -53)) +((-2639 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-632 *5)) (-4 *5 (-1030)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-834 *5))))) +(-10 -7 (-15 -2639 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1944 ((|#3| |#3| (-629 (-1154))) 35)) (-3548 ((|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3| (-902)) 22) ((|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3548 (|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3|)) (-15 -3548 (|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3| (-902))) (-15 -1944 (|#3| |#3| (-629 (-1154))))) (-1078) (-13 (-1030) (-867 |#1|) (-832) (-600 (-873 |#1|))) (-13 (-424 |#2|) (-867 |#1|) (-600 (-873 |#1|)))) (T -54)) +((-1944 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) (-3548 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 (-1054 *5 *6 *2))) (-5 *4 (-902)) (-4 *5 (-1078)) (-4 *6 (-13 (-1030) (-867 *5) (-832) (-600 (-873 *5)))) (-4 *2 (-13 (-424 *6) (-867 *5) (-600 (-873 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *3 (-629 (-1054 *4 *5 *2))) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3548 (|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3|)) (-15 -3548 (|#3| (-629 (-1054 |#1| |#2| |#3|)) |#3| (-902))) (-15 -1944 (|#3| |#3| (-629 (-1154))))) +((-4238 (((-111) $ (-756)) 23)) (-2347 (($ $ (-552) |#3|) 47)) (-3934 (($ $ (-552) |#4|) 51)) (-3413 ((|#3| $ (-552)) 60)) (-3138 (((-629 |#2|) $) 30)) (-1418 (((-111) $ (-756)) 25)) (-2973 (((-111) |#2| $) 55)) (-2947 (($ (-1 |#2| |#2|) $) 38)) (-1477 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-1745 (((-111) $ (-756)) 24)) (-1518 (($ $ |#2|) 35)) (-3944 (((-111) (-1 (-111) |#2|) $) 19)) (-2060 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) 27)) (-2885 (((-756) (-1 (-111) |#2|) $) 28) (((-756) |#2| $) 57)) (-1487 (($ $) 34)) (-3041 ((|#4| $ (-552)) 63)) (-3213 (((-844) $) 69)) (-2584 (((-111) (-1 (-111) |#2|) $) 18)) (-1613 (((-111) $ $) 54)) (-2657 (((-756) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3934 (|#1| |#1| (-552) |#4|)) (-15 -2347 (|#1| |#1| (-552) |#3|)) (-15 -3138 ((-629 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-552))) (-15 -3413 (|#3| |#1| (-552))) (-15 -2060 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552))) (-15 -1518 (|#1| |#1| |#2|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756))) (-15 -1487 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1191) (-367 |#2|) (-367 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3934 (|#1| |#1| (-552) |#4|)) (-15 -2347 (|#1| |#1| (-552) |#3|)) (-15 -3138 ((-629 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-552))) (-15 -3413 (|#3| |#1| (-552))) (-15 -2060 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552))) (-15 -1518 (|#1| |#1| |#2|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756))) (-15 -1487 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) (-552) |#1|) 44)) (-2347 (($ $ (-552) |#2|) 42)) (-3934 (($ $ (-552) |#3|) 41)) (-2130 (($) 7 T CONST)) (-3413 ((|#2| $ (-552)) 46)) (-2957 ((|#1| $ (-552) (-552) |#1|) 43)) (-2892 ((|#1| $ (-552) (-552)) 48)) (-3138 (((-629 |#1|) $) 30)) (-2389 (((-756) $) 51)) (-3307 (($ (-756) (-756) |#1|) 57)) (-2401 (((-756) $) 50)) (-1418 (((-111) $ (-756)) 9)) (-3534 (((-552) $) 55)) (-3966 (((-552) $) 53)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3660 (((-552) $) 54)) (-3162 (((-552) $) 52)) (-2947 (($ (-1 |#1| |#1|) $) 34)) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) 56)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3041 ((|#3| $ (-552)) 45)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-56 |#1| |#2| |#3|) (-137) (-1191) (-367 |t#1|) (-367 |t#1|)) (T -56)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3307 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-756)) (-4 *3 (-1191)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1518 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-756)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-756)))) (-2060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1191)))) (-2892 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1191)))) (-2060 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3413 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1191)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1191)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-629 *3)))) (-1470 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-2957 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-2347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1191)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1477 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(-13 (-482 |t#1|) (-10 -8 (-6 -4369) (-6 -4368) (-15 -3307 ($ (-756) (-756) |t#1|)) (-15 -1518 ($ $ |t#1|)) (-15 -3534 ((-552) $)) (-15 -3660 ((-552) $)) (-15 -3966 ((-552) $)) (-15 -3162 ((-552) $)) (-15 -2389 ((-756) $)) (-15 -2401 ((-756) $)) (-15 -2060 (|t#1| $ (-552) (-552))) (-15 -2892 (|t#1| $ (-552) (-552))) (-15 -2060 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3413 (|t#2| $ (-552))) (-15 -3041 (|t#3| $ (-552))) (-15 -3138 ((-629 |t#1|) $)) (-15 -1470 (|t#1| $ (-552) (-552) |t#1|)) (-15 -2957 (|t#1| $ (-552) (-552) |t#1|)) (-15 -2347 ($ $ (-552) |t#2|)) (-15 -3934 ($ $ (-552) |t#3|)) (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) (-15 -1477 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1477 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3215 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-3884 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-1477 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -3215 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1477 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1191) (-1191)) (T -57)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-57 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1191)) (-4 *5 (-1191)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -3215 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1477 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3253 (($ (-629 |#1|)) 13) (($ (-756) |#1|) 14)) (-3307 (($ (-756) |#1|) 9)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 7)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3253 ($ (-629 |#1|))) (-15 -3253 ($ (-756) |#1|)))) (-1191)) (T -58)) +((-3253 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-58 *3)))) (-3253 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *1 (-58 *3)) (-4 *3 (-1191))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3253 ($ (-629 |#1|))) (-15 -3253 ($ (-756) |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2347 (($ $ (-552) (-58 |#1|)) NIL)) (-3934 (($ $ (-552) (-58 |#1|)) NIL)) (-2130 (($) NIL T CONST)) (-3413 (((-58 |#1|) $ (-552)) NIL)) (-2957 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2892 ((|#1| $ (-552) (-552)) NIL)) (-3138 (((-629 |#1|) $) NIL)) (-2389 (((-756) $) NIL)) (-3307 (($ (-756) (-756) |#1|) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3041 (((-58 |#1|) $ (-552)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4369))) (-1191)) (T -59)) +NIL +(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4369))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 74) (((-3 $ "failed") (-1237 (-310 (-552)))) 63) (((-3 $ "failed") (-1237 (-933 (-373)))) 94) (((-3 $ "failed") (-1237 (-933 (-552)))) 84) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 52) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 39)) (-2832 (($ (-1237 (-310 (-373)))) 70) (($ (-1237 (-310 (-552)))) 59) (($ (-1237 (-933 (-373)))) 90) (($ (-1237 (-933 (-552)))) 80) (($ (-1237 (-401 (-933 (-373))))) 48) (($ (-1237 (-401 (-933 (-552))))) 32)) (-2175 (((-1242) $) 120)) (-3213 (((-844) $) 113) (($ (-629 (-324))) 103) (($ (-324)) 97) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 101) (($ (-1237 (-333 (-3226 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3226) (-683)))) 31))) +(((-60 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3226) (-683))))))) (-1154)) (T -60)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3226) (-683)))) (-5 *1 (-60 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3226) (-683))))))) +((-2175 (((-1242) $) 53) (((-1242)) 54)) (-3213 (((-844) $) 50))) +(((-61 |#1|) (-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) (-1154)) (T -61)) +((-2175 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-61 *3)) (-14 *3 (-1154))))) +(-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 144) (((-3 $ "failed") (-1237 (-310 (-552)))) 134) (((-3 $ "failed") (-1237 (-933 (-373)))) 164) (((-3 $ "failed") (-1237 (-933 (-552)))) 154) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 123) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 111)) (-2832 (($ (-1237 (-310 (-373)))) 140) (($ (-1237 (-310 (-552)))) 130) (($ (-1237 (-933 (-373)))) 160) (($ (-1237 (-933 (-552)))) 150) (($ (-1237 (-401 (-933 (-373))))) 119) (($ (-1237 (-401 (-933 (-552))))) 104)) (-2175 (((-1242) $) 97)) (-3213 (((-844) $) 91) (($ (-629 (-324))) 29) (($ (-324)) 34) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 32) (($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683)))) 89))) +(((-62 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683))))))) (-1154)) (T -62)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683)))) (-5 *1 (-62 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683))))))) +((-1393 (((-3 $ "failed") (-310 (-373))) 41) (((-3 $ "failed") (-310 (-552))) 46) (((-3 $ "failed") (-933 (-373))) 50) (((-3 $ "failed") (-933 (-552))) 54) (((-3 $ "failed") (-401 (-933 (-373)))) 36) (((-3 $ "failed") (-401 (-933 (-552)))) 29)) (-2832 (($ (-310 (-373))) 39) (($ (-310 (-552))) 44) (($ (-933 (-373))) 48) (($ (-933 (-552))) 52) (($ (-401 (-933 (-373)))) 34) (($ (-401 (-933 (-552)))) 26)) (-2175 (((-1242) $) 76)) (-3213 (((-844) $) 69) (($ (-629 (-324))) 61) (($ (-324)) 66) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 64) (($ (-333 (-3226 (QUOTE X)) (-3226) (-683))) 25))) +(((-63 |#1|) (-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226 (QUOTE X)) (-3226) (-683)))))) (-1154)) (T -63)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-333 (-3226 (QUOTE X)) (-3226) (-683))) (-5 *1 (-63 *3)) (-14 *3 (-1154))))) +(-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226 (QUOTE X)) (-3226) (-683)))))) +((-1393 (((-3 $ "failed") (-673 (-310 (-373)))) 109) (((-3 $ "failed") (-673 (-310 (-552)))) 97) (((-3 $ "failed") (-673 (-933 (-373)))) 131) (((-3 $ "failed") (-673 (-933 (-552)))) 120) (((-3 $ "failed") (-673 (-401 (-933 (-373))))) 85) (((-3 $ "failed") (-673 (-401 (-933 (-552))))) 71)) (-2832 (($ (-673 (-310 (-373)))) 105) (($ (-673 (-310 (-552)))) 93) (($ (-673 (-933 (-373)))) 127) (($ (-673 (-933 (-552)))) 116) (($ (-673 (-401 (-933 (-373))))) 81) (($ (-673 (-401 (-933 (-552))))) 64)) (-2175 (((-1242) $) 139)) (-3213 (((-844) $) 133) (($ (-629 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 31) (($ (-673 (-333 (-3226) (-3226 (QUOTE X) (QUOTE HESS)) (-683)))) 54))) +(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226) (-3226 (QUOTE X) (QUOTE HESS)) (-683))))))) (-1154)) (T -64)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-673 (-333 (-3226) (-3226 (QUOTE X) (QUOTE HESS)) (-683)))) (-5 *1 (-64 *3)) (-14 *3 (-1154))))) +(-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226) (-3226 (QUOTE X) (QUOTE HESS)) (-683))))))) +((-1393 (((-3 $ "failed") (-310 (-373))) 59) (((-3 $ "failed") (-310 (-552))) 64) (((-3 $ "failed") (-933 (-373))) 68) (((-3 $ "failed") (-933 (-552))) 72) (((-3 $ "failed") (-401 (-933 (-373)))) 54) (((-3 $ "failed") (-401 (-933 (-552)))) 47)) (-2832 (($ (-310 (-373))) 57) (($ (-310 (-552))) 62) (($ (-933 (-373))) 66) (($ (-933 (-552))) 70) (($ (-401 (-933 (-373)))) 52) (($ (-401 (-933 (-552)))) 44)) (-2175 (((-1242) $) 81)) (-3213 (((-844) $) 75) (($ (-629 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 31) (($ (-333 (-3226) (-3226 (QUOTE XC)) (-683))) 39))) +(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE XC)) (-683)))))) (-1154)) (T -65)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-333 (-3226) (-3226 (QUOTE XC)) (-683))) (-5 *1 (-65 *3)) (-14 *3 (-1154))))) +(-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE XC)) (-683)))))) +((-2175 (((-1242) $) 63)) (-3213 (((-844) $) 57) (($ (-673 (-683))) 49) (($ (-629 (-324))) 48) (($ (-324)) 55) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 53))) +(((-66 |#1|) (-377) (-1154)) (T -66)) NIL (-377) -((-2802 (((-1240) $) 64)) (-1477 (((-842) $) 58) (($ (-671 (-681))) 50) (($ (-627 (-324))) 49) (($ (-324)) 52) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 55))) -(((-67 |#1|) (-377) (-1152)) (T -67)) +((-2175 (((-1242) $) 64)) (-3213 (((-844) $) 58) (($ (-673 (-683))) 50) (($ (-629 (-324))) 49) (($ (-324)) 52) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 55))) +(((-67 |#1|) (-377) (-1154)) (T -67)) NIL (-377) -((-2802 (((-1240) $) NIL) (((-1240)) 32)) (-1477 (((-842) $) NIL))) -(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -68)) -((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-68 *3)) (-14 *3 (-1152))))) -(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) -((-2802 (((-1240) $) 73)) (-1477 (((-842) $) 67) (($ (-671 (-681))) 59) (($ (-627 (-324))) 61) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 58))) -(((-69 |#1|) (-377) (-1152)) (T -69)) +((-2175 (((-1242) $) NIL) (((-1242)) 32)) (-3213 (((-844) $) NIL))) +(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) (-1154)) (T -68)) +((-2175 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-68 *3)) (-14 *3 (-1154))))) +(-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) +((-2175 (((-1242) $) 73)) (-3213 (((-844) $) 67) (($ (-673 (-683))) 59) (($ (-629 (-324))) 61) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 58))) +(((-69 |#1|) (-377) (-1154)) (T -69)) NIL (-377) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 103) (((-3 $ "failed") (-1235 (-310 (-552)))) 92) (((-3 $ "failed") (-1235 (-931 (-373)))) 123) (((-3 $ "failed") (-1235 (-931 (-552)))) 113) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 81) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 68)) (-1703 (($ (-1235 (-310 (-373)))) 99) (($ (-1235 (-310 (-552)))) 88) (($ (-1235 (-931 (-373)))) 119) (($ (-1235 (-931 (-552)))) 109) (($ (-1235 (-401 (-931 (-373))))) 77) (($ (-1235 (-401 (-931 (-552))))) 61)) (-2802 (((-1240) $) 136)) (-1477 (((-842) $) 130) (($ (-627 (-324))) 125) (($ (-324)) 128) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 53) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) 54))) -(((-70 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) (-1152)) (T -70)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-70 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) -((-2802 (((-1240) $) 32) (((-1240)) 31)) (-1477 (((-842) $) 35))) -(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -71)) -((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-71 *3)) (-14 *3 (-1152))))) -(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) -((-2802 (((-1240) $) 63)) (-1477 (((-842) $) 57) (($ (-671 (-681))) 49) (($ (-627 (-324))) 51) (($ (-324)) 54) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 48))) -(((-72 |#1|) (-377) (-1152)) (T -72)) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 103) (((-3 $ "failed") (-1237 (-310 (-552)))) 92) (((-3 $ "failed") (-1237 (-933 (-373)))) 123) (((-3 $ "failed") (-1237 (-933 (-552)))) 113) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 81) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 68)) (-2832 (($ (-1237 (-310 (-373)))) 99) (($ (-1237 (-310 (-552)))) 88) (($ (-1237 (-933 (-373)))) 119) (($ (-1237 (-933 (-552)))) 109) (($ (-1237 (-401 (-933 (-373))))) 77) (($ (-1237 (-401 (-933 (-552))))) 61)) (-2175 (((-1242) $) 136)) (-3213 (((-844) $) 130) (($ (-629 (-324))) 125) (($ (-324)) 128) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 53) (($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))) 54))) +(((-70 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))))))) (-1154)) (T -70)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))) (-5 *1 (-70 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))))))) +((-2175 (((-1242) $) 32) (((-1242)) 31)) (-3213 (((-844) $) 35))) +(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) (-1154)) (T -71)) +((-2175 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-71 *3)) (-14 *3 (-1154))))) +(-13 (-389) (-10 -7 (-15 -2175 ((-1242))))) +((-2175 (((-1242) $) 63)) (-3213 (((-844) $) 57) (($ (-673 (-683))) 49) (($ (-629 (-324))) 51) (($ (-324)) 54) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 48))) +(((-72 |#1|) (-377) (-1154)) (T -72)) NIL (-377) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 125) (((-3 $ "failed") (-1235 (-310 (-552)))) 115) (((-3 $ "failed") (-1235 (-931 (-373)))) 145) (((-3 $ "failed") (-1235 (-931 (-552)))) 135) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 105) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 93)) (-1703 (($ (-1235 (-310 (-373)))) 121) (($ (-1235 (-310 (-552)))) 111) (($ (-1235 (-931 (-373)))) 141) (($ (-1235 (-931 (-552)))) 131) (($ (-1235 (-401 (-931 (-373))))) 101) (($ (-1235 (-401 (-931 (-552))))) 86)) (-2802 (((-1240) $) 78)) (-1477 (((-842) $) 27) (($ (-627 (-324))) 68) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 71) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 65))) -(((-73 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -73)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-73 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 130) (((-3 $ "failed") (-1235 (-310 (-552)))) 119) (((-3 $ "failed") (-1235 (-931 (-373)))) 150) (((-3 $ "failed") (-1235 (-931 (-552)))) 140) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 108) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 95)) (-1703 (($ (-1235 (-310 (-373)))) 126) (($ (-1235 (-310 (-552)))) 115) (($ (-1235 (-931 (-373)))) 146) (($ (-1235 (-931 (-552)))) 136) (($ (-1235 (-401 (-931 (-373))))) 104) (($ (-1235 (-401 (-931 (-552))))) 88)) (-2802 (((-1240) $) 79)) (-1477 (((-842) $) 71) (($ (-627 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) NIL) (($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681))))))) (-1152) (-1152) (-1152)) (T -74)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) (-14 *5 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 134) (((-3 $ "failed") (-1235 (-310 (-552)))) 123) (((-3 $ "failed") (-1235 (-931 (-373)))) 154) (((-3 $ "failed") (-1235 (-931 (-552)))) 144) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 112) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 99)) (-1703 (($ (-1235 (-310 (-373)))) 130) (($ (-1235 (-310 (-552)))) 119) (($ (-1235 (-931 (-373)))) 150) (($ (-1235 (-931 (-552)))) 140) (($ (-1235 (-401 (-931 (-373))))) 108) (($ (-1235 (-401 (-931 (-552))))) 92)) (-2802 (((-1240) $) 83)) (-1477 (((-842) $) 75) (($ (-627 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) NIL) (($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681))))))) (-1152) (-1152) (-1152)) (T -75)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) (-14 *5 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681))))))) -((-4039 (((-3 $ "failed") (-310 (-373))) 82) (((-3 $ "failed") (-310 (-552))) 87) (((-3 $ "failed") (-931 (-373))) 91) (((-3 $ "failed") (-931 (-552))) 95) (((-3 $ "failed") (-401 (-931 (-373)))) 77) (((-3 $ "failed") (-401 (-931 (-552)))) 70)) (-1703 (($ (-310 (-373))) 80) (($ (-310 (-552))) 85) (($ (-931 (-373))) 89) (($ (-931 (-552))) 93) (($ (-401 (-931 (-373)))) 75) (($ (-401 (-931 (-552)))) 67)) (-2802 (((-1240) $) 62)) (-1477 (((-842) $) 50) (($ (-627 (-324))) 46) (($ (-324)) 56) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 54) (($ (-333 (-1490) (-1490 (QUOTE X)) (-681))) 47))) -(((-76 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) (-1152)) (T -76)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE X)) (-681))) (-5 *1 (-76 *3)) (-14 *3 (-1152))))) -(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) -((-4039 (((-3 $ "failed") (-310 (-373))) 46) (((-3 $ "failed") (-310 (-552))) 51) (((-3 $ "failed") (-931 (-373))) 55) (((-3 $ "failed") (-931 (-552))) 59) (((-3 $ "failed") (-401 (-931 (-373)))) 41) (((-3 $ "failed") (-401 (-931 (-552)))) 34)) (-1703 (($ (-310 (-373))) 44) (($ (-310 (-552))) 49) (($ (-931 (-373))) 53) (($ (-931 (-552))) 57) (($ (-401 (-931 (-373)))) 39) (($ (-401 (-931 (-552)))) 31)) (-2802 (((-1240) $) 80)) (-1477 (((-842) $) 74) (($ (-627 (-324))) 66) (($ (-324)) 71) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 69) (($ (-333 (-1490) (-1490 (QUOTE X)) (-681))) 30))) -(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) (-1152)) (T -77)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE X)) (-681))) (-5 *1 (-77 *3)) (-14 *3 (-1152))))) -(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 89) (((-3 $ "failed") (-1235 (-310 (-552)))) 78) (((-3 $ "failed") (-1235 (-931 (-373)))) 109) (((-3 $ "failed") (-1235 (-931 (-552)))) 99) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 67) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 54)) (-1703 (($ (-1235 (-310 (-373)))) 85) (($ (-1235 (-310 (-552)))) 74) (($ (-1235 (-931 (-373)))) 105) (($ (-1235 (-931 (-552)))) 95) (($ (-1235 (-401 (-931 (-373))))) 63) (($ (-1235 (-401 (-931 (-552))))) 47)) (-2802 (((-1240) $) 125)) (-1477 (((-842) $) 119) (($ (-627 (-324))) 112) (($ (-324)) 37) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 115) (($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) 38))) -(((-78 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) (-1152)) (T -78)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) (-5 *1 (-78 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 142) (((-3 $ "failed") (-1235 (-310 (-552)))) 132) (((-3 $ "failed") (-1235 (-931 (-373)))) 162) (((-3 $ "failed") (-1235 (-931 (-552)))) 152) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 122) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 110)) (-1703 (($ (-1235 (-310 (-373)))) 138) (($ (-1235 (-310 (-552)))) 128) (($ (-1235 (-931 (-373)))) 158) (($ (-1235 (-931 (-552)))) 148) (($ (-1235 (-401 (-931 (-373))))) 118) (($ (-1235 (-401 (-931 (-552))))) 103)) (-2802 (((-1240) $) 96)) (-1477 (((-842) $) 90) (($ (-627 (-324))) 81) (($ (-324)) 88) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 86) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 82))) -(((-79 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -79)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-79 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 78) (((-3 $ "failed") (-1235 (-310 (-552)))) 67) (((-3 $ "failed") (-1235 (-931 (-373)))) 98) (((-3 $ "failed") (-1235 (-931 (-552)))) 88) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 56) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 43)) (-1703 (($ (-1235 (-310 (-373)))) 74) (($ (-1235 (-310 (-552)))) 63) (($ (-1235 (-931 (-373)))) 94) (($ (-1235 (-931 (-552)))) 84) (($ (-1235 (-401 (-931 (-373))))) 52) (($ (-1235 (-401 (-931 (-552))))) 36)) (-2802 (((-1240) $) 124)) (-1477 (((-842) $) 118) (($ (-627 (-324))) 109) (($ (-324)) 115) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 113) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 35))) -(((-80 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -80)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-80 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 95) (((-3 $ "failed") (-1235 (-310 (-552)))) 84) (((-3 $ "failed") (-1235 (-931 (-373)))) 115) (((-3 $ "failed") (-1235 (-931 (-552)))) 105) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 73) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 60)) (-1703 (($ (-1235 (-310 (-373)))) 91) (($ (-1235 (-310 (-552)))) 80) (($ (-1235 (-931 (-373)))) 111) (($ (-1235 (-931 (-552)))) 101) (($ (-1235 (-401 (-931 (-373))))) 69) (($ (-1235 (-401 (-931 (-552))))) 53)) (-2802 (((-1240) $) 45)) (-1477 (((-842) $) 39) (($ (-627 (-324))) 29) (($ (-324)) 32) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 35) (($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) 30))) -(((-81 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) (-1152)) (T -81)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) (-5 *1 (-81 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) -((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 115) (((-3 $ "failed") (-671 (-310 (-552)))) 104) (((-3 $ "failed") (-671 (-931 (-373)))) 137) (((-3 $ "failed") (-671 (-931 (-552)))) 126) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 93) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 80)) (-1703 (($ (-671 (-310 (-373)))) 111) (($ (-671 (-310 (-552)))) 100) (($ (-671 (-931 (-373)))) 133) (($ (-671 (-931 (-552)))) 122) (($ (-671 (-401 (-931 (-373))))) 89) (($ (-671 (-401 (-931 (-552))))) 73)) (-2802 (((-1240) $) 63)) (-1477 (((-842) $) 50) (($ (-627 (-324))) 57) (($ (-324)) 46) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 55) (($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) 47))) -(((-82 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) (-1152)) (T -82)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) (-5 *1 (-82 *3)) (-14 *3 (-1152))))) -(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) -((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 112) (((-3 $ "failed") (-671 (-310 (-552)))) 100) (((-3 $ "failed") (-671 (-931 (-373)))) 134) (((-3 $ "failed") (-671 (-931 (-552)))) 123) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 88) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 74)) (-1703 (($ (-671 (-310 (-373)))) 108) (($ (-671 (-310 (-552)))) 96) (($ (-671 (-931 (-373)))) 130) (($ (-671 (-931 (-552)))) 119) (($ (-671 (-401 (-931 (-373))))) 84) (($ (-671 (-401 (-931 (-552))))) 67)) (-2802 (((-1240) $) 59)) (-1477 (((-842) $) 53) (($ (-627 (-324))) 47) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 44) (($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) 45))) -(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) (-1152)) (T -83)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) (-5 *1 (-83 *3)) (-14 *3 (-1152))))) -(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 104) (((-3 $ "failed") (-1235 (-310 (-552)))) 93) (((-3 $ "failed") (-1235 (-931 (-373)))) 124) (((-3 $ "failed") (-1235 (-931 (-552)))) 114) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 82) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 69)) (-1703 (($ (-1235 (-310 (-373)))) 100) (($ (-1235 (-310 (-552)))) 89) (($ (-1235 (-931 (-373)))) 120) (($ (-1235 (-931 (-552)))) 110) (($ (-1235 (-401 (-931 (-373))))) 78) (($ (-1235 (-401 (-931 (-552))))) 62)) (-2802 (((-1240) $) 46)) (-1477 (((-842) $) 40) (($ (-627 (-324))) 49) (($ (-324)) 36) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 52) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) 37))) -(((-84 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) (-1152)) (T -84)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) (-5 *1 (-84 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 79) (((-3 $ "failed") (-1235 (-310 (-552)))) 68) (((-3 $ "failed") (-1235 (-931 (-373)))) 99) (((-3 $ "failed") (-1235 (-931 (-552)))) 89) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 57) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 44)) (-1703 (($ (-1235 (-310 (-373)))) 75) (($ (-1235 (-310 (-552)))) 64) (($ (-1235 (-931 (-373)))) 95) (($ (-1235 (-931 (-552)))) 85) (($ (-1235 (-401 (-931 (-373))))) 53) (($ (-1235 (-401 (-931 (-552))))) 37)) (-2802 (((-1240) $) 125)) (-1477 (((-842) $) 119) (($ (-627 (-324))) 110) (($ (-324)) 116) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 114) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) 36))) -(((-85 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) (-1152)) (T -85)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-85 *3)) (-14 *3 (-1152))))) -(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) -((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 113) (((-3 $ "failed") (-671 (-310 (-552)))) 101) (((-3 $ "failed") (-671 (-931 (-373)))) 135) (((-3 $ "failed") (-671 (-931 (-552)))) 124) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 89) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 75)) (-1703 (($ (-671 (-310 (-373)))) 109) (($ (-671 (-310 (-552)))) 97) (($ (-671 (-931 (-373)))) 131) (($ (-671 (-931 (-552)))) 120) (($ (-671 (-401 (-931 (-373))))) 85) (($ (-671 (-401 (-931 (-552))))) 68)) (-2802 (((-1240) $) 59)) (-1477 (((-842) $) 53) (($ (-627 (-324))) 43) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 48) (($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681)))) 44))) -(((-86 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681))))))) (-1152)) (T -86)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681)))) (-5 *1 (-86 *3)) (-14 *3 (-1152))))) -(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681))))))) -((-2802 (((-1240) $) 44)) (-1477 (((-842) $) 38) (($ (-1235 (-681))) 92) (($ (-627 (-324))) 30) (($ (-324)) 35) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 33))) -(((-87 |#1|) (-433) (-1152)) (T -87)) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 125) (((-3 $ "failed") (-1237 (-310 (-552)))) 115) (((-3 $ "failed") (-1237 (-933 (-373)))) 145) (((-3 $ "failed") (-1237 (-933 (-552)))) 135) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 105) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 93)) (-2832 (($ (-1237 (-310 (-373)))) 121) (($ (-1237 (-310 (-552)))) 111) (($ (-1237 (-933 (-373)))) 141) (($ (-1237 (-933 (-552)))) 131) (($ (-1237 (-401 (-933 (-373))))) 101) (($ (-1237 (-401 (-933 (-552))))) 86)) (-2175 (((-1242) $) 78)) (-3213 (((-844) $) 27) (($ (-629 (-324))) 68) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 71) (($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) 65))) +(((-73 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) (-1154)) (T -73)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) (-5 *1 (-73 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 130) (((-3 $ "failed") (-1237 (-310 (-552)))) 119) (((-3 $ "failed") (-1237 (-933 (-373)))) 150) (((-3 $ "failed") (-1237 (-933 (-552)))) 140) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 108) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 95)) (-2832 (($ (-1237 (-310 (-373)))) 126) (($ (-1237 (-310 (-552)))) 115) (($ (-1237 (-933 (-373)))) 146) (($ (-1237 (-933 (-552)))) 136) (($ (-1237 (-401 (-933 (-373))))) 104) (($ (-1237 (-401 (-933 (-552))))) 88)) (-2175 (((-1242) $) 79)) (-3213 (((-844) $) 71) (($ (-629 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) NIL) (($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE EPS)) (-3226 (QUOTE -4334)) (-683)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE EPS)) (-3226 (QUOTE -4334)) (-683))))))) (-1154) (-1154) (-1154)) (T -74)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE X) (QUOTE EPS)) (-3226 (QUOTE -4334)) (-683)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1154)) (-14 *4 (-1154)) (-14 *5 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE EPS)) (-3226 (QUOTE -4334)) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 134) (((-3 $ "failed") (-1237 (-310 (-552)))) 123) (((-3 $ "failed") (-1237 (-933 (-373)))) 154) (((-3 $ "failed") (-1237 (-933 (-552)))) 144) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 112) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 99)) (-2832 (($ (-1237 (-310 (-373)))) 130) (($ (-1237 (-310 (-552)))) 119) (($ (-1237 (-933 (-373)))) 150) (($ (-1237 (-933 (-552)))) 140) (($ (-1237 (-401 (-933 (-373))))) 108) (($ (-1237 (-401 (-933 (-552))))) 92)) (-2175 (((-1242) $) 83)) (-3213 (((-844) $) 75) (($ (-629 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) NIL) (($ (-1237 (-333 (-3226 (QUOTE EPS)) (-3226 (QUOTE YA) (QUOTE YB)) (-683)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE EPS)) (-3226 (QUOTE YA) (QUOTE YB)) (-683))))))) (-1154) (-1154) (-1154)) (T -75)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE EPS)) (-3226 (QUOTE YA) (QUOTE YB)) (-683)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1154)) (-14 *4 (-1154)) (-14 *5 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE EPS)) (-3226 (QUOTE YA) (QUOTE YB)) (-683))))))) +((-1393 (((-3 $ "failed") (-310 (-373))) 82) (((-3 $ "failed") (-310 (-552))) 87) (((-3 $ "failed") (-933 (-373))) 91) (((-3 $ "failed") (-933 (-552))) 95) (((-3 $ "failed") (-401 (-933 (-373)))) 77) (((-3 $ "failed") (-401 (-933 (-552)))) 70)) (-2832 (($ (-310 (-373))) 80) (($ (-310 (-552))) 85) (($ (-933 (-373))) 89) (($ (-933 (-552))) 93) (($ (-401 (-933 (-373)))) 75) (($ (-401 (-933 (-552)))) 67)) (-2175 (((-1242) $) 62)) (-3213 (((-844) $) 50) (($ (-629 (-324))) 46) (($ (-324)) 56) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 54) (($ (-333 (-3226) (-3226 (QUOTE X)) (-683))) 47))) +(((-76 |#1|) (-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE X)) (-683)))))) (-1154)) (T -76)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-333 (-3226) (-3226 (QUOTE X)) (-683))) (-5 *1 (-76 *3)) (-14 *3 (-1154))))) +(-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE X)) (-683)))))) +((-1393 (((-3 $ "failed") (-310 (-373))) 46) (((-3 $ "failed") (-310 (-552))) 51) (((-3 $ "failed") (-933 (-373))) 55) (((-3 $ "failed") (-933 (-552))) 59) (((-3 $ "failed") (-401 (-933 (-373)))) 41) (((-3 $ "failed") (-401 (-933 (-552)))) 34)) (-2832 (($ (-310 (-373))) 44) (($ (-310 (-552))) 49) (($ (-933 (-373))) 53) (($ (-933 (-552))) 57) (($ (-401 (-933 (-373)))) 39) (($ (-401 (-933 (-552)))) 31)) (-2175 (((-1242) $) 80)) (-3213 (((-844) $) 74) (($ (-629 (-324))) 66) (($ (-324)) 71) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 69) (($ (-333 (-3226) (-3226 (QUOTE X)) (-683))) 30))) +(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE X)) (-683)))))) (-1154)) (T -77)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-333 (-3226) (-3226 (QUOTE X)) (-683))) (-5 *1 (-77 *3)) (-14 *3 (-1154))))) +(-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226) (-3226 (QUOTE X)) (-683)))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 89) (((-3 $ "failed") (-1237 (-310 (-552)))) 78) (((-3 $ "failed") (-1237 (-933 (-373)))) 109) (((-3 $ "failed") (-1237 (-933 (-552)))) 99) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 67) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 54)) (-2832 (($ (-1237 (-310 (-373)))) 85) (($ (-1237 (-310 (-552)))) 74) (($ (-1237 (-933 (-373)))) 105) (($ (-1237 (-933 (-552)))) 95) (($ (-1237 (-401 (-933 (-373))))) 63) (($ (-1237 (-401 (-933 (-552))))) 47)) (-2175 (((-1242) $) 125)) (-3213 (((-844) $) 119) (($ (-629 (-324))) 112) (($ (-324)) 37) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 115) (($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683)))) 38))) +(((-78 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683))))))) (-1154)) (T -78)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683)))) (-5 *1 (-78 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE XC)) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 142) (((-3 $ "failed") (-1237 (-310 (-552)))) 132) (((-3 $ "failed") (-1237 (-933 (-373)))) 162) (((-3 $ "failed") (-1237 (-933 (-552)))) 152) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 122) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 110)) (-2832 (($ (-1237 (-310 (-373)))) 138) (($ (-1237 (-310 (-552)))) 128) (($ (-1237 (-933 (-373)))) 158) (($ (-1237 (-933 (-552)))) 148) (($ (-1237 (-401 (-933 (-373))))) 118) (($ (-1237 (-401 (-933 (-552))))) 103)) (-2175 (((-1242) $) 96)) (-3213 (((-844) $) 90) (($ (-629 (-324))) 81) (($ (-324)) 88) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 86) (($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) 82))) +(((-79 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) (-1154)) (T -79)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) (-5 *1 (-79 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 78) (((-3 $ "failed") (-1237 (-310 (-552)))) 67) (((-3 $ "failed") (-1237 (-933 (-373)))) 98) (((-3 $ "failed") (-1237 (-933 (-552)))) 88) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 56) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 43)) (-2832 (($ (-1237 (-310 (-373)))) 74) (($ (-1237 (-310 (-552)))) 63) (($ (-1237 (-933 (-373)))) 94) (($ (-1237 (-933 (-552)))) 84) (($ (-1237 (-401 (-933 (-373))))) 52) (($ (-1237 (-401 (-933 (-552))))) 36)) (-2175 (((-1242) $) 124)) (-3213 (((-844) $) 118) (($ (-629 (-324))) 109) (($ (-324)) 115) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 113) (($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) 35))) +(((-80 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) (-1154)) (T -80)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683)))) (-5 *1 (-80 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226) (-3226 (QUOTE X)) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 95) (((-3 $ "failed") (-1237 (-310 (-552)))) 84) (((-3 $ "failed") (-1237 (-933 (-373)))) 115) (((-3 $ "failed") (-1237 (-933 (-552)))) 105) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 73) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 60)) (-2832 (($ (-1237 (-310 (-373)))) 91) (($ (-1237 (-310 (-552)))) 80) (($ (-1237 (-933 (-373)))) 111) (($ (-1237 (-933 (-552)))) 101) (($ (-1237 (-401 (-933 (-373))))) 69) (($ (-1237 (-401 (-933 (-552))))) 53)) (-2175 (((-1242) $) 45)) (-3213 (((-844) $) 39) (($ (-629 (-324))) 29) (($ (-324)) 32) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 35) (($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683)))) 30))) +(((-81 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683))))))) (-1154)) (T -81)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683)))) (-5 *1 (-81 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683))))))) +((-1393 (((-3 $ "failed") (-673 (-310 (-373)))) 115) (((-3 $ "failed") (-673 (-310 (-552)))) 104) (((-3 $ "failed") (-673 (-933 (-373)))) 137) (((-3 $ "failed") (-673 (-933 (-552)))) 126) (((-3 $ "failed") (-673 (-401 (-933 (-373))))) 93) (((-3 $ "failed") (-673 (-401 (-933 (-552))))) 80)) (-2832 (($ (-673 (-310 (-373)))) 111) (($ (-673 (-310 (-552)))) 100) (($ (-673 (-933 (-373)))) 133) (($ (-673 (-933 (-552)))) 122) (($ (-673 (-401 (-933 (-373))))) 89) (($ (-673 (-401 (-933 (-552))))) 73)) (-2175 (((-1242) $) 63)) (-3213 (((-844) $) 50) (($ (-629 (-324))) 57) (($ (-324)) 46) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 55) (($ (-673 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683)))) 47))) +(((-82 |#1|) (-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683))))))) (-1154)) (T -82)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-673 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683)))) (-5 *1 (-82 *3)) (-14 *3 (-1154))))) +(-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE X) (QUOTE -4334)) (-3226) (-683))))))) +((-1393 (((-3 $ "failed") (-673 (-310 (-373)))) 112) (((-3 $ "failed") (-673 (-310 (-552)))) 100) (((-3 $ "failed") (-673 (-933 (-373)))) 134) (((-3 $ "failed") (-673 (-933 (-552)))) 123) (((-3 $ "failed") (-673 (-401 (-933 (-373))))) 88) (((-3 $ "failed") (-673 (-401 (-933 (-552))))) 74)) (-2832 (($ (-673 (-310 (-373)))) 108) (($ (-673 (-310 (-552)))) 96) (($ (-673 (-933 (-373)))) 130) (($ (-673 (-933 (-552)))) 119) (($ (-673 (-401 (-933 (-373))))) 84) (($ (-673 (-401 (-933 (-552))))) 67)) (-2175 (((-1242) $) 59)) (-3213 (((-844) $) 53) (($ (-629 (-324))) 47) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 44) (($ (-673 (-333 (-3226 (QUOTE X)) (-3226) (-683)))) 45))) +(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE X)) (-3226) (-683))))))) (-1154)) (T -83)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-673 (-333 (-3226 (QUOTE X)) (-3226) (-683)))) (-5 *1 (-83 *3)) (-14 *3 (-1154))))) +(-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE X)) (-3226) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 104) (((-3 $ "failed") (-1237 (-310 (-552)))) 93) (((-3 $ "failed") (-1237 (-933 (-373)))) 124) (((-3 $ "failed") (-1237 (-933 (-552)))) 114) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 82) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 69)) (-2832 (($ (-1237 (-310 (-373)))) 100) (($ (-1237 (-310 (-552)))) 89) (($ (-1237 (-933 (-373)))) 120) (($ (-1237 (-933 (-552)))) 110) (($ (-1237 (-401 (-933 (-373))))) 78) (($ (-1237 (-401 (-933 (-552))))) 62)) (-2175 (((-1242) $) 46)) (-3213 (((-844) $) 40) (($ (-629 (-324))) 49) (($ (-324)) 36) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 52) (($ (-1237 (-333 (-3226 (QUOTE X)) (-3226) (-683)))) 37))) +(((-84 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226) (-683))))))) (-1154)) (T -84)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE X)) (-3226) (-683)))) (-5 *1 (-84 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226) (-683))))))) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 79) (((-3 $ "failed") (-1237 (-310 (-552)))) 68) (((-3 $ "failed") (-1237 (-933 (-373)))) 99) (((-3 $ "failed") (-1237 (-933 (-552)))) 89) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 57) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 44)) (-2832 (($ (-1237 (-310 (-373)))) 75) (($ (-1237 (-310 (-552)))) 64) (($ (-1237 (-933 (-373)))) 95) (($ (-1237 (-933 (-552)))) 85) (($ (-1237 (-401 (-933 (-373))))) 53) (($ (-1237 (-401 (-933 (-552))))) 37)) (-2175 (((-1242) $) 125)) (-3213 (((-844) $) 119) (($ (-629 (-324))) 110) (($ (-324)) 116) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 114) (($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))) 36))) +(((-85 |#1|) (-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))))))) (-1154)) (T -85)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))) (-5 *1 (-85 *3)) (-14 *3 (-1154))))) +(-13 (-434) (-10 -8 (-15 -3213 ($ (-1237 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))))))) +((-1393 (((-3 $ "failed") (-673 (-310 (-373)))) 113) (((-3 $ "failed") (-673 (-310 (-552)))) 101) (((-3 $ "failed") (-673 (-933 (-373)))) 135) (((-3 $ "failed") (-673 (-933 (-552)))) 124) (((-3 $ "failed") (-673 (-401 (-933 (-373))))) 89) (((-3 $ "failed") (-673 (-401 (-933 (-552))))) 75)) (-2832 (($ (-673 (-310 (-373)))) 109) (($ (-673 (-310 (-552)))) 97) (($ (-673 (-933 (-373)))) 131) (($ (-673 (-933 (-552)))) 120) (($ (-673 (-401 (-933 (-373))))) 85) (($ (-673 (-401 (-933 (-552))))) 68)) (-2175 (((-1242) $) 59)) (-3213 (((-844) $) 53) (($ (-629 (-324))) 43) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 48) (($ (-673 (-333 (-3226 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3226) (-683)))) 44))) +(((-86 |#1|) (-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3226) (-683))))))) (-1154)) (T -86)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-673 (-333 (-3226 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3226) (-683)))) (-5 *1 (-86 *3)) (-14 *3 (-1154))))) +(-13 (-378) (-10 -8 (-15 -3213 ($ (-673 (-333 (-3226 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3226) (-683))))))) +((-2175 (((-1242) $) 44)) (-3213 (((-844) $) 38) (($ (-1237 (-683))) 92) (($ (-629 (-324))) 30) (($ (-324)) 35) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 33))) +(((-87 |#1|) (-433) (-1154)) (T -87)) NIL (-433) -((-4039 (((-3 $ "failed") (-310 (-373))) 47) (((-3 $ "failed") (-310 (-552))) 52) (((-3 $ "failed") (-931 (-373))) 56) (((-3 $ "failed") (-931 (-552))) 60) (((-3 $ "failed") (-401 (-931 (-373)))) 42) (((-3 $ "failed") (-401 (-931 (-552)))) 35)) (-1703 (($ (-310 (-373))) 45) (($ (-310 (-552))) 50) (($ (-931 (-373))) 54) (($ (-931 (-552))) 58) (($ (-401 (-931 (-373)))) 40) (($ (-401 (-931 (-552)))) 32)) (-2802 (((-1240) $) 90)) (-1477 (((-842) $) 84) (($ (-627 (-324))) 78) (($ (-324)) 81) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 76) (($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))) 31))) -(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))))) (-1152)) (T -88)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))) (-5 *1 (-88 *3)) (-14 *3 (-1152))))) -(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))))) -((-3230 (((-1235 (-671 |#1|)) (-671 |#1|)) 54)) (-3453 (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900)) 44)) (-1890 (((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900)) 65 (|has| |#1| (-357))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -3453 ((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900))) (-15 -3230 ((-1235 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-357)) (-15 -1890 ((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900))) |%noBranch|)) (-544) (-638 |#1|)) (T -89)) -((-1890 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |minor| (-627 (-900))) (|:| -1651 *3) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-671 *4)) (-4 *5 (-638 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-4 *5 (-544)) (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 (-627 (-900)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) -(-10 -7 (-15 -3453 ((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900))) (-15 -3230 ((-1235 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-357)) (-15 -1890 ((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900))) |%noBranch|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2240 ((|#1| $) 35)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3468 ((|#1| |#1| $) 30)) (-3846 ((|#1| $) 28)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) NIL)) (-3954 (($ |#1| $) 31)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 29)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 16)) (-2373 (($) 39)) (-4170 (((-754) $) 26)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 15)) (-1477 (((-842) $) 25 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-3624 (($ (-627 |#1|)) 37)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 13 (|has| |#1| (-1076)))) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) -(((-90 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -3624 ($ (-627 |#1|))))) (-1076)) (T -90)) -((-3624 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-90 *3))))) -(-13 (-1097 |#1|) (-10 -8 (-15 -3624 ($ (-627 |#1|))))) -((-1477 (((-842) $) 13) (((-1157) $) 8) (($ (-1157)) 9))) -(((-91 |#1|) (-10 -8 (-15 -1477 (|#1| (-1157))) (-15 -1477 ((-1157) |#1|)) (-15 -1477 ((-842) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -1477 (|#1| (-1157))) (-15 -1477 ((-1157) |#1|)) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-2292 (((-111) $ $) 6))) +((-1393 (((-3 $ "failed") (-310 (-373))) 47) (((-3 $ "failed") (-310 (-552))) 52) (((-3 $ "failed") (-933 (-373))) 56) (((-3 $ "failed") (-933 (-552))) 60) (((-3 $ "failed") (-401 (-933 (-373)))) 42) (((-3 $ "failed") (-401 (-933 (-552)))) 35)) (-2832 (($ (-310 (-373))) 45) (($ (-310 (-552))) 50) (($ (-933 (-373))) 54) (($ (-933 (-552))) 58) (($ (-401 (-933 (-373)))) 40) (($ (-401 (-933 (-552)))) 32)) (-2175 (((-1242) $) 90)) (-3213 (((-844) $) 84) (($ (-629 (-324))) 78) (($ (-324)) 81) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 76) (($ (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))) 31))) +(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))))) (-1154)) (T -88)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683))) (-5 *1 (-88 *3)) (-14 *3 (-1154))))) +(-13 (-390) (-10 -8 (-15 -3213 ($ (-333 (-3226 (QUOTE X)) (-3226 (QUOTE -4334)) (-683)))))) +((-3139 (((-1237 (-673 |#1|)) (-673 |#1|)) 54)) (-3439 (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 (-629 (-902))))) |#2| (-902)) 44)) (-2276 (((-2 (|:| |minor| (-629 (-902))) (|:| -2771 |#2|) (|:| |minors| (-629 (-629 (-902)))) (|:| |ops| (-629 |#2|))) |#2| (-902)) 65 (|has| |#1| (-357))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -3439 ((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 (-629 (-902))))) |#2| (-902))) (-15 -3139 ((-1237 (-673 |#1|)) (-673 |#1|))) (IF (|has| |#1| (-357)) (-15 -2276 ((-2 (|:| |minor| (-629 (-902))) (|:| -2771 |#2|) (|:| |minors| (-629 (-629 (-902)))) (|:| |ops| (-629 |#2|))) |#2| (-902))) |%noBranch|)) (-544) (-640 |#1|)) (T -89)) +((-2276 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |minor| (-629 (-902))) (|:| -2771 *3) (|:| |minors| (-629 (-629 (-902)))) (|:| |ops| (-629 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-902)) (-4 *3 (-640 *5)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1237 (-673 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-673 *4)) (-4 *5 (-640 *4)))) (-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-544)) (-5 *2 (-2 (|:| -2325 (-673 *5)) (|:| |vec| (-1237 (-629 (-902)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-902)) (-4 *3 (-640 *5))))) +(-10 -7 (-15 -3439 ((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 (-629 (-902))))) |#2| (-902))) (-15 -3139 ((-1237 (-673 |#1|)) (-673 |#1|))) (IF (|has| |#1| (-357)) (-15 -2276 ((-2 (|:| |minor| (-629 (-902))) (|:| -2771 |#2|) (|:| |minors| (-629 (-629 (-902)))) (|:| |ops| (-629 |#2|))) |#2| (-902))) |%noBranch|)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3447 ((|#1| $) 35)) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-3574 ((|#1| |#1| $) 30)) (-3033 ((|#1| $) 28)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) NIL)) (-1580 (($ |#1| $) 31)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3995 ((|#1| $) 29)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 16)) (-3430 (($) 39)) (-3907 (((-756) $) 26)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 15)) (-3213 (((-844) $) 25 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) NIL)) (-2601 (($ (-629 |#1|)) 37)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 13 (|has| |#1| (-1078)))) (-2657 (((-756) $) 10 (|has| $ (-6 -4368))))) +(((-90 |#1|) (-13 (-1099 |#1|) (-10 -8 (-15 -2601 ($ (-629 |#1|))))) (-1078)) (T -90)) +((-2601 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-90 *3))))) +(-13 (-1099 |#1|) (-10 -8 (-15 -2601 ($ (-629 |#1|))))) +((-3213 (((-844) $) 13) (((-1159) $) 8) (($ (-1159)) 9))) +(((-91 |#1|) (-10 -8 (-15 -3213 (|#1| (-1159))) (-15 -3213 ((-1159) |#1|)) (-15 -3213 ((-844) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -3213 (|#1| (-1159))) (-15 -3213 ((-1159) |#1|)) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (((-1159) $) 15) (($ (-1159)) 14)) (-1613 (((-111) $ $) 6))) (((-92) (-137)) (T -92)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-92))))) -(-13 (-1076) (-599 (-1157)) (-10 -8 (-15 -1477 ($ (-1157))))) -(((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T)) -((-1561 (($ $) 10)) (-1575 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|))) -((-1534 (($ $) 11)) (-1513 (($ $) 10)) (-1561 (($ $) 9)) (-1575 (($ $) 8)) (-1547 (($ $) 7)) (-1524 (($ $) 6))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-92))))) +(-13 (-1078) (-599 (-1159)) (-10 -8 (-15 -3213 ($ (-1159))))) +(((-101) . T) ((-599 (-844)) . T) ((-599 (-1159)) . T) ((-1078) . T)) +((-2433 (($ $) 10)) (-2444 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -2433 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -2444 (|#1| |#1|)) (-15 -2433 (|#1| |#1|))) +((-2409 (($ $) 11)) (-2382 (($ $) 10)) (-2433 (($ $) 9)) (-2444 (($ $) 8)) (-2420 (($ $) 7)) (-2395 (($ $) 6))) (((-94) (-137)) (T -94)) -((-1534 (*1 *1 *1) (-4 *1 (-94))) (-1513 (*1 *1 *1) (-4 *1 (-94))) (-1561 (*1 *1 *1) (-4 *1 (-94))) (-1575 (*1 *1 *1) (-4 *1 (-94))) (-1547 (*1 *1 *1) (-4 *1 (-94))) (-1524 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -1524 ($ $)) (-15 -1547 ($ $)) (-15 -1575 ($ $)) (-15 -1561 ($ $)) (-15 -1513 ($ $)) (-15 -1534 ($ $)))) -((-1465 (((-111) $ $) NIL)) (-3112 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-95) (-13 (-1059) (-10 -8 (-15 -3112 ((-1111) $))))) (T -95)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-95))))) -(-13 (-1059) (-10 -8 (-15 -3112 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-4230 (((-373) (-1134) (-373)) 42) (((-373) (-1134) (-1134) (-373)) 41)) (-3052 (((-373) (-373)) 33)) (-1875 (((-1240)) 36)) (-1595 (((-1134) $) NIL)) (-1322 (((-373) (-1134) (-1134)) 46) (((-373) (-1134)) 48)) (-1498 (((-1096) $) NIL)) (-3828 (((-373) (-1134) (-1134)) 47)) (-2581 (((-373) (-1134) (-1134)) 49) (((-373) (-1134)) 50)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-96) (-13 (-1076) (-10 -7 (-15 -1322 ((-373) (-1134) (-1134))) (-15 -1322 ((-373) (-1134))) (-15 -2581 ((-373) (-1134) (-1134))) (-15 -2581 ((-373) (-1134))) (-15 -3828 ((-373) (-1134) (-1134))) (-15 -1875 ((-1240))) (-15 -3052 ((-373) (-373))) (-15 -4230 ((-373) (-1134) (-373))) (-15 -4230 ((-373) (-1134) (-1134) (-373))) (-6 -4366)))) (T -96)) -((-1322 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2581 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-3828 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1875 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-96)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96)))) (-4230 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96))))) -(-13 (-1076) (-10 -7 (-15 -1322 ((-373) (-1134) (-1134))) (-15 -1322 ((-373) (-1134))) (-15 -2581 ((-373) (-1134) (-1134))) (-15 -2581 ((-373) (-1134))) (-15 -3828 ((-373) (-1134) (-1134))) (-15 -1875 ((-1240))) (-15 -3052 ((-373) (-373))) (-15 -4230 ((-373) (-1134) (-373))) (-15 -4230 ((-373) (-1134) (-1134) (-373))) (-6 -4366))) +((-2409 (*1 *1 *1) (-4 *1 (-94))) (-2382 (*1 *1 *1) (-4 *1 (-94))) (-2433 (*1 *1 *1) (-4 *1 (-94))) (-2444 (*1 *1 *1) (-4 *1 (-94))) (-2420 (*1 *1 *1) (-4 *1 (-94))) (-2395 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -2395 ($ $)) (-15 -2420 ($ $)) (-15 -2444 ($ $)) (-15 -2433 ($ $)) (-15 -2382 ($ $)) (-15 -2409 ($ $)))) +((-3202 (((-111) $ $) NIL)) (-4290 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-95) (-13 (-1061) (-10 -8 (-15 -4290 ((-1113) $))))) (T -95)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-95))))) +(-13 (-1061) (-10 -8 (-15 -4290 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-2454 (((-373) (-1136) (-373)) 42) (((-373) (-1136) (-1136) (-373)) 41)) (-3897 (((-373) (-373)) 33)) (-2112 (((-1242)) 36)) (-2623 (((-1136) $) NIL)) (-1973 (((-373) (-1136) (-1136)) 46) (((-373) (-1136)) 48)) (-2876 (((-1098) $) NIL)) (-2844 (((-373) (-1136) (-1136)) 47)) (-1705 (((-373) (-1136) (-1136)) 49) (((-373) (-1136)) 50)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-96) (-13 (-1078) (-10 -7 (-15 -1973 ((-373) (-1136) (-1136))) (-15 -1973 ((-373) (-1136))) (-15 -1705 ((-373) (-1136) (-1136))) (-15 -1705 ((-373) (-1136))) (-15 -2844 ((-373) (-1136) (-1136))) (-15 -2112 ((-1242))) (-15 -3897 ((-373) (-373))) (-15 -2454 ((-373) (-1136) (-373))) (-15 -2454 ((-373) (-1136) (-1136) (-373))) (-6 -4368)))) (T -96)) +((-1973 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1705 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2112 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-96)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-2454 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1136)) (-5 *1 (-96)))) (-2454 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1136)) (-5 *1 (-96))))) +(-13 (-1078) (-10 -7 (-15 -1973 ((-373) (-1136) (-1136))) (-15 -1973 ((-373) (-1136))) (-15 -1705 ((-373) (-1136) (-1136))) (-15 -1705 ((-373) (-1136))) (-15 -2844 ((-373) (-1136) (-1136))) (-15 -2112 ((-1242))) (-15 -3897 ((-373) (-373))) (-15 -2454 ((-373) (-1136) (-373))) (-15 -2454 ((-373) (-1136) (-1136) (-373))) (-6 -4368))) NIL (((-97) (-137)) (T -97)) NIL -(-13 (-10 -7 (-6 -4366) (-6 (-4368 "*")) (-6 -4367) (-6 -4363) (-6 -4361) (-6 -4360) (-6 -4359) (-6 -4364) (-6 -4358) (-6 -4357) (-6 -4356) (-6 -4355) (-6 -4354) (-6 -4362) (-6 -4365) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4353))) -((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2986 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-552))) 22)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 14)) (-1498 (((-1096) $) NIL)) (-1985 ((|#1| $ |#1|) 11)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 20)) (-1933 (($) 8 T CONST)) (-2292 (((-111) $ $) 10)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) 27) (($ $ (-754)) NIL) (($ $ (-552)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -2986 ($ (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1| (-552)))))) (-1028)) (T -98)) -((-2986 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-98 *3))))) -(-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -2986 ($ (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1| (-552)))))) -((-2619 (((-412 |#2|) |#2| (-627 |#2|)) 10) (((-412 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -2619 ((-412 |#2|) |#2| |#2|)) (-15 -2619 ((-412 |#2|) |#2| (-627 |#2|)))) (-13 (-445) (-144)) (-1211 |#1|)) (T -99)) -((-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3)))) (-2619 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -2619 ((-412 |#2|) |#2| |#2|)) (-15 -2619 ((-412 |#2|) |#2| (-627 |#2|)))) -((-1465 (((-111) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -1465 ((-111) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -1465 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-2292 (((-111) $ $) 6))) +(-13 (-10 -7 (-6 -4368) (-6 (-4370 "*")) (-6 -4369) (-6 -4365) (-6 -4363) (-6 -4362) (-6 -4361) (-6 -4366) (-6 -4360) (-6 -4359) (-6 -4358) (-6 -4357) (-6 -4356) (-6 -4364) (-6 -4367) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4355))) +((-3202 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-1362 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-552))) 22)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 14)) (-2876 (((-1098) $) NIL)) (-2060 ((|#1| $ |#1|) 11)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) 20)) (-3309 (($) 8 T CONST)) (-1613 (((-111) $ $) 10)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) 27) (($ $ (-756)) NIL) (($ $ (-552)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -1362 ($ (-1 |#1| |#1|))) (-15 -1362 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1362 ($ (-1 |#1| |#1| (-552)))))) (-1030)) (T -98)) +((-1362 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-98 *3)))) (-1362 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-98 *3)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1030)) (-5 *1 (-98 *3))))) +(-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -1362 ($ (-1 |#1| |#1|))) (-15 -1362 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1362 ($ (-1 |#1| |#1| (-552)))))) +((-4027 (((-412 |#2|) |#2| (-629 |#2|)) 10) (((-412 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -4027 ((-412 |#2|) |#2| |#2|)) (-15 -4027 ((-412 |#2|) |#2| (-629 |#2|)))) (-13 (-445) (-144)) (-1213 |#1|)) (T -99)) +((-4027 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3)))) (-4027 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -4027 ((-412 |#2|) |#2| |#2|)) (-15 -4027 ((-412 |#2|) |#2| (-629 |#2|)))) +((-3202 (((-111) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -3202 ((-111) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -3202 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-1613 (((-111) $ $) 6))) (((-101) (-137)) (T -101)) -((-1465 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) (-2292 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111))))) -(-13 (-10 -8 (-15 -2292 ((-111) $ $)) (-15 -1465 ((-111) $ $)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 13 (|has| $ (-6 -4367)))) (-3433 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2076 (($ $ $) NIL (|has| $ (-6 -4367)))) (-3564 (($ $ (-627 |#1|)) 15)) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 11)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 17)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3079 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1270 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|)) 35)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 10)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 9)) (-2373 (($) 16)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3130 (($ (-754) |#1|) 19)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-102 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -3130 ($ (-754) |#1|)) (-15 -3564 ($ $ (-627 |#1|))) (-15 -3079 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|))))) (-1076)) (T -102)) -((-3130 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-102 *3)) (-4 *3 (-1076)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) (-3079 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1076)))) (-3079 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-627 *2) *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -3130 ($ (-754) |#1|)) (-15 -3564 ($ $ (-627 |#1|))) (-15 -3079 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|))))) -((-1728 ((|#3| |#2| |#2|) 29)) (-2981 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4368 "*"))))) (-1597 ((|#3| |#2| |#2|) 30)) (-4209 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4368 "*")))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1728 (|#3| |#2| |#2|)) (-15 -1597 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4368 "*"))) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -4209 (|#1| |#2|))) |%noBranch|)) (-1028) (-1211 |#1|) (-669 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103)) -((-4209 (*1 *2 *3) (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-2981 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-1597 (*1 *2 *3 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-1728 (*1 *2 *3 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) -(-10 -7 (-15 -1728 (|#3| |#2| |#2|)) (-15 -1597 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4368 "*"))) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -4209 (|#1| |#2|))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1873 (((-627 (-1152))) 33)) (-1646 (((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152)) 35)) (-2292 (((-111) $ $) NIL))) -(((-104) (-13 (-1076) (-10 -7 (-15 -1873 ((-627 (-1152)))) (-15 -1646 ((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152))) (-6 -4366)))) (T -104)) -((-1873 (*1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-104)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220))))) (-5 *1 (-104))))) -(-13 (-1076) (-10 -7 (-15 -1873 ((-627 (-1152)))) (-15 -1646 ((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152))) (-6 -4366))) -((-2577 (($ (-627 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -2577 (|#1| (-627 |#2|)))) (-106 |#2|) (-1189)) (T -105)) -NIL -(-10 -8 (-15 -2577 (|#1| (-627 |#2|)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-106 |#1|) (-137) (-1189)) (T -106)) -((-2577 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-106 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) (-3954 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) -(-13 (-482 |t#1|) (-10 -8 (-6 -4367) (-15 -2577 ($ (-627 |t#1|))) (-15 -4133 (|t#1| $)) (-15 -3954 ($ |t#1| $)) (-15 -4165 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 2) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3780 (($ (-401 (-552))) 9)) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-107) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 2) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -3780 ($ (-401 (-552))))))) (T -107)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 2)) (-5 *1 (-107)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107))))) -(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 2) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -3780 ($ (-401 (-552)))))) -((-3070 (((-627 (-944)) $) 14)) (-3112 (((-1152) $) 10)) (-1477 (((-842) $) 23)) (-2153 (($ (-1152) (-627 (-944))) 15))) -(((-108) (-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-627 (-944)) $)) (-15 -2153 ($ (-1152) (-627 (-944))))))) (T -108)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-108)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-627 (-944))) (-5 *1 (-108)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-108))))) -(-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-627 (-944)) $)) (-15 -2153 ($ (-1152) (-627 (-944)))))) -((-1465 (((-111) $ $) NIL)) (-2831 (($ $) NIL)) (-2543 (($ $ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-111) (-830)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-111) $ (-1202 (-552)) (-111)) NIL (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-4342 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-3473 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) NIL)) (-2967 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1076))) (((-552) (-111) $) NIL (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3215 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-1881 (($ $ $) NIL)) (-1681 (($ $) NIL)) (-3682 (($ $ $) NIL)) (-2655 (($ (-754) (-111)) 8)) (-3170 (($ $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL)) (-3759 (($ $ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3114 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL)) (-3463 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-111) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1942 (($ $ (-111)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (($ $ (-1202 (-552))) NIL) (((-111) $ (-552)) NIL) (((-111) $ (-552) (-111)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-1509 (((-754) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076)))) (((-754) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) NIL)) (-2668 (($ (-627 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-1477 (((-842) $) NIL)) (-3580 (($ (-754) (-111)) 9)) (-3299 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-2520 (($ $ $) NIL)) (-1872 (($ $ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-1861 (($ $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-109) (-13 (-122) (-10 -8 (-15 -3580 ($ (-754) (-111)))))) (T -109)) -((-3580 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-111)) (-5 *1 (-109))))) -(-13 (-122) (-10 -8 (-15 -3580 ($ (-754) (-111))))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-110 |#1| |#2|) (-137) (-1028) (-1028)) (T -110)) -NIL -(-13 (-630 |t#1|) (-1034 |t#2|) (-10 -7 (-6 -4361) (-6 -4360))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-1034 |#2|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-2831 (($ $) 10)) (-2543 (($ $ $) 15)) (-2503 (($) 7 T CONST)) (-4063 (($ $) 6)) (-3307 (((-754)) 24)) (-1279 (($) 30)) (-1881 (($ $ $) 13)) (-1681 (($ $) 9)) (-3682 (($ $ $) 16)) (-3170 (($ $ $) 17)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2886 (((-900) $) 29)) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 28)) (-2516 (($ $ $) 20)) (-1498 (((-1096) $) NIL)) (-1336 (($) 8 T CONST)) (-1655 (($ $ $) 21)) (-3562 (((-528) $) 36)) (-1477 (((-842) $) 39)) (-2520 (($ $ $) 11)) (-1872 (($ $ $) 14)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 19)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22)) (-1861 (($ $ $) 12))) -(((-111) (-13 (-824) (-643) (-946) (-600 (-528)) (-10 -8 (-15 -2503 ($) -3488) (-15 -1336 ($) -3488) (-15 -2543 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -4063 ($ $))))) (T -111)) -((-2503 (*1 *1) (-5 *1 (-111))) (-1336 (*1 *1) (-5 *1 (-111))) (-2543 (*1 *1 *1 *1) (-5 *1 (-111))) (-3170 (*1 *1 *1 *1) (-5 *1 (-111))) (-3682 (*1 *1 *1 *1) (-5 *1 (-111))) (-4063 (*1 *1 *1) (-5 *1 (-111)))) -(-13 (-824) (-643) (-946) (-600 (-528)) (-10 -8 (-15 -2503 ($) -3488) (-15 -1336 ($) -3488) (-15 -2543 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -4063 ($ $)))) -((-2201 (((-3 (-1 |#1| (-627 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-627 |#1|))) 11) (((-3 |#1| "failed") (-113) (-627 |#1|)) 21)) (-1422 (((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-627 (-1 |#1| (-627 |#1|)))) 26)) (-3298 (((-113) |#1|) 56 (|has| |#1| (-830)))) (-2045 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-830))))) -(((-112 |#1|) (-10 -7 (-15 -2201 ((-3 |#1| "failed") (-113) (-627 |#1|))) (-15 -2201 ((-113) (-113) (-1 |#1| (-627 |#1|)))) (-15 -2201 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2201 ((-3 (-1 |#1| (-627 |#1|)) "failed") (-113))) (-15 -1422 ((-113) (-113) (-627 (-1 |#1| (-627 |#1|))))) (-15 -1422 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1422 ((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113))) (IF (|has| |#1| (-830)) (PROGN (-15 -3298 ((-113) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1076)) (T -112)) -((-2045 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1076)) (-4 *2 (-830)) (-5 *1 (-112 *2)))) (-3298 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-830)) (-4 *3 (-1076)))) (-1422 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-1 *4 (-627 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1076)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 (-1 *4 (-627 *4)))) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-627 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1076)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-627 *4))) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-627 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1076))))) -(-10 -7 (-15 -2201 ((-3 |#1| "failed") (-113) (-627 |#1|))) (-15 -2201 ((-113) (-113) (-1 |#1| (-627 |#1|)))) (-15 -2201 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2201 ((-3 (-1 |#1| (-627 |#1|)) "failed") (-113))) (-15 -1422 ((-113) (-113) (-627 (-1 |#1| (-627 |#1|))))) (-15 -1422 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1422 ((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113))) (IF (|has| |#1| (-830)) (PROGN (-15 -3298 ((-113) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) 72) (($ $ (-754)) 30)) (-3390 (((-111) $) 32)) (-2275 (($ $ (-1134) (-757)) 26)) (-1406 (($ $ (-45 (-1134) (-757))) 15)) (-1481 (((-3 (-757) "failed") $ (-1134)) 25)) (-3070 (((-45 (-1134) (-757)) $) 14)) (-4148 (($ (-1152)) 17) (($ (-1152) (-754)) 22)) (-1863 (((-111) $) 31)) (-3658 (((-111) $) 33)) (-3112 (((-1152) $) 8)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2070 (((-111) $ (-1152)) 10)) (-1268 (($ $ (-1 (-528) (-627 (-528)))) 52) (((-3 (-1 (-528) (-627 (-528))) "failed") $) 56)) (-1498 (((-1096) $) NIL)) (-1531 (((-111) $ (-1134)) 29)) (-1940 (($ $ (-1 (-111) $ $)) 35)) (-4291 (((-3 (-1 (-842) (-627 (-842))) "failed") $) 54) (($ $ (-1 (-842) (-627 (-842)))) 41) (($ $ (-1 (-842) (-842))) 43)) (-1936 (($ $ (-1134)) 45)) (-2973 (($ $) 63)) (-3668 (($ $ (-1 (-111) $ $)) 36)) (-1477 (((-842) $) 48)) (-3732 (($ $ (-1134)) 27)) (-2926 (((-3 (-754) "failed") $) 58)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 71)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 79))) -(((-113) (-13 (-830) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-45 (-1134) (-757)) $)) (-15 -2973 ($ $)) (-15 -4148 ($ (-1152))) (-15 -4148 ($ (-1152) (-754))) (-15 -2926 ((-3 (-754) "failed") $)) (-15 -1863 ((-111) $)) (-15 -3390 ((-111) $)) (-15 -3658 ((-111) $)) (-15 -2671 ((-754) $)) (-15 -2671 ($ $ (-754))) (-15 -1940 ($ $ (-1 (-111) $ $))) (-15 -3668 ($ $ (-1 (-111) $ $))) (-15 -4291 ((-3 (-1 (-842) (-627 (-842))) "failed") $)) (-15 -4291 ($ $ (-1 (-842) (-627 (-842))))) (-15 -4291 ($ $ (-1 (-842) (-842)))) (-15 -1268 ($ $ (-1 (-528) (-627 (-528))))) (-15 -1268 ((-3 (-1 (-528) (-627 (-528))) "failed") $)) (-15 -2070 ((-111) $ (-1152))) (-15 -1531 ((-111) $ (-1134))) (-15 -3732 ($ $ (-1134))) (-15 -1936 ($ $ (-1134))) (-15 -1481 ((-3 (-757) "failed") $ (-1134))) (-15 -2275 ($ $ (-1134) (-757))) (-15 -1406 ($ $ (-45 (-1134) (-757))))))) (T -113)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113)))) (-2973 (*1 *1 *1) (-5 *1 (-113))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) (-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *1 (-113)))) (-2926 (*1 *2 *1) (|partial| -12 (-5 *2 (-754)) (-5 *1 (-113)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-4291 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-113)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) (-1268 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-113)))) (-1531 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3732 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) (-1481 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-757)) (-5 *1 (-113)))) (-2275 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-757)) (-5 *1 (-113)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) -(-13 (-830) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-45 (-1134) (-757)) $)) (-15 -2973 ($ $)) (-15 -4148 ($ (-1152))) (-15 -4148 ($ (-1152) (-754))) (-15 -2926 ((-3 (-754) "failed") $)) (-15 -1863 ((-111) $)) (-15 -3390 ((-111) $)) (-15 -3658 ((-111) $)) (-15 -2671 ((-754) $)) (-15 -2671 ($ $ (-754))) (-15 -1940 ($ $ (-1 (-111) $ $))) (-15 -3668 ($ $ (-1 (-111) $ $))) (-15 -4291 ((-3 (-1 (-842) (-627 (-842))) "failed") $)) (-15 -4291 ($ $ (-1 (-842) (-627 (-842))))) (-15 -4291 ($ $ (-1 (-842) (-842)))) (-15 -1268 ($ $ (-1 (-528) (-627 (-528))))) (-15 -1268 ((-3 (-1 (-528) (-627 (-528))) "failed") $)) (-15 -2070 ((-111) $ (-1152))) (-15 -1531 ((-111) $ (-1134))) (-15 -3732 ($ $ (-1134))) (-15 -1936 ($ $ (-1134))) (-15 -1481 ((-3 (-757) "failed") $ (-1134))) (-15 -2275 ($ $ (-1134) (-757))) (-15 -1406 ($ $ (-45 (-1134) (-757)))))) -((-3680 (((-552) |#2|) 37))) -(((-114 |#1| |#2|) (-10 -7 (-15 -3680 ((-552) |#2|))) (-13 (-357) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -114)) -((-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-1017 (-401 *2)))) (-5 *2 (-552)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3680 ((-552) |#2|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1497 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) NIL)) (-3752 (((-552) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-1132 (-552)) $) NIL)) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-115 |#1|) (-848 |#1|) (-552)) (T -115)) -NIL -(-848 |#1|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-115 |#1|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-552))))) (-1703 (((-115 |#1|) $) NIL) (((-1152) $) NIL (|has| (-115 |#1|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-115 |#1|) (-1017 (-552)))) (((-552) $) NIL (|has| (-115 |#1|) (-1017 (-552))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-115 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-115 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-115 |#1|))) (|:| |vec| (-1235 (-115 |#1|)))) (-671 $) (-1235 $)) NIL) (((-671 (-115 |#1|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-115 |#1|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-115 |#1|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-115 |#1|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-115 |#1|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-115 |#1|) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-115 |#1|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-115 |#1|) (-830)))) (-4093 (($ $ $) NIL (|has| (-115 |#1|) (-830)))) (-3516 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-115 |#1|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-115 |#1|) (-301)))) (-2060 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-115 |#1|)) (-627 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-288 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-627 (-288 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-627 (-1152)) (-627 (-115 |#1|))) NIL (|has| (-115 |#1|) (-506 (-1152) (-115 |#1|)))) (($ $ (-1152) (-115 |#1|)) NIL (|has| (-115 |#1|) (-506 (-1152) (-115 |#1|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-280 (-115 |#1|) (-115 |#1|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-754)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-115 |#1|) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-115 |#1|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-115 |#1|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-115 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-115 |#1|) (-1001))) (((-220) $) NIL (|has| (-115 |#1|) (-1001)))) (-2771 (((-171 (-401 (-552))) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-115 |#1|)) NIL) (($ (-1152)) NIL (|has| (-115 |#1|) (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-888))) (|has| (-115 |#1|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) NIL)) (-3329 (($ $) NIL (|has| (-115 |#1|) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-754)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2407 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) -(((-116 |#1|) (-13 (-971 (-115 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552)) (T -116)) -((-3030 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2)))) -(-13 (-971 (-115 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) -((-2950 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2336 (((-627 $) $) 27)) (-3726 (((-111) $ $) 32)) (-3082 (((-111) |#2| $) 36)) (-1823 (((-627 |#2|) $) 22)) (-3810 (((-111) $) 16)) (-1985 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2978 (((-111) $) 45)) (-1477 (((-842) $) 41)) (-2535 (((-627 $) $) 28)) (-2292 (((-111) $ $) 34)) (-1383 (((-754) $) 43))) -(((-117 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2950 (|#1| |#1| "right" |#1|)) (-15 -2950 (|#1| |#1| "left" |#1|)) (-15 -1985 (|#1| |#1| "right")) (-15 -1985 (|#1| |#1| "left")) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -1823 ((-627 |#2|) |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1383 ((-754) |#1|))) (-118 |#2|) (-1189)) (T -117)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2950 (|#1| |#1| "right" |#1|)) (-15 -2950 (|#1| |#1| "left" |#1|)) (-15 -1985 (|#1| |#1| "right")) (-15 -1985 (|#1| |#1| "left")) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -1823 ((-627 |#2|) |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1383 ((-754) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 54 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) (($ $ "left" $) 55 (|has| $ (-6 -4367))) (($ $ "right" $) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-2791 (($ $) 57)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-2776 (($ $) 59)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-118 |#1|) (-137) (-1189)) (T -118)) -((-2776 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2791 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2076 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-3433 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) -(-13 (-989 |t#1|) (-10 -8 (-15 -2776 ($ $)) (-15 -1985 ($ $ "left")) (-15 -2791 ($ $)) (-15 -1985 ($ $ "right")) (IF (|has| $ (-6 -4367)) (PROGN (-15 -2950 ($ $ "left" $)) (-15 -2076 ($ $ $)) (-15 -2950 ($ $ "right" $)) (-15 -3433 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3990 (((-111) |#1|) 24)) (-1521 (((-754) (-754)) 23) (((-754)) 22)) (-1706 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) -(((-119 |#1|) (-10 -7 (-15 -1706 ((-111) |#1|)) (-15 -1706 ((-111) |#1| (-111))) (-15 -1521 ((-754))) (-15 -1521 ((-754) (-754))) (-15 -3990 ((-111) |#1|))) (-1211 (-552))) (T -119)) -((-3990 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1521 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1706 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) -(-10 -7 (-15 -1706 ((-111) |#1|)) (-15 -1706 ((-111) |#1| (-111))) (-15 -1521 ((-754))) (-15 -1521 ((-754) (-754))) (-15 -3990 ((-111) |#1|))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 15)) (-2843 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-3433 (($ $ $) 18 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 20 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 17)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 23)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 19)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2582 (($ |#1| $) 24)) (-3954 (($ |#1| $) 10)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 8)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1554 (($ (-627 |#1|)) 12)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -1554 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)) (-15 -2582 ($ |#1| $)) (-15 -2843 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-830)) (T -120)) -((-1554 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-120 *3)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) (-2843 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-830))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -1554 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)) (-15 -2582 ($ |#1| $)) (-15 -2843 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2831 (($ $) 13)) (-1681 (($ $) 11)) (-3682 (($ $ $) 23)) (-3170 (($ $ $) 21)) (-1872 (($ $ $) 19)) (-1861 (($ $ $) 17))) -(((-121 |#1|) (-10 -8 (-15 -3682 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|))) (-122)) (T -121)) -NIL -(-10 -8 (-15 -3682 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-2831 (($ $) 103)) (-2543 (($ $ $) 25)) (-3305 (((-1240) $ (-552) (-552)) 66 (|has| $ (-6 -4367)))) (-1439 (((-111) $) 98 (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-2701 (($ $) 102 (-12 (|has| (-111) (-830)) (|has| $ (-6 -4367)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4367)))) (-4298 (($ $) 97 (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-4031 (((-111) $ (-754)) 37)) (-2950 (((-111) $ (-1202 (-552)) (-111)) 88 (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) 54 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4366)))) (-3887 (($) 38 T CONST)) (-2519 (($ $) 100 (|has| $ (-6 -4367)))) (-3429 (($ $) 90)) (-3370 (($ $) 68 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4366))) (($ (-111) $) 69 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-3473 (((-111) $ (-552) (-111)) 53 (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) 55)) (-2967 (((-552) (-111) $ (-552)) 95 (|has| (-111) (-1076))) (((-552) (-111) $) 94 (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) 93)) (-3215 (((-627 (-111)) $) 45 (|has| $ (-6 -4366)))) (-1881 (($ $ $) 26)) (-1681 (($ $) 30)) (-3682 (($ $ $) 28)) (-2655 (($ (-754) (-111)) 77)) (-3170 (($ $ $) 29)) (-1602 (((-111) $ (-754)) 36)) (-3661 (((-552) $) 63 (|has| (-552) (-830)))) (-1816 (($ $ $) 13)) (-3759 (($ $ $) 96 (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-3114 (((-627 (-111)) $) 46 (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 62 (|has| (-552) (-830)))) (-4093 (($ $ $) 14)) (-3463 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-3971 (((-111) $ (-754)) 35)) (-1595 (((-1134) $) 9)) (-3252 (($ $ $ (-552)) 87) (($ (-111) $ (-552)) 86)) (-3892 (((-627 (-552)) $) 60)) (-2358 (((-111) (-552) $) 59)) (-1498 (((-1096) $) 10)) (-3340 (((-111) $) 64 (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-1942 (($ $ (-111)) 65 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) 52 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) 50 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) 49 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) 31)) (-2181 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) 58)) (-1275 (((-111) $) 34)) (-2373 (($) 33)) (-1985 (($ $ (-1202 (-552))) 83) (((-111) $ (-552)) 57) (((-111) $ (-552) (-111)) 56)) (-3907 (($ $ (-1202 (-552))) 85) (($ $ (-552)) 84)) (-1509 (((-754) (-111) $) 47 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) 99 (|has| $ (-6 -4367)))) (-2973 (($ $) 32)) (-3562 (((-528) $) 67 (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) 76)) (-2668 (($ (-627 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-1477 (((-842) $) 11)) (-3299 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4366)))) (-2520 (($ $ $) 27)) (-1872 (($ $ $) 105)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-1861 (($ $ $) 104)) (-1383 (((-754) $) 39 (|has| $ (-6 -4366))))) +((-3202 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) (-1613 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111))))) +(-13 (-10 -8 (-15 -1613 ((-111) $ $)) (-15 -3202 ((-111) $ $)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) 13 (|has| $ (-6 -4369)))) (-1324 (($ $ $) NIL (|has| $ (-6 -4369)))) (-3569 (($ $ $) NIL (|has| $ (-6 -4369)))) (-3264 (($ $ (-629 |#1|)) 15)) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "left" $) NIL (|has| $ (-6 -4369))) (($ $ "right" $) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3428 (($ $) 11)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4193 (($ $ |#1| $) 17)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2939 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3390 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-629 |#1|) |#1| |#1| |#1|)) 35)) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-3416 (($ $) 10)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) 12)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 9)) (-3430 (($) 16)) (-2060 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3431 (($ (-756) |#1|) 19)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-102 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3431 ($ (-756) |#1|)) (-15 -3264 ($ $ (-629 |#1|))) (-15 -2939 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2939 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3390 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3390 ($ $ |#1| (-1 (-629 |#1|) |#1| |#1| |#1|))))) (-1078)) (T -102)) +((-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *1 (-102 *3)) (-4 *3 (-1078)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-102 *3)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1078)))) (-2939 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-102 *3)))) (-3390 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1078)) (-5 *1 (-102 *2)))) (-3390 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-629 *2) *2 *2 *2)) (-4 *2 (-1078)) (-5 *1 (-102 *2))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3431 ($ (-756) |#1|)) (-15 -3264 ($ $ (-629 |#1|))) (-15 -2939 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2939 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3390 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3390 ($ $ |#1| (-1 (-629 |#1|) |#1| |#1| |#1|))))) +((-1331 ((|#3| |#2| |#2|) 29)) (-1318 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4370 "*"))))) (-2634 ((|#3| |#2| |#2|) 30)) (-2221 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4370 "*")))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1331 (|#3| |#2| |#2|)) (-15 -2634 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4370 "*"))) (PROGN (-15 -1318 (|#1| |#2| |#2|)) (-15 -2221 (|#1| |#2|))) |%noBranch|)) (-1030) (-1213 |#1|) (-671 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103)) +((-2221 (*1 *2 *3) (-12 (|has| *2 (-6 (-4370 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1030)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1213 *2)) (-4 *4 (-671 *2 *5 *6)))) (-1318 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4370 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1030)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1213 *2)) (-4 *4 (-671 *2 *5 *6)))) (-2634 (*1 *2 *3 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-671 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1213 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-671 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1213 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) +(-10 -7 (-15 -1331 (|#3| |#2| |#2|)) (-15 -2634 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4370 "*"))) (PROGN (-15 -1318 (|#1| |#2| |#2|)) (-15 -2221 (|#1| |#2|))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-2091 (((-629 (-1154))) 33)) (-1803 (((-2 (|:| |zeros| (-1134 (-220))) (|:| |ones| (-1134 (-220))) (|:| |singularities| (-1134 (-220)))) (-1154)) 35)) (-1613 (((-111) $ $) NIL))) +(((-104) (-13 (-1078) (-10 -7 (-15 -2091 ((-629 (-1154)))) (-15 -1803 ((-2 (|:| |zeros| (-1134 (-220))) (|:| |ones| (-1134 (-220))) (|:| |singularities| (-1134 (-220)))) (-1154))) (-6 -4368)))) (T -104)) +((-2091 (*1 *2) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-104)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-2 (|:| |zeros| (-1134 (-220))) (|:| |ones| (-1134 (-220))) (|:| |singularities| (-1134 (-220))))) (-5 *1 (-104))))) +(-13 (-1078) (-10 -7 (-15 -2091 ((-629 (-1154)))) (-15 -1803 ((-2 (|:| |zeros| (-1134 (-220))) (|:| |ones| (-1134 (-220))) (|:| |singularities| (-1134 (-220)))) (-1154))) (-6 -4368))) +((-1663 (($ (-629 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -1663 (|#1| (-629 |#2|)))) (-106 |#2|) (-1191)) (T -105)) +NIL +(-10 -8 (-15 -1663 (|#1| (-629 |#2|)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-106 |#1|) (-137) (-1191)) (T -106)) +((-1663 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-106 *3)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191)))) (-1580 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191))))) +(-13 (-482 |t#1|) (-10 -8 (-6 -4369) (-15 -1663 ($ (-629 |t#1|))) (-15 -3995 (|t#1| $)) (-15 -1580 ($ |t#1| $)) (-15 -3105 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-552) $) NIL (|has| (-552) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-552) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-552) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1019 (-552))))) (-2832 (((-552) $) NIL) (((-1154) $) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-552) (-1019 (-552)))) (((-552) $) NIL (|has| (-552) (-1019 (-552))))) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-552) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-552) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-552) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-552) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-552) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-552) (-1129)))) (-3127 (((-111) $) NIL (|has| (-552) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-552) (-832)))) (-1477 (($ (-1 (-552) (-552)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-552) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-3410 (((-552) $) NIL (|has| (-552) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-552)) (-629 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-1154)) (-629 (-552))) NIL (|has| (-552) (-506 (-1154) (-552)))) (($ $ (-1154) (-552)) NIL (|has| (-552) (-506 (-1154) (-552))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-552) $) NIL)) (-1522 (((-873 (-552)) $) NIL (|has| (-552) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-552) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1003))) (((-220) $) NIL (|has| (-552) (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1154)) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL) (((-985 2) $) 10)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-552) (-890))) (|has| (-552) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-552) $) NIL (|has| (-552) (-537)))) (-3609 (($ (-401 (-552))) 9)) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| (-552) (-805)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1720 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-107) (-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 2) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3609 ($ (-401 (-552))))))) (T -107)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-985 2)) (-5 *1 (-107)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-3609 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107))))) +(-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 2) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3609 ($ (-401 (-552)))))) +((-1292 (((-629 (-946)) $) 14)) (-4290 (((-1154) $) 10)) (-3213 (((-844) $) 23)) (-3051 (($ (-1154) (-629 (-946))) 15))) +(((-108) (-13 (-599 (-844)) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -1292 ((-629 (-946)) $)) (-15 -3051 ($ (-1154) (-629 (-946))))))) (T -108)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-108)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-629 (-946))) (-5 *1 (-108)))) (-3051 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-946))) (-5 *1 (-108))))) +(-13 (-599 (-844)) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -1292 ((-629 (-946)) $)) (-15 -3051 ($ (-1154) (-629 (-946)))))) +((-3202 (((-111) $ $) NIL)) (-3072 (($ $) NIL)) (-2520 (($ $ $) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) $) NIL (|has| (-111) (-832))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-3646 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-832)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-1296 (($ $) NIL (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-111) $ (-1204 (-552)) (-111)) NIL (|has| $ (-6 -4369))) (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-2655 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-3884 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-2957 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4369)))) (-2892 (((-111) $ (-552)) NIL)) (-1456 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1078))) (((-552) (-111) $) NIL (|has| (-111) (-1078))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3138 (((-629 (-111)) $) NIL (|has| $ (-6 -4368)))) (-3167 (($ $ $) NIL)) (-4107 (($ $) NIL)) (-1917 (($ $ $) NIL)) (-3307 (($ (-756) (-111)) 8)) (-2589 (($ $ $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL)) (-1446 (($ $ $) NIL (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3278 (((-629 (-111)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL)) (-2947 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-111) $) NIL (|has| (-552) (-832)))) (-3073 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1518 (($ $ (-111)) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-111)) (-629 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-629 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-3627 (((-629 (-111)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 (($ $ (-1204 (-552))) NIL) (((-111) $ (-552)) NIL) (((-111) $ (-552) (-111)) NIL)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2885 (((-756) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078)))) (((-756) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-3226 (($ (-629 (-111))) NIL)) (-4319 (($ (-629 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-3213 (((-844) $) NIL)) (-2122 (($ (-756) (-111)) 9)) (-2584 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-3792 (($ $ $) NIL)) (-2038 (($ $ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-2026 (($ $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-109) (-13 (-122) (-10 -8 (-15 -2122 ($ (-756) (-111)))))) (T -109)) +((-2122 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-111)) (-5 *1 (-109))))) +(-13 (-122) (-10 -8 (-15 -2122 ($ (-756) (-111))))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-110 |#1| |#2|) (-137) (-1030) (-1030)) (T -110)) +NIL +(-13 (-632 |t#1|) (-1036 |t#2|) (-10 -7 (-6 -4363) (-6 -4362))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-1036 |#2|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3072 (($ $) 10)) (-2520 (($ $ $) 15)) (-3775 (($) 7 T CONST)) (-2671 (($ $) 6)) (-2663 (((-756)) 24)) (-1332 (($) 30)) (-3167 (($ $ $) 13)) (-4107 (($ $) 9)) (-1917 (($ $ $) 16)) (-2589 (($ $ $) 17)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1637 (((-902) $) 29)) (-2623 (((-1136) $) NIL)) (-2840 (($ (-902)) 28)) (-2494 (($ $ $) 20)) (-2876 (((-1098) $) NIL)) (-2608 (($) 8 T CONST)) (-1886 (($ $ $) 21)) (-1522 (((-528) $) 36)) (-3213 (((-844) $) 39)) (-3792 (($ $ $) 11)) (-2038 (($ $ $) 14)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 19)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 22)) (-2026 (($ $ $) 12))) +(((-111) (-13 (-826) (-645) (-948) (-600 (-528)) (-10 -8 (-15 -3775 ($) -3930) (-15 -2608 ($) -3930) (-15 -2520 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -2671 ($ $))))) (T -111)) +((-3775 (*1 *1) (-5 *1 (-111))) (-2608 (*1 *1) (-5 *1 (-111))) (-2520 (*1 *1 *1 *1) (-5 *1 (-111))) (-2589 (*1 *1 *1 *1) (-5 *1 (-111))) (-1917 (*1 *1 *1 *1) (-5 *1 (-111))) (-2671 (*1 *1 *1) (-5 *1 (-111)))) +(-13 (-826) (-645) (-948) (-600 (-528)) (-10 -8 (-15 -3775 ($) -3930) (-15 -2608 ($) -3930) (-15 -2520 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -2671 ($ $)))) +((-2263 (((-3 (-1 |#1| (-629 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-629 |#1|))) 11) (((-3 |#1| "failed") (-113) (-629 |#1|)) 21)) (-3577 (((-3 (-629 (-1 |#1| (-629 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-629 (-1 |#1| (-629 |#1|)))) 26)) (-2572 (((-113) |#1|) 56 (|has| |#1| (-832)))) (-1339 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-832))))) +(((-112 |#1|) (-10 -7 (-15 -2263 ((-3 |#1| "failed") (-113) (-629 |#1|))) (-15 -2263 ((-113) (-113) (-1 |#1| (-629 |#1|)))) (-15 -2263 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2263 ((-3 (-1 |#1| (-629 |#1|)) "failed") (-113))) (-15 -3577 ((-113) (-113) (-629 (-1 |#1| (-629 |#1|))))) (-15 -3577 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3577 ((-3 (-629 (-1 |#1| (-629 |#1|))) "failed") (-113))) (IF (|has| |#1| (-832)) (PROGN (-15 -2572 ((-113) |#1|)) (-15 -1339 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1078)) (T -112)) +((-1339 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1078)) (-4 *2 (-832)) (-5 *1 (-112 *2)))) (-2572 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-832)) (-4 *3 (-1078)))) (-3577 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-629 (-1 *4 (-629 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1078)))) (-3577 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) (-3577 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 (-1 *4 (-629 *4)))) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) (-2263 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-629 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1078)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-629 *4))) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) (-2263 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-629 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1078))))) +(-10 -7 (-15 -2263 ((-3 |#1| "failed") (-113) (-629 |#1|))) (-15 -2263 ((-113) (-113) (-1 |#1| (-629 |#1|)))) (-15 -2263 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2263 ((-3 (-1 |#1| (-629 |#1|)) "failed") (-113))) (-15 -3577 ((-113) (-113) (-629 (-1 |#1| (-629 |#1|))))) (-15 -3577 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3577 ((-3 (-629 (-1 |#1| (-629 |#1|))) "failed") (-113))) (IF (|has| |#1| (-832)) (PROGN (-15 -2572 ((-113) |#1|)) (-15 -1339 ((-3 |#1| "failed") (-113)))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-1400 (((-756) $) 72) (($ $ (-756)) 30)) (-4067 (((-111) $) 32)) (-1722 (($ $ (-1136) (-759)) 26)) (-3409 (($ $ (-45 (-1136) (-759))) 15)) (-2066 (((-3 (-759) "failed") $ (-1136)) 25)) (-1292 (((-45 (-1136) (-759)) $) 14)) (-2951 (($ (-1154)) 17) (($ (-1154) (-756)) 22)) (-3296 (((-111) $) 31)) (-1664 (((-111) $) 33)) (-4290 (((-1154) $) 8)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3515 (((-111) $ (-1154)) 10)) (-1392 (($ $ (-1 (-528) (-629 (-528)))) 52) (((-3 (-1 (-528) (-629 (-528))) "failed") $) 56)) (-2876 (((-1098) $) NIL)) (-2033 (((-111) $ (-1136)) 29)) (-1502 (($ $ (-1 (-111) $ $)) 35)) (-2595 (((-3 (-1 (-844) (-629 (-844))) "failed") $) 54) (($ $ (-1 (-844) (-629 (-844)))) 41) (($ $ (-1 (-844) (-844))) 43)) (-1466 (($ $ (-1136)) 45)) (-1487 (($ $) 63)) (-1775 (($ $ (-1 (-111) $ $)) 36)) (-3213 (((-844) $) 48)) (-1838 (($ $ (-1136)) 27)) (-2024 (((-3 (-756) "failed") $) 58)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 71)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 79))) +(((-113) (-13 (-832) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -1292 ((-45 (-1136) (-759)) $)) (-15 -1487 ($ $)) (-15 -2951 ($ (-1154))) (-15 -2951 ($ (-1154) (-756))) (-15 -2024 ((-3 (-756) "failed") $)) (-15 -3296 ((-111) $)) (-15 -4067 ((-111) $)) (-15 -1664 ((-111) $)) (-15 -1400 ((-756) $)) (-15 -1400 ($ $ (-756))) (-15 -1502 ($ $ (-1 (-111) $ $))) (-15 -1775 ($ $ (-1 (-111) $ $))) (-15 -2595 ((-3 (-1 (-844) (-629 (-844))) "failed") $)) (-15 -2595 ($ $ (-1 (-844) (-629 (-844))))) (-15 -2595 ($ $ (-1 (-844) (-844)))) (-15 -1392 ($ $ (-1 (-528) (-629 (-528))))) (-15 -1392 ((-3 (-1 (-528) (-629 (-528))) "failed") $)) (-15 -3515 ((-111) $ (-1154))) (-15 -2033 ((-111) $ (-1136))) (-15 -1838 ($ $ (-1136))) (-15 -1466 ($ $ (-1136))) (-15 -2066 ((-3 (-759) "failed") $ (-1136))) (-15 -1722 ($ $ (-1136) (-759))) (-15 -3409 ($ $ (-45 (-1136) (-759))))))) (T -113)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-113)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-45 (-1136) (-759))) (-5 *1 (-113)))) (-1487 (*1 *1 *1) (-5 *1 (-113))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-113)))) (-2951 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *1 (-113)))) (-2024 (*1 *2 *1) (|partial| -12 (-5 *2 (-756)) (-5 *1 (-113)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-113)))) (-1400 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-113)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-1775 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-844) (-629 (-844)))) (-5 *1 (-113)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-844) (-629 (-844)))) (-5 *1 (-113)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-844) (-844))) (-5 *1 (-113)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-629 (-528)))) (-5 *1 (-113)))) (-1392 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-528) (-629 (-528)))) (-5 *1 (-113)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-111)) (-5 *1 (-113)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-113)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-113)))) (-1466 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-113)))) (-2066 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-759)) (-5 *1 (-113)))) (-1722 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-759)) (-5 *1 (-113)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1136) (-759))) (-5 *1 (-113))))) +(-13 (-832) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -1292 ((-45 (-1136) (-759)) $)) (-15 -1487 ($ $)) (-15 -2951 ($ (-1154))) (-15 -2951 ($ (-1154) (-756))) (-15 -2024 ((-3 (-756) "failed") $)) (-15 -3296 ((-111) $)) (-15 -4067 ((-111) $)) (-15 -1664 ((-111) $)) (-15 -1400 ((-756) $)) (-15 -1400 ($ $ (-756))) (-15 -1502 ($ $ (-1 (-111) $ $))) (-15 -1775 ($ $ (-1 (-111) $ $))) (-15 -2595 ((-3 (-1 (-844) (-629 (-844))) "failed") $)) (-15 -2595 ($ $ (-1 (-844) (-629 (-844))))) (-15 -2595 ($ $ (-1 (-844) (-844)))) (-15 -1392 ($ $ (-1 (-528) (-629 (-528))))) (-15 -1392 ((-3 (-1 (-528) (-629 (-528))) "failed") $)) (-15 -3515 ((-111) $ (-1154))) (-15 -2033 ((-111) $ (-1136))) (-15 -1838 ($ $ (-1136))) (-15 -1466 ($ $ (-1136))) (-15 -2066 ((-3 (-759) "failed") $ (-1136))) (-15 -1722 ($ $ (-1136) (-759))) (-15 -3409 ($ $ (-45 (-1136) (-759)))))) +((-1893 (((-552) |#2|) 37))) +(((-114 |#1| |#2|) (-10 -7 (-15 -1893 ((-552) |#2|))) (-13 (-357) (-1019 (-401 (-552)))) (-1213 |#1|)) (T -114)) +((-1893 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-1019 (-401 *2)))) (-5 *2 (-552)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -1893 ((-552) |#2|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $ (-552)) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-2450 (($ (-1150 (-552)) (-552)) NIL)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3029 (($ $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4241 (((-756) $) NIL)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3714 (((-552)) NIL)) (-1401 (((-552) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3136 (($ $ (-552)) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-2950 (((-1134 (-552)) $) NIL)) (-1680 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-4311 (((-552) $ (-552)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-115 |#1|) (-850 |#1|) (-552)) (T -115)) +NIL +(-850 |#1|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-115 |#1|) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-115 |#1|) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-115 |#1|) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-115 |#1|) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-115 |#1|) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-115 |#1|) (-1019 (-552))))) (-2832 (((-115 |#1|) $) NIL) (((-1154) $) NIL (|has| (-115 |#1|) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-115 |#1|) (-1019 (-552)))) (((-552) $) NIL (|has| (-115 |#1|) (-1019 (-552))))) (-3398 (($ $) NIL) (($ (-552) $) NIL)) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-115 |#1|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-115 |#1|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-115 |#1|))) (|:| |vec| (-1237 (-115 |#1|)))) (-673 $) (-1237 $)) NIL) (((-673 (-115 |#1|)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-115 |#1|) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-115 |#1|) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-115 |#1|) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-115 |#1|) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-115 |#1|) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1129)))) (-3127 (((-111) $) NIL (|has| (-115 |#1|) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-115 |#1|) (-832)))) (-2011 (($ $ $) NIL (|has| (-115 |#1|) (-832)))) (-1477 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-115 |#1|) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-115 |#1|) (-301)))) (-3410 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-115 |#1|) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-115 |#1|) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-115 |#1|)) (-629 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-288 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-629 (-288 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-629 (-1154)) (-629 (-115 |#1|))) NIL (|has| (-115 |#1|) (-506 (-1154) (-115 |#1|)))) (($ $ (-1154) (-115 |#1|)) NIL (|has| (-115 |#1|) (-506 (-1154) (-115 |#1|))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-280 (-115 |#1|) (-115 |#1|))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-756)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1154)) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-756)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-115 |#1|) $) NIL)) (-1522 (((-873 (-552)) $) NIL (|has| (-115 |#1|) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-115 |#1|) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-115 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-115 |#1|) (-1003))) (((-220) $) NIL (|has| (-115 |#1|) (-1003)))) (-3110 (((-171 (-401 (-552))) $) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-115 |#1|)) NIL) (($ (-1154)) NIL (|has| (-115 |#1|) (-1019 (-1154))))) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-890))) (|has| (-115 |#1|) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-3589 (((-111) $ $) NIL)) (-4311 (((-401 (-552)) $ (-552)) NIL)) (-1578 (($ $) NIL (|has| (-115 |#1|) (-805)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-756)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1154)) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-115 |#1|) (-881 (-1154)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-756)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-115 |#1|) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-115 |#1|) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-115 |#1|) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-115 |#1|) (-832)))) (-1720 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) +(((-116 |#1|) (-13 (-973 (-115 |#1|)) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) (-552)) (T -116)) +((-4311 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2)))) +(-13 (-973 (-115 |#1|)) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) +((-1470 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4236 (((-629 $) $) 27)) (-4266 (((-111) $ $) 32)) (-2973 (((-111) |#2| $) 36)) (-2604 (((-629 |#2|) $) 22)) (-3862 (((-111) $) 16)) (-2060 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1289 (((-111) $) 45)) (-3213 (((-844) $) 41)) (-2527 (((-629 $) $) 28)) (-1613 (((-111) $ $) 34)) (-2657 (((-756) $) 43))) +(((-117 |#1| |#2|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1470 (|#1| |#1| "right" |#1|)) (-15 -1470 (|#1| |#1| "left" |#1|)) (-15 -2060 (|#1| |#1| "right")) (-15 -2060 (|#1| |#1| "left")) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4266 ((-111) |#1| |#1|)) (-15 -2604 ((-629 |#2|) |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2657 ((-756) |#1|))) (-118 |#2|) (-1191)) (T -117)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1470 (|#1| |#1| "right" |#1|)) (-15 -1470 (|#1| |#1| "left" |#1|)) (-15 -2060 (|#1| |#1| "right")) (-15 -2060 (|#1| |#1| "left")) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4266 ((-111) |#1| |#1|)) (-15 -2604 ((-629 |#2|) |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2657 ((-756) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-1324 (($ $ $) 52 (|has| $ (-6 -4369)))) (-3569 (($ $ $) 54 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) (($ $ "left" $) 55 (|has| $ (-6 -4369))) (($ $ "right" $) 53 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-3428 (($ $) 57)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-3416 (($ $) 59)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3153 (((-552) $ $) 44)) (-1289 (((-111) $) 46)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-118 |#1|) (-137) (-1191)) (T -118)) +((-3416 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1191)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1191)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1191)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1191)))) (-1470 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4369)) (-4 *1 (-118 *3)) (-4 *3 (-1191)))) (-3569 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-118 *2)) (-4 *2 (-1191)))) (-1470 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4369)) (-4 *1 (-118 *3)) (-4 *3 (-1191)))) (-1324 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-118 *2)) (-4 *2 (-1191))))) +(-13 (-991 |t#1|) (-10 -8 (-15 -3416 ($ $)) (-15 -2060 ($ $ "left")) (-15 -3428 ($ $)) (-15 -2060 ($ $ "right")) (IF (|has| $ (-6 -4369)) (PROGN (-15 -1470 ($ $ "left" $)) (-15 -3569 ($ $ $)) (-15 -1470 ($ $ "right" $)) (-15 -1324 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-1960 (((-111) |#1|) 24)) (-3236 (((-756) (-756)) 23) (((-756)) 22)) (-4225 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) +(((-119 |#1|) (-10 -7 (-15 -4225 ((-111) |#1|)) (-15 -4225 ((-111) |#1| (-111))) (-15 -3236 ((-756))) (-15 -3236 ((-756) (-756))) (-15 -1960 ((-111) |#1|))) (-1213 (-552))) (T -119)) +((-1960 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-756)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) (-3236 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) (-4225 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) (-4225 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552)))))) +(-10 -7 (-15 -4225 ((-111) |#1|)) (-15 -4225 ((-111) |#1| (-111))) (-15 -3236 ((-756))) (-15 -3236 ((-756) (-756))) (-15 -1960 ((-111) |#1|))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) 15)) (-2483 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1324 (($ $ $) 18 (|has| $ (-6 -4369)))) (-3569 (($ $ $) 20 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "left" $) NIL (|has| $ (-6 -4369))) (($ $ "right" $) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3428 (($ $) 17)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4193 (($ $ |#1| $) 23)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-3416 (($ $) 19)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1717 (($ |#1| $) 24)) (-1580 (($ |#1| $) 10)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 14)) (-3430 (($) 8)) (-2060 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2250 (($ (-629 |#1|)) 12)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4369) (-6 -4368) (-15 -2250 ($ (-629 |#1|))) (-15 -1580 ($ |#1| $)) (-15 -1717 ($ |#1| $)) (-15 -2483 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-832)) (T -120)) +((-2250 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-120 *3)))) (-1580 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-832)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-832)))) (-2483 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-832))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4369) (-6 -4368) (-15 -2250 ($ (-629 |#1|))) (-15 -1580 ($ |#1| $)) (-15 -1717 ($ |#1| $)) (-15 -2483 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3072 (($ $) 13)) (-4107 (($ $) 11)) (-1917 (($ $ $) 23)) (-2589 (($ $ $) 21)) (-2038 (($ $ $) 19)) (-2026 (($ $ $) 17))) +(((-121 |#1|) (-10 -8 (-15 -1917 (|#1| |#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1| |#1|))) (-122)) (T -121)) +NIL +(-10 -8 (-15 -1917 (|#1| |#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3072 (($ $) 103)) (-2520 (($ $ $) 25)) (-2660 (((-1242) $ (-552) (-552)) 66 (|has| $ (-6 -4369)))) (-3717 (((-111) $) 98 (|has| (-111) (-832))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-3646 (($ $) 102 (-12 (|has| (-111) (-832)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4369)))) (-1296 (($ $) 97 (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-4238 (((-111) $ (-756)) 37)) (-1470 (((-111) $ (-1204 (-552)) (-111)) 88 (|has| $ (-6 -4369))) (((-111) $ (-552) (-111)) 54 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4368)))) (-2130 (($) 38 T CONST)) (-2366 (($ $) 100 (|has| $ (-6 -4369)))) (-3344 (($ $) 90)) (-2738 (($ $) 68 (-12 (|has| (-111) (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4368))) (($ (-111) $) 69 (-12 (|has| (-111) (-1078)) (|has| $ (-6 -4368))))) (-3884 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1078)) (|has| $ (-6 -4368))))) (-2957 (((-111) $ (-552) (-111)) 53 (|has| $ (-6 -4369)))) (-2892 (((-111) $ (-552)) 55)) (-1456 (((-552) (-111) $ (-552)) 95 (|has| (-111) (-1078))) (((-552) (-111) $) 94 (|has| (-111) (-1078))) (((-552) (-1 (-111) (-111)) $) 93)) (-3138 (((-629 (-111)) $) 45 (|has| $ (-6 -4368)))) (-3167 (($ $ $) 26)) (-4107 (($ $) 30)) (-1917 (($ $ $) 28)) (-3307 (($ (-756) (-111)) 77)) (-2589 (($ $ $) 29)) (-1418 (((-111) $ (-756)) 36)) (-1695 (((-552) $) 63 (|has| (-552) (-832)))) (-1772 (($ $ $) 13)) (-1446 (($ $ $) 96 (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-3278 (((-629 (-111)) $) 46 (|has| $ (-6 -4368)))) (-2973 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 62 (|has| (-552) (-832)))) (-2011 (($ $ $) 14)) (-2947 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-1745 (((-111) $ (-756)) 35)) (-2623 (((-1136) $) 9)) (-1759 (($ $ $ (-552)) 87) (($ (-111) $ (-552)) 86)) (-2190 (((-629 (-552)) $) 60)) (-1335 (((-111) (-552) $) 59)) (-2876 (((-1098) $) 10)) (-2702 (((-111) $) 64 (|has| (-552) (-832)))) (-3073 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-1518 (($ $ (-111)) 65 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-111)) (-629 (-111))) 52 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-288 (-111))) 50 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-629 (-288 (-111)))) 49 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078))))) (-2795 (((-111) $ $) 31)) (-3347 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-3627 (((-629 (-111)) $) 58)) (-3435 (((-111) $) 34)) (-3430 (($) 33)) (-2060 (($ $ (-1204 (-552))) 83) (((-111) $ (-552)) 57) (((-111) $ (-552) (-111)) 56)) (-2012 (($ $ (-1204 (-552))) 85) (($ $ (-552)) 84)) (-2885 (((-756) (-111) $) 47 (-12 (|has| (-111) (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4368)))) (-3747 (($ $ $ (-552)) 99 (|has| $ (-6 -4369)))) (-1487 (($ $) 32)) (-1522 (((-528) $) 67 (|has| (-111) (-600 (-528))))) (-3226 (($ (-629 (-111))) 76)) (-4319 (($ (-629 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-3213 (((-844) $) 11)) (-2584 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4368)))) (-3792 (($ $ $) 27)) (-2038 (($ $ $) 105)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-2026 (($ $ $) 104)) (-2657 (((-756) $) 39 (|has| $ (-6 -4368))))) (((-122) (-137)) (T -122)) -((-1681 (*1 *1 *1) (-4 *1 (-122))) (-3170 (*1 *1 *1 *1) (-4 *1 (-122))) (-3682 (*1 *1 *1 *1) (-4 *1 (-122))) (-2520 (*1 *1 *1 *1) (-4 *1 (-122))) (-1881 (*1 *1 *1 *1) (-4 *1 (-122))) (-2543 (*1 *1 *1 *1) (-4 *1 (-122)))) -(-13 (-830) (-643) (-19 (-111)) (-10 -8 (-15 -1681 ($ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2543 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 #0=(-111)) . T) ((-600 (-528)) |has| (-111) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))) ((-633 #0#) . T) ((-643) . T) ((-19 #0#) . T) ((-830) . T) ((-1076) . T) ((-1189) . T)) -((-3463 (($ (-1 |#2| |#2|) $) 22)) (-2973 (($ $) 16)) (-1383 (((-754) $) 24))) -(((-123 |#1| |#2|) (-10 -8 (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -2973 (|#1| |#1|))) (-124 |#2|) (-1076)) (T -123)) -NIL -(-10 -8 (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -2973 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 54 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) (($ $ "left" $) 55 (|has| $ (-6 -4367))) (($ $ "right" $) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-2791 (($ $) 57)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 60)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-2776 (($ $) 59)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-124 |#1|) (-137) (-1076)) (T -124)) -((-3126 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1076))))) -(-13 (-118 |t#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3126 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-118 |#1|) . T) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 15)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 19 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 20 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 18 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 21)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ |#1| $) 10)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 8)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 17)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2665 (($ (-627 |#1|)) 12)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4367) (-15 -2665 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)))) (-830)) (T -125)) -((-2665 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-125 *3)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-830))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4367) (-15 -2665 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 24)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 26 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 30 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 28 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 20)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 15)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 19)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 21)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 18)) (-2373 (($) 11)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2277 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 10 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) (-1076)) (T -126)) -((-2277 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076)))) (-2277 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076))))) -(-13 (-124 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) -((-1465 (((-111) $ $) NIL (|has| (-128) (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-830)))) (-2701 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-128) (-830))))) (-4298 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-128) $ (-552) (-128)) 17 (|has| $ (-6 -4367))) (((-128) $ (-1202 (-552)) (-128)) NIL (|has| $ (-6 -4367)))) (-2367 (((-754) $ (-754)) 7)) (-2536 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-4342 (($ (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4366))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-128) $ (-552) (-128)) 16 (|has| $ (-6 -4367)))) (-3413 (((-128) $ (-552)) 13)) (-2967 (((-552) (-1 (-111) (-128)) $) NIL) (((-552) (-128) $) NIL (|has| (-128) (-1076))) (((-552) (-128) $ (-552)) NIL (|has| (-128) (-1076)))) (-3215 (((-627 (-128)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-128)) 11)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 18 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-128) (-830)))) (-3759 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-830)))) (-3114 (((-627 (-128)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-2285 (((-552) $) 19 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-128) (-830)))) (-3463 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| (-128) (-1076)))) (-3252 (($ (-128) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| (-128) (-1076)))) (-3340 (((-128) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-1942 (($ $ (-128)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-128)))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-627 (-128)) (-627 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-2083 (((-627 (-128)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 9)) (-1985 (((-128) $ (-552) (-128)) NIL) (((-128) $ (-552)) 15) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366))) (((-754) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-128) (-600 (-528))))) (-1490 (($ (-627 (-128))) 29)) (-2668 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-627 $)) NIL)) (-1477 (((-1134) $) 27) (((-842) $) NIL (|has| (-128) (-599 (-842))))) (-2494 (((-754) $) 14)) (-4146 (($ (-754)) 8)) (-3299 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2292 (((-111) $ $) 22 (|has| (-128) (-1076)))) (-2340 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-128) (-830)))) (-1383 (((-754) $) 20))) -(((-127) (-13 (-19 (-128)) (-599 (-1134)) (-10 -8 (-15 -4146 ($ (-754))) (-15 -1383 ((-754) $)) (-15 -2494 ((-754) $)) (-15 -2367 ((-754) $ (-754)))))) (T -127)) -((-4146 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-2367 (*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) -(-13 (-19 (-128)) (-599 (-1134)) (-10 -8 (-15 -4146 ($ (-754))) (-15 -1383 ((-754) $)) (-15 -2494 ((-754) $)) (-15 -2367 ((-754) $ (-754))))) -((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) 9)) (-1477 (((-842) $) 19) (((-754) $) 11) (((-141) $) 16) (($ (-754)) 10) (($ (-141)) 14)) (-1838 (($ (-754)) 7)) (-2906 (($ $ $) 24)) (-2895 (($ $ $) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 21)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22))) -(((-128) (-13 (-830) (-599 (-754)) (-599 (-141)) (-10 -8 (-15 -1838 ($ (-754))) (-15 -1477 ($ (-754))) (-15 -1477 ($ (-141))) (-15 -2895 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3887 ($))))) (T -128)) -((-1838 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) (-2895 (*1 *1 *1 *1) (-5 *1 (-128))) (-2906 (*1 *1 *1 *1) (-5 *1 (-128))) (-3887 (*1 *1) (-5 *1 (-128)))) -(-13 (-830) (-599 (-754)) (-599 (-141)) (-10 -8 (-15 -1838 ($ (-754))) (-15 -1477 ($ (-754))) (-15 -1477 ($ (-141))) (-15 -2895 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3887 ($)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +((-4107 (*1 *1 *1) (-4 *1 (-122))) (-2589 (*1 *1 *1 *1) (-4 *1 (-122))) (-1917 (*1 *1 *1 *1) (-4 *1 (-122))) (-3792 (*1 *1 *1 *1) (-4 *1 (-122))) (-3167 (*1 *1 *1 *1) (-4 *1 (-122))) (-2520 (*1 *1 *1 *1) (-4 *1 (-122)))) +(-13 (-832) (-645) (-19 (-111)) (-10 -8 (-15 -4107 ($ $)) (-15 -2589 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -2520 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 #0=(-111)) . T) ((-600 (-528)) |has| (-111) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078))) ((-635 #0#) . T) ((-645) . T) ((-19 #0#) . T) ((-832) . T) ((-1078) . T) ((-1191) . T)) +((-2947 (($ (-1 |#2| |#2|) $) 22)) (-1487 (($ $) 16)) (-2657 (((-756) $) 24))) +(((-123 |#1| |#2|) (-10 -8 (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -1487 (|#1| |#1|))) (-124 |#2|) (-1078)) (T -123)) +NIL +(-10 -8 (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -1487 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-1324 (($ $ $) 52 (|has| $ (-6 -4369)))) (-3569 (($ $ $) 54 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) (($ $ "left" $) 55 (|has| $ (-6 -4369))) (($ $ "right" $) 53 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-3428 (($ $) 57)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-4193 (($ $ |#1| $) 60)) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-3416 (($ $) 59)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3153 (((-552) $ $) 44)) (-1289 (((-111) $) 46)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-124 |#1|) (-137) (-1078)) (T -124)) +((-4193 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1078))))) +(-13 (-118 |t#1|) (-10 -8 (-6 -4369) (-6 -4368) (-15 -4193 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-118 |#1|) . T) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) 15)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) 19 (|has| $ (-6 -4369)))) (-1324 (($ $ $) 20 (|has| $ (-6 -4369)))) (-3569 (($ $ $) 18 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "left" $) NIL (|has| $ (-6 -4369))) (($ $ "right" $) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3428 (($ $) 21)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4193 (($ $ |#1| $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-3416 (($ $) NIL)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1580 (($ |#1| $) 10)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 14)) (-3430 (($) 8)) (-2060 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 17)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1357 (($ (-629 |#1|)) 12)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4369) (-15 -1357 ($ (-629 |#1|))) (-15 -1580 ($ |#1| $)))) (-832)) (T -125)) +((-1357 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-125 *3)))) (-1580 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-832))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4369) (-15 -1357 ($ (-629 |#1|))) (-15 -1580 ($ |#1| $)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) 24)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) 26 (|has| $ (-6 -4369)))) (-1324 (($ $ $) 30 (|has| $ (-6 -4369)))) (-3569 (($ $ $) 28 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "left" $) NIL (|has| $ (-6 -4369))) (($ $ "right" $) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3428 (($ $) 20)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4193 (($ $ |#1| $) 15)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-3416 (($ $) 19)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) 21)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 18)) (-3430 (($) 11)) (-2060 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1742 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 10 (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -1742 ($ |#1|)) (-15 -1742 ($ $ |#1| $)))) (-1078)) (T -126)) +((-1742 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1078)))) (-1742 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1078))))) +(-13 (-124 |#1|) (-10 -8 (-15 -1742 ($ |#1|)) (-15 -1742 ($ $ |#1| $)))) +((-3202 (((-111) $ $) NIL (|has| (-128) (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-832)))) (-3646 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-832))))) (-1296 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-128) $ (-552) (-128)) 17 (|has| $ (-6 -4369))) (((-128) $ (-1204 (-552)) (-128)) NIL (|has| $ (-6 -4369)))) (-1404 (((-756) $ (-756)) 7)) (-3954 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078))))) (-2655 (($ (-128) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4368))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4368)))) (-2957 (((-128) $ (-552) (-128)) 16 (|has| $ (-6 -4369)))) (-2892 (((-128) $ (-552)) 13)) (-1456 (((-552) (-1 (-111) (-128)) $) NIL) (((-552) (-128) $) NIL (|has| (-128) (-1078))) (((-552) (-128) $ (-552)) NIL (|has| (-128) (-1078)))) (-3138 (((-629 (-128)) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) (-128)) 11)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 18 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| (-128) (-832)))) (-1446 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-832)))) (-3278 (((-629 (-128)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078))))) (-1842 (((-552) $) 19 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-128) (-832)))) (-2947 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| (-128) (-1078)))) (-1759 (($ (-128) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| (-128) (-1078)))) (-2702 (((-128) $) NIL (|has| (-552) (-832)))) (-3073 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-1518 (($ $ (-128)) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-128)))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1078)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1078)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1078)))) (($ $ (-629 (-128)) (-629 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078))))) (-3627 (((-629 (-128)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 9)) (-2060 (((-128) $ (-552) (-128)) NIL) (((-128) $ (-552)) 15) (($ $ (-1204 (-552))) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4368))) (((-756) (-128) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-128) (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-128) (-600 (-528))))) (-3226 (($ (-629 (-128))) 29)) (-4319 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-629 $)) NIL)) (-3213 (((-1136) $) 27) (((-844) $) NIL (|has| (-128) (-599 (-844))))) (-2113 (((-756) $) 14)) (-2928 (($ (-756)) 8)) (-2584 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| (-128) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-128) (-832)))) (-1613 (((-111) $ $) 22 (|has| (-128) (-1078)))) (-1655 (((-111) $ $) NIL (|has| (-128) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-128) (-832)))) (-2657 (((-756) $) 20))) +(((-127) (-13 (-19 (-128)) (-599 (-1136)) (-10 -8 (-15 -2928 ($ (-756))) (-15 -2657 ((-756) $)) (-15 -2113 ((-756) $)) (-15 -1404 ((-756) $ (-756)))))) (T -127)) +((-2928 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-127)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-127)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-127)))) (-1404 (*1 *2 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-127))))) +(-13 (-19 (-128)) (-599 (-1136)) (-10 -8 (-15 -2928 ($ (-756))) (-15 -2657 ((-756) $)) (-15 -2113 ((-756) $)) (-15 -1404 ((-756) $ (-756))))) +((-3202 (((-111) $ $) NIL)) (-2130 (($) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) 9)) (-3213 (((-844) $) 19) (((-756) $) 11) (((-141) $) 16) (($ (-756)) 10) (($ (-141)) 14)) (-3066 (($ (-756)) 7)) (-4090 (($ $ $) 24)) (-4077 (($ $ $) 23)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 21)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 22))) +(((-128) (-13 (-832) (-599 (-756)) (-599 (-141)) (-10 -8 (-15 -3066 ($ (-756))) (-15 -3213 ($ (-756))) (-15 -3213 ($ (-141))) (-15 -4077 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -2130 ($))))) (T -128)) +((-3066 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-128)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-128)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) (-4077 (*1 *1 *1 *1) (-5 *1 (-128))) (-4090 (*1 *1 *1 *1) (-5 *1 (-128))) (-2130 (*1 *1) (-5 *1 (-128)))) +(-13 (-832) (-599 (-756)) (-599 (-141)) (-10 -8 (-15 -3066 ($ (-756))) (-15 -3213 ($ (-756))) (-15 -3213 ($ (-141))) (-15 -4077 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -2130 ($)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15))) (((-129) (-137)) (T -129)) -((-4136 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(-13 (-23) (-10 -8 (-15 -4136 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-2944 (((-1240) $ (-754)) 19)) (-2967 (((-754) $) 20)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +((-4012 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(-13 (-23) (-10 -8 (-15 -4012 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-4105 (((-1242) $ (-756)) 19)) (-1456 (((-756) $) 20)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18))) (((-130) (-137)) (T -130)) -((-2967 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-754)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-754)) (-5 *2 (-1240))))) -(-13 (-830) (-10 -8 (-15 -2967 ((-754) $)) (-15 -2944 ((-1240) $ (-754))))) -(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 10)) (-2292 (((-111) $ $) NIL))) -(((-131) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $))))) (T -131)) -((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-131))))) -(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)))) -((-1465 (((-111) $ $) 34)) (-3024 (((-111) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-754) "failed") $) 40)) (-1703 (((-754) $) 38)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3836 (((-111)) 41)) (-4053 (((-111) (-111)) 43)) (-1932 (((-111) $) 24)) (-4240 (((-111) $) 37)) (-1477 (((-842) $) 22) (($ (-754)) 14)) (-1922 (($) 11 T CONST)) (-1933 (($) 12 T CONST)) (-2222 (($ (-754)) 15)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 25)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 26)) (-2396 (((-3 $ "failed") $ $) 30)) (-2384 (($ $ $) 28)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL) (($ $ $) 36)) (* (($ (-754) $) 33) (($ (-900) $) NIL) (($ $ $) 31))) -(((-132) (-13 (-830) (-23) (-709) (-1017 (-754)) (-10 -8 (-6 (-4368 "*")) (-15 -2396 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2222 ($ (-754))) (-15 -1932 ((-111) $)) (-15 -4240 ((-111) $)) (-15 -3836 ((-111))) (-15 -4053 ((-111) (-111)))))) (T -132)) -((-2396 (*1 *1 *1 *1) (|partial| -5 *1 (-132))) (** (*1 *1 *1 *1) (-5 *1 (-132))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-132)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-3836 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(-13 (-830) (-23) (-709) (-1017 (-754)) (-10 -8 (-6 (-4368 "*")) (-15 -2396 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2222 ($ (-754))) (-15 -1932 ((-111) $)) (-15 -4240 ((-111) $)) (-15 -3836 ((-111))) (-15 -4053 ((-111) (-111))))) -((-3974 (((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-3516 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) -(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|))) (-15 -3516 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-552) (-754) (-169) (-169)) (T -133)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) -(-10 -7 (-15 -3974 ((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|))) (-15 -3516 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) -((-1465 (((-111) $ $) NIL)) (-2107 (($ (-627 |#3|)) 40)) (-3595 (($ $) 99) (($ $ (-552) (-552)) 98)) (-3887 (($) 17)) (-4039 (((-3 |#3| "failed") $) 60)) (-1703 ((|#3| $) NIL)) (-2143 (($ $ (-627 (-552))) 100)) (-3965 (((-627 |#3|) $) 36)) (-4154 (((-754) $) 44)) (-2735 (($ $ $) 93)) (-1793 (($) 43)) (-1595 (((-1134) $) NIL)) (-3461 (($) 16)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $) 46) ((|#3| $ (-552)) 47) ((|#3| $ (-552) (-552)) 48) ((|#3| $ (-552) (-552) (-552)) 49) ((|#3| $ (-552) (-552) (-552) (-552)) 50) ((|#3| $ (-627 (-552))) 52)) (-3567 (((-754) $) 45)) (-2728 (($ $ (-552) $ (-552)) 94) (($ $ (-552) (-552)) 96)) (-1477 (((-842) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1118 |#2| |#3|)) 78) (($ (-627 |#3|)) 53) (($ (-627 $)) 58)) (-1922 (($) 69 T CONST)) (-1933 (($) 70 T CONST)) (-2292 (((-111) $ $) 80)) (-2396 (($ $) 86) (($ $ $) 84)) (-2384 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-552)) 89) (($ (-552) $) 88) (($ $ $) 95))) -(((-134 |#1| |#2| |#3|) (-13 (-458 |#3| (-754)) (-463 (-552) (-754)) (-10 -8 (-15 -1477 ($ (-235 |#2| |#3|))) (-15 -1477 ($ (-1118 |#2| |#3|))) (-15 -1477 ($ (-627 |#3|))) (-15 -1477 ($ (-627 $))) (-15 -4154 ((-754) $)) (-15 -1985 (|#3| $)) (-15 -1985 (|#3| $ (-552))) (-15 -1985 (|#3| $ (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-627 (-552)))) (-15 -2735 ($ $ $)) (-15 * ($ $ $)) (-15 -2728 ($ $ (-552) $ (-552))) (-15 -2728 ($ $ (-552) (-552))) (-15 -3595 ($ $)) (-15 -3595 ($ $ (-552) (-552))) (-15 -2143 ($ $ (-627 (-552)))) (-15 -3461 ($)) (-15 -1793 ($)) (-15 -3965 ((-627 |#3|) $)) (-15 -2107 ($ (-627 |#3|))) (-15 -3887 ($)))) (-552) (-754) (-169)) (T -134)) -((-2735 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 *2) (-4 *5 (-169)))) (-1985 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-552)) (-14 *4 (-754)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-552)) (-14 *5 (-754)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-2728 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-2728 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-3595 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-3461 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-1793 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-627 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)))) (-3887 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169))))) -(-13 (-458 |#3| (-754)) (-463 (-552) (-754)) (-10 -8 (-15 -1477 ($ (-235 |#2| |#3|))) (-15 -1477 ($ (-1118 |#2| |#3|))) (-15 -1477 ($ (-627 |#3|))) (-15 -1477 ($ (-627 $))) (-15 -4154 ((-754) $)) (-15 -1985 (|#3| $)) (-15 -1985 (|#3| $ (-552))) (-15 -1985 (|#3| $ (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-627 (-552)))) (-15 -2735 ($ $ $)) (-15 * ($ $ $)) (-15 -2728 ($ $ (-552) $ (-552))) (-15 -2728 ($ $ (-552) (-552))) (-15 -3595 ($ $)) (-15 -3595 ($ $ (-552) (-552))) (-15 -2143 ($ $ (-627 (-552)))) (-15 -3461 ($)) (-15 -1793 ($)) (-15 -3965 ((-627 |#3|) $)) (-15 -2107 ($ (-627 |#3|))) (-15 -3887 ($)))) -((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-135) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -135)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135))))) -(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3342 (((-1152) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 12)) (-2292 (((-111) $ $) NIL))) -(((-136) (-13 (-1059) (-10 -8 (-15 -3342 ((-1152) $)) (-15 -3122 ((-627 (-1111)) $))))) (T -136)) -((-3342 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-136)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-136))))) -(-13 (-1059) (-10 -8 (-15 -3342 ((-1152) $)) (-15 -3122 ((-627 (-1111)) $)))) -((-1477 (((-842) $) 7))) -(((-137) (-599 (-842))) (T -137)) -NIL -(-599 (-842)) -((-1465 (((-111) $ $) NIL)) (-1349 (($) 15 T CONST)) (-3065 (($) NIL (|has| (-141) (-362)))) (-3416 (($ $ $) 17) (($ $ (-141)) NIL) (($ (-141) $) NIL)) (-3694 (($ $ $) NIL)) (-3632 (((-111) $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| (-141) (-362)))) (-1342 (($) NIL) (($ (-627 (-141))) NIL)) (-4289 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2265 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (($ (-141) $) 51 (|has| $ (-6 -4366)))) (-4342 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-1279 (($) NIL (|has| (-141) (-362)))) (-3215 (((-627 (-141)) $) 60 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1816 (((-141) $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 26 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4093 (((-141) $) NIL (|has| (-141) (-830)))) (-3463 (($ (-1 (-141) (-141)) $) 59 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 55)) (-3769 (($) 16 T CONST)) (-2886 (((-900) $) NIL (|has| (-141) (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 29)) (-4165 (((-141) $) 52)) (-3954 (($ (-141) $) 50)) (-4153 (($ (-900)) NIL (|has| (-141) (-362)))) (-3987 (($) 14 T CONST)) (-1498 (((-1096) $) NIL)) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-4133 (((-141) $) 53)) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 48)) (-2694 (($) 13 T CONST)) (-2613 (($ $ $) 31) (($ $ (-141)) NIL)) (-3028 (($ (-627 (-141))) NIL) (($) NIL)) (-1509 (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-1134) $) 36) (((-528) $) NIL (|has| (-141) (-600 (-528)))) (((-627 (-141)) $) 34)) (-1490 (($ (-627 (-141))) NIL)) (-1901 (($ $) 32 (|has| (-141) (-362)))) (-1477 (((-842) $) 46)) (-1434 (($ (-1134)) 12) (($ (-627 (-141))) 43)) (-3550 (((-754) $) NIL)) (-4243 (($) 49) (($ (-627 (-141))) NIL)) (-2577 (($ (-627 (-141))) NIL)) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3866 (($) 19 T CONST)) (-4320 (($) 18 T CONST)) (-2292 (((-111) $ $) 22)) (-1383 (((-754) $) 47 (|has| $ (-6 -4366))))) -(((-138) (-13 (-1076) (-600 (-1134)) (-419 (-141)) (-600 (-627 (-141))) (-10 -8 (-15 -1434 ($ (-1134))) (-15 -1434 ($ (-627 (-141)))) (-15 -2694 ($) -3488) (-15 -3987 ($) -3488) (-15 -1349 ($) -3488) (-15 -3769 ($) -3488) (-15 -4320 ($) -3488) (-15 -3866 ($) -3488)))) (T -138)) -((-1434 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-138)))) (-1434 (*1 *1 *2) (-12 (-5 *2 (-627 (-141))) (-5 *1 (-138)))) (-2694 (*1 *1) (-5 *1 (-138))) (-3987 (*1 *1) (-5 *1 (-138))) (-1349 (*1 *1) (-5 *1 (-138))) (-3769 (*1 *1) (-5 *1 (-138))) (-4320 (*1 *1) (-5 *1 (-138))) (-3866 (*1 *1) (-5 *1 (-138)))) -(-13 (-1076) (-600 (-1134)) (-419 (-141)) (-600 (-627 (-141))) (-10 -8 (-15 -1434 ($ (-1134))) (-15 -1434 ($ (-627 (-141)))) (-15 -2694 ($) -3488) (-15 -3987 ($) -3488) (-15 -1349 ($) -3488) (-15 -3769 ($) -3488) (-15 -4320 ($) -3488) (-15 -3866 ($) -3488))) -((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3623 ((|#1| |#3|) 9)) (-2155 ((|#3| |#3|) 15))) -(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-971 |#1|) (-367 |#2|)) (T -139)) -((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-367 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-139 *3 *4 *2)) (-4 *2 (-367 *4)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-367 *4))))) -(-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1868 (($ $ $) 8)) (-2610 (($ $) 7)) (-3697 (($ $ $) 6))) +((-1456 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-756)))) (-4105 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-756)) (-5 *2 (-1242))))) +(-13 (-832) (-10 -8 (-15 -1456 ((-756) $)) (-15 -4105 ((-1242) $ (-756))))) +(((-101) . T) ((-599 (-844)) . T) ((-832) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 18) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-629 (-1113)) $) 10)) (-1613 (((-111) $ $) NIL))) +(((-131) (-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $))))) (T -131)) +((-4300 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-131))))) +(-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $)))) +((-3202 (((-111) $ $) 34)) (-3643 (((-111) $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-756) "failed") $) 40)) (-2832 (((-756) $) 38)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) 27)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2921 (((-111)) 41)) (-1301 (((-111) (-111)) 43)) (-1445 (((-111) $) 24)) (-2564 (((-111) $) 37)) (-3213 (((-844) $) 22) (($ (-756)) 14)) (-3297 (($) 11 T CONST)) (-3309 (($) 12 T CONST)) (-2495 (($ (-756)) 15)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 25)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 26)) (-1709 (((-3 $ "failed") $ $) 30)) (-1698 (($ $ $) 28)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL) (($ $ $) 36)) (* (($ (-756) $) 33) (($ (-902) $) NIL) (($ $ $) 31))) +(((-132) (-13 (-832) (-23) (-711) (-1019 (-756)) (-10 -8 (-6 (-4370 "*")) (-15 -1709 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2495 ($ (-756))) (-15 -1445 ((-111) $)) (-15 -2564 ((-111) $)) (-15 -2921 ((-111))) (-15 -1301 ((-111) (-111)))))) (T -132)) +((-1709 (*1 *1 *1 *1) (|partial| -5 *1 (-132))) (** (*1 *1 *1 *1) (-5 *1 (-132))) (-2495 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-132)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-2921 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-1301 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(-13 (-832) (-23) (-711) (-1019 (-756)) (-10 -8 (-6 (-4370 "*")) (-15 -1709 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2495 ($ (-756))) (-15 -1445 ((-111) $)) (-15 -2564 ((-111) $)) (-15 -2921 ((-111))) (-15 -1301 ((-111) (-111))))) +((-2617 (((-134 |#1| |#2| |#4|) (-629 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-1477 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) +(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2617 ((-134 |#1| |#2| |#4|) (-629 |#4|) (-134 |#1| |#2| |#3|))) (-15 -1477 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-552) (-756) (-169) (-169)) (T -133)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-756)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-756)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) +(-10 -7 (-15 -2617 ((-134 |#1| |#2| |#4|) (-629 |#4|) (-134 |#1| |#2| |#3|))) (-15 -1477 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) +((-3202 (((-111) $ $) NIL)) (-3821 (($ (-629 |#3|)) 40)) (-2289 (($ $) 99) (($ $ (-552) (-552)) 98)) (-2130 (($) 17)) (-1393 (((-3 |#3| "failed") $) 60)) (-2832 ((|#3| $) NIL)) (-2942 (($ $ (-629 (-552))) 100)) (-2602 (((-629 |#3|) $) 36)) (-2128 (((-756) $) 44)) (-3951 (($ $ $) 93)) (-3844 (($) 43)) (-2623 (((-1136) $) NIL)) (-3510 (($) 16)) (-2876 (((-1098) $) NIL)) (-2060 ((|#3| $) 46) ((|#3| $ (-552)) 47) ((|#3| $ (-552) (-552)) 48) ((|#3| $ (-552) (-552) (-552)) 49) ((|#3| $ (-552) (-552) (-552) (-552)) 50) ((|#3| $ (-629 (-552))) 52)) (-3299 (((-756) $) 45)) (-3880 (($ $ (-552) $ (-552)) 94) (($ $ (-552) (-552)) 96)) (-3213 (((-844) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1120 |#2| |#3|)) 78) (($ (-629 |#3|)) 53) (($ (-629 $)) 58)) (-3297 (($) 69 T CONST)) (-3309 (($) 70 T CONST)) (-1613 (((-111) $ $) 80)) (-1709 (($ $) 86) (($ $ $) 84)) (-1698 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-552)) 89) (($ (-552) $) 88) (($ $ $) 95))) +(((-134 |#1| |#2| |#3|) (-13 (-458 |#3| (-756)) (-463 (-552) (-756)) (-10 -8 (-15 -3213 ($ (-235 |#2| |#3|))) (-15 -3213 ($ (-1120 |#2| |#3|))) (-15 -3213 ($ (-629 |#3|))) (-15 -3213 ($ (-629 $))) (-15 -2128 ((-756) $)) (-15 -2060 (|#3| $)) (-15 -2060 (|#3| $ (-552))) (-15 -2060 (|#3| $ (-552) (-552))) (-15 -2060 (|#3| $ (-552) (-552) (-552))) (-15 -2060 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2060 (|#3| $ (-629 (-552)))) (-15 -3951 ($ $ $)) (-15 * ($ $ $)) (-15 -3880 ($ $ (-552) $ (-552))) (-15 -3880 ($ $ (-552) (-552))) (-15 -2289 ($ $)) (-15 -2289 ($ $ (-552) (-552))) (-15 -2942 ($ $ (-629 (-552)))) (-15 -3510 ($)) (-15 -3844 ($)) (-15 -2602 ((-629 |#3|) $)) (-15 -3821 ($ (-629 |#3|))) (-15 -2130 ($)))) (-552) (-756) (-169)) (T -134)) +((-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-756)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1120 *4 *5)) (-14 *4 (-756)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-756)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-756)) (-4 *5 (-169)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 *2) (-4 *5 (-169)))) (-2060 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-552)) (-14 *4 (-756)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-756)))) (-2060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-756)))) (-2060 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-756)))) (-2060 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-756)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-629 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-552)) (-14 *5 (-756)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169)))) (-3880 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-756)) (-4 *5 (-169)))) (-3880 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-756)) (-4 *5 (-169)))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169)))) (-2289 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-756)) (-4 *5 (-169)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-756)) (-4 *5 (-169)))) (-3510 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169)))) (-3844 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-629 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-756)) (-4 *5 (-169)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-756)))) (-2130 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) (-4 *4 (-169))))) +(-13 (-458 |#3| (-756)) (-463 (-552) (-756)) (-10 -8 (-15 -3213 ($ (-235 |#2| |#3|))) (-15 -3213 ($ (-1120 |#2| |#3|))) (-15 -3213 ($ (-629 |#3|))) (-15 -3213 ($ (-629 $))) (-15 -2128 ((-756) $)) (-15 -2060 (|#3| $)) (-15 -2060 (|#3| $ (-552))) (-15 -2060 (|#3| $ (-552) (-552))) (-15 -2060 (|#3| $ (-552) (-552) (-552))) (-15 -2060 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2060 (|#3| $ (-629 (-552)))) (-15 -3951 ($ $ $)) (-15 * ($ $ $)) (-15 -3880 ($ $ (-552) $ (-552))) (-15 -3880 ($ $ (-552) (-552))) (-15 -2289 ($ $)) (-15 -2289 ($ $ (-552) (-552))) (-15 -2942 ($ $ (-629 (-552)))) (-15 -3510 ($)) (-15 -3844 ($)) (-15 -2602 ((-629 |#3|) $)) (-15 -3821 ($ (-629 |#3|))) (-15 -2130 ($)))) +((-3202 (((-111) $ $) NIL)) (-1300 (((-1113) $) 11)) (-1286 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-135) (-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $))))) (T -135)) +((-1286 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-135)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-135))))) +(-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-1427 (((-1154) $) 10)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-629 (-1113)) $) 12)) (-1613 (((-111) $ $) NIL))) +(((-136) (-13 (-1061) (-10 -8 (-15 -1427 ((-1154) $)) (-15 -4300 ((-629 (-1113)) $))))) (T -136)) +((-1427 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-136)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-136))))) +(-13 (-1061) (-10 -8 (-15 -1427 ((-1154) $)) (-15 -4300 ((-629 (-1113)) $)))) +((-3213 (((-844) $) 7))) +(((-137) (-599 (-844))) (T -137)) +NIL +(-599 (-844)) +((-3202 (((-111) $ $) NIL)) (-2302 (($) 15 T CONST)) (-4024 (($) NIL (|has| (-141) (-362)))) (-1501 (($ $ $) 17) (($ $ (-141)) NIL) (($ (-141) $) NIL)) (-2041 (($ $ $) NIL)) (-2691 (((-111) $ $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| (-141) (-362)))) (-1439 (($) NIL) (($ (-629 (-141))) NIL)) (-1740 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-1625 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368))) (($ (-141) $) 51 (|has| $ (-6 -4368)))) (-2655 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368))) (($ (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3884 (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-1332 (($) NIL (|has| (-141) (-362)))) (-3138 (((-629 (-141)) $) 60 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1772 (((-141) $) NIL (|has| (-141) (-832)))) (-3278 (((-629 (-141)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-141) $) 26 (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-2011 (((-141) $) NIL (|has| (-141) (-832)))) (-2947 (($ (-1 (-141) (-141)) $) 59 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-141) (-141)) $) 55)) (-3507 (($) 16 T CONST)) (-1637 (((-902) $) NIL (|has| (-141) (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-4011 (($ $ $) 29)) (-3105 (((-141) $) 52)) (-1580 (($ (-141) $) 50)) (-2840 (($ (-902)) NIL (|has| (-141) (-362)))) (-1925 (($) 14 T CONST)) (-2876 (((-1098) $) NIL)) (-3073 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-3995 (((-141) $) 53)) (-3944 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-141)) (-629 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-629 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 48)) (-3588 (($) 13 T CONST)) (-2042 (($ $ $) 31) (($ $ (-141)) NIL)) (-3680 (($ (-629 (-141))) NIL) (($) NIL)) (-2885 (((-756) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078)))) (((-756) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-1136) $) 36) (((-528) $) NIL (|has| (-141) (-600 (-528)))) (((-629 (-141)) $) 34)) (-3226 (($ (-629 (-141))) NIL)) (-2402 (($ $) 32 (|has| (-141) (-362)))) (-3213 (((-844) $) 46)) (-3675 (($ (-1136)) 12) (($ (-629 (-141))) 43)) (-3133 (((-756) $) NIL)) (-3541 (($) 49) (($ (-629 (-141))) NIL)) (-1663 (($ (-629 (-141))) NIL)) (-2584 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-3224 (($) 19 T CONST)) (-2064 (($) 18 T CONST)) (-1613 (((-111) $ $) 22)) (-2657 (((-756) $) 47 (|has| $ (-6 -4368))))) +(((-138) (-13 (-1078) (-600 (-1136)) (-419 (-141)) (-600 (-629 (-141))) (-10 -8 (-15 -3675 ($ (-1136))) (-15 -3675 ($ (-629 (-141)))) (-15 -3588 ($) -3930) (-15 -1925 ($) -3930) (-15 -2302 ($) -3930) (-15 -3507 ($) -3930) (-15 -2064 ($) -3930) (-15 -3224 ($) -3930)))) (T -138)) +((-3675 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-138)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-629 (-141))) (-5 *1 (-138)))) (-3588 (*1 *1) (-5 *1 (-138))) (-1925 (*1 *1) (-5 *1 (-138))) (-2302 (*1 *1) (-5 *1 (-138))) (-3507 (*1 *1) (-5 *1 (-138))) (-2064 (*1 *1) (-5 *1 (-138))) (-3224 (*1 *1) (-5 *1 (-138)))) +(-13 (-1078) (-600 (-1136)) (-419 (-141)) (-600 (-629 (-141))) (-10 -8 (-15 -3675 ($ (-1136))) (-15 -3675 ($ (-629 (-141)))) (-15 -3588 ($) -3930) (-15 -1925 ($) -3930) (-15 -2302 ($) -3930) (-15 -3507 ($) -3930) (-15 -2064 ($) -3930) (-15 -3224 ($) -3930))) +((-1774 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2592 ((|#1| |#3|) 9)) (-3075 ((|#3| |#3|) 15))) +(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -2592 (|#1| |#3|)) (-15 -3075 (|#3| |#3|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-973 |#1|) (-367 |#2|)) (T -139)) +((-1774 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-367 *5)))) (-3075 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-973 *3)) (-5 *1 (-139 *3 *4 *2)) (-4 *2 (-367 *4)))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -2592 (|#1| |#3|)) (-15 -3075 (|#3| |#3|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2048 (($ $ $) 8)) (-2006 (($ $) 7)) (-2075 (($ $ $) 6))) (((-140) (-137)) (T -140)) -((-1868 (*1 *1 *1 *1) (-4 *1 (-140))) (-2610 (*1 *1 *1) (-4 *1 (-140))) (-3697 (*1 *1 *1 *1) (-4 *1 (-140)))) -(-13 (-10 -8 (-15 -3697 ($ $ $)) (-15 -2610 ($ $)) (-15 -1868 ($ $ $)))) -((-1465 (((-111) $ $) NIL)) (-3388 (((-111) $) 30)) (-1349 (($ $) 43)) (-1345 (($) 17)) (-3307 (((-754)) 10)) (-1279 (($) 16)) (-2049 (($) 18)) (-2053 (((-754) $) 14)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2385 (((-111) $) 32)) (-3769 (($ $) 44)) (-2886 (((-900) $) 15)) (-1595 (((-1134) $) 38)) (-4153 (($ (-900)) 13)) (-3663 (((-111) $) 28)) (-1498 (((-1096) $) NIL)) (-2231 (($) 19)) (-2779 (((-111) $) 26)) (-1477 (((-842) $) 21)) (-2046 (($ (-754)) 11) (($ (-1134)) 42)) (-3309 (((-111) $) 36)) (-1926 (((-111) $) 34)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 7)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) -(((-141) (-13 (-824) (-10 -8 (-15 -2053 ((-754) $)) (-15 -2046 ($ (-754))) (-15 -2046 ($ (-1134))) (-15 -1345 ($)) (-15 -2049 ($)) (-15 -2231 ($)) (-15 -1349 ($ $)) (-15 -3769 ($ $)) (-15 -2779 ((-111) $)) (-15 -3663 ((-111) $)) (-15 -1926 ((-111) $)) (-15 -3388 ((-111) $)) (-15 -2385 ((-111) $)) (-15 -3309 ((-111) $))))) (T -141)) -((-2053 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-141)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-141)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-141)))) (-1345 (*1 *1) (-5 *1 (-141))) (-2049 (*1 *1) (-5 *1 (-141))) (-2231 (*1 *1) (-5 *1 (-141))) (-1349 (*1 *1 *1) (-5 *1 (-141))) (-3769 (*1 *1 *1) (-5 *1 (-141))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(-13 (-824) (-10 -8 (-15 -2053 ((-754) $)) (-15 -2046 ($ (-754))) (-15 -2046 ($ (-1134))) (-15 -1345 ($)) (-15 -2049 ($)) (-15 -2231 ($)) (-15 -1349 ($ $)) (-15 -3769 ($ $)) (-15 -2779 ((-111) $)) (-15 -3663 ((-111) $)) (-15 -1926 ((-111) $)) (-15 -3388 ((-111) $)) (-15 -2385 ((-111) $)) (-15 -3309 ((-111) $)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3050 (((-3 $ "failed") $) 33)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-2048 (*1 *1 *1 *1) (-4 *1 (-140))) (-2006 (*1 *1 *1) (-4 *1 (-140))) (-2075 (*1 *1 *1 *1) (-4 *1 (-140)))) +(-13 (-10 -8 (-15 -2075 ($ $ $)) (-15 -2006 ($ $)) (-15 -2048 ($ $ $)))) +((-3202 (((-111) $ $) NIL)) (-4049 (((-111) $) 30)) (-2302 (($ $) 43)) (-2167 (($) 17)) (-2663 (((-756)) 10)) (-1332 (($) 16)) (-1364 (($) 18)) (-1388 (((-756) $) 14)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-3543 (((-111) $) 32)) (-3507 (($ $) 44)) (-1637 (((-902) $) 15)) (-2623 (((-1136) $) 38)) (-2840 (($ (-902)) 13)) (-1718 (((-111) $) 28)) (-2876 (((-1098) $) NIL)) (-2597 (($) 19)) (-3668 (((-111) $) 26)) (-3213 (((-844) $) 21)) (-3340 (($ (-756)) 11) (($ (-1136)) 42)) (-2697 (((-111) $) 36)) (-2664 (((-111) $) 34)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 7)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 8))) +(((-141) (-13 (-826) (-10 -8 (-15 -1388 ((-756) $)) (-15 -3340 ($ (-756))) (-15 -3340 ($ (-1136))) (-15 -2167 ($)) (-15 -1364 ($)) (-15 -2597 ($)) (-15 -2302 ($ $)) (-15 -3507 ($ $)) (-15 -3668 ((-111) $)) (-15 -1718 ((-111) $)) (-15 -2664 ((-111) $)) (-15 -4049 ((-111) $)) (-15 -3543 ((-111) $)) (-15 -2697 ((-111) $))))) (T -141)) +((-1388 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-141)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-141)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-141)))) (-2167 (*1 *1) (-5 *1 (-141))) (-1364 (*1 *1) (-5 *1 (-141))) (-2597 (*1 *1) (-5 *1 (-141))) (-2302 (*1 *1 *1) (-5 *1 (-141))) (-3507 (*1 *1 *1) (-5 *1 (-141))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(-13 (-826) (-10 -8 (-15 -1388 ((-756) $)) (-15 -3340 ($ (-756))) (-15 -3340 ($ (-1136))) (-15 -2167 ($)) (-15 -1364 ($)) (-15 -2597 ($)) (-15 -2302 ($ $)) (-15 -3507 ($ $)) (-15 -3668 ((-111) $)) (-15 -1718 ((-111) $)) (-15 -2664 ((-111) $)) (-15 -4049 ((-111) $)) (-15 -3543 ((-111) $)) (-15 -2697 ((-111) $)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-3878 (((-3 $ "failed") $) 33)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-142) (-137)) (T -142)) -((-3050 (*1 *1 *1) (|partial| -4 *1 (-142)))) -(-13 (-1028) (-10 -8 (-15 -3050 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2410 ((|#1| (-671 |#1|) |#1|) 19))) -(((-143 |#1|) (-10 -7 (-15 -2410 (|#1| (-671 |#1|) |#1|))) (-169)) (T -143)) -((-2410 (*1 *2 *3 *2) (-12 (-5 *3 (-671 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2))))) -(-10 -7 (-15 -2410 (|#1| (-671 |#1|) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-3878 (*1 *1 *1) (|partial| -4 *1 (-142)))) +(-13 (-1030) (-10 -8 (-15 -3878 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3767 ((|#1| (-673 |#1|) |#1|) 19))) +(((-143 |#1|) (-10 -7 (-15 -3767 (|#1| (-673 |#1|) |#1|))) (-169)) (T -143)) +((-3767 (*1 *2 *3 *2) (-12 (-5 *3 (-673 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2))))) +(-10 -7 (-15 -3767 (|#1| (-673 |#1|) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-144) (-137)) (T -144)) NIL -(-13 (-1028)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1599 (((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754)) 70)) (-3201 (((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|) 52)) (-3501 (((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3054 ((|#1| |#3| |#3|) 40)) (-3321 ((|#3| |#3| (-401 |#2|) (-401 |#2|)) 19)) (-2882 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|) 49))) -(((-145 |#1| |#2| |#3|) (-10 -7 (-15 -3501 ((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3201 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|)) (-15 -1599 ((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754))) (-15 -3054 (|#1| |#3| |#3|)) (-15 -3321 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -2882 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|))) (-1193) (-1211 |#1|) (-1211 (-401 |#2|))) (T -145)) -((-2882 (*1 *2 *3 *3) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) (|:| |c2| (-401 *5)) (|:| |deg| (-754)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5))))) (-3321 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1211 *3)))) (-3054 (*1 *2 *3 *3) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1193)) (-5 *1 (-145 *2 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *6)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *6))) (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-754)) (-4 *7 (-1211 *3)))) (-3201 (*1 *2 *3) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-754)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5))))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3069 (-401 *5)) (|:| |poly| *3))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) -(-10 -7 (-15 -3501 ((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3201 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|)) (-15 -1599 ((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754))) (-15 -3054 (|#1| |#3| |#3|)) (-15 -3321 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -2882 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|))) -((-1964 (((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)) 32))) -(((-146 |#1| |#2|) (-10 -7 (-15 -1964 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)))) (-537) (-163 |#1|)) (T -146)) -((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5))))) -(-10 -7 (-15 -1964 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)))) -((-2536 (($ (-1 (-111) |#2|) $) 29)) (-3370 (($ $) 36)) (-4342 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3509 (((-111) (-1 (-111) |#2|) $) 16)) (-1509 (((-754) (-1 (-111) |#2|) $) 14) (((-754) |#2| $) NIL)) (-3299 (((-111) (-1 (-111) |#2|) $) 15)) (-1383 (((-754) $) 11))) -(((-147 |#1| |#2|) (-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) (-148 |#2|) (-1189)) (T -147)) -NIL -(-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-2536 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 41 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366))) (($ |#1| $) 42 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 40 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 49)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-148 |#1|) (-137) (-1189)) (T -148)) -((-1490 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-148 *3)))) (-1503 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-2091 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-2091 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) (-4 *3 (-1189)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) (-4 *3 (-1189)))) (-2091 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-4342 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-3370 (*1 *1 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) (-4 *2 (-1076))))) -(-13 (-482 |t#1|) (-10 -8 (-15 -1490 ($ (-627 |t#1|))) (-15 -1503 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4366)) (PROGN (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4342 ($ (-1 (-111) |t#1|) $)) (-15 -2536 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4342 ($ |t#1| $)) (-15 -3370 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 86)) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-627 (-900))) 56)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2352 (($ (-900)) 47)) (-2405 (((-132)) 23)) (-1477 (((-842) $) 69) (($ (-552)) 45) (($ |#2|) 46)) (-1889 ((|#2| $ (-627 (-900))) 59)) (-3995 (((-754)) 20)) (-1922 (($) 40 T CONST)) (-1933 (($) 43 T CONST)) (-2292 (((-111) $ $) 26)) (-2407 (($ $ |#2|) NIL)) (-2396 (($ $) 34) (($ $ $) 32)) (-2384 (($ $ $) 30)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-149 |#1| |#2| |#3|) (-13 (-1028) (-38 |#2|) (-1242 |#2|) (-10 -8 (-15 -2352 ($ (-900))) (-15 -1832 ($ |#2| (-627 (-900)))) (-15 -1889 (|#2| $ (-627 (-900)))) (-15 -2040 ((-3 $ "failed") $)))) (-900) (-357) (-972 |#1| |#2|)) (T -149)) -((-2040 (*1 *1 *1) (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-900)) (-4 *3 (-357)) (-14 *4 (-972 *2 *3)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-357)) (-14 *5 (-972 *3 *4)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-900))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) (-4 *2 (-357)) (-14 *5 (-972 *4 *2)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-900))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) (-14 *5 (-972 *4 *2))))) -(-13 (-1028) (-38 |#2|) (-1242 |#2|) (-10 -8 (-15 -2352 ($ (-900))) (-15 -1832 ($ |#2| (-627 (-900)))) (-15 -1889 (|#2| $ (-627 (-900)))) (-15 -2040 ((-3 $ "failed") $)))) -((-4200 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220)) 38)) (-3207 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552))) 63) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906)) 64)) (-3540 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220))))) 67) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220)))) 66) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552))) 58) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906)) 59))) -(((-150) (-10 -7 (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -4200 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220))))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))))))) (T -150)) -((-3540 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 (-220))))))) (-3540 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)) (-5 *3 (-627 (-922 (-220)))))) (-4200 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-220)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 *4)))) (|:| |xValues| (-1070 *4)) (|:| |yValues| (-1070 *4)))) (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 *4)))))) (-3207 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3540 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150))))) -(-10 -7 (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -4200 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220))))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220))))))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1280 (((-627 (-1111)) $) 15)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 24) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 9)) (-2292 (((-111) $ $) NIL))) -(((-151) (-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $))))) (T -151)) -((-1280 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-151)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-151))))) -(-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $)))) -((-1806 (((-627 (-166 |#2|)) |#1| |#2|) 45))) -(((-152 |#1| |#2|) (-10 -7 (-15 -1806 ((-627 (-166 |#2|)) |#1| |#2|))) (-1211 (-166 (-552))) (-13 (-357) (-828))) (T -152)) -((-1806 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1211 (-166 (-552)))) (-4 *4 (-13 (-357) (-828)))))) -(-10 -7 (-15 -1806 ((-627 (-166 |#2|)) |#1| |#2|))) -((-1465 (((-111) $ $) NIL)) (-3089 (((-1188) $) 12)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-153) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1188) $))))) (T -153)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-153)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-153))))) -(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1188) $)))) -((-1465 (((-111) $ $) NIL)) (-4309 (($) 15)) (-3295 (($) 14)) (-1563 (((-900)) 22)) (-1595 (((-1134) $) NIL)) (-3808 (((-552) $) 19)) (-1498 (((-1096) $) NIL)) (-3534 (($) 16)) (-1552 (($ (-552)) 23)) (-1477 (((-842) $) 29)) (-1775 (($) 17)) (-2292 (((-111) $ $) 13)) (-2384 (($ $ $) 11)) (* (($ (-900) $) 21) (($ (-220) $) 8))) -(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-900) $)) (-15 * ($ (-220) $)) (-15 -2384 ($ $ $)) (-15 -3295 ($)) (-15 -4309 ($)) (-15 -3534 ($)) (-15 -1775 ($)) (-15 -3808 ((-552) $)) (-15 -1563 ((-900))) (-15 -1552 ($ (-552)))))) (T -154)) -((-2384 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) (-3295 (*1 *1) (-5 *1 (-154))) (-4309 (*1 *1) (-5 *1 (-154))) (-3534 (*1 *1) (-5 *1 (-154))) (-1775 (*1 *1) (-5 *1 (-154))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) (-1563 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154))))) -(-13 (-25) (-10 -8 (-15 * ($ (-900) $)) (-15 * ($ (-220) $)) (-15 -2384 ($ $ $)) (-15 -3295 ($)) (-15 -4309 ($)) (-15 -3534 ($)) (-15 -1775 ($)) (-15 -3808 ((-552) $)) (-15 -1563 ((-900))) (-15 -1552 ($ (-552))))) -((-3523 ((|#2| |#2| (-1068 |#2|)) 88) ((|#2| |#2| (-1152)) 68)) (-2735 ((|#2| |#2| (-1068 |#2|)) 87) ((|#2| |#2| (-1152)) 67)) (-1868 ((|#2| |#2| |#2|) 27)) (-4148 (((-113) (-113)) 99)) (-4038 ((|#2| (-627 |#2|)) 117)) (-2521 ((|#2| (-627 |#2|)) 135)) (-2984 ((|#2| (-627 |#2|)) 125)) (-1724 ((|#2| |#2|) 123)) (-2135 ((|#2| (-627 |#2|)) 111)) (-3692 ((|#2| (-627 |#2|)) 112)) (-1442 ((|#2| (-627 |#2|)) 133)) (-3434 ((|#2| |#2| (-1152)) 56) ((|#2| |#2|) 55)) (-2610 ((|#2| |#2|) 23)) (-3697 ((|#2| |#2| |#2|) 26)) (-3749 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3697 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1068 |#2|))) (-15 -2735 (|#2| |#2| (-1152))) (-15 -2735 (|#2| |#2| (-1068 |#2|))) (-15 -1724 (|#2| |#2|)) (-15 -1442 (|#2| (-627 |#2|))) (-15 -2984 (|#2| (-627 |#2|))) (-15 -2521 (|#2| (-627 |#2|))) (-15 -2135 (|#2| (-627 |#2|))) (-15 -3692 (|#2| (-627 |#2|))) (-15 -4038 (|#2| (-627 |#2|)))) (-13 (-830) (-544)) (-424 |#1|)) (T -155)) -((-4038 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2735 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)))) (-2735 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3523 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)))) (-3523 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-1868 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-3697 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *4)) (-4 *4 (-424 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3697 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1068 |#2|))) (-15 -2735 (|#2| |#2| (-1152))) (-15 -2735 (|#2| |#2| (-1068 |#2|))) (-15 -1724 (|#2| |#2|)) (-15 -1442 (|#2| (-627 |#2|))) (-15 -2984 (|#2| (-627 |#2|))) (-15 -2521 (|#2| (-627 |#2|))) (-15 -2135 (|#2| (-627 |#2|))) (-15 -3692 (|#2| (-627 |#2|))) (-15 -4038 (|#2| (-627 |#2|)))) -((-3042 ((|#1| |#1| |#1|) 53)) (-1537 ((|#1| |#1| |#1|) 50)) (-1868 ((|#1| |#1| |#1|) 44)) (-1424 ((|#1| |#1|) 35)) (-2188 ((|#1| |#1| (-627 |#1|)) 43)) (-2610 ((|#1| |#1|) 37)) (-3697 ((|#1| |#1| |#1|) 40))) -(((-156 |#1|) (-10 -7 (-15 -3697 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2188 (|#1| |#1| (-627 |#1|))) (-15 -1424 (|#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|))) (-537)) (T -156)) -((-3042 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1537 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1868 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1424 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2188 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2)))) (-2610 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-3697 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) -(-10 -7 (-15 -3697 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2188 (|#1| |#1| (-627 |#1|))) (-15 -1424 (|#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|))) -((-3523 (($ $ (-1152)) 12) (($ $ (-1068 $)) 11)) (-2735 (($ $ (-1152)) 10) (($ $ (-1068 $)) 9)) (-1868 (($ $ $) 8)) (-3434 (($ $) 14) (($ $ (-1152)) 13)) (-2610 (($ $) 7)) (-3697 (($ $ $) 6))) +(-13 (-1030)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1391 (((-2 (|:| -1406 (-756)) (|:| -4158 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-756)) 70)) (-2829 (((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-756))) "failed") |#3|) 52)) (-3866 (((-2 (|:| -4158 (-401 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3916 ((|#1| |#3| |#3|) 40)) (-2432 ((|#3| |#3| (-401 |#2|) (-401 |#2|)) 19)) (-1607 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-756))) |#3| |#3|) 49))) +(((-145 |#1| |#2| |#3|) (-10 -7 (-15 -3866 ((-2 (|:| -4158 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2829 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-756))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -1406 (-756)) (|:| -4158 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-756))) (-15 -3916 (|#1| |#3| |#3|)) (-15 -2432 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -1607 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-756))) |#3| |#3|))) (-1195) (-1213 |#1|) (-1213 (-401 |#2|))) (T -145)) +((-1607 (*1 *2 *3 *3) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) (|:| |c2| (-401 *5)) (|:| |deg| (-756)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5))))) (-2432 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1213 *3)))) (-3916 (*1 *2 *3 *3) (-12 (-4 *4 (-1213 *2)) (-4 *2 (-1195)) (-5 *1 (-145 *2 *4 *3)) (-4 *3 (-1213 (-401 *4))))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *6)) (-4 *5 (-1195)) (-4 *6 (-1213 *5)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| *6))) (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-756)) (-4 *7 (-1213 *3)))) (-2829 (*1 *2 *3) (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-756)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5))))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| -4158 (-401 *5)) (|:| |poly| *3))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5)))))) +(-10 -7 (-15 -3866 ((-2 (|:| -4158 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2829 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-756))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -1406 (-756)) (|:| -4158 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-756))) (-15 -3916 (|#1| |#3| |#3|)) (-15 -2432 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -1607 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-756))) |#3| |#3|))) +((-1704 (((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|)) 32))) +(((-146 |#1| |#2|) (-10 -7 (-15 -1704 ((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|)))) (-537) (-163 |#1|)) (T -146)) +((-1704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 *5))) (-5 *3 (-1150 *5)) (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5))))) +(-10 -7 (-15 -1704 ((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|)))) +((-3954 (($ (-1 (-111) |#2|) $) 29)) (-2738 (($ $) 36)) (-2655 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-3884 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3073 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3944 (((-111) (-1 (-111) |#2|) $) 16)) (-2885 (((-756) (-1 (-111) |#2|) $) 14) (((-756) |#2| $) NIL)) (-2584 (((-111) (-1 (-111) |#2|) $) 15)) (-2657 (((-756) $) 11))) +(((-147 |#1| |#2|) (-10 -8 (-15 -2738 (|#1| |#1|)) (-15 -2655 (|#1| |#2| |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3954 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|))) (-148 |#2|) (-1191)) (T -147)) +NIL +(-10 -8 (-15 -2738 (|#1| |#1|)) (-15 -2655 (|#1| |#2| |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3954 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-3954 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2738 (($ $) 41 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368))) (($ |#1| $) 42 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 40 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 49)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-148 |#1|) (-137) (-1191)) (T -148)) +((-3226 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-148 *3)))) (-3073 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) (-4 *2 (-1191)))) (-3884 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)))) (-3884 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)))) (-2655 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *3)) (-4 *3 (-1191)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *3)) (-4 *3 (-1191)))) (-3884 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1078)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)))) (-2655 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)) (-4 *2 (-1078)))) (-2738 (*1 *1 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)) (-4 *2 (-1078))))) +(-13 (-482 |t#1|) (-10 -8 (-15 -3226 ($ (-629 |t#1|))) (-15 -3073 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4368)) (PROGN (-15 -3884 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3884 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2655 ($ (-1 (-111) |t#1|) $)) (-15 -3954 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1078)) (PROGN (-15 -3884 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2655 ($ |t#1| $)) (-15 -2738 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) 86)) (-4065 (((-111) $) NIL)) (-3590 (($ |#2| (-629 (-902))) 56)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4047 (($ (-902)) 47)) (-3725 (((-132)) 23)) (-3213 (((-844) $) 69) (($ (-552)) 45) (($ |#2|) 46)) (-2266 ((|#2| $ (-629 (-902))) 59)) (-2014 (((-756)) 20)) (-3297 (($) 40 T CONST)) (-3309 (($) 43 T CONST)) (-1613 (((-111) $ $) 26)) (-1720 (($ $ |#2|) NIL)) (-1709 (($ $) 34) (($ $ $) 32)) (-1698 (($ $ $) 30)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-149 |#1| |#2| |#3|) (-13 (-1030) (-38 |#2|) (-1244 |#2|) (-10 -8 (-15 -4047 ($ (-902))) (-15 -3590 ($ |#2| (-629 (-902)))) (-15 -2266 (|#2| $ (-629 (-902)))) (-15 -1293 ((-3 $ "failed") $)))) (-902) (-357) (-974 |#1| |#2|)) (T -149)) +((-1293 (*1 *1 *1) (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-902)) (-4 *3 (-357)) (-14 *4 (-974 *2 *3)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-357)) (-14 *5 (-974 *3 *4)))) (-3590 (*1 *1 *2 *3) (-12 (-5 *3 (-629 (-902))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-902)) (-4 *2 (-357)) (-14 *5 (-974 *4 *2)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-629 (-902))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-902)) (-14 *5 (-974 *4 *2))))) +(-13 (-1030) (-38 |#2|) (-1244 |#2|) (-10 -8 (-15 -4047 ($ (-902))) (-15 -3590 ($ |#2| (-629 (-902)))) (-15 -2266 (|#2| $ (-629 (-902)))) (-15 -1293 ((-3 $ "failed") $)))) +((-3432 (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220)))) (-220) (-220) (-220) (-220)) 38)) (-2897 (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552))) 63) (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908)) 64)) (-3025 (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220))))) 67) (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-924 (-220)))) 66) (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552))) 58) (((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908)) 59))) +(((-150) (-10 -7 (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552)))) (-15 -2897 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908))) (-15 -2897 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552)))) (-15 -3432 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-924 (-220))))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220)))))))) (T -150)) +((-3025 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150)) (-5 *3 (-629 (-629 (-924 (-220))))))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150)) (-5 *3 (-629 (-924 (-220)))))) (-3432 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-220)) (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 *4)))) (|:| |xValues| (-1072 *4)) (|:| |yValues| (-1072 *4)))) (-5 *1 (-150)) (-5 *3 (-629 (-629 (-924 *4)))))) (-2897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150)))) (-3025 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) (-5 *1 (-150))))) +(-10 -7 (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552)))) (-15 -2897 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908))) (-15 -2897 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-908) (-401 (-552)) (-401 (-552)))) (-15 -3432 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-924 (-220))))) (-15 -3025 ((-2 (|:| |brans| (-629 (-629 (-924 (-220))))) (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220)))) (-629 (-629 (-924 (-220))))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-1497 (((-629 (-1113)) $) 15)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 24) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 9)) (-1613 (((-111) $ $) NIL))) +(((-151) (-13 (-1061) (-10 -8 (-15 -1497 ((-629 (-1113)) $)) (-15 -4300 ((-1113) $))))) (T -151)) +((-1497 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-151)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-151))))) +(-13 (-1061) (-10 -8 (-15 -1497 ((-629 (-1113)) $)) (-15 -4300 ((-1113) $)))) +((-2770 (((-629 (-166 |#2|)) |#1| |#2|) 45))) +(((-152 |#1| |#2|) (-10 -7 (-15 -2770 ((-629 (-166 |#2|)) |#1| |#2|))) (-1213 (-166 (-552))) (-13 (-357) (-830))) (T -152)) +((-2770 (*1 *2 *3 *4) (-12 (-5 *2 (-629 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1213 (-166 (-552)))) (-4 *4 (-13 (-357) (-830)))))) +(-10 -7 (-15 -2770 ((-629 (-166 |#2|)) |#1| |#2|))) +((-3202 (((-111) $ $) NIL)) (-1300 (((-1190) $) 12)) (-1286 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-153) (-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1190) $))))) (T -153)) +((-1286 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-153)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-153))))) +(-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1190) $)))) +((-3202 (((-111) $ $) NIL)) (-1943 (($) 15)) (-2533 (($) 14)) (-2307 (((-902)) 22)) (-2623 (((-1136) $) NIL)) (-3852 (((-552) $) 19)) (-2876 (((-1098) $) NIL)) (-2960 (($) 16)) (-2229 (($ (-552)) 23)) (-3213 (((-844) $) 29)) (-3692 (($) 17)) (-1613 (((-111) $ $) 13)) (-1698 (($ $ $) 11)) (* (($ (-902) $) 21) (($ (-220) $) 8))) +(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-902) $)) (-15 * ($ (-220) $)) (-15 -1698 ($ $ $)) (-15 -2533 ($)) (-15 -1943 ($)) (-15 -2960 ($)) (-15 -3692 ($)) (-15 -3852 ((-552) $)) (-15 -2307 ((-902))) (-15 -2229 ($ (-552)))))) (T -154)) +((-1698 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) (-2533 (*1 *1) (-5 *1 (-154))) (-1943 (*1 *1) (-5 *1 (-154))) (-2960 (*1 *1) (-5 *1 (-154))) (-3692 (*1 *1) (-5 *1 (-154))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) (-2307 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-154)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154))))) +(-13 (-25) (-10 -8 (-15 * ($ (-902) $)) (-15 * ($ (-220) $)) (-15 -1698 ($ $ $)) (-15 -2533 ($)) (-15 -1943 ($)) (-15 -2960 ($)) (-15 -3692 ($)) (-15 -3852 ((-552) $)) (-15 -2307 ((-902))) (-15 -2229 ($ (-552))))) +((-2867 ((|#2| |#2| (-1070 |#2|)) 88) ((|#2| |#2| (-1154)) 68)) (-3951 ((|#2| |#2| (-1070 |#2|)) 87) ((|#2| |#2| (-1154)) 67)) (-2048 ((|#2| |#2| |#2|) 27)) (-2951 (((-113) (-113)) 99)) (-4280 ((|#2| (-629 |#2|)) 117)) (-2377 ((|#2| (-629 |#2|)) 135)) (-1345 ((|#2| (-629 |#2|)) 125)) (-1307 ((|#2| |#2|) 123)) (-2862 ((|#2| (-629 |#2|)) 111)) (-2018 ((|#2| (-629 |#2|)) 112)) (-3749 ((|#2| (-629 |#2|)) 133)) (-1333 ((|#2| |#2| (-1154)) 56) ((|#2| |#2|) 55)) (-2006 ((|#2| |#2|) 23)) (-2075 ((|#2| |#2| |#2|) 26)) (-1374 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2075 (|#2| |#2| |#2|)) (-15 -2048 (|#2| |#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-1154))) (-15 -2867 (|#2| |#2| (-1154))) (-15 -2867 (|#2| |#2| (-1070 |#2|))) (-15 -3951 (|#2| |#2| (-1154))) (-15 -3951 (|#2| |#2| (-1070 |#2|))) (-15 -1307 (|#2| |#2|)) (-15 -3749 (|#2| (-629 |#2|))) (-15 -1345 (|#2| (-629 |#2|))) (-15 -2377 (|#2| (-629 |#2|))) (-15 -2862 (|#2| (-629 |#2|))) (-15 -2018 (|#2| (-629 |#2|))) (-15 -4280 (|#2| (-629 |#2|)))) (-13 (-832) (-544)) (-424 |#1|)) (T -155)) +((-4280 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-832) (-544))))) (-1307 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-2867 (*1 *2 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)))) (-2867 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2048 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2075 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *4)) (-4 *4 (-424 *3)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2075 (|#2| |#2| |#2|)) (-15 -2048 (|#2| |#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-1154))) (-15 -2867 (|#2| |#2| (-1154))) (-15 -2867 (|#2| |#2| (-1070 |#2|))) (-15 -3951 (|#2| |#2| (-1154))) (-15 -3951 (|#2| |#2| (-1070 |#2|))) (-15 -1307 (|#2| |#2|)) (-15 -3749 (|#2| (-629 |#2|))) (-15 -1345 (|#2| (-629 |#2|))) (-15 -2377 (|#2| (-629 |#2|))) (-15 -2862 (|#2| (-629 |#2|))) (-15 -2018 (|#2| (-629 |#2|))) (-15 -4280 (|#2| (-629 |#2|)))) +((-3809 ((|#1| |#1| |#1|) 53)) (-2086 ((|#1| |#1| |#1|) 50)) (-2048 ((|#1| |#1| |#1|) 44)) (-3596 ((|#1| |#1|) 35)) (-2118 ((|#1| |#1| (-629 |#1|)) 43)) (-2006 ((|#1| |#1|) 37)) (-2075 ((|#1| |#1| |#1|) 40))) +(((-156 |#1|) (-10 -7 (-15 -2075 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2118 (|#1| |#1| (-629 |#1|))) (-15 -3596 (|#1| |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#1| |#1|))) (-537)) (T -156)) +((-3809 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2086 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2048 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-3596 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2)))) (-2006 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(-10 -7 (-15 -2075 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2118 (|#1| |#1| (-629 |#1|))) (-15 -3596 (|#1| |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#1| |#1|))) +((-2867 (($ $ (-1154)) 12) (($ $ (-1070 $)) 11)) (-3951 (($ $ (-1154)) 10) (($ $ (-1070 $)) 9)) (-2048 (($ $ $) 8)) (-1333 (($ $) 14) (($ $ (-1154)) 13)) (-2006 (($ $) 7)) (-2075 (($ $ $) 6))) (((-157) (-137)) (T -157)) -((-3434 (*1 *1 *1) (-4 *1 (-157))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) (-2735 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157))))) -(-13 (-140) (-10 -8 (-15 -3434 ($ $)) (-15 -3434 ($ $ (-1152))) (-15 -3523 ($ $ (-1152))) (-15 -3523 ($ $ (-1068 $))) (-15 -2735 ($ $ (-1152))) (-15 -2735 ($ $ (-1068 $))))) +((-1333 (*1 *1 *1) (-4 *1 (-157))) (-1333 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-157)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-157))))) +(-13 (-140) (-10 -8 (-15 -1333 ($ $)) (-15 -1333 ($ $ (-1154))) (-15 -2867 ($ $ (-1154))) (-15 -2867 ($ $ (-1070 $))) (-15 -3951 ($ $ (-1154))) (-15 -3951 ($ $ (-1070 $))))) (((-140) . T)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 9)) (-2292 (((-111) $ $) NIL))) -(((-158) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $))))) (T -158)) -((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-158))))) -(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)))) -((-1465 (((-111) $ $) NIL)) (-2184 (($ (-552)) 13) (($ $ $) 14)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17)) (-2292 (((-111) $ $) 9))) -(((-159) (-13 (-1076) (-10 -8 (-15 -2184 ($ (-552))) (-15 -2184 ($ $ $))))) (T -159)) -((-2184 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159)))) (-2184 (*1 *1 *1 *1) (-5 *1 (-159)))) -(-13 (-1076) (-10 -8 (-15 -2184 ($ (-552))) (-15 -2184 ($ $ $)))) -((-4148 (((-113) (-1152)) 97))) -(((-160) (-10 -7 (-15 -4148 ((-113) (-1152))))) (T -160)) -((-4148 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-113)) (-5 *1 (-160))))) -(-10 -7 (-15 -4148 ((-113) (-1152)))) -((-2927 ((|#3| |#3|) 19))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2927 (|#3| |#3|))) (-1028) (-1211 |#1|) (-1211 |#2|)) (T -161)) -((-2927 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-1211 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1211 *4))))) -(-10 -7 (-15 -2927 (|#3| |#3|))) -((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 217)) (-3385 ((|#2| $) 96)) (-1607 (($ $) 247)) (-1467 (($ $) 241)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 40)) (-1584 (($ $) 245)) (-1445 (($ $) 239)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 139)) (-2813 (($ $ $) 222)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 155) (((-671 |#2|) (-671 $)) 149)) (-2091 (($ (-1148 |#2|)) 119) (((-3 $ "failed") (-401 (-1148 |#2|))) NIL)) (-2040 (((-3 $ "failed") $) 209)) (-2859 (((-3 (-401 (-552)) "failed") $) 199)) (-4229 (((-111) $) 194)) (-2411 (((-401 (-552)) $) 197)) (-4154 (((-900)) 89)) (-2789 (($ $ $) 224)) (-3890 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-2951 (($) 236)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 186) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 191)) (-2349 ((|#2| $) 94)) (-4205 (((-1148 |#2|) $) 121)) (-3516 (($ (-1 |#2| |#2|) $) 102)) (-4135 (($ $) 238)) (-2079 (((-1148 |#2|) $) 120)) (-1951 (($ $) 202)) (-2547 (($) 97)) (-3676 (((-412 (-1148 $)) (-1148 $)) 88)) (-3644 (((-412 (-1148 $)) (-1148 $)) 57)) (-2761 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-3154 (($ $) 237)) (-2718 (((-754) $) 219)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 229)) (-1637 ((|#2| (-1235 $)) NIL) ((|#2|) 91)) (-2942 (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-1376 (((-1148 |#2|)) 114)) (-1596 (($ $) 246)) (-1456 (($ $) 240)) (-3133 (((-1235 |#2|) $ (-1235 $)) 128) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 110) (((-671 |#2|) (-1235 $)) NIL)) (-3562 (((-1235 |#2|) $) NIL) (($ (-1235 |#2|)) NIL) (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) (((-871 (-552)) $) 177) (((-871 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-220)) $) 162) (((-528) $) 173)) (-2616 (($ $) 98)) (-1477 (((-842) $) 138) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-401 (-552))) NIL) (($ $) NIL)) (-2410 (((-1148 |#2|) $) 23)) (-3995 (((-754)) 100)) (-1673 (($ $) 250)) (-1534 (($ $) 244)) (-1652 (($ $) 248)) (-1513 (($ $) 242)) (-1731 ((|#2| $) 233)) (-1661 (($ $) 249)) (-1524 (($ $) 243)) (-3329 (($ $) 157)) (-2292 (((-111) $ $) 104)) (-2316 (((-111) $ $) 193)) (-2396 (($ $) 106) (($ $ $) NIL)) (-2384 (($ $ $) 105)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-401 (-552))) 267) (($ $ $) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) -(((-162 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1477 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-166 (-220)) |#1|)) (-15 -3562 ((-166 (-373)) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2951 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3890 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2091 ((-3 |#1| "failed") (-401 (-1148 |#2|)))) (-15 -2079 ((-1148 |#2|) |#1|)) (-15 -3562 (|#1| (-1148 |#2|))) (-15 -2091 (|#1| (-1148 |#2|))) (-15 -1376 ((-1148 |#2|))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2410 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2349 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -4154 ((-900))) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) -((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-4154 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-900)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-1637 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-1376 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1477 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-166 (-220)) |#1|)) (-15 -3562 ((-166 (-373)) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2951 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3890 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2091 ((-3 |#1| "failed") (-401 (-1148 |#2|)))) (-15 -2079 ((-1148 |#2|) |#1|)) (-15 -3562 (|#1| (-1148 |#2|))) (-15 -2091 (|#1| (-1148 |#2|))) (-15 -1376 ((-1148 |#2|))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2410 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2349 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -4154 ((-900))) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3245 (($ $) 92 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-4058 (((-111) $) 94 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-1607 (($ $) 225 (|has| |#1| (-1174)))) (-1467 (($ $) 208 (|has| |#1| (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 239 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4014 (($ $) 111 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-2487 (((-412 $) $) 112 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-1737 (($ $) 238 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 242 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4224 (((-111) $ $) 102 (|has| |#1| (-301)))) (-3307 (((-754)) 85 (|has| |#1| (-362)))) (-1584 (($ $) 224 (|has| |#1| (-1174)))) (-1445 (($ $) 209 (|has| |#1| (-1174)))) (-1628 (($ $) 223 (|has| |#1| (-1174)))) (-1492 (($ $) 210 (|has| |#1| (-1174)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-1703 (((-552) $) 167 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 162)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2813 (($ $ $) 106 (|has| |#1| (-301)))) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 159) (((-671 |#1|) (-671 $)) 158)) (-2091 (($ (-1148 |#1|)) 155) (((-3 $ "failed") (-401 (-1148 |#1|))) 152 (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 250)) (-2859 (((-3 (-401 (-552)) "failed") $) 243 (|has| |#1| (-537)))) (-4229 (((-111) $) 245 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 244 (|has| |#1| (-537)))) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| |#1| (-362)))) (-2789 (($ $ $) 105 (|has| |#1| (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| |#1| (-301)))) (-2740 (($) 146 (|has| |#1| (-343)))) (-1415 (((-111) $) 147 (|has| |#1| (-343)))) (-4294 (($ $ (-754)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1633 (((-111) $) 113 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3890 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1037)) (|has| |#1| (-1174))))) (-2951 (($) 235 (|has| |#1| (-1174)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 258 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 257 (|has| |#1| (-865 (-373))))) (-2641 (((-900) $) 149 (|has| |#1| (-343))) (((-816 (-900)) $) 135 (|has| |#1| (-343)))) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 237 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-2349 ((|#1| $) 49)) (-4317 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| |#1| (-301)))) (-4205 (((-1148 |#1|) $) 42 (|has| |#1| (-357)))) (-1816 (($ $ $) 204 (|has| |#1| (-830)))) (-4093 (($ $ $) 203 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 259)) (-2886 (((-900) $) 87 (|has| |#1| (-362)))) (-4135 (($ $) 232 (|has| |#1| (-1174)))) (-2079 (((-1148 |#1|) $) 153)) (-1276 (($ (-627 $)) 98 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (($ $ $) 97 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 114 (|has| |#1| (-357)))) (-3002 (($) 140 (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| |#1| (-362)))) (-2547 (($) 254)) (-1759 ((|#1| $) 251)) (-1498 (((-1096) $) 10)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1323 (($ (-627 $)) 96 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (($ $ $) 95 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 241 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) 240 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-1727 (((-412 $) $) 110 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| |#1| (-301)))) (-2761 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 90 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| |#1| (-301)))) (-3154 (($ $) 233 (|has| |#1| (-1174)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 265 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 263 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 262 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 261 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 260 (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) 103 (|has| |#1| (-301)))) (-1985 (($ $ |#1|) 266 (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| |#1| (-301)))) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-4018 (((-754) $) 148 (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) 136 (|has| |#1| (-343)))) (-2942 (($ $ (-1 |#1| |#1|) (-754)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-627 (-1152)) (-627 (-754))) 127 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 128 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 129 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 130 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 132 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 134 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-1376 (((-1148 |#1|)) 156)) (-1640 (($ $) 222 (|has| |#1| (-1174)))) (-1502 (($ $) 211 (|has| |#1| (-1174)))) (-3439 (($) 145 (|has| |#1| (-343)))) (-1615 (($ $) 221 (|has| |#1| (-1174)))) (-1479 (($ $) 212 (|has| |#1| (-1174)))) (-1596 (($ $) 220 (|has| |#1| (-1174)))) (-1456 (($ $) 213 (|has| |#1| (-1174)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60) (((-1148 |#1|) $) 168) (($ (-1148 |#1|)) 154) (((-871 (-552)) $) 256 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 255 (|has| |#1| (-600 (-871 (-373))))) (((-166 (-373)) $) 207 (|has| |#1| (-1001))) (((-166 (-220)) $) 206 (|has| |#1| (-1001))) (((-528) $) 205 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 253)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (-1559 (-2520 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (|has| |#1| (-343))))) (-3040 (($ |#1| |#1|) 252)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 84 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) 89 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3050 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-1559 (-2520 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (|has| |#1| (-142))))) (-2410 (((-1148 |#1|) $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-1673 (($ $) 231 (|has| |#1| (-1174)))) (-1534 (($ $) 219 (|has| |#1| (-1174)))) (-3778 (((-111) $ $) 93 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1652 (($ $) 230 (|has| |#1| (-1174)))) (-1513 (($ $) 218 (|has| |#1| (-1174)))) (-1697 (($ $) 229 (|has| |#1| (-1174)))) (-1561 (($ $) 217 (|has| |#1| (-1174)))) (-1731 ((|#1| $) 247 (|has| |#1| (-1174)))) (-3519 (($ $) 228 (|has| |#1| (-1174)))) (-1575 (($ $) 216 (|has| |#1| (-1174)))) (-1686 (($ $) 227 (|has| |#1| (-1174)))) (-1547 (($ $) 215 (|has| |#1| (-1174)))) (-1661 (($ $) 226 (|has| |#1| (-1174)))) (-1524 (($ $) 214 (|has| |#1| (-1174)))) (-3329 (($ $) 248 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#1| |#1|) (-754)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-627 (-1152)) (-627 (-754))) 123 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 124 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 125 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 126 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 131 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 133 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-2351 (((-111) $ $) 201 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 200 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 202 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 199 (|has| |#1| (-830)))) (-2407 (($ $ $) 118 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-401 (-552))) 236 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174)))) (($ $ $) 234 (|has| |#1| (-1174))) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-629 (-1113)) $) 9)) (-1613 (((-111) $ $) NIL))) +(((-158) (-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $))))) (T -158)) +((-4300 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-158))))) +(-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $)))) +((-3202 (((-111) $ $) NIL)) (-2078 (($ (-552)) 13) (($ $ $) 14)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 17)) (-1613 (((-111) $ $) 9))) +(((-159) (-13 (-1078) (-10 -8 (-15 -2078 ($ (-552))) (-15 -2078 ($ $ $))))) (T -159)) +((-2078 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159)))) (-2078 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1078) (-10 -8 (-15 -2078 ($ (-552))) (-15 -2078 ($ $ $)))) +((-2951 (((-113) (-1154)) 97))) +(((-160) (-10 -7 (-15 -2951 ((-113) (-1154))))) (T -160)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-113)) (-5 *1 (-160))))) +(-10 -7 (-15 -2951 ((-113) (-1154)))) +((-2036 ((|#3| |#3|) 19))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2036 (|#3| |#3|))) (-1030) (-1213 |#1|) (-1213 |#2|)) (T -161)) +((-2036 (*1 *2 *2) (-12 (-4 *3 (-1030)) (-4 *4 (-1213 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1213 *4))))) +(-10 -7 (-15 -2036 (|#3| |#3|))) +((-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 217)) (-1549 ((|#2| $) 96)) (-2478 (($ $) 247)) (-2332 (($ $) 241)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 40)) (-2455 (($ $) 245)) (-2305 (($ $) 239)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 139)) (-4006 (($ $ $) 222)) (-2714 (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 155) (((-673 |#2|) (-673 $)) 149)) (-3884 (($ (-1150 |#2|)) 119) (((-3 $ "failed") (-401 (-1150 |#2|))) NIL)) (-1293 (((-3 $ "failed") $) 209)) (-2674 (((-3 (-401 (-552)) "failed") $) 199)) (-2443 (((-111) $) 194)) (-3777 (((-401 (-552)) $) 197)) (-2128 (((-902)) 89)) (-3987 (($ $ $) 224)) (-2163 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-4043 (($) 236)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 186) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 191)) (-4346 ((|#2| $) 94)) (-2169 (((-1150 |#2|) $) 121)) (-1477 (($ (-1 |#2| |#2|) $) 102)) (-2430 (($ $) 238)) (-3874 (((-1150 |#2|) $) 120)) (-3701 (($ $) 202)) (-2650 (($) 97)) (-1848 (((-412 (-1150 $)) (-1150 $)) 88)) (-1528 (((-412 (-1150 $)) (-1150 $)) 57)) (-3969 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2855 (($ $) 237)) (-3795 (((-756) $) 219)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 229)) (-1721 ((|#2| (-1237 $)) NIL) ((|#2|) 91)) (-3096 (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL)) (-3521 (((-1150 |#2|)) 114)) (-2467 (($ $) 246)) (-2318 (($ $) 240)) (-3464 (((-1237 |#2|) $ (-1237 $)) 128) (((-673 |#2|) (-1237 $) (-1237 $)) NIL) (((-1237 |#2|) $) 110) (((-673 |#2|) (-1237 $)) NIL)) (-1522 (((-1237 |#2|) $) NIL) (($ (-1237 |#2|)) NIL) (((-1150 |#2|) $) NIL) (($ (-1150 |#2|)) NIL) (((-873 (-552)) $) 177) (((-873 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-220)) $) 162) (((-528) $) 173)) (-2074 (($ $) 98)) (-3213 (((-844) $) 138) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-401 (-552))) NIL) (($ $) NIL)) (-3767 (((-1150 |#2|) $) 23)) (-2014 (((-756)) 100)) (-3843 (($ $) 250)) (-2409 (($ $) 244)) (-2530 (($ $) 248)) (-2382 (($ $) 242)) (-1350 ((|#2| $) 233)) (-2543 (($ $) 249)) (-2395 (($ $) 243)) (-1578 (($ $) 157)) (-1613 (((-111) $ $) 104)) (-1632 (((-111) $ $) 193)) (-1709 (($ $) 106) (($ $ $) NIL)) (-1698 (($ $ $) 105)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-401 (-552))) 267) (($ $ $) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) +(((-162 |#1| |#2|) (-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3213 (|#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3795 ((-756) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3701 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-166 (-220)) |#1|)) (-15 -1522 ((-166 (-373)) |#1|)) (-15 -2332 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4043 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -2163 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1350 (|#2| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2074 (|#1| |#1|)) (-15 -2650 (|#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3884 ((-3 |#1| "failed") (-401 (-1150 |#2|)))) (-15 -3874 ((-1150 |#2|) |#1|)) (-15 -1522 (|#1| (-1150 |#2|))) (-15 -3884 (|#1| (-1150 |#2|))) (-15 -3521 ((-1150 |#2|))) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 ((-1150 |#2|) |#1|)) (-15 -1721 (|#2|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -2169 ((-1150 |#2|) |#1|)) (-15 -3767 ((-1150 |#2|) |#1|)) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -4346 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -2128 ((-902))) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 ** (|#1| |#1| (-756))) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) +((-2014 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-2128 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-902)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-1721 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-3521 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1150 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) +(-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3213 (|#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3795 ((-756) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3701 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-166 (-220)) |#1|)) (-15 -1522 ((-166 (-373)) |#1|)) (-15 -2332 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4043 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -2163 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1350 (|#2| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2074 (|#1| |#1|)) (-15 -2650 (|#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3884 ((-3 |#1| "failed") (-401 (-1150 |#2|)))) (-15 -3874 ((-1150 |#2|) |#1|)) (-15 -1522 (|#1| (-1150 |#2|))) (-15 -3884 (|#1| (-1150 |#2|))) (-15 -3521 ((-1150 |#2|))) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 ((-1150 |#2|) |#1|)) (-15 -1721 (|#2|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -2169 ((-1150 |#2|) |#1|)) (-15 -3767 ((-1150 |#2|) |#1|)) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -4346 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -2128 ((-902))) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 ** (|#1| |#1| (-756))) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 91 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-3303 (($ $) 92 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-1334 (((-111) $) 94 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-2977 (((-673 |#1|) (-1237 $)) 44) (((-673 |#1|)) 59)) (-1549 ((|#1| $) 50)) (-2478 (($ $) 225 (|has| |#1| (-1176)))) (-2332 (($ $) 208 (|has| |#1| (-1176)))) (-1271 (((-1164 (-902) (-756)) (-552)) 144 (|has| |#1| (-343)))) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 239 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-4116 (($ $) 111 (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-3343 (((-412 $) $) 112 (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-3489 (($ $) 238 (-12 (|has| |#1| (-983)) (|has| |#1| (-1176))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 242 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-2393 (((-111) $ $) 102 (|has| |#1| (-301)))) (-2663 (((-756)) 85 (|has| |#1| (-362)))) (-2455 (($ $) 224 (|has| |#1| (-1176)))) (-2305 (($ $) 209 (|has| |#1| (-1176)))) (-2506 (($ $) 223 (|has| |#1| (-1176)))) (-2359 (($ $) 210 (|has| |#1| (-1176)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-2832 (((-552) $) 167 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 162)) (-4278 (($ (-1237 |#1|) (-1237 $)) 46) (($ (-1237 |#1|)) 62)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-4006 (($ $ $) 106 (|has| |#1| (-301)))) (-3584 (((-673 |#1|) $ (-1237 $)) 51) (((-673 |#1|) $) 57)) (-2714 (((-673 (-552)) (-673 $)) 161 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 160 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 159) (((-673 |#1|) (-673 $)) 158)) (-3884 (($ (-1150 |#1|)) 155) (((-3 $ "failed") (-401 (-1150 |#1|))) 152 (|has| |#1| (-357)))) (-1293 (((-3 $ "failed") $) 32)) (-3499 ((|#1| $) 250)) (-2674 (((-3 (-401 (-552)) "failed") $) 243 (|has| |#1| (-537)))) (-2443 (((-111) $) 245 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 244 (|has| |#1| (-537)))) (-2128 (((-902)) 52)) (-1332 (($) 88 (|has| |#1| (-362)))) (-3987 (($ $ $) 105 (|has| |#1| (-301)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 100 (|has| |#1| (-301)))) (-4000 (($) 146 (|has| |#1| (-343)))) (-3504 (((-111) $) 147 (|has| |#1| (-343)))) (-1788 (($ $ (-756)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1677 (((-111) $) 113 (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-2163 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1039)) (|has| |#1| (-1176))))) (-4043 (($) 235 (|has| |#1| (-1176)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 258 (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 257 (|has| |#1| (-867 (-373))))) (-4241 (((-902) $) 149 (|has| |#1| (-343))) (((-818 (-902)) $) 135 (|has| |#1| (-343)))) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 237 (-12 (|has| |#1| (-983)) (|has| |#1| (-1176))))) (-4346 ((|#1| $) 49)) (-2032 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 109 (|has| |#1| (-301)))) (-2169 (((-1150 |#1|) $) 42 (|has| |#1| (-357)))) (-1772 (($ $ $) 204 (|has| |#1| (-832)))) (-2011 (($ $ $) 203 (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) 259)) (-1637 (((-902) $) 87 (|has| |#1| (-362)))) (-2430 (($ $) 232 (|has| |#1| (-1176)))) (-3874 (((-1150 |#1|) $) 153)) (-2552 (($ (-629 $)) 98 (-4029 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (($ $ $) 97 (-4029 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 114 (|has| |#1| (-357)))) (-1977 (($) 140 (|has| |#1| (-343)) CONST)) (-2840 (($ (-902)) 86 (|has| |#1| (-362)))) (-2650 (($) 254)) (-3509 ((|#1| $) 251)) (-2876 (((-1098) $) 10)) (-4126 (($) 157)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 99 (-4029 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-2594 (($ (-629 $)) 96 (-4029 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (($ $ $) 95 (-4029 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 143 (|has| |#1| (-343)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 241 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-1528 (((-412 (-1150 $)) (-1150 $)) 240 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-3479 (((-412 $) $) 110 (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 107 (|has| |#1| (-301)))) (-3969 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 90 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 101 (|has| |#1| (-301)))) (-2855 (($ $) 233 (|has| |#1| (-1176)))) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) 265 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 263 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) 262 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 261 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) 260 (|has| |#1| (-506 (-1154) |#1|)))) (-3795 (((-756) $) 103 (|has| |#1| (-301)))) (-2060 (($ $ |#1|) 266 (|has| |#1| (-280 |#1| |#1|)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 104 (|has| |#1| (-301)))) (-1721 ((|#1| (-1237 $)) 45) ((|#1|) 58)) (-4147 (((-756) $) 148 (|has| |#1| (-343))) (((-3 (-756) "failed") $ $) 136 (|has| |#1| (-343)))) (-3096 (($ $ (-1 |#1| |#1|) (-756)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-629 (-1154)) (-629 (-756))) 127 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 128 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 129 (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) 130 (|has| |#1| (-881 (-1154)))) (($ $ (-756)) 132 (-4029 (-3792 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 134 (-4029 (-3792 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3792 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-1433 (((-673 |#1|) (-1237 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-3521 (((-1150 |#1|)) 156)) (-2518 (($ $) 222 (|has| |#1| (-1176)))) (-2370 (($ $) 211 (|has| |#1| (-1176)))) (-1368 (($) 145 (|has| |#1| (-343)))) (-2492 (($ $) 221 (|has| |#1| (-1176)))) (-2346 (($ $) 212 (|has| |#1| (-1176)))) (-2467 (($ $) 220 (|has| |#1| (-1176)))) (-2318 (($ $) 213 (|has| |#1| (-1176)))) (-3464 (((-1237 |#1|) $ (-1237 $)) 48) (((-673 |#1|) (-1237 $) (-1237 $)) 47) (((-1237 |#1|) $) 64) (((-673 |#1|) (-1237 $)) 63)) (-1522 (((-1237 |#1|) $) 61) (($ (-1237 |#1|)) 60) (((-1150 |#1|) $) 168) (($ (-1150 |#1|)) 154) (((-873 (-552)) $) 256 (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) 255 (|has| |#1| (-600 (-873 (-373))))) (((-166 (-373)) $) 207 (|has| |#1| (-1003))) (((-166 (-220)) $) 206 (|has| |#1| (-1003))) (((-528) $) 205 (|has| |#1| (-600 (-528))))) (-2074 (($ $) 253)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 142 (-4029 (-3792 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))) (|has| |#1| (-343))))) (-4320 (($ |#1| |#1|) 252)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 84 (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) 89 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-3878 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-4029 (-3792 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))) (|has| |#1| (-142))))) (-3767 (((-1150 |#1|) $) 43)) (-2014 (((-756)) 28)) (-4199 (((-1237 $)) 65)) (-3843 (($ $) 231 (|has| |#1| (-1176)))) (-2409 (($ $) 219 (|has| |#1| (-1176)))) (-3589 (((-111) $ $) 93 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890)))))) (-2530 (($ $) 230 (|has| |#1| (-1176)))) (-2382 (($ $) 218 (|has| |#1| (-1176)))) (-3863 (($ $) 229 (|has| |#1| (-1176)))) (-2433 (($ $) 217 (|has| |#1| (-1176)))) (-1350 ((|#1| $) 247 (|has| |#1| (-1176)))) (-3013 (($ $) 228 (|has| |#1| (-1176)))) (-2444 (($ $) 216 (|has| |#1| (-1176)))) (-3853 (($ $) 227 (|has| |#1| (-1176)))) (-2420 (($ $) 215 (|has| |#1| (-1176)))) (-2543 (($ $) 226 (|has| |#1| (-1176)))) (-2395 (($ $) 214 (|has| |#1| (-1176)))) (-1578 (($ $) 248 (|has| |#1| (-1039)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1 |#1| |#1|) (-756)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-629 (-1154)) (-629 (-756))) 123 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 124 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 125 (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) 126 (|has| |#1| (-881 (-1154)))) (($ $ (-756)) 131 (-4029 (-3792 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 133 (-4029 (-3792 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3792 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-1666 (((-111) $ $) 201 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 200 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 202 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 199 (|has| |#1| (-832)))) (-1720 (($ $ $) 118 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-401 (-552))) 236 (-12 (|has| |#1| (-983)) (|has| |#1| (-1176)))) (($ $ $) 234 (|has| |#1| (-1176))) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) (((-163 |#1|) (-137) (-169)) (T -163)) -((-2349 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2547 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3040 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1174)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1037)) (-4 *3 (-1174)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) -(-13 (-707 |t#1| (-1148 |t#1|)) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-394 |t#1|) (-863 |t#1|) (-371 |t#1|) (-169) (-10 -8 (-15 -2547 ($)) (-15 -2616 ($ $)) (-15 -3040 ($ |t#1| |t#1|)) (-15 -1759 (|t#1| $)) (-15 -1749 (|t#1| $)) (-15 -2349 (|t#1| $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |t#1| (-6 -4362)) (-6 -4362) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1001)) (PROGN (-6 (-600 (-166 (-220)))) (-6 (-600 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1174)) (PROGN (-6 (-1174)) (-15 -1731 (|t#1| $)) (IF (|has| |t#1| (-981)) (-6 (-981)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3890 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-888)) (IF (|has| |t#1| (-301)) (-6 (-888)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-35) |has| |#1| (-1174)) ((-94) |has| |#1| (-1174)) ((-101) . T) ((-110 #0# #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-166 (-220))) |has| |#1| (-1001)) ((-600 (-166 (-373))) |has| |#1| (-1001)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-600 #1=(-1148 |#1|)) . T) ((-226 |#1|) . T) ((-228) -1559 (|has| |#1| (-343)) (|has| |#1| (-228))) ((-238) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-278) |has| |#1| (-1174)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-301) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -1559 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| #1#) . T) ((-403 |#1| #1#) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-485) |has| |#1| (-1174)) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-630 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-700 |#1|) . T) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-707 |#1| #1#) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-888) -12 (|has| |#1| (-301)) (|has| |#1| (-888))) ((-899) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-981) -12 (|has| |#1| (-981)) (|has| |#1| (-1174))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-343)) ((-1174) |has| |#1| (-1174)) ((-1177) |has| |#1| (-1174)) ((-1189) . T) ((-1193) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) -((-1727 (((-412 |#2|) |#2|) 63))) -(((-164 |#1| |#2|) (-10 -7 (-15 -1727 ((-412 |#2|) |#2|))) (-301) (-1211 (-166 |#1|))) (T -164)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(-10 -7 (-15 -1727 ((-412 |#2|) |#2|))) -((-3516 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) -(((-165 |#1| |#2|) (-10 -7 (-15 -3516 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) -(-10 -7 (-15 -3516 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3841 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-3385 ((|#1| $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-1174)))) (-1467 (($ $) NIL (|has| |#1| (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4014 (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-2487 (((-412 $) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-1737 (($ $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-301)))) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-1584 (($ $) NIL (|has| |#1| (-1174)))) (-1445 (($ $) NIL (|has| |#1| (-1174)))) (-1628 (($ $) NIL (|has| |#1| (-1174)))) (-1492 (($ $) NIL (|has| |#1| (-1174)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2813 (($ $ $) NIL (|has| |#1| (-301)))) (-4088 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2091 (($ (-1148 |#1|)) NIL) (((-3 $ "failed") (-401 (-1148 |#1|))) NIL (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 13)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-301)))) (-2740 (($) NIL (|has| |#1| (-343)))) (-1415 (((-111) $) NIL (|has| |#1| (-343)))) (-4294 (($ $ (-754)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1633 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3890 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1037)) (|has| |#1| (-1174))))) (-2951 (($) NIL (|has| |#1| (-1174)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#1| (-865 (-373))))) (-2641 (((-900) $) NIL (|has| |#1| (-343))) (((-816 (-900)) $) NIL (|has| |#1| (-343)))) (-2624 (((-111) $) 35)) (-1352 (($ $ (-552)) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-2349 ((|#1| $) 46)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-301)))) (-4205 (((-1148 |#1|) $) NIL (|has| |#1| (-357)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-4135 (($ $) NIL (|has| |#1| (-1174)))) (-2079 (((-1148 |#1|) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-3002 (($) NIL (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2547 (($) NIL)) (-1759 ((|#1| $) 15)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-301)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-1727 (((-412 $) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-301)))) (-2761 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 47 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-301)))) (-3154 (($ $) NIL (|has| |#1| (-1174)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) NIL (|has| |#1| (-301)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-301)))) (-1637 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) NIL (|has| |#1| (-343)))) (-2942 (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1376 (((-1148 |#1|)) NIL)) (-1640 (($ $) NIL (|has| |#1| (-1174)))) (-1502 (($ $) NIL (|has| |#1| (-1174)))) (-3439 (($) NIL (|has| |#1| (-343)))) (-1615 (($ $) NIL (|has| |#1| (-1174)))) (-1479 (($ $) NIL (|has| |#1| (-1174)))) (-1596 (($ $) NIL (|has| |#1| (-1174)))) (-1456 (($ $) NIL (|has| |#1| (-1174)))) (-3133 (((-1235 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL) (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-1001))) (((-166 (-220)) $) NIL (|has| |#1| (-1001))) (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) 45)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-343))))) (-3040 (($ |#1| |#1|) 37)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) 36) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3050 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-2410 (((-1148 |#1|) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL)) (-1673 (($ $) NIL (|has| |#1| (-1174)))) (-1534 (($ $) NIL (|has| |#1| (-1174)))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-1652 (($ $) NIL (|has| |#1| (-1174)))) (-1513 (($ $) NIL (|has| |#1| (-1174)))) (-1697 (($ $) NIL (|has| |#1| (-1174)))) (-1561 (($ $) NIL (|has| |#1| (-1174)))) (-1731 ((|#1| $) NIL (|has| |#1| (-1174)))) (-3519 (($ $) NIL (|has| |#1| (-1174)))) (-1575 (($ $) NIL (|has| |#1| (-1174)))) (-1686 (($ $) NIL (|has| |#1| (-1174)))) (-1547 (($ $) NIL (|has| |#1| (-1174)))) (-1661 (($ $) NIL (|has| |#1| (-1174)))) (-1524 (($ $) NIL (|has| |#1| (-1174)))) (-3329 (($ $) NIL (|has| |#1| (-1037)))) (-1922 (($) 28 T CONST)) (-1933 (($) 30 T CONST)) (-4157 (((-1134) $) 23 (|has| |#1| (-811))) (((-1134) $ (-111)) 25 (|has| |#1| (-811))) (((-1240) (-805) $) 26 (|has| |#1| (-811))) (((-1240) (-805) $ (-111)) 27 (|has| |#1| (-811)))) (-4251 (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 39)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-401 (-552))) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174)))) (($ $ $) NIL (|has| |#1| (-1174))) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) -(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-169)) (T -166)) -NIL -(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) -((-3562 (((-871 |#1|) |#3|) 22))) -(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -3562 ((-871 |#1|) |#3|))) (-1076) (-13 (-600 (-871 |#1|)) (-169)) (-163 |#2|)) (T -167)) -((-3562 (*1 *2 *3) (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-871 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1076)) (-4 *3 (-163 *5))))) -(-10 -7 (-15 -3562 ((-871 |#1|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-2871 (((-111) $) 9)) (-4232 (((-111) $ (-111)) 11)) (-2655 (($) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2973 (($ $) 13)) (-1477 (((-842) $) 17)) (-2691 (((-111) $) 8)) (-4267 (((-111) $ (-111)) 10)) (-2292 (((-111) $ $) NIL))) -(((-168) (-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -2691 ((-111) $)) (-15 -2871 ((-111) $)) (-15 -4267 ((-111) $ (-111))) (-15 -4232 ((-111) $ (-111))) (-15 -2973 ($ $))))) (T -168)) -((-2655 (*1 *1) (-5 *1 (-168))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-4267 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-4232 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2973 (*1 *1 *1) (-5 *1 (-168)))) -(-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -2691 ((-111) $)) (-15 -2871 ((-111) $)) (-15 -4267 ((-111) $ (-111))) (-15 -4232 ((-111) $ (-111))) (-15 -2973 ($ $)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-4346 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2650 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-4320 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3969 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1176)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1039)) (-4 *3 (-1176)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2674 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) +(-13 (-709 |t#1| (-1150 |t#1|)) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-394 |t#1|) (-865 |t#1|) (-371 |t#1|) (-169) (-10 -8 (-15 -2650 ($)) (-15 -2074 ($ $)) (-15 -4320 ($ |t#1| |t#1|)) (-15 -3509 (|t#1| $)) (-15 -3499 (|t#1| $)) (-15 -4346 (|t#1| $)) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-544)) (-15 -3969 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-6 -4367)) (-6 -4367) |%noBranch|) (IF (|has| |t#1| (-6 -4364)) (-6 -4364) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1003)) (PROGN (-6 (-600 (-166 (-220)))) (-6 (-600 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1039)) (-15 -1578 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1176)) (PROGN (-6 (-1176)) (-15 -1350 (|t#1| $)) (IF (|has| |t#1| (-983)) (-6 (-983)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-15 -2163 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-890)) (IF (|has| |t#1| (-301)) (-6 (-890)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-35) |has| |#1| (-1176)) ((-94) |has| |#1| (-1176)) ((-101) . T) ((-110 #0# #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -4029 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-600 (-166 (-220))) |has| |#1| (-1003)) ((-600 (-166 (-373))) |has| |#1| (-1003)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-873 (-373))) |has| |#1| (-600 (-873 (-373)))) ((-600 (-873 (-552))) |has| |#1| (-600 (-873 (-552)))) ((-600 #1=(-1150 |#1|)) . T) ((-226 |#1|) . T) ((-228) -4029 (|has| |#1| (-343)) (|has| |#1| (-228))) ((-238) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-278) |has| |#1| (-1176)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -4029 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-301) -4029 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -4029 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| #1#) . T) ((-403 |#1| #1#) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-485) |has| |#1| (-1176)) ((-506 (-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) -4029 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-632 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-702 |#1|) . T) ((-702 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-709 |#1| #1#) . T) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-867 (-373)) |has| |#1| (-867 (-373))) ((-867 (-552)) |has| |#1| (-867 (-552))) ((-865 |#1|) . T) ((-890) -12 (|has| |#1| (-301)) (|has| |#1| (-890))) ((-901) -4029 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-983) -12 (|has| |#1| (-983)) (|has| |#1| (-1176))) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1036 |#1|) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| |#1| (-343)) ((-1176) |has| |#1| (-1176)) ((-1179) |has| |#1| (-1176)) ((-1191) . T) ((-1195) -4029 (|has| |#1| (-343)) (|has| |#1| (-357)) (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) +((-3479 (((-412 |#2|) |#2|) 63))) +(((-164 |#1| |#2|) (-10 -7 (-15 -3479 ((-412 |#2|) |#2|))) (-301) (-1213 (-166 |#1|))) (T -164)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) +(-10 -7 (-15 -3479 ((-412 |#2|) |#2|))) +((-1477 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-165 |#1| |#2|) (-10 -7 (-15 -1477 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) +(-10 -7 (-15 -1477 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 33)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-3303 (($ $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-1334 (((-111) $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-2977 (((-673 |#1|) (-1237 $)) NIL) (((-673 |#1|)) NIL)) (-1549 ((|#1| $) NIL)) (-2478 (($ $) NIL (|has| |#1| (-1176)))) (-2332 (($ $) NIL (|has| |#1| (-1176)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| |#1| (-343)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-4116 (($ $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-3343 (((-412 $) $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-3489 (($ $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1176))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-301)))) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2455 (($ $) NIL (|has| |#1| (-1176)))) (-2305 (($ $) NIL (|has| |#1| (-1176)))) (-2506 (($ $) NIL (|has| |#1| (-1176)))) (-2359 (($ $) NIL (|has| |#1| (-1176)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-4278 (($ (-1237 |#1|) (-1237 $)) NIL) (($ (-1237 |#1|)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-4006 (($ $ $) NIL (|has| |#1| (-301)))) (-3584 (((-673 |#1|) $ (-1237 $)) NIL) (((-673 |#1|) $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-3884 (($ (-1150 |#1|)) NIL) (((-3 $ "failed") (-401 (-1150 |#1|))) NIL (|has| |#1| (-357)))) (-1293 (((-3 $ "failed") $) NIL)) (-3499 ((|#1| $) 13)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2443 (((-111) $) NIL (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-2128 (((-902)) NIL)) (-1332 (($) NIL (|has| |#1| (-362)))) (-3987 (($ $ $) NIL (|has| |#1| (-301)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-301)))) (-4000 (($) NIL (|has| |#1| (-343)))) (-3504 (((-111) $) NIL (|has| |#1| (-343)))) (-1788 (($ $ (-756)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1677 (((-111) $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-2163 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1039)) (|has| |#1| (-1176))))) (-4043 (($) NIL (|has| |#1| (-1176)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| |#1| (-867 (-373))))) (-4241 (((-902) $) NIL (|has| |#1| (-343))) (((-818 (-902)) $) NIL (|has| |#1| (-343)))) (-4065 (((-111) $) 35)) (-3755 (($ $ (-552)) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1176))))) (-4346 ((|#1| $) 46)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-301)))) (-2169 (((-1150 |#1|) $) NIL (|has| |#1| (-357)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-2430 (($ $) NIL (|has| |#1| (-1176)))) (-3874 (((-1150 |#1|) $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-1977 (($) NIL (|has| |#1| (-343)) CONST)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-2650 (($) NIL)) (-3509 ((|#1| $) 15)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-301)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| |#1| (-343)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-890))))) (-3479 (((-412 $) $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-357))))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-301)))) (-3969 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 47 (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-301)))) (-2855 (($ $) NIL (|has| |#1| (-1176)))) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-506 (-1154) |#1|)))) (-3795 (((-756) $) NIL (|has| |#1| (-301)))) (-2060 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-301)))) (-1721 ((|#1| (-1237 $)) NIL) ((|#1|) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-343))) (((-3 (-756) "failed") $ $) NIL (|has| |#1| (-343)))) (-3096 (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-1433 (((-673 |#1|) (-1237 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-3521 (((-1150 |#1|)) NIL)) (-2518 (($ $) NIL (|has| |#1| (-1176)))) (-2370 (($ $) NIL (|has| |#1| (-1176)))) (-1368 (($) NIL (|has| |#1| (-343)))) (-2492 (($ $) NIL (|has| |#1| (-1176)))) (-2346 (($ $) NIL (|has| |#1| (-1176)))) (-2467 (($ $) NIL (|has| |#1| (-1176)))) (-2318 (($ $) NIL (|has| |#1| (-1176)))) (-3464 (((-1237 |#1|) $ (-1237 $)) NIL) (((-673 |#1|) (-1237 $) (-1237 $)) NIL) (((-1237 |#1|) $) NIL) (((-673 |#1|) (-1237 $)) NIL)) (-1522 (((-1237 |#1|) $) NIL) (($ (-1237 |#1|)) NIL) (((-1150 |#1|) $) NIL) (($ (-1150 |#1|)) NIL) (((-873 (-552)) $) NIL (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| |#1| (-600 (-873 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-1003))) (((-166 (-220)) $) NIL (|has| |#1| (-1003))) (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2074 (($ $) 45)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-343))))) (-4320 (($ |#1| |#1|) 37)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) 36) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-3878 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-3767 (((-1150 |#1|) $) NIL)) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL)) (-3843 (($ $) NIL (|has| |#1| (-1176)))) (-2409 (($ $) NIL (|has| |#1| (-1176)))) (-3589 (((-111) $ $) NIL (-4029 (-12 (|has| |#1| (-301)) (|has| |#1| (-890))) (|has| |#1| (-544))))) (-2530 (($ $) NIL (|has| |#1| (-1176)))) (-2382 (($ $) NIL (|has| |#1| (-1176)))) (-3863 (($ $) NIL (|has| |#1| (-1176)))) (-2433 (($ $) NIL (|has| |#1| (-1176)))) (-1350 ((|#1| $) NIL (|has| |#1| (-1176)))) (-3013 (($ $) NIL (|has| |#1| (-1176)))) (-2444 (($ $) NIL (|has| |#1| (-1176)))) (-3853 (($ $) NIL (|has| |#1| (-1176)))) (-2420 (($ $) NIL (|has| |#1| (-1176)))) (-2543 (($ $) NIL (|has| |#1| (-1176)))) (-2395 (($ $) NIL (|has| |#1| (-1176)))) (-1578 (($ $) NIL (|has| |#1| (-1039)))) (-3297 (($) 28 T CONST)) (-3309 (($) 30 T CONST)) (-3016 (((-1136) $) 23 (|has| |#1| (-813))) (((-1136) $ (-111)) 25 (|has| |#1| (-813))) (((-1242) (-807) $) 26 (|has| |#1| (-813))) (((-1242) (-807) $ (-111)) 27 (|has| |#1| (-813)))) (-1765 (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 39)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-401 (-552))) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1176)))) (($ $ $) NIL (|has| |#1| (-1176))) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) +(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|))) (-169)) (T -166)) +NIL +(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|))) +((-1522 (((-873 |#1|) |#3|) 22))) +(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -1522 ((-873 |#1|) |#3|))) (-1078) (-13 (-600 (-873 |#1|)) (-169)) (-163 |#2|)) (T -167)) +((-1522 (*1 *2 *3) (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-873 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1078)) (-4 *3 (-163 *5))))) +(-10 -7 (-15 -1522 ((-873 |#1|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-2803 (((-111) $) 9)) (-2476 (((-111) $ (-111)) 11)) (-3307 (($) 12)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-1487 (($ $) 13)) (-3213 (((-844) $) 17)) (-3561 (((-111) $) 8)) (-2571 (((-111) $ (-111)) 10)) (-1613 (((-111) $ $) NIL))) +(((-168) (-13 (-1078) (-10 -8 (-15 -3307 ($)) (-15 -3561 ((-111) $)) (-15 -2803 ((-111) $)) (-15 -2571 ((-111) $ (-111))) (-15 -2476 ((-111) $ (-111))) (-15 -1487 ($ $))))) (T -168)) +((-3307 (*1 *1) (-5 *1 (-168))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2571 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2476 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-1487 (*1 *1 *1) (-5 *1 (-168)))) +(-13 (-1078) (-10 -8 (-15 -3307 ($)) (-15 -3561 ((-111) $)) (-15 -2803 ((-111) $)) (-15 -2571 ((-111) $ (-111))) (-15 -2476 ((-111) $ (-111))) (-15 -1487 ($ $)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-169) (-137)) (T -169)) NIL -(-13 (-1028) (-110 $ $) (-10 -7 (-6 (-4368 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2219 (($ $) 6))) +(-13 (-1030) (-110 $ $) (-10 -7 (-6 (-4370 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2469 (($ $) 6))) (((-170) (-137)) (T -170)) -((-2219 (*1 *1 *1) (-4 *1 (-170)))) -(-13 (-10 -8 (-15 -2219 ($ $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#1| $) 75)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2025 (($ $) 19)) (-3978 (($ |#1| (-1132 |#1|)) 48)) (-2040 (((-3 $ "failed") $) 117)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2475 (((-1132 |#1|) $) 82)) (-3568 (((-1132 |#1|) $) 79)) (-2234 (((-1132 |#1|) $) 80)) (-2624 (((-111) $) NIL)) (-4028 (((-1132 |#1|) $) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-4168 (($ $ (-552)) 91)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2485 (((-1132 |#1|) $) 89)) (-3736 (((-1132 (-401 |#1|)) $) 14)) (-2771 (($ (-401 |#1|)) 17) (($ |#1| (-1132 |#1|) (-1132 |#1|)) 38)) (-2890 (($ $) 93)) (-1477 (((-842) $) 127) (($ (-552)) 51) (($ |#1|) 52) (($ (-401 |#1|)) 36) (($ (-401 (-552))) NIL) (($ $) NIL)) (-3995 (((-754)) 64)) (-3778 (((-111) $ $) NIL)) (-2189 (((-1132 (-401 |#1|)) $) 18)) (-1922 (($) 25 T CONST)) (-1933 (($) 28 T CONST)) (-2292 (((-111) $ $) 35)) (-2407 (($ $ $) 115)) (-2396 (($ $) 106) (($ $ $) 103)) (-2384 (($ $ $) 101)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-401 |#1|) $) 111) (($ $ (-401 |#1|)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) -(((-171 |#1|) (-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -2771 ($ (-401 |#1|))) (-15 -2771 ($ |#1| (-1132 |#1|) (-1132 |#1|))) (-15 -3978 ($ |#1| (-1132 |#1|))) (-15 -3568 ((-1132 |#1|) $)) (-15 -2234 ((-1132 |#1|) $)) (-15 -2475 ((-1132 |#1|) $)) (-15 -3471 (|#1| $)) (-15 -2025 ($ $)) (-15 -2189 ((-1132 (-401 |#1|)) $)) (-15 -3736 ((-1132 (-401 |#1|)) $)) (-15 -4028 ((-1132 |#1|) $)) (-15 -2485 ((-1132 |#1|) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) (-301)) (T -171)) -((-2771 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) (-2771 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3471 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2025 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) -(-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -2771 ($ (-401 |#1|))) (-15 -2771 ($ |#1| (-1132 |#1|) (-1132 |#1|))) (-15 -3978 ($ |#1| (-1132 |#1|))) (-15 -3568 ((-1132 |#1|) $)) (-15 -2234 ((-1132 |#1|) $)) (-15 -2475 ((-1132 |#1|) $)) (-15 -3471 (|#1| $)) (-15 -2025 ($ $)) (-15 -2189 ((-1132 (-401 |#1|)) $)) (-15 -3736 ((-1132 (-401 |#1|)) $)) (-15 -4028 ((-1132 |#1|) $)) (-15 -2485 ((-1132 |#1|) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) -((-2517 (($ (-108) $) 13)) (-2176 (((-3 (-108) "failed") (-1152) $) 12)) (-1477 (((-842) $) 16)) (-4057 (((-627 (-108)) $) 8))) -(((-172) (-13 (-599 (-842)) (-10 -8 (-15 -4057 ((-627 (-108)) $)) (-15 -2517 ($ (-108) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $))))) (T -172)) -((-4057 (*1 *2 *1) (-12 (-5 *2 (-627 (-108))) (-5 *1 (-172)))) (-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-2176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-172))))) -(-13 (-599 (-842)) (-10 -8 (-15 -4057 ((-627 (-108)) $)) (-15 -2517 ($ (-108) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)))) -((-2473 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 40)) (-1510 (((-922 |#1|) (-922 |#1|)) 19)) (-2236 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 36)) (-2589 (((-922 |#1|) (-922 |#1|)) 17)) (-3232 (((-922 |#1|) (-922 |#1|)) 25)) (-1463 (((-922 |#1|) (-922 |#1|)) 24)) (-1626 (((-922 |#1|) (-922 |#1|)) 23)) (-2865 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 37)) (-1796 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 35)) (-1758 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 34)) (-2502 (((-922 |#1|) (-922 |#1|)) 18)) (-4081 (((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|) 43)) (-1682 (((-922 |#1|) (-922 |#1|)) 8)) (-1812 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 39)) (-1418 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 38))) -(((-173 |#1|) (-10 -7 (-15 -1682 ((-922 |#1|) (-922 |#1|))) (-15 -2589 ((-922 |#1|) (-922 |#1|))) (-15 -2502 ((-922 |#1|) (-922 |#1|))) (-15 -1510 ((-922 |#1|) (-922 |#1|))) (-15 -1626 ((-922 |#1|) (-922 |#1|))) (-15 -1463 ((-922 |#1|) (-922 |#1|))) (-15 -3232 ((-922 |#1|) (-922 |#1|))) (-15 -1758 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1796 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2236 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2865 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1418 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1812 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2473 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -4081 ((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|))) (-13 (-357) (-1174) (-981))) (T -173)) -((-4081 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1418 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2865 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3))))) -(-10 -7 (-15 -1682 ((-922 |#1|) (-922 |#1|))) (-15 -2589 ((-922 |#1|) (-922 |#1|))) (-15 -2502 ((-922 |#1|) (-922 |#1|))) (-15 -1510 ((-922 |#1|) (-922 |#1|))) (-15 -1626 ((-922 |#1|) (-922 |#1|))) (-15 -1463 ((-922 |#1|) (-922 |#1|))) (-15 -3232 ((-922 |#1|) (-922 |#1|))) (-15 -1758 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1796 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2236 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2865 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1418 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1812 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2473 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -4081 ((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|))) -((-2410 ((|#2| |#3|) 27))) -(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -2410 (|#2| |#3|))) (-169) (-1211 |#1|) (-707 |#1| |#2|)) (T -174)) -((-2410 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1211 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-707 *4 *2))))) -(-10 -7 (-15 -2410 (|#2| |#3|))) -((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 47 (|has| (-931 |#2|) (-865 |#1|))))) -(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-931 |#2|) (-865 |#1|)) (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) |%noBranch|)) (-1076) (-13 (-865 |#1|) (-169)) (-163 |#2|)) (T -175)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *3 (-163 *6)) (-4 (-931 *6) (-865 *5)) (-4 *6 (-13 (-865 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) -(-10 -7 (IF (|has| (-931 |#2|) (-865 |#1|)) (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) |%noBranch|)) -((-2256 (((-627 |#1|) (-627 |#1|) |#1|) 38)) (-3819 (((-627 |#1|) |#1| (-627 |#1|)) 19)) (-3098 (((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|)) 33) ((|#1| (-627 |#1|) (-627 |#1|)) 31))) -(((-176 |#1|) (-10 -7 (-15 -3819 ((-627 |#1|) |#1| (-627 |#1|))) (-15 -3098 (|#1| (-627 |#1|) (-627 |#1|))) (-15 -3098 ((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|))) (-15 -2256 ((-627 |#1|) (-627 |#1|) |#1|))) (-301)) (T -176)) -((-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3)))) (-3098 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-301)) (-5 *1 (-176 *4)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) (-3819 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3819 ((-627 |#1|) |#1| (-627 |#1|))) (-15 -3098 (|#1| (-627 |#1|) (-627 |#1|))) (-15 -3098 ((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|))) (-15 -2256 ((-627 |#1|) (-627 |#1|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-177) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -177)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-177)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-177))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) -((-3244 (((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|) 61)) (-3642 ((|#1| |#1|) 54)) (-4137 (((-166 |#1|) |#2|) 84)) (-2651 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2970 ((|#2| |#2|) 83)) (-3358 (((-412 |#2|) |#2| |#1|) 113) (((-412 |#2|) |#2| |#1| (-111)) 81)) (-2349 ((|#1| |#2|) 112)) (-3842 ((|#2| |#2|) 119)) (-1727 (((-412 |#2|) |#2|) 134) (((-412 |#2|) |#2| |#1|) 32) (((-412 |#2|) |#2| |#1| (-111)) 133)) (-1482 (((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|) 132) (((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111)) 76)) (-1806 (((-627 (-166 |#1|)) |#2| |#1|) 40) (((-627 (-166 |#1|)) |#2|) 41))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1806 ((-627 (-166 |#1|)) |#2|)) (-15 -1806 ((-627 (-166 |#1|)) |#2| |#1|)) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111))) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|)) (-15 -1727 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1727 ((-412 |#2|) |#2| |#1|)) (-15 -1727 ((-412 |#2|) |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -2349 (|#1| |#2|)) (-15 -3358 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3358 ((-412 |#2|) |#2| |#1|)) (-15 -2970 (|#2| |#2|)) (-15 -2651 (|#1| |#2| |#1|)) (-15 -2651 (|#1| |#2|)) (-15 -4137 ((-166 |#1|) |#2|)) (-15 -3642 (|#1| |#1|)) (-15 -3244 ((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|))) (-13 (-357) (-828)) (-1211 (-166 |#1|))) (T -178)) -((-3244 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-2 (|:| |start| *3) (|:| -2101 (-412 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-4137 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-357) (-828))) (-4 *3 (-1211 *2)))) (-2651 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-2651 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-2970 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1211 (-166 *3))))) (-3358 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-3358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-2349 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1211 (-166 *3))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1727 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1727 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1482 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-828))) (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1211 (-166 *5))))) (-1806 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(-10 -7 (-15 -1806 ((-627 (-166 |#1|)) |#2|)) (-15 -1806 ((-627 (-166 |#1|)) |#2| |#1|)) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111))) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|)) (-15 -1727 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1727 ((-412 |#2|) |#2| |#1|)) (-15 -1727 ((-412 |#2|) |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -2349 (|#1| |#2|)) (-15 -3358 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3358 ((-412 |#2|) |#2| |#1|)) (-15 -2970 (|#2| |#2|)) (-15 -2651 (|#1| |#2| |#1|)) (-15 -2651 (|#1| |#2|)) (-15 -4137 ((-166 |#1|) |#2|)) (-15 -3642 (|#1| |#1|)) (-15 -3244 ((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|))) -((-3803 (((-3 |#2| "failed") |#2|) 14)) (-2250 (((-754) |#2|) 16)) (-4082 ((|#2| |#2| |#2|) 18))) -(((-179 |#1| |#2|) (-10 -7 (-15 -3803 ((-3 |#2| "failed") |#2|)) (-15 -2250 ((-754) |#2|)) (-15 -4082 (|#2| |#2| |#2|))) (-1189) (-656 |#1|)) (T -179)) -((-4082 (*1 *2 *2 *2) (-12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3)))) (-2250 (*1 *2 *3) (-12 (-4 *4 (-1189)) (-5 *2 (-754)) (-5 *1 (-179 *4 *3)) (-4 *3 (-656 *4)))) (-3803 (*1 *2 *2) (|partial| -12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3))))) -(-10 -7 (-15 -3803 ((-3 |#2| "failed") |#2|)) (-15 -2250 ((-754) |#2|)) (-15 -4082 (|#2| |#2| |#2|))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2834 (((-1152) $) 10)) (-1477 (((-842) $) 17)) (-4279 (((-627 (-1157)) $) 12)) (-2292 (((-111) $ $) 15))) -(((-180) (-13 (-1076) (-10 -8 (-15 -2834 ((-1152) $)) (-15 -4279 ((-627 (-1157)) $))))) (T -180)) -((-2834 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-180)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-180))))) -(-13 (-1076) (-10 -8 (-15 -2834 ((-1152) $)) (-15 -4279 ((-627 (-1157)) $)))) -((-1465 (((-111) $ $) NIL)) (-7 (($) 8 T CONST)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-8 (($) 7 T CONST)) (-1477 (((-842) $) 14)) (-9 (($) 6 T CONST)) (-2292 (((-111) $ $) 10))) -(((-181) (-13 (-1076) (-10 -8 (-15 -9 ($) -3488) (-15 -8 ($) -3488) (-15 -7 ($) -3488)))) (T -181)) +((-2469 (*1 *1 *1) (-4 *1 (-170)))) +(-13 (-10 -8 (-15 -2469 ($ $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 ((|#1| $) 75)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL)) (-4240 (($ $) 19)) (-1819 (($ |#1| (-1134 |#1|)) 48)) (-1293 (((-3 $ "failed") $) 117)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-3218 (((-1134 |#1|) $) 82)) (-3310 (((-1134 |#1|) $) 79)) (-2635 (((-1134 |#1|) $) 80)) (-4065 (((-111) $) NIL)) (-4228 (((-1134 |#1|) $) 88)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2552 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ (-629 $)) NIL) (($ $ $) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3136 (($ $ (-552)) 91)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3319 (((-1134 |#1|) $) 89)) (-4342 (((-1134 (-401 |#1|)) $) 14)) (-3110 (($ (-401 |#1|)) 17) (($ |#1| (-1134 |#1|) (-1134 |#1|)) 38)) (-1680 (($ $) 93)) (-3213 (((-844) $) 127) (($ (-552)) 51) (($ |#1|) 52) (($ (-401 |#1|)) 36) (($ (-401 (-552))) NIL) (($ $) NIL)) (-2014 (((-756)) 64)) (-3589 (((-111) $ $) NIL)) (-2125 (((-1134 (-401 |#1|)) $) 18)) (-3297 (($) 25 T CONST)) (-3309 (($) 28 T CONST)) (-1613 (((-111) $ $) 35)) (-1720 (($ $ $) 115)) (-1709 (($ $) 106) (($ $ $) 103)) (-1698 (($ $ $) 101)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-401 |#1|) $) 111) (($ $ (-401 |#1|)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) +(((-171 |#1|) (-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -3110 ($ (-401 |#1|))) (-15 -3110 ($ |#1| (-1134 |#1|) (-1134 |#1|))) (-15 -1819 ($ |#1| (-1134 |#1|))) (-15 -3310 ((-1134 |#1|) $)) (-15 -2635 ((-1134 |#1|) $)) (-15 -3218 ((-1134 |#1|) $)) (-15 -3603 (|#1| $)) (-15 -4240 ($ $)) (-15 -2125 ((-1134 (-401 |#1|)) $)) (-15 -4342 ((-1134 (-401 |#1|)) $)) (-15 -4228 ((-1134 |#1|) $)) (-15 -3319 ((-1134 |#1|) $)) (-15 -3136 ($ $ (-552))) (-15 -1680 ($ $)))) (-301)) (T -171)) +((-3110 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) (-3110 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1134 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-1819 (*1 *1 *2 *3) (-12 (-5 *3 (-1134 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-3310 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1134 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-1134 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-1680 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) +(-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -3110 ($ (-401 |#1|))) (-15 -3110 ($ |#1| (-1134 |#1|) (-1134 |#1|))) (-15 -1819 ($ |#1| (-1134 |#1|))) (-15 -3310 ((-1134 |#1|) $)) (-15 -2635 ((-1134 |#1|) $)) (-15 -3218 ((-1134 |#1|) $)) (-15 -3603 (|#1| $)) (-15 -4240 ($ $)) (-15 -2125 ((-1134 (-401 |#1|)) $)) (-15 -4342 ((-1134 (-401 |#1|)) $)) (-15 -4228 ((-1134 |#1|) $)) (-15 -3319 ((-1134 |#1|) $)) (-15 -3136 ($ $ (-552))) (-15 -1680 ($ $)))) +((-2341 (($ (-108) $) 13)) (-3292 (((-3 (-108) "failed") (-1154) $) 12)) (-3213 (((-844) $) 16)) (-1326 (((-629 (-108)) $) 8))) +(((-172) (-13 (-599 (-844)) (-10 -8 (-15 -1326 ((-629 (-108)) $)) (-15 -2341 ($ (-108) $)) (-15 -3292 ((-3 (-108) "failed") (-1154) $))))) (T -172)) +((-1326 (*1 *2 *1) (-12 (-5 *2 (-629 (-108))) (-5 *1 (-172)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-3292 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-108)) (-5 *1 (-172))))) +(-13 (-599 (-844)) (-10 -8 (-15 -1326 ((-629 (-108)) $)) (-15 -2341 ($ (-108) $)) (-15 -3292 ((-3 (-108) "failed") (-1154) $)))) +((-3197 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 40)) (-3137 (((-924 |#1|) (-924 |#1|)) 19)) (-2659 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 36)) (-1796 (((-924 |#1|) (-924 |#1|)) 17)) (-3159 (((-924 |#1|) (-924 |#1|)) 25)) (-2735 (((-924 |#1|) (-924 |#1|)) 24)) (-1614 (((-924 |#1|) (-924 |#1|)) 23)) (-2747 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 37)) (-3873 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 35)) (-3551 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 34)) (-2192 (((-924 |#1|) (-924 |#1|)) 18)) (-3512 (((-1 (-924 |#1|) (-924 |#1|)) |#1| |#1|) 43)) (-4039 (((-924 |#1|) (-924 |#1|)) 8)) (-2835 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 39)) (-3536 (((-1 (-924 |#1|) (-924 |#1|)) |#1|) 38))) +(((-173 |#1|) (-10 -7 (-15 -4039 ((-924 |#1|) (-924 |#1|))) (-15 -1796 ((-924 |#1|) (-924 |#1|))) (-15 -2192 ((-924 |#1|) (-924 |#1|))) (-15 -3137 ((-924 |#1|) (-924 |#1|))) (-15 -1614 ((-924 |#1|) (-924 |#1|))) (-15 -2735 ((-924 |#1|) (-924 |#1|))) (-15 -3159 ((-924 |#1|) (-924 |#1|))) (-15 -3551 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3873 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2659 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2747 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3536 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2835 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3197 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3512 ((-1 (-924 |#1|) (-924 |#1|)) |#1| |#1|))) (-13 (-357) (-1176) (-983))) (T -173)) +((-3512 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-3197 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-2835 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-2747 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-2659 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-3873 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-3551 (*1 *2 *3) (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1176) (-983))))) (-3159 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3))))) +(-10 -7 (-15 -4039 ((-924 |#1|) (-924 |#1|))) (-15 -1796 ((-924 |#1|) (-924 |#1|))) (-15 -2192 ((-924 |#1|) (-924 |#1|))) (-15 -3137 ((-924 |#1|) (-924 |#1|))) (-15 -1614 ((-924 |#1|) (-924 |#1|))) (-15 -2735 ((-924 |#1|) (-924 |#1|))) (-15 -3159 ((-924 |#1|) (-924 |#1|))) (-15 -3551 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3873 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2659 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2747 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3536 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -2835 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3197 ((-1 (-924 |#1|) (-924 |#1|)) |#1|)) (-15 -3512 ((-1 (-924 |#1|) (-924 |#1|)) |#1| |#1|))) +((-3767 ((|#2| |#3|) 27))) +(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -3767 (|#2| |#3|))) (-169) (-1213 |#1|) (-709 |#1| |#2|)) (T -174)) +((-3767 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1213 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-709 *4 *2))))) +(-10 -7 (-15 -3767 (|#2| |#3|))) +((-2214 (((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)) 47 (|has| (-933 |#2|) (-867 |#1|))))) +(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-933 |#2|) (-867 |#1|)) (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))) |%noBranch|)) (-1078) (-13 (-867 |#1|) (-169)) (-163 |#2|)) (T -175)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *3)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-4 *3 (-163 *6)) (-4 (-933 *6) (-867 *5)) (-4 *6 (-13 (-867 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) +(-10 -7 (IF (|has| (-933 |#2|) (-867 |#1|)) (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))) |%noBranch|)) +((-1559 (((-629 |#1|) (-629 |#1|) |#1|) 38)) (-3950 (((-629 |#1|) |#1| (-629 |#1|)) 19)) (-3116 (((-629 |#1|) (-629 (-629 |#1|)) (-629 |#1|)) 33) ((|#1| (-629 |#1|) (-629 |#1|)) 31))) +(((-176 |#1|) (-10 -7 (-15 -3950 ((-629 |#1|) |#1| (-629 |#1|))) (-15 -3116 (|#1| (-629 |#1|) (-629 |#1|))) (-15 -3116 ((-629 |#1|) (-629 (-629 |#1|)) (-629 |#1|))) (-15 -1559 ((-629 |#1|) (-629 |#1|) |#1|))) (-301)) (T -176)) +((-1559 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3)))) (-3116 (*1 *2 *3 *2) (-12 (-5 *3 (-629 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-301)) (-5 *1 (-176 *4)))) (-3116 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) (-3950 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -3950 ((-629 |#1|) |#1| (-629 |#1|))) (-15 -3116 (|#1| (-629 |#1|) (-629 |#1|))) (-15 -3116 ((-629 |#1|) (-629 (-629 |#1|)) (-629 |#1|))) (-15 -1559 ((-629 |#1|) (-629 |#1|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-1355 (((-1190) $) 13)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 10)) (-3213 (((-844) $) 22) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-177) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $))))) (T -177)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-177)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-177))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $)))) +((-3291 (((-2 (|:| |start| |#2|) (|:| -3772 (-412 |#2|))) |#2|) 61)) (-1511 ((|#1| |#1|) 54)) (-4023 (((-166 |#1|) |#2|) 84)) (-4312 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-4295 ((|#2| |#2|) 83)) (-1840 (((-412 |#2|) |#2| |#1|) 113) (((-412 |#2|) |#2| |#1| (-111)) 81)) (-4346 ((|#1| |#2|) 112)) (-2987 ((|#2| |#2|) 119)) (-3479 (((-412 |#2|) |#2|) 134) (((-412 |#2|) |#2| |#1|) 32) (((-412 |#2|) |#2| |#1| (-111)) 133)) (-2884 (((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2|) 132) (((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2| (-111)) 76)) (-2770 (((-629 (-166 |#1|)) |#2| |#1|) 40) (((-629 (-166 |#1|)) |#2|) 41))) +(((-178 |#1| |#2|) (-10 -7 (-15 -2770 ((-629 (-166 |#1|)) |#2|)) (-15 -2770 ((-629 (-166 |#1|)) |#2| |#1|)) (-15 -2884 ((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2| (-111))) (-15 -2884 ((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2|)) (-15 -3479 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3479 ((-412 |#2|) |#2| |#1|)) (-15 -3479 ((-412 |#2|) |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -4346 (|#1| |#2|)) (-15 -1840 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1840 ((-412 |#2|) |#2| |#1|)) (-15 -4295 (|#2| |#2|)) (-15 -4312 (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4023 ((-166 |#1|) |#2|)) (-15 -1511 (|#1| |#1|)) (-15 -3291 ((-2 (|:| |start| |#2|) (|:| -3772 (-412 |#2|))) |#2|))) (-13 (-357) (-830)) (-1213 (-166 |#1|))) (T -178)) +((-3291 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-2 (|:| |start| *3) (|:| -3772 (-412 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-1511 (*1 *2 *2) (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1213 (-166 *2))))) (-4023 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-357) (-830))) (-4 *3 (-1213 *2)))) (-4312 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1213 (-166 *2))))) (-4312 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1213 (-166 *2))))) (-4295 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-830))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1213 (-166 *3))))) (-1840 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-4346 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1213 (-166 *2))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-830))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1213 (-166 *3))))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-3479 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-629 (-2 (|:| -3772 (-629 *3)) (|:| -1825 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-2884 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-830))) (-5 *2 (-629 (-2 (|:| -3772 (-629 *3)) (|:| -1825 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1213 (-166 *5))))) (-2770 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-629 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-629 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) +(-10 -7 (-15 -2770 ((-629 (-166 |#1|)) |#2|)) (-15 -2770 ((-629 (-166 |#1|)) |#2| |#1|)) (-15 -2884 ((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2| (-111))) (-15 -2884 ((-629 (-2 (|:| -3772 (-629 |#2|)) (|:| -1825 |#1|))) |#2| |#2|)) (-15 -3479 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3479 ((-412 |#2|) |#2| |#1|)) (-15 -3479 ((-412 |#2|) |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -4346 (|#1| |#2|)) (-15 -1840 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1840 ((-412 |#2|) |#2| |#1|)) (-15 -4295 (|#2| |#2|)) (-15 -4312 (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4023 ((-166 |#1|) |#2|)) (-15 -1511 (|#1| |#1|)) (-15 -3291 ((-2 (|:| |start| |#2|) (|:| -3772 (-412 |#2|))) |#2|))) +((-3813 (((-3 |#2| "failed") |#2|) 14)) (-1506 (((-756) |#2|) 16)) (-3524 ((|#2| |#2| |#2|) 18))) +(((-179 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 |#2| "failed") |#2|)) (-15 -1506 ((-756) |#2|)) (-15 -3524 (|#2| |#2| |#2|))) (-1191) (-658 |#1|)) (T -179)) +((-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-1191)) (-5 *1 (-179 *3 *2)) (-4 *2 (-658 *3)))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-1191)) (-5 *2 (-756)) (-5 *1 (-179 *4 *3)) (-4 *3 (-658 *4)))) (-3813 (*1 *2 *2) (|partial| -12 (-4 *3 (-1191)) (-5 *1 (-179 *3 *2)) (-4 *2 (-658 *3))))) +(-10 -7 (-15 -3813 ((-3 |#2| "failed") |#2|)) (-15 -1506 ((-756) |#2|)) (-15 -3524 (|#2| |#2| |#2|))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2031 (((-1154) $) 10)) (-3213 (((-844) $) 17)) (-3676 (((-629 (-1159)) $) 12)) (-1613 (((-111) $ $) 15))) +(((-180) (-13 (-1078) (-10 -8 (-15 -2031 ((-1154) $)) (-15 -3676 ((-629 (-1159)) $))))) (T -180)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-180)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-180))))) +(-13 (-1078) (-10 -8 (-15 -2031 ((-1154) $)) (-15 -3676 ((-629 (-1159)) $)))) +((-3202 (((-111) $ $) NIL)) (-7 (($) 8 T CONST)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-8 (($) 7 T CONST)) (-3213 (((-844) $) 14)) (-9 (($) 6 T CONST)) (-1613 (((-111) $ $) 10))) +(((-181) (-13 (-1078) (-10 -8 (-15 -9 ($) -3930) (-15 -8 ($) -3930) (-15 -7 ($) -3930)))) (T -181)) ((-9 (*1 *1) (-5 *1 (-181))) (-8 (*1 *1) (-5 *1 (-181))) (-7 (*1 *1) (-5 *1 (-181)))) -(-13 (-1076) (-10 -8 (-15 -9 ($) -3488) (-15 -8 ($) -3488) (-15 -7 ($) -3488))) -((-1465 (((-111) $ $) NIL)) (-3112 (((-498) $) 8)) (-1595 (((-1134) $) NIL)) (-3342 (((-181) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14)) (-2926 (((-1096) $) NIL)) (-2292 (((-111) $ $) 11))) -(((-182) (-13 (-1076) (-10 -8 (-15 -3112 ((-498) $)) (-15 -3342 ((-181) $)) (-15 -2926 ((-1096) $))))) (T -182)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-182))))) -(-13 (-1076) (-10 -8 (-15 -3112 ((-498) $)) (-15 -3342 ((-181) $)) (-15 -2926 ((-1096) $)))) -((-2085 ((|#2| |#2|) 28)) (-3802 (((-111) |#2|) 19)) (-1749 (((-310 |#1|) |#2|) 12)) (-1759 (((-310 |#1|) |#2|) 14)) (-3472 ((|#2| |#2| (-1152)) 68) ((|#2| |#2|) 69)) (-2433 (((-166 (-310 |#1|)) |#2|) 10)) (-3339 ((|#2| |#2| (-1152)) 65) ((|#2| |#2|) 59))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -1749 ((-310 |#1|) |#2|)) (-15 -1759 ((-310 |#1|) |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2433 ((-166 (-310 |#1|)) |#2|))) (-13 (-544) (-830) (-1017 (-552))) (-13 (-27) (-1174) (-424 (-166 |#1|)))) (T -183)) -((-2433 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-111)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-1749 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3))))))) -(-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -1749 ((-310 |#1|) |#2|)) (-15 -1759 ((-310 |#1|) |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2433 ((-166 (-310 |#1|)) |#2|))) -((-2824 (((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|))) 24)) (-1477 (((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))) 33))) -(((-184 |#1|) (-10 -7 (-15 -2824 ((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|)))) (-15 -1477 ((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))))) (-169)) (T -184)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) (-5 *2 (-1235 (-671 (-401 (-931 *4))))) (-5 *1 (-184 *4)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) (-5 *2 (-1235 (-671 (-931 *4)))) (-5 *1 (-184 *4))))) -(-10 -7 (-15 -2824 ((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|)))) (-15 -1477 ((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))))) -((-2086 (((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 66)) (-4246 (((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552))) 75)) (-3441 (((-1154 (-401 (-552))) (-552)) 40)) (-1327 (((-1154 (-401 (-552))) (-552)) 52)) (-3321 (((-401 (-552)) (-1154 (-401 (-552)))) 62)) (-3165 (((-1154 (-401 (-552))) (-552)) 32)) (-3211 (((-1154 (-401 (-552))) (-552)) 48)) (-1511 (((-1154 (-401 (-552))) (-552)) 46)) (-3442 (((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 60)) (-2890 (((-1154 (-401 (-552))) (-552)) 25)) (-1698 (((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 64)) (-1746 (((-1154 (-401 (-552))) (-552)) 30)) (-2052 (((-1154 (-401 (-552))) (-627 (-552))) 72))) -(((-185) (-10 -7 (-15 -2890 ((-1154 (-401 (-552))) (-552))) (-15 -3441 ((-1154 (-401 (-552))) (-552))) (-15 -3165 ((-1154 (-401 (-552))) (-552))) (-15 -1746 ((-1154 (-401 (-552))) (-552))) (-15 -1511 ((-1154 (-401 (-552))) (-552))) (-15 -3211 ((-1154 (-401 (-552))) (-552))) (-15 -1327 ((-1154 (-401 (-552))) (-552))) (-15 -1698 ((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3442 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3321 ((-401 (-552)) (-1154 (-401 (-552))))) (-15 -2086 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -2052 ((-1154 (-401 (-552))) (-627 (-552)))) (-15 -4246 ((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552)))))) (T -185)) -((-4246 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-2086 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-3442 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-1698 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3211 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1746 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3165 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3441 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-2890 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) -(-10 -7 (-15 -2890 ((-1154 (-401 (-552))) (-552))) (-15 -3441 ((-1154 (-401 (-552))) (-552))) (-15 -3165 ((-1154 (-401 (-552))) (-552))) (-15 -1746 ((-1154 (-401 (-552))) (-552))) (-15 -1511 ((-1154 (-401 (-552))) (-552))) (-15 -3211 ((-1154 (-401 (-552))) (-552))) (-15 -1327 ((-1154 (-401 (-552))) (-552))) (-15 -1698 ((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3442 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3321 ((-401 (-552)) (-1154 (-401 (-552))))) (-15 -2086 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -2052 ((-1154 (-401 (-552))) (-627 (-552)))) (-15 -4246 ((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552))))) -((-2657 (((-412 (-1148 (-552))) (-552)) 28)) (-1773 (((-627 (-1148 (-552))) (-552)) 23)) (-3224 (((-1148 (-552)) (-552)) 21))) -(((-186) (-10 -7 (-15 -1773 ((-627 (-1148 (-552))) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -2657 ((-412 (-1148 (-552))) (-552))))) (T -186)) -((-2657 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) (-1773 (*1 *2 *3) (-12 (-5 *2 (-627 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(-10 -7 (-15 -1773 ((-627 (-1148 (-552))) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -2657 ((-412 (-1148 (-552))) (-552)))) -((-1870 (((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 105)) (-2218 (((-627 (-1134)) (-1132 (-220))) NIL)) (-1318 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 81)) (-1444 (((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220)))) NIL)) (-2445 (((-627 (-1134)) (-627 (-220))) NIL)) (-1798 (((-220) (-1070 (-823 (-220)))) 24)) (-1968 (((-220) (-1070 (-823 (-220)))) 25)) (-2825 (((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 98)) (-3058 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-2095 (((-1134) (-220)) NIL)) (-2337 (((-1134) (-627 (-1134))) 20)) (-1339 (((-1014) (-1152) (-1152) (-1014)) 13))) -(((-187) (-10 -7 (-15 -1318 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3058 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2825 ((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -2337 ((-1134) (-627 (-1134)))) (-15 -1339 ((-1014) (-1152) (-1152) (-1014))))) (T -187)) -((-1339 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-187)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-187)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-187)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-187)))) (-1444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-187)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-187)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-187)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-187))))) -(-10 -7 (-15 -1318 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3058 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2825 ((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -2337 ((-1134) (-627 (-1134)))) (-15 -1339 ((-1014) (-1152) (-1152) (-1014)))) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 55) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-188) (-770)) (T -188)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 60) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-189) (-770)) (T -189)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 69) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-190) (-770)) (T -190)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 56) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-191) (-770)) (T -191)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 67) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 38) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-192) (-770)) (T -192)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 73) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-193) (-770)) (T -193)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 80) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 44) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-194) (-770)) (T -194)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 70) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-195) (-770)) (T -195)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 66)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-196) (-770)) (T -196)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 63)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-197) (-770)) (T -197)) -NIL -(-770) -((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 90) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 78) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-198) (-770)) (T -198)) -NIL -(-770) -((-3793 (((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 85)) (-2276 (((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-2488 (((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 73))) -(((-199) (-10 -7 (-15 -3793 ((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2488 ((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2276 ((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -199)) -((-2276 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-552)) (-5 *1 (-199)))) (-2488 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-199)))) (-3793 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -3354 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) -(-10 -7 (-15 -3793 ((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2488 ((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2276 ((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-2194 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-3327 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 130)) (-1423 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220)))) 89)) (-3849 (((-373) (-671 (-310 (-220)))) 113)) (-4220 (((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152))) 110)) (-3544 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 30)) (-2985 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 43)) (-3321 (((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220)))) 102)) (-2133 (((-373) (-373) (-627 (-373))) 107) (((-373) (-373) (-373)) 105)) (-1785 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36))) -(((-200) (-10 -7 (-15 -2133 ((-373) (-373) (-373))) (-15 -2133 ((-373) (-373) (-627 (-373)))) (-15 -3849 ((-373) (-671 (-310 (-220))))) (-15 -4220 ((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152)))) (-15 -3321 ((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220))))) (-15 -1423 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220))))) (-15 -3327 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2194 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2985 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1785 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3544 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -200)) -((-3544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-3321 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-671 (-310 (-220)))) (-5 *3 (-627 (-1152))) (-5 *4 (-1235 (-310 (-220)))) (-5 *1 (-200)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) (-5 *2 (-671 (-310 (-220)))) (-5 *1 (-200)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-373))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2133 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200))))) -(-10 -7 (-15 -2133 ((-373) (-373) (-373))) (-15 -2133 ((-373) (-373) (-627 (-373)))) (-15 -3849 ((-373) (-671 (-310 (-220))))) (-15 -4220 ((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152)))) (-15 -3321 ((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220))))) (-15 -1423 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220))))) (-15 -3327 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2194 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2985 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1785 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3544 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 64)) (-2292 (((-111) $ $) NIL))) -(((-201) (-783)) (T -201)) -NIL -(-783) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 62)) (-2292 (((-111) $ $) NIL))) -(((-202) (-783)) (T -202)) -NIL -(-783) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 66)) (-2292 (((-111) $ $) NIL))) -(((-203) (-783)) (T -203)) -NIL -(-783) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 46)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 75)) (-2292 (((-111) $ $) NIL))) -(((-204) (-783)) (T -204)) -NIL -(-783) -((-1671 (((-627 (-1152)) (-1152) (-754)) 23)) (-3636 (((-310 (-220)) (-310 (-220))) 31)) (-3331 (((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 74)) (-2302 (((-111) (-220) (-220) (-627 (-310 (-220)))) 45))) -(((-205) (-10 -7 (-15 -1671 ((-627 (-1152)) (-1152) (-754))) (-15 -3636 ((-310 (-220)) (-310 (-220)))) (-15 -2302 ((-111) (-220) (-220) (-627 (-310 (-220))))) (-15 -3331 ((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))))) (T -205)) -((-3331 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-111)) (-5 *1 (-205)))) (-2302 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-627 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-205)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-205)) (-5 *3 (-1152))))) -(-10 -7 (-15 -1671 ((-627 (-1152)) (-1152) (-754))) (-15 -3636 ((-310 (-220)) (-310 (-220)))) (-15 -2302 ((-111) (-220) (-220) (-627 (-310 (-220))))) (-15 -3331 ((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))))) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 26)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 57)) (-2292 (((-111) $ $) NIL))) -(((-206) (-874)) (T -206)) -NIL -(-874) -((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) NIL)) (-2292 (((-111) $ $) NIL))) -(((-207) (-874)) (T -207)) -NIL -(-874) -((-1465 (((-111) $ $) NIL)) (-3421 ((|#2| $ (-754) |#2|) 11)) (-3413 ((|#2| $ (-754)) 10)) (-2655 (($) 8)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18)) (-2292 (((-111) $ $) 13))) -(((-208 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -3413 (|#2| $ (-754))) (-15 -3421 (|#2| $ (-754) |#2|)))) (-900) (-1076)) (T -208)) -((-2655 (*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1076)))) (-3413 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *2 (-1076)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)))) (-3421 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)) (-4 *2 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -3413 (|#2| $ (-754))) (-15 -3421 (|#2| $ (-754) |#2|)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4103 (((-1240) $) 36) (((-1240) $ (-900) (-900)) 38)) (-1985 (($ $ (-968)) 19) (((-240 (-1134)) $ (-1152)) 15)) (-4291 (((-1240) $) 34)) (-1477 (((-842) $) 31) (($ (-627 |#1|)) 8)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $ $) 27)) (-2384 (($ $ $) 22))) -(((-209 |#1|) (-13 (-1076) (-10 -8 (-15 -1985 ($ $ (-968))) (-15 -1985 ((-240 (-1134)) $ (-1152))) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1477 ($ (-627 |#1|))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -4103 ((-1240) $ (-900) (-900))))) (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))) (T -209)) -((-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-968)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-240 (-1134))) (-5 *1 (-209 *4)) (-4 *4 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ *3)) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-2396 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))) (-5 *1 (-209 *3)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $))))))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $))))))) (-4103 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-209 *4)) (-4 *4 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $)))))))) -(-13 (-1076) (-10 -8 (-15 -1985 ($ $ (-968))) (-15 -1985 ((-240 (-1134)) $ (-1152))) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1477 ($ (-627 |#1|))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -4103 ((-1240) $ (-900) (-900))))) -((-1987 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1987 (|#2| |#4| (-1 |#2| |#2|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -210)) -((-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1211 (-401 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-210 *5 *2 *6 *3)) (-4 *3 (-336 *5 *2 *6))))) -(-10 -7 (-15 -1987 (|#2| |#4| (-1 |#2| |#2|)))) -((-2001 ((|#2| |#2| (-754) |#2|) 42)) (-3158 ((|#2| |#2| (-754) |#2|) 38)) (-3787 (((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|)))) 57)) (-4340 (((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|) 53)) (-2300 (((-111) |#2|) 50)) (-1685 (((-412 |#2|) |#2|) 77)) (-1727 (((-412 |#2|) |#2|) 76)) (-4207 ((|#2| |#2| (-754) |#2|) 36)) (-3720 (((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111)) 69))) -(((-211 |#1| |#2|) (-10 -7 (-15 -1727 ((-412 |#2|) |#2|)) (-15 -1685 ((-412 |#2|) |#2|)) (-15 -3720 ((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111))) (-15 -4340 ((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|)) (-15 -3787 ((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))))) (-15 -4207 (|#2| |#2| (-754) |#2|)) (-15 -3158 (|#2| |#2| (-754) |#2|)) (-15 -2001 (|#2| |#2| (-754) |#2|)) (-15 -2300 ((-111) |#2|))) (-343) (-1211 |#1|)) (T -211)) -((-2300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-2001 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-3158 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-4207 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *5)))) (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *2 (-627 *5)) (-5 *1 (-211 *4 *5)))) (-4340 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *3)))) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-211 *5 *3)) (-4 *3 (-1211 *5)))) (-1685 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1727 ((-412 |#2|) |#2|)) (-15 -1685 ((-412 |#2|) |#2|)) (-15 -3720 ((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111))) (-15 -4340 ((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|)) (-15 -3787 ((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))))) (-15 -4207 (|#2| |#2| (-754) |#2|)) (-15 -3158 (|#2| |#2| (-754) |#2|)) (-15 -2001 (|#2| |#2| (-754) |#2|)) (-15 -2300 ((-111) |#2|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-2054 (($ (-401 (-552))) 9)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 10) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-212) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 10) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2054 ($ (-401 (-552))))))) (T -212)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 10)) (-5 *1 (-212)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-2054 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) -(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 10) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2054 ($ (-401 (-552)))))) -((-1465 (((-111) $ $) NIL)) (-4199 (((-1094) $) 13)) (-1595 (((-1134) $) NIL)) (-3134 (((-476) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 25) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 15)) (-2292 (((-111) $ $) NIL))) -(((-213) (-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -4199 ((-1094) $)) (-15 -3122 ((-1111) $))))) (T -213)) -((-3134 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-213)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-213))))) -(-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -4199 ((-1094) $)) (-15 -3122 ((-1111) $)))) -((-2747 (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134)) 28) (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|))) 24)) (-3649 (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)) 17))) -(((-214 |#1| |#2|) (-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)))) (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134))) (-15 -3649 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -214)) -((-3649 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1152)) (-5 *6 (-111)) (-4 *7 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-1174) (-938) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *7 *3)) (-5 *5 (-823 *3)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-823 *3))) (-5 *5 (-1134)) (-4 *3 (-13 (-1174) (-938) (-29 *6))) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6 *3)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-823 *3))) (-4 *3 (-13 (-1174) (-938) (-29 *5))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5 *3))))) -(-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)))) (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134))) (-15 -3649 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)))) -((-2747 (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)) 46) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|))))) 43) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134)) 47) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|)))) 20))) -(((-215 |#1|) (-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (T -215)) -((-2747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-823 (-401 (-931 *6))))) (-5 *5 (-1134)) (-5 *3 (-401 (-931 *6))) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-823 (-401 (-931 *5))))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1068 (-823 (-310 *6)))) (-5 *5 (-1134)) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1068 (-823 (-310 *5)))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5))))) -(-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)))) -((-2091 (((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|)) 21)) (-2496 (((-627 (-310 |#2|)) (-310 |#2|) (-900)) 42))) -(((-216 |#1| |#2|) (-10 -7 (-15 -2091 ((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|))) (-15 -2496 ((-627 (-310 |#2|)) (-310 |#2|) (-900)))) (-1028) (-13 (-544) (-830))) (T -216)) -((-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *6 (-13 (-544) (-830))) (-5 *2 (-627 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1028)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-2 (|:| -3144 (-1148 *4)) (|:| |deg| (-900)))) (-5 *1 (-216 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-13 (-544) (-830)))))) -(-10 -7 (-15 -2091 ((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|))) (-15 -2496 ((-627 (-310 |#2|)) (-310 |#2|) (-900)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1416 ((|#1| $) NIL)) (-2240 ((|#1| $) 25)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3022 (($ $) NIL)) (-2519 (($ $) 31)) (-3468 ((|#1| |#1| $) NIL)) (-3846 ((|#1| $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3593 (((-754) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) NIL)) (-3271 ((|#1| |#1| $) 28)) (-3510 ((|#1| |#1| $) 30)) (-3954 (($ |#1| $) NIL)) (-3476 (((-754) $) 27)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1412 ((|#1| $) NIL)) (-1787 ((|#1| $) 26)) (-3336 ((|#1| $) 24)) (-4133 ((|#1| $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1549 ((|#1| |#1| $) NIL)) (-1275 (((-111) $) 9)) (-2373 (($) NIL)) (-4234 ((|#1| $) NIL)) (-3693 (($) NIL) (($ (-627 |#1|)) 16)) (-4170 (((-754) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-1849 ((|#1| $) 13)) (-2577 (($ (-627 |#1|)) NIL)) (-2905 ((|#1| $) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-217 |#1|) (-13 (-248 |#1|) (-10 -8 (-15 -3693 ($ (-627 |#1|))))) (-1076)) (T -217)) -((-3693 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-217 *3))))) -(-13 (-248 |#1|) (-10 -8 (-15 -3693 ($ (-627 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1691 (($ (-310 |#1|)) 23)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3221 (((-111) $) NIL)) (-4039 (((-3 (-310 |#1|) "failed") $) NIL)) (-1703 (((-310 |#1|) $) NIL)) (-2014 (($ $) 31)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3516 (($ (-1 (-310 |#1|) (-310 |#1|)) $) NIL)) (-1993 (((-310 |#1|) $) NIL)) (-3733 (($ $) 30)) (-1595 (((-1134) $) NIL)) (-2125 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) NIL)) (-3241 (($ $) 32)) (-3567 (((-552) $) NIL)) (-1477 (((-842) $) 57) (($ (-552)) NIL) (($ (-310 |#1|)) NIL)) (-1889 (((-310 |#1|) $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 25 T CONST)) (-1933 (($) 50 T CONST)) (-2292 (((-111) $ $) 28)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 19)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ (-310 |#1|) $) 18))) -(((-218 |#1| |#2|) (-13 (-604 (-310 |#1|)) (-1017 (-310 |#1|)) (-10 -8 (-15 -1993 ((-310 |#1|) $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ((-310 |#1|) $ $)) (-15 -2220 ($ (-754))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -3516 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -1691 ($ (-310 |#1|))) (-15 -3241 ($ $)))) (-13 (-1028) (-830)) (-627 (-1152))) (T -218)) -((-1993 (*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152))))) (-1889 (*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1028) (-830))) (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1028) (-830))) (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152)))))) -(-13 (-604 (-310 |#1|)) (-1017 (-310 |#1|)) (-10 -8 (-15 -1993 ((-310 |#1|) $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ((-310 |#1|) $ $)) (-15 -2220 ($ (-754))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -3516 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -1691 ($ (-310 |#1|))) (-15 -3241 ($ $)))) -((-3266 (((-111) (-1134)) 22)) (-2855 (((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111)) 32)) (-2518 (((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)) 73) (((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111)) 74))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3266 ((-111) (-1134))) (-15 -2855 ((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-29 |#1|))) (T -219)) -((-2518 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1148 *6)) (-5 *4 (-823 *6)) (-4 *6 (-13 (-1174) (-29 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-219 *5 *6)))) (-2518 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-931 *6)) (-5 *4 (-1152)) (-5 *5 (-823 *7)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *7 (-13 (-1174) (-29 *6))) (-5 *1 (-219 *6 *7)))) (-2855 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-823 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1174) (-29 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-219 *6 *4)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1174) (-29 *4)))))) -(-10 -7 (-15 -3266 ((-111) (-1134))) (-15 -2855 ((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 87)) (-3471 (((-552) $) 98)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) NIL)) (-1607 (($ $) 75)) (-1467 (($ $) 63)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) 54)) (-4224 (((-111) $ $) NIL)) (-1584 (($ $) 73)) (-1445 (($ $) 61)) (-2422 (((-552) $) 115)) (-1628 (($ $) 78)) (-1492 (($ $) 65)) (-3887 (($) NIL T CONST)) (-2635 (($ $) NIL)) (-4039 (((-3 (-552) "failed") $) 114) (((-3 (-401 (-552)) "failed") $) 111)) (-1703 (((-552) $) 112) (((-401 (-552)) $) 109)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 91)) (-2640 (((-401 (-552)) $ (-754)) 107) (((-401 (-552)) $ (-754) (-754)) 106)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 27) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2983 (((-111) $) NIL)) (-2951 (($) 37)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-2641 (((-552) $) 33)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (($ $) NIL)) (-1508 (((-111) $) 86)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) 51) (($) 32 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-4093 (($ $ $) 50) (($) 31 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 25)) (-3970 (($ $) 28)) (-2885 (($ $) 55)) (-4135 (($ $) 60)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3964 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1498 (((-1096) $) 89)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL)) (-2060 (($ $) NIL)) (-2103 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-900)) 99)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 26)) (-4111 (($) 36)) (-3154 (($ $) 59)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2942 (($ $ (-754)) NIL) (($ $) 92)) (-2531 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1640 (($ $) 76)) (-1502 (($ $) 66)) (-1615 (($ $) 77)) (-1479 (($ $) 64)) (-1596 (($ $) 74)) (-1456 (($ $) 62)) (-3562 (((-373) $) 103) (((-220) $) 100) (((-871 (-373)) $) NIL) (((-528) $) 43)) (-1477 (((-842) $) 40) (($ (-552)) 58) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 58) (($ (-401 (-552))) NIL)) (-3995 (((-754)) NIL)) (-3796 (($ $) NIL)) (-3580 (((-900)) 30) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2705 (((-900)) 23)) (-1673 (($ $) 81)) (-1534 (($ $) 69) (($ $ $) 108)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 79)) (-1513 (($ $) 67)) (-1697 (($ $) 84)) (-1561 (($ $) 72)) (-3519 (($ $) 82)) (-1575 (($ $) 70)) (-1686 (($ $) 83)) (-1547 (($ $) 71)) (-1661 (($ $) 80)) (-1524 (($ $) 68)) (-3329 (($ $) 116)) (-1922 (($) 34 T CONST)) (-1933 (($) 35 T CONST)) (-4157 (((-1134) $) 17) (((-1134) $ (-111)) 19) (((-1240) (-805) $) 20) (((-1240) (-805) $ (-111)) 21)) (-1393 (($ $) 95)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-1974 (($ $ $) 97)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 52)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 44)) (-2407 (($ $ $) 85) (($ $ (-552)) 53)) (-2396 (($ $) 45) (($ $ $) 47)) (-2384 (($ $ $) 46)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 56) (($ $ (-401 (-552))) 128) (($ $ $) 57)) (* (($ (-900) $) 29) (($ (-754) $) NIL) (($ (-552) $) 49) (($ $ $) 48) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-220) (-13 (-398) (-228) (-811) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -4111 ($)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -1534 ($ $ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754)))))) (T -220)) -((** (*1 *1 *1 *1) (-5 *1 (-220))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) (-4111 (*1 *1) (-5 *1 (-220))) (-3970 (*1 *1 *1) (-5 *1 (-220))) (-2885 (*1 *1 *1) (-5 *1 (-220))) (-1534 (*1 *1 *1 *1) (-5 *1 (-220))) (-1393 (*1 *1 *1) (-5 *1 (-220))) (-1974 (*1 *1 *1 *1) (-5 *1 (-220))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) (-2640 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220))))) -(-13 (-398) (-228) (-811) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -4111 ($)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -1534 ($ $ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))))) -((-3958 (((-166 (-220)) (-754) (-166 (-220))) 11) (((-220) (-754) (-220)) 12)) (-1997 (((-166 (-220)) (-166 (-220))) 13) (((-220) (-220)) 14)) (-3634 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 19) (((-220) (-220) (-220)) 22)) (-3709 (((-166 (-220)) (-166 (-220))) 25) (((-220) (-220)) 24)) (-2804 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 43) (((-220) (-220) (-220)) 35)) (-3396 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 48) (((-220) (-220) (-220)) 45)) (-3075 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 15) (((-220) (-220) (-220)) 16)) (-1512 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 17) (((-220) (-220) (-220)) 18)) (-3794 (((-166 (-220)) (-166 (-220))) 60) (((-220) (-220)) 59)) (-2039 (((-220) (-220)) 54) (((-166 (-220)) (-166 (-220))) 58)) (-1393 (((-166 (-220)) (-166 (-220))) 8) (((-220) (-220)) 9)) (-1974 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 30) (((-220) (-220) (-220)) 26))) -(((-221) (-10 -7 (-15 -1393 ((-220) (-220))) (-15 -1393 ((-166 (-220)) (-166 (-220)))) (-15 -1974 ((-220) (-220) (-220))) (-15 -1974 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1997 ((-220) (-220))) (-15 -1997 ((-166 (-220)) (-166 (-220)))) (-15 -3709 ((-220) (-220))) (-15 -3709 ((-166 (-220)) (-166 (-220)))) (-15 -3958 ((-220) (-754) (-220))) (-15 -3958 ((-166 (-220)) (-754) (-166 (-220)))) (-15 -3075 ((-220) (-220) (-220))) (-15 -3075 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2804 ((-220) (-220) (-220))) (-15 -2804 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1512 ((-220) (-220) (-220))) (-15 -1512 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3396 ((-220) (-220) (-220))) (-15 -3396 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2039 ((-166 (-220)) (-166 (-220)))) (-15 -2039 ((-220) (-220))) (-15 -3794 ((-220) (-220))) (-15 -3794 ((-166 (-220)) (-166 (-220)))) (-15 -3634 ((-220) (-220) (-220))) (-15 -3634 ((-166 (-220)) (-166 (-220)) (-166 (-220)))))) (T -221)) -((-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3958 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-220))) (-5 *3 (-754)) (-5 *1 (-221)))) (-3958 (*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-754)) (-5 *1 (-221)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1974 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1974 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221))))) -(-10 -7 (-15 -1393 ((-220) (-220))) (-15 -1393 ((-166 (-220)) (-166 (-220)))) (-15 -1974 ((-220) (-220) (-220))) (-15 -1974 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1997 ((-220) (-220))) (-15 -1997 ((-166 (-220)) (-166 (-220)))) (-15 -3709 ((-220) (-220))) (-15 -3709 ((-166 (-220)) (-166 (-220)))) (-15 -3958 ((-220) (-754) (-220))) (-15 -3958 ((-166 (-220)) (-754) (-166 (-220)))) (-15 -3075 ((-220) (-220) (-220))) (-15 -3075 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2804 ((-220) (-220) (-220))) (-15 -2804 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1512 ((-220) (-220) (-220))) (-15 -1512 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3396 ((-220) (-220) (-220))) (-15 -3396 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2039 ((-166 (-220)) (-166 (-220)))) (-15 -2039 ((-220) (-220))) (-15 -3794 ((-220) (-220))) (-15 -3794 ((-166 (-220)) (-166 (-220)))) (-15 -3634 ((-220) (-220) (-220))) (-15 -3634 ((-166 (-220)) (-166 (-220)) (-166 (-220))))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) NIL)) (-2129 (($ $ $) NIL)) (-3595 (($ (-1235 |#1|)) NIL) (($ $) NIL)) (-3084 (($ |#1| |#1| |#1|) 32)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) NIL)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-1235 |#1|)) NIL)) (-1666 (($ $ (-552) (-1235 |#1|)) NIL)) (-2442 (($ |#1| |#1| |#1|) 31)) (-1665 (($ (-754) |#1|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) NIL (|has| |#1| (-301)))) (-3884 (((-1235 |#1|) $ (-552)) NIL)) (-4253 (($ |#1|) 30)) (-3061 (($ |#1|) 29)) (-2621 (($ |#1|) 28)) (-4154 (((-754) $) NIL (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) NIL (|has| |#1| (-544)))) (-2960 (((-627 (-1235 |#1|)) $) NIL (|has| |#1| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) NIL (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#1|))) 11)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4306 (($) 12)) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) NIL (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-1235 |#1|) $ (-552)) NIL)) (-1477 (($ (-1235 |#1|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1235 |#1|) $ (-1235 |#1|)) 15) (((-1235 |#1|) (-1235 |#1|) $) NIL) (((-922 |#1|) $ (-922 |#1|)) 20)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-222 |#1|) (-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 * ((-922 |#1|) $ (-922 |#1|))) (-15 -4306 ($)) (-15 -2621 ($ |#1|)) (-15 -3061 ($ |#1|)) (-15 -4253 ($ |#1|)) (-15 -2442 ($ |#1| |#1| |#1|)) (-15 -3084 ($ |#1| |#1| |#1|)))) (-13 (-357) (-1174))) (T -222)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174))) (-5 *1 (-222 *3)))) (-4306 (*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-2621 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-3061 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-4253 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-2442 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-3084 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) -(-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 * ((-922 |#1|) $ (-922 |#1|))) (-15 -4306 ($)) (-15 -2621 ($ |#1|)) (-15 -3061 ($ |#1|)) (-15 -4253 ($ |#1|)) (-15 -2442 ($ |#1| |#1| |#1|)) (-15 -3084 ($ |#1| |#1| |#1|)))) -((-4289 (($ (-1 (-111) |#2|) $) 16)) (-2265 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-3028 (($) NIL) (($ (-627 |#2|)) 11)) (-2292 (((-111) $ $) 23))) -(((-223 |#1| |#2|) (-10 -8 (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-224 |#2|) (-1076)) (T -223)) -NIL -(-10 -8 (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-224 |#1|) (-137) (-1076)) (T -224)) +(-13 (-1078) (-10 -8 (-15 -9 ($) -3930) (-15 -8 ($) -3930) (-15 -7 ($) -3930))) +((-3202 (((-111) $ $) NIL)) (-4290 (((-498) $) 8)) (-2623 (((-1136) $) NIL)) (-1427 (((-181) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 14)) (-2024 (((-1098) $) NIL)) (-1613 (((-111) $ $) 11))) +(((-182) (-13 (-1078) (-10 -8 (-15 -4290 ((-498) $)) (-15 -1427 ((-181) $)) (-15 -2024 ((-1098) $))))) (T -182)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-182))))) +(-13 (-1078) (-10 -8 (-15 -4290 ((-498) $)) (-15 -1427 ((-181) $)) (-15 -2024 ((-1098) $)))) +((-3645 ((|#2| |#2|) 28)) (-3805 (((-111) |#2|) 19)) (-3499 (((-310 |#1|) |#2|) 12)) (-3509 (((-310 |#1|) |#2|) 14)) (-3614 ((|#2| |#2| (-1154)) 68) ((|#2| |#2|) 69)) (-2807 (((-166 (-310 |#1|)) |#2|) 10)) (-1669 ((|#2| |#2| (-1154)) 65) ((|#2| |#2|) 59))) +(((-183 |#1| |#2|) (-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3614 (|#2| |#2| (-1154))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1154))) (-15 -3499 ((-310 |#1|) |#2|)) (-15 -3509 ((-310 |#1|) |#2|)) (-15 -3805 ((-111) |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -2807 ((-166 (-310 |#1|)) |#2|))) (-13 (-544) (-832) (-1019 (-552))) (-13 (-27) (-1176) (-424 (-166 |#1|)))) (T -183)) +((-2807 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3)))))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-111)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-3499 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-1669 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3)))))) (-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *4)))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3))))))) +(-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3614 (|#2| |#2| (-1154))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1154))) (-15 -3499 ((-310 |#1|) |#2|)) (-15 -3509 ((-310 |#1|) |#2|)) (-15 -3805 ((-111) |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -2807 ((-166 (-310 |#1|)) |#2|))) +((-2274 (((-1237 (-673 (-933 |#1|))) (-1237 (-673 |#1|))) 24)) (-3213 (((-1237 (-673 (-401 (-933 |#1|)))) (-1237 (-673 |#1|))) 33))) +(((-184 |#1|) (-10 -7 (-15 -2274 ((-1237 (-673 (-933 |#1|))) (-1237 (-673 |#1|)))) (-15 -3213 ((-1237 (-673 (-401 (-933 |#1|)))) (-1237 (-673 |#1|))))) (-169)) (T -184)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-1237 (-673 *4))) (-4 *4 (-169)) (-5 *2 (-1237 (-673 (-401 (-933 *4))))) (-5 *1 (-184 *4)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1237 (-673 *4))) (-4 *4 (-169)) (-5 *2 (-1237 (-673 (-933 *4)))) (-5 *1 (-184 *4))))) +(-10 -7 (-15 -2274 ((-1237 (-673 (-933 |#1|))) (-1237 (-673 |#1|)))) (-15 -3213 ((-1237 (-673 (-401 (-933 |#1|)))) (-1237 (-673 |#1|))))) +((-3654 (((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552)))) 66)) (-2632 (((-1156 (-401 (-552))) (-629 (-552)) (-629 (-552))) 75)) (-1384 (((-1156 (-401 (-552))) (-552)) 40)) (-2017 (((-1156 (-401 (-552))) (-552)) 52)) (-2432 (((-401 (-552)) (-1156 (-401 (-552)))) 62)) (-2528 (((-1156 (-401 (-552))) (-552)) 32)) (-2943 (((-1156 (-401 (-552))) (-552)) 48)) (-3148 (((-1156 (-401 (-552))) (-552)) 46)) (-1394 (((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552)))) 60)) (-1680 (((-1156 (-401 (-552))) (-552)) 25)) (-4164 (((-401 (-552)) (-1156 (-401 (-552))) (-1156 (-401 (-552)))) 64)) (-3437 (((-1156 (-401 (-552))) (-552)) 30)) (-1380 (((-1156 (-401 (-552))) (-629 (-552))) 72))) +(((-185) (-10 -7 (-15 -1680 ((-1156 (-401 (-552))) (-552))) (-15 -1384 ((-1156 (-401 (-552))) (-552))) (-15 -2528 ((-1156 (-401 (-552))) (-552))) (-15 -3437 ((-1156 (-401 (-552))) (-552))) (-15 -3148 ((-1156 (-401 (-552))) (-552))) (-15 -2943 ((-1156 (-401 (-552))) (-552))) (-15 -2017 ((-1156 (-401 (-552))) (-552))) (-15 -4164 ((-401 (-552)) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -1394 ((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -2432 ((-401 (-552)) (-1156 (-401 (-552))))) (-15 -3654 ((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -1380 ((-1156 (-401 (-552))) (-629 (-552)))) (-15 -2632 ((-1156 (-401 (-552))) (-629 (-552)) (-629 (-552)))))) (T -185)) +((-2632 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1156 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-1394 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)))) (-4164 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-2017 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3148 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-2528 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1384 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1680 (*1 *2 *3) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(-10 -7 (-15 -1680 ((-1156 (-401 (-552))) (-552))) (-15 -1384 ((-1156 (-401 (-552))) (-552))) (-15 -2528 ((-1156 (-401 (-552))) (-552))) (-15 -3437 ((-1156 (-401 (-552))) (-552))) (-15 -3148 ((-1156 (-401 (-552))) (-552))) (-15 -2943 ((-1156 (-401 (-552))) (-552))) (-15 -2017 ((-1156 (-401 (-552))) (-552))) (-15 -4164 ((-401 (-552)) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -1394 ((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -2432 ((-401 (-552)) (-1156 (-401 (-552))))) (-15 -3654 ((-1156 (-401 (-552))) (-1156 (-401 (-552))) (-1156 (-401 (-552))))) (-15 -1380 ((-1156 (-401 (-552))) (-629 (-552)))) (-15 -2632 ((-1156 (-401 (-552))) (-629 (-552)) (-629 (-552))))) +((-1282 (((-412 (-1150 (-552))) (-552)) 28)) (-3669 (((-629 (-1150 (-552))) (-552)) 23)) (-3074 (((-1150 (-552)) (-552)) 21))) +(((-186) (-10 -7 (-15 -3669 ((-629 (-1150 (-552))) (-552))) (-15 -3074 ((-1150 (-552)) (-552))) (-15 -1282 ((-412 (-1150 (-552))) (-552))))) (T -186)) +((-1282 (*1 *2 *3) (-12 (-5 *2 (-412 (-1150 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3074 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3669 (*1 *2 *3) (-12 (-5 *2 (-629 (-1150 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(-10 -7 (-15 -3669 ((-629 (-1150 (-552))) (-552))) (-15 -3074 ((-1150 (-552)) (-552))) (-15 -1282 ((-412 (-1150 (-552))) (-552)))) +((-2071 (((-1134 (-220)) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 105)) (-2457 (((-629 (-1136)) (-1134 (-220))) NIL)) (-1927 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 81)) (-3771 (((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220)))) NIL)) (-2912 (((-629 (-1136)) (-629 (-220))) NIL)) (-3894 (((-220) (-1072 (-825 (-220)))) 24)) (-1746 (((-220) (-1072 (-825 (-220)))) 25)) (-2284 (((-373) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 98)) (-3955 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-3730 (((-1136) (-220)) NIL)) (-4245 (((-1136) (-629 (-1136))) 20)) (-2120 (((-1016) (-1154) (-1154) (-1016)) 13))) +(((-187) (-10 -7 (-15 -1927 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3955 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -2284 ((-373) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3771 ((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220)))) (-15 -4245 ((-1136) (-629 (-1136)))) (-15 -2120 ((-1016) (-1154) (-1154) (-1016))))) (T -187)) +((-2120 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1016)) (-5 *3 (-1154)) (-5 *1 (-187)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-187)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-187)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-187)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-187)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-187)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1154)) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-187)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-187)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-187)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-187))))) +(-10 -7 (-15 -1927 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3955 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -2284 ((-373) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3771 ((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220)))) (-15 -4245 ((-1136) (-629 (-1136)))) (-15 -2120 ((-1016) (-1154) (-1154) (-1016)))) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 55) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-188) (-772)) (T -188)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 60) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-189) (-772)) (T -189)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 69) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-190) (-772)) (T -190)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 56) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-191) (-772)) (T -191)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 67) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 38) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-192) (-772)) (T -192)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 73) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-193) (-772)) (T -193)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 80) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 44) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-194) (-772)) (T -194)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 70) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-195) (-772)) (T -195)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 66)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-196) (-772)) (T -196)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 63)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-197) (-772)) (T -197)) +NIL +(-772) +((-3202 (((-111) $ $) NIL)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 90) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 78) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-198) (-772)) (T -198)) +NIL +(-772) +((-3731 (((-3 (-2 (|:| -1443 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 85)) (-1733 (((-552) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-3352 (((-3 (-629 (-220)) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 73))) +(((-199) (-10 -7 (-15 -3731 ((-3 (-2 (|:| -1443 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3352 ((-3 (-629 (-220)) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1733 ((-552) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -199)) +((-1733 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-552)) (-5 *1 (-199)))) (-3352 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-199)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1443 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) +(-10 -7 (-15 -3731 ((-3 (-2 (|:| -1443 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3352 ((-3 (-629 (-220)) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1733 ((-552) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-2171 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-1560 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 130)) (-3586 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-673 (-310 (-220)))) 89)) (-3053 (((-373) (-673 (-310 (-220)))) 113)) (-2344 (((-673 (-310 (-220))) (-1237 (-310 (-220))) (-629 (-1154))) 110)) (-3067 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 30)) (-1353 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 43)) (-2432 (((-673 (-310 (-220))) (-673 (-310 (-220))) (-629 (-1154)) (-1237 (-310 (-220)))) 102)) (-2842 (((-373) (-373) (-629 (-373))) 107) (((-373) (-373) (-373)) 105)) (-3787 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36))) +(((-200) (-10 -7 (-15 -2842 ((-373) (-373) (-373))) (-15 -2842 ((-373) (-373) (-629 (-373)))) (-15 -3053 ((-373) (-673 (-310 (-220))))) (-15 -2344 ((-673 (-310 (-220))) (-1237 (-310 (-220))) (-629 (-1154)))) (-15 -2432 ((-673 (-310 (-220))) (-673 (-310 (-220))) (-629 (-1154)) (-1237 (-310 (-220))))) (-15 -3586 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-673 (-310 (-220))))) (-15 -1560 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2171 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1353 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3787 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3067 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -200)) +((-3067 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-673 (-310 (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-2432 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-673 (-310 (-220)))) (-5 *3 (-629 (-1154))) (-5 *4 (-1237 (-310 (-220)))) (-5 *1 (-200)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *4 (-629 (-1154))) (-5 *2 (-673 (-310 (-220)))) (-5 *1 (-200)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-673 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2842 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-373))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2842 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200))))) +(-10 -7 (-15 -2842 ((-373) (-373) (-373))) (-15 -2842 ((-373) (-373) (-629 (-373)))) (-15 -3053 ((-373) (-673 (-310 (-220))))) (-15 -2344 ((-673 (-310 (-220))) (-1237 (-310 (-220))) (-629 (-1154)))) (-15 -2432 ((-673 (-310 (-220))) (-673 (-310 (-220))) (-629 (-1154)) (-1237 (-310 (-220))))) (-15 -3586 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-673 (-310 (-220))))) (-15 -1560 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2171 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1353 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3787 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3067 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-4010 (((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 64)) (-1613 (((-111) $ $) NIL))) +(((-201) (-785)) (T -201)) +NIL +(-785) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-4010 (((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 62)) (-1613 (((-111) $ $) NIL))) +(((-202) (-785)) (T -202)) +NIL +(-785) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-4010 (((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 66)) (-1613 (((-111) $ $) NIL))) +(((-203) (-785)) (T -203)) +NIL +(-785) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 46)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-4010 (((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 75)) (-1613 (((-111) $ $) NIL))) +(((-204) (-785)) (T -204)) +NIL +(-785) +((-2814 (((-629 (-1154)) (-1154) (-756)) 23)) (-2740 (((-310 (-220)) (-310 (-220))) 31)) (-1595 (((-111) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 74)) (-2010 (((-111) (-220) (-220) (-629 (-310 (-220)))) 45))) +(((-205) (-10 -7 (-15 -2814 ((-629 (-1154)) (-1154) (-756))) (-15 -2740 ((-310 (-220)) (-310 (-220)))) (-15 -2010 ((-111) (-220) (-220) (-629 (-310 (-220))))) (-15 -1595 ((-111) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))))))) (T -205)) +((-1595 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) (-5 *2 (-111)) (-5 *1 (-205)))) (-2010 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-629 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-205)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-5 *2 (-629 (-1154))) (-5 *1 (-205)) (-5 *3 (-1154))))) +(-10 -7 (-15 -2814 ((-629 (-1154)) (-1154) (-756))) (-15 -2740 ((-310 (-220)) (-310 (-220)))) (-15 -2010 ((-111) (-220) (-220) (-629 (-310 (-220))))) (-15 -1595 ((-111) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))))) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 26)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-2487 (((-1016) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 57)) (-1613 (((-111) $ $) NIL))) +(((-206) (-876)) (T -206)) +NIL +(-876) +((-3202 (((-111) $ $) NIL)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 21)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-2487 (((-1016) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) NIL)) (-1613 (((-111) $ $) NIL))) +(((-207) (-876)) (T -207)) +NIL +(-876) +((-3202 (((-111) $ $) NIL)) (-2901 ((|#2| $ (-756) |#2|) 11)) (-2892 ((|#2| $ (-756)) 10)) (-3307 (($) 8)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 18)) (-1613 (((-111) $ $) 13))) +(((-208 |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -3307 ($)) (-15 -2892 (|#2| $ (-756))) (-15 -2901 (|#2| $ (-756) |#2|)))) (-902) (-1078)) (T -208)) +((-3307 (*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1078)))) (-2892 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *2 (-1078)) (-5 *1 (-208 *4 *2)) (-14 *4 (-902)))) (-2901 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-208 *4 *2)) (-14 *4 (-902)) (-4 *2 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -3307 ($)) (-15 -2892 (|#2| $ (-756))) (-15 -2901 (|#2| $ (-756) |#2|)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3726 (((-1242) $) 36) (((-1242) $ (-902) (-902)) 38)) (-2060 (($ $ (-970)) 19) (((-240 (-1136)) $ (-1154)) 15)) (-2595 (((-1242) $) 34)) (-3213 (((-844) $) 31) (($ (-629 |#1|)) 8)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $ $) 27)) (-1698 (($ $ $) 22))) +(((-209 |#1|) (-13 (-1078) (-10 -8 (-15 -2060 ($ $ (-970))) (-15 -2060 ((-240 (-1136)) $ (-1154))) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -3213 ($ (-629 |#1|))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $)) (-15 -3726 ((-1242) $ (-902) (-902))))) (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))) (T -209)) +((-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-970)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-240 (-1136))) (-5 *1 (-209 *4)) (-4 *4 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ *3)) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))))) (-1698 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))))) (-1709 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $))))) (-5 *1 (-209 *3)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) (-15 -3726 (*2 $))))))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) (-15 -3726 (*2 $))))))) (-3726 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-209 *4)) (-4 *4 (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) (-15 -3726 (*2 $)))))))) +(-13 (-1078) (-10 -8 (-15 -2060 ($ $ (-970))) (-15 -2060 ((-240 (-1136)) $ (-1154))) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -3213 ($ (-629 |#1|))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $)) (-15 -3726 ((-1242) $ (-902) (-902))))) +((-1939 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#2| |#4| (-1 |#2| |#2|)))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -210)) +((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1213 (-401 *2))) (-4 *2 (-1213 *5)) (-5 *1 (-210 *5 *2 *6 *3)) (-4 *3 (-336 *5 *2 *6))))) +(-10 -7 (-15 -1939 (|#2| |#4| (-1 |#2| |#2|)))) +((-4014 ((|#2| |#2| (-756) |#2|) 42)) (-2442 ((|#2| |#2| (-756) |#2|) 38)) (-3666 (((-629 |#2|) (-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|)))) 57)) (-4194 (((-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|))) |#2|) 53)) (-1991 (((-111) |#2|) 50)) (-4058 (((-412 |#2|) |#2|) 77)) (-3479 (((-412 |#2|) |#2|) 76)) (-2199 ((|#2| |#2| (-756) |#2|) 36)) (-4221 (((-2 (|:| |cont| |#1|) (|:| -3772 (-629 (-2 (|:| |irr| |#2|) (|:| -2277 (-552)))))) |#2| (-111)) 69))) +(((-211 |#1| |#2|) (-10 -7 (-15 -3479 ((-412 |#2|) |#2|)) (-15 -4058 ((-412 |#2|) |#2|)) (-15 -4221 ((-2 (|:| |cont| |#1|) (|:| -3772 (-629 (-2 (|:| |irr| |#2|) (|:| -2277 (-552)))))) |#2| (-111))) (-15 -4194 ((-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|))) |#2|)) (-15 -3666 ((-629 |#2|) (-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|))))) (-15 -2199 (|#2| |#2| (-756) |#2|)) (-15 -2442 (|#2| |#2| (-756) |#2|)) (-15 -4014 (|#2| |#2| (-756) |#2|)) (-15 -1991 ((-111) |#2|))) (-343) (-1213 |#1|)) (T -211)) +((-1991 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1213 *4)))) (-4014 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1213 *4)))) (-2442 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1213 *4)))) (-2199 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1213 *4)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| |deg| (-756)) (|:| -3830 *5)))) (-4 *5 (-1213 *4)) (-4 *4 (-343)) (-5 *2 (-629 *5)) (-5 *1 (-211 *4 *5)))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-629 (-2 (|:| |deg| (-756)) (|:| -3830 *3)))) (-5 *1 (-211 *4 *3)) (-4 *3 (-1213 *4)))) (-4221 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) (-5 *1 (-211 *5 *3)) (-4 *3 (-1213 *5)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1213 *4)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -3479 ((-412 |#2|) |#2|)) (-15 -4058 ((-412 |#2|) |#2|)) (-15 -4221 ((-2 (|:| |cont| |#1|) (|:| -3772 (-629 (-2 (|:| |irr| |#2|) (|:| -2277 (-552)))))) |#2| (-111))) (-15 -4194 ((-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|))) |#2|)) (-15 -3666 ((-629 |#2|) (-629 (-2 (|:| |deg| (-756)) (|:| -3830 |#2|))))) (-15 -2199 (|#2| |#2| (-756) |#2|)) (-15 -2442 (|#2| |#2| (-756) |#2|)) (-15 -4014 (|#2| |#2| (-756) |#2|)) (-15 -1991 ((-111) |#2|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-552) $) NIL (|has| (-552) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-552) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-552) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1019 (-552))))) (-2832 (((-552) $) NIL) (((-1154) $) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-552) (-1019 (-552)))) (((-552) $) NIL (|has| (-552) (-1019 (-552))))) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-552) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-552) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-552) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-552) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-552) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-552) (-1129)))) (-3127 (((-111) $) NIL (|has| (-552) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-552) (-832)))) (-1477 (($ (-1 (-552) (-552)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-552) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-3410 (((-552) $) NIL (|has| (-552) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-552)) (-629 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-1154)) (-629 (-552))) NIL (|has| (-552) (-506 (-1154) (-552)))) (($ $ (-1154) (-552)) NIL (|has| (-552) (-506 (-1154) (-552))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-552) $) NIL)) (-1399 (($ (-401 (-552))) 9)) (-1522 (((-873 (-552)) $) NIL (|has| (-552) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-552) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1003))) (((-220) $) NIL (|has| (-552) (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1154)) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL) (((-985 10) $) 10)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-552) (-890))) (|has| (-552) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-552) $) NIL (|has| (-552) (-537)))) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| (-552) (-805)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1720 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-212) (-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 10) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -1399 ($ (-401 (-552))))))) (T -212)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-985 10)) (-5 *1 (-212)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) +(-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 10) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -1399 ($ (-401 (-552)))))) +((-3202 (((-111) $ $) NIL)) (-1337 (((-1096) $) 13)) (-2623 (((-1136) $) NIL)) (-2170 (((-476) $) 10)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 25) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 15)) (-1613 (((-111) $ $) NIL))) +(((-213) (-13 (-1061) (-10 -8 (-15 -2170 ((-476) $)) (-15 -1337 ((-1096) $)) (-15 -4300 ((-1113) $))))) (T -213)) +((-2170 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-213)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-213))))) +(-13 (-1061) (-10 -8 (-15 -2170 ((-476) $)) (-15 -1337 ((-1096) $)) (-15 -4300 ((-1113) $)))) +((-2889 (((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|)) (-1136)) 28) (((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|))) 24)) (-1573 (((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1154) (-825 |#2|) (-825 |#2|) (-111)) 17))) +(((-214 |#1| |#2|) (-10 -7 (-15 -2889 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|)))) (-15 -2889 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|)) (-1136))) (-15 -1573 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1154) (-825 |#2|) (-825 |#2|) (-111)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-940) (-29 |#1|))) (T -214)) +((-1573 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1154)) (-5 *6 (-111)) (-4 *7 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-4 *3 (-13 (-1176) (-940) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *7 *3)) (-5 *5 (-825 *3)))) (-2889 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070 (-825 *3))) (-5 *5 (-1136)) (-4 *3 (-13 (-1176) (-940) (-29 *6))) (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6 *3)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-825 *3))) (-4 *3 (-13 (-1176) (-940) (-29 *5))) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5 *3))))) +(-10 -7 (-15 -2889 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|)))) (-15 -2889 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070 (-825 |#2|)) (-1136))) (-15 -1573 ((-3 (|:| |f1| (-825 |#2|)) (|:| |f2| (-629 (-825 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1154) (-825 |#2|) (-825 |#2|) (-111)))) +((-2889 (((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|)))) (-1136)) 46) (((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|))))) 43) (((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|))) (-1136)) 47) (((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|)))) 20))) +(((-215 |#1|) (-10 -7 (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|))))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|))) (-1136))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|)))))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|)))) (-1136)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (T -215)) +((-2889 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070 (-825 (-401 (-933 *6))))) (-5 *5 (-1136)) (-5 *3 (-401 (-933 *6))) (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 (-310 *6))) (|:| |f2| (-629 (-825 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-825 (-401 (-933 *5))))) (-5 *3 (-401 (-933 *5))) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 (-310 *5))) (|:| |f2| (-629 (-825 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) (-2889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-401 (-933 *6))) (-5 *4 (-1070 (-825 (-310 *6)))) (-5 *5 (-1136)) (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 (-310 *6))) (|:| |f2| (-629 (-825 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1070 (-825 (-310 *5)))) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |f1| (-825 (-310 *5))) (|:| |f2| (-629 (-825 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5))))) +(-10 -7 (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|))))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-310 |#1|))) (-1136))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|)))))) (-15 -2889 ((-3 (|:| |f1| (-825 (-310 |#1|))) (|:| |f2| (-629 (-825 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-933 |#1|)) (-1070 (-825 (-401 (-933 |#1|)))) (-1136)))) +((-3884 (((-2 (|:| -2291 (-1150 |#1|)) (|:| |deg| (-902))) (-1150 |#1|)) 21)) (-3925 (((-629 (-310 |#2|)) (-310 |#2|) (-902)) 42))) +(((-216 |#1| |#2|) (-10 -7 (-15 -3884 ((-2 (|:| -2291 (-1150 |#1|)) (|:| |deg| (-902))) (-1150 |#1|))) (-15 -3925 ((-629 (-310 |#2|)) (-310 |#2|) (-902)))) (-1030) (-13 (-544) (-832))) (T -216)) +((-3925 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-4 *6 (-13 (-544) (-832))) (-5 *2 (-629 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1030)))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-2 (|:| -2291 (-1150 *4)) (|:| |deg| (-902)))) (-5 *1 (-216 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-13 (-544) (-832)))))) +(-10 -7 (-15 -3884 ((-2 (|:| -2291 (-1150 |#1|)) (|:| |deg| (-902))) (-1150 |#1|))) (-15 -3925 ((-629 (-310 |#2|)) (-310 |#2|) (-902)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3514 ((|#1| $) NIL)) (-3447 ((|#1| $) 25)) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-3625 (($ $) NIL)) (-2366 (($ $) 31)) (-3574 ((|#1| |#1| $) NIL)) (-3033 ((|#1| $) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2556 (((-756) $) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) NIL)) (-2262 ((|#1| |#1| $) 28)) (-3956 ((|#1| |#1| $) 30)) (-1580 (($ |#1| $) NIL)) (-2384 (((-756) $) 27)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3474 ((|#1| $) NIL)) (-3806 ((|#1| $) 26)) (-1633 ((|#1| $) 24)) (-3995 ((|#1| $) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-2187 ((|#1| |#1| $) NIL)) (-3435 (((-111) $) 9)) (-3430 (($) NIL)) (-2505 ((|#1| $) NIL)) (-2029 (($) NIL) (($ (-629 |#1|)) 16)) (-3907 (((-756) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-3164 ((|#1| $) 13)) (-1663 (($ (-629 |#1|)) NIL)) (-1832 ((|#1| $) NIL)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-217 |#1|) (-13 (-248 |#1|) (-10 -8 (-15 -2029 ($ (-629 |#1|))))) (-1078)) (T -217)) +((-2029 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-217 *3))))) +(-13 (-248 |#1|) (-10 -8 (-15 -2029 ($ (-629 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4112 (($ (-310 |#1|)) 23)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3040 (((-111) $) NIL)) (-1393 (((-3 (-310 |#1|) "failed") $) NIL)) (-2832 (((-310 |#1|) $) NIL)) (-3766 (($ $) 31)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-1477 (($ (-1 (-310 |#1|) (-310 |#1|)) $) NIL)) (-3743 (((-310 |#1|) $) NIL)) (-4322 (($ $) 30)) (-2623 (((-1136) $) NIL)) (-2767 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($ (-756)) NIL)) (-3257 (($ $) 32)) (-3299 (((-552) $) NIL)) (-3213 (((-844) $) 57) (($ (-552)) NIL) (($ (-310 |#1|)) NIL)) (-2266 (((-310 |#1|) $ $) NIL)) (-2014 (((-756)) NIL)) (-3297 (($) 25 T CONST)) (-3309 (($) 50 T CONST)) (-1613 (((-111) $ $) 28)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 19)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ (-310 |#1|) $) 18))) +(((-218 |#1| |#2|) (-13 (-606 (-310 |#1|)) (-1019 (-310 |#1|)) (-10 -8 (-15 -3743 ((-310 |#1|) $)) (-15 -4322 ($ $)) (-15 -3766 ($ $)) (-15 -2266 ((-310 |#1|) $ $)) (-15 -4126 ($ (-756))) (-15 -2767 ((-111) $)) (-15 -3040 ((-111) $)) (-15 -3299 ((-552) $)) (-15 -1477 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -4112 ($ (-310 |#1|))) (-15 -3257 ($ $)))) (-13 (-1030) (-832)) (-629 (-1154))) (T -218)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) (-14 *3 (-629 (-1154))))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) (-14 *3 (-629 (-1154))))) (-2266 (*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1030) (-832))) (-5 *1 (-218 *3 *4)) (-14 *4 (-629 (-1154))))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1030) (-832))) (-5 *1 (-218 *3 *4)) (-14 *4 (-629 (-1154))))) (-3257 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) (-14 *3 (-629 (-1154)))))) +(-13 (-606 (-310 |#1|)) (-1019 (-310 |#1|)) (-10 -8 (-15 -3743 ((-310 |#1|) $)) (-15 -4322 ($ $)) (-15 -3766 ($ $)) (-15 -2266 ((-310 |#1|) $ $)) (-15 -4126 ($ (-756))) (-15 -2767 ((-111) $)) (-15 -3040 ((-111) $)) (-15 -3299 ((-552) $)) (-15 -1477 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -4112 ($ (-310 |#1|))) (-15 -3257 ($ $)))) +((-2217 (((-111) (-1136)) 22)) (-2626 (((-3 (-825 |#2|) "failed") (-598 |#2|) |#2| (-825 |#2|) (-825 |#2|) (-111)) 32)) (-2352 (((-3 (-111) "failed") (-1150 |#2|) (-825 |#2|) (-825 |#2|) (-111)) 73) (((-3 (-111) "failed") (-933 |#1|) (-1154) (-825 |#2|) (-825 |#2|) (-111)) 74))) +(((-219 |#1| |#2|) (-10 -7 (-15 -2217 ((-111) (-1136))) (-15 -2626 ((-3 (-825 |#2|) "failed") (-598 |#2|) |#2| (-825 |#2|) (-825 |#2|) (-111))) (-15 -2352 ((-3 (-111) "failed") (-933 |#1|) (-1154) (-825 |#2|) (-825 |#2|) (-111))) (-15 -2352 ((-3 (-111) "failed") (-1150 |#2|) (-825 |#2|) (-825 |#2|) (-111)))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-29 |#1|))) (T -219)) +((-2352 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1150 *6)) (-5 *4 (-825 *6)) (-4 *6 (-13 (-1176) (-29 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-219 *5 *6)))) (-2352 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-933 *6)) (-5 *4 (-1154)) (-5 *5 (-825 *7)) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-4 *7 (-13 (-1176) (-29 *6))) (-5 *1 (-219 *6 *7)))) (-2626 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-825 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1176) (-29 *6))) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-219 *6 *4)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1176) (-29 *4)))))) +(-10 -7 (-15 -2217 ((-111) (-1136))) (-15 -2626 ((-3 (-825 |#2|) "failed") (-598 |#2|) |#2| (-825 |#2|) (-825 |#2|) (-111))) (-15 -2352 ((-3 (-111) "failed") (-933 |#1|) (-1154) (-825 |#2|) (-825 |#2|) (-111))) (-15 -2352 ((-3 (-111) "failed") (-1150 |#2|) (-825 |#2|) (-825 |#2|) (-111)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 87)) (-3603 (((-552) $) 98)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4157 (($ $) NIL)) (-2478 (($ $) 75)) (-2332 (($ $) 63)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) 54)) (-2393 (((-111) $ $) NIL)) (-2455 (($ $) 73)) (-2305 (($ $) 61)) (-3886 (((-552) $) 115)) (-2506 (($ $) 78)) (-2359 (($ $) 65)) (-2130 (($) NIL T CONST)) (-4183 (($ $) NIL)) (-1393 (((-3 (-552) "failed") $) 114) (((-3 (-401 (-552)) "failed") $) 111)) (-2832 (((-552) $) 112) (((-401 (-552)) $) 109)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) 91)) (-4232 (((-401 (-552)) $ (-756)) 107) (((-401 (-552)) $ (-756) (-756)) 106)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-2180 (((-902)) 27) (((-902) (-902)) NIL (|has| $ (-6 -4359)))) (-1338 (((-111) $) NIL)) (-4043 (($) 37)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL)) (-4241 (((-552) $) 33)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL)) (-4346 (($ $) NIL)) (-3127 (((-111) $) 86)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) 51) (($) 32 (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-2011 (($ $ $) 50) (($) 31 (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-1833 (((-552) $) 25)) (-1735 (($ $) 28)) (-4070 (($ $) 55)) (-2430 (($ $) 60)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1676 (((-902) (-552)) NIL (|has| $ (-6 -4359)))) (-2876 (((-1098) $) 89)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL)) (-3410 (($ $) NIL)) (-3396 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-902)) 99)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1406 (((-552) $) 26)) (-3800 (($) 36)) (-2855 (($ $) 59)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-2950 (((-902)) NIL) (((-902) (-902)) NIL (|has| $ (-6 -4359)))) (-3096 (($ $ (-756)) NIL) (($ $) 92)) (-2474 (((-902) (-552)) NIL (|has| $ (-6 -4359)))) (-2518 (($ $) 76)) (-2370 (($ $) 66)) (-2492 (($ $) 77)) (-2346 (($ $) 64)) (-2467 (($ $) 74)) (-2318 (($ $) 62)) (-1522 (((-373) $) 103) (((-220) $) 100) (((-873 (-373)) $) NIL) (((-528) $) 43)) (-3213 (((-844) $) 40) (($ (-552)) 58) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 58) (($ (-401 (-552))) NIL)) (-2014 (((-756)) NIL)) (-3763 (($ $) NIL)) (-2122 (((-902)) 30) (((-902) (-902)) NIL (|has| $ (-6 -4359)))) (-4174 (((-902)) 23)) (-3843 (($ $) 81)) (-2409 (($ $) 69) (($ $ $) 108)) (-3589 (((-111) $ $) NIL)) (-2530 (($ $) 79)) (-2382 (($ $) 67)) (-3863 (($ $) 84)) (-2433 (($ $) 72)) (-3013 (($ $) 82)) (-2444 (($ $) 70)) (-3853 (($ $) 83)) (-2420 (($ $) 71)) (-2543 (($ $) 80)) (-2395 (($ $) 68)) (-1578 (($ $) 116)) (-3297 (($) 34 T CONST)) (-3309 (($) 35 T CONST)) (-3016 (((-1136) $) 17) (((-1136) $ (-111)) 19) (((-1242) (-807) $) 20) (((-1242) (-807) $ (-111)) 21)) (-3290 (($ $) 95)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1812 (($ $ $) 97)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 52)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 44)) (-1720 (($ $ $) 85) (($ $ (-552)) 53)) (-1709 (($ $) 45) (($ $ $) 47)) (-1698 (($ $ $) 46)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 56) (($ $ (-401 (-552))) 128) (($ $ $) 57)) (* (($ (-902) $) 29) (($ (-756) $) NIL) (($ (-552) $) 49) (($ $ $) 48) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-220) (-13 (-398) (-228) (-813) (-1176) (-600 (-528)) (-10 -8 (-15 -1720 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3800 ($)) (-15 -1735 ($ $)) (-15 -4070 ($ $)) (-15 -2409 ($ $ $)) (-15 -3290 ($ $)) (-15 -1812 ($ $ $)) (-15 -4232 ((-401 (-552)) $ (-756))) (-15 -4232 ((-401 (-552)) $ (-756) (-756)))))) (T -220)) +((** (*1 *1 *1 *1) (-5 *1 (-220))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) (-3800 (*1 *1) (-5 *1 (-220))) (-1735 (*1 *1 *1) (-5 *1 (-220))) (-4070 (*1 *1 *1) (-5 *1 (-220))) (-2409 (*1 *1 *1 *1) (-5 *1 (-220))) (-3290 (*1 *1 *1) (-5 *1 (-220))) (-1812 (*1 *1 *1 *1) (-5 *1 (-220))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) (-4232 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-220))))) +(-13 (-398) (-228) (-813) (-1176) (-600 (-528)) (-10 -8 (-15 -1720 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3800 ($)) (-15 -1735 ($ $)) (-15 -4070 ($ $)) (-15 -2409 ($ $ $)) (-15 -3290 ($ $)) (-15 -1812 ($ $ $)) (-15 -4232 ((-401 (-552)) $ (-756))) (-15 -4232 ((-401 (-552)) $ (-756) (-756))))) +((-1618 (((-166 (-220)) (-756) (-166 (-220))) 11) (((-220) (-756) (-220)) 12)) (-3978 (((-166 (-220)) (-166 (-220))) 13) (((-220) (-220)) 14)) (-2716 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 19) (((-220) (-220) (-220)) 22)) (-4119 (((-166 (-220)) (-166 (-220))) 25) (((-220) (-220)) 24)) (-3381 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 43) (((-220) (-220) (-220)) 35)) (-4135 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 48) (((-220) (-220) (-220)) 45)) (-2906 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 15) (((-220) (-220) (-220)) 16)) (-3158 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 17) (((-220) (-220) (-220)) 18)) (-3742 (((-166 (-220)) (-166 (-220))) 60) (((-220) (-220)) 59)) (-1280 (((-220) (-220)) 54) (((-166 (-220)) (-166 (-220))) 58)) (-3290 (((-166 (-220)) (-166 (-220))) 8) (((-220) (-220)) 9)) (-1812 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 30) (((-220) (-220) (-220)) 26))) +(((-221) (-10 -7 (-15 -3290 ((-220) (-220))) (-15 -3290 ((-166 (-220)) (-166 (-220)))) (-15 -1812 ((-220) (-220) (-220))) (-15 -1812 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3978 ((-220) (-220))) (-15 -3978 ((-166 (-220)) (-166 (-220)))) (-15 -4119 ((-220) (-220))) (-15 -4119 ((-166 (-220)) (-166 (-220)))) (-15 -1618 ((-220) (-756) (-220))) (-15 -1618 ((-166 (-220)) (-756) (-166 (-220)))) (-15 -2906 ((-220) (-220) (-220))) (-15 -2906 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3381 ((-220) (-220) (-220))) (-15 -3381 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3158 ((-220) (-220) (-220))) (-15 -3158 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -4135 ((-220) (-220) (-220))) (-15 -4135 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1280 ((-166 (-220)) (-166 (-220)))) (-15 -1280 ((-220) (-220))) (-15 -3742 ((-220) (-220))) (-15 -3742 ((-166 (-220)) (-166 (-220)))) (-15 -2716 ((-220) (-220) (-220))) (-15 -2716 ((-166 (-220)) (-166 (-220)) (-166 (-220)))))) (T -221)) +((-2716 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2716 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-4135 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-4135 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3158 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3158 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3381 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3381 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2906 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2906 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-220))) (-5 *3 (-756)) (-5 *1 (-221)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-756)) (-5 *1 (-221)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1812 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1812 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221))))) +(-10 -7 (-15 -3290 ((-220) (-220))) (-15 -3290 ((-166 (-220)) (-166 (-220)))) (-15 -1812 ((-220) (-220) (-220))) (-15 -1812 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3978 ((-220) (-220))) (-15 -3978 ((-166 (-220)) (-166 (-220)))) (-15 -4119 ((-220) (-220))) (-15 -4119 ((-166 (-220)) (-166 (-220)))) (-15 -1618 ((-220) (-756) (-220))) (-15 -1618 ((-166 (-220)) (-756) (-166 (-220)))) (-15 -2906 ((-220) (-220) (-220))) (-15 -2906 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3381 ((-220) (-220) (-220))) (-15 -3381 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3158 ((-220) (-220) (-220))) (-15 -3158 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -4135 ((-220) (-220) (-220))) (-15 -4135 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1280 ((-166 (-220)) (-166 (-220)))) (-15 -1280 ((-220) (-220))) (-15 -3742 ((-220) (-220))) (-15 -3742 ((-166 (-220)) (-166 (-220)))) (-15 -2716 ((-220) (-220) (-220))) (-15 -2716 ((-166 (-220)) (-166 (-220)) (-166 (-220))))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756) (-756)) NIL)) (-2811 (($ $ $) NIL)) (-2289 (($ (-1237 |#1|)) NIL) (($ $) NIL)) (-1306 (($ |#1| |#1| |#1|) 32)) (-4021 (((-111) $) NIL)) (-2613 (($ $ (-552) (-552)) NIL)) (-4037 (($ $ (-552) (-552)) NIL)) (-1728 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-3035 (($ $) NIL)) (-2779 (((-111) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2683 (($ $ (-552) (-552) $) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552)) $) NIL)) (-2347 (($ $ (-552) (-1237 |#1|)) NIL)) (-3934 (($ $ (-552) (-1237 |#1|)) NIL)) (-2881 (($ |#1| |#1| |#1|) 31)) (-3924 (($ (-756) |#1|) NIL)) (-2130 (($) NIL T CONST)) (-2810 (($ $) NIL (|has| |#1| (-301)))) (-3413 (((-1237 |#1|) $ (-552)) NIL)) (-2703 (($ |#1|) 30)) (-3984 (($ |#1|) 29)) (-4036 (($ |#1|) 28)) (-2128 (((-756) $) NIL (|has| |#1| (-544)))) (-2957 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2892 ((|#1| $ (-552) (-552)) NIL)) (-3138 (((-629 |#1|) $) NIL)) (-1486 (((-756) $) NIL (|has| |#1| (-544)))) (-4229 (((-629 (-1237 |#1|)) $) NIL (|has| |#1| (-544)))) (-2389 (((-756) $) NIL)) (-3307 (($ (-756) (-756) |#1|) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3427 ((|#1| $) NIL (|has| |#1| (-6 (-4370 "*"))))) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-3516 (($ (-629 (-629 |#1|))) 11)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3397 (((-629 (-629 |#1|)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-4156 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-1908 (($) 12)) (-2944 (($ $ $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552))) NIL)) (-2843 (($ (-629 |#1|)) NIL) (($ (-629 $)) NIL)) (-1379 (((-111) $) NIL)) (-2021 ((|#1| $) NIL (|has| |#1| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3041 (((-1237 |#1|) $ (-552)) NIL)) (-3213 (($ (-1237 |#1|)) NIL) (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1237 |#1|) $ (-1237 |#1|)) 15) (((-1237 |#1|) (-1237 |#1|) $) NIL) (((-924 |#1|) $ (-924 |#1|)) 20)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-222 |#1|) (-13 (-671 |#1| (-1237 |#1|) (-1237 |#1|)) (-10 -8 (-15 * ((-924 |#1|) $ (-924 |#1|))) (-15 -1908 ($)) (-15 -4036 ($ |#1|)) (-15 -3984 ($ |#1|)) (-15 -2703 ($ |#1|)) (-15 -2881 ($ |#1| |#1| |#1|)) (-15 -1306 ($ |#1| |#1| |#1|)))) (-13 (-357) (-1176))) (T -222)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176))) (-5 *1 (-222 *3)))) (-1908 (*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) (-4036 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) (-3984 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) (-2703 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) (-2881 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) (-1306 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176)))))) +(-13 (-671 |#1| (-1237 |#1|) (-1237 |#1|)) (-10 -8 (-15 * ((-924 |#1|) $ (-924 |#1|))) (-15 -1908 ($)) (-15 -4036 ($ |#1|)) (-15 -3984 ($ |#1|)) (-15 -2703 ($ |#1|)) (-15 -2881 ($ |#1| |#1| |#1|)) (-15 -1306 ($ |#1| |#1| |#1|)))) +((-1740 (($ (-1 (-111) |#2|) $) 16)) (-1625 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-3680 (($) NIL) (($ (-629 |#2|)) 11)) (-1613 (((-111) $ $) 23))) +(((-223 |#1| |#2|) (-10 -8 (-15 -1740 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -3680 (|#1| (-629 |#2|))) (-15 -3680 (|#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-224 |#2|) (-1078)) (T -223)) +NIL +(-10 -8 (-15 -1740 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -3680 (|#1| (-629 |#2|))) (-15 -3680 (|#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-224 |#1|) (-137) (-1078)) (T -224)) NIL (-13 (-230 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) 11) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) 19) (($ $ (-754)) NIL) (($ $) 16)) (-4251 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-754)) 14) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL))) -(((-225 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1152))) (-15 -4251 (|#1| |#1| (-627 (-1152)))) (-15 -4251 (|#1| |#1| (-1152) (-754))) (-15 -4251 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|)))) (-226 |#2|) (-1028)) (T -225)) -NIL -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1152))) (-15 -4251 (|#1| |#1| (-627 (-1152)))) (-15 -4251 (|#1| |#1| (-1152) (-754))) (-15 -4251 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-754)) 49) (($ $ (-627 (-1152)) (-627 (-754))) 42 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 41 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 40 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 39 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 37 (|has| |#1| (-228))) (($ $) 35 (|has| |#1| (-228)))) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-754)) 47) (($ $ (-627 (-1152)) (-627 (-754))) 46 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 45 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 44 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 43 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 38 (|has| |#1| (-228))) (($ $) 36 (|has| |#1| (-228)))) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-226 |#1|) (-137) (-1028)) (T -226)) -((-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) (-4 *4 (-1028)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) (-4 *4 (-1028))))) -(-13 (-1028) (-10 -8 (-15 -2942 ($ $ (-1 |t#1| |t#1|))) (-15 -2942 ($ $ (-1 |t#1| |t#1|) (-754))) (-15 -4251 ($ $ (-1 |t#1| |t#1|))) (-15 -4251 ($ $ (-1 |t#1| |t#1|) (-754))) (IF (|has| |t#1| (-228)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-228) |has| |#1| (-228)) ((-630 $) . T) ((-709) . T) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2942 (($ $) NIL) (($ $ (-754)) 10)) (-4251 (($ $) 8) (($ $ (-754)) 12))) -(((-227 |#1|) (-10 -8 (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1|))) (-228)) (T -227)) -NIL -(-10 -8 (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $) 36) (($ $ (-754)) 34)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 35) (($ $ (-754)) 33)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3096 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) 11) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) 19) (($ $ (-756)) NIL) (($ $) 16)) (-1765 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-756)) 14) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL))) +(((-225 |#1| |#2|) (-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1765 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1765 (|#1| |#1| (-1154))) (-15 -1765 (|#1| |#1| (-629 (-1154)))) (-15 -1765 (|#1| |#1| (-1154) (-756))) (-15 -1765 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1765 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -1765 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|)))) (-226 |#2|) (-1030)) (T -225)) +NIL +(-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1765 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1765 (|#1| |#1| (-1154))) (-15 -1765 (|#1| |#1| (-629 (-1154)))) (-15 -1765 (|#1| |#1| (-1154) (-756))) (-15 -1765 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1765 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -1765 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3096 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-756)) 49) (($ $ (-629 (-1154)) (-629 (-756))) 42 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 41 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 40 (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) 39 (|has| |#1| (-881 (-1154)))) (($ $ (-756)) 37 (|has| |#1| (-228))) (($ $) 35 (|has| |#1| (-228)))) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-756)) 47) (($ $ (-629 (-1154)) (-629 (-756))) 46 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 45 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 44 (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) 43 (|has| |#1| (-881 (-1154)))) (($ $ (-756)) 38 (|has| |#1| (-228))) (($ $) 36 (|has| |#1| (-228)))) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-226 |#1|) (-137) (-1030)) (T -226)) +((-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1030)))) (-3096 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *1 (-226 *4)) (-4 *4 (-1030)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1030)))) (-1765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *1 (-226 *4)) (-4 *4 (-1030))))) +(-13 (-1030) (-10 -8 (-15 -3096 ($ $ (-1 |t#1| |t#1|))) (-15 -3096 ($ $ (-1 |t#1| |t#1|) (-756))) (-15 -1765 ($ $ (-1 |t#1| |t#1|))) (-15 -1765 ($ $ (-1 |t#1| |t#1|) (-756))) (IF (|has| |t#1| (-228)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-881 (-1154))) (-6 (-881 (-1154))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-228) |has| |#1| (-228)) ((-632 $) . T) ((-711) . T) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3096 (($ $) NIL) (($ $ (-756)) 10)) (-1765 (($ $) 8) (($ $ (-756)) 12))) +(((-227 |#1|) (-10 -8 (-15 -1765 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-756))) (-15 -1765 (|#1| |#1|)) (-15 -3096 (|#1| |#1|))) (-228)) (T -227)) +NIL +(-10 -8 (-15 -1765 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-756))) (-15 -1765 (|#1| |#1|)) (-15 -3096 (|#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3096 (($ $) 36) (($ $ (-756)) 34)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $) 35) (($ $ (-756)) 33)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-228) (-137)) (T -228)) -((-2942 (*1 *1 *1) (-4 *1 (-228))) (-4251 (*1 *1 *1) (-4 *1 (-228))) (-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) (-4251 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754))))) -(-13 (-1028) (-10 -8 (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3028 (($) 12) (($ (-627 |#2|)) NIL)) (-2973 (($ $) 14)) (-1490 (($ (-627 |#2|)) 10)) (-1477 (((-842) $) 21))) -(((-229 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -2973 (|#1| |#1|))) (-230 |#2|) (-1076)) (T -229)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -2973 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-230 |#1|) (-137) (-1076)) (T -230)) -((-3028 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1076)))) (-3028 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-230 *3)))) (-2265 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-230 *2)) (-4 *2 (-1076)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) (-4 *3 (-1076)))) (-4289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) (-4 *3 (-1076))))) -(-13 (-106 |t#1|) (-148 |t#1|) (-10 -8 (-15 -3028 ($)) (-15 -3028 ($ (-627 |t#1|))) (IF (|has| $ (-6 -4366)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -2265 ($ (-1 (-111) |t#1|) $)) (-15 -4289 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-2688 (((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552)))) 27))) -(((-231) (-10 -7 (-15 -2688 ((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552))))))) (T -231)) -((-2688 (*1 *2 *3) (-12 (-5 *3 (-288 (-931 (-552)))) (-5 *2 (-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754)))))) (-5 *1 (-231))))) -(-10 -7 (-15 -2688 ((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552)))))) -((-3307 (((-754)) 51)) (-1800 (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) 49) (((-671 |#3|) (-671 $)) 41) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2405 (((-132)) 57)) (-2942 (($ $ (-1 |#3| |#3|) (-754)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (($ |#3|) NIL) (((-842) $) NIL) (($ (-552)) 12) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 15)) (-2407 (($ $ |#3|) 54))) -(((-232 |#1| |#2| |#3|) (-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|)) (-15 -3995 ((-754))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -3307 ((-754))) (-15 -2407 (|#1| |#1| |#3|)) (-15 -2405 ((-132))) (-15 -1477 ((-1235 |#3|) |#1|))) (-233 |#2| |#3|) (-754) (-1189)) (T -232)) -((-2405 (*1 *2) (-12 (-14 *4 (-754)) (-4 *5 (-1189)) (-5 *2 (-132)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-3307 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-3995 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5))))) -(-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|)) (-15 -3995 ((-754))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -3307 ((-754))) (-15 -2407 (|#1| |#1| |#3|)) (-15 -2405 ((-132))) (-15 -1477 ((-1235 |#3|) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#2| (-1076)))) (-3024 (((-111) $) 72 (|has| |#2| (-129)))) (-3969 (($ (-900)) 125 (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-2796 (($ $ $) 121 (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) 8)) (-3307 (((-754)) 107 (|has| |#2| (-362)))) (-2422 (((-552) $) 119 (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) 52 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-4039 (((-3 (-552) "failed") $) 67 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) 64 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1076)))) (-1703 (((-552) $) 68 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) 65 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) 60 (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) 106 (-2520 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 105 (-2520 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 104 (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) 103 (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) 79 (|has| |#2| (-709)))) (-1279 (($) 110 (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 51)) (-2983 (((-111) $) 117 (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) 30 (|has| $ (-6 -4366)))) (-2624 (((-111) $) 81 (|has| |#2| (-709)))) (-1508 (((-111) $) 118 (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 116 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-3114 (((-627 |#2|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 115 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-3463 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 35)) (-2886 (((-900) $) 109 (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-4153 (($ (-900)) 108 (|has| |#2| (-362)))) (-1498 (((-1096) $) 21 (|has| |#2| (-1076)))) (-3340 ((|#2| $) 42 (|has| (-552) (-830)))) (-1942 (($ $ |#2|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ (-552) |#2|) 50) ((|#2| $ (-552)) 49)) (-2395 ((|#2| $ $) 124 (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) 126)) (-2405 (((-132)) 123 (|has| |#2| (-357)))) (-2942 (($ $) 98 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) 96 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) 94 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) 93 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) 92 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) 91 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) 84 (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4366))) (((-754) |#2| $) 28 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-1235 |#2|) $) 127) (($ (-552)) 66 (-1559 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) 63 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) 62 (|has| |#2| (-1076))) (((-842) $) 18 (|has| |#2| (-599 (-842))))) (-3995 (((-754)) 102 (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4366)))) (-3329 (($ $) 120 (|has| |#2| (-828)))) (-1922 (($) 71 (|has| |#2| (-129)) CONST)) (-1933 (($) 82 (|has| |#2| (-709)) CONST)) (-4251 (($ $) 97 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) 95 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) 90 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) 89 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) 88 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) 87 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) 86 (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1028)))) (-2351 (((-111) $ $) 113 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2329 (((-111) $ $) 112 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2292 (((-111) $ $) 20 (|has| |#2| (-1076)))) (-2340 (((-111) $ $) 114 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2316 (((-111) $ $) 111 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2407 (($ $ |#2|) 122 (|has| |#2| (-357)))) (-2396 (($ $ $) 100 (|has| |#2| (-1028))) (($ $) 99 (|has| |#2| (-1028)))) (-2384 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-754)) 80 (|has| |#2| (-709))) (($ $ (-900)) 77 (|has| |#2| (-709)))) (* (($ (-552) $) 101 (|has| |#2| (-1028))) (($ $ $) 78 (|has| |#2| (-709))) (($ $ |#2|) 76 (|has| |#2| (-709))) (($ |#2| $) 75 (|has| |#2| (-709))) (($ (-754) $) 73 (|has| |#2| (-129))) (($ (-900) $) 70 (|has| |#2| (-25)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-233 |#1| |#2|) (-137) (-754) (-1189)) (T -233)) -((-1767 (*1 *1 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1189)) (-4 *1 (-233 *3 *4)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1028)) (-4 *4 (-1189)))) (-2395 (*1 *2 *1 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709))))) -(-13 (-590 (-552) |t#2|) (-599 (-1235 |t#2|)) (-10 -8 (-6 -4366) (-15 -1767 ($ (-1235 |t#2|))) (IF (|has| |t#2| (-1076)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1028)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-226 |t#2|)) (-6 (-371 |t#2|)) (-15 -3969 ($ (-900))) (-15 -2395 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-709)) (PROGN (-6 (-709)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |t#2| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |t#2| (-776)) (-6 (-776)) |%noBranch|) (IF (|has| |t#2| (-357)) (-6 (-1242 |t#2|)) |%noBranch|))) -(((-21) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-23) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-25) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-110 $ $) |has| |#2| (-169)) ((-129) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-599 (-842))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-599 (-1235 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-226 |#2|) |has| |#2| (-1028)) ((-228) -12 (|has| |#2| (-228)) (|has| |#2| (-1028))) ((-280 #0=(-552) |#2|) . T) ((-282 #0# |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-362) |has| |#2| (-362)) ((-371 |#2|) |has| |#2| (-1028)) ((-405 |#2|) |has| |#2| (-1076)) ((-482 |#2|) . T) ((-590 #0# |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-630 |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-630 $) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-623 (-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028))) ((-623 |#2|) |has| |#2| (-1028)) ((-700 |#2|) -1559 (|has| |#2| (-357)) (|has| |#2| (-169))) ((-709) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-709)) (|has| |#2| (-169))) ((-774) |has| |#2| (-828)) ((-775) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-776) |has| |#2| (-776)) ((-777) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-778) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-828) |has| |#2| (-828)) ((-830) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-879 (-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028))) ((-1017 (-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076))) ((-1017 (-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) ((-1017 |#2|) |has| |#2| (-1076)) ((-1034 |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-1034 $) |has| |#2| (-169)) ((-1028) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-1035) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-1088) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-709)) (|has| |#2| (-169))) ((-1076) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1189) . T) ((-1242 |#2|) |has| |#2| (-357))) -((-2169 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-2091 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-3516 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18))) -(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -2169 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2091 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3516 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-754) (-1189) (-1189)) (T -234)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-5 *2 (-235 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) (-4 *6 (-1189)) (-4 *2 (-1189)) (-5 *1 (-234 *5 *6 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-754)) (-4 *7 (-1189)) (-4 *5 (-1189)) (-5 *2 (-235 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) -(-10 -7 (-15 -2169 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2091 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3516 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) -((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) 56 (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) 60 (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) 17)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) 27 (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) 53 (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 51)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) 15 (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 20 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) 50 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 41)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) 21)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) 18)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) 10) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) 13 (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) 35 (|has| |#2| (-129)) CONST)) (-1933 (($) 38 (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) 26 (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 58 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) 44 (|has| |#2| (-709))) (($ $ |#2|) 42 (|has| |#2| (-709))) (($ |#2| $) 43 (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-235 |#1| |#2|) (-233 |#1| |#2|) (-754) (-1189)) (T -235)) +((-3096 (*1 *1 *1) (-4 *1 (-228))) (-1765 (*1 *1 *1) (-4 *1 (-228))) (-3096 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-756)))) (-1765 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-756))))) +(-13 (-1030) (-10 -8 (-15 -3096 ($ $)) (-15 -1765 ($ $)) (-15 -3096 ($ $ (-756))) (-15 -1765 ($ $ (-756))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3680 (($) 12) (($ (-629 |#2|)) NIL)) (-1487 (($ $) 14)) (-3226 (($ (-629 |#2|)) 10)) (-3213 (((-844) $) 21))) +(((-229 |#1| |#2|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -3680 (|#1| (-629 |#2|))) (-15 -3680 (|#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -1487 (|#1| |#1|))) (-230 |#2|) (-1078)) (T -229)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -3680 (|#1| (-629 |#2|))) (-15 -3680 (|#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -1487 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-230 |#1|) (-137) (-1078)) (T -230)) +((-3680 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1078)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-230 *3)))) (-1625 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-230 *2)) (-4 *2 (-1078)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-230 *3)) (-4 *3 (-1078)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-230 *3)) (-4 *3 (-1078))))) +(-13 (-106 |t#1|) (-148 |t#1|) (-10 -8 (-15 -3680 ($)) (-15 -3680 ($ (-629 |t#1|))) (IF (|has| $ (-6 -4368)) (PROGN (-15 -1625 ($ |t#1| $)) (-15 -1625 ($ (-1 (-111) |t#1|) $)) (-15 -1740 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3538 (((-2 (|:| |varOrder| (-629 (-1154))) (|:| |inhom| (-3 (-629 (-1237 (-756))) "failed")) (|:| |hom| (-629 (-1237 (-756))))) (-288 (-933 (-552)))) 27))) +(((-231) (-10 -7 (-15 -3538 ((-2 (|:| |varOrder| (-629 (-1154))) (|:| |inhom| (-3 (-629 (-1237 (-756))) "failed")) (|:| |hom| (-629 (-1237 (-756))))) (-288 (-933 (-552))))))) (T -231)) +((-3538 (*1 *2 *3) (-12 (-5 *3 (-288 (-933 (-552)))) (-5 *2 (-2 (|:| |varOrder| (-629 (-1154))) (|:| |inhom| (-3 (-629 (-1237 (-756))) "failed")) (|:| |hom| (-629 (-1237 (-756)))))) (-5 *1 (-231))))) +(-10 -7 (-15 -3538 ((-2 (|:| |varOrder| (-629 (-1154))) (|:| |inhom| (-3 (-629 (-1237 (-756))) "failed")) (|:| |hom| (-629 (-1237 (-756))))) (-288 (-933 (-552)))))) +((-2663 (((-756)) 51)) (-2714 (((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 $) (-1237 $)) 49) (((-673 |#3|) (-673 $)) 41) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-3725 (((-132)) 57)) (-3096 (($ $ (-1 |#3| |#3|) (-756)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL)) (-3213 (((-1237 |#3|) $) NIL) (($ |#3|) NIL) (((-844) $) NIL) (($ (-552)) 12) (($ (-401 (-552))) NIL)) (-2014 (((-756)) 15)) (-1720 (($ $ |#3|) 54))) +(((-232 |#1| |#2| |#3|) (-10 -8 (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|)) (-15 -2014 ((-756))) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -3213 (|#1| |#3|)) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|) (-756))) (-15 -2714 ((-673 |#3|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 |#1|) (-1237 |#1|))) (-15 -2663 ((-756))) (-15 -1720 (|#1| |#1| |#3|)) (-15 -3725 ((-132))) (-15 -3213 ((-1237 |#3|) |#1|))) (-233 |#2| |#3|) (-756) (-1191)) (T -232)) +((-3725 (*1 *2) (-12 (-14 *4 (-756)) (-4 *5 (-1191)) (-5 *2 (-132)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-2663 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1191)) (-5 *2 (-756)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-2014 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1191)) (-5 *2 (-756)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5))))) +(-10 -8 (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|)) (-15 -2014 ((-756))) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -3213 (|#1| |#3|)) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|) (-756))) (-15 -2714 ((-673 |#3|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 |#1|) (-1237 |#1|))) (-15 -2663 ((-756))) (-15 -1720 (|#1| |#1| |#3|)) (-15 -3725 ((-132))) (-15 -3213 ((-1237 |#3|) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#2| (-1078)))) (-3643 (((-111) $) 72 (|has| |#2| (-129)))) (-1725 (($ (-902)) 125 (|has| |#2| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-3305 (($ $ $) 121 (|has| |#2| (-778)))) (-4012 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-4238 (((-111) $ (-756)) 8)) (-2663 (((-756)) 107 (|has| |#2| (-362)))) (-3886 (((-552) $) 119 (|has| |#2| (-830)))) (-1470 ((|#2| $ (-552) |#2|) 52 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-1393 (((-3 (-552) "failed") $) 67 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-3 (-401 (-552)) "failed") $) 64 (-3792 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1078)))) (-2832 (((-552) $) 68 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-401 (-552)) $) 65 (-3792 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((|#2| $) 60 (|has| |#2| (-1078)))) (-2714 (((-673 (-552)) (-673 $)) 106 (-3792 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 105 (-3792 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 104 (|has| |#2| (-1030))) (((-673 |#2|) (-673 $)) 103 (|has| |#2| (-1030)))) (-1293 (((-3 $ "failed") $) 79 (|has| |#2| (-711)))) (-1332 (($) 110 (|has| |#2| (-362)))) (-2957 ((|#2| $ (-552) |#2|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#2| $ (-552)) 51)) (-1338 (((-111) $) 117 (|has| |#2| (-830)))) (-3138 (((-629 |#2|) $) 30 (|has| $ (-6 -4368)))) (-4065 (((-111) $) 81 (|has| |#2| (-711)))) (-3127 (((-111) $) 118 (|has| |#2| (-830)))) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 116 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-3278 (((-629 |#2|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 115 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-2947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2|) $) 35)) (-1637 (((-902) $) 109 (|has| |#2| (-362)))) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#2| (-1078)))) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2840 (($ (-902)) 108 (|has| |#2| (-362)))) (-2876 (((-1098) $) 21 (|has| |#2| (-1078)))) (-2702 ((|#2| $) 42 (|has| (-552) (-832)))) (-1518 (($ $ |#2|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#2| $ (-552) |#2|) 50) ((|#2| $ (-552)) 49)) (-3632 ((|#2| $ $) 124 (|has| |#2| (-1030)))) (-3519 (($ (-1237 |#2|)) 126)) (-3725 (((-132)) 123 (|has| |#2| (-357)))) (-3096 (($ $) 98 (-3792 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) 96 (-3792 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) 94 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) 93 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) 92 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) 91 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) 84 (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1030)))) (-2885 (((-756) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4368))) (((-756) |#2| $) 28 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-1237 |#2|) $) 127) (($ (-552)) 66 (-4029 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (|has| |#2| (-1030)))) (($ (-401 (-552))) 63 (-3792 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (($ |#2|) 62 (|has| |#2| (-1078))) (((-844) $) 18 (|has| |#2| (-599 (-844))))) (-2014 (((-756)) 102 (|has| |#2| (-1030)))) (-2584 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4368)))) (-1578 (($ $) 120 (|has| |#2| (-830)))) (-3297 (($) 71 (|has| |#2| (-129)) CONST)) (-3309 (($) 82 (|has| |#2| (-711)) CONST)) (-1765 (($ $) 97 (-3792 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) 95 (-3792 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) 90 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) 89 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) 88 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) 87 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) 86 (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1030)))) (-1666 (((-111) $ $) 113 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-1644 (((-111) $ $) 112 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-1613 (((-111) $ $) 20 (|has| |#2| (-1078)))) (-1655 (((-111) $ $) 114 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-1632 (((-111) $ $) 111 (-4029 (|has| |#2| (-830)) (|has| |#2| (-778))))) (-1720 (($ $ |#2|) 122 (|has| |#2| (-357)))) (-1709 (($ $ $) 100 (|has| |#2| (-1030))) (($ $) 99 (|has| |#2| (-1030)))) (-1698 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-756)) 80 (|has| |#2| (-711))) (($ $ (-902)) 77 (|has| |#2| (-711)))) (* (($ (-552) $) 101 (|has| |#2| (-1030))) (($ $ $) 78 (|has| |#2| (-711))) (($ $ |#2|) 76 (|has| |#2| (-711))) (($ |#2| $) 75 (|has| |#2| (-711))) (($ (-756) $) 73 (|has| |#2| (-129))) (($ (-902) $) 70 (|has| |#2| (-25)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-233 |#1| |#2|) (-137) (-756) (-1191)) (T -233)) +((-3519 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1191)) (-4 *1 (-233 *3 *4)))) (-1725 (*1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1030)) (-4 *4 (-1191)))) (-3632 (*1 *2 *1 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-711))))) +(-13 (-590 (-552) |t#2|) (-599 (-1237 |t#2|)) (-10 -8 (-6 -4368) (-15 -3519 ($ (-1237 |t#2|))) (IF (|has| |t#2| (-1078)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1030)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-226 |t#2|)) (-6 (-371 |t#2|)) (-15 -1725 ($ (-902))) (-15 -3632 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-711)) (PROGN (-6 (-711)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |t#2| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#2| (-778)) (-6 (-778)) |%noBranch|) (IF (|has| |t#2| (-357)) (-6 (-1244 |t#2|)) |%noBranch|))) +(((-21) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-23) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-25) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -4029 (|has| |#2| (-1078)) (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-711)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -4029 (|has| |#2| (-1030)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-110 $ $) |has| |#2| (-169)) ((-129) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-599 (-844)) -4029 (|has| |#2| (-1078)) (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-711)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-599 (-844))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-599 (-1237 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-226 |#2|) |has| |#2| (-1030)) ((-228) -12 (|has| |#2| (-228)) (|has| |#2| (-1030))) ((-280 #0=(-552) |#2|) . T) ((-282 #0# |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-362) |has| |#2| (-362)) ((-371 |#2|) |has| |#2| (-1030)) ((-405 |#2|) |has| |#2| (-1078)) ((-482 |#2|) . T) ((-590 #0# |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-632 |#2|) -4029 (|has| |#2| (-1030)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-632 $) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-169))) ((-625 (-552)) -12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030))) ((-625 |#2|) |has| |#2| (-1030)) ((-702 |#2|) -4029 (|has| |#2| (-357)) (|has| |#2| (-169))) ((-711) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-711)) (|has| |#2| (-169))) ((-776) |has| |#2| (-830)) ((-777) -4029 (|has| |#2| (-830)) (|has| |#2| (-778))) ((-778) |has| |#2| (-778)) ((-779) -4029 (|has| |#2| (-830)) (|has| |#2| (-778))) ((-780) -4029 (|has| |#2| (-830)) (|has| |#2| (-778))) ((-830) |has| |#2| (-830)) ((-832) -4029 (|has| |#2| (-830)) (|has| |#2| (-778))) ((-881 (-1154)) -12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030))) ((-1019 (-401 (-552))) -12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078))) ((-1019 (-552)) -12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) ((-1019 |#2|) |has| |#2| (-1078)) ((-1036 |#2|) -4029 (|has| |#2| (-1030)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-1036 $) |has| |#2| (-169)) ((-1030) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-169))) ((-1037) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-169))) ((-1090) -4029 (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-711)) (|has| |#2| (-169))) ((-1078) -4029 (|has| |#2| (-1078)) (|has| |#2| (-1030)) (|has| |#2| (-830)) (|has| |#2| (-778)) (|has| |#2| (-711)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1191) . T) ((-1244 |#2|) |has| |#2| (-357))) +((-3215 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-3884 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-1477 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18))) +(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -3215 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3884 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -1477 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-756) (-1191) (-1191)) (T -234)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-756)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-5 *2 (-235 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-756)) (-4 *6 (-1191)) (-4 *2 (-1191)) (-5 *1 (-234 *5 *6 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-756)) (-4 *7 (-1191)) (-4 *5 (-1191)) (-5 *2 (-235 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) +(-10 -7 (-15 -3215 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3884 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -1477 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) +((-3202 (((-111) $ $) NIL (|has| |#2| (-1078)))) (-3643 (((-111) $) NIL (|has| |#2| (-129)))) (-1725 (($ (-902)) 56 (|has| |#2| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) 60 (|has| |#2| (-778)))) (-4012 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-4238 (((-111) $ (-756)) 17)) (-2663 (((-756)) NIL (|has| |#2| (-362)))) (-3886 (((-552) $) NIL (|has| |#2| (-830)))) (-1470 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1078)))) (-2832 (((-552) $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((|#2| $) 27 (|has| |#2| (-1078)))) (-2714 (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL (|has| |#2| (-1030))) (((-673 |#2|) (-673 $)) NIL (|has| |#2| (-1030)))) (-1293 (((-3 $ "failed") $) 53 (|has| |#2| (-711)))) (-1332 (($) NIL (|has| |#2| (-362)))) (-2957 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ (-552)) 51)) (-1338 (((-111) $) NIL (|has| |#2| (-830)))) (-3138 (((-629 |#2|) $) 15 (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (|has| |#2| (-711)))) (-3127 (((-111) $) NIL (|has| |#2| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 20 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-3278 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 (((-552) $) 50 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-2947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2|) $) 41)) (-1637 (((-902) $) NIL (|has| |#2| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#2| (-1078)))) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#2| (-362)))) (-2876 (((-1098) $) NIL (|has| |#2| (-1078)))) (-2702 ((|#2| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) 21)) (-3632 ((|#2| $ $) NIL (|has| |#2| (-1030)))) (-3519 (($ (-1237 |#2|)) 18)) (-3725 (((-132)) NIL (|has| |#2| (-357)))) (-3096 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-2885 (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#2|) $) 10) (($ (-552)) NIL (-4029 (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (|has| |#2| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (($ |#2|) 13 (|has| |#2| (-1078))) (((-844) $) NIL (|has| |#2| (-599 (-844))))) (-2014 (((-756)) NIL (|has| |#2| (-1030)))) (-2584 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#2| (-830)))) (-3297 (($) 35 (|has| |#2| (-129)) CONST)) (-3309 (($) 38 (|has| |#2| (-711)) CONST)) (-1765 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1613 (((-111) $ $) 26 (|has| |#2| (-1078)))) (-1655 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1632 (((-111) $ $) 58 (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $ $) NIL (|has| |#2| (-1030))) (($ $) NIL (|has| |#2| (-1030)))) (-1698 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-756)) NIL (|has| |#2| (-711))) (($ $ (-902)) NIL (|has| |#2| (-711)))) (* (($ (-552) $) NIL (|has| |#2| (-1030))) (($ $ $) 44 (|has| |#2| (-711))) (($ $ |#2|) 42 (|has| |#2| (-711))) (($ |#2| $) 43 (|has| |#2| (-711))) (($ (-756) $) NIL (|has| |#2| (-129))) (($ (-902) $) NIL (|has| |#2| (-25)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-235 |#1| |#2|) (-233 |#1| |#2|) (-756) (-1191)) (T -235)) NIL (-233 |#1| |#2|) -((-2510 (((-552) (-627 (-1134))) 24) (((-552) (-1134)) 19)) (-3335 (((-1240) (-627 (-1134))) 29) (((-1240) (-1134)) 28)) (-1348 (((-1134)) 14)) (-2879 (((-1134) (-552) (-1134)) 16)) (-3174 (((-627 (-1134)) (-627 (-1134)) (-552) (-1134)) 25) (((-1134) (-1134) (-552) (-1134)) 23)) (-3854 (((-627 (-1134)) (-627 (-1134))) 13) (((-627 (-1134)) (-1134)) 11))) -(((-236) (-10 -7 (-15 -3854 ((-627 (-1134)) (-1134))) (-15 -3854 ((-627 (-1134)) (-627 (-1134)))) (-15 -1348 ((-1134))) (-15 -2879 ((-1134) (-552) (-1134))) (-15 -3174 ((-1134) (-1134) (-552) (-1134))) (-15 -3174 ((-627 (-1134)) (-627 (-1134)) (-552) (-1134))) (-15 -3335 ((-1240) (-1134))) (-15 -3335 ((-1240) (-627 (-1134)))) (-15 -2510 ((-552) (-1134))) (-15 -2510 ((-552) (-627 (-1134)))))) (T -236)) -((-2510 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-552)) (-5 *1 (-236)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-236)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1240)) (-5 *1 (-236)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-236)))) (-3174 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 (-1134))) (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *1 (-236)))) (-3174 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) (-2879 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) (-1348 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-236)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)))) (-3854 (*1 *2 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)) (-5 *3 (-1134))))) -(-10 -7 (-15 -3854 ((-627 (-1134)) (-1134))) (-15 -3854 ((-627 (-1134)) (-627 (-1134)))) (-15 -1348 ((-1134))) (-15 -2879 ((-1134) (-552) (-1134))) (-15 -3174 ((-1134) (-1134) (-552) (-1134))) (-15 -3174 ((-627 (-1134)) (-627 (-1134)) (-552) (-1134))) (-15 -3335 ((-1240) (-1134))) (-15 -3335 ((-1240) (-627 (-1134)))) (-15 -2510 ((-552) (-1134))) (-15 -2510 ((-552) (-627 (-1134))))) -((** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 16)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) 23) (($ $ (-401 (-552))) NIL))) -(((-237 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-238)) (T -237)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 37)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 41)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 38)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 40) (($ $ (-401 (-552))) 39))) +((-2267 (((-552) (-629 (-1136))) 24) (((-552) (-1136)) 19)) (-3786 (((-1242) (-629 (-1136))) 29) (((-1242) (-1136)) 28)) (-2287 (((-1136)) 14)) (-1579 (((-1136) (-552) (-1136)) 16)) (-4046 (((-629 (-1136)) (-629 (-1136)) (-552) (-1136)) 25) (((-1136) (-1136) (-552) (-1136)) 23)) (-1936 (((-629 (-1136)) (-629 (-1136))) 13) (((-629 (-1136)) (-1136)) 11))) +(((-236) (-10 -7 (-15 -1936 ((-629 (-1136)) (-1136))) (-15 -1936 ((-629 (-1136)) (-629 (-1136)))) (-15 -2287 ((-1136))) (-15 -1579 ((-1136) (-552) (-1136))) (-15 -4046 ((-1136) (-1136) (-552) (-1136))) (-15 -4046 ((-629 (-1136)) (-629 (-1136)) (-552) (-1136))) (-15 -3786 ((-1242) (-1136))) (-15 -3786 ((-1242) (-629 (-1136)))) (-15 -2267 ((-552) (-1136))) (-15 -2267 ((-552) (-629 (-1136)))))) (T -236)) +((-2267 (*1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-552)) (-5 *1 (-236)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-552)) (-5 *1 (-236)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1242)) (-5 *1 (-236)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-236)))) (-4046 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 (-1136))) (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *1 (-236)))) (-4046 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-236)))) (-1579 (*1 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-236)))) (-2287 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-236)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-236)))) (-1936 (*1 *2 *3) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-236)) (-5 *3 (-1136))))) +(-10 -7 (-15 -1936 ((-629 (-1136)) (-1136))) (-15 -1936 ((-629 (-1136)) (-629 (-1136)))) (-15 -2287 ((-1136))) (-15 -1579 ((-1136) (-552) (-1136))) (-15 -4046 ((-1136) (-1136) (-552) (-1136))) (-15 -4046 ((-629 (-1136)) (-629 (-1136)) (-552) (-1136))) (-15 -3786 ((-1242) (-1136))) (-15 -3786 ((-1242) (-629 (-1136)))) (-15 -2267 ((-552) (-1136))) (-15 -2267 ((-552) (-629 (-1136))))) +((** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 16)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) 23) (($ $ (-401 (-552))) NIL))) +(((-237 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 37)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 41)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 38)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 40) (($ $ (-401 (-552))) 39))) (((-238) (-137)) (T -238)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) (-1951 (*1 *1 *1) (-4 *1 (-238)))) -(-13 (-284) (-38 (-401 (-552))) (-10 -8 (-15 ** ($ $ (-552))) (-15 -1951 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-284) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-709) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-1700 (($ $) 57)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3918 (($ $ $) 53 (|has| $ (-6 -4367)))) (-4141 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-1591 (($ $) 56)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1953 (($ $) 55)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 59)) (-3134 (($ $) 58)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3151 (($ $ $) 54 (|has| $ (-6 -4367)))) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-239 |#1|) (-137) (-1189)) (T -239)) -((-1294 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1953 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3918 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-4141 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) -(-13 (-989 |t#1|) (-10 -8 (-15 -1294 (|t#1| $)) (-15 -3134 ($ $)) (-15 -1700 ($ $)) (-15 -1591 ($ $)) (-15 -1953 ($ $)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -3151 ($ $ $)) (-15 -3918 ($ $ $)) (-15 -4141 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) 10 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $) NIL) (($ $ (-754)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) 7 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-754) $ "count") 16)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3512 (($ (-627 |#1|)) 22)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (($ (-627 |#1|)) 17) (((-627 |#1|) $) 18) (((-842) $) 21 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 14 (|has| $ (-6 -4366))))) -(((-240 |#1|) (-13 (-648 |#1|) (-10 -8 (-15 -1477 ($ (-627 |#1|))) (-15 -1477 ((-627 |#1|) $)) (-15 -3512 ($ (-627 |#1|))) (-15 -1985 ($ $ "unique")) (-15 -1985 ($ $ "sort")) (-15 -1985 ((-754) $ "count")))) (-830)) (T -240)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-754)) (-5 *1 (-240 *4)) (-4 *4 (-830))))) -(-13 (-648 |#1|) (-10 -8 (-15 -1477 ($ (-627 |#1|))) (-15 -1477 ((-627 |#1|) $)) (-15 -3512 ($ (-627 |#1|))) (-15 -1985 ($ $ "unique")) (-15 -1985 ($ $ "sort")) (-15 -1985 ((-754) $ "count")))) -((-2398 (((-3 (-754) "failed") |#1| |#1| (-754)) 27))) -(((-241 |#1|) (-10 -7 (-15 -2398 ((-3 (-754) "failed") |#1| |#1| (-754)))) (-13 (-709) (-362) (-10 -7 (-15 ** (|#1| |#1| (-552)))))) (T -241)) -((-2398 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-754)) (-4 *3 (-13 (-709) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) (-5 *1 (-241 *3))))) -(-10 -7 (-15 -2398 ((-3 (-754) "failed") |#1| |#1| (-754)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) NIL)) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-235 (-1383 |#1|) (-754)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-235 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-235 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-235 (-1383 |#1|) (-754)) (-235 (-1383 |#1|) (-754))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-235 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-235 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-242 |#1| |#2|) (-13 (-928 |#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028)) (T -242)) -((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-242 *3 *4)) (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) -(-13 (-928 |#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) -((-1465 (((-111) $ $) NIL)) (-3407 (((-1240) $) 15)) (-2500 (((-180) $) 9)) (-3985 (($ (-180)) 10)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 13))) -(((-243) (-13 (-1076) (-10 -8 (-15 -2500 ((-180) $)) (-15 -3985 ($ (-180))) (-15 -3407 ((-1240) $))))) (T -243)) -((-2500 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-243))))) -(-13 (-1076) (-10 -8 (-15 -2500 ((-180) $)) (-15 -3985 ($ (-180))) (-15 -3407 ((-1240) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3969 (($ (-900)) NIL (|has| |#4| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#4| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#4| (-362)))) (-2422 (((-552) $) NIL (|has| |#4| (-828)))) (-2950 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1076))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-1703 ((|#4| $) NIL (|has| |#4| (-1076))) (((-552) $) NIL (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-1800 (((-2 (|:| -2515 (-671 |#4|)) (|:| |vec| (-1235 |#4|))) (-671 $) (-1235 $)) NIL (|has| |#4| (-1028))) (((-671 |#4|) (-671 $)) NIL (|has| |#4| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1279 (($) NIL (|has| |#4| (-362)))) (-3473 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#4| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#4| (-828)))) (-3215 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1508 (((-111) $) NIL (|has| |#4| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-3114 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-3463 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#4| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#4| (-362)))) (-1498 (((-1096) $) NIL)) (-3340 ((|#4| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#4|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2083 (((-627 |#4|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#4| $ (-552) |#4|) NIL) ((|#4| $ (-552)) 12)) (-2395 ((|#4| $ $) NIL (|has| |#4| (-1028)))) (-1767 (($ (-1235 |#4|)) NIL)) (-2405 (((-132)) NIL (|has| |#4| (-357)))) (-2942 (($ $ (-1 |#4| |#4|) (-754)) NIL (|has| |#4| (-1028))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))))) (-1509 (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#4|) $) NIL) (((-842) $) NIL) (($ |#4|) NIL (|has| |#4| (-1076))) (($ (-552)) NIL (-1559 (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076))) (|has| |#4| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-3995 (((-754)) NIL (|has| |#4| (-1028)))) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#4| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) CONST)) (-4251 (($ $ (-1 |#4| |#4|) (-754)) NIL (|has| |#4| (-1028))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2316 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2407 (($ $ |#4|) NIL (|has| |#4| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (* (($ |#2| $) 14) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-709))) (($ |#4| $) NIL (|has| |#4| (-709))) (($ $ $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-244 |#1| |#2| |#3| |#4|) (-13 (-233 |#1| |#4|) (-630 |#2|) (-630 |#3|)) (-900) (-1028) (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-630 |#2|)) (T -244)) -NIL -(-13 (-233 |#1| |#4|) (-630 |#2|) (-630 |#3|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3969 (($ (-900)) NIL (|has| |#3| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#3| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#3| (-362)))) (-2422 (((-552) $) NIL (|has| |#3| (-828)))) (-2950 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1076))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-1703 ((|#3| $) NIL (|has| |#3| (-1076))) (((-552) $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-1800 (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) NIL (|has| |#3| (-1028))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1279 (($) NIL (|has| |#3| (-362)))) (-3473 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#3| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#3| (-828)))) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1508 (((-111) $) NIL (|has| |#3| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#3| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#3| (-362)))) (-1498 (((-1096) $) NIL)) (-3340 ((|#3| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2083 (((-627 |#3|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) 11)) (-2395 ((|#3| $ $) NIL (|has| |#3| (-1028)))) (-1767 (($ (-1235 |#3|)) NIL)) (-2405 (((-132)) NIL (|has| |#3| (-357)))) (-2942 (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))))) (-1509 (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366))) (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (((-842) $) NIL) (($ |#3|) NIL (|has| |#3| (-1076))) (($ (-552)) NIL (-1559 (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (|has| |#3| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-3995 (((-754)) NIL (|has| |#3| (-1028)))) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#3| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) CONST)) (-4251 (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2316 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (* (($ |#2| $) 13) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-709))) (($ |#3| $) NIL (|has| |#3| (-709))) (($ $ $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-245 |#1| |#2| |#3|) (-13 (-233 |#1| |#3|) (-630 |#2|)) (-754) (-1028) (-630 |#2|)) (T -245)) -NIL -(-13 (-233 |#1| |#3|) (-630 |#2|)) -((-3996 (((-627 (-754)) $) 47) (((-627 (-754)) $ |#3|) 50)) (-2671 (((-754) $) 49) (((-754) $ |#3|) 52)) (-2252 (($ $) 65)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2641 (((-754) $ |#3|) 39) (((-754) $) 36)) (-4250 (((-1 $ (-754)) |#3|) 15) (((-1 $ (-754)) $) 77)) (-4033 ((|#4| $) 58)) (-3675 (((-111) $) 56)) (-2549 (($ $) 64)) (-3321 (($ $ (-627 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-627 |#4|) (-627 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-627 |#4|) (-627 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-627 |#3|) (-627 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-627 |#3|) (-627 |#2|)) 84)) (-2942 (($ $ |#4|) NIL) (($ $ (-627 |#4|)) NIL) (($ $ |#4| (-754)) NIL) (($ $ (-627 |#4|) (-627 (-754))) NIL) (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2544 (((-627 |#3|) $) 75)) (-3567 ((|#5| $) NIL) (((-754) $ |#4|) NIL) (((-627 (-754)) $ (-627 |#4|)) NIL) (((-754) $ |#3|) 44)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-401 (-552))) NIL) (($ $) NIL))) -(((-246 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#3| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#3| |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4033 (|#4| |#1|)) (-15 -3675 ((-111) |#1|)) (-15 -2671 ((-754) |#1| |#3|)) (-15 -3996 ((-627 (-754)) |#1| |#3|)) (-15 -2671 ((-754) |#1|)) (-15 -3996 ((-627 (-754)) |#1|)) (-15 -3567 ((-754) |#1| |#3|)) (-15 -2641 ((-754) |#1|)) (-15 -2641 ((-754) |#1| |#3|)) (-15 -2544 ((-627 |#3|) |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#3|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 |#4|))) (-15 -3567 ((-754) |#1| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 (|#5| |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#4| (-754))) (-15 -2942 (|#1| |#1| (-627 |#4|))) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-247 |#2| |#3| |#4| |#5|) (-1028) (-830) (-260 |#3|) (-776)) (T -246)) -NIL -(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#3| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#3| |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4033 (|#4| |#1|)) (-15 -3675 ((-111) |#1|)) (-15 -2671 ((-754) |#1| |#3|)) (-15 -3996 ((-627 (-754)) |#1| |#3|)) (-15 -2671 ((-754) |#1|)) (-15 -3996 ((-627 (-754)) |#1|)) (-15 -3567 ((-754) |#1| |#3|)) (-15 -2641 ((-754) |#1|)) (-15 -2641 ((-754) |#1| |#3|)) (-15 -2544 ((-627 |#3|) |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#3|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 |#4|))) (-15 -3567 ((-754) |#1| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 (|#5| |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#4| (-754))) (-15 -2942 (|#1| |#1| (-627 |#4|))) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3996 (((-627 (-754)) $) 212) (((-627 (-754)) $ |#2|) 210)) (-2671 (((-754) $) 211) (((-754) $ |#2|) 209)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-2252 (($ $) 205)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133) ((|#2| $) 218)) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| |#4| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ |#2|) 215) (((-754) $) 214)) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#4|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-3465 ((|#4| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#4| |#4|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-4250 (((-1 $ (-754)) |#2|) 217) (((-1 $ (-754)) $) 204 (|has| |#1| (-228)))) (-2685 (((-3 |#3| "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-4033 ((|#3| $) 207)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-3675 (((-111) $) 208)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-2549 (($ $) 206)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 $)) 202 (|has| |#1| (-228))) (($ $ |#2| |#1|) 201 (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 |#1|)) 200 (|has| |#1| (-228)))) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37) (($ $) 236 (|has| |#1| (-228))) (($ $ (-754)) 234 (|has| |#1| (-228))) (($ $ (-1152)) 232 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 231 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 230 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 229 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2544 (((-627 |#2|) $) 216)) (-3567 ((|#4| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127) (((-754) $ |#2|) 213)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#4|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33) (($ $) 235 (|has| |#1| (-228))) (($ $ (-754)) 233 (|has| |#1| (-228))) (($ $ (-1152)) 228 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 227 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 226 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 225 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-247 |#1| |#2| |#3| |#4|) (-137) (-1028) (-830) (-260 |t#2|) (-776)) (T -247)) -((-4250 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *4 *3 *5 *6)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 *4)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3996 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-111)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-4 *2 (-260 *4)))) (-2549 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-260 *3)) (-4 *5 (-776)))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-260 *3)) (-4 *5 (-776)))) (-4250 (*1 *2 *1) (-12 (-4 *3 (-228)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *3 *4 *5 *6))))) -(-13 (-928 |t#1| |t#4| |t#3|) (-226 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -4250 ((-1 $ (-754)) |t#2|)) (-15 -2544 ((-627 |t#2|) $)) (-15 -2641 ((-754) $ |t#2|)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $ |t#2|)) (-15 -3996 ((-627 (-754)) $)) (-15 -2671 ((-754) $)) (-15 -3996 ((-627 (-754)) $ |t#2|)) (-15 -2671 ((-754) $ |t#2|)) (-15 -3675 ((-111) $)) (-15 -4033 (|t#3| $)) (-15 -2549 ($ $)) (-15 -2252 ($ $)) (IF (|has| |t#1| (-228)) (PROGN (-6 (-506 |t#2| |t#1|)) (-6 (-506 |t#2| $)) (-6 (-303 $)) (-15 -4250 ((-1 $ (-754)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#4|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#2| |#1|) |has| |#1| (-228)) ((-506 |#2| $) |has| |#1| (-228)) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-928 |#1| |#4| |#3|) . T) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#2|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-1416 ((|#1| $) 54)) (-2240 ((|#1| $) 44)) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3022 (($ $) 60)) (-2519 (($ $) 48)) (-3468 ((|#1| |#1| $) 46)) (-3846 ((|#1| $) 45)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-3593 (((-754) $) 61)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3271 ((|#1| |#1| $) 52)) (-3510 ((|#1| |#1| $) 51)) (-3954 (($ |#1| $) 40)) (-3476 (((-754) $) 55)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1412 ((|#1| $) 62)) (-1787 ((|#1| $) 50)) (-3336 ((|#1| $) 49)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1549 ((|#1| |#1| $) 58)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4234 ((|#1| $) 59)) (-3693 (($) 57) (($ (-627 |#1|)) 56)) (-4170 (((-754) $) 43)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-1849 ((|#1| $) 53)) (-2577 (($ (-627 |#1|)) 42)) (-2905 ((|#1| $) 63)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-248 |#1|) (-137) (-1189)) (T -248)) -((-3693 (*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-248 *3)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3271 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3510 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-2519 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(-13 (-1097 |t#1|) (-974 |t#1|) (-10 -8 (-15 -3693 ($)) (-15 -3693 ($ (-627 |t#1|))) (-15 -3476 ((-754) $)) (-15 -1416 (|t#1| $)) (-15 -1849 (|t#1| $)) (-15 -3271 (|t#1| |t#1| $)) (-15 -3510 (|t#1| |t#1| $)) (-15 -1787 (|t#1| $)) (-15 -3336 (|t#1| $)) (-15 -2519 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-974 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1097 |#1|) . T) ((-1189) . T)) -((-3409 (((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 139)) (-3046 (((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373))) 160) (((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 158) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 163) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 159) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 150) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 149) (((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373))) 129) (((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257))) 127) (((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373))) 128) (((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 125)) (-3005 (((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373))) 162) (((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 161) (((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 165) (((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 164) (((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 152) (((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 151) (((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373))) 135) (((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257))) 134) (((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373))) 133) (((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 132) (((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373))) 100) (((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 99) (((-1236) (-1 (-220) (-220)) (-1070 (-373))) 96) (((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257))) 95))) -(((-249) (-10 -7 (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3409 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -249)) -((-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249))))) -(-10 -7 (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3409 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) -((-3005 (((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))) 96))) -(((-250 |#1| |#2|) (-10 -7 (-15 -3005 ((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))))) (-13 (-544) (-830) (-1017 (-552))) (-424 |#1|)) (T -250)) -((-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1152)) (-5 *5 (-627 (-257))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-1236)) (-5 *1 (-250 *6 *7))))) -(-10 -7 (-15 -3005 ((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))))) -((-4263 (((-552) (-552)) 50)) (-3973 (((-552) (-552)) 51)) (-1437 (((-220) (-220)) 52)) (-2686 (((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220))) 49)) (-3004 (((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111)) 47))) -(((-251) (-10 -7 (-15 -3004 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111))) (-15 -2686 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -4263 ((-552) (-552))) (-15 -3973 ((-552) (-552))) (-15 -1437 ((-220) (-220))))) (T -251)) -((-1437 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-2686 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) (-5 *2 (-1237)) (-5 *1 (-251)))) (-3004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) (-5 *5 (-111)) (-5 *2 (-1237)) (-5 *1 (-251))))) -(-10 -7 (-15 -3004 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111))) (-15 -2686 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -4263 ((-552) (-552))) (-15 -3973 ((-552) (-552))) (-15 -1437 ((-220) (-220)))) -((-1477 (((-1068 (-373)) (-1068 (-310 |#1|))) 16))) -(((-252 |#1|) (-10 -7 (-15 -1477 ((-1068 (-373)) (-1068 (-310 |#1|))))) (-13 (-830) (-544) (-600 (-373)))) (T -252)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-1068 (-310 *4))) (-4 *4 (-13 (-830) (-544) (-600 (-373)))) (-5 *2 (-1068 (-373))) (-5 *1 (-252 *4))))) -(-10 -7 (-15 -1477 ((-1068 (-373)) (-1068 (-310 |#1|))))) -((-3046 (((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))) 71) (((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 70) (((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373))) 61) (((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 60) (((-1109 (-220)) (-858 |#1|) (-1068 (-373))) 52) (((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257))) 51)) (-3005 (((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373))) 74) (((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 73) (((-1237) |#1| (-1068 (-373)) (-1068 (-373))) 64) (((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 63) (((-1237) (-858 |#1|) (-1068 (-373))) 56) (((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257))) 55) (((-1236) (-856 |#1|) (-1068 (-373))) 43) (((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257))) 42) (((-1236) |#1| (-1068 (-373))) 35) (((-1236) |#1| (-1068 (-373)) (-627 (-257))) 34))) -(((-253 |#1|) (-10 -7 (-15 -3005 ((-1236) |#1| (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) |#1| (-1068 (-373)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))))) (-13 (-600 (-528)) (-1076))) (T -253)) -((-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *5)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *6)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *5)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076)))))) -(-10 -7 (-15 -3005 ((-1236) |#1| (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) |#1| (-1068 (-373)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))))) -((-3005 (((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257))) 23) (((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220))) 24) (((-1236) (-627 (-922 (-220))) (-627 (-257))) 16) (((-1236) (-627 (-922 (-220)))) 17) (((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257))) 20) (((-1236) (-627 (-220)) (-627 (-220))) 21))) -(((-254) (-10 -7 (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257)))) (-15 -3005 ((-1236) (-627 (-922 (-220))))) (-15 -3005 ((-1236) (-627 (-922 (-220))) (-627 (-257)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257)))))) (T -254)) -((-3005 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1237)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1236)) (-5 *1 (-254))))) -(-10 -7 (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257)))) (-15 -3005 ((-1236) (-627 (-922 (-220))))) (-15 -3005 ((-1236) (-627 (-922 (-220))) (-627 (-257)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257))))) -((-2745 (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 26)) (-2924 (((-900) (-627 (-257)) (-900)) 53)) (-3189 (((-900) (-627 (-257)) (-900)) 52)) (-1516 (((-627 (-373)) (-627 (-257)) (-627 (-373))) 69)) (-3168 (((-373) (-627 (-257)) (-373)) 58)) (-3617 (((-900) (-627 (-257)) (-900)) 54)) (-3438 (((-111) (-627 (-257)) (-111)) 28)) (-2320 (((-1134) (-627 (-257)) (-1134)) 20)) (-1896 (((-1134) (-627 (-257)) (-1134)) 27)) (-1345 (((-1109 (-220)) (-627 (-257))) 47)) (-1894 (((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373)))) 41)) (-3141 (((-853) (-627 (-257)) (-853)) 33)) (-2797 (((-853) (-627 (-257)) (-853)) 34)) (-1624 (((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220)))) 64)) (-3303 (((-111) (-627 (-257)) (-111)) 16)) (-3529 (((-111) (-627 (-257)) (-111)) 15))) -(((-255) (-10 -7 (-15 -3529 ((-111) (-627 (-257)) (-111))) (-15 -3303 ((-111) (-627 (-257)) (-111))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ((-1134) (-627 (-257)) (-1134))) (-15 -1896 ((-1134) (-627 (-257)) (-1134))) (-15 -3438 ((-111) (-627 (-257)) (-111))) (-15 -3141 ((-853) (-627 (-257)) (-853))) (-15 -2797 ((-853) (-627 (-257)) (-853))) (-15 -1894 ((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373))))) (-15 -3189 ((-900) (-627 (-257)) (-900))) (-15 -2924 ((-900) (-627 (-257)) (-900))) (-15 -1345 ((-1109 (-220)) (-627 (-257)))) (-15 -3617 ((-900) (-627 (-257)) (-900))) (-15 -3168 ((-373) (-627 (-257)) (-373))) (-15 -1624 ((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220))))) (-15 -1516 ((-627 (-373)) (-627 (-257)) (-627 (-373)))))) (T -255)) -((-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-373))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1624 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3617 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-255)))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1894 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3141 (*1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3438 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1896 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2320 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2745 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3303 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3529 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) -(-10 -7 (-15 -3529 ((-111) (-627 (-257)) (-111))) (-15 -3303 ((-111) (-627 (-257)) (-111))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ((-1134) (-627 (-257)) (-1134))) (-15 -1896 ((-1134) (-627 (-257)) (-1134))) (-15 -3438 ((-111) (-627 (-257)) (-111))) (-15 -3141 ((-853) (-627 (-257)) (-853))) (-15 -2797 ((-853) (-627 (-257)) (-853))) (-15 -1894 ((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373))))) (-15 -3189 ((-900) (-627 (-257)) (-900))) (-15 -2924 ((-900) (-627 (-257)) (-900))) (-15 -1345 ((-1109 (-220)) (-627 (-257)))) (-15 -3617 ((-900) (-627 (-257)) (-900))) (-15 -3168 ((-373) (-627 (-257)) (-373))) (-15 -1624 ((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220))))) (-15 -1516 ((-627 (-373)) (-627 (-257)) (-627 (-373))))) -((-3628 (((-3 |#1| "failed") (-627 (-257)) (-1152)) 17))) -(((-256 |#1|) (-10 -7 (-15 -3628 ((-3 |#1| "failed") (-627 (-257)) (-1152)))) (-1189)) (T -256)) -((-3628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *1 (-256 *2)) (-4 *2 (-1189))))) -(-10 -7 (-15 -3628 ((-3 |#1| "failed") (-627 (-257)) (-1152)))) -((-1465 (((-111) $ $) NIL)) (-2745 (($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 15)) (-2924 (($ (-900)) 76)) (-3189 (($ (-900)) 75)) (-2717 (($ (-627 (-373))) 82)) (-3168 (($ (-373)) 58)) (-3617 (($ (-900)) 77)) (-3438 (($ (-111)) 23)) (-2320 (($ (-1134)) 18)) (-1896 (($ (-1134)) 19)) (-1345 (($ (-1109 (-220))) 71)) (-1894 (($ (-627 (-1070 (-373)))) 67)) (-1707 (($ (-627 (-1070 (-373)))) 59) (($ (-627 (-1070 (-401 (-552))))) 66)) (-1859 (($ (-373)) 29) (($ (-853)) 33)) (-3097 (((-111) (-627 $) (-1152)) 91)) (-3628 (((-3 (-52) "failed") (-627 $) (-1152)) 93)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3301 (($ (-373)) 34) (($ (-853)) 35)) (-3133 (($ (-1 (-922 (-220)) (-922 (-220)))) 57)) (-1624 (($ (-1 (-922 (-220)) (-922 (-220)))) 78)) (-1544 (($ (-1 (-220) (-220))) 39) (($ (-1 (-220) (-220) (-220))) 43) (($ (-1 (-220) (-220) (-220) (-220))) 47)) (-1477 (((-842) $) 87)) (-3540 (($ (-111)) 24) (($ (-627 (-1070 (-373)))) 52)) (-3529 (($ (-111)) 25)) (-2292 (((-111) $ $) 89))) -(((-257) (-13 (-1076) (-10 -8 (-15 -3529 ($ (-111))) (-15 -3540 ($ (-111))) (-15 -2745 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ($ (-1134))) (-15 -1896 ($ (-1134))) (-15 -3438 ($ (-111))) (-15 -3540 ($ (-627 (-1070 (-373))))) (-15 -3133 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -1859 ($ (-373))) (-15 -1859 ($ (-853))) (-15 -3301 ($ (-373))) (-15 -3301 ($ (-853))) (-15 -1544 ($ (-1 (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3168 ($ (-373))) (-15 -1707 ($ (-627 (-1070 (-373))))) (-15 -1707 ($ (-627 (-1070 (-401 (-552)))))) (-15 -1894 ($ (-627 (-1070 (-373))))) (-15 -1345 ($ (-1109 (-220)))) (-15 -3189 ($ (-900))) (-15 -2924 ($ (-900))) (-15 -3617 ($ (-900))) (-15 -1624 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -2717 ($ (-627 (-373)))) (-15 -3628 ((-3 (-52) "failed") (-627 $) (-1152))) (-15 -3097 ((-111) (-627 $) (-1152)))))) (T -257)) -((-3529 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-257)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-401 (-552))))) (-5 *1 (-257)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-257)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-3617 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-257)))) (-3628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-52)) (-5 *1 (-257)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-111)) (-5 *1 (-257))))) -(-13 (-1076) (-10 -8 (-15 -3529 ($ (-111))) (-15 -3540 ($ (-111))) (-15 -2745 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ($ (-1134))) (-15 -1896 ($ (-1134))) (-15 -3438 ($ (-111))) (-15 -3540 ($ (-627 (-1070 (-373))))) (-15 -3133 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -1859 ($ (-373))) (-15 -1859 ($ (-853))) (-15 -3301 ($ (-373))) (-15 -3301 ($ (-853))) (-15 -1544 ($ (-1 (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3168 ($ (-373))) (-15 -1707 ($ (-627 (-1070 (-373))))) (-15 -1707 ($ (-627 (-1070 (-401 (-552)))))) (-15 -1894 ($ (-627 (-1070 (-373))))) (-15 -1345 ($ (-1109 (-220)))) (-15 -3189 ($ (-900))) (-15 -2924 ($ (-900))) (-15 -3617 ($ (-900))) (-15 -1624 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -2717 ($ (-627 (-373)))) (-15 -3628 ((-3 (-52) "failed") (-627 $) (-1152))) (-15 -3097 ((-111) (-627 $) (-1152))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ |#2|) NIL)) (-2671 (((-754) $) NIL) (((-754) $ |#2|) NIL)) (-1853 (((-627 |#3|) $) NIL)) (-1694 (((-1148 $) $ |#3|) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#3|)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1101 |#1| |#2|) "failed") $) 21)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1101 |#1| |#2|) $) NIL)) (-3116 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 |#3|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))))) (-2641 (((-754) $ |#2|) NIL) (((-754) $) 10)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) |#3|) NIL) (($ (-1148 $) |#3|) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) NIL)) (-3465 (((-523 |#3|) $) NIL) (((-754) $ |#3|) NIL) (((-627 (-754)) $ (-627 |#3|)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#3|) (-523 |#3|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) |#2|) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 |#3| "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-627 |#3|) (-627 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-627 |#3|) (-627 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 $)) NIL (|has| |#1| (-228))) (($ $ |#2| |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#3|) NIL) (($ $ (-627 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 |#2|) $) NIL)) (-3567 (((-523 |#3|) $) NIL) (((-754) $ |#3|) NIL) (((-627 (-754)) $ (-627 |#3|)) NIL) (((-754) $ |#2|) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1101 |#1| |#2|)) 30) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ |#3|) NIL) (($ $ (-627 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-258 |#1| |#2| |#3|) (-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1017 (-1101 |#1| |#2|))) (-1028) (-830) (-260 |#2|)) (T -258)) -NIL -(-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1017 (-1101 |#1| |#2|))) -((-2671 (((-754) $) 30)) (-4039 (((-3 |#2| "failed") $) 17)) (-1703 ((|#2| $) 27)) (-2942 (($ $) 12) (($ $ (-754)) 15)) (-1477 (((-842) $) 26) (($ |#2|) 10)) (-2292 (((-111) $ $) 20)) (-2316 (((-111) $ $) 29))) -(((-259 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -2671 ((-754) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-260 |#2|) (-830)) (T -259)) -NIL -(-10 -8 (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -2671 ((-754) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-2671 (((-754) $) 22)) (-4344 ((|#1| $) 23)) (-4039 (((-3 |#1| "failed") $) 27)) (-1703 ((|#1| $) 26)) (-2641 (((-754) $) 24)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-4250 (($ |#1| (-754)) 25)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $) 21) (($ $ (-754)) 20)) (-1477 (((-842) $) 11) (($ |#1|) 28)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) -(((-260 |#1|) (-137) (-830)) (T -260)) -((-1477 (*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-4250 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) (-2942 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-260 *3)) (-4 *3 (-830))))) -(-13 (-830) (-1017 |t#1|) (-10 -8 (-15 -4250 ($ |t#1| (-754))) (-15 -2641 ((-754) $)) (-15 -4344 (|t#1| $)) (-15 -2671 ((-754) $)) (-15 -2942 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -1477 ($ |t#1|)))) -(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1017 |#1|) . T) ((-1076) . T)) -((-1853 (((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 41)) (-1671 (((-627 (-1152)) (-310 (-220)) (-754)) 80)) (-2590 (((-3 (-310 (-220)) "failed") (-310 (-220))) 51)) (-2134 (((-310 (-220)) (-310 (-220))) 67)) (-4257 (((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 26)) (-3678 (((-111) (-627 (-310 (-220)))) 84)) (-3242 (((-111) (-310 (-220))) 24)) (-4262 (((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) 106)) (-1605 (((-627 (-310 (-220))) (-627 (-310 (-220)))) 88)) (-1756 (((-627 (-310 (-220))) (-627 (-310 (-220)))) 86)) (-3146 (((-671 (-220)) (-627 (-310 (-220))) (-754)) 95)) (-2943 (((-111) (-310 (-220))) 20) (((-111) (-627 (-310 (-220)))) 85)) (-2710 (((-627 (-220)) (-627 (-823 (-220))) (-220)) 14)) (-1457 (((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 101)) (-1630 (((-1014) (-1152) (-1014)) 34))) -(((-261) (-10 -7 (-15 -2710 ((-627 (-220)) (-627 (-823 (-220))) (-220))) (-15 -4257 ((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -2590 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2134 ((-310 (-220)) (-310 (-220)))) (-15 -3678 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-310 (-220)))) (-15 -3146 ((-671 (-220)) (-627 (-310 (-220))) (-754))) (-15 -1756 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -1605 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -3242 ((-111) (-310 (-220)))) (-15 -1853 ((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1671 ((-627 (-1152)) (-310 (-220)) (-754))) (-15 -1630 ((-1014) (-1152) (-1014))) (-15 -1457 ((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -4262 ((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))))) (T -261)) -((-4262 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *2 (-627 (-1134))) (-5 *1 (-261)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-373)) (-5 *1 (-261)))) (-1630 (*1 *2 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-261)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) (-5 *1 (-261)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-2590 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *1 (-261)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-823 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 *4)) (-5 *1 (-261))))) -(-10 -7 (-15 -2710 ((-627 (-220)) (-627 (-823 (-220))) (-220))) (-15 -4257 ((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -2590 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2134 ((-310 (-220)) (-310 (-220)))) (-15 -3678 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-310 (-220)))) (-15 -3146 ((-671 (-220)) (-627 (-310 (-220))) (-754))) (-15 -1756 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -1605 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -3242 ((-111) (-310 (-220)))) (-15 -1853 ((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1671 ((-627 (-1152)) (-310 (-220)) (-754))) (-15 -1630 ((-1014) (-1152) (-1014))) (-15 -1457 ((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -4262 ((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))))) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 44)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 26) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-262) (-819)) (T -262)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 58) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 54)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 34) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 36)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-263) (-819)) (T -263)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 76) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 73)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 44) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 55)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-264) (-819)) (T -264)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 50)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 31) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-265) (-819)) (T -265)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 50)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 28) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-266) (-819)) (T -266)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 73)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 28) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-267) (-819)) (T -267)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 77)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 25) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-268) (-819)) (T -268)) -NIL -(-819) -((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2202 (((-627 (-552)) $) 19)) (-3567 (((-754) $) 17)) (-1477 (((-842) $) 23) (($ (-627 (-552))) 15)) (-3839 (($ (-754)) 20)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 9)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 11))) -(((-269) (-13 (-830) (-10 -8 (-15 -1477 ($ (-627 (-552)))) (-15 -3567 ((-754) $)) (-15 -2202 ((-627 (-552)) $)) (-15 -3839 ($ (-754)))))) (T -269)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-269)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-269))))) -(-13 (-830) (-10 -8 (-15 -1477 ($ (-627 (-552)))) (-15 -3567 ((-754) $)) (-15 -2202 ((-627 (-552)) $)) (-15 -3839 ($ (-754))))) -((-1607 ((|#2| |#2|) 77)) (-1467 ((|#2| |#2|) 65)) (-3881 (((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-1584 ((|#2| |#2|) 75)) (-1445 ((|#2| |#2|) 63)) (-1628 ((|#2| |#2|) 79)) (-1492 ((|#2| |#2|) 67)) (-2951 ((|#2|) 46)) (-4148 (((-113) (-113)) 95)) (-4135 ((|#2| |#2|) 61)) (-2346 (((-111) |#2|) 134)) (-3090 ((|#2| |#2|) 181)) (-1468 ((|#2| |#2|) 157)) (-3477 ((|#2|) 59)) (-1928 ((|#2|) 58)) (-3770 ((|#2| |#2|) 177)) (-3209 ((|#2| |#2|) 153)) (-4274 ((|#2| |#2|) 185)) (-2131 ((|#2| |#2|) 161)) (-3574 ((|#2| |#2|) 149)) (-3171 ((|#2| |#2|) 151)) (-1813 ((|#2| |#2|) 187)) (-3020 ((|#2| |#2|) 163)) (-2783 ((|#2| |#2|) 183)) (-2971 ((|#2| |#2|) 159)) (-3492 ((|#2| |#2|) 179)) (-1717 ((|#2| |#2|) 155)) (-1929 ((|#2| |#2|) 193)) (-3765 ((|#2| |#2|) 169)) (-1527 ((|#2| |#2|) 189)) (-2498 ((|#2| |#2|) 165)) (-2278 ((|#2| |#2|) 197)) (-1733 ((|#2| |#2|) 173)) (-4112 ((|#2| |#2|) 199)) (-2160 ((|#2| |#2|) 175)) (-3650 ((|#2| |#2|) 195)) (-3356 ((|#2| |#2|) 171)) (-3294 ((|#2| |#2|) 191)) (-2185 ((|#2| |#2|) 167)) (-3154 ((|#2| |#2|) 62)) (-1640 ((|#2| |#2|) 80)) (-1502 ((|#2| |#2|) 68)) (-1615 ((|#2| |#2|) 78)) (-1479 ((|#2| |#2|) 66)) (-1596 ((|#2| |#2|) 76)) (-1456 ((|#2| |#2|) 64)) (-3749 (((-111) (-113)) 93)) (-1673 ((|#2| |#2|) 83)) (-1534 ((|#2| |#2|) 71)) (-1652 ((|#2| |#2|) 81)) (-1513 ((|#2| |#2|) 69)) (-1697 ((|#2| |#2|) 85)) (-1561 ((|#2| |#2|) 73)) (-3519 ((|#2| |#2|) 86)) (-1575 ((|#2| |#2|) 74)) (-1686 ((|#2| |#2|) 84)) (-1547 ((|#2| |#2|) 72)) (-1661 ((|#2| |#2|) 82)) (-1524 ((|#2| |#2|) 70))) -(((-270 |#1| |#2|) (-10 -7 (-15 -3154 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2951 (|#2|)) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1928 (|#2|)) (-15 -3477 (|#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2185 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3881 ((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2346 ((-111) |#2|))) (-13 (-830) (-544)) (-13 (-424 |#1|) (-981))) (T -270)) -((-2346 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-424 *4) (-981))))) (-3881 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-627 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-424 *4) (-981))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-270 *4 *2)))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-4274 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2185 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3477 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-1928 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *4)) (-4 *4 (-13 (-424 *3) (-981))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-981))))) (-2951 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981)))))) -(-10 -7 (-15 -3154 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2951 (|#2|)) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1928 (|#2|)) (-15 -3477 (|#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2185 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3881 ((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2346 ((-111) |#2|))) -((-3310 (((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152)) 135)) (-3360 ((|#2| (-401 (-552)) |#2|) 51)) (-3724 ((|#2| |#2| (-598 |#2|)) 128)) (-2073 (((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152)) 127)) (-3609 ((|#2| |#2| (-1152)) 20) ((|#2| |#2|) 23)) (-1319 ((|#2| |#2| (-1152)) 141) ((|#2| |#2|) 139))) -(((-271 |#1| |#2|) (-10 -7 (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1152))) (-15 -2073 ((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152))) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| (-1152))) (-15 -3310 ((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152))) (-15 -3724 (|#2| |#2| (-598 |#2|))) (-15 -3360 (|#2| (-401 (-552)) |#2|))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -271)) -((-3360 (*1 *2 *3 *2) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)))) (-3310 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-1152)) (-4 *2 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *5 *2)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-627 (-598 *3))) (|:| |vals| (-627 *3)))) (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1319 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) -(-10 -7 (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1152))) (-15 -2073 ((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152))) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| (-1152))) (-15 -3310 ((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152))) (-15 -3724 (|#2| |#2| (-598 |#2|))) (-15 -3360 (|#2| (-401 (-552)) |#2|))) -((-2034 (((-3 |#3| "failed") |#3|) 110)) (-1607 ((|#3| |#3|) 131)) (-3118 (((-3 |#3| "failed") |#3|) 82)) (-1467 ((|#3| |#3|) 121)) (-1656 (((-3 |#3| "failed") |#3|) 58)) (-1584 ((|#3| |#3|) 129)) (-3940 (((-3 |#3| "failed") |#3|) 46)) (-1445 ((|#3| |#3|) 119)) (-3105 (((-3 |#3| "failed") |#3|) 112)) (-1628 ((|#3| |#3|) 133)) (-3578 (((-3 |#3| "failed") |#3|) 84)) (-1492 ((|#3| |#3|) 123)) (-3121 (((-3 |#3| "failed") |#3| (-754)) 36)) (-4310 (((-3 |#3| "failed") |#3|) 74)) (-4135 ((|#3| |#3|) 118)) (-1588 (((-3 |#3| "failed") |#3|) 44)) (-3154 ((|#3| |#3|) 117)) (-2207 (((-3 |#3| "failed") |#3|) 113)) (-1640 ((|#3| |#3|) 134)) (-3440 (((-3 |#3| "failed") |#3|) 85)) (-1502 ((|#3| |#3|) 124)) (-1687 (((-3 |#3| "failed") |#3|) 111)) (-1615 ((|#3| |#3|) 132)) (-1851 (((-3 |#3| "failed") |#3|) 83)) (-1479 ((|#3| |#3|) 122)) (-3392 (((-3 |#3| "failed") |#3|) 60)) (-1596 ((|#3| |#3|) 130)) (-2289 (((-3 |#3| "failed") |#3|) 48)) (-1456 ((|#3| |#3|) 120)) (-4101 (((-3 |#3| "failed") |#3|) 66)) (-1673 ((|#3| |#3|) 137)) (-2193 (((-3 |#3| "failed") |#3|) 104)) (-1534 ((|#3| |#3|) 142)) (-1944 (((-3 |#3| "failed") |#3|) 62)) (-1652 ((|#3| |#3|) 135)) (-2104 (((-3 |#3| "failed") |#3|) 50)) (-1513 ((|#3| |#3|) 125)) (-2818 (((-3 |#3| "failed") |#3|) 70)) (-1697 ((|#3| |#3|) 139)) (-3546 (((-3 |#3| "failed") |#3|) 54)) (-1561 ((|#3| |#3|) 127)) (-2448 (((-3 |#3| "failed") |#3|) 72)) (-3519 ((|#3| |#3|) 140)) (-3162 (((-3 |#3| "failed") |#3|) 56)) (-1575 ((|#3| |#3|) 128)) (-2088 (((-3 |#3| "failed") |#3|) 68)) (-1686 ((|#3| |#3|) 138)) (-2012 (((-3 |#3| "failed") |#3|) 107)) (-1547 ((|#3| |#3|) 143)) (-3489 (((-3 |#3| "failed") |#3|) 64)) (-1661 ((|#3| |#3|) 136)) (-3748 (((-3 |#3| "failed") |#3|) 52)) (-1524 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) -(((-272 |#1| |#2| |#3|) (-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) (-38 (-401 (-552))) (-1226 |#1|) (-1197 |#1| |#2|)) (T -272)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1226 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4))))) -(-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) -((-2034 (((-3 |#3| "failed") |#3|) 66)) (-1607 ((|#3| |#3|) 129)) (-3118 (((-3 |#3| "failed") |#3|) 50)) (-1467 ((|#3| |#3|) 117)) (-1656 (((-3 |#3| "failed") |#3|) 62)) (-1584 ((|#3| |#3|) 127)) (-3940 (((-3 |#3| "failed") |#3|) 46)) (-1445 ((|#3| |#3|) 115)) (-3105 (((-3 |#3| "failed") |#3|) 70)) (-1628 ((|#3| |#3|) 131)) (-3578 (((-3 |#3| "failed") |#3|) 54)) (-1492 ((|#3| |#3|) 119)) (-3121 (((-3 |#3| "failed") |#3| (-754)) 35)) (-4310 (((-3 |#3| "failed") |#3|) 44)) (-4135 ((|#3| |#3|) 104)) (-1588 (((-3 |#3| "failed") |#3|) 42)) (-3154 ((|#3| |#3|) 114)) (-2207 (((-3 |#3| "failed") |#3|) 72)) (-1640 ((|#3| |#3|) 132)) (-3440 (((-3 |#3| "failed") |#3|) 56)) (-1502 ((|#3| |#3|) 120)) (-1687 (((-3 |#3| "failed") |#3|) 68)) (-1615 ((|#3| |#3|) 130)) (-1851 (((-3 |#3| "failed") |#3|) 52)) (-1479 ((|#3| |#3|) 118)) (-3392 (((-3 |#3| "failed") |#3|) 64)) (-1596 ((|#3| |#3|) 128)) (-2289 (((-3 |#3| "failed") |#3|) 48)) (-1456 ((|#3| |#3|) 116)) (-4101 (((-3 |#3| "failed") |#3|) 74)) (-1673 ((|#3| |#3|) 135)) (-2193 (((-3 |#3| "failed") |#3|) 58)) (-1534 ((|#3| |#3|) 123)) (-1944 (((-3 |#3| "failed") |#3|) 105)) (-1652 ((|#3| |#3|) 133)) (-2104 (((-3 |#3| "failed") |#3|) 94)) (-1513 ((|#3| |#3|) 121)) (-2818 (((-3 |#3| "failed") |#3|) 109)) (-1697 ((|#3| |#3|) 137)) (-3546 (((-3 |#3| "failed") |#3|) 101)) (-1561 ((|#3| |#3|) 125)) (-2448 (((-3 |#3| "failed") |#3|) 110)) (-3519 ((|#3| |#3|) 138)) (-3162 (((-3 |#3| "failed") |#3|) 103)) (-1575 ((|#3| |#3|) 126)) (-2088 (((-3 |#3| "failed") |#3|) 76)) (-1686 ((|#3| |#3|) 136)) (-2012 (((-3 |#3| "failed") |#3|) 60)) (-1547 ((|#3| |#3|) 124)) (-3489 (((-3 |#3| "failed") |#3|) 106)) (-1661 ((|#3| |#3|) 134)) (-3748 (((-3 |#3| "failed") |#3|) 97)) (-1524 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) -(((-273 |#1| |#2| |#3| |#4|) (-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) (-38 (-401 (-552))) (-1195 |#1|) (-1218 |#1| |#2|) (-962 |#2|)) (T -273)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1195 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) (-4 *6 (-962 *5)))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4))))) -(-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) -((-3868 (((-111) $) 19)) (-3669 (((-180) $) 7)) (-1882 (((-3 (-1152) "failed") $) 14)) (-1295 (((-3 (-627 $) "failed") $) NIL)) (-3185 (((-3 (-1152) "failed") $) 21)) (-4152 (((-3 (-1080) "failed") $) 17)) (-2020 (((-111) $) 15)) (-1477 (((-842) $) NIL)) (-2005 (((-111) $) 9))) -(((-274) (-13 (-599 (-842)) (-10 -8 (-15 -3669 ((-180) $)) (-15 -2020 ((-111) $)) (-15 -4152 ((-3 (-1080) "failed") $)) (-15 -3868 ((-111) $)) (-15 -3185 ((-3 (-1152) "failed") $)) (-15 -2005 ((-111) $)) (-15 -1882 ((-3 (-1152) "failed") $)) (-15 -1295 ((-3 (-627 $) "failed") $))))) (T -274)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-4152 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-274)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-3185 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-1882 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-274))) (-5 *1 (-274))))) -(-13 (-599 (-842)) (-10 -8 (-15 -3669 ((-180) $)) (-15 -2020 ((-111) $)) (-15 -4152 ((-3 (-1080) "failed") $)) (-15 -3868 ((-111) $)) (-15 -3185 ((-3 (-1152) "failed") $)) (-15 -2005 ((-111) $)) (-15 -1882 ((-3 (-1152) "failed") $)) (-15 -1295 ((-3 (-627 $) "failed") $)))) -((-2536 (($ (-1 (-111) |#2|) $) 24)) (-3370 (($ $) 36)) (-2265 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-4342 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-1438 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3252 (($ |#2| $ (-552)) 20) (($ $ $ (-552)) 22)) (-3907 (($ $ (-552)) 11) (($ $ (-1202 (-552))) 14)) (-3151 (($ $ |#2|) 30) (($ $ $) NIL)) (-2668 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-627 $)) NIL))) -(((-275 |#1| |#2|) (-10 -8 (-15 -1438 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -3370 (|#1| |#1|))) (-276 |#2|) (-1189)) (T -275)) -NIL -(-10 -8 (-15 -1438 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -3370 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 85)) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 83 (|has| |#1| (-1076)))) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1076)))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1438 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3954 (($ |#1| $ (-552)) 88) (($ $ $ (-552)) 87)) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3010 (($ $ (-552)) 91) (($ $ (-1202 (-552))) 90)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-3151 (($ $ |#1|) 93) (($ $ $) 92)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-276 |#1|) (-137) (-1189)) (T -276)) -((-3151 (*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-3954 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3954 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-1438 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-4289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-2265 (*1 *1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-830))))) -(-13 (-633 |t#1|) (-10 -8 (-6 -4367) (-15 -3151 ($ $ |t#1|)) (-15 -3151 ($ $ $)) (-15 -3010 ($ $ (-552))) (-15 -3010 ($ $ (-1202 (-552)))) (-15 -2265 ($ (-1 (-111) |t#1|) $)) (-15 -3954 ($ |t#1| $ (-552))) (-15 -3954 ($ $ $ (-552))) (-15 -1438 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -4289 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -2820 ($ $))) |%noBranch|) (IF (|has| |t#1| (-830)) (-15 -1438 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) (-3701 (*1 *1 *1) (-4 *1 (-238)))) +(-13 (-284) (-38 (-401 (-552))) (-10 -8 (-15 ** ($ $ (-552))) (-15 -3701 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-284) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-711) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-1785 (($ $) 57)) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-2459 (($ $ $) 53 (|has| $ (-6 -4369)))) (-2882 (($ $ $) 52 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-4276 (($ $) 56)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-2135 (($ $) 55)) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2680 ((|#1| $) 59)) (-2170 (($ $) 58)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47)) (-3153 (((-552) $ $) 44)) (-1289 (((-111) $) 46)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-2380 (($ $ $) 54 (|has| $ (-6 -4369)))) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-239 |#1|) (-137) (-1191)) (T -239)) +((-2680 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-2170 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-2135 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-2380 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-2459 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191)))) (-2882 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191))))) +(-13 (-991 |t#1|) (-10 -8 (-15 -2680 (|t#1| $)) (-15 -2170 ($ $)) (-15 -1785 ($ $)) (-15 -4276 ($ $)) (-15 -2135 ($ $)) (IF (|has| $ (-6 -4369)) (PROGN (-15 -2380 ($ $ $)) (-15 -2459 ($ $ $)) (-15 -2882 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) NIL)) (-2210 ((|#1| $) NIL)) (-1785 (($ $) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) $) NIL (|has| |#1| (-832))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-3646 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1296 (($ $) 10 (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-2830 (($ $ $) NIL (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "rest" $) NIL (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) NIL)) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2196 ((|#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2715 (($ $) NIL) (($ $ (-756)) NIL)) (-2232 (($ $) NIL (|has| |#1| (-1078)))) (-2738 (($ $) 7 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) NIL (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) NIL)) (-2655 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-2268 (((-111) $) NIL)) (-1456 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078))) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-3707 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1446 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2563 (($ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2680 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-1580 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-1352 (((-111) $) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1204 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-756) $ "count") 16)) (-3153 (((-552) $ $) NIL)) (-3502 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-1789 (($ (-629 |#1|)) 22)) (-1289 (((-111) $) NIL)) (-2760 (($ $) NIL)) (-4022 (($ $) NIL (|has| $ (-6 -4369)))) (-3058 (((-756) $) NIL)) (-2963 (($ $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-2380 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4319 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-629 $)) NIL) (($ $ |#1|) NIL)) (-3213 (($ (-629 |#1|)) 17) (((-629 |#1|) $) 18) (((-844) $) 21 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) 14 (|has| $ (-6 -4368))))) +(((-240 |#1|) (-13 (-650 |#1|) (-10 -8 (-15 -3213 ($ (-629 |#1|))) (-15 -3213 ((-629 |#1|) $)) (-15 -1789 ($ (-629 |#1|))) (-15 -2060 ($ $ "unique")) (-15 -2060 ($ $ "sort")) (-15 -2060 ((-756) $ "count")))) (-832)) (T -240)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-240 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-240 *3)) (-4 *3 (-832)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-240 *3)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-832)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-832)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-756)) (-5 *1 (-240 *4)) (-4 *4 (-832))))) +(-13 (-650 |#1|) (-10 -8 (-15 -3213 ($ (-629 |#1|))) (-15 -3213 ((-629 |#1|) $)) (-15 -1789 ($ (-629 |#1|))) (-15 -2060 ($ $ "unique")) (-15 -2060 ($ $ "sort")) (-15 -2060 ((-756) $ "count")))) +((-3649 (((-3 (-756) "failed") |#1| |#1| (-756)) 27))) +(((-241 |#1|) (-10 -7 (-15 -3649 ((-3 (-756) "failed") |#1| |#1| (-756)))) (-13 (-711) (-362) (-10 -7 (-15 ** (|#1| |#1| (-552)))))) (T -241)) +((-3649 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-756)) (-4 *3 (-13 (-711) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) (-5 *1 (-241 *3))))) +(-10 -7 (-15 -3649 ((-3 (-756) "failed") |#1| |#1| (-756)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-846 |#1|)) $) NIL)) (-3449 (((-1150 $) $ (-846 |#1|)) NIL) (((-1150 |#2|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3303 (($ $) NIL (|has| |#2| (-544)))) (-1334 (((-111) $) NIL (|has| |#2| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-846 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL (|has| |#2| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-846 |#1|) "failed") $) NIL)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-846 |#1|) $) NIL)) (-3301 (($ $ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-2206 (($ $ (-629 (-552))) NIL)) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#2| (-890)))) (-3423 (($ $ |#2| (-235 (-2657 |#1|) (-756)) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#2|) (-846 |#1|)) NIL) (($ (-1150 $) (-846 |#1|)) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#2| (-235 (-2657 |#1|) (-756))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-846 |#1|)) NIL)) (-3544 (((-235 (-2657 |#1|) (-756)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-3891 (($ (-1 (-235 (-2657 |#1|) (-756)) (-235 (-2657 |#1|) (-756))) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-3506 (((-3 (-846 |#1|) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#2| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-846 |#1|)) (|:| -1406 (-756))) "failed") $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#2| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-890)))) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-846 |#1|) |#2|) NIL) (($ $ (-629 (-846 |#1|)) (-629 |#2|)) NIL) (($ $ (-846 |#1|) $) NIL) (($ $ (-629 (-846 |#1|)) (-629 $)) NIL)) (-1721 (($ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-3096 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3299 (((-235 (-2657 |#1|) (-756)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-846 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-846 |#1|)) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-235 (-2657 |#1|) (-756))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#2| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#2| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-242 |#1| |#2|) (-13 (-930 |#2| (-235 (-2657 |#1|) (-756)) (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) (-629 (-1154)) (-1030)) (T -242)) +((-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-242 *3 *4)) (-14 *3 (-629 (-1154))) (-4 *4 (-1030))))) +(-13 (-930 |#2| (-235 (-2657 |#1|) (-756)) (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) +((-3202 (((-111) $ $) NIL)) (-1949 (((-1242) $) 15)) (-2165 (((-180) $) 9)) (-1902 (($ (-180)) 10)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 7)) (-1613 (((-111) $ $) 13))) +(((-243) (-13 (-1078) (-10 -8 (-15 -2165 ((-180) $)) (-15 -1902 ($ (-180))) (-15 -1949 ((-1242) $))))) (T -243)) +((-2165 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-243))))) +(-13 (-1078) (-10 -8 (-15 -2165 ((-180) $)) (-15 -1902 ($ (-180))) (-15 -1949 ((-1242) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-1725 (($ (-902)) NIL (|has| |#4| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) NIL (|has| |#4| (-778)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#4| (-362)))) (-3886 (((-552) $) NIL (|has| |#4| (-830)))) (-1470 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1078))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#4| (-1019 (-552))) (|has| |#4| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#4| (-1019 (-401 (-552)))) (|has| |#4| (-1078))))) (-2832 ((|#4| $) NIL (|has| |#4| (-1078))) (((-552) $) NIL (-12 (|has| |#4| (-1019 (-552))) (|has| |#4| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#4| (-1019 (-401 (-552)))) (|has| |#4| (-1078))))) (-2714 (((-2 (|:| -2325 (-673 |#4|)) (|:| |vec| (-1237 |#4|))) (-673 $) (-1237 $)) NIL (|has| |#4| (-1030))) (((-673 |#4|) (-673 $)) NIL (|has| |#4| (-1030))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))))) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))))) (-1332 (($) NIL (|has| |#4| (-362)))) (-2957 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#4| $ (-552)) NIL)) (-1338 (((-111) $) NIL (|has| |#4| (-830)))) (-3138 (((-629 |#4|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))))) (-3127 (((-111) $) NIL (|has| |#4| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-3278 (((-629 |#4|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-2947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#4| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#4| (-362)))) (-2876 (((-1098) $) NIL)) (-2702 ((|#4| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#4|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-3627 (((-629 |#4|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#4| $ (-552) |#4|) NIL) ((|#4| $ (-552)) 12)) (-3632 ((|#4| $ $) NIL (|has| |#4| (-1030)))) (-3519 (($ (-1237 |#4|)) NIL)) (-3725 (((-132)) NIL (|has| |#4| (-357)))) (-3096 (($ $ (-1 |#4| |#4|) (-756)) NIL (|has| |#4| (-1030))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1030)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))))) (-2885 (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368))) (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#4|) $) NIL) (((-844) $) NIL) (($ |#4|) NIL (|has| |#4| (-1078))) (($ (-552)) NIL (-4029 (-12 (|has| |#4| (-1019 (-552))) (|has| |#4| (-1078))) (|has| |#4| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#4| (-1019 (-401 (-552)))) (|has| |#4| (-1078))))) (-2014 (((-756)) NIL (|has| |#4| (-1030)))) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#4| (-830)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) CONST)) (-1765 (($ $ (-1 |#4| |#4|) (-756)) NIL (|has| |#4| (-1030))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1030)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-1632 (((-111) $ $) NIL (-4029 (|has| |#4| (-778)) (|has| |#4| (-830))))) (-1720 (($ $ |#4|) NIL (|has| |#4| (-357)))) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030))))) (($ $ (-902)) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))))) (* (($ |#2| $) 14) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-711))) (($ |#4| $) NIL (|has| |#4| (-711))) (($ $ $) NIL (-4029 (-12 (|has| |#4| (-228)) (|has| |#4| (-1030))) (-12 (|has| |#4| (-625 (-552))) (|has| |#4| (-1030))) (|has| |#4| (-711)) (-12 (|has| |#4| (-881 (-1154))) (|has| |#4| (-1030)))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-244 |#1| |#2| |#3| |#4|) (-13 (-233 |#1| |#4|) (-632 |#2|) (-632 |#3|)) (-902) (-1030) (-1101 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-632 |#2|)) (T -244)) +NIL +(-13 (-233 |#1| |#4|) (-632 |#2|) (-632 |#3|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-1725 (($ (-902)) NIL (|has| |#3| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) NIL (|has| |#3| (-778)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#3| (-362)))) (-3886 (((-552) $) NIL (|has| |#3| (-830)))) (-1470 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1078))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078))))) (-2832 ((|#3| $) NIL (|has| |#3| (-1078))) (((-552) $) NIL (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078))))) (-2714 (((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 $) (-1237 $)) NIL (|has| |#3| (-1030))) (((-673 |#3|) (-673 $)) NIL (|has| |#3| (-1030))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))))) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))))) (-1332 (($) NIL (|has| |#3| (-362)))) (-2957 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#3| $ (-552)) NIL)) (-1338 (((-111) $) NIL (|has| |#3| (-830)))) (-3138 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))))) (-3127 (((-111) $) NIL (|has| |#3| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-3278 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-2947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#3| |#3|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#3| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#3| (-362)))) (-2876 (((-1098) $) NIL)) (-2702 ((|#3| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#3|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-629 |#3|) (-629 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-3627 (((-629 |#3|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) 11)) (-3632 ((|#3| $ $) NIL (|has| |#3| (-1030)))) (-3519 (($ (-1237 |#3|)) NIL)) (-3725 (((-132)) NIL (|has| |#3| (-357)))) (-3096 (($ $ (-1 |#3| |#3|) (-756)) NIL (|has| |#3| (-1030))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))))) (-2885 (((-756) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368))) (((-756) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#3|) $) NIL) (((-844) $) NIL) (($ |#3|) NIL (|has| |#3| (-1078))) (($ (-552)) NIL (-4029 (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078))) (|has| |#3| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078))))) (-2014 (((-756)) NIL (|has| |#3| (-1030)))) (-2584 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#3| (-830)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) CONST)) (-1765 (($ $ (-1 |#3| |#3|) (-756)) NIL (|has| |#3| (-1030))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1030))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1632 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1720 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030))))) (($ $ (-902)) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))))) (* (($ |#2| $) 13) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-711))) (($ |#3| $) NIL (|has| |#3| (-711))) (($ $ $) NIL (-4029 (-12 (|has| |#3| (-228)) (|has| |#3| (-1030))) (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030))) (|has| |#3| (-711)) (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-245 |#1| |#2| |#3|) (-13 (-233 |#1| |#3|) (-632 |#2|)) (-756) (-1030) (-632 |#2|)) (T -245)) +NIL +(-13 (-233 |#1| |#3|) (-632 |#2|)) +((-2025 (((-629 (-756)) $) 47) (((-629 (-756)) $ |#3|) 50)) (-1400 (((-756) $) 49) (((-756) $ |#3|) 52)) (-1523 (($ $) 65)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4241 (((-756) $ |#3|) 39) (((-756) $) 36)) (-2681 (((-1 $ (-756)) |#3|) 15) (((-1 $ (-756)) $) 77)) (-2507 ((|#4| $) 58)) (-1836 (((-111) $) 56)) (-3017 (($ $) 64)) (-2432 (($ $ (-629 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-629 |#4|) (-629 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-629 |#4|) (-629 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-629 |#3|) (-629 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-629 |#3|) (-629 |#2|)) 84)) (-3096 (($ $ |#4|) NIL) (($ $ (-629 |#4|)) NIL) (($ $ |#4| (-756)) NIL) (($ $ (-629 |#4|) (-629 (-756))) NIL) (($ $) NIL) (($ $ (-756)) NIL) (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2619 (((-629 |#3|) $) 75)) (-3299 ((|#5| $) NIL) (((-756) $ |#4|) NIL) (((-629 (-756)) $ (-629 |#4|)) NIL) (((-756) $ |#3|) 44)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-401 (-552))) NIL) (($ $) NIL))) +(((-246 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -2432 (|#1| |#1| (-629 |#3|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#3| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#3|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#3| |#1|)) (-15 -2681 ((-1 |#1| (-756)) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -3017 (|#1| |#1|)) (-15 -2507 (|#4| |#1|)) (-15 -1836 ((-111) |#1|)) (-15 -1400 ((-756) |#1| |#3|)) (-15 -2025 ((-629 (-756)) |#1| |#3|)) (-15 -1400 ((-756) |#1|)) (-15 -2025 ((-629 (-756)) |#1|)) (-15 -3299 ((-756) |#1| |#3|)) (-15 -4241 ((-756) |#1|)) (-15 -4241 ((-756) |#1| |#3|)) (-15 -2619 ((-629 |#3|) |#1|)) (-15 -2681 ((-1 |#1| (-756)) |#3|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3213 (|#1| |#3|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -3299 ((-629 (-756)) |#1| (-629 |#4|))) (-15 -3299 ((-756) |#1| |#4|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -3213 (|#1| |#4|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#4| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#4| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3299 (|#5| |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3096 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -3096 (|#1| |#1| |#4| (-756))) (-15 -3096 (|#1| |#1| (-629 |#4|))) (-15 -3096 (|#1| |#1| |#4|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-247 |#2| |#3| |#4| |#5|) (-1030) (-832) (-260 |#3|) (-778)) (T -246)) +NIL +(-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -2432 (|#1| |#1| (-629 |#3|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#3| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#3|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#3| |#1|)) (-15 -2681 ((-1 |#1| (-756)) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -3017 (|#1| |#1|)) (-15 -2507 (|#4| |#1|)) (-15 -1836 ((-111) |#1|)) (-15 -1400 ((-756) |#1| |#3|)) (-15 -2025 ((-629 (-756)) |#1| |#3|)) (-15 -1400 ((-756) |#1|)) (-15 -2025 ((-629 (-756)) |#1|)) (-15 -3299 ((-756) |#1| |#3|)) (-15 -4241 ((-756) |#1|)) (-15 -4241 ((-756) |#1| |#3|)) (-15 -2619 ((-629 |#3|) |#1|)) (-15 -2681 ((-1 |#1| (-756)) |#3|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3213 (|#1| |#3|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -3299 ((-629 (-756)) |#1| (-629 |#4|))) (-15 -3299 ((-756) |#1| |#4|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -3213 (|#1| |#4|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#4| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#4| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3299 (|#5| |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3096 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -3096 (|#1| |#1| |#4| (-756))) (-15 -3096 (|#1| |#1| (-629 |#4|))) (-15 -3096 (|#1| |#1| |#4|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2025 (((-629 (-756)) $) 212) (((-629 (-756)) $ |#2|) 210)) (-1400 (((-756) $) 211) (((-756) $ |#2|) 209)) (-3611 (((-629 |#3|) $) 108)) (-3449 (((-1150 $) $ |#3|) 123) (((-1150 |#1|) $) 122)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3303 (($ $) 86 (|has| |#1| (-544)))) (-1334 (((-111) $) 88 (|has| |#1| (-544)))) (-2349 (((-756) $) 110) (((-756) $ (-629 |#3|)) 109)) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 98 (|has| |#1| (-890)))) (-4116 (($ $) 96 (|has| |#1| (-445)))) (-3343 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 101 (|has| |#1| (-890)))) (-1523 (($ $) 205)) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1019 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2832 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1019 (-552)))) ((|#3| $) 133) ((|#2| $) 218)) (-3301 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-3766 (($ $) 152)) (-2714 (((-673 (-552)) (-673 $)) 132 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 131 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 130) (((-673 |#1|) (-673 $)) 129)) (-1293 (((-3 $ "failed") $) 32)) (-3471 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-3754 (((-629 $) $) 107)) (-1677 (((-111) $) 94 (|has| |#1| (-890)))) (-3423 (($ $ |#1| |#4| $) 170)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 82 (-12 (|has| |#3| (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 81 (-12 (|has| |#3| (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ |#2|) 215) (((-756) $) 214)) (-4065 (((-111) $) 30)) (-2856 (((-756) $) 167)) (-3602 (($ (-1150 |#1|) |#3|) 115) (($ (-1150 $) |#3|) 114)) (-3939 (((-629 $) $) 124)) (-2231 (((-111) $) 150)) (-3590 (($ |#1| |#4|) 151) (($ $ |#3| (-756)) 117) (($ $ (-629 |#3|) (-629 (-756))) 116)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#3|) 118)) (-3544 ((|#4| $) 168) (((-756) $ |#3|) 120) (((-629 (-756)) $ (-629 |#3|)) 119)) (-1772 (($ $ $) 77 (|has| |#1| (-832)))) (-2011 (($ $ $) 76 (|has| |#1| (-832)))) (-3891 (($ (-1 |#4| |#4|) $) 169)) (-1477 (($ (-1 |#1| |#1|) $) 149)) (-2681 (((-1 $ (-756)) |#2|) 217) (((-1 $ (-756)) $) 204 (|has| |#1| (-228)))) (-3506 (((-3 |#3| "failed") $) 121)) (-3733 (($ $) 147)) (-3743 ((|#1| $) 146)) (-2507 ((|#3| $) 207)) (-2552 (($ (-629 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2623 (((-1136) $) 9)) (-1836 (((-111) $) 208)) (-4263 (((-3 (-629 $) "failed") $) 112)) (-2878 (((-3 (-629 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -1406 (-756))) "failed") $) 111)) (-3017 (($ $) 206)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 164)) (-3722 ((|#1| $) 165)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 93 (|has| |#1| (-445)))) (-2594 (($ (-629 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 100 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 99 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 97 (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-629 $) (-629 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-629 |#3|) (-629 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-629 |#3|) (-629 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-228))) (($ $ (-629 |#2|) (-629 $)) 202 (|has| |#1| (-228))) (($ $ |#2| |#1|) 201 (|has| |#1| (-228))) (($ $ (-629 |#2|) (-629 |#1|)) 200 (|has| |#1| (-228)))) (-1721 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3096 (($ $ |#3|) 40) (($ $ (-629 |#3|)) 39) (($ $ |#3| (-756)) 38) (($ $ (-629 |#3|) (-629 (-756))) 37) (($ $) 236 (|has| |#1| (-228))) (($ $ (-756)) 234 (|has| |#1| (-228))) (($ $ (-1154)) 232 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 231 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 230 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 229 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2619 (((-629 |#2|) $) 216)) (-3299 ((|#4| $) 148) (((-756) $ |#3|) 128) (((-629 (-756)) $ (-629 |#3|)) 127) (((-756) $ |#2|) 213)) (-1522 (((-873 (-373)) $) 80 (-12 (|has| |#3| (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) 79 (-12 (|has| |#3| (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 102 (-3792 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-401 (-552))) 70 (-4029 (|has| |#1| (-1019 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) 166)) (-2266 ((|#1| $ |#4|) 153) (($ $ |#3| (-756)) 126) (($ $ (-629 |#3|) (-629 (-756))) 125)) (-3878 (((-3 $ "failed") $) 71 (-4029 (-3792 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 28)) (-4306 (($ $ $ (-756)) 171 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 87 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ |#3|) 36) (($ $ (-629 |#3|)) 35) (($ $ |#3| (-756)) 34) (($ $ (-629 |#3|) (-629 (-756))) 33) (($ $) 235 (|has| |#1| (-228))) (($ $ (-756)) 233 (|has| |#1| (-228))) (($ $ (-1154)) 228 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 227 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 226 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 225 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1666 (((-111) $ $) 74 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 73 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 75 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 72 (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-247 |#1| |#2| |#3| |#4|) (-137) (-1030) (-832) (-260 |t#2|) (-778)) (T -247)) +((-2681 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-1 *1 (-756))) (-4 *1 (-247 *4 *3 *5 *6)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-629 *4)))) (-4241 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-756)))) (-3299 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-629 (-756))))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-756)))) (-2025 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-629 (-756))))) (-1400 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-111)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-778)) (-4 *2 (-260 *4)))) (-3017 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1030)) (-4 *3 (-832)) (-4 *4 (-260 *3)) (-4 *5 (-778)))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1030)) (-4 *3 (-832)) (-4 *4 (-260 *3)) (-4 *5 (-778)))) (-2681 (*1 *2 *1) (-12 (-4 *3 (-228)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-1 *1 (-756))) (-4 *1 (-247 *3 *4 *5 *6))))) +(-13 (-930 |t#1| |t#4| |t#3|) (-226 |t#1|) (-1019 |t#2|) (-10 -8 (-15 -2681 ((-1 $ (-756)) |t#2|)) (-15 -2619 ((-629 |t#2|) $)) (-15 -4241 ((-756) $ |t#2|)) (-15 -4241 ((-756) $)) (-15 -3299 ((-756) $ |t#2|)) (-15 -2025 ((-629 (-756)) $)) (-15 -1400 ((-756) $)) (-15 -2025 ((-629 (-756)) $ |t#2|)) (-15 -1400 ((-756) $ |t#2|)) (-15 -1836 ((-111) $)) (-15 -2507 (|t#3| $)) (-15 -3017 ($ $)) (-15 -1523 ($ $)) (IF (|has| |t#1| (-228)) (PROGN (-6 (-506 |t#2| |t#1|)) (-6 (-506 |t#2| $)) (-6 (-303 $)) (-15 -2681 ((-1 $ (-756)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#3| (-600 (-873 (-373))))) ((-600 (-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#3| (-600 (-873 (-552))))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-284) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#4|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-890)) (|has| |#1| (-445))) ((-506 |#2| |#1|) |has| |#1| (-228)) ((-506 |#2| $) |has| |#1| (-228)) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-881 |#3|) . T) ((-867 (-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#3| (-867 (-373)))) ((-867 (-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#3| (-867 (-552)))) ((-930 |#1| |#4| |#3|) . T) ((-890) |has| |#1| (-890)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1019 |#2|) . T) ((-1019 |#3|) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) |has| |#1| (-890))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-3514 ((|#1| $) 54)) (-3447 ((|#1| $) 44)) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3625 (($ $) 60)) (-2366 (($ $) 48)) (-3574 ((|#1| |#1| $) 46)) (-3033 ((|#1| $) 45)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2556 (((-756) $) 61)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-2262 ((|#1| |#1| $) 52)) (-3956 ((|#1| |#1| $) 51)) (-1580 (($ |#1| $) 40)) (-2384 (((-756) $) 55)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3474 ((|#1| $) 62)) (-3806 ((|#1| $) 50)) (-1633 ((|#1| $) 49)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-2187 ((|#1| |#1| $) 58)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2505 ((|#1| $) 59)) (-2029 (($) 57) (($ (-629 |#1|)) 56)) (-3907 (((-756) $) 43)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-3164 ((|#1| $) 53)) (-1663 (($ (-629 |#1|)) 42)) (-1832 ((|#1| $) 63)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-248 |#1|) (-137) (-1191)) (T -248)) +((-2029 (*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-248 *3)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-2262 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-3956 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) (-2366 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(-13 (-1099 |t#1|) (-976 |t#1|) (-10 -8 (-15 -2029 ($)) (-15 -2029 ($ (-629 |t#1|))) (-15 -2384 ((-756) $)) (-15 -3514 (|t#1| $)) (-15 -3164 (|t#1| $)) (-15 -2262 (|t#1| |t#1| $)) (-15 -3956 (|t#1| |t#1| $)) (-15 -3806 (|t#1| $)) (-15 -1633 (|t#1| $)) (-15 -2366 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-976 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1099 |#1|) . T) ((-1191) . T)) +((-4252 (((-1 (-924 (-220)) (-220) (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 139)) (-4139 (((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373))) 160) (((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 158) (((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373))) 163) (((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 159) (((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373))) 150) (((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 149) (((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373))) 129) (((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257))) 127) (((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373))) 128) (((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257))) 125)) (-4096 (((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373))) 162) (((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 161) (((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373))) 165) (((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 164) (((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373))) 152) (((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257))) 151) (((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373))) 135) (((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257))) 134) (((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373))) 133) (((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257))) 132) (((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373))) 100) (((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257))) 99) (((-1238) (-1 (-220) (-220)) (-1072 (-373))) 96) (((-1238) (-1 (-220) (-220)) (-1072 (-373)) (-629 (-257))) 95))) +(((-249) (-10 -7 (-15 -4096 ((-1238) (-1 (-220) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-1 (-220) (-220)) (-1072 (-373)))) (-15 -4096 ((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4096 ((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4096 ((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)))) (-15 -4252 ((-1 (-924 (-220)) (-220) (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -249)) +((-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-924 (-220)) (-220) (-220))) (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *2 (-1238)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *2 (-1238)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1072 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-249))))) +(-10 -7 (-15 -4096 ((-1238) (-1 (-220) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-1 (-220) (-220)) (-1072 (-373)))) (-15 -4096 ((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-858 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4096 ((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-860 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-860 (-1 (-220) (-220))) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220)) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-373)) (-1072 (-373)))) (-15 -4096 ((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)))) (-15 -4139 ((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-863 (-1 (-220) (-220) (-220))) (-1072 (-373)) (-1072 (-373)))) (-15 -4252 ((-1 (-924 (-220)) (-220) (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) +((-4096 (((-1238) (-288 |#2|) (-1154) (-1154) (-629 (-257))) 96))) +(((-250 |#1| |#2|) (-10 -7 (-15 -4096 ((-1238) (-288 |#2|) (-1154) (-1154) (-629 (-257))))) (-13 (-544) (-832) (-1019 (-552))) (-424 |#1|)) (T -250)) +((-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1154)) (-5 *5 (-629 (-257))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-1238)) (-5 *1 (-250 *6 *7))))) +(-10 -7 (-15 -4096 ((-1238) (-288 |#2|) (-1154) (-1154) (-629 (-257))))) +((-2817 (((-552) (-552)) 50)) (-1770 (((-552) (-552)) 51)) (-3697 (((-220) (-220)) 52)) (-3517 (((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220))) 49)) (-1490 (((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220)) (-111)) 47))) +(((-251) (-10 -7 (-15 -1490 ((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220)) (-111))) (-15 -3517 ((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220)))) (-15 -2817 ((-552) (-552))) (-15 -1770 ((-552) (-552))) (-15 -3697 ((-220) (-220))))) (T -251)) +((-3697 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-2817 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-3517 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1072 (-220))) (-5 *2 (-1239)) (-5 *1 (-251)))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1072 (-220))) (-5 *5 (-111)) (-5 *2 (-1239)) (-5 *1 (-251))))) +(-10 -7 (-15 -1490 ((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220)) (-111))) (-15 -3517 ((-1239) (-1 (-166 (-220)) (-166 (-220))) (-1072 (-220)) (-1072 (-220)))) (-15 -2817 ((-552) (-552))) (-15 -1770 ((-552) (-552))) (-15 -3697 ((-220) (-220)))) +((-3213 (((-1070 (-373)) (-1070 (-310 |#1|))) 16))) +(((-252 |#1|) (-10 -7 (-15 -3213 ((-1070 (-373)) (-1070 (-310 |#1|))))) (-13 (-832) (-544) (-600 (-373)))) (T -252)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-1070 (-310 *4))) (-4 *4 (-13 (-832) (-544) (-600 (-373)))) (-5 *2 (-1070 (-373))) (-5 *1 (-252 *4))))) +(-10 -7 (-15 -3213 ((-1070 (-373)) (-1070 (-310 |#1|))))) +((-4139 (((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373))) 71) (((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257))) 70) (((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373))) 61) (((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257))) 60) (((-1111 (-220)) (-860 |#1|) (-1070 (-373))) 52) (((-1111 (-220)) (-860 |#1|) (-1070 (-373)) (-629 (-257))) 51)) (-4096 (((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373))) 74) (((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257))) 73) (((-1239) |#1| (-1070 (-373)) (-1070 (-373))) 64) (((-1239) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257))) 63) (((-1239) (-860 |#1|) (-1070 (-373))) 56) (((-1239) (-860 |#1|) (-1070 (-373)) (-629 (-257))) 55) (((-1238) (-858 |#1|) (-1070 (-373))) 43) (((-1238) (-858 |#1|) (-1070 (-373)) (-629 (-257))) 42) (((-1238) |#1| (-1070 (-373))) 35) (((-1238) |#1| (-1070 (-373)) (-629 (-257))) 34))) +(((-253 |#1|) (-10 -7 (-15 -4096 ((-1238) |#1| (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) |#1| (-1070 (-373)))) (-15 -4096 ((-1238) (-858 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-858 |#1|) (-1070 (-373)))) (-15 -4096 ((-1239) (-860 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-860 |#1|) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) (-860 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-860 |#1|) (-1070 (-373)))) (-15 -4096 ((-1239) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) |#1| (-1070 (-373)) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373)))) (-15 -4096 ((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373))))) (-13 (-600 (-528)) (-1078))) (T -253)) +((-4139 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863 *5)) (-5 *4 (-1070 (-373))) (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *5)))) (-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-863 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *6)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-863 *5)) (-5 *4 (-1070 (-373))) (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) (-5 *1 (-253 *5)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-863 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) (-5 *1 (-253 *6)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) (-4139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-860 *5)) (-5 *4 (-1070 (-373))) (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *5)))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-860 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *6)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-860 *5)) (-5 *4 (-1070 (-373))) (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) (-5 *1 (-253 *5)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-860 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) (-5 *1 (-253 *6)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1070 (-373))) (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1238)) (-5 *1 (-253 *5)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1238)) (-5 *1 (-253 *6)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1238)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078)))))) +(-10 -7 (-15 -4096 ((-1238) |#1| (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) |#1| (-1070 (-373)))) (-15 -4096 ((-1238) (-858 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1238) (-858 |#1|) (-1070 (-373)))) (-15 -4096 ((-1239) (-860 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-860 |#1|) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) (-860 |#1|) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-860 |#1|) (-1070 (-373)))) (-15 -4096 ((-1239) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) |#1| (-1070 (-373)) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) |#1| (-1070 (-373)) (-1070 (-373)))) (-15 -4096 ((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4096 ((-1239) (-863 |#1|) (-1070 (-373)) (-1070 (-373)))) (-15 -4139 ((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373)) (-629 (-257)))) (-15 -4139 ((-1111 (-220)) (-863 |#1|) (-1070 (-373)) (-1070 (-373))))) +((-4096 (((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220)) (-629 (-257))) 23) (((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220))) 24) (((-1238) (-629 (-924 (-220))) (-629 (-257))) 16) (((-1238) (-629 (-924 (-220)))) 17) (((-1238) (-629 (-220)) (-629 (-220)) (-629 (-257))) 20) (((-1238) (-629 (-220)) (-629 (-220))) 21))) +(((-254) (-10 -7 (-15 -4096 ((-1238) (-629 (-220)) (-629 (-220)))) (-15 -4096 ((-1238) (-629 (-220)) (-629 (-220)) (-629 (-257)))) (-15 -4096 ((-1238) (-629 (-924 (-220))))) (-15 -4096 ((-1238) (-629 (-924 (-220))) (-629 (-257)))) (-15 -4096 ((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220)))) (-15 -4096 ((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220)) (-629 (-257)))))) (T -254)) +((-4096 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-629 (-220))) (-5 *4 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-254)))) (-4096 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1239)) (-5 *1 (-254)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *4 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-254)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *2 (-1238)) (-5 *1 (-254)))) (-4096 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-629 (-220))) (-5 *4 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-254)))) (-4096 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1238)) (-5 *1 (-254))))) +(-10 -7 (-15 -4096 ((-1238) (-629 (-220)) (-629 (-220)))) (-15 -4096 ((-1238) (-629 (-220)) (-629 (-220)) (-629 (-257)))) (-15 -4096 ((-1238) (-629 (-924 (-220))))) (-15 -4096 ((-1238) (-629 (-924 (-220))) (-629 (-257)))) (-15 -4096 ((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220)))) (-15 -4096 ((-1239) (-629 (-220)) (-629 (-220)) (-629 (-220)) (-629 (-257))))) +((-2865 (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-629 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 26)) (-2003 (((-902) (-629 (-257)) (-902)) 53)) (-2808 (((-902) (-629 (-257)) (-902)) 52)) (-2097 (((-629 (-373)) (-629 (-257)) (-629 (-373))) 69)) (-2568 (((-373) (-629 (-257)) (-373)) 58)) (-2514 (((-902) (-629 (-257)) (-902)) 54)) (-1360 (((-111) (-629 (-257)) (-111)) 28)) (-4020 (((-1136) (-629 (-257)) (-1136)) 20)) (-2353 (((-1136) (-629 (-257)) (-1136)) 27)) (-2167 (((-1111 (-220)) (-629 (-257))) 47)) (-2326 (((-629 (-1072 (-373))) (-629 (-257)) (-629 (-1072 (-373)))) 41)) (-2258 (((-855) (-629 (-257)) (-855)) 33)) (-3317 (((-855) (-629 (-257)) (-855)) 34)) (-1594 (((-1 (-924 (-220)) (-924 (-220))) (-629 (-257)) (-1 (-924 (-220)) (-924 (-220)))) 64)) (-2636 (((-111) (-629 (-257)) (-111)) 16)) (-2914 (((-111) (-629 (-257)) (-111)) 15))) +(((-255) (-10 -7 (-15 -2914 ((-111) (-629 (-257)) (-111))) (-15 -2636 ((-111) (-629 (-257)) (-111))) (-15 -2865 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-629 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -4020 ((-1136) (-629 (-257)) (-1136))) (-15 -2353 ((-1136) (-629 (-257)) (-1136))) (-15 -1360 ((-111) (-629 (-257)) (-111))) (-15 -2258 ((-855) (-629 (-257)) (-855))) (-15 -3317 ((-855) (-629 (-257)) (-855))) (-15 -2326 ((-629 (-1072 (-373))) (-629 (-257)) (-629 (-1072 (-373))))) (-15 -2808 ((-902) (-629 (-257)) (-902))) (-15 -2003 ((-902) (-629 (-257)) (-902))) (-15 -2167 ((-1111 (-220)) (-629 (-257)))) (-15 -2514 ((-902) (-629 (-257)) (-902))) (-15 -2568 ((-373) (-629 (-257)) (-373))) (-15 -1594 ((-1 (-924 (-220)) (-924 (-220))) (-629 (-257)) (-1 (-924 (-220)) (-924 (-220))))) (-15 -2097 ((-629 (-373)) (-629 (-257)) (-629 (-373)))))) (T -255)) +((-2097 (*1 *2 *3 *2) (-12 (-5 *2 (-629 (-373))) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2568 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2514 (*1 *2 *3 *2) (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-255)))) (-2003 (*1 *2 *3 *2) (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2808 (*1 *2 *3 *2) (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2326 (*1 *2 *3 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-3317 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2258 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-1360 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2353 (*1 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-4020 (*1 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2865 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2636 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) (-2914 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255))))) +(-10 -7 (-15 -2914 ((-111) (-629 (-257)) (-111))) (-15 -2636 ((-111) (-629 (-257)) (-111))) (-15 -2865 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-629 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -4020 ((-1136) (-629 (-257)) (-1136))) (-15 -2353 ((-1136) (-629 (-257)) (-1136))) (-15 -1360 ((-111) (-629 (-257)) (-111))) (-15 -2258 ((-855) (-629 (-257)) (-855))) (-15 -3317 ((-855) (-629 (-257)) (-855))) (-15 -2326 ((-629 (-1072 (-373))) (-629 (-257)) (-629 (-1072 (-373))))) (-15 -2808 ((-902) (-629 (-257)) (-902))) (-15 -2003 ((-902) (-629 (-257)) (-902))) (-15 -2167 ((-1111 (-220)) (-629 (-257)))) (-15 -2514 ((-902) (-629 (-257)) (-902))) (-15 -2568 ((-373) (-629 (-257)) (-373))) (-15 -1594 ((-1 (-924 (-220)) (-924 (-220))) (-629 (-257)) (-1 (-924 (-220)) (-924 (-220))))) (-15 -2097 ((-629 (-373)) (-629 (-257)) (-629 (-373))))) +((-2201 (((-3 |#1| "failed") (-629 (-257)) (-1154)) 17))) +(((-256 |#1|) (-10 -7 (-15 -2201 ((-3 |#1| "failed") (-629 (-257)) (-1154)))) (-1191)) (T -256)) +((-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) (-5 *1 (-256 *2)) (-4 *2 (-1191))))) +(-10 -7 (-15 -2201 ((-3 |#1| "failed") (-629 (-257)) (-1154)))) +((-3202 (((-111) $ $) NIL)) (-2865 (($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 15)) (-2003 (($ (-902)) 76)) (-2808 (($ (-902)) 75)) (-3784 (($ (-629 (-373))) 82)) (-2568 (($ (-373)) 58)) (-2514 (($ (-902)) 77)) (-1360 (($ (-111)) 23)) (-4020 (($ (-1136)) 18)) (-2353 (($ (-1136)) 19)) (-2167 (($ (-1111 (-220))) 71)) (-2326 (($ (-629 (-1072 (-373)))) 67)) (-4235 (($ (-629 (-1072 (-373)))) 59) (($ (-629 (-1072 (-401 (-552))))) 66)) (-3263 (($ (-373)) 29) (($ (-855)) 33)) (-3106 (((-111) (-629 $) (-1154)) 91)) (-2201 (((-3 (-52) "failed") (-629 $) (-1154)) 93)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2612 (($ (-373)) 34) (($ (-855)) 35)) (-3464 (($ (-1 (-924 (-220)) (-924 (-220)))) 57)) (-1594 (($ (-1 (-924 (-220)) (-924 (-220)))) 78)) (-2148 (($ (-1 (-220) (-220))) 39) (($ (-1 (-220) (-220) (-220))) 43) (($ (-1 (-220) (-220) (-220) (-220))) 47)) (-3213 (((-844) $) 87)) (-3025 (($ (-111)) 24) (($ (-629 (-1072 (-373)))) 52)) (-2914 (($ (-111)) 25)) (-1613 (((-111) $ $) 89))) +(((-257) (-13 (-1078) (-10 -8 (-15 -2914 ($ (-111))) (-15 -3025 ($ (-111))) (-15 -2865 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -4020 ($ (-1136))) (-15 -2353 ($ (-1136))) (-15 -1360 ($ (-111))) (-15 -3025 ($ (-629 (-1072 (-373))))) (-15 -3464 ($ (-1 (-924 (-220)) (-924 (-220))))) (-15 -3263 ($ (-373))) (-15 -3263 ($ (-855))) (-15 -2612 ($ (-373))) (-15 -2612 ($ (-855))) (-15 -2148 ($ (-1 (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -2568 ($ (-373))) (-15 -4235 ($ (-629 (-1072 (-373))))) (-15 -4235 ($ (-629 (-1072 (-401 (-552)))))) (-15 -2326 ($ (-629 (-1072 (-373))))) (-15 -2167 ($ (-1111 (-220)))) (-15 -2808 ($ (-902))) (-15 -2003 ($ (-902))) (-15 -2514 ($ (-902))) (-15 -1594 ($ (-1 (-924 (-220)) (-924 (-220))))) (-15 -3784 ($ (-629 (-373)))) (-15 -2201 ((-3 (-52) "failed") (-629 $) (-1154))) (-15 -3106 ((-111) (-629 $) (-1154)))))) (T -257)) +((-2914 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2865 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-257)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-257)))) (-2353 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-257)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *1 (-257)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-257)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-401 (-552))))) (-5 *1 (-257)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-257)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257)))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257)))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *1 (-257)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-257)))) (-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) (-5 *2 (-52)) (-5 *1 (-257)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) (-5 *2 (-111)) (-5 *1 (-257))))) +(-13 (-1078) (-10 -8 (-15 -2914 ($ (-111))) (-15 -3025 ($ (-111))) (-15 -2865 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -4020 ($ (-1136))) (-15 -2353 ($ (-1136))) (-15 -1360 ($ (-111))) (-15 -3025 ($ (-629 (-1072 (-373))))) (-15 -3464 ($ (-1 (-924 (-220)) (-924 (-220))))) (-15 -3263 ($ (-373))) (-15 -3263 ($ (-855))) (-15 -2612 ($ (-373))) (-15 -2612 ($ (-855))) (-15 -2148 ($ (-1 (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -2568 ($ (-373))) (-15 -4235 ($ (-629 (-1072 (-373))))) (-15 -4235 ($ (-629 (-1072 (-401 (-552)))))) (-15 -2326 ($ (-629 (-1072 (-373))))) (-15 -2167 ($ (-1111 (-220)))) (-15 -2808 ($ (-902))) (-15 -2003 ($ (-902))) (-15 -2514 ($ (-902))) (-15 -1594 ($ (-1 (-924 (-220)) (-924 (-220))))) (-15 -3784 ($ (-629 (-373)))) (-15 -2201 ((-3 (-52) "failed") (-629 $) (-1154))) (-15 -3106 ((-111) (-629 $) (-1154))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2025 (((-629 (-756)) $) NIL) (((-629 (-756)) $ |#2|) NIL)) (-1400 (((-756) $) NIL) (((-756) $ |#2|) NIL)) (-3611 (((-629 |#3|) $) NIL)) (-3449 (((-1150 $) $ |#3|) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 |#3|)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1523 (($ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1103 |#1| |#2|) "failed") $) 21)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1103 |#1| |#2|) $) NIL)) (-3301 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-523 |#3|) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| |#1| (-867 (-373))) (|has| |#3| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| |#1| (-867 (-552))) (|has| |#3| (-867 (-552)))))) (-4241 (((-756) $ |#2|) NIL) (((-756) $) 10)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#1|) |#3|) NIL) (($ (-1150 $) |#3|) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-523 |#3|)) NIL) (($ $ |#3| (-756)) NIL) (($ $ (-629 |#3|) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#3|) NIL)) (-3544 (((-523 |#3|) $) NIL) (((-756) $ |#3|) NIL) (((-629 (-756)) $ (-629 |#3|)) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 |#3|) (-523 |#3|)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2681 (((-1 $ (-756)) |#2|) NIL) (((-1 $ (-756)) $) NIL (|has| |#1| (-228)))) (-3506 (((-3 |#3| "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2507 ((|#3| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1836 (((-111) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -1406 (-756))) "failed") $) NIL)) (-3017 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-629 |#3|) (-629 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-629 |#3|) (-629 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-228))) (($ $ (-629 |#2|) (-629 $)) NIL (|has| |#1| (-228))) (($ $ |#2| |#1|) NIL (|has| |#1| (-228))) (($ $ (-629 |#2|) (-629 |#1|)) NIL (|has| |#1| (-228)))) (-1721 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-3096 (($ $ |#3|) NIL) (($ $ (-629 |#3|)) NIL) (($ $ |#3| (-756)) NIL) (($ $ (-629 |#3|) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2619 (((-629 |#2|) $) NIL)) (-3299 (((-523 |#3|) $) NIL) (((-756) $ |#3|) NIL) (((-629 (-756)) $ (-629 |#3|)) NIL) (((-756) $ |#2|) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#3| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#3| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1103 |#1| |#2|)) 30) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-523 |#3|)) NIL) (($ $ |#3| (-756)) NIL) (($ $ (-629 |#3|) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ |#3|) NIL) (($ $ (-629 |#3|)) NIL) (($ $ |#3| (-756)) NIL) (($ $ (-629 |#3|) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-258 |#1| |#2| |#3|) (-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1019 (-1103 |#1| |#2|))) (-1030) (-832) (-260 |#2|)) (T -258)) +NIL +(-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1019 (-1103 |#1| |#2|))) +((-1400 (((-756) $) 30)) (-1393 (((-3 |#2| "failed") $) 17)) (-2832 ((|#2| $) 27)) (-3096 (($ $) 12) (($ $ (-756)) 15)) (-3213 (((-844) $) 26) (($ |#2|) 10)) (-1613 (((-111) $ $) 20)) (-1632 (((-111) $ $) 29))) +(((-259 |#1| |#2|) (-10 -8 (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -1400 ((-756) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-260 |#2|) (-832)) (T -259)) +NIL +(-10 -8 (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -1400 ((-756) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-1400 (((-756) $) 22)) (-1485 ((|#1| $) 23)) (-1393 (((-3 |#1| "failed") $) 27)) (-2832 ((|#1| $) 26)) (-4241 (((-756) $) 24)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2681 (($ |#1| (-756)) 25)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3096 (($ $) 21) (($ $ (-756)) 20)) (-3213 (((-844) $) 11) (($ |#1|) 28)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18))) +(((-260 |#1|) (-137) (-832)) (T -260)) +((-3213 (*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) (-2681 (*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-260 *2)) (-4 *2 (-832)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-832)) (-5 *2 (-756)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-832)) (-5 *2 (-756)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-260 *3)) (-4 *3 (-832))))) +(-13 (-832) (-1019 |t#1|) (-10 -8 (-15 -2681 ($ |t#1| (-756))) (-15 -4241 ((-756) $)) (-15 -1485 (|t#1| $)) (-15 -1400 ((-756) $)) (-15 -3096 ($ $)) (-15 -3096 ($ $ (-756))) (-15 -3213 ($ |t#1|)))) +(((-101) . T) ((-599 (-844)) . T) ((-832) . T) ((-1019 |#1|) . T) ((-1078) . T)) +((-3611 (((-629 (-1154)) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 41)) (-2814 (((-629 (-1154)) (-310 (-220)) (-756)) 80)) (-1809 (((-3 (-310 (-220)) "failed") (-310 (-220))) 51)) (-2850 (((-310 (-220)) (-310 (-220))) 67)) (-2750 (((-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 26)) (-1869 (((-111) (-629 (-310 (-220)))) 84)) (-3269 (((-111) (-310 (-220))) 24)) (-2809 (((-629 (-1136)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))) 106)) (-1448 (((-629 (-310 (-220))) (-629 (-310 (-220)))) 88)) (-3530 (((-629 (-310 (-220))) (-629 (-310 (-220)))) 86)) (-2315 (((-673 (-220)) (-629 (-310 (-220))) (-756)) 95)) (-4094 (((-111) (-310 (-220))) 20) (((-111) (-629 (-310 (-220)))) 85)) (-3720 (((-629 (-220)) (-629 (-825 (-220))) (-220)) 14)) (-2658 (((-373) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 101)) (-1643 (((-1016) (-1154) (-1016)) 34))) +(((-261) (-10 -7 (-15 -3720 ((-629 (-220)) (-629 (-825 (-220))) (-220))) (-15 -2750 ((-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))) (-15 -1809 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2850 ((-310 (-220)) (-310 (-220)))) (-15 -1869 ((-111) (-629 (-310 (-220))))) (-15 -4094 ((-111) (-629 (-310 (-220))))) (-15 -4094 ((-111) (-310 (-220)))) (-15 -2315 ((-673 (-220)) (-629 (-310 (-220))) (-756))) (-15 -3530 ((-629 (-310 (-220))) (-629 (-310 (-220))))) (-15 -1448 ((-629 (-310 (-220))) (-629 (-310 (-220))))) (-15 -3269 ((-111) (-310 (-220)))) (-15 -3611 ((-629 (-1154)) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -2814 ((-629 (-1154)) (-310 (-220)) (-756))) (-15 -1643 ((-1016) (-1154) (-1016))) (-15 -2658 ((-373) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -2809 ((-629 (-1136)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))))))) (T -261)) +((-2809 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))) (-5 *2 (-629 (-1136))) (-5 *1 (-261)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) (-5 *2 (-373)) (-5 *1 (-261)))) (-1643 (*1 *2 *3 *2) (-12 (-5 *2 (-1016)) (-5 *3 (-1154)) (-5 *1 (-261)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-756)) (-5 *2 (-629 (-1154))) (-5 *1 (-261)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) (-5 *2 (-629 (-1154))) (-5 *1 (-261)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-629 (-310 (-220)))) (-5 *1 (-261)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-629 (-310 (-220)))) (-5 *1 (-261)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *4 (-756)) (-5 *2 (-673 (-220))) (-5 *1 (-261)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-1809 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (-5 *1 (-261)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-825 (-220)))) (-5 *4 (-220)) (-5 *2 (-629 *4)) (-5 *1 (-261))))) +(-10 -7 (-15 -3720 ((-629 (-220)) (-629 (-825 (-220))) (-220))) (-15 -2750 ((-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))) (-15 -1809 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2850 ((-310 (-220)) (-310 (-220)))) (-15 -1869 ((-111) (-629 (-310 (-220))))) (-15 -4094 ((-111) (-629 (-310 (-220))))) (-15 -4094 ((-111) (-310 (-220)))) (-15 -2315 ((-673 (-220)) (-629 (-310 (-220))) (-756))) (-15 -3530 ((-629 (-310 (-220))) (-629 (-310 (-220))))) (-15 -1448 ((-629 (-310 (-220))) (-629 (-310 (-220))))) (-15 -3269 ((-111) (-310 (-220)))) (-15 -3611 ((-629 (-1154)) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -2814 ((-629 (-1154)) (-310 (-220)) (-756))) (-15 -1643 ((-1016) (-1154) (-1016))) (-15 -2658 ((-373) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -2809 ((-629 (-1136)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))))) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 44)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 26) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-262) (-821)) (T -262)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 58) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 54)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 34) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 36)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-263) (-821)) (T -263)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 76) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 73)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 44) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 55)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-264) (-821)) (T -264)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 50)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 31) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-265) (-821)) (T -265)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 50)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 28) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-266) (-821)) (T -266)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 73)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 28) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-267) (-821)) (T -267)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 77)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 25) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-268) (-821)) (T -268)) +NIL +(-821) +((-3202 (((-111) $ $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2272 (((-629 (-552)) $) 19)) (-3299 (((-756) $) 17)) (-3213 (((-844) $) 23) (($ (-629 (-552))) 15)) (-2955 (($ (-756)) 20)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 9)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 11))) +(((-269) (-13 (-832) (-10 -8 (-15 -3213 ($ (-629 (-552)))) (-15 -3299 ((-756) $)) (-15 -2272 ((-629 (-552)) $)) (-15 -2955 ($ (-756)))))) (T -269)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-269)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-269)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-269)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-269))))) +(-13 (-832) (-10 -8 (-15 -3213 ($ (-629 (-552)))) (-15 -3299 ((-756) $)) (-15 -2272 ((-629 (-552)) $)) (-15 -2955 ($ (-756))))) +((-2478 ((|#2| |#2|) 77)) (-2332 ((|#2| |#2|) 65)) (-3391 (((-3 |#2| "failed") |#2| (-629 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-2455 ((|#2| |#2|) 75)) (-2305 ((|#2| |#2|) 63)) (-2506 ((|#2| |#2|) 79)) (-2359 ((|#2| |#2|) 67)) (-4043 ((|#2|) 46)) (-2951 (((-113) (-113)) 95)) (-2430 ((|#2| |#2|) 61)) (-4315 (((-111) |#2|) 134)) (-3037 ((|#2| |#2|) 181)) (-2765 ((|#2| |#2|) 157)) (-3640 ((|#2|) 59)) (-1415 ((|#2|) 58)) (-3518 ((|#2| |#2|) 177)) (-2919 ((|#2| |#2|) 153)) (-1612 ((|#2| |#2|) 185)) (-2831 ((|#2| |#2|) 161)) (-3363 ((|#2| |#2|) 149)) (-2605 ((|#2| |#2|) 151)) (-2846 ((|#2| |#2|) 187)) (-3605 ((|#2| |#2|) 163)) (-3194 ((|#2| |#2|) 183)) (-4308 ((|#2| |#2|) 159)) (-3788 ((|#2| |#2|) 179)) (-4325 ((|#2| |#2|) 155)) (-1424 ((|#2| |#2|) 193)) (-3467 ((|#2| |#2|) 169)) (-1990 ((|#2| |#2|) 189)) (-2142 ((|#2| |#2|) 165)) (-1750 ((|#2| |#2|) 197)) (-1367 ((|#2| |#2|) 173)) (-3810 ((|#2| |#2|) 199)) (-3128 ((|#2| |#2|) 175)) (-1582 ((|#2| |#2|) 195)) (-1817 ((|#2| |#2|) 171)) (-2521 ((|#2| |#2|) 191)) (-2087 ((|#2| |#2|) 167)) (-2855 ((|#2| |#2|) 62)) (-2518 ((|#2| |#2|) 80)) (-2370 ((|#2| |#2|) 68)) (-2492 ((|#2| |#2|) 78)) (-2346 ((|#2| |#2|) 66)) (-2467 ((|#2| |#2|) 76)) (-2318 ((|#2| |#2|) 64)) (-1374 (((-111) (-113)) 93)) (-3843 ((|#2| |#2|) 83)) (-2409 ((|#2| |#2|) 71)) (-2530 ((|#2| |#2|) 81)) (-2382 ((|#2| |#2|) 69)) (-3863 ((|#2| |#2|) 85)) (-2433 ((|#2| |#2|) 73)) (-3013 ((|#2| |#2|) 86)) (-2444 ((|#2| |#2|) 74)) (-3853 ((|#2| |#2|) 84)) (-2420 ((|#2| |#2|) 72)) (-2543 ((|#2| |#2|) 82)) (-2395 ((|#2| |#2|) 70))) +(((-270 |#1| |#2|) (-10 -7 (-15 -2855 (|#2| |#2|)) (-15 -2430 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2420 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2478 (|#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -2506 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2543 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -4043 (|#2|)) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -1415 (|#2|)) (-15 -3640 (|#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -4308 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2142 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3391 ((-3 |#2| "failed") |#2| (-629 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -4315 ((-111) |#2|))) (-13 (-832) (-544)) (-13 (-424 |#1|) (-983))) (T -270)) +((-4315 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-424 *4) (-983))))) (-3391 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-629 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-424 *4) (-983))) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-270 *4 *2)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1750 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3194 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3037 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2087 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2142 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-4308 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3640 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-832) (-544))))) (-1415 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-832) (-544))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *4)) (-4 *4 (-13 (-424 *3) (-983))))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-983))))) (-4043 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-832) (-544))))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2543 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2506 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983))))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-983)))))) +(-10 -7 (-15 -2855 (|#2| |#2|)) (-15 -2430 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2420 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2478 (|#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -2506 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2543 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -4043 (|#2|)) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -1415 (|#2|)) (-15 -3640 (|#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -4308 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2142 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3391 ((-3 |#2| "failed") |#2| (-629 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -4315 ((-111) |#2|))) +((-2710 (((-3 |#2| "failed") (-629 (-598 |#2|)) |#2| (-1154)) 135)) (-1852 ((|#2| (-401 (-552)) |#2|) 51)) (-4249 ((|#2| |#2| (-598 |#2|)) 128)) (-3537 (((-2 (|:| |func| |#2|) (|:| |kers| (-629 (-598 |#2|))) (|:| |vals| (-629 |#2|))) |#2| (-1154)) 127)) (-2427 ((|#2| |#2| (-1154)) 20) ((|#2| |#2|) 23)) (-1940 ((|#2| |#2| (-1154)) 141) ((|#2| |#2|) 139))) +(((-271 |#1| |#2|) (-10 -7 (-15 -1940 (|#2| |#2|)) (-15 -1940 (|#2| |#2| (-1154))) (-15 -3537 ((-2 (|:| |func| |#2|) (|:| |kers| (-629 (-598 |#2|))) (|:| |vals| (-629 |#2|))) |#2| (-1154))) (-15 -2427 (|#2| |#2|)) (-15 -2427 (|#2| |#2| (-1154))) (-15 -2710 ((-3 |#2| "failed") (-629 (-598 |#2|)) |#2| (-1154))) (-15 -4249 (|#2| |#2| (-598 |#2|))) (-15 -1852 (|#2| (-401 (-552)) |#2|))) (-13 (-544) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -271)) +((-1852 (*1 *2 *3 *2) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-4249 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *4 *2)))) (-2710 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-629 (-598 *2))) (-5 *4 (-1154)) (-4 *2 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *5 *2)))) (-2427 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-629 (-598 *3))) (|:| |vals| (-629 *3)))) (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-1940 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3)))))) +(-10 -7 (-15 -1940 (|#2| |#2|)) (-15 -1940 (|#2| |#2| (-1154))) (-15 -3537 ((-2 (|:| |func| |#2|) (|:| |kers| (-629 (-598 |#2|))) (|:| |vals| (-629 |#2|))) |#2| (-1154))) (-15 -2427 (|#2| |#2|)) (-15 -2427 (|#2| |#2| (-1154))) (-15 -2710 ((-3 |#2| "failed") (-629 (-598 |#2|)) |#2| (-1154))) (-15 -4249 (|#2| |#2| (-598 |#2|))) (-15 -1852 (|#2| (-401 (-552)) |#2|))) +((-4310 (((-3 |#3| "failed") |#3|) 110)) (-2478 ((|#3| |#3|) 131)) (-3322 (((-3 |#3| "failed") |#3|) 82)) (-2332 ((|#3| |#3|) 121)) (-1898 (((-3 |#3| "failed") |#3|) 58)) (-2455 ((|#3| |#3|) 129)) (-2737 (((-3 |#3| "failed") |#3|) 46)) (-2305 ((|#3| |#3|) 119)) (-3190 (((-3 |#3| "failed") |#3|) 112)) (-2506 ((|#3| |#3|) 133)) (-2105 (((-3 |#3| "failed") |#3|) 84)) (-2359 ((|#3| |#3|) 123)) (-3354 (((-3 |#3| "failed") |#3| (-756)) 36)) (-1956 (((-3 |#3| "failed") |#3|) 74)) (-2430 ((|#3| |#3|) 118)) (-2545 (((-3 |#3| "failed") |#3|) 44)) (-2855 ((|#3| |#3|) 117)) (-2335 (((-3 |#3| "failed") |#3|) 113)) (-2518 ((|#3| |#3|) 134)) (-1377 (((-3 |#3| "failed") |#3|) 85)) (-2370 ((|#3| |#3|) 124)) (-4068 (((-3 |#3| "failed") |#3|) 111)) (-2492 ((|#3| |#3|) 132)) (-3186 (((-3 |#3| "failed") |#3|) 83)) (-2346 ((|#3| |#3|) 122)) (-4093 (((-3 |#3| "failed") |#3|) 60)) (-2467 ((|#3| |#3|) 130)) (-1888 (((-3 |#3| "failed") |#3|) 48)) (-2318 ((|#3| |#3|) 120)) (-3706 (((-3 |#3| "failed") |#3|) 66)) (-3843 ((|#3| |#3|) 137)) (-2162 (((-3 |#3| "failed") |#3|) 104)) (-2409 ((|#3| |#3|) 142)) (-1536 (((-3 |#3| "failed") |#3|) 62)) (-2530 ((|#3| |#3|) 135)) (-3794 (((-3 |#3| "failed") |#3|) 50)) (-2382 ((|#3| |#3|) 125)) (-2207 (((-3 |#3| "failed") |#3|) 70)) (-3863 ((|#3| |#3|) 139)) (-3093 (((-3 |#3| "failed") |#3|) 54)) (-2433 ((|#3| |#3|) 127)) (-2949 (((-3 |#3| "failed") |#3|) 72)) (-3013 ((|#3| |#3|) 140)) (-2489 (((-3 |#3| "failed") |#3|) 56)) (-2444 ((|#3| |#3|) 128)) (-3677 (((-3 |#3| "failed") |#3|) 68)) (-3853 ((|#3| |#3|) 138)) (-4117 (((-3 |#3| "failed") |#3|) 107)) (-2420 ((|#3| |#3|) 143)) (-3757 (((-3 |#3| "failed") |#3|) 64)) (-2543 ((|#3| |#3|) 136)) (-1366 (((-3 |#3| "failed") |#3|) 52)) (-2395 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) +(((-272 |#1| |#2| |#3|) (-13 (-964 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -2855 (|#3| |#3|)) (-15 -2430 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2332 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2420 (|#3| |#3|)) (-15 -2433 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2478 (|#3| |#3|)) (-15 -2492 (|#3| |#3|)) (-15 -2506 (|#3| |#3|)) (-15 -2518 (|#3| |#3|)) (-15 -2530 (|#3| |#3|)) (-15 -2543 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)))) (-38 (-401 (-552))) (-1228 |#1|) (-1199 |#1| |#2|)) (T -272)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1228 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1199 *4 *5)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2506 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-2543 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4))))) +(-13 (-964 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -2855 (|#3| |#3|)) (-15 -2430 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2332 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2420 (|#3| |#3|)) (-15 -2433 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2478 (|#3| |#3|)) (-15 -2492 (|#3| |#3|)) (-15 -2506 (|#3| |#3|)) (-15 -2518 (|#3| |#3|)) (-15 -2530 (|#3| |#3|)) (-15 -2543 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)))) +((-4310 (((-3 |#3| "failed") |#3|) 66)) (-2478 ((|#3| |#3|) 129)) (-3322 (((-3 |#3| "failed") |#3|) 50)) (-2332 ((|#3| |#3|) 117)) (-1898 (((-3 |#3| "failed") |#3|) 62)) (-2455 ((|#3| |#3|) 127)) (-2737 (((-3 |#3| "failed") |#3|) 46)) (-2305 ((|#3| |#3|) 115)) (-3190 (((-3 |#3| "failed") |#3|) 70)) (-2506 ((|#3| |#3|) 131)) (-2105 (((-3 |#3| "failed") |#3|) 54)) (-2359 ((|#3| |#3|) 119)) (-3354 (((-3 |#3| "failed") |#3| (-756)) 35)) (-1956 (((-3 |#3| "failed") |#3|) 44)) (-2430 ((|#3| |#3|) 104)) (-2545 (((-3 |#3| "failed") |#3|) 42)) (-2855 ((|#3| |#3|) 114)) (-2335 (((-3 |#3| "failed") |#3|) 72)) (-2518 ((|#3| |#3|) 132)) (-1377 (((-3 |#3| "failed") |#3|) 56)) (-2370 ((|#3| |#3|) 120)) (-4068 (((-3 |#3| "failed") |#3|) 68)) (-2492 ((|#3| |#3|) 130)) (-3186 (((-3 |#3| "failed") |#3|) 52)) (-2346 ((|#3| |#3|) 118)) (-4093 (((-3 |#3| "failed") |#3|) 64)) (-2467 ((|#3| |#3|) 128)) (-1888 (((-3 |#3| "failed") |#3|) 48)) (-2318 ((|#3| |#3|) 116)) (-3706 (((-3 |#3| "failed") |#3|) 74)) (-3843 ((|#3| |#3|) 135)) (-2162 (((-3 |#3| "failed") |#3|) 58)) (-2409 ((|#3| |#3|) 123)) (-1536 (((-3 |#3| "failed") |#3|) 105)) (-2530 ((|#3| |#3|) 133)) (-3794 (((-3 |#3| "failed") |#3|) 94)) (-2382 ((|#3| |#3|) 121)) (-2207 (((-3 |#3| "failed") |#3|) 109)) (-3863 ((|#3| |#3|) 137)) (-3093 (((-3 |#3| "failed") |#3|) 101)) (-2433 ((|#3| |#3|) 125)) (-2949 (((-3 |#3| "failed") |#3|) 110)) (-3013 ((|#3| |#3|) 138)) (-2489 (((-3 |#3| "failed") |#3|) 103)) (-2444 ((|#3| |#3|) 126)) (-3677 (((-3 |#3| "failed") |#3|) 76)) (-3853 ((|#3| |#3|) 136)) (-4117 (((-3 |#3| "failed") |#3|) 60)) (-2420 ((|#3| |#3|) 124)) (-3757 (((-3 |#3| "failed") |#3|) 106)) (-2543 ((|#3| |#3|) 134)) (-1366 (((-3 |#3| "failed") |#3|) 97)) (-2395 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) +(((-273 |#1| |#2| |#3| |#4|) (-13 (-964 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -2855 (|#3| |#3|)) (-15 -2430 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2332 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2420 (|#3| |#3|)) (-15 -2433 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2478 (|#3| |#3|)) (-15 -2492 (|#3| |#3|)) (-15 -2506 (|#3| |#3|)) (-15 -2518 (|#3| |#3|)) (-15 -2530 (|#3| |#3|)) (-15 -2543 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)))) (-38 (-401 (-552))) (-1197 |#1|) (-1220 |#1| |#2|) (-964 |#2|)) (T -273)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1197 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1220 *4 *5)) (-4 *6 (-964 *5)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2506 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-2543 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4))))) +(-13 (-964 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -2855 (|#3| |#3|)) (-15 -2430 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2332 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2420 (|#3| |#3|)) (-15 -2433 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2478 (|#3| |#3|)) (-15 -2492 (|#3| |#3|)) (-15 -2506 (|#3| |#3|)) (-15 -2518 (|#3| |#3|)) (-15 -2530 (|#3| |#3|)) (-15 -2543 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)))) +((-3249 (((-111) $) 19)) (-1712 (((-180) $) 7)) (-2181 (((-3 (-1154) "failed") $) 14)) (-3889 (((-3 (-629 $) "failed") $) NIL)) (-2763 (((-3 (-1154) "failed") $) 21)) (-2992 (((-3 (-1082) "failed") $) 17)) (-4190 (((-111) $) 15)) (-3213 (((-844) $) NIL)) (-4042 (((-111) $) 9))) +(((-274) (-13 (-599 (-844)) (-10 -8 (-15 -1712 ((-180) $)) (-15 -4190 ((-111) $)) (-15 -2992 ((-3 (-1082) "failed") $)) (-15 -3249 ((-111) $)) (-15 -2763 ((-3 (-1154) "failed") $)) (-15 -4042 ((-111) $)) (-15 -2181 ((-3 (-1154) "failed") $)) (-15 -3889 ((-3 (-629 $) "failed") $))))) (T -274)) +((-1712 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-2992 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-274)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-2763 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-274)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-2181 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-274)))) (-3889 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 (-274))) (-5 *1 (-274))))) +(-13 (-599 (-844)) (-10 -8 (-15 -1712 ((-180) $)) (-15 -4190 ((-111) $)) (-15 -2992 ((-3 (-1082) "failed") $)) (-15 -3249 ((-111) $)) (-15 -2763 ((-3 (-1154) "failed") $)) (-15 -4042 ((-111) $)) (-15 -2181 ((-3 (-1154) "failed") $)) (-15 -3889 ((-3 (-629 $) "failed") $)))) +((-3954 (($ (-1 (-111) |#2|) $) 24)) (-2738 (($ $) 36)) (-1625 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-2655 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-3707 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1759 (($ |#2| $ (-552)) 20) (($ $ $ (-552)) 22)) (-2012 (($ $ (-552)) 11) (($ $ (-1204 (-552))) 14)) (-2380 (($ $ |#2|) 30) (($ $ $) NIL)) (-4319 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-629 $)) NIL))) +(((-275 |#1| |#2|) (-10 -8 (-15 -3707 (|#1| |#1| |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -3707 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2380 (|#1| |#1| |#2|)) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -2655 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| |#2| |#1|)) (-15 -2738 (|#1| |#1|))) (-276 |#2|) (-1191)) (T -275)) +NIL +(-10 -8 (-15 -3707 (|#1| |#1| |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -3707 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2380 (|#1| |#1| |#2|)) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -2655 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| |#2| |#1|)) (-15 -2738 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) 85)) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2232 (($ $) 83 (|has| |#1| (-1078)))) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1078)))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-3707 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1580 (($ |#1| $ (-552)) 88) (($ $ $ (-552)) 87)) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-3502 (($ $ (-552)) 91) (($ $ (-1204 (-552))) 90)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 70)) (-2380 (($ $ |#1|) 93) (($ $ $) 92)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-276 |#1|) (-137) (-1191)) (T -276)) +((-2380 (*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)))) (-2380 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)))) (-3502 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-3502 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-1580 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1191)))) (-1580 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-3707 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) (-1625 (*1 *1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-1078)))) (-2232 (*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-1078)))) (-3707 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-832))))) +(-13 (-635 |t#1|) (-10 -8 (-6 -4369) (-15 -2380 ($ $ |t#1|)) (-15 -2380 ($ $ $)) (-15 -3502 ($ $ (-552))) (-15 -3502 ($ $ (-1204 (-552)))) (-15 -1625 ($ (-1 (-111) |t#1|) $)) (-15 -1580 ($ |t#1| $ (-552))) (-15 -1580 ($ $ $ (-552))) (-15 -3707 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -1740 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1078)) (PROGN (-15 -1625 ($ |t#1| $)) (-15 -2232 ($ $))) |%noBranch|) (IF (|has| |t#1| (-832)) (-15 -3707 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) ((** (($ $ $) 10))) (((-277 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-278)) (T -277)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4135 (($ $) 6)) (-3154 (($ $) 7)) (** (($ $ $) 8))) +((-2430 (($ $) 6)) (-2855 (($ $) 7)) (** (($ $ $) 8))) (((-278) (-137)) (T -278)) -((** (*1 *1 *1 *1) (-4 *1 (-278))) (-3154 (*1 *1 *1) (-4 *1 (-278))) (-4135 (*1 *1 *1) (-4 *1 (-278)))) -(-13 (-10 -8 (-15 -4135 ($ $)) (-15 -3154 ($ $)) (-15 ** ($ $ $)))) -((-3853 (((-627 (-1132 |#1|)) (-1132 |#1|) |#1|) 35)) (-2751 ((|#2| |#2| |#1|) 38)) (-4166 ((|#2| |#2| |#1|) 40)) (-2723 ((|#2| |#2| |#1|) 39))) -(((-279 |#1| |#2|) (-10 -7 (-15 -2751 (|#2| |#2| |#1|)) (-15 -2723 (|#2| |#2| |#1|)) (-15 -4166 (|#2| |#2| |#1|)) (-15 -3853 ((-627 (-1132 |#1|)) (-1132 |#1|) |#1|))) (-357) (-1226 |#1|)) (T -279)) -((-3853 (*1 *2 *3 *4) (-12 (-4 *4 (-357)) (-5 *2 (-627 (-1132 *4))) (-5 *1 (-279 *4 *5)) (-5 *3 (-1132 *4)) (-4 *5 (-1226 *4)))) (-4166 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3)))) (-2723 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3)))) (-2751 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -2751 (|#2| |#2| |#1|)) (-15 -2723 (|#2| |#2| |#1|)) (-15 -4166 (|#2| |#2| |#1|)) (-15 -3853 ((-627 (-1132 |#1|)) (-1132 |#1|) |#1|))) -((-1985 ((|#2| $ |#1|) 6))) -(((-280 |#1| |#2|) (-137) (-1076) (-1189)) (T -280)) -((-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189))))) -(-13 (-10 -8 (-15 -1985 (|t#2| $ |t#1|)))) -((-3473 ((|#3| $ |#2| |#3|) 12)) (-3413 ((|#3| $ |#2|) 10))) -(((-281 |#1| |#2| |#3|) (-10 -8 (-15 -3473 (|#3| |#1| |#2| |#3|)) (-15 -3413 (|#3| |#1| |#2|))) (-282 |#2| |#3|) (-1076) (-1189)) (T -281)) -NIL -(-10 -8 (-15 -3473 (|#3| |#1| |#2| |#3|)) (-15 -3413 (|#3| |#1| |#2|))) -((-2950 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4367)))) (-3473 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 11)) (-1985 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-282 |#1| |#2|) (-137) (-1076) (-1189)) (T -282)) -((-1985 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3413 (*1 *2 *1 *3) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3473 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189))))) -(-13 (-280 |t#1| |t#2|) (-10 -8 (-15 -1985 (|t#2| $ |t#1| |t#2|)) (-15 -3413 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -2950 (|t#2| $ |t#1| |t#2|)) (-15 -3473 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-278))) (-2855 (*1 *1 *1) (-4 *1 (-278))) (-2430 (*1 *1 *1) (-4 *1 (-278)))) +(-13 (-10 -8 (-15 -2430 ($ $)) (-15 -2855 ($ $)) (-15 ** ($ $ $)))) +((-3100 (((-629 (-1134 |#1|)) (-1134 |#1|) |#1|) 35)) (-2922 ((|#2| |#2| |#1|) 38)) (-3115 ((|#2| |#2| |#1|) 40)) (-4223 ((|#2| |#2| |#1|) 39))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2922 (|#2| |#2| |#1|)) (-15 -4223 (|#2| |#2| |#1|)) (-15 -3115 (|#2| |#2| |#1|)) (-15 -3100 ((-629 (-1134 |#1|)) (-1134 |#1|) |#1|))) (-357) (-1228 |#1|)) (T -279)) +((-3100 (*1 *2 *3 *4) (-12 (-4 *4 (-357)) (-5 *2 (-629 (-1134 *4))) (-5 *1 (-279 *4 *5)) (-5 *3 (-1134 *4)) (-4 *5 (-1228 *4)))) (-3115 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3)))) (-4223 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3)))) (-2922 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3))))) +(-10 -7 (-15 -2922 (|#2| |#2| |#1|)) (-15 -4223 (|#2| |#2| |#1|)) (-15 -3115 (|#2| |#2| |#1|)) (-15 -3100 ((-629 (-1134 |#1|)) (-1134 |#1|) |#1|))) +((-2060 ((|#2| $ |#1|) 6))) +(((-280 |#1| |#2|) (-137) (-1078) (-1191)) (T -280)) +((-2060 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -2060 (|t#2| $ |t#1|)))) +((-2957 ((|#3| $ |#2| |#3|) 12)) (-2892 ((|#3| $ |#2|) 10))) +(((-281 |#1| |#2| |#3|) (-10 -8 (-15 -2957 (|#3| |#1| |#2| |#3|)) (-15 -2892 (|#3| |#1| |#2|))) (-282 |#2| |#3|) (-1078) (-1191)) (T -281)) +NIL +(-10 -8 (-15 -2957 (|#3| |#1| |#2| |#3|)) (-15 -2892 (|#3| |#1| |#2|))) +((-1470 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4369)))) (-2957 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) 11)) (-2060 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-282 |#1| |#2|) (-137) (-1078) (-1191)) (T -282)) +((-2060 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) (-2892 (*1 *2 *1 *3) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) (-1470 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) (-2957 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191))))) +(-13 (-280 |t#1| |t#2|) (-10 -8 (-15 -2060 (|t#2| $ |t#1| |t#2|)) (-15 -2892 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4369)) (PROGN (-15 -1470 (|t#2| $ |t#1| |t#2|)) (-15 -2957 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-280 |#1| |#2|) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 35)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 40)) (-3245 (($ $) 38)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) 33)) (-2091 (($ |#2| |#3|) 19)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 ((|#3| $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 20)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3677 (((-3 $ "failed") $ $) NIL)) (-2718 (((-754) $) 34)) (-1985 ((|#2| $ |#2|) 42)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 24)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 29 T CONST)) (-1933 (($) 36 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 37))) -(((-283 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-301) (-10 -8 (-15 -3484 (|#3| $)) (-15 -1477 (|#2| $)) (-15 -2091 ($ |#2| |#3|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)) (-15 -1985 (|#2| $ |#2|)))) (-169) (-1211 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -283)) -((-2040 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2091 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1951 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1985 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-301) (-10 -8 (-15 -3484 (|#3| $)) (-15 -1477 (|#2| $)) (-15 -2091 ($ |#2| |#3|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)) (-15 -1985 (|#2| $ |#2|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 35)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 40)) (-3303 (($ $) 38)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) 33)) (-3884 (($ |#2| |#3|) 19)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3714 ((|#3| $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 20)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1859 (((-3 $ "failed") $ $) NIL)) (-3795 (((-756) $) 34)) (-2060 ((|#2| $ |#2|) 42)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 24)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 29 T CONST)) (-3309 (($) 36 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 37))) +(((-283 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-301) (-10 -8 (-15 -3714 (|#3| $)) (-15 -3213 (|#2| $)) (-15 -3884 ($ |#2| |#3|)) (-15 -1859 ((-3 $ "failed") $ $)) (-15 -1293 ((-3 $ "failed") $)) (-15 -3701 ($ $)) (-15 -2060 (|#2| $ |#2|)))) (-169) (-1213 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -283)) +((-1293 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3714 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1213 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3213 (*1 *2 *1) (-12 (-4 *2 (-1213 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3884 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1213 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1859 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3701 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2060 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1213 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-301) (-10 -8 (-15 -3714 (|#3| $)) (-15 -3213 (|#2| $)) (-15 -3884 ($ |#2| |#3|)) (-15 -1859 ((-3 $ "failed") $ $)) (-15 -1293 ((-3 $ "failed") $)) (-15 -3701 ($ $)) (-15 -2060 (|#2| $ |#2|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-284) (-137)) (T -284)) NIL -(-13 (-1028) (-110 $ $) (-10 -7 (-6 -4359))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2179 (($ (-1152) (-1152) (-1080) $) 17)) (-1976 (($ (-1152) (-627 (-944)) $) 22)) (-3652 (((-627 (-1061)) $) 10)) (-1334 (((-3 (-1080) "failed") (-1152) (-1152) $) 16)) (-2287 (((-3 (-627 (-944)) "failed") (-1152) $) 21)) (-2373 (($) 7)) (-2111 (($) 23)) (-1477 (((-842) $) 27)) (-2317 (($) 24))) -(((-285) (-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3652 ((-627 (-1061)) $)) (-15 -1334 ((-3 (-1080) "failed") (-1152) (-1152) $)) (-15 -2179 ($ (-1152) (-1152) (-1080) $)) (-15 -2287 ((-3 (-627 (-944)) "failed") (-1152) $)) (-15 -1976 ($ (-1152) (-627 (-944)) $)) (-15 -2111 ($)) (-15 -2317 ($))))) (T -285)) -((-2373 (*1 *1) (-5 *1 (-285))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-627 (-1061))) (-5 *1 (-285)))) (-1334 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-285)))) (-2179 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-285)))) (-2287 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-627 (-944))) (-5 *1 (-285)))) (-1976 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-285)))) (-2111 (*1 *1) (-5 *1 (-285))) (-2317 (*1 *1) (-5 *1 (-285)))) -(-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3652 ((-627 (-1061)) $)) (-15 -1334 ((-3 (-1080) "failed") (-1152) (-1152) $)) (-15 -2179 ($ (-1152) (-1152) (-1080) $)) (-15 -2287 ((-3 (-627 (-944)) "failed") (-1152) $)) (-15 -1976 ($ (-1152) (-627 (-944)) $)) (-15 -2111 ($)) (-15 -2317 ($)))) -((-2128 (((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))) 85)) (-2669 (((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|)))) 80) (((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754)) 38)) (-3717 (((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))) 82)) (-1965 (((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|)))) 62)) (-2215 (((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|)))) 61)) (-2410 (((-931 |#1|) (-671 (-401 (-931 |#1|)))) 50) (((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152)) 51))) -(((-286 |#1|) (-10 -7 (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152))) (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))))) (-15 -2215 ((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|))))) (-15 -1965 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|))))) (-15 -2128 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|))))) (-15 -3717 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))))) (-445)) (T -286)) -((-3717 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-627 (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4)))))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-627 (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4)))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 *4)))) (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5)))))) (-2669 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-401 (-931 *6)) (-1141 (-1152) (-931 *6)))) (-5 *5 (-754)) (-4 *6 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-671 (-401 (-931 *6)))))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5)))))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-4 *4 (-445)) (-5 *2 (-627 (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4))))) (-5 *1 (-286 *4)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-5 *2 (-931 *4)) (-5 *1 (-286 *4)) (-4 *4 (-445)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-931 *5)))) (-5 *4 (-1152)) (-5 *2 (-931 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445))))) -(-10 -7 (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152))) (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))))) (-15 -2215 ((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|))))) (-15 -1965 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|))))) (-15 -2128 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|))))) (-15 -3717 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))))) -((-3516 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3516 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1189) (-1189)) (T -287)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6))))) -(-10 -7 (-15 -3516 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-2927 (($ $) 12)) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2620 (($ $ $) 94 (|has| |#1| (-296)))) (-3887 (($) NIL (-1559 (|has| |#1| (-21)) (|has| |#1| (-709))) CONST)) (-4002 (($ $) 50 (|has| |#1| (-21)))) (-1667 (((-3 $ "failed") $) 61 (|has| |#1| (-709)))) (-3089 ((|#1| $) 11)) (-2040 (((-3 $ "failed") $) 59 (|has| |#1| (-709)))) (-2624 (((-111) $) NIL (|has| |#1| (-709)))) (-3516 (($ (-1 |#1| |#1|) $) 14)) (-3078 ((|#1| $) 10)) (-3338 (($ $) 49 (|has| |#1| (-21)))) (-1351 (((-3 $ "failed") $) 60 (|has| |#1| (-709)))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1951 (($ $) 63 (-1559 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3291 (((-627 $) $) 84 (|has| |#1| (-544)))) (-3321 (($ $ $) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 $)) 28 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-1152) |#1|) 17 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 21 (|has| |#1| (-506 (-1152) |#1|)))) (-3262 (($ |#1| |#1|) 9)) (-2405 (((-132)) 89 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 86 (|has| |#1| (-879 (-1152))))) (-2616 (($ $ $) NIL (|has| |#1| (-466)))) (-2493 (($ $ $) NIL (|has| |#1| (-466)))) (-1477 (($ (-552)) NIL (|has| |#1| (-1028))) (((-111) $) 36 (|has| |#1| (-1076))) (((-842) $) 35 (|has| |#1| (-1076)))) (-3995 (((-754)) 66 (|has| |#1| (-1028)))) (-1922 (($) 46 (|has| |#1| (-21)) CONST)) (-1933 (($) 56 (|has| |#1| (-709)) CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152))))) (-2292 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 91 (-1559 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-2396 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2384 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-552)) NIL (|has| |#1| (-466))) (($ $ (-754)) NIL (|has| |#1| (-709))) (($ $ (-900)) NIL (|has| |#1| (-1088)))) (* (($ $ |#1|) 54 (|has| |#1| (-1088))) (($ |#1| $) 53 (|has| |#1| (-1088))) (($ $ $) 52 (|has| |#1| (-1088))) (($ (-552) $) 69 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-25))))) -(((-288 |#1|) (-13 (-1189) (-10 -8 (-15 -2292 ($ |#1| |#1|)) (-15 -3262 ($ |#1| |#1|)) (-15 -2927 ($ $)) (-15 -3078 (|#1| $)) (-15 -3089 (|#1| $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1152) |#1|)) (-6 (-506 (-1152) |#1|)) |%noBranch|) (IF (|has| |#1| (-1076)) (PROGN (-6 (-1076)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-627 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2384 ($ |#1| $)) (-15 -2384 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3338 ($ $)) (-15 -4002 ($ $)) (-15 -2396 ($ |#1| $)) (-15 -2396 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1088)) (PROGN (-6 (-1088)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-709)) (PROGN (-6 (-709)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3291 ((-627 $) $)) |%noBranch|) (IF (|has| |#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1242 |#1|)) (-15 -2407 ($ $ $)) (-15 -1951 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2620 ($ $ $)) |%noBranch|))) (-1189)) (T -288)) -((-2292 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3262 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-2927 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3078 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3089 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)) (-5 *1 (-288 *2)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) (-2384 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) (-3338 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-2396 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-1351 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189)))) (-1667 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-627 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) (-4 *3 (-1189)))) (-2620 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1189)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) (-2407 (*1 *1 *1 *1) (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) (-1951 (*1 *1 *1) (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189)))))) -(-13 (-1189) (-10 -8 (-15 -2292 ($ |#1| |#1|)) (-15 -3262 ($ |#1| |#1|)) (-15 -2927 ($ $)) (-15 -3078 (|#1| $)) (-15 -3089 (|#1| $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1152) |#1|)) (-6 (-506 (-1152) |#1|)) |%noBranch|) (IF (|has| |#1| (-1076)) (PROGN (-6 (-1076)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-627 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2384 ($ |#1| $)) (-15 -2384 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3338 ($ $)) (-15 -4002 ($ $)) (-15 -2396 ($ |#1| $)) (-15 -2396 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1088)) (PROGN (-6 (-1088)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-709)) (PROGN (-6 (-709)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3291 ((-627 $) $)) |%noBranch|) (IF (|has| |#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1242 |#1|)) (-15 -2407 ($ $ $)) (-15 -1951 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2620 ($ $ $)) |%noBranch|))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-289 |#1| |#2|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076)) (T -289)) -NIL -(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) -((-3722 (((-306) (-1134) (-627 (-1134))) 16) (((-306) (-1134) (-1134)) 15) (((-306) (-627 (-1134))) 14) (((-306) (-1134)) 12))) -(((-290) (-10 -7 (-15 -3722 ((-306) (-1134))) (-15 -3722 ((-306) (-627 (-1134)))) (-15 -3722 ((-306) (-1134) (-1134))) (-15 -3722 ((-306) (-1134) (-627 (-1134)))))) (T -290)) -((-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1134))) (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290))))) -(-10 -7 (-15 -3722 ((-306) (-1134))) (-15 -3722 ((-306) (-627 (-1134)))) (-15 -3722 ((-306) (-1134) (-1134))) (-15 -3722 ((-306) (-1134) (-627 (-1134))))) -((-3516 ((|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)) 18))) -(((-291 |#1| |#2|) (-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)))) (-296) (-1189)) (T -291)) -((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1134)) (-5 *5 (-598 *6)) (-4 *6 (-296)) (-4 *2 (-1189)) (-5 *1 (-291 *6 *2))))) -(-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)))) -((-3516 ((|#2| (-1 |#2| |#1|) (-598 |#1|)) 17))) -(((-292 |#1| |#2|) (-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) (-296) (-296)) (T -292)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2))))) -(-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) -((-3805 (((-111) (-220)) 10))) -(((-293 |#1| |#2|) (-10 -7 (-15 -3805 ((-111) (-220)))) (-220) (-220)) (T -293)) -((-3805 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3805 ((-111) (-220)))) -((-3213 (((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220)))) 93)) (-1870 (((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220)))) 107) (((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220)))) 61)) (-2218 (((-627 (-1134)) (-1132 (-220))) NIL)) (-1444 (((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220)))) 58)) (-1579 (((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220)))) 49)) (-2445 (((-627 (-1134)) (-627 (-220))) NIL)) (-1798 (((-220) (-1070 (-823 (-220)))) 25)) (-1968 (((-220) (-1070 (-823 (-220)))) 26)) (-2848 (((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 54)) (-2095 (((-1134) (-220)) NIL))) -(((-294) (-10 -7 (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2848 ((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -3213 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1579 ((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))))) (T -294)) -((-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-294)))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294)))) (-1870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-1870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-3213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-1444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-111)) (-5 *1 (-294)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294))))) -(-10 -7 (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2848 ((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -3213 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1579 ((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220))))) -((-3443 (((-627 (-598 $)) $) 30)) (-2620 (($ $ (-288 $)) 81) (($ $ (-627 (-288 $))) 123) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) 113)) (-1703 (((-598 $) $) 112)) (-3820 (($ $) 19) (($ (-627 $)) 56)) (-3795 (((-627 (-113)) $) 38)) (-4148 (((-113) (-113)) 91)) (-1394 (((-111) $) 131)) (-3516 (($ (-1 $ $) (-598 $)) 89)) (-3362 (((-3 (-598 $) "failed") $) 93)) (-2991 (($ (-113) $) 61) (($ (-113) (-627 $)) 100)) (-2070 (((-111) $ (-113)) 117) (((-111) $ (-1152)) 116)) (-3476 (((-754) $) 46)) (-4094 (((-111) $ $) 59) (((-111) $ (-1152)) 51)) (-1507 (((-111) $) 129)) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 84) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) 69) (($ $ (-1152) (-1 $ $)) 75) (($ $ (-627 (-113)) (-627 (-1 $ $))) 83) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 85) (($ $ (-113) (-1 $ (-627 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-1985 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-627 $)) 109)) (-2911 (($ $) 53) (($ $ $) 119)) (-3092 (($ $) 17) (($ (-627 $)) 55)) (-3749 (((-111) (-113)) 22))) -(((-295 |#1|) (-10 -8 (-15 -1394 ((-111) |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -4094 ((-111) |#1| (-1152))) (-15 -4094 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -2991 (|#1| (-113) (-627 |#1|))) (-15 -2991 (|#1| (-113) |#1|)) (-15 -2070 ((-111) |#1| (-1152))) (-15 -2070 ((-111) |#1| (-113))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3795 ((-627 (-113)) |#1|)) (-15 -3443 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3476 ((-754) |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3820 (|#1| (-627 |#1|))) (-15 -3820 (|#1| |#1|)) (-15 -3092 (|#1| (-627 |#1|))) (-15 -3092 (|#1| |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|))) (-296)) (T -295)) -((-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296))))) -(-10 -8 (-15 -1394 ((-111) |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -4094 ((-111) |#1| (-1152))) (-15 -4094 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -2991 (|#1| (-113) (-627 |#1|))) (-15 -2991 (|#1| (-113) |#1|)) (-15 -2070 ((-111) |#1| (-1152))) (-15 -2070 ((-111) |#1| (-113))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3795 ((-627 (-113)) |#1|)) (-15 -3443 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3476 ((-754) |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3820 (|#1| (-627 |#1|))) (-15 -3820 (|#1| |#1|)) (-15 -3092 (|#1| (-627 |#1|))) (-15 -3092 (|#1| |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|))) -((-1465 (((-111) $ $) 7)) (-3443 (((-627 (-598 $)) $) 44)) (-2620 (($ $ (-288 $)) 56) (($ $ (-627 (-288 $))) 55) (($ $ (-627 (-598 $)) (-627 $)) 54)) (-4039 (((-3 (-598 $) "failed") $) 69)) (-1703 (((-598 $) $) 68)) (-3820 (($ $) 51) (($ (-627 $)) 50)) (-3795 (((-627 (-113)) $) 43)) (-4148 (((-113) (-113)) 42)) (-1394 (((-111) $) 22 (|has| $ (-1017 (-552))))) (-2602 (((-1148 $) (-598 $)) 25 (|has| $ (-1028)))) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-3516 (($ (-1 $ $) (-598 $)) 36)) (-3362 (((-3 (-598 $) "failed") $) 46)) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 45)) (-2991 (($ (-113) $) 38) (($ (-113) (-627 $)) 37)) (-2070 (((-111) $ (-113)) 40) (((-111) $ (-1152)) 39)) (-3476 (((-754) $) 47)) (-1498 (((-1096) $) 10)) (-4094 (((-111) $ $) 35) (((-111) $ (-1152)) 34)) (-1507 (((-111) $) 23 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) 67) (($ $ (-627 (-598 $)) (-627 $)) 66) (($ $ (-627 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-627 $) (-627 $)) 62) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 33) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 32) (($ $ (-1152) (-1 $ (-627 $))) 31) (($ $ (-1152) (-1 $ $)) 30) (($ $ (-627 (-113)) (-627 (-1 $ $))) 29) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 28) (($ $ (-113) (-1 $ (-627 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-1985 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-627 $)) 57)) (-2911 (($ $) 49) (($ $ $) 48)) (-1376 (($ $) 24 (|has| $ (-1028)))) (-1477 (((-842) $) 11) (($ (-598 $)) 70)) (-3092 (($ $) 53) (($ (-627 $)) 52)) (-3749 (((-111) (-113)) 41)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(-13 (-1030) (-110 $ $) (-10 -7 (-6 -4361))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3324 (($ (-1154) (-1154) (-1082) $) 17)) (-1834 (($ (-1154) (-629 (-946)) $) 22)) (-1600 (((-629 (-1063)) $) 10)) (-2083 (((-3 (-1082) "failed") (-1154) (-1154) $) 16)) (-1863 (((-3 (-629 (-946)) "failed") (-1154) $) 21)) (-3430 (($) 7)) (-3824 (($) 23)) (-3213 (((-844) $) 27)) (-4069 (($) 24))) +(((-285) (-13 (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -1600 ((-629 (-1063)) $)) (-15 -2083 ((-3 (-1082) "failed") (-1154) (-1154) $)) (-15 -3324 ($ (-1154) (-1154) (-1082) $)) (-15 -1863 ((-3 (-629 (-946)) "failed") (-1154) $)) (-15 -1834 ($ (-1154) (-629 (-946)) $)) (-15 -3824 ($)) (-15 -4069 ($))))) (T -285)) +((-3430 (*1 *1) (-5 *1 (-285))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-629 (-1063))) (-5 *1 (-285)))) (-2083 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-1082)) (-5 *1 (-285)))) (-3324 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1154)) (-5 *3 (-1082)) (-5 *1 (-285)))) (-1863 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-629 (-946))) (-5 *1 (-285)))) (-1834 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-946))) (-5 *1 (-285)))) (-3824 (*1 *1) (-5 *1 (-285))) (-4069 (*1 *1) (-5 *1 (-285)))) +(-13 (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -1600 ((-629 (-1063)) $)) (-15 -2083 ((-3 (-1082) "failed") (-1154) (-1154) $)) (-15 -3324 ($ (-1154) (-1154) (-1082) $)) (-15 -1863 ((-3 (-629 (-946)) "failed") (-1154) $)) (-15 -1834 ($ (-1154) (-629 (-946)) $)) (-15 -3824 ($)) (-15 -4069 ($)))) +((-2801 (((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |geneigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|)))) 85)) (-1381 (((-629 (-673 (-401 (-933 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|)))))) (-673 (-401 (-933 |#1|)))) 80) (((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|))) (-756) (-756)) 38)) (-4191 (((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|)))) 82)) (-1716 (((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|)))) 62)) (-2422 (((-629 (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (-673 (-401 (-933 |#1|)))) 61)) (-3767 (((-933 |#1|) (-673 (-401 (-933 |#1|)))) 50) (((-933 |#1|) (-673 (-401 (-933 |#1|))) (-1154)) 51))) +(((-286 |#1|) (-10 -7 (-15 -3767 ((-933 |#1|) (-673 (-401 (-933 |#1|))) (-1154))) (-15 -3767 ((-933 |#1|) (-673 (-401 (-933 |#1|))))) (-15 -2422 ((-629 (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (-673 (-401 (-933 |#1|))))) (-15 -1716 ((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|))))) (-15 -1381 ((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|))) (-756) (-756))) (-15 -1381 ((-629 (-673 (-401 (-933 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|)))))) (-673 (-401 (-933 |#1|))))) (-15 -2801 ((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |geneigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|))))) (-15 -4191 ((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|)))))) (-445)) (T -286)) +((-4191 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-629 (-2 (|:| |eigval| (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-673 (-401 (-933 *4)))))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-629 (-2 (|:| |eigval| (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4)))) (|:| |geneigvec| (-629 (-673 (-401 (-933 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-673 (-401 (-933 *4)))))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-401 (-933 *5)) (-1143 (-1154) (-933 *5)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 *4)))) (-4 *5 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-673 (-401 (-933 *5)))))) (-1381 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-401 (-933 *6)) (-1143 (-1154) (-933 *6)))) (-5 *5 (-756)) (-4 *6 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-673 (-401 (-933 *6)))))) (-1716 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-401 (-933 *5)) (-1143 (-1154) (-933 *5)))) (-4 *5 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-673 (-401 (-933 *5)))))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-933 *4)))) (-4 *4 (-445)) (-5 *2 (-629 (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4))))) (-5 *1 (-286 *4)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-933 *4)))) (-5 *2 (-933 *4)) (-5 *1 (-286 *4)) (-4 *4 (-445)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-401 (-933 *5)))) (-5 *4 (-1154)) (-5 *2 (-933 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445))))) +(-10 -7 (-15 -3767 ((-933 |#1|) (-673 (-401 (-933 |#1|))) (-1154))) (-15 -3767 ((-933 |#1|) (-673 (-401 (-933 |#1|))))) (-15 -2422 ((-629 (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (-673 (-401 (-933 |#1|))))) (-15 -1716 ((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|))))) (-15 -1381 ((-629 (-673 (-401 (-933 |#1|)))) (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|))) (-673 (-401 (-933 |#1|))) (-756) (-756))) (-15 -1381 ((-629 (-673 (-401 (-933 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|)))))) (-673 (-401 (-933 |#1|))))) (-15 -2801 ((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |geneigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|))))) (-15 -4191 ((-629 (-2 (|:| |eigval| (-3 (-401 (-933 |#1|)) (-1143 (-1154) (-933 |#1|)))) (|:| |eigmult| (-756)) (|:| |eigvec| (-629 (-673 (-401 (-933 |#1|))))))) (-673 (-401 (-933 |#1|)))))) +((-1477 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) +(((-287 |#1| |#2|) (-10 -7 (-15 -1477 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1191) (-1191)) (T -287)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6))))) +(-10 -7 (-15 -1477 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3643 (((-111) $) NIL (|has| |#1| (-21)))) (-2036 (($ $) 12)) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2172 (($ $ $) 94 (|has| |#1| (-296)))) (-2130 (($) NIL (-4029 (|has| |#1| (-21)) (|has| |#1| (-711))) CONST)) (-2080 (($ $) 50 (|has| |#1| (-21)))) (-3942 (((-3 $ "failed") $) 61 (|has| |#1| (-711)))) (-1300 ((|#1| $) 11)) (-1293 (((-3 $ "failed") $) 59 (|has| |#1| (-711)))) (-4065 (((-111) $) NIL (|has| |#1| (-711)))) (-1477 (($ (-1 |#1| |#1|) $) 14)) (-1286 ((|#1| $) 10)) (-1658 (($ $) 49 (|has| |#1| (-21)))) (-2651 (((-3 $ "failed") $) 60 (|has| |#1| (-711)))) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3701 (($ $) 63 (-4029 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2480 (((-629 $) $) 84 (|has| |#1| (-544)))) (-2432 (($ $ $) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 $)) 28 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-1154) |#1|) 17 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 21 (|has| |#1| (-506 (-1154) |#1|)))) (-3369 (($ |#1| |#1|) 9)) (-3725 (((-132)) 89 (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) 86 (|has| |#1| (-881 (-1154))))) (-2074 (($ $ $) NIL (|has| |#1| (-466)))) (-2104 (($ $ $) NIL (|has| |#1| (-466)))) (-3213 (($ (-552)) NIL (|has| |#1| (-1030))) (((-111) $) 36 (|has| |#1| (-1078))) (((-844) $) 35 (|has| |#1| (-1078)))) (-2014 (((-756)) 66 (|has| |#1| (-1030)))) (-3297 (($) 46 (|has| |#1| (-21)) CONST)) (-3309 (($) 56 (|has| |#1| (-711)) CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154))))) (-1613 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1078)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 91 (-4029 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-1709 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1698 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-552)) NIL (|has| |#1| (-466))) (($ $ (-756)) NIL (|has| |#1| (-711))) (($ $ (-902)) NIL (|has| |#1| (-1090)))) (* (($ $ |#1|) 54 (|has| |#1| (-1090))) (($ |#1| $) 53 (|has| |#1| (-1090))) (($ $ $) 52 (|has| |#1| (-1090))) (($ (-552) $) 69 (|has| |#1| (-21))) (($ (-756) $) NIL (|has| |#1| (-21))) (($ (-902) $) NIL (|has| |#1| (-25))))) +(((-288 |#1|) (-13 (-1191) (-10 -8 (-15 -1613 ($ |#1| |#1|)) (-15 -3369 ($ |#1| |#1|)) (-15 -2036 ($ $)) (-15 -1286 (|#1| $)) (-15 -1300 (|#1| $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1154) |#1|)) (-6 (-506 (-1154) |#1|)) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -2432 ($ $ $)) (-15 -2432 ($ $ (-629 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1698 ($ |#1| $)) (-15 -1698 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1658 ($ $)) (-15 -2080 ($ $)) (-15 -1709 ($ |#1| $)) (-15 -1709 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-711)) (PROGN (-6 (-711)) (-15 -2651 ((-3 $ "failed") $)) (-15 -3942 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -2651 ((-3 $ "failed") $)) (-15 -3942 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-702 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -2480 ((-629 $) $)) |%noBranch|) (IF (|has| |#1| (-881 (-1154))) (-6 (-881 (-1154))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1244 |#1|)) (-15 -1720 ($ $ $)) (-15 -3701 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2172 ($ $ $)) |%noBranch|))) (-1191)) (T -288)) +((-1613 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) (-3369 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) (-2036 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) (-1286 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) (-1300 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-288 *3)))) (-2432 (*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1078)) (-4 *2 (-1191)) (-5 *1 (-288 *2)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1078)) (-4 *3 (-1191)) (-5 *1 (-288 *3)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1191)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1191)))) (-1658 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) (-2080 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) (-1709 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) (-1709 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) (-2651 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-711)) (-4 *2 (-1191)))) (-3942 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-711)) (-4 *2 (-1191)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-629 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) (-4 *3 (-1191)))) (-2172 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1191)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1090)) (-4 *2 (-1191)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1090)) (-4 *2 (-1191)))) (-1720 (*1 *1 *1 *1) (-4029 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1191))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1191))))) (-3701 (*1 *1 *1) (-4029 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1191))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1191)))))) +(-13 (-1191) (-10 -8 (-15 -1613 ($ |#1| |#1|)) (-15 -3369 ($ |#1| |#1|)) (-15 -2036 ($ $)) (-15 -1286 (|#1| $)) (-15 -1300 (|#1| $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1154) |#1|)) (-6 (-506 (-1154) |#1|)) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -2432 ($ $ $)) (-15 -2432 ($ $ (-629 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1698 ($ |#1| $)) (-15 -1698 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1658 ($ $)) (-15 -2080 ($ $)) (-15 -1709 ($ |#1| $)) (-15 -1709 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-711)) (PROGN (-6 (-711)) (-15 -2651 ((-3 $ "failed") $)) (-15 -3942 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -2651 ((-3 $ "failed") $)) (-15 -3942 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-702 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -2480 ((-629 $) $)) |%noBranch|) (IF (|has| |#1| (-881 (-1154))) (-6 (-881 (-1154))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1244 |#1|)) (-15 -1720 ($ $ $)) (-15 -3701 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2172 ($ $ $)) |%noBranch|))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) NIL)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) NIL)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-289 |#1| |#2|) (-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) (-1078) (-1078)) (T -289)) +NIL +(-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) +((-1825 (((-306) (-1136) (-629 (-1136))) 16) (((-306) (-1136) (-1136)) 15) (((-306) (-629 (-1136))) 14) (((-306) (-1136)) 12))) +(((-290) (-10 -7 (-15 -1825 ((-306) (-1136))) (-15 -1825 ((-306) (-629 (-1136)))) (-15 -1825 ((-306) (-1136) (-1136))) (-15 -1825 ((-306) (-1136) (-629 (-1136)))))) (T -290)) +((-1825 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-1136))) (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-290)))) (-1825 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-290)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-306)) (-5 *1 (-290)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-290))))) +(-10 -7 (-15 -1825 ((-306) (-1136))) (-15 -1825 ((-306) (-629 (-1136)))) (-15 -1825 ((-306) (-1136) (-1136))) (-15 -1825 ((-306) (-1136) (-629 (-1136))))) +((-1477 ((|#2| (-1 |#2| |#1|) (-1136) (-598 |#1|)) 18))) +(((-291 |#1| |#2|) (-10 -7 (-15 -1477 (|#2| (-1 |#2| |#1|) (-1136) (-598 |#1|)))) (-296) (-1191)) (T -291)) +((-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1136)) (-5 *5 (-598 *6)) (-4 *6 (-296)) (-4 *2 (-1191)) (-5 *1 (-291 *6 *2))))) +(-10 -7 (-15 -1477 (|#2| (-1 |#2| |#1|) (-1136) (-598 |#1|)))) +((-1477 ((|#2| (-1 |#2| |#1|) (-598 |#1|)) 17))) +(((-292 |#1| |#2|) (-10 -7 (-15 -1477 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) (-296) (-296)) (T -292)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2))))) +(-10 -7 (-15 -1477 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) +((-3832 (((-111) (-220)) 10))) +(((-293 |#1| |#2|) (-10 -7 (-15 -3832 ((-111) (-220)))) (-220) (-220)) (T -293)) +((-3832 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3832 ((-111) (-220)))) +((-2965 (((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220)))) 93)) (-2071 (((-1134 (-220)) (-1237 (-310 (-220))) (-629 (-1154)) (-1072 (-825 (-220)))) 107) (((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220)))) 61)) (-2457 (((-629 (-1136)) (-1134 (-220))) NIL)) (-3771 (((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220)))) 58)) (-2445 (((-629 (-220)) (-933 (-401 (-552))) (-1154) (-1072 (-825 (-220)))) 49)) (-2912 (((-629 (-1136)) (-629 (-220))) NIL)) (-3894 (((-220) (-1072 (-825 (-220)))) 25)) (-1746 (((-220) (-1072 (-825 (-220)))) 26)) (-2548 (((-111) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 54)) (-3730 (((-1136) (-220)) NIL))) +(((-294) (-10 -7 (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -2548 ((-111) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3771 ((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220))))) (-15 -2965 ((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-1237 (-310 (-220))) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2445 ((-629 (-220)) (-933 (-401 (-552))) (-1154) (-1072 (-825 (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220)))))) (T -294)) +((-2457 (*1 *2 *3) (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-294)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-294)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-294)))) (-2445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *4 (-1154)) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-294)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *4 (-629 (-1154))) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294)))) (-2071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-629 (-1154))) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294)))) (-2965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-629 (-1154))) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1154)) (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-294)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-111)) (-5 *1 (-294)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-294))))) +(-10 -7 (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -2548 ((-111) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3771 ((-629 (-220)) (-310 (-220)) (-1154) (-1072 (-825 (-220))))) (-15 -2965 ((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-310 (-220)) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2071 ((-1134 (-220)) (-1237 (-310 (-220))) (-629 (-1154)) (-1072 (-825 (-220))))) (-15 -2445 ((-629 (-220)) (-933 (-401 (-552))) (-1154) (-1072 (-825 (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220))))) +((-3361 (((-629 (-598 $)) $) 30)) (-2172 (($ $ (-288 $)) 81) (($ $ (-629 (-288 $))) 123) (($ $ (-629 (-598 $)) (-629 $)) NIL)) (-1393 (((-3 (-598 $) "failed") $) 113)) (-2832 (((-598 $) $) 112)) (-3963 (($ $) 19) (($ (-629 $)) 56)) (-3751 (((-629 (-113)) $) 38)) (-2951 (((-113) (-113)) 91)) (-3302 (((-111) $) 131)) (-1477 (($ (-1 $ $) (-598 $)) 89)) (-1875 (((-3 (-598 $) "failed") $) 93)) (-4086 (($ (-113) $) 61) (($ (-113) (-629 $)) 100)) (-3515 (((-111) $ (-113)) 117) (((-111) $ (-1154)) 116)) (-2384 (((-756) $) 46)) (-3633 (((-111) $ $) 59) (((-111) $ (-1154)) 51)) (-3117 (((-111) $) 129)) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL) (($ $ (-629 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) 84) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-1154) (-1 $ (-629 $))) 69) (($ $ (-1154) (-1 $ $)) 75) (($ $ (-629 (-113)) (-629 (-1 $ $))) 83) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) 85) (($ $ (-113) (-1 $ (-629 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-2060 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-629 $)) 109)) (-1877 (($ $) 53) (($ $ $) 119)) (-3044 (($ $) 17) (($ (-629 $)) 55)) (-1374 (((-111) (-113)) 22))) +(((-295 |#1|) (-10 -8 (-15 -3302 ((-111) |#1|)) (-15 -3117 ((-111) |#1|)) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| |#1|)))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| |#1|)))) (-15 -3633 ((-111) |#1| (-1154))) (-15 -3633 ((-111) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -4086 (|#1| (-113) (-629 |#1|))) (-15 -4086 (|#1| (-113) |#1|)) (-15 -3515 ((-111) |#1| (-1154))) (-15 -3515 ((-111) |#1| (-113))) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -3751 ((-629 (-113)) |#1|)) (-15 -3361 ((-629 (-598 |#1|)) |#1|)) (-15 -1875 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2384 ((-756) |#1|)) (-15 -1877 (|#1| |#1| |#1|)) (-15 -1877 (|#1| |#1|)) (-15 -3963 (|#1| (-629 |#1|))) (-15 -3963 (|#1| |#1|)) (-15 -3044 (|#1| (-629 |#1|))) (-15 -3044 (|#1| |#1|)) (-15 -2172 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2172 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2172 (|#1| |#1| (-288 |#1|))) (-15 -2060 (|#1| (-113) (-629 |#1|))) (-15 -2060 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -2832 ((-598 |#1|) |#1|)) (-15 -1393 ((-3 (-598 |#1|) "failed") |#1|))) (-296)) (T -295)) +((-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296))))) +(-10 -8 (-15 -3302 ((-111) |#1|)) (-15 -3117 ((-111) |#1|)) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| |#1|)))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| |#1|)))) (-15 -3633 ((-111) |#1| (-1154))) (-15 -3633 ((-111) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -4086 (|#1| (-113) (-629 |#1|))) (-15 -4086 (|#1| (-113) |#1|)) (-15 -3515 ((-111) |#1| (-1154))) (-15 -3515 ((-111) |#1| (-113))) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -3751 ((-629 (-113)) |#1|)) (-15 -3361 ((-629 (-598 |#1|)) |#1|)) (-15 -1875 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2384 ((-756) |#1|)) (-15 -1877 (|#1| |#1| |#1|)) (-15 -1877 (|#1| |#1|)) (-15 -3963 (|#1| (-629 |#1|))) (-15 -3963 (|#1| |#1|)) (-15 -3044 (|#1| (-629 |#1|))) (-15 -3044 (|#1| |#1|)) (-15 -2172 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2172 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2172 (|#1| |#1| (-288 |#1|))) (-15 -2060 (|#1| (-113) (-629 |#1|))) (-15 -2060 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -2832 ((-598 |#1|) |#1|)) (-15 -1393 ((-3 (-598 |#1|) "failed") |#1|))) +((-3202 (((-111) $ $) 7)) (-3361 (((-629 (-598 $)) $) 44)) (-2172 (($ $ (-288 $)) 56) (($ $ (-629 (-288 $))) 55) (($ $ (-629 (-598 $)) (-629 $)) 54)) (-1393 (((-3 (-598 $) "failed") $) 69)) (-2832 (((-598 $) $) 68)) (-3963 (($ $) 51) (($ (-629 $)) 50)) (-3751 (((-629 (-113)) $) 43)) (-2951 (((-113) (-113)) 42)) (-3302 (((-111) $) 22 (|has| $ (-1019 (-552))))) (-1941 (((-1150 $) (-598 $)) 25 (|has| $ (-1030)))) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-1477 (($ (-1 $ $) (-598 $)) 36)) (-1875 (((-3 (-598 $) "failed") $) 46)) (-2623 (((-1136) $) 9)) (-3438 (((-629 (-598 $)) $) 45)) (-4086 (($ (-113) $) 38) (($ (-113) (-629 $)) 37)) (-3515 (((-111) $ (-113)) 40) (((-111) $ (-1154)) 39)) (-2384 (((-756) $) 47)) (-2876 (((-1098) $) 10)) (-3633 (((-111) $ $) 35) (((-111) $ (-1154)) 34)) (-3117 (((-111) $) 23 (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) 67) (($ $ (-629 (-598 $)) (-629 $)) 66) (($ $ (-629 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-629 $) (-629 $)) 62) (($ $ (-629 (-1154)) (-629 (-1 $ $))) 33) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) 32) (($ $ (-1154) (-1 $ (-629 $))) 31) (($ $ (-1154) (-1 $ $)) 30) (($ $ (-629 (-113)) (-629 (-1 $ $))) 29) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) 28) (($ $ (-113) (-1 $ (-629 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-2060 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-629 $)) 57)) (-1877 (($ $) 49) (($ $ $) 48)) (-3521 (($ $) 24 (|has| $ (-1030)))) (-3213 (((-844) $) 11) (($ (-598 $)) 70)) (-3044 (($ $) 53) (($ (-629 $)) 52)) (-1374 (((-111) (-113)) 41)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18))) (((-296) (-137)) (T -296)) -((-1985 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *1))) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-598 *1))) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-3092 (*1 *1 *1) (-4 *1 (-296))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) (-3820 (*1 *1 *1) (-4 *1 (-296))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) (-2911 (*1 *1 *1) (-4 *1 (-296))) (-2911 (*1 *1 *1 *1) (-4 *1 (-296))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-754)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-627 (-113))))) (-4148 (*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-3749 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-2070 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-2070 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) (-2991 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-3516 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) (-4094 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111)))) (-4094 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1028)) (-4 *1 (-296)) (-5 *2 (-1148 *1)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-1028)) (-4 *1 (-296)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111))))) -(-13 (-830) (-1017 (-598 $)) (-506 (-598 $) $) (-303 $) (-10 -8 (-15 -1985 ($ (-113) $)) (-15 -1985 ($ (-113) $ $)) (-15 -1985 ($ (-113) $ $ $)) (-15 -1985 ($ (-113) $ $ $ $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2620 ($ $ (-288 $))) (-15 -2620 ($ $ (-627 (-288 $)))) (-15 -2620 ($ $ (-627 (-598 $)) (-627 $))) (-15 -3092 ($ $)) (-15 -3092 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -2911 ($ $)) (-15 -2911 ($ $ $)) (-15 -3476 ((-754) $)) (-15 -3362 ((-3 (-598 $) "failed") $)) (-15 -1684 ((-627 (-598 $)) $)) (-15 -3443 ((-627 (-598 $)) $)) (-15 -3795 ((-627 (-113)) $)) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (-15 -2991 ($ (-113) $)) (-15 -2991 ($ (-113) (-627 $))) (-15 -3516 ($ (-1 $ $) (-598 $))) (-15 -4094 ((-111) $ $)) (-15 -4094 ((-111) $ (-1152))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-1152) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-1152) (-1 $ $))) (-15 -3321 ($ $ (-627 (-113)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-113)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-113) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1028)) (PROGN (-15 -2602 ((-1148 $) (-598 $))) (-15 -1376 ($ $))) |%noBranch|) (IF (|has| $ (-1017 (-552))) (PROGN (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $))) |%noBranch|))) -(((-101) . T) ((-599 (-842)) . T) ((-303 $) . T) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-830) . T) ((-1017 (-598 $)) . T) ((-1076) . T)) -((-4005 (((-627 |#1|) (-627 |#1|)) 10))) -(((-297 |#1|) (-10 -7 (-15 -4005 ((-627 |#1|) (-627 |#1|)))) (-828)) (T -297)) -((-4005 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-828)) (-5 *1 (-297 *3))))) -(-10 -7 (-15 -4005 ((-627 |#1|) (-627 |#1|)))) -((-3516 (((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -3516 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) (-1028) (-1028)) (T -298)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-671 *6)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -3516 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) -((-3454 (((-1235 (-310 (-373))) (-1235 (-310 (-220)))) 105)) (-2972 (((-1070 (-823 (-220))) (-1070 (-823 (-373)))) 40)) (-2218 (((-627 (-1134)) (-1132 (-220))) 87)) (-2294 (((-310 (-373)) (-931 (-220))) 50)) (-3816 (((-220) (-931 (-220))) 46)) (-4110 (((-1134) (-373)) 169)) (-1366 (((-823 (-220)) (-823 (-373))) 34)) (-2884 (((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220)))) 143)) (-4206 (((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) 181) (((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) 179)) (-2515 (((-671 (-220)) (-627 (-220)) (-754)) 14)) (-1803 (((-1235 (-681)) (-627 (-220))) 94)) (-2445 (((-627 (-1134)) (-627 (-220))) 75)) (-3425 (((-3 (-310 (-220)) "failed") (-310 (-220))) 120)) (-3805 (((-111) (-220) (-1070 (-823 (-220)))) 109)) (-3745 (((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-1798 (((-220) (-1070 (-823 (-220)))) 107)) (-1968 (((-220) (-1070 (-823 (-220)))) 108)) (-2263 (((-220) (-401 (-552))) 27)) (-3811 (((-1134) (-373)) 73)) (-3243 (((-220) (-373)) 17)) (-1457 (((-373) (-1235 (-310 (-220)))) 154)) (-1693 (((-310 (-220)) (-310 (-373))) 23)) (-4216 (((-401 (-552)) (-310 (-220))) 53)) (-1354 (((-310 (-401 (-552))) (-310 (-220))) 69)) (-3376 (((-310 (-373)) (-310 (-220))) 98)) (-1708 (((-220) (-310 (-220))) 54)) (-1413 (((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) 64)) (-1730 (((-1070 (-823 (-220))) (-1070 (-823 (-220)))) 61)) (-2095 (((-1134) (-220)) 72)) (-2084 (((-681) (-220)) 90)) (-2699 (((-401 (-552)) (-220)) 55)) (-2379 (((-310 (-373)) (-220)) 49)) (-3562 (((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373))))) 43)) (-2668 (((-1014) (-627 (-1014))) 165) (((-1014) (-1014) (-1014)) 162)) (-2031 (((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-299) (-10 -7 (-15 -3243 ((-220) (-373))) (-15 -1693 ((-310 (-220)) (-310 (-373)))) (-15 -1366 ((-823 (-220)) (-823 (-373)))) (-15 -2972 ((-1070 (-823 (-220))) (-1070 (-823 (-373))))) (-15 -3562 ((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373)))))) (-15 -2699 ((-401 (-552)) (-220))) (-15 -4216 ((-401 (-552)) (-310 (-220)))) (-15 -1708 ((-220) (-310 (-220)))) (-15 -3425 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1457 ((-373) (-1235 (-310 (-220))))) (-15 -2884 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220))))) (-15 -1354 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1730 ((-1070 (-823 (-220))) (-1070 (-823 (-220))))) (-15 -1413 ((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-15 -2084 ((-681) (-220))) (-15 -1803 ((-1235 (-681)) (-627 (-220)))) (-15 -3376 ((-310 (-373)) (-310 (-220)))) (-15 -3454 ((-1235 (-310 (-373))) (-1235 (-310 (-220))))) (-15 -3805 ((-111) (-220) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -3811 ((-1134) (-373))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2668 ((-1014) (-1014) (-1014))) (-15 -2668 ((-1014) (-627 (-1014)))) (-15 -4110 ((-1134) (-373))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))))) (-15 -2031 ((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3745 ((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -2294 ((-310 (-373)) (-931 (-220)))) (-15 -3816 ((-220) (-931 (-220)))) (-15 -2379 ((-310 (-373)) (-220))) (-15 -2263 ((-220) (-401 (-552)))) (-15 -2515 ((-671 (-220)) (-627 (-220)) (-754))))) (T -299)) -((-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) (-5 *1 (-299)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-627 (-1014))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-2668 (*1 *2 *2 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-299)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-823 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-299)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-1235 (-310 (-373)))) (-5 *1 (-299)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1235 (-681))) (-5 *1 (-299)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-681)) (-5 *1 (-299)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *2 (-627 (-220))) (-5 *1 (-299)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) (-5 *1 (-299)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) (-5 *1 (-299)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299)))) (-3425 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-627 (-1070 (-823 (-373))))) (-5 *2 (-627 (-1070 (-823 (-220))))) (-5 *1 (-299)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-373)))) (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-823 (-373))) (-5 *2 (-823 (-220))) (-5 *1 (-299)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) -(-10 -7 (-15 -3243 ((-220) (-373))) (-15 -1693 ((-310 (-220)) (-310 (-373)))) (-15 -1366 ((-823 (-220)) (-823 (-373)))) (-15 -2972 ((-1070 (-823 (-220))) (-1070 (-823 (-373))))) (-15 -3562 ((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373)))))) (-15 -2699 ((-401 (-552)) (-220))) (-15 -4216 ((-401 (-552)) (-310 (-220)))) (-15 -1708 ((-220) (-310 (-220)))) (-15 -3425 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1457 ((-373) (-1235 (-310 (-220))))) (-15 -2884 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220))))) (-15 -1354 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1730 ((-1070 (-823 (-220))) (-1070 (-823 (-220))))) (-15 -1413 ((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-15 -2084 ((-681) (-220))) (-15 -1803 ((-1235 (-681)) (-627 (-220)))) (-15 -3376 ((-310 (-373)) (-310 (-220)))) (-15 -3454 ((-1235 (-310 (-373))) (-1235 (-310 (-220))))) (-15 -3805 ((-111) (-220) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -3811 ((-1134) (-373))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2668 ((-1014) (-1014) (-1014))) (-15 -2668 ((-1014) (-627 (-1014)))) (-15 -4110 ((-1134) (-373))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))))) (-15 -2031 ((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3745 ((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -2294 ((-310 (-373)) (-931 (-220)))) (-15 -3816 ((-220) (-931 (-220)))) (-15 -2379 ((-310 (-373)) (-220))) (-15 -2263 ((-220) (-401 (-552)))) (-15 -2515 ((-671 (-220)) (-627 (-220)) (-754)))) -((-4224 (((-111) $ $) 11)) (-2813 (($ $ $) 15)) (-2789 (($ $ $) 14)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 44)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 53)) (-1323 (($ $ $) 21) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2761 (((-3 $ "failed") $ $) 17)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 46))) -(((-300 |#1|) (-10 -8 (-15 -2556 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3347 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3347 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -4224 ((-111) |#1| |#1|)) (-15 -1491 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3009 ((-2 (|:| -3069 (-627 |#1|)) (|:| -2220 |#1|)) (-627 |#1|))) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) (-301)) (T -300)) -NIL -(-10 -8 (-15 -2556 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3347 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3347 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -4224 ((-111) |#1| |#1|)) (-15 -1491 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3009 ((-2 (|:| -3069 (-627 |#1|)) (|:| -2220 |#1|)) (-627 |#1|))) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-2060 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2060 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2060 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2060 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 *1)) (-4 *1 (-296)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-288 *1))) (-4 *1 (-296)))) (-2172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-598 *1))) (-5 *3 (-629 *1)) (-4 *1 (-296)))) (-3044 (*1 *1 *1) (-4 *1 (-296))) (-3044 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-296)))) (-3963 (*1 *1 *1) (-4 *1 (-296))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-296)))) (-1877 (*1 *1 *1) (-4 *1 (-296))) (-1877 (*1 *1 *1 *1) (-4 *1 (-296))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-756)))) (-1875 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-629 (-598 *1))) (-4 *1 (-296)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-629 (-598 *1))) (-4 *1 (-296)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-629 (-113))))) (-2951 (*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1374 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3515 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3515 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1154)) (-5 *2 (-111)))) (-4086 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-4086 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 *1)) (-4 *1 (-296)))) (-1477 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) (-3633 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111)))) (-3633 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1154)) (-5 *2 (-111)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-1 *1 *1))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-1 *1 (-629 *1)))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1 *1 (-629 *1))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 (-1 *1 *1))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 (-1 *1 (-629 *1)))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-629 *1))) (-4 *1 (-296)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1030)) (-4 *1 (-296)) (-5 *2 (-1150 *1)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1030)) (-4 *1 (-296)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1019 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1019 (-552))) (-4 *1 (-296)) (-5 *2 (-111))))) +(-13 (-832) (-1019 (-598 $)) (-506 (-598 $) $) (-303 $) (-10 -8 (-15 -2060 ($ (-113) $)) (-15 -2060 ($ (-113) $ $)) (-15 -2060 ($ (-113) $ $ $)) (-15 -2060 ($ (-113) $ $ $ $)) (-15 -2060 ($ (-113) (-629 $))) (-15 -2172 ($ $ (-288 $))) (-15 -2172 ($ $ (-629 (-288 $)))) (-15 -2172 ($ $ (-629 (-598 $)) (-629 $))) (-15 -3044 ($ $)) (-15 -3044 ($ (-629 $))) (-15 -3963 ($ $)) (-15 -3963 ($ (-629 $))) (-15 -1877 ($ $)) (-15 -1877 ($ $ $)) (-15 -2384 ((-756) $)) (-15 -1875 ((-3 (-598 $) "failed") $)) (-15 -3438 ((-629 (-598 $)) $)) (-15 -3361 ((-629 (-598 $)) $)) (-15 -3751 ((-629 (-113)) $)) (-15 -2951 ((-113) (-113))) (-15 -1374 ((-111) (-113))) (-15 -3515 ((-111) $ (-113))) (-15 -3515 ((-111) $ (-1154))) (-15 -4086 ($ (-113) $)) (-15 -4086 ($ (-113) (-629 $))) (-15 -1477 ($ (-1 $ $) (-598 $))) (-15 -3633 ((-111) $ $)) (-15 -3633 ((-111) $ (-1154))) (-15 -2432 ($ $ (-629 (-1154)) (-629 (-1 $ $)))) (-15 -2432 ($ $ (-629 (-1154)) (-629 (-1 $ (-629 $))))) (-15 -2432 ($ $ (-1154) (-1 $ (-629 $)))) (-15 -2432 ($ $ (-1154) (-1 $ $))) (-15 -2432 ($ $ (-629 (-113)) (-629 (-1 $ $)))) (-15 -2432 ($ $ (-629 (-113)) (-629 (-1 $ (-629 $))))) (-15 -2432 ($ $ (-113) (-1 $ (-629 $)))) (-15 -2432 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1030)) (PROGN (-15 -1941 ((-1150 $) (-598 $))) (-15 -3521 ($ $))) |%noBranch|) (IF (|has| $ (-1019 (-552))) (PROGN (-15 -3117 ((-111) $)) (-15 -3302 ((-111) $))) |%noBranch|))) +(((-101) . T) ((-599 (-844)) . T) ((-303 $) . T) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-832) . T) ((-1019 (-598 $)) . T) ((-1078) . T)) +((-2100 (((-629 |#1|) (-629 |#1|)) 10))) +(((-297 |#1|) (-10 -7 (-15 -2100 ((-629 |#1|) (-629 |#1|)))) (-830)) (T -297)) +((-2100 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-830)) (-5 *1 (-297 *3))))) +(-10 -7 (-15 -2100 ((-629 |#1|) (-629 |#1|)))) +((-1477 (((-673 |#2|) (-1 |#2| |#1|) (-673 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -1477 ((-673 |#2|) (-1 |#2| |#1|) (-673 |#1|)))) (-1030) (-1030)) (T -298)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-673 *6)) (-5 *1 (-298 *5 *6))))) +(-10 -7 (-15 -1477 ((-673 |#2|) (-1 |#2| |#1|) (-673 |#1|)))) +((-3450 (((-1237 (-310 (-373))) (-1237 (-310 (-220)))) 105)) (-4317 (((-1072 (-825 (-220))) (-1072 (-825 (-373)))) 40)) (-2457 (((-629 (-1136)) (-1134 (-220))) 87)) (-1932 (((-310 (-373)) (-933 (-220))) 50)) (-3918 (((-220) (-933 (-220))) 46)) (-3789 (((-1136) (-373)) 169)) (-2544 (((-825 (-220)) (-825 (-373))) 34)) (-1626 (((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1237 (-310 (-220)))) 143)) (-2178 (((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) 181) (((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) 179)) (-2325 (((-673 (-220)) (-629 (-220)) (-756)) 14)) (-2739 (((-1237 (-683)) (-629 (-220))) 94)) (-2912 (((-629 (-1136)) (-629 (-220))) 75)) (-3598 (((-3 (-310 (-220)) "failed") (-310 (-220))) 120)) (-3832 (((-111) (-220) (-1072 (-825 (-220)))) 109)) (-1340 (((-1016) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-3894 (((-220) (-1072 (-825 (-220)))) 107)) (-1746 (((-220) (-1072 (-825 (-220)))) 108)) (-1605 (((-220) (-401 (-552))) 27)) (-3872 (((-1136) (-373)) 73)) (-3280 (((-220) (-373)) 17)) (-2658 (((-373) (-1237 (-310 (-220)))) 154)) (-4133 (((-310 (-220)) (-310 (-373))) 23)) (-2303 (((-401 (-552)) (-310 (-220))) 53)) (-3764 (((-310 (-401 (-552))) (-310 (-220))) 69)) (-2001 (((-310 (-373)) (-310 (-220))) 98)) (-4243 (((-220) (-310 (-220))) 54)) (-3484 (((-629 (-220)) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) 64)) (-1342 (((-1072 (-825 (-220))) (-1072 (-825 (-220)))) 61)) (-3730 (((-1136) (-220)) 72)) (-3636 (((-683) (-220)) 90)) (-3628 (((-401 (-552)) (-220)) 55)) (-3490 (((-310 (-373)) (-220)) 49)) (-1522 (((-629 (-1072 (-825 (-220)))) (-629 (-1072 (-825 (-373))))) 43)) (-4319 (((-1016) (-629 (-1016))) 165) (((-1016) (-1016) (-1016)) 162)) (-4282 (((-1016) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-299) (-10 -7 (-15 -3280 ((-220) (-373))) (-15 -4133 ((-310 (-220)) (-310 (-373)))) (-15 -2544 ((-825 (-220)) (-825 (-373)))) (-15 -4317 ((-1072 (-825 (-220))) (-1072 (-825 (-373))))) (-15 -1522 ((-629 (-1072 (-825 (-220)))) (-629 (-1072 (-825 (-373)))))) (-15 -3628 ((-401 (-552)) (-220))) (-15 -2303 ((-401 (-552)) (-310 (-220)))) (-15 -4243 ((-220) (-310 (-220)))) (-15 -3598 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2658 ((-373) (-1237 (-310 (-220))))) (-15 -1626 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1237 (-310 (-220))))) (-15 -3764 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1342 ((-1072 (-825 (-220))) (-1072 (-825 (-220))))) (-15 -3484 ((-629 (-220)) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) (-15 -3636 ((-683) (-220))) (-15 -2739 ((-1237 (-683)) (-629 (-220)))) (-15 -2001 ((-310 (-373)) (-310 (-220)))) (-15 -3450 ((-1237 (-310 (-373))) (-1237 (-310 (-220))))) (-15 -3832 ((-111) (-220) (-1072 (-825 (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -3872 ((-1136) (-373))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220)))) (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -4319 ((-1016) (-1016) (-1016))) (-15 -4319 ((-1016) (-629 (-1016)))) (-15 -3789 ((-1136) (-373))) (-15 -2178 ((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))))) (-15 -2178 ((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))))) (-15 -4282 ((-1016) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1340 ((-1016) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1932 ((-310 (-373)) (-933 (-220)))) (-15 -3918 ((-220) (-933 (-220)))) (-15 -3490 ((-310 (-373)) (-220))) (-15 -1605 ((-220) (-401 (-552)))) (-15 -2325 ((-673 (-220)) (-629 (-220)) (-756))))) (T -299)) +((-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-220))) (-5 *4 (-756)) (-5 *2 (-673 (-220))) (-5 *1 (-299)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-933 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-933 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1016)) (-5 *1 (-299)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1016)) (-5 *1 (-299)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) (-5 *2 (-1016)) (-5 *1 (-299)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *2 (-1016)) (-5 *1 (-299)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1136)) (-5 *1 (-299)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-629 (-1016))) (-5 *2 (-1016)) (-5 *1 (-299)))) (-4319 (*1 *2 *2 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-299)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-299)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-299)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1136)) (-5 *1 (-299)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-299)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-1072 (-825 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-299)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *2 (-1237 (-310 (-373)))) (-5 *1 (-299)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1237 (-683))) (-5 *1 (-299)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-683)) (-5 *1 (-299)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *2 (-629 (-220))) (-5 *1 (-299)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-1072 (-825 (-220)))) (-5 *1 (-299)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) (-5 *1 (-299)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *2 (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) (-5 *1 (-299)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299)))) (-3598 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-629 (-1072 (-825 (-373))))) (-5 *2 (-629 (-1072 (-825 (-220))))) (-5 *1 (-299)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-1072 (-825 (-373)))) (-5 *2 (-1072 (-825 (-220)))) (-5 *1 (-299)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-825 (-373))) (-5 *2 (-825 (-220))) (-5 *1 (-299)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) +(-10 -7 (-15 -3280 ((-220) (-373))) (-15 -4133 ((-310 (-220)) (-310 (-373)))) (-15 -2544 ((-825 (-220)) (-825 (-373)))) (-15 -4317 ((-1072 (-825 (-220))) (-1072 (-825 (-373))))) (-15 -1522 ((-629 (-1072 (-825 (-220)))) (-629 (-1072 (-825 (-373)))))) (-15 -3628 ((-401 (-552)) (-220))) (-15 -2303 ((-401 (-552)) (-310 (-220)))) (-15 -4243 ((-220) (-310 (-220)))) (-15 -3598 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2658 ((-373) (-1237 (-310 (-220))))) (-15 -1626 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1237 (-310 (-220))))) (-15 -3764 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1342 ((-1072 (-825 (-220))) (-1072 (-825 (-220))))) (-15 -3484 ((-629 (-220)) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) (-15 -3636 ((-683) (-220))) (-15 -2739 ((-1237 (-683)) (-629 (-220)))) (-15 -2001 ((-310 (-373)) (-310 (-220)))) (-15 -3450 ((-1237 (-310 (-373))) (-1237 (-310 (-220))))) (-15 -3832 ((-111) (-220) (-1072 (-825 (-220))))) (-15 -3730 ((-1136) (-220))) (-15 -3872 ((-1136) (-373))) (-15 -2912 ((-629 (-1136)) (-629 (-220)))) (-15 -2457 ((-629 (-1136)) (-1134 (-220)))) (-15 -3894 ((-220) (-1072 (-825 (-220))))) (-15 -1746 ((-220) (-1072 (-825 (-220))))) (-15 -4319 ((-1016) (-1016) (-1016))) (-15 -4319 ((-1016) (-629 (-1016)))) (-15 -3789 ((-1136) (-373))) (-15 -2178 ((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))))) (-15 -2178 ((-1016) (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))))) (-15 -4282 ((-1016) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1340 ((-1016) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1932 ((-310 (-373)) (-933 (-220)))) (-15 -3918 ((-220) (-933 (-220)))) (-15 -3490 ((-310 (-373)) (-220))) (-15 -1605 ((-220) (-401 (-552)))) (-15 -2325 ((-673 (-220)) (-629 (-220)) (-756)))) +((-2393 (((-111) $ $) 11)) (-4006 (($ $ $) 15)) (-3987 (($ $ $) 14)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 44)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 53)) (-2594 (($ $ $) 21) (($ (-629 $)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3969 (((-3 $ "failed") $ $) 17)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 46))) +(((-300 |#1|) (-10 -8 (-15 -2751 ((-3 (-629 |#1|) "failed") (-629 |#1|) |#1|)) (-15 -1734 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1734 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -2393 ((-111) |#1| |#1|)) (-15 -2974 ((-3 (-629 |#1|) "failed") (-629 |#1|) |#1|)) (-15 -3493 ((-2 (|:| -4158 (-629 |#1|)) (|:| -4126 |#1|)) (-629 |#1|))) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|))) (-301)) (T -300)) +NIL +(-10 -8 (-15 -2751 ((-3 (-629 |#1|) "failed") (-629 |#1|) |#1|)) (-15 -1734 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1734 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -2393 ((-111) |#1| |#1|)) (-15 -2974 ((-3 (-629 |#1|) "failed") (-629 |#1|) |#1|)) (-15 -3493 ((-2 (|:| -4158 (-629 |#1|)) (|:| -4126 |#1|)) (-629 |#1|))) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-4065 (((-111) $) 30)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-301) (-137)) (T -301)) -((-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-754)))) (-3963 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-301)))) (-2789 (*1 *1 *1 *1) (-4 *1 (-301))) (-2813 (*1 *1 *1 *1) (-4 *1 (-301))) (-3347 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-301)))) (-3347 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) (-2556 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-301))))) -(-13 (-899) (-10 -8 (-15 -4224 ((-111) $ $)) (-15 -2718 ((-754) $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3347 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -3347 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2556 ((-3 (-627 $) "failed") (-627 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3321 (($ $ (-627 |#2|) (-627 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-627 (-288 |#2|))) NIL))) -(((-302 |#1| |#2|) (-10 -8 (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|)))) (-303 |#2|) (-1076)) (T -302)) -NIL -(-10 -8 (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|)))) -((-3321 (($ $ (-627 |#1|) (-627 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-627 (-288 |#1|))) 10))) -(((-303 |#1|) (-137) (-1076)) (T -303)) -((-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1076))))) -(-13 (-506 |t#1| |t#1|) (-10 -8 (-15 -3321 ($ $ (-288 |t#1|))) (-15 -3321 ($ $ (-627 (-288 |t#1|)))))) +((-2393 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-756)))) (-1670 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-301)))) (-3987 (*1 *1 *1 *1) (-4 *1 (-301))) (-4006 (*1 *1 *1 *1) (-4 *1 (-301))) (-1734 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) (-4 *1 (-301)))) (-1734 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) (-2751 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-629 *1)) (-4 *1 (-301))))) +(-13 (-901) (-10 -8 (-15 -2393 ((-111) $ $)) (-15 -3795 ((-756) $)) (-15 -1670 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -3987 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -1734 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $)) (-15 -1734 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2751 ((-3 (-629 $) "failed") (-629 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2432 (($ $ (-629 |#2|) (-629 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-629 (-288 |#2|))) NIL))) +(((-302 |#1| |#2|) (-10 -8 (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|)))) (-303 |#2|) (-1078)) (T -302)) +NIL +(-10 -8 (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|)))) +((-2432 (($ $ (-629 |#1|) (-629 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-629 (-288 |#1|))) 10))) +(((-303 |#1|) (-137) (-1078)) (T -303)) +((-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1078)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1078))))) +(-13 (-506 |t#1| |t#1|) (-10 -8 (-15 -2432 ($ $ (-288 |t#1|))) (-15 -2432 ($ $ (-629 (-288 |t#1|)))))) (((-506 |#1| |#1|) . T)) -((-3321 ((|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))) 25))) -(((-304 |#1|) (-10 -7 (-15 -3321 (|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))))) (-38 (-401 (-552)))) (T -304)) -((-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1154 (-401 (-552)))) (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552))))))) -(-10 -7 (-15 -3321 (|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))))) -((-1465 (((-111) $ $) NIL)) (-2071 (((-552) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-305) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2071 ((-552) $))))) (T -305)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-305)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2071 ((-552) $)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 9))) -(((-306) (-1076)) (T -306)) -NIL -(-1076) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 62)) (-3471 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1221 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 25)) (-1703 (((-1221 |#1| |#2| |#3| |#4|) $) NIL) (((-1152) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-552) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-1221 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1235 (-1221 |#1| |#2| |#3| |#4|)))) (-671 $) (-1235 $)) NIL) (((-671 (-1221 |#1| |#2| |#3| |#4|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-1221 |#1| |#2| |#3| |#4|) $) 21)) (-4317 (((-3 $ "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-4093 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-3516 (($ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) $) NIL)) (-1973 (((-3 (-823 |#2|) "failed") $) 78)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-301)))) (-2060 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-1221 |#1| |#2| |#3| |#4|)) (-627 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-627 (-288 (-1221 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-627 (-1152)) (-627 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-506 (-1152) (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1152) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-506 (-1152) (-1221 |#1| |#2| |#3| |#4|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-280 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-754)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-1221 |#1| |#2| |#3| |#4|) $) 17)) (-3562 (((-871 (-552)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-528)))) (((-373) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1001))) (((-220) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-1221 |#1| |#2| |#3| |#4|)) 29) (($ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (($ (-1220 |#2| |#3| |#4|)) 36)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-888))) (|has| (-1221 |#1| |#2| |#3| |#4|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-1922 (($) 41 T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-754)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2407 (($ $ $) 34) (($ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) 31)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-1221 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL))) -(((-307 |#1| |#2| |#3| |#4|) (-13 (-971 (-1221 |#1| |#2| |#3| |#4|)) (-1017 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -1477 ($ (-1220 |#2| |#3| |#4|))))) (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -307)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4) (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *1 (-307 *3 *4 *5 *6)))) (-1973 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-823 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4)))) -(-13 (-971 (-1221 |#1| |#2| |#3| |#4|)) (-1017 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -1477 ($ (-1220 |#2| |#3| |#4|))))) -((-3516 (((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)) 13))) -(((-308 |#1| |#2|) (-10 -7 (-15 -3516 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) (-830) (-830)) (T -308)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6))))) -(-10 -7 (-15 -3516 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) -((-1909 (((-52) |#2| (-288 |#2|) (-754)) 33) (((-52) |#2| (-288 |#2|)) 24) (((-52) |#2| (-754)) 28) (((-52) |#2|) 25) (((-52) (-1152)) 21)) (-1777 (((-52) |#2| (-288 |#2|) (-401 (-552))) 51) (((-52) |#2| (-288 |#2|)) 48) (((-52) |#2| (-401 (-552))) 50) (((-52) |#2|) 49) (((-52) (-1152)) 47)) (-1930 (((-52) |#2| (-288 |#2|) (-401 (-552))) 46) (((-52) |#2| (-288 |#2|)) 43) (((-52) |#2| (-401 (-552))) 45) (((-52) |#2|) 44) (((-52) (-1152)) 42)) (-1920 (((-52) |#2| (-288 |#2|) (-552)) 39) (((-52) |#2| (-288 |#2|)) 35) (((-52) |#2| (-552)) 38) (((-52) |#2|) 36) (((-52) (-1152)) 34))) -(((-309 |#1| |#2|) (-10 -7 (-15 -1909 ((-52) (-1152))) (-15 -1909 ((-52) |#2|)) (-15 -1909 ((-52) |#2| (-754))) (-15 -1909 ((-52) |#2| (-288 |#2|))) (-15 -1909 ((-52) |#2| (-288 |#2|) (-754))) (-15 -1920 ((-52) (-1152))) (-15 -1920 ((-52) |#2|)) (-15 -1920 ((-52) |#2| (-552))) (-15 -1920 ((-52) |#2| (-288 |#2|))) (-15 -1920 ((-52) |#2| (-288 |#2|) (-552))) (-15 -1930 ((-52) (-1152))) (-15 -1930 ((-52) |#2|)) (-15 -1930 ((-52) |#2| (-401 (-552)))) (-15 -1930 ((-52) |#2| (-288 |#2|))) (-15 -1930 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1777 ((-52) (-1152))) (-15 -1777 ((-52) |#2|)) (-15 -1777 ((-52) |#2| (-401 (-552)))) (-15 -1777 ((-52) |#2| (-288 |#2|))) (-15 -1777 ((-52) |#2| (-288 |#2|) (-401 (-552))))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -309)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1777 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1930 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 *5) (-623 *5))) (-5 *5 (-552)) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-830) (-1017 *4) (-623 *4))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1920 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-754)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1909 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4)))))) -(-10 -7 (-15 -1909 ((-52) (-1152))) (-15 -1909 ((-52) |#2|)) (-15 -1909 ((-52) |#2| (-754))) (-15 -1909 ((-52) |#2| (-288 |#2|))) (-15 -1909 ((-52) |#2| (-288 |#2|) (-754))) (-15 -1920 ((-52) (-1152))) (-15 -1920 ((-52) |#2|)) (-15 -1920 ((-52) |#2| (-552))) (-15 -1920 ((-52) |#2| (-288 |#2|))) (-15 -1920 ((-52) |#2| (-288 |#2|) (-552))) (-15 -1930 ((-52) (-1152))) (-15 -1930 ((-52) |#2|)) (-15 -1930 ((-52) |#2| (-401 (-552)))) (-15 -1930 ((-52) |#2| (-288 |#2|))) (-15 -1930 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1777 ((-52) (-1152))) (-15 -1777 ((-52) |#2|)) (-15 -1777 ((-52) |#2| (-401 (-552)))) (-15 -1777 ((-52) |#2| (-288 |#2|))) (-15 -1777 ((-52) |#2| (-288 |#2|) (-401 (-552))))) -((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) $ (-1152)) NIL (|has| |#1| (-544))) (((-627 $) $) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $)) NIL (|has| |#1| (-544))) (((-627 $) (-931 $)) NIL (|has| |#1| (-544)))) (-2682 (($ $ (-1152)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (($ (-1148 $)) NIL (|has| |#1| (-544))) (($ (-931 $)) NIL (|has| |#1| (-544)))) (-3024 (((-111) $) 27 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-1853 (((-627 (-1152)) $) 351)) (-1694 (((-401 (-1148 $)) $ (-598 $)) NIL (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3443 (((-627 (-598 $)) $) NIL)) (-1607 (($ $) 161 (|has| |#1| (-544)))) (-1467 (($ $) 137 (|has| |#1| (-544)))) (-3523 (($ $ (-1068 $)) 222 (|has| |#1| (-544))) (($ $ (-1152)) 218 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) 368) (($ $ (-627 (-598 $)) (-627 $)) 412)) (-2246 (((-412 (-1148 $)) (-1148 $)) 295 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-4014 (($ $) NIL (|has| |#1| (-544)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-544)))) (-1737 (($ $) NIL (|has| |#1| (-544)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1584 (($ $) 157 (|has| |#1| (-544)))) (-1445 (($ $) 133 (|has| |#1| (-544)))) (-3929 (($ $ (-552)) 72 (|has| |#1| (-544)))) (-1628 (($ $) 165 (|has| |#1| (-544)))) (-1492 (($ $) 141 (|has| |#1| (-544)))) (-3887 (($) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))) CONST)) (-1304 (((-627 $) $ (-1152)) NIL (|has| |#1| (-544))) (((-627 $) $) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $)) NIL (|has| |#1| (-544))) (((-627 $) (-931 $)) NIL (|has| |#1| (-544)))) (-3348 (($ $ (-1152)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1148 $) (-1152)) 124 (|has| |#1| (-544))) (($ (-1148 $)) NIL (|has| |#1| (-544))) (($ (-931 $)) NIL (|has| |#1| (-544)))) (-4039 (((-3 (-598 $) "failed") $) 17) (((-3 (-1152) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-931 |#1|)) "failed") $) NIL (|has| |#1| (-544))) (((-3 (-931 |#1|) "failed") $) NIL (|has| |#1| (-1028))) (((-3 (-401 (-552)) "failed") $) 46 (-1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-598 $) $) 11) (((-1152) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-931 |#1|)) $) NIL (|has| |#1| (-544))) (((-931 |#1|) $) NIL (|has| |#1| (-1028))) (((-401 (-552)) $) 306 (-1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) NIL (|has| |#1| (-544)))) (-1800 (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 117 (|has| |#1| (-1028))) (((-671 |#1|) (-671 $)) 107 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (-2091 (($ $) 89 (|has| |#1| (-544)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (-2789 (($ $ $) NIL (|has| |#1| (-544)))) (-2735 (($ $ (-1068 $)) 226 (|has| |#1| (-544))) (($ $ (-1152)) 224 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-544)))) (-1633 (((-111) $) NIL (|has| |#1| (-544)))) (-3958 (($ $ $) 192 (|has| |#1| (-544)))) (-2951 (($) 127 (|has| |#1| (-544)))) (-1868 (($ $ $) 212 (|has| |#1| (-544)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 374 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 381 (|has| |#1| (-865 (-373))))) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) 267)) (-2624 (((-111) $) 25 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3798 (($ $) 71 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 84 (|has| |#1| (-1028)))) (-2388 (((-111) $) 64 (|has| |#1| (-544)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-544)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-544)))) (-2602 (((-1148 $) (-598 $)) 268 (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) 408)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-4135 (($ $) 131 (|has| |#1| (-544)))) (-2059 (($ $) 237 (|has| |#1| (-544)))) (-1276 (($ (-627 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) 49)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) 413)) (-4035 (((-3 (-627 $) "failed") $) NIL (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) NIL (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 416 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) NIL (|has| |#1| (-1088))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) NIL (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) NIL (|has| |#1| (-1028)))) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) 53)) (-1951 (($ $) NIL (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-3096 (($ $ (-1152)) 241 (|has| |#1| (-544))) (($ $ (-1068 $)) 243 (|has| |#1| (-544)))) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 43)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 288 (|has| |#1| (-544)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-3434 (($ $ (-1152)) 216 (|has| |#1| (-544))) (($ $) 214 (|has| |#1| (-544)))) (-2610 (($ $) 208 (|has| |#1| (-544)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 293 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-544)))) (-3154 (($ $) 129 (|has| |#1| (-544)))) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) 407) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) 361) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1152)) NIL (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-600 (-528)))) (($ $) NIL (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 349 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-113)) (-627 $) (-1152)) 348 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ $)) NIL (|has| |#1| (-1028)))) (-2718 (((-754) $) NIL (|has| |#1| (-544)))) (-1398 (($ $) 229 (|has| |#1| (-544)))) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-2911 (($ $) NIL) (($ $ $) NIL)) (-1430 (($ $) 239 (|has| |#1| (-544)))) (-3709 (($ $) 190 (|has| |#1| (-544)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-1028))) (($ $ (-1152)) NIL (|has| |#1| (-1028)))) (-1583 (($ $) 73 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 86 (|has| |#1| (-544)))) (-1376 (($ $) 304 (|has| $ (-1028)))) (-1640 (($ $) 167 (|has| |#1| (-544)))) (-1502 (($ $) 143 (|has| |#1| (-544)))) (-1615 (($ $) 163 (|has| |#1| (-544)))) (-1479 (($ $) 139 (|has| |#1| (-544)))) (-1596 (($ $) 159 (|has| |#1| (-544)))) (-1456 (($ $) 135 (|has| |#1| (-544)))) (-3562 (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (($ (-412 $)) NIL (|has| |#1| (-544))) (((-528) $) 346 (|has| |#1| (-600 (-528))))) (-2616 (($ $ $) NIL (|has| |#1| (-466)))) (-2493 (($ $ $) NIL (|has| |#1| (-466)))) (-1477 (((-842) $) 406) (($ (-598 $)) 397) (($ (-1152)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-544))) (($ (-48)) 299 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (($ (-1101 |#1| (-598 $))) 88 (|has| |#1| (-1028))) (($ (-401 |#1|)) NIL (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) NIL (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) NIL (|has| |#1| (-544))) (($ (-401 (-931 |#1|))) NIL (|has| |#1| (-544))) (($ (-931 |#1|)) NIL (|has| |#1| (-1028))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-544)) (|has| |#1| (-1017 (-401 (-552)))))) (($ (-552)) 34 (-1559 (|has| |#1| (-1017 (-552))) (|has| |#1| (-1028))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL (|has| |#1| (-1028)))) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3697 (($ $ $) 210 (|has| |#1| (-544)))) (-2804 (($ $ $) 196 (|has| |#1| (-544)))) (-3396 (($ $ $) 200 (|has| |#1| (-544)))) (-3075 (($ $ $) 194 (|has| |#1| (-544)))) (-1512 (($ $ $) 198 (|has| |#1| (-544)))) (-3749 (((-111) (-113)) 9)) (-1673 (($ $) 173 (|has| |#1| (-544)))) (-1534 (($ $) 149 (|has| |#1| (-544)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 169 (|has| |#1| (-544)))) (-1513 (($ $) 145 (|has| |#1| (-544)))) (-1697 (($ $) 177 (|has| |#1| (-544)))) (-1561 (($ $) 153 (|has| |#1| (-544)))) (-1729 (($ (-1152) $) NIL) (($ (-1152) $ $) NIL) (($ (-1152) $ $ $) NIL) (($ (-1152) $ $ $ $) NIL) (($ (-1152) (-627 $)) NIL)) (-3794 (($ $) 204 (|has| |#1| (-544)))) (-2039 (($ $) 202 (|has| |#1| (-544)))) (-3519 (($ $) 179 (|has| |#1| (-544)))) (-1575 (($ $) 155 (|has| |#1| (-544)))) (-1686 (($ $) 175 (|has| |#1| (-544)))) (-1547 (($ $) 151 (|has| |#1| (-544)))) (-1661 (($ $) 171 (|has| |#1| (-544)))) (-1524 (($ $) 147 (|has| |#1| (-544)))) (-3329 (($ $) 182 (|has| |#1| (-544)))) (-1922 (($) 20 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) CONST)) (-3903 (($ $) 233 (|has| |#1| (-544)))) (-1933 (($) 22 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))) CONST)) (-1393 (($ $) 184 (|has| |#1| (-544))) (($ $ $) 186 (|has| |#1| (-544)))) (-2499 (($ $) 231 (|has| |#1| (-544)))) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-1028))) (($ $ (-1152)) NIL (|has| |#1| (-1028)))) (-4173 (($ $) 235 (|has| |#1| (-544)))) (-1974 (($ $ $) 188 (|has| |#1| (-544)))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 81)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 80)) (-2407 (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 98 (|has| |#1| (-544))) (($ $ $) 42 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-2396 (($ $ $) 40 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ $) 29 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2384 (($ $ $) 38 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (** (($ $ $) 66 (|has| |#1| (-544))) (($ $ (-401 (-552))) 301 (|has| |#1| (-544))) (($ $ (-552)) 76 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-754)) 74 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088)))) (($ $ (-900)) 78 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (* (($ (-401 (-552)) $) NIL (|has| |#1| (-544))) (($ $ (-401 (-552))) NIL (|has| |#1| (-544))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088)))) (($ (-552) $) 32 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ (-754) $) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ (-900) $) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))))) -(((-310 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1174)) (-6 (-157)) (-6 (-613)) (-6 (-1115)) (-15 -2091 ($ $)) (-15 -2388 ((-111) $)) (-15 -3929 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -2246 ((-412 (-1148 $)) (-1148 $)))) |%noBranch|) (IF (|has| |#1| (-1017 (-552))) (-6 (-1017 (-48))) |%noBranch|)) |%noBranch|))) (-830)) (T -310)) -((-2091 (*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-830)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830))))) -(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1174)) (-6 (-157)) (-6 (-613)) (-6 (-1115)) (-15 -2091 ($ $)) (-15 -2388 ((-111) $)) (-15 -3929 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -2246 ((-412 (-1148 $)) (-1148 $)))) |%noBranch|) (IF (|has| |#1| (-1017 (-552))) (-6 (-1017 (-48))) |%noBranch|)) |%noBranch|))) -((-1915 (((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)) 88) (((-52) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-52) |#2| (-113) (-288 |#2|) |#2|) 86) (((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|))) 80) (((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|)) 82) (((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|)) 83) (((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|))) 81) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|)) 89) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85))) -(((-311 |#1| |#2|) (-10 -7 (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)))) (-13 (-830) (-544) (-600 (-528))) (-424 |#1|)) (T -311)) -((-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-627 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *3)))) (-1915 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-1915 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *5)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-113))) (-5 *6 (-627 (-288 *8))) (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 (-288 *8))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-627 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-627 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *5 *6))))) -(-10 -7 (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)))) -((-3959 (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134)) 46) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552)) 47) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134)) 43) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552)) 44)) (-4210 (((-1 (-220) (-220)) (-220)) 45))) -(((-312) (-10 -7 (-15 -4210 ((-1 (-220) (-220)) (-220))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134))))) (T -312)) -((-3959 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1134)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *7 (-1134)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) -(-10 -7 (-15 -4210 ((-1 (-220) (-220)) (-220))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 25)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 20)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 32)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) 16)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) NIL) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2463 (((-401 (-552)) $) 17)) (-2210 (($ (-1220 |#1| |#2| |#3|)) 11)) (-4067 (((-1220 |#1| |#2| |#3|) $) 12)) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 10)) (-1477 (((-842) $) 38) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 30)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) NIL)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 27)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 33)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-313 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-775) (-10 -8 (-15 -2210 ($ (-1220 |#1| |#2| |#3|))) (-15 -4067 ((-1220 |#1| |#2| |#3|) $)) (-15 -2463 ((-401 (-552)) $)))) (-13 (-357) (-830)) (-1152) |#1|) (T -313)) -((-2210 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3)))) -(-13 (-1216 |#1|) (-775) (-10 -8 (-15 -2210 ($ (-1220 |#1| |#2| |#3|))) (-15 -4067 ((-1220 |#1| |#2| |#3|) $)) (-15 -2463 ((-401 (-552)) $)))) -((-1352 (((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754)) 24)) (-4135 (((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)) 28))) -(((-314 |#1|) (-10 -7 (-15 -1352 ((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754))) (-15 -4135 ((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)))) (-544)) (T -314)) -((-4135 (*1 *2 *3) (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) (-5 *2 (-627 (-2 (|:| -3069 (-754)) (|:| |logand| *4)))) (-5 *1 (-314 *4)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *5) (|:| |radicand| (-627 *5)))) (-5 *1 (-314 *5)) (-5 *4 (-754))))) -(-10 -7 (-15 -1352 ((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754))) (-15 -4135 ((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)))) -((-1853 (((-627 |#2|) (-1148 |#4|)) 43)) (-1538 ((|#3| (-552)) 46)) (-1404 (((-1148 |#4|) (-1148 |#3|)) 30)) (-2945 (((-1148 |#4|) (-1148 |#4|) (-552)) 56)) (-1752 (((-1148 |#3|) (-1148 |#4|)) 21)) (-3567 (((-627 (-754)) (-1148 |#4|) (-627 |#2|)) 40)) (-3289 (((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|)) 35))) -(((-315 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3289 ((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|))) (-15 -3567 ((-627 (-754)) (-1148 |#4|) (-627 |#2|))) (-15 -1853 ((-627 |#2|) (-1148 |#4|))) (-15 -1752 ((-1148 |#3|) (-1148 |#4|))) (-15 -1404 ((-1148 |#4|) (-1148 |#3|))) (-15 -2945 ((-1148 |#4|) (-1148 |#4|) (-552))) (-15 -1538 (|#3| (-552)))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|)) (T -315)) -((-1538 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1028)) (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-928 *2 *4 *5)))) (-2945 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *7)) (-5 *3 (-552)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *1 (-315 *4 *5 *6 *7)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-1148 *6)) (-4 *6 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-1148 *7)) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-315 *4 *5 *6 *7)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-627 *5)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *8)) (-5 *4 (-627 *6)) (-4 *6 (-830)) (-4 *8 (-928 *7 *5 *6)) (-4 *5 (-776)) (-4 *7 (-1028)) (-5 *2 (-627 (-754))) (-5 *1 (-315 *5 *6 *7 *8)))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 *8)) (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-5 *2 (-1148 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) -(-10 -7 (-15 -3289 ((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|))) (-15 -3567 ((-627 (-754)) (-1148 |#4|) (-627 |#2|))) (-15 -1853 ((-627 |#2|) (-1148 |#4|))) (-15 -1752 ((-1148 |#3|) (-1148 |#4|))) (-15 -1404 ((-1148 |#4|) (-1148 |#3|))) (-15 -2945 ((-1148 |#4|) (-1148 |#4|) (-552))) (-15 -1538 (|#3| (-552)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 14)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $) 18)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-3547 (((-552) $ (-552)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-2356 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (($ (-1 (-552) (-552)) $) 10)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) NIL (|has| (-552) (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1889 (((-552) |#1| $) NIL)) (-1922 (($) 15 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 21 (|has| |#1| (-830)))) (-2396 (($ $) 11) (($ $ $) 20)) (-2384 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL) (($ (-552) |#1|) 19))) -(((-316 |#1|) (-13 (-21) (-700 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) (-1076)) (T -316)) -NIL -(-13 (-21) (-700 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 27)) (-4136 (((-3 $ "failed") $ $) 19)) (-3307 (((-754) $) 28)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 32)) (-1703 ((|#1| $) 31)) (-2792 ((|#1| $ (-552)) 25)) (-3547 ((|#2| $ (-552)) 26)) (-2356 (($ (-1 |#1| |#1|) $) 22)) (-1820 (($ (-1 |#2| |#2|) $) 23)) (-1595 (((-1134) $) 9)) (-3217 (($ $ $) 21 (|has| |#2| (-775)))) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ |#1|) 33)) (-1889 ((|#2| |#1| $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ |#2| |#1|) 29))) -(((-317 |#1| |#2|) (-137) (-1076) (-129)) (T -317)) -((-2384 (*1 *1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) (-5 *2 (-754)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))))) (-3547 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1076)) (-4 *2 (-129)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1076)))) (-1889 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) (-1820 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)) (-4 *3 (-775))))) -(-13 (-129) (-1017 |t#1|) (-10 -8 (-15 -2384 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3307 ((-754) $)) (-15 -4245 ((-627 (-2 (|:| |gen| |t#1|) (|:| -3154 |t#2|))) $)) (-15 -3547 (|t#2| $ (-552))) (-15 -2792 (|t#1| $ (-552))) (-15 -1889 (|t#2| |t#1| $)) (-15 -1820 ($ (-1 |t#2| |t#2|) $)) (-15 -2356 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-775)) (-15 -3217 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1017 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-3547 (((-754) $ (-552)) NIL)) (-2356 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (($ (-1 (-754) (-754)) $) NIL)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) NIL (|has| (-754) (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1889 (((-754) |#1| $) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-754) |#1|) NIL))) -(((-318 |#1|) (-317 |#1| (-754)) (-1076)) (T -318)) -NIL -(-317 |#1| (-754)) -((-1375 (($ $) 53)) (-2061 (($ $ |#2| |#3| $) 14)) (-3813 (($ (-1 |#3| |#3|) $) 33)) (-1960 (((-111) $) 24)) (-1970 ((|#2| $) 26)) (-2761 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3495 ((|#2| $) 49)) (-1493 (((-627 |#2|) $) 36)) (-3417 (($ $ $ (-754)) 20)) (-2407 (($ $ |#2|) 40))) -(((-319 |#1| |#2| |#3|) (-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1| (-754))) (-15 -2061 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3813 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2407 (|#1| |#1| |#2|))) (-320 |#2| |#3|) (-1028) (-775)) (T -319)) -NIL -(-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1| (-754))) (-15 -2061 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3813 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2407 (|#1| |#1| |#2|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 88 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 86 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 85)) (-1703 (((-552) $) 89 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 87 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 84)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 73 (|has| |#1| (-445)))) (-2061 (($ $ |#1| |#2| $) 77)) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 80)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59)) (-3465 ((|#2| $) 79)) (-3813 (($ (-1 |#2| |#2|) $) 78)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 83)) (-1970 ((|#1| $) 82)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-3495 ((|#1| $) 74 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45) (($ (-401 (-552))) 55 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 81)) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 76 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-320 |#1| |#2|) (-137) (-1028) (-775)) (T -320)) -((-1960 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-111)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-627 *3)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-2061 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-3417 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *3 (-169)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-544)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-445))))) -(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1960 ((-111) $)) (-15 -1970 (|t#1| $)) (-15 -1493 ((-627 |t#1|) $)) (-15 -3522 ((-754) $)) (-15 -3465 (|t#2| $)) (-15 -3813 ($ (-1 |t#2| |t#2|) $)) (-15 -2061 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -3417 ($ $ $ (-754))) |%noBranch|) (IF (|has| |t#1| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3495 (|t#1| $)) (-15 -1375 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-405 |#1|) . T) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-3083 (((-111) (-111)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-2729 (($ $ (-552)) NIL)) (-1387 (((-754) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3181 (($ (-627 |#1|)) NIL)) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-321 |#1|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) (-1189)) (T -321)) -((-3181 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-321 *3)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) (-2729 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1189))))) -(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) -((-1991 (((-111) $) 42)) (-4010 (((-754)) 22)) (-3385 ((|#2| $) 46) (($ $ (-900)) 101)) (-3307 (((-754)) 102)) (-2342 (($ (-1235 |#2|)) 20)) (-2492 (((-111) $) 115)) (-2349 ((|#2| $) 48) (($ $ (-900)) 99)) (-4205 (((-1148 |#2|) $) NIL) (((-1148 $) $ (-900)) 95)) (-1980 (((-1148 |#2|) $) 82)) (-2259 (((-1148 |#2|) $) 79) (((-3 (-1148 |#2|) "failed") $ $) 76)) (-3520 (($ $ (-1148 |#2|)) 53)) (-3804 (((-816 (-900))) 28) (((-900)) 43)) (-2405 (((-132)) 25)) (-3567 (((-816 (-900)) $) 30) (((-900) $) 117)) (-3231 (($) 108)) (-3133 (((-1235 |#2|) $) NIL) (((-671 |#2|) (-1235 $)) 39)) (-3050 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3528 (((-111) $) 41))) -(((-322 |#1| |#2|) (-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3307 ((-754))) (-15 -3050 (|#1| |#1|)) (-15 -2259 ((-3 (-1148 |#2|) "failed") |#1| |#1|)) (-15 -2259 ((-1148 |#2|) |#1|)) (-15 -1980 ((-1148 |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-1148 |#2|))) (-15 -2492 ((-111) |#1|)) (-15 -3231 (|#1|)) (-15 -3385 (|#1| |#1| (-900))) (-15 -2349 (|#1| |#1| (-900))) (-15 -4205 ((-1148 |#1|) |#1| (-900))) (-15 -3385 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3567 ((-900) |#1|)) (-15 -3804 ((-900))) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4010 ((-754))) (-15 -3804 ((-816 (-900)))) (-15 -3567 ((-816 (-900)) |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|)) (-15 -2405 ((-132)))) (-323 |#2|) (-357)) (T -322)) -((-2405 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3804 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-816 (-900))) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-4010 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3804 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-900)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3307 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4))))) -(-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3307 ((-754))) (-15 -3050 (|#1| |#1|)) (-15 -2259 ((-3 (-1148 |#2|) "failed") |#1| |#1|)) (-15 -2259 ((-1148 |#2|) |#1|)) (-15 -1980 ((-1148 |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-1148 |#2|))) (-15 -2492 ((-111) |#1|)) (-15 -3231 (|#1|)) (-15 -3385 (|#1| |#1| (-900))) (-15 -2349 (|#1| |#1| (-900))) (-15 -4205 ((-1148 |#1|) |#1| (-900))) (-15 -3385 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3567 ((-900) |#1|)) (-15 -3804 ((-900))) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4010 ((-754))) (-15 -3804 ((-816 (-900)))) (-15 -3567 ((-816 (-900)) |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|)) (-15 -2405 ((-132)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1991 (((-111) $) 91)) (-4010 (((-754)) 87)) (-3385 ((|#1| $) 137) (($ $ (-900)) 134 (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 119 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3307 (((-754)) 109 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 98)) (-1703 ((|#1| $) 97)) (-2342 (($ (-1235 |#1|)) 143)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-362)))) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 106 (|has| |#1| (-362)))) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2740 (($) 121 (|has| |#1| (-362)))) (-1415 (((-111) $) 122 (|has| |#1| (-362)))) (-4294 (($ $ (-754)) 84 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) 68)) (-2641 (((-900) $) 124 (|has| |#1| (-362))) (((-816 (-900)) $) 81 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) 30)) (-2611 (($) 132 (|has| |#1| (-362)))) (-2492 (((-111) $) 131 (|has| |#1| (-362)))) (-2349 ((|#1| $) 138) (($ $ (-900)) 135 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) 110 (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-4205 (((-1148 |#1|) $) 142) (((-1148 $) $ (-900)) 136 (|has| |#1| (-362)))) (-2886 (((-900) $) 107 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) 128 (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) 127 (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) 126 (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) 129 (|has| |#1| (-362)))) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 111 (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 108 (|has| |#1| (-362)))) (-2249 (((-111) $) 90)) (-1498 (((-1096) $) 10)) (-2220 (($) 130 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 118 (|has| |#1| (-362)))) (-1727 (((-412 $) $) 71)) (-3804 (((-816 (-900))) 88) (((-900)) 140)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-754) $) 123 (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) 82 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) 96)) (-2942 (($ $) 115 (|has| |#1| (-362))) (($ $ (-754)) 113 (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) 89) (((-900) $) 139)) (-1376 (((-1148 |#1|)) 141)) (-3439 (($) 120 (|has| |#1| (-362)))) (-3231 (($) 133 (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 145) (((-671 |#1|) (-1235 $)) 144)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 117 (|has| |#1| (-362)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3050 (($ $) 116 (|has| |#1| (-362))) (((-3 $ "failed") $) 80 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 147) (((-1235 $) (-900)) 146)) (-3778 (((-111) $ $) 37)) (-3528 (((-111) $) 92)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-3406 (($ $) 86 (|has| |#1| (-362))) (($ $ (-754)) 85 (|has| |#1| (-362)))) (-4251 (($ $) 114 (|has| |#1| (-362))) (($ $ (-754)) 112 (|has| |#1| (-362)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62) (($ $ |#1|) 95)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +((-2432 ((|#1| (-1 |#1| (-552)) (-1156 (-401 (-552)))) 25))) +(((-304 |#1|) (-10 -7 (-15 -2432 (|#1| (-1 |#1| (-552)) (-1156 (-401 (-552)))))) (-38 (-401 (-552)))) (T -304)) +((-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1156 (-401 (-552)))) (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552))))))) +(-10 -7 (-15 -2432 (|#1| (-1 |#1| (-552)) (-1156 (-401 (-552)))))) +((-3202 (((-111) $ $) NIL)) (-2491 (((-552) $) 12)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 9)) (-3213 (((-844) $) 21) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-305) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -2491 ((-552) $))))) (T -305)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-305)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -2491 ((-552) $)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 7)) (-1613 (((-111) $ $) 9))) +(((-306) (-1078)) (T -306)) +NIL +(-1078) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 62)) (-3603 (((-1223 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-1223 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-552)))) (((-3 (-1222 |#2| |#3| |#4|) "failed") $) 25)) (-2832 (((-1223 |#1| |#2| |#3| |#4|) $) NIL) (((-1154) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-552)))) (((-552) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-552)))) (((-1222 |#2| |#3| |#4|) $) NIL)) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-1223 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1237 (-1223 |#1| |#2| |#3| |#4|)))) (-673 $) (-1237 $)) NIL) (((-673 (-1223 |#1| |#2| |#3| |#4|)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-1223 |#1| |#2| |#3| |#4|) $) 21)) (-2032 (((-3 $ "failed") $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1129)))) (-3127 (((-111) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-2011 (($ $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-1477 (($ (-1 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|)) $) NIL)) (-1798 (((-3 (-825 |#2|) "failed") $) 78)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-301)))) (-3410 (((-1223 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-1223 |#1| |#2| |#3| |#4|)) (-629 (-1223 |#1| |#2| |#3| |#4|))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-303 (-1223 |#1| |#2| |#3| |#4|)))) (($ $ (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-303 (-1223 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1223 |#1| |#2| |#3| |#4|))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-303 (-1223 |#1| |#2| |#3| |#4|)))) (($ $ (-629 (-288 (-1223 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-303 (-1223 |#1| |#2| |#3| |#4|)))) (($ $ (-629 (-1154)) (-629 (-1223 |#1| |#2| |#3| |#4|))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-506 (-1154) (-1223 |#1| |#2| |#3| |#4|)))) (($ $ (-1154) (-1223 |#1| |#2| |#3| |#4|)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-506 (-1154) (-1223 |#1| |#2| |#3| |#4|))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-1223 |#1| |#2| |#3| |#4|)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-280 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-756)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1154)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-1 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|)) (-756)) NIL) (($ $ (-1 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-1223 |#1| |#2| |#3| |#4|) $) 17)) (-1522 (((-873 (-552)) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-600 (-528)))) (((-373) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1003))) (((-220) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-1223 |#1| |#2| |#3| |#4|) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-1223 |#1| |#2| |#3| |#4|)) 29) (($ (-1154)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-1019 (-1154)))) (($ (-1222 |#2| |#3| |#4|)) 36)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-1223 |#1| |#2| |#3| |#4|) (-890))) (|has| (-1223 |#1| |#2| |#3| |#4|) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-1223 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-537)))) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-805)))) (-3297 (($) 41 T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-756)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1154)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-881 (-1154)))) (($ $ (-1 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|)) (-756)) NIL) (($ $ (-1 (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-1223 |#1| |#2| |#3| |#4|) (-832)))) (-1720 (($ $ $) 34) (($ (-1223 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|)) 31)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-1223 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1223 |#1| |#2| |#3| |#4|)) NIL))) +(((-307 |#1| |#2| |#3| |#4|) (-13 (-973 (-1223 |#1| |#2| |#3| |#4|)) (-1019 (-1222 |#2| |#3| |#4|)) (-10 -8 (-15 -1798 ((-3 (-825 |#2|) "failed") $)) (-15 -3213 ($ (-1222 |#2| |#3| |#4|))))) (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445)) (-13 (-27) (-1176) (-424 |#1|)) (-1154) |#2|) (T -307)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1222 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) (-14 *6 *4) (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) (-5 *1 (-307 *3 *4 *5 *6)))) (-1798 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) (-5 *2 (-825 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) (-14 *6 *4)))) +(-13 (-973 (-1223 |#1| |#2| |#3| |#4|)) (-1019 (-1222 |#2| |#3| |#4|)) (-10 -8 (-15 -1798 ((-3 (-825 |#2|) "failed") $)) (-15 -3213 ($ (-1222 |#2| |#3| |#4|))))) +((-1477 (((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)) 13))) +(((-308 |#1| |#2|) (-10 -7 (-15 -1477 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) (-832) (-832)) (T -308)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-832)) (-4 *6 (-832)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -1477 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) +((-3658 (((-52) |#2| (-288 |#2|) (-756)) 33) (((-52) |#2| (-288 |#2|)) 24) (((-52) |#2| (-756)) 28) (((-52) |#2|) 25) (((-52) (-1154)) 21)) (-1726 (((-52) |#2| (-288 |#2|) (-401 (-552))) 51) (((-52) |#2| (-288 |#2|)) 48) (((-52) |#2| (-401 (-552))) 50) (((-52) |#2|) 49) (((-52) (-1154)) 47)) (-3682 (((-52) |#2| (-288 |#2|) (-401 (-552))) 46) (((-52) |#2| (-288 |#2|)) 43) (((-52) |#2| (-401 (-552))) 45) (((-52) |#2|) 44) (((-52) (-1154)) 42)) (-3670 (((-52) |#2| (-288 |#2|) (-552)) 39) (((-52) |#2| (-288 |#2|)) 35) (((-52) |#2| (-552)) 38) (((-52) |#2|) 36) (((-52) (-1154)) 34))) +(((-309 |#1| |#2|) (-10 -7 (-15 -3658 ((-52) (-1154))) (-15 -3658 ((-52) |#2|)) (-15 -3658 ((-52) |#2| (-756))) (-15 -3658 ((-52) |#2| (-288 |#2|))) (-15 -3658 ((-52) |#2| (-288 |#2|) (-756))) (-15 -3670 ((-52) (-1154))) (-15 -3670 ((-52) |#2|)) (-15 -3670 ((-52) |#2| (-552))) (-15 -3670 ((-52) |#2| (-288 |#2|))) (-15 -3670 ((-52) |#2| (-288 |#2|) (-552))) (-15 -3682 ((-52) (-1154))) (-15 -3682 ((-52) |#2|)) (-15 -3682 ((-52) |#2| (-401 (-552)))) (-15 -3682 ((-52) |#2| (-288 |#2|))) (-15 -3682 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1726 ((-52) (-1154))) (-15 -1726 ((-52) |#2|)) (-15 -1726 ((-52) |#2| (-401 (-552)))) (-15 -1726 ((-52) |#2| (-288 |#2|))) (-15 -1726 ((-52) |#2| (-288 |#2|) (-401 (-552))))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -309)) +((-1726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-1726 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1176) (-424 *4))))) (-3682 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1176) (-424 *4))))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-1019 *5) (-625 *5))) (-5 *5 (-552)) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-832) (-1019 *4) (-625 *4))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1176) (-424 *4))))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-756)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3658 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1176) (-424 *4)))))) +(-10 -7 (-15 -3658 ((-52) (-1154))) (-15 -3658 ((-52) |#2|)) (-15 -3658 ((-52) |#2| (-756))) (-15 -3658 ((-52) |#2| (-288 |#2|))) (-15 -3658 ((-52) |#2| (-288 |#2|) (-756))) (-15 -3670 ((-52) (-1154))) (-15 -3670 ((-52) |#2|)) (-15 -3670 ((-52) |#2| (-552))) (-15 -3670 ((-52) |#2| (-288 |#2|))) (-15 -3670 ((-52) |#2| (-288 |#2|) (-552))) (-15 -3682 ((-52) (-1154))) (-15 -3682 ((-52) |#2|)) (-15 -3682 ((-52) |#2| (-401 (-552)))) (-15 -3682 ((-52) |#2| (-288 |#2|))) (-15 -3682 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1726 ((-52) (-1154))) (-15 -1726 ((-52) |#2|)) (-15 -1726 ((-52) |#2| (-401 (-552)))) (-15 -1726 ((-52) |#2| (-288 |#2|))) (-15 -1726 ((-52) |#2| (-288 |#2|) (-401 (-552))))) +((-3202 (((-111) $ $) NIL)) (-2965 (((-629 $) $ (-1154)) NIL (|has| |#1| (-544))) (((-629 $) $) NIL (|has| |#1| (-544))) (((-629 $) (-1150 $) (-1154)) NIL (|has| |#1| (-544))) (((-629 $) (-1150 $)) NIL (|has| |#1| (-544))) (((-629 $) (-933 $)) NIL (|has| |#1| (-544)))) (-3476 (($ $ (-1154)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1150 $) (-1154)) NIL (|has| |#1| (-544))) (($ (-1150 $)) NIL (|has| |#1| (-544))) (($ (-933 $)) NIL (|has| |#1| (-544)))) (-3643 (((-111) $) 27 (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))))) (-3611 (((-629 (-1154)) $) 351)) (-3449 (((-401 (-1150 $)) $ (-598 $)) NIL (|has| |#1| (-544)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-3361 (((-629 (-598 $)) $) NIL)) (-2478 (($ $) 161 (|has| |#1| (-544)))) (-2332 (($ $) 137 (|has| |#1| (-544)))) (-2867 (($ $ (-1070 $)) 222 (|has| |#1| (-544))) (($ $ (-1154)) 218 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) NIL (-4029 (|has| |#1| (-21)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))))) (-2172 (($ $ (-288 $)) NIL) (($ $ (-629 (-288 $))) 368) (($ $ (-629 (-598 $)) (-629 $)) 412)) (-1472 (((-412 (-1150 $)) (-1150 $)) 295 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-4116 (($ $) NIL (|has| |#1| (-544)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-544)))) (-3489 (($ $) NIL (|has| |#1| (-544)))) (-2393 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2455 (($ $) 157 (|has| |#1| (-544)))) (-2305 (($ $) 133 (|has| |#1| (-544)))) (-2599 (($ $ (-552)) 72 (|has| |#1| (-544)))) (-2506 (($ $) 165 (|has| |#1| (-544)))) (-2359 (($ $) 141 (|has| |#1| (-544)))) (-2130 (($) NIL (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090))) CONST)) (-1821 (((-629 $) $ (-1154)) NIL (|has| |#1| (-544))) (((-629 $) $) NIL (|has| |#1| (-544))) (((-629 $) (-1150 $) (-1154)) NIL (|has| |#1| (-544))) (((-629 $) (-1150 $)) NIL (|has| |#1| (-544))) (((-629 $) (-933 $)) NIL (|has| |#1| (-544)))) (-1743 (($ $ (-1154)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1150 $) (-1154)) 124 (|has| |#1| (-544))) (($ (-1150 $)) NIL (|has| |#1| (-544))) (($ (-933 $)) NIL (|has| |#1| (-544)))) (-1393 (((-3 (-598 $) "failed") $) 17) (((-3 (-1154) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-933 |#1|)) "failed") $) NIL (|has| |#1| (-544))) (((-3 (-933 |#1|) "failed") $) NIL (|has| |#1| (-1030))) (((-3 (-401 (-552)) "failed") $) 46 (-4029 (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-2832 (((-598 $) $) 11) (((-1154) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-933 |#1|)) $) NIL (|has| |#1| (-544))) (((-933 |#1|) $) NIL (|has| |#1| (-1030))) (((-401 (-552)) $) 306 (-4029 (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-4006 (($ $ $) NIL (|has| |#1| (-544)))) (-2714 (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 117 (|has| |#1| (-1030))) (((-673 |#1|) (-673 $)) 107 (|has| |#1| (-1030))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))) (-3884 (($ $) 89 (|has| |#1| (-544)))) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090))))) (-3987 (($ $ $) NIL (|has| |#1| (-544)))) (-3951 (($ $ (-1070 $)) 226 (|has| |#1| (-544))) (($ $ (-1154)) 224 (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-544)))) (-1677 (((-111) $) NIL (|has| |#1| (-544)))) (-1618 (($ $ $) 192 (|has| |#1| (-544)))) (-4043 (($) 127 (|has| |#1| (-544)))) (-2048 (($ $ $) 212 (|has| |#1| (-544)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 374 (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 381 (|has| |#1| (-867 (-373))))) (-3963 (($ $) NIL) (($ (-629 $)) NIL)) (-3751 (((-629 (-113)) $) NIL)) (-2951 (((-113) (-113)) 267)) (-4065 (((-111) $) 25 (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090))))) (-3302 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-3773 (($ $) 71 (|has| |#1| (-1030)))) (-4015 (((-1103 |#1| (-598 $)) $) 84 (|has| |#1| (-1030)))) (-3573 (((-111) $) 64 (|has| |#1| (-544)))) (-3755 (($ $ (-552)) NIL (|has| |#1| (-544)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-544)))) (-1941 (((-1150 $) (-598 $)) 268 (|has| $ (-1030)))) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 $ $) (-598 $)) 408)) (-1875 (((-3 (-598 $) "failed") $) NIL)) (-2430 (($ $) 131 (|has| |#1| (-544)))) (-2541 (($ $) 237 (|has| |#1| (-544)))) (-2552 (($ (-629 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2623 (((-1136) $) NIL)) (-3438 (((-629 (-598 $)) $) 49)) (-4086 (($ (-113) $) NIL) (($ (-113) (-629 $)) 413)) (-4263 (((-3 (-629 $) "failed") $) NIL (|has| |#1| (-1090)))) (-4073 (((-3 (-2 (|:| |val| $) (|:| -1406 (-552))) "failed") $) NIL (|has| |#1| (-1030)))) (-2878 (((-3 (-629 $) "failed") $) 416 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $) NIL (|has| |#1| (-1090))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-113)) NIL (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-1154)) NIL (|has| |#1| (-1030)))) (-3515 (((-111) $ (-113)) NIL) (((-111) $ (-1154)) 53)) (-3701 (($ $) NIL (-4029 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-3094 (($ $ (-1154)) 241 (|has| |#1| (-544))) (($ $ (-1070 $)) 243 (|has| |#1| (-544)))) (-2384 (((-756) $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) 43)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 288 (|has| |#1| (-544)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-3633 (((-111) $ $) NIL) (((-111) $ (-1154)) NIL)) (-1333 (($ $ (-1154)) 216 (|has| |#1| (-544))) (($ $) 214 (|has| |#1| (-544)))) (-2006 (($ $) 208 (|has| |#1| (-544)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 293 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-3479 (((-412 $) $) NIL (|has| |#1| (-544)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-544)))) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-544)))) (-2855 (($ $) 129 (|has| |#1| (-544)))) (-3117 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) 407) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-1154) (-1 $ (-629 $))) NIL) (($ $ (-1154) (-1 $ $)) NIL) (($ $ (-629 (-113)) (-629 (-1 $ $))) 361) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-113) (-1 $ (-629 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1154)) NIL (|has| |#1| (-600 (-528)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-600 (-528)))) (($ $) NIL (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1154)) 349 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-113)) (-629 $) (-1154)) 348 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ $))) NIL (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ (-629 $)))) NIL (|has| |#1| (-1030))) (($ $ (-1154) (-756) (-1 $ (-629 $))) NIL (|has| |#1| (-1030))) (($ $ (-1154) (-756) (-1 $ $)) NIL (|has| |#1| (-1030)))) (-3795 (((-756) $) NIL (|has| |#1| (-544)))) (-2260 (($ $) 229 (|has| |#1| (-544)))) (-2060 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-629 $)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-1877 (($ $) NIL) (($ $ $) NIL)) (-2293 (($ $) 239 (|has| |#1| (-544)))) (-4119 (($ $) 190 (|has| |#1| (-544)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-1030))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-1030))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-1030))) (($ $ (-1154)) NIL (|has| |#1| (-1030)))) (-2493 (($ $) 73 (|has| |#1| (-544)))) (-4026 (((-1103 |#1| (-598 $)) $) 86 (|has| |#1| (-544)))) (-3521 (($ $) 304 (|has| $ (-1030)))) (-2518 (($ $) 167 (|has| |#1| (-544)))) (-2370 (($ $) 143 (|has| |#1| (-544)))) (-2492 (($ $) 163 (|has| |#1| (-544)))) (-2346 (($ $) 139 (|has| |#1| (-544)))) (-2467 (($ $) 159 (|has| |#1| (-544)))) (-2318 (($ $) 135 (|has| |#1| (-544)))) (-1522 (((-873 (-552)) $) NIL (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| |#1| (-600 (-873 (-373))))) (($ (-412 $)) NIL (|has| |#1| (-544))) (((-528) $) 346 (|has| |#1| (-600 (-528))))) (-2074 (($ $ $) NIL (|has| |#1| (-466)))) (-2104 (($ $ $) NIL (|has| |#1| (-466)))) (-3213 (((-844) $) 406) (($ (-598 $)) 397) (($ (-1154)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-544))) (($ (-48)) 299 (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552))))) (($ (-1103 |#1| (-598 $))) 88 (|has| |#1| (-1030))) (($ (-401 |#1|)) NIL (|has| |#1| (-544))) (($ (-933 (-401 |#1|))) NIL (|has| |#1| (-544))) (($ (-401 (-933 (-401 |#1|)))) NIL (|has| |#1| (-544))) (($ (-401 (-933 |#1|))) NIL (|has| |#1| (-544))) (($ (-933 |#1|)) NIL (|has| |#1| (-1030))) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-544)) (|has| |#1| (-1019 (-401 (-552)))))) (($ (-552)) 34 (-4029 (|has| |#1| (-1019 (-552))) (|has| |#1| (-1030))))) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL (|has| |#1| (-1030)))) (-3044 (($ $) NIL) (($ (-629 $)) NIL)) (-2075 (($ $ $) 210 (|has| |#1| (-544)))) (-3381 (($ $ $) 196 (|has| |#1| (-544)))) (-4135 (($ $ $) 200 (|has| |#1| (-544)))) (-2906 (($ $ $) 194 (|has| |#1| (-544)))) (-3158 (($ $ $) 198 (|has| |#1| (-544)))) (-1374 (((-111) (-113)) 9)) (-3843 (($ $) 173 (|has| |#1| (-544)))) (-2409 (($ $) 149 (|has| |#1| (-544)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) 169 (|has| |#1| (-544)))) (-2382 (($ $) 145 (|has| |#1| (-544)))) (-3863 (($ $) 177 (|has| |#1| (-544)))) (-2433 (($ $) 153 (|has| |#1| (-544)))) (-3893 (($ (-1154) $) NIL) (($ (-1154) $ $) NIL) (($ (-1154) $ $ $) NIL) (($ (-1154) $ $ $ $) NIL) (($ (-1154) (-629 $)) NIL)) (-3742 (($ $) 204 (|has| |#1| (-544)))) (-1280 (($ $) 202 (|has| |#1| (-544)))) (-3013 (($ $) 179 (|has| |#1| (-544)))) (-2444 (($ $) 155 (|has| |#1| (-544)))) (-3853 (($ $) 175 (|has| |#1| (-544)))) (-2420 (($ $) 151 (|has| |#1| (-544)))) (-2543 (($ $) 171 (|has| |#1| (-544)))) (-2395 (($ $) 147 (|has| |#1| (-544)))) (-1578 (($ $) 182 (|has| |#1| (-544)))) (-3297 (($) 20 (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))) CONST)) (-2310 (($ $) 233 (|has| |#1| (-544)))) (-3309 (($) 22 (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090))) CONST)) (-3290 (($ $) 184 (|has| |#1| (-544))) (($ $ $) 186 (|has| |#1| (-544)))) (-2157 (($ $) 231 (|has| |#1| (-544)))) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-1030))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-1030))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-1030))) (($ $ (-1154)) NIL (|has| |#1| (-1030)))) (-3178 (($ $) 235 (|has| |#1| (-544)))) (-1812 (($ $ $) 188 (|has| |#1| (-544)))) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 81)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 80)) (-1720 (($ (-1103 |#1| (-598 $)) (-1103 |#1| (-598 $))) 98 (|has| |#1| (-544))) (($ $ $) 42 (-4029 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-1709 (($ $ $) 40 (-4029 (|has| |#1| (-21)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))) (($ $) 29 (-4029 (|has| |#1| (-21)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))))) (-1698 (($ $ $) 38 (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))))) (** (($ $ $) 66 (|has| |#1| (-544))) (($ $ (-401 (-552))) 301 (|has| |#1| (-544))) (($ $ (-552)) 76 (-4029 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-756)) 74 (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090)))) (($ $ (-902)) 78 (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090))))) (* (($ (-401 (-552)) $) NIL (|has| |#1| (-544))) (($ $ (-401 (-552))) NIL (|has| |#1| (-544))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-4029 (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) (|has| |#1| (-1090)))) (($ (-552) $) 32 (-4029 (|has| |#1| (-21)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))) (($ (-756) $) NIL (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))) (($ (-902) $) NIL (-4029 (|has| |#1| (-25)) (-12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))))))) +(((-310 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1176)) (-6 (-157)) (-6 (-615)) (-6 (-1117)) (-15 -3884 ($ $)) (-15 -3573 ((-111) $)) (-15 -2599 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -1528 ((-412 (-1150 $)) (-1150 $))) (-15 -1472 ((-412 (-1150 $)) (-1150 $)))) |%noBranch|) (IF (|has| |#1| (-1019 (-552))) (-6 (-1019 (-48))) |%noBranch|)) |%noBranch|))) (-832)) (T -310)) +((-3884 (*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-832)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-832)))) (-2599 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-832)))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-412 (-1150 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1150 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-832)))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-412 (-1150 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1150 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-832))))) +(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1176)) (-6 (-157)) (-6 (-615)) (-6 (-1117)) (-15 -3884 ($ $)) (-15 -3573 ((-111) $)) (-15 -2599 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -1528 ((-412 (-1150 $)) (-1150 $))) (-15 -1472 ((-412 (-1150 $)) (-1150 $)))) |%noBranch|) (IF (|has| |#1| (-1019 (-552))) (-6 (-1019 (-48))) |%noBranch|)) |%noBranch|))) +((-2550 (((-52) |#2| (-113) (-288 |#2|) (-629 |#2|)) 88) (((-52) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-52) |#2| (-113) (-288 |#2|) |#2|) 86) (((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|))) 80) (((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 |#2|)) 82) (((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 |#2|)) 83) (((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|))) 81) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|)) 89) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85))) +(((-311 |#1| |#2|) (-10 -7 (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|)))) (-15 -2550 ((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|)))) (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) (-629 |#2|)))) (-13 (-832) (-544) (-600 (-528))) (-424 |#1|)) (T -311)) +((-2550 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-629 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *3)))) (-2550 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-2550 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-2550 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *5)))) (-2550 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 (-113))) (-5 *6 (-629 (-288 *8))) (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-2550 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-629 *7)) (-5 *4 (-629 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2550 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 (-288 *8))) (-5 *4 (-629 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-629 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-2550 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-629 (-288 *7))) (-5 *4 (-629 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2550 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-629 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2550 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *5 *6))))) +(-10 -7 (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|)))) (-15 -2550 ((-52) (-629 (-288 |#2|)) (-629 (-113)) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 |#2|))) (-15 -2550 ((-52) (-629 |#2|) (-629 (-113)) (-288 |#2|) (-629 (-288 |#2|)))) (-15 -2550 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -2550 ((-52) |#2| (-113) (-288 |#2|) (-629 |#2|)))) +((-1627 (((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552) (-1136)) 46) (((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552)) 47) (((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552) (-1136)) 43) (((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552)) 44)) (-2238 (((-1 (-220) (-220)) (-220)) 45))) +(((-312) (-10 -7 (-15 -2238 ((-1 (-220) (-220)) (-220))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552) (-1136))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552) (-1136))))) (T -312)) +((-1627 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1072 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1136)) (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) (-1627 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1072 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) (-1627 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1072 (-220))) (-5 *6 (-552)) (-5 *7 (-1136)) (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) (-1627 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1072 (-220))) (-5 *6 (-552)) (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) +(-10 -7 (-15 -2238 ((-1 (-220) (-220)) (-220))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-1 (-220) (-220)) (-552) (-1136))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552))) (-15 -1627 ((-1186 (-907)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-220) (-552) (-1136)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 25)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 20)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) 32)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) 16)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) NIL) (($ $ (-401 (-552))) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-401 (-552))) NIL) (($ $ (-1060) (-401 (-552))) NIL) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176)))))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3090 (((-401 (-552)) $) 17)) (-2372 (($ (-1222 |#1| |#2| |#3|)) 11)) (-1406 (((-1222 |#1| |#2| |#3|) $) 12)) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3299 (((-401 (-552)) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 10)) (-3213 (((-844) $) 38) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) 30)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 27)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 33)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-313 |#1| |#2| |#3|) (-13 (-1218 |#1|) (-777) (-10 -8 (-15 -2372 ($ (-1222 |#1| |#2| |#3|))) (-15 -1406 ((-1222 |#1| |#2| |#3|) $)) (-15 -3090 ((-401 (-552)) $)))) (-13 (-357) (-832)) (-1154) |#1|) (T -313)) +((-2372 (*1 *1 *2) (-12 (-5 *2 (-1222 *3 *4 *5)) (-4 *3 (-13 (-357) (-832))) (-14 *4 (-1154)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1222 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-832))) (-14 *4 (-1154)) (-14 *5 *3))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-832))) (-14 *4 (-1154)) (-14 *5 *3)))) +(-13 (-1218 |#1|) (-777) (-10 -8 (-15 -2372 ($ (-1222 |#1| |#2| |#3|))) (-15 -1406 ((-1222 |#1| |#2| |#3|) $)) (-15 -3090 ((-401 (-552)) $)))) +((-3755 (((-2 (|:| -1406 (-756)) (|:| -4158 |#1|) (|:| |radicand| (-629 |#1|))) (-412 |#1|) (-756)) 24)) (-2430 (((-629 (-2 (|:| -4158 (-756)) (|:| |logand| |#1|))) (-412 |#1|)) 28))) +(((-314 |#1|) (-10 -7 (-15 -3755 ((-2 (|:| -1406 (-756)) (|:| -4158 |#1|) (|:| |radicand| (-629 |#1|))) (-412 |#1|) (-756))) (-15 -2430 ((-629 (-2 (|:| -4158 (-756)) (|:| |logand| |#1|))) (-412 |#1|)))) (-544)) (T -314)) +((-2430 (*1 *2 *3) (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) (-5 *2 (-629 (-2 (|:| -4158 (-756)) (|:| |logand| *4)))) (-5 *1 (-314 *4)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *5) (|:| |radicand| (-629 *5)))) (-5 *1 (-314 *5)) (-5 *4 (-756))))) +(-10 -7 (-15 -3755 ((-2 (|:| -1406 (-756)) (|:| -4158 |#1|) (|:| |radicand| (-629 |#1|))) (-412 |#1|) (-756))) (-15 -2430 ((-629 (-2 (|:| -4158 (-756)) (|:| |logand| |#1|))) (-412 |#1|)))) +((-3611 (((-629 |#2|) (-1150 |#4|)) 43)) (-2096 ((|#3| (-552)) 46)) (-3388 (((-1150 |#4|) (-1150 |#3|)) 30)) (-4115 (((-1150 |#4|) (-1150 |#4|) (-552)) 56)) (-3488 (((-1150 |#3|) (-1150 |#4|)) 21)) (-3299 (((-629 (-756)) (-1150 |#4|) (-629 |#2|)) 40)) (-2458 (((-1150 |#3|) (-1150 |#4|) (-629 |#2|) (-629 |#3|)) 35))) +(((-315 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2458 ((-1150 |#3|) (-1150 |#4|) (-629 |#2|) (-629 |#3|))) (-15 -3299 ((-629 (-756)) (-1150 |#4|) (-629 |#2|))) (-15 -3611 ((-629 |#2|) (-1150 |#4|))) (-15 -3488 ((-1150 |#3|) (-1150 |#4|))) (-15 -3388 ((-1150 |#4|) (-1150 |#3|))) (-15 -4115 ((-1150 |#4|) (-1150 |#4|) (-552))) (-15 -2096 (|#3| (-552)))) (-778) (-832) (-1030) (-930 |#3| |#1| |#2|)) (T -315)) +((-2096 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1030)) (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-930 *2 *4 *5)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *7)) (-5 *3 (-552)) (-4 *7 (-930 *6 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-1150 *6)) (-4 *6 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-1150 *7)) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1150 *7)) (-4 *7 (-930 *6 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-5 *2 (-1150 *6)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-1150 *7)) (-4 *7 (-930 *6 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-5 *2 (-629 *5)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *8)) (-5 *4 (-629 *6)) (-4 *6 (-832)) (-4 *8 (-930 *7 *5 *6)) (-4 *5 (-778)) (-4 *7 (-1030)) (-5 *2 (-629 (-756))) (-5 *1 (-315 *5 *6 *7 *8)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-5 *5 (-629 *8)) (-4 *7 (-832)) (-4 *8 (-1030)) (-4 *9 (-930 *8 *6 *7)) (-4 *6 (-778)) (-5 *2 (-1150 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) +(-10 -7 (-15 -2458 ((-1150 |#3|) (-1150 |#4|) (-629 |#2|) (-629 |#3|))) (-15 -3299 ((-629 (-756)) (-1150 |#4|) (-629 |#2|))) (-15 -3611 ((-629 |#2|) (-1150 |#4|))) (-15 -3488 ((-1150 |#3|) (-1150 |#4|))) (-15 -3388 ((-1150 |#4|) (-1150 |#3|))) (-15 -4115 ((-1150 |#4|) (-1150 |#4|) (-552))) (-15 -2096 (|#3| (-552)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 14)) (-2622 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-552)))) $) 18)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756) $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-3261 ((|#1| $ (-552)) NIL)) (-3103 (((-552) $ (-552)) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1316 (($ (-1 |#1| |#1|) $) NIL)) (-2902 (($ (-1 (-552) (-552)) $) 10)) (-2623 (((-1136) $) NIL)) (-2996 (($ $ $) NIL (|has| (-552) (-777)))) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (($ |#1|) NIL)) (-2266 (((-552) |#1| $) NIL)) (-3297 (($) 15 T CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) 21 (|has| |#1| (-832)))) (-1709 (($ $) 11) (($ $ $) 20)) (-1698 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL) (($ (-552) |#1|) 19))) +(((-316 |#1|) (-13 (-21) (-702 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-832)) (-6 (-832)) |%noBranch|))) (-1078)) (T -316)) +NIL +(-13 (-21) (-702 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-832)) (-6 (-832)) |%noBranch|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2622 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))) $) 27)) (-4012 (((-3 $ "failed") $ $) 19)) (-2663 (((-756) $) 28)) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 32)) (-2832 ((|#1| $) 31)) (-3261 ((|#1| $ (-552)) 25)) (-3103 ((|#2| $ (-552)) 26)) (-1316 (($ (-1 |#1| |#1|) $) 22)) (-2902 (($ (-1 |#2| |#2|) $) 23)) (-2623 (((-1136) $) 9)) (-2996 (($ $ $) 21 (|has| |#2| (-777)))) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ |#1|) 33)) (-2266 ((|#2| |#1| $) 24)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ |#2| |#1|) 29))) +(((-317 |#1| |#2|) (-137) (-1078) (-129)) (T -317)) +((-1698 (*1 *1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-129)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)) (-5 *2 (-756)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)) (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))))) (-3103 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1078)) (-4 *2 (-129)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1078)))) (-2266 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-129)))) (-2902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)))) (-2996 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-129)) (-4 *3 (-777))))) +(-13 (-129) (-1019 |t#1|) (-10 -8 (-15 -1698 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2663 ((-756) $)) (-15 -2622 ((-629 (-2 (|:| |gen| |t#1|) (|:| -2855 |t#2|))) $)) (-15 -3103 (|t#2| $ (-552))) (-15 -3261 (|t#1| $ (-552))) (-15 -2266 (|t#2| |t#1| $)) (-15 -2902 ($ (-1 |t#2| |t#2|) $)) (-15 -1316 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-777)) (-15 -2996 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1019 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2622 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756) $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-3261 ((|#1| $ (-552)) NIL)) (-3103 (((-756) $ (-552)) NIL)) (-1316 (($ (-1 |#1| |#1|) $) NIL)) (-2902 (($ (-1 (-756) (-756)) $) NIL)) (-2623 (((-1136) $) NIL)) (-2996 (($ $ $) NIL (|has| (-756) (-777)))) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (($ |#1|) NIL)) (-2266 (((-756) |#1| $) NIL)) (-3297 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1698 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-756) |#1|) NIL))) +(((-318 |#1|) (-317 |#1| (-756)) (-1078)) (T -318)) +NIL +(-317 |#1| (-756)) +((-3471 (($ $) 53)) (-3423 (($ $ |#2| |#3| $) 14)) (-3891 (($ (-1 |#3| |#3|) $) 33)) (-3711 (((-111) $) 24)) (-3722 ((|#2| $) 26)) (-3969 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3807 ((|#2| $) 49)) (-2984 (((-629 |#2|) $) 36)) (-4306 (($ $ $ (-756)) 20)) (-1720 (($ $ |#2|) 40))) +(((-319 |#1| |#2| |#3|) (-10 -8 (-15 -3471 (|#1| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4306 (|#1| |#1| |#1| (-756))) (-15 -3423 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3891 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2984 ((-629 |#2|) |#1|)) (-15 -3722 (|#2| |#1|)) (-15 -3711 ((-111) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1720 (|#1| |#1| |#2|))) (-320 |#2| |#3|) (-1030) (-777)) (T -319)) +NIL +(-10 -8 (-15 -3471 (|#1| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4306 (|#1| |#1| |#1| (-756))) (-15 -3423 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3891 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2984 ((-629 |#2|) |#1|)) (-15 -3722 (|#2| |#1|)) (-15 -3711 ((-111) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1720 (|#1| |#1| |#2|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 88 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 86 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 85)) (-2832 (((-552) $) 89 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 87 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 84)) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3471 (($ $) 73 (|has| |#1| (-445)))) (-3423 (($ $ |#1| |#2| $) 77)) (-4065 (((-111) $) 30)) (-2856 (((-756) $) 80)) (-2231 (((-111) $) 60)) (-3590 (($ |#1| |#2|) 59)) (-3544 ((|#2| $) 79)) (-3891 (($ (-1 |#2| |#2|) $) 78)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 83)) (-3722 ((|#1| $) 82)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-544)))) (-3299 ((|#2| $) 62)) (-3807 ((|#1| $) 74 (|has| |#1| (-445)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45) (($ (-401 (-552))) 55 (-4029 (|has| |#1| (-1019 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-2984 (((-629 |#1|) $) 81)) (-2266 ((|#1| $ |#2|) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4306 (($ $ $ (-756)) 76 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-320 |#1| |#2|) (-137) (-1030) (-777)) (T -320)) +((-3711 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-111)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-629 *3)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-756)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-3891 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)))) (-3423 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) (-4306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-4 *3 (-169)))) (-3969 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *2 (-544)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)) (-4 *2 (-445)))) (-3471 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *2 (-445))))) +(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -3711 ((-111) $)) (-15 -3722 (|t#1| $)) (-15 -2984 ((-629 |t#1|) $)) (-15 -2856 ((-756) $)) (-15 -3544 (|t#2| $)) (-15 -3891 ($ (-1 |t#2| |t#2|) $)) (-15 -3423 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -4306 ($ $ $ (-756))) |%noBranch|) (IF (|has| |t#1| (-544)) (-15 -3969 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3807 (|t#1| $)) (-15 -3471 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-405 |#1|) . T) ((-544) |has| |#1| (-544)) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-2982 (((-111) (-111)) NIL)) (-1470 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) NIL)) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2232 (($ $) NIL (|has| |#1| (-1078)))) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) NIL (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) NIL)) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3892 (($ $ (-552)) NIL)) (-1910 (((-756) $) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-3707 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1580 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2718 (($ (-629 |#1|)) NIL)) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-3502 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-2380 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-321 |#1|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -2718 ($ (-629 |#1|))) (-15 -1910 ((-756) $)) (-15 -3892 ($ $ (-552))) (-15 -2982 ((-111) (-111))))) (-1191)) (T -321)) +((-2718 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-321 *3)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-321 *3)) (-4 *3 (-1191)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1191)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1191))))) +(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -2718 ($ (-629 |#1|))) (-15 -1910 ((-756) $)) (-15 -3892 ($ $ (-552))) (-15 -2982 ((-111) (-111))))) +((-1986 (((-111) $) 42)) (-4082 (((-756)) 22)) (-1549 ((|#2| $) 46) (($ $ (-902)) 101)) (-2663 (((-756)) 102)) (-4278 (($ (-1237 |#2|)) 20)) (-2092 (((-111) $) 115)) (-4346 ((|#2| $) 48) (($ $ (-902)) 99)) (-2169 (((-1150 |#2|) $) NIL) (((-1150 $) $ (-902)) 95)) (-1879 (((-1150 |#2|) $) 82)) (-1577 (((-1150 |#2|) $) 79) (((-3 (-1150 |#2|) "failed") $ $) 76)) (-2836 (($ $ (-1150 |#2|)) 53)) (-3823 (((-818 (-902))) 28) (((-902)) 43)) (-3725 (((-132)) 25)) (-3299 (((-818 (-902)) $) 30) (((-902) $) 117)) (-3149 (($) 108)) (-3464 (((-1237 |#2|) $) NIL) (((-673 |#2|) (-1237 $)) 39)) (-3878 (($ $) NIL) (((-3 $ "failed") $) 85)) (-2904 (((-111) $) 41))) +(((-322 |#1| |#2|) (-10 -8 (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -2663 ((-756))) (-15 -3878 (|#1| |#1|)) (-15 -1577 ((-3 (-1150 |#2|) "failed") |#1| |#1|)) (-15 -1577 ((-1150 |#2|) |#1|)) (-15 -1879 ((-1150 |#2|) |#1|)) (-15 -2836 (|#1| |#1| (-1150 |#2|))) (-15 -2092 ((-111) |#1|)) (-15 -3149 (|#1|)) (-15 -1549 (|#1| |#1| (-902))) (-15 -4346 (|#1| |#1| (-902))) (-15 -2169 ((-1150 |#1|) |#1| (-902))) (-15 -1549 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -3299 ((-902) |#1|)) (-15 -3823 ((-902))) (-15 -2169 ((-1150 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -4082 ((-756))) (-15 -3823 ((-818 (-902)))) (-15 -3299 ((-818 (-902)) |#1|)) (-15 -1986 ((-111) |#1|)) (-15 -2904 ((-111) |#1|)) (-15 -3725 ((-132)))) (-323 |#2|) (-357)) (T -322)) +((-3725 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3823 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-818 (-902))) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-4082 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-756)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3823 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-902)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-2663 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-756)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4))))) +(-10 -8 (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -2663 ((-756))) (-15 -3878 (|#1| |#1|)) (-15 -1577 ((-3 (-1150 |#2|) "failed") |#1| |#1|)) (-15 -1577 ((-1150 |#2|) |#1|)) (-15 -1879 ((-1150 |#2|) |#1|)) (-15 -2836 (|#1| |#1| (-1150 |#2|))) (-15 -2092 ((-111) |#1|)) (-15 -3149 (|#1|)) (-15 -1549 (|#1| |#1| (-902))) (-15 -4346 (|#1| |#1| (-902))) (-15 -2169 ((-1150 |#1|) |#1| (-902))) (-15 -1549 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -3299 ((-902) |#1|)) (-15 -3823 ((-902))) (-15 -2169 ((-1150 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -4082 ((-756))) (-15 -3823 ((-818 (-902)))) (-15 -3299 ((-818 (-902)) |#1|)) (-15 -1986 ((-111) |#1|)) (-15 -2904 ((-111) |#1|)) (-15 -3725 ((-132)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-1986 (((-111) $) 91)) (-4082 (((-756)) 87)) (-1549 ((|#1| $) 137) (($ $ (-902)) 134 (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) 119 (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-2393 (((-111) $ $) 57)) (-2663 (((-756)) 109 (|has| |#1| (-362)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 98)) (-2832 ((|#1| $) 97)) (-4278 (($ (-1237 |#1|)) 143)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-362)))) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-1332 (($) 106 (|has| |#1| (-362)))) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-4000 (($) 121 (|has| |#1| (-362)))) (-3504 (((-111) $) 122 (|has| |#1| (-362)))) (-1788 (($ $ (-756)) 84 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) 68)) (-4241 (((-902) $) 124 (|has| |#1| (-362))) (((-818 (-902)) $) 81 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) 30)) (-2019 (($) 132 (|has| |#1| (-362)))) (-2092 (((-111) $) 131 (|has| |#1| (-362)))) (-4346 ((|#1| $) 138) (($ $ (-902)) 135 (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) 110 (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2169 (((-1150 |#1|) $) 142) (((-1150 $) $ (-902)) 136 (|has| |#1| (-362)))) (-1637 (((-902) $) 107 (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) 128 (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) 127 (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) 126 (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) 129 (|has| |#1| (-362)))) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-1977 (($) 111 (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) 108 (|has| |#1| (-362)))) (-1498 (((-111) $) 90)) (-2876 (((-1098) $) 10)) (-4126 (($) 130 (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 118 (|has| |#1| (-362)))) (-3479 (((-412 $) $) 71)) (-3823 (((-818 (-902))) 88) (((-902)) 140)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-4147 (((-756) $) 123 (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) 82 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) 96)) (-3096 (($ $) 115 (|has| |#1| (-362))) (($ $ (-756)) 113 (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) 89) (((-902) $) 139)) (-3521 (((-1150 |#1|)) 141)) (-1368 (($) 120 (|has| |#1| (-362)))) (-3149 (($) 133 (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) 145) (((-673 |#1|) (-1237 $)) 144)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 117 (|has| |#1| (-362)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3878 (($ $) 116 (|has| |#1| (-362))) (((-3 $ "failed") $) 80 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) 28)) (-4199 (((-1237 $)) 147) (((-1237 $) (-902)) 146)) (-3589 (((-111) $ $) 37)) (-2904 (((-111) $) 92)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-4237 (($ $) 86 (|has| |#1| (-362))) (($ $ (-756)) 85 (|has| |#1| (-362)))) (-1765 (($ $) 114 (|has| |#1| (-362))) (($ $ (-756)) 112 (|has| |#1| (-362)))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62) (($ $ |#1|) 95)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) (((-323 |#1|) (-137) (-357)) (T -323)) -((-2957 (*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *3)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *4)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) (-1376 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) (-3804 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1148 *1)) (-4 *1 (-323 *4)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3385 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3231 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2611 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) (-2220 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) (-4 *3 (-357)))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3)))) (-2259 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3))))) -(-13 (-1254 |t#1|) (-1017 |t#1|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -2957 ((-1235 $) (-900))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -4205 ((-1148 |t#1|) $)) (-15 -1376 ((-1148 |t#1|))) (-15 -3804 ((-900))) (-15 -3567 ((-900) $)) (-15 -2349 (|t#1| $)) (-15 -3385 (|t#1| $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-343)) (-15 -4205 ((-1148 $) $ (-900))) (-15 -2349 ($ $ (-900))) (-15 -3385 ($ $ (-900))) (-15 -3231 ($)) (-15 -2611 ($)) (-15 -2492 ((-111) $)) (-15 -2220 ($)) (-15 -3520 ($ $ (-1148 |t#1|))) (-15 -1980 ((-1148 |t#1|) $)) (-15 -2259 ((-1148 |t#1|) $)) (-15 -2259 ((-3 (-1148 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-228) |has| |#1| (-362)) ((-238) . T) ((-284) . T) ((-301) . T) ((-1254 |#1|) . T) ((-357) . T) ((-396) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-362) |has| |#1| (-362)) ((-343) |has| |#1| (-362)) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-362)) ((-1193) . T) ((-1242 |#1|) . T)) -((-1465 (((-111) $ $) NIL)) (-3660 (($ (-1151) $) 88)) (-2310 (($) 77)) (-1631 (((-1096) (-1096)) 11)) (-1568 (($) 78)) (-1709 (($) 90) (($ (-310 (-681))) 98) (($ (-310 (-683))) 94) (($ (-310 (-676))) 102) (($ (-310 (-373))) 109) (($ (-310 (-552))) 105) (($ (-310 (-166 (-373)))) 113)) (-2064 (($ (-1151) $) 89)) (-2465 (($ (-627 (-842))) 79)) (-2119 (((-1240) $) 75)) (-1621 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2381 (($ (-1096)) 51)) (-3374 (((-1080) $) 25)) (-3250 (($ (-1068 (-931 (-552))) $) 85) (($ (-1068 (-931 (-552))) (-931 (-552)) $) 86)) (-1818 (($ (-1096)) 87)) (-4334 (($ (-1151) $) 115) (($ (-1151) $ $) 116)) (-3781 (($ (-1152) (-627 (-1152))) 76)) (-4283 (($ (-1134)) 82) (($ (-627 (-1134))) 80)) (-1477 (((-842) $) 118)) (-1577 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $) 44)) (-1674 (($ (-1134)) 187)) (-4268 (($ (-627 $)) 114)) (-2522 (($ (-1152) (-1134)) 120) (($ (-1152) (-310 (-683))) 160) (($ (-1152) (-310 (-681))) 161) (($ (-1152) (-310 (-676))) 162) (($ (-1152) (-671 (-683))) 123) (($ (-1152) (-671 (-681))) 126) (($ (-1152) (-671 (-676))) 129) (($ (-1152) (-1235 (-683))) 132) (($ (-1152) (-1235 (-681))) 135) (($ (-1152) (-1235 (-676))) 138) (($ (-1152) (-671 (-310 (-683)))) 141) (($ (-1152) (-671 (-310 (-681)))) 144) (($ (-1152) (-671 (-310 (-676)))) 147) (($ (-1152) (-1235 (-310 (-683)))) 150) (($ (-1152) (-1235 (-310 (-681)))) 153) (($ (-1152) (-1235 (-310 (-676)))) 156) (($ (-1152) (-627 (-931 (-552))) (-310 (-683))) 157) (($ (-1152) (-627 (-931 (-552))) (-310 (-681))) 158) (($ (-1152) (-627 (-931 (-552))) (-310 (-676))) 159) (($ (-1152) (-310 (-552))) 184) (($ (-1152) (-310 (-373))) 185) (($ (-1152) (-310 (-166 (-373)))) 186) (($ (-1152) (-671 (-310 (-552)))) 165) (($ (-1152) (-671 (-310 (-373)))) 168) (($ (-1152) (-671 (-310 (-166 (-373))))) 171) (($ (-1152) (-1235 (-310 (-552)))) 174) (($ (-1152) (-1235 (-310 (-373)))) 177) (($ (-1152) (-1235 (-310 (-166 (-373))))) 180) (($ (-1152) (-627 (-931 (-552))) (-310 (-552))) 181) (($ (-1152) (-627 (-931 (-552))) (-310 (-373))) 182) (($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373)))) 183)) (-2292 (((-111) $ $) NIL))) -(((-324) (-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -3250 ($ (-1068 (-931 (-552))) $)) (-15 -3250 ($ (-1068 (-931 (-552))) (-931 (-552)) $)) (-15 -3660 ($ (-1151) $)) (-15 -2064 ($ (-1151) $)) (-15 -2381 ($ (-1096))) (-15 -1818 ($ (-1096))) (-15 -4283 ($ (-1134))) (-15 -4283 ($ (-627 (-1134)))) (-15 -1674 ($ (-1134))) (-15 -1709 ($)) (-15 -1709 ($ (-310 (-681)))) (-15 -1709 ($ (-310 (-683)))) (-15 -1709 ($ (-310 (-676)))) (-15 -1709 ($ (-310 (-373)))) (-15 -1709 ($ (-310 (-552)))) (-15 -1709 ($ (-310 (-166 (-373))))) (-15 -4334 ($ (-1151) $)) (-15 -4334 ($ (-1151) $ $)) (-15 -2522 ($ (-1152) (-1134))) (-15 -2522 ($ (-1152) (-310 (-683)))) (-15 -2522 ($ (-1152) (-310 (-681)))) (-15 -2522 ($ (-1152) (-310 (-676)))) (-15 -2522 ($ (-1152) (-671 (-683)))) (-15 -2522 ($ (-1152) (-671 (-681)))) (-15 -2522 ($ (-1152) (-671 (-676)))) (-15 -2522 ($ (-1152) (-1235 (-683)))) (-15 -2522 ($ (-1152) (-1235 (-681)))) (-15 -2522 ($ (-1152) (-1235 (-676)))) (-15 -2522 ($ (-1152) (-671 (-310 (-683))))) (-15 -2522 ($ (-1152) (-671 (-310 (-681))))) (-15 -2522 ($ (-1152) (-671 (-310 (-676))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-683))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-681))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-676))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-683)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-681)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-676)))) (-15 -2522 ($ (-1152) (-310 (-552)))) (-15 -2522 ($ (-1152) (-310 (-373)))) (-15 -2522 ($ (-1152) (-310 (-166 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-552))))) (-15 -2522 ($ (-1152) (-671 (-310 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-552))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-373))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-552)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-373)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373))))) (-15 -4268 ($ (-627 $))) (-15 -2310 ($)) (-15 -1568 ($)) (-15 -2465 ($ (-627 (-842)))) (-15 -3781 ($ (-1152) (-627 (-1152)))) (-15 -1621 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1577 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $)) (-15 -2119 ((-1240) $)) (-15 -3374 ((-1080) $)) (-15 -1631 ((-1096) (-1096)))))) (T -324)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-324)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *1 (-324)))) (-3250 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *3 (-931 (-552))) (-5 *1 (-324)))) (-3660 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2064 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-324)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324)))) (-1709 (*1 *1) (-5 *1 (-324))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-4334 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-4334 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-683)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-681)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-676)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-683)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-681)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-676)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-552)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-552)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-552))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-373))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-324)))) (-2310 (*1 *1) (-5 *1 (-324))) (-1568 (*1 *1) (-5 *1 (-324))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-324)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-324)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-324)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| (-324)) (|:| |elseClause| (-324)))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 (-324))) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 (-324)))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 (-324)))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842))))) (-5 *1 (-324)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-324)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-324)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) -(-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -3250 ($ (-1068 (-931 (-552))) $)) (-15 -3250 ($ (-1068 (-931 (-552))) (-931 (-552)) $)) (-15 -3660 ($ (-1151) $)) (-15 -2064 ($ (-1151) $)) (-15 -2381 ($ (-1096))) (-15 -1818 ($ (-1096))) (-15 -4283 ($ (-1134))) (-15 -4283 ($ (-627 (-1134)))) (-15 -1674 ($ (-1134))) (-15 -1709 ($)) (-15 -1709 ($ (-310 (-681)))) (-15 -1709 ($ (-310 (-683)))) (-15 -1709 ($ (-310 (-676)))) (-15 -1709 ($ (-310 (-373)))) (-15 -1709 ($ (-310 (-552)))) (-15 -1709 ($ (-310 (-166 (-373))))) (-15 -4334 ($ (-1151) $)) (-15 -4334 ($ (-1151) $ $)) (-15 -2522 ($ (-1152) (-1134))) (-15 -2522 ($ (-1152) (-310 (-683)))) (-15 -2522 ($ (-1152) (-310 (-681)))) (-15 -2522 ($ (-1152) (-310 (-676)))) (-15 -2522 ($ (-1152) (-671 (-683)))) (-15 -2522 ($ (-1152) (-671 (-681)))) (-15 -2522 ($ (-1152) (-671 (-676)))) (-15 -2522 ($ (-1152) (-1235 (-683)))) (-15 -2522 ($ (-1152) (-1235 (-681)))) (-15 -2522 ($ (-1152) (-1235 (-676)))) (-15 -2522 ($ (-1152) (-671 (-310 (-683))))) (-15 -2522 ($ (-1152) (-671 (-310 (-681))))) (-15 -2522 ($ (-1152) (-671 (-310 (-676))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-683))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-681))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-676))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-683)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-681)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-676)))) (-15 -2522 ($ (-1152) (-310 (-552)))) (-15 -2522 ($ (-1152) (-310 (-373)))) (-15 -2522 ($ (-1152) (-310 (-166 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-552))))) (-15 -2522 ($ (-1152) (-671 (-310 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-552))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-373))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-552)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-373)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373))))) (-15 -4268 ($ (-627 $))) (-15 -2310 ($)) (-15 -1568 ($)) (-15 -2465 ($ (-627 (-842)))) (-15 -3781 ($ (-1152) (-627 (-1152)))) (-15 -1621 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1577 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $)) (-15 -2119 ((-1240) $)) (-15 -3374 ((-1080) $)) (-15 -1631 ((-1096) (-1096))))) -((-1465 (((-111) $ $) NIL)) (-2857 (((-111) $) 11)) (-1445 (($ |#1|) 8)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1456 (($ |#1|) 9)) (-1477 (((-842) $) 17)) (-1731 ((|#1| $) 12)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 19))) -(((-325 |#1|) (-13 (-830) (-10 -8 (-15 -1445 ($ |#1|)) (-15 -1456 ($ |#1|)) (-15 -2857 ((-111) $)) (-15 -1731 (|#1| $)))) (-830)) (T -325)) -((-1445 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) (-1456 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-830)))) (-1731 (*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830))))) -(-13 (-830) (-10 -8 (-15 -1445 ($ |#1|)) (-15 -1456 ($ |#1|)) (-15 -2857 ((-111) $)) (-15 -1731 (|#1| $)))) -((-4265 (((-324) (-1152) (-931 (-552))) 23)) (-1622 (((-324) (-1152) (-931 (-552))) 27)) (-3786 (((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552)))) 26) (((-324) (-1152) (-931 (-552)) (-931 (-552))) 24)) (-3197 (((-324) (-1152) (-931 (-552))) 31))) -(((-326) (-10 -7 (-15 -4265 ((-324) (-1152) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-931 (-552)) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552))))) (-15 -1622 ((-324) (-1152) (-931 (-552)))) (-15 -3197 ((-324) (-1152) (-931 (-552)))))) (T -326)) -((-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3786 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1068 (-931 (-552)))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3786 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326))))) -(-10 -7 (-15 -4265 ((-324) (-1152) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-931 (-552)) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552))))) (-15 -1622 ((-324) (-1152) (-931 (-552)))) (-15 -3197 ((-324) (-1152) (-931 (-552))))) -((-3516 (((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)) 33))) -(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-357) (-1211 |#5|) (-1211 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -327)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *9 (-357)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-401 *10))) (-5 *2 (-330 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-336 *9 *10 *11))))) -(-10 -7 (-15 -3516 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) -((-2112 (((-111) $) 14))) -(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2112 ((-111) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-357) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -328)) -NIL -(-10 -8 (-15 -2112 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2091 (($ $) 26)) (-2112 (((-111) $) 25)) (-1595 (((-1134) $) 9)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 32)) (-1498 (((-1096) $) 10)) (-2220 (((-3 |#4| "failed") $) 24)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-552)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20))) -(((-329 |#1| |#2| |#3| |#4|) (-137) (-357) (-1211 |t#1|) (-1211 (-401 |t#2|)) (-336 |t#1| |t#2| |t#3|)) (T -329)) -((-3103 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-407 *4 (-401 *4) *5 *6)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) (-4 *1 (-329 *3 *4 *5 *6)))) (-3654 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) (-3654 (*1 *1 *2 *2) (-12 (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) (-3654 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1211 *2)) (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-336 *2 *4 *5)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-2 (|:| -2618 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111)))) (-2220 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *2 (-336 *3 *4 *5)))) (-3654 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-357)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3103 ((-407 |t#2| (-401 |t#2|) |t#3| |t#4|) $)) (-15 -3654 ($ (-407 |t#2| (-401 |t#2|) |t#3| |t#4|))) (-15 -3654 ($ |t#4|)) (-15 -3654 ($ |t#1| |t#1|)) (-15 -3654 ($ |t#1| |t#1| (-552))) (-15 -4004 ((-2 (|:| -2618 (-407 |t#2| (-401 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2091 ($ $)) (-15 -2112 ((-111) $)) (-15 -2220 ((-3 |t#4| "failed") $)) (-15 -3654 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ $) 33)) (-2112 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-2883 (((-1235 |#4|) $) 125)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 31)) (-1498 (((-1096) $) NIL)) (-2220 (((-3 |#4| "failed") $) 36)) (-2430 (((-1235 |#4|) $) 118)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-552)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1477 (((-842) $) 17)) (-1922 (($) 14 T CONST)) (-2292 (((-111) $ $) 20)) (-2396 (($ $) 27) (($ $ $) NIL)) (-2384 (($ $ $) 25)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 23))) -(((-330 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2430 ((-1235 |#4|) $)) (-15 -2883 ((-1235 |#4|) $)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -330)) -((-2430 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5)))) (-2883 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5))))) -(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2430 ((-1235 |#4|) $)) (-15 -2883 ((-1235 |#4|) $)))) -((-3321 (($ $ (-1152) |#2|) NIL) (($ $ (-627 (-1152)) (-627 |#2|)) 20) (($ $ (-627 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-627 |#2|) (-627 |#2|)) NIL)) (-1985 (($ $ |#2|) 11))) -(((-331 |#1| |#2|) (-10 -8 (-15 -1985 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1152) |#2|))) (-332 |#2|) (-1076)) (T -331)) -NIL -(-10 -8 (-15 -1985 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1152) |#2|))) -((-3516 (($ (-1 |#1| |#1|) $) 6)) (-3321 (($ $ (-1152) |#1|) 17 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 16 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-288 |#1|))) 15 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-303 |#1|))) (($ $ (-627 |#1|) (-627 |#1|)) 12 (|has| |#1| (-303 |#1|)))) (-1985 (($ $ |#1|) 11 (|has| |#1| (-280 |#1| |#1|))))) -(((-332 |#1|) (-137) (-1076)) (T -332)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1076))))) -(-13 (-10 -8 (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-280 |t#1| |t#1|)) (-6 (-280 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-506 (-1152) |t#1|)) (-6 (-506 (-1152) |t#1|)) |%noBranch|))) -(((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) NIL)) (-3254 (((-111)) 91) (((-111) (-111)) 92)) (-3443 (((-627 (-598 $)) $) NIL)) (-1607 (($ $) NIL)) (-1467 (($ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-1737 (($ $) NIL)) (-1584 (($ $) NIL)) (-1445 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-310 |#3|)) 71) (((-3 $ "failed") (-1152)) 97) (((-3 $ "failed") (-310 (-552))) 59 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-401 (-931 (-552)))) 65 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-931 (-552))) 60 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-310 (-373))) 89 (|has| |#3| (-1017 (-373)))) (((-3 $ "failed") (-401 (-931 (-373)))) 83 (|has| |#3| (-1017 (-373)))) (((-3 $ "failed") (-931 (-373))) 78 (|has| |#3| (-1017 (-373))))) (-1703 (((-598 $) $) NIL) ((|#3| $) NIL) (($ (-310 |#3|)) 72) (($ (-1152)) 98) (($ (-310 (-552))) 61 (|has| |#3| (-1017 (-552)))) (($ (-401 (-931 (-552)))) 66 (|has| |#3| (-1017 (-552)))) (($ (-931 (-552))) 62 (|has| |#3| (-1017 (-552)))) (($ (-310 (-373))) 90 (|has| |#3| (-1017 (-373)))) (($ (-401 (-931 (-373)))) 84 (|has| |#3| (-1017 (-373)))) (($ (-931 (-373))) 80 (|has| |#3| (-1017 (-373))))) (-2040 (((-3 $ "failed") $) NIL)) (-2951 (($) 10)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2602 (((-1148 $) (-598 $)) NIL (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-2885 (($ $) 94)) (-4135 (($ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) 93) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-3154 (($ $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-1596 (($ $) NIL)) (-1456 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ |#3|) NIL) (($ (-552)) NIL) (((-310 |#3|) $) 96)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) NIL)) (-1534 (($ $) NIL)) (-1513 (($ $) NIL)) (-1524 (($ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) 95 T CONST)) (-1933 (($) 24 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) -(((-333 |#1| |#2| |#3|) (-13 (-296) (-38 |#3|) (-1017 |#3|) (-879 (-1152)) (-10 -8 (-15 -1703 ($ (-310 |#3|))) (-15 -4039 ((-3 $ "failed") (-310 |#3|))) (-15 -1703 ($ (-1152))) (-15 -4039 ((-3 $ "failed") (-1152))) (-15 -1477 ((-310 |#3|) $)) (IF (|has| |#3| (-1017 (-552))) (PROGN (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552))))) |%noBranch|) (IF (|has| |#3| (-1017 (-373))) (PROGN (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373))))) |%noBranch|) (-15 -3329 ($ $)) (-15 -1737 ($ $)) (-15 -3154 ($ $)) (-15 -4135 ($ $)) (-15 -2885 ($ $)) (-15 -1445 ($ $)) (-15 -1456 ($ $)) (-15 -1467 ($ $)) (-15 -1513 ($ $)) (-15 -1524 ($ $)) (-15 -1534 ($ $)) (-15 -1584 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -2951 ($)) (-15 -1853 ((-627 (-1152)) $)) (-15 -3254 ((-111))) (-15 -3254 ((-111) (-111))))) (-627 (-1152)) (-627 (-1152)) (-381)) (T -333)) -((-1703 (*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1737 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-4135 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-2885 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1467 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1534 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1584 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1607 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-2951 (*1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-381)))) (-3254 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381))))) -(-13 (-296) (-38 |#3|) (-1017 |#3|) (-879 (-1152)) (-10 -8 (-15 -1703 ($ (-310 |#3|))) (-15 -4039 ((-3 $ "failed") (-310 |#3|))) (-15 -1703 ($ (-1152))) (-15 -4039 ((-3 $ "failed") (-1152))) (-15 -1477 ((-310 |#3|) $)) (IF (|has| |#3| (-1017 (-552))) (PROGN (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552))))) |%noBranch|) (IF (|has| |#3| (-1017 (-373))) (PROGN (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373))))) |%noBranch|) (-15 -3329 ($ $)) (-15 -1737 ($ $)) (-15 -3154 ($ $)) (-15 -4135 ($ $)) (-15 -2885 ($ $)) (-15 -1445 ($ $)) (-15 -1456 ($ $)) (-15 -1467 ($ $)) (-15 -1513 ($ $)) (-15 -1524 ($ $)) (-15 -1534 ($ $)) (-15 -1584 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -2951 ($)) (-15 -1853 ((-627 (-1152)) $)) (-15 -3254 ((-111))) (-15 -3254 ((-111) (-111))))) -((-3516 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-334 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|))) (-1193) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-1193) (-1211 |#5|) (-1211 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -334)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1193)) (-4 *8 (-1193)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *9 (-1211 *8)) (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1211 (-401 *9)))))) -(-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|))) -((-2238 (((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) $) 38)) (-2342 (($ (-1235 (-401 |#3|)) (-1235 $)) NIL) (($ (-1235 (-401 |#3|))) NIL) (($ (-1235 |#3|) |#3|) 161)) (-1913 (((-1235 $) (-1235 $)) 145)) (-3814 (((-627 (-627 |#2|))) 119)) (-3862 (((-111) |#2| |#2|) 73)) (-1375 (($ $) 139)) (-4080 (((-754)) 31)) (-1380 (((-1235 $) (-1235 $)) 198)) (-2370 (((-627 (-931 |#2|)) (-1152)) 110)) (-3177 (((-111) $) 158)) (-1505 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-3945 (((-3 |#3| "failed")) 50)) (-2161 (((-754)) 170)) (-1985 ((|#2| $ |#2| |#2|) 132)) (-1758 (((-3 |#3| "failed")) 68)) (-2942 (($ $ (-1 (-401 |#3|) (-401 |#3|)) (-754)) NIL) (($ $ (-1 (-401 |#3|) (-401 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-2912 (((-1235 $) (-1235 $)) 151)) (-4090 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2419 (((-111)) 33))) -(((-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -3814 ((-627 (-627 |#2|)))) (-15 -2370 ((-627 (-931 |#2|)) (-1152))) (-15 -4090 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1985 (|#2| |#1| |#2| |#2|)) (-15 -1375 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1505 ((-111) |#1| |#3|)) (-15 -1505 ((-111) |#1| |#2|)) (-15 -2342 (|#1| (-1235 |#3|) |#3|)) (-15 -2238 ((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1913 ((-1235 |#1|) (-1235 |#1|))) (-15 -1380 ((-1235 |#1|) (-1235 |#1|))) (-15 -2912 ((-1235 |#1|) (-1235 |#1|))) (-15 -1505 ((-111) |#1|)) (-15 -3177 ((-111) |#1|)) (-15 -3862 ((-111) |#2| |#2|)) (-15 -2419 ((-111))) (-15 -2161 ((-754))) (-15 -4080 ((-754))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-754))) (-15 -2342 (|#1| (-1235 (-401 |#3|)))) (-15 -2342 (|#1| (-1235 (-401 |#3|)) (-1235 |#1|)))) (-336 |#2| |#3| |#4|) (-1193) (-1211 |#2|) (-1211 (-401 |#3|))) (T -335)) -((-4080 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-2161 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-2419 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *3 (-1193)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) (-1758 (*1 *2) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-3945 (*1 *2) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-627 (-931 *5))) (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) (-3814 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-627 (-627 *4))) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6))))) -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -3814 ((-627 (-627 |#2|)))) (-15 -2370 ((-627 (-931 |#2|)) (-1152))) (-15 -4090 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1985 (|#2| |#1| |#2| |#2|)) (-15 -1375 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1505 ((-111) |#1| |#3|)) (-15 -1505 ((-111) |#1| |#2|)) (-15 -2342 (|#1| (-1235 |#3|) |#3|)) (-15 -2238 ((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1913 ((-1235 |#1|) (-1235 |#1|))) (-15 -1380 ((-1235 |#1|) (-1235 |#1|))) (-15 -2912 ((-1235 |#1|) (-1235 |#1|))) (-15 -1505 ((-111) |#1|)) (-15 -3177 ((-111) |#1|)) (-15 -3862 ((-111) |#2| |#2|)) (-15 -2419 ((-111))) (-15 -2161 ((-754))) (-15 -4080 ((-754))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-754))) (-15 -2342 (|#1| (-1235 (-401 |#3|)))) (-15 -2342 (|#1| (-1235 (-401 |#3|)) (-1235 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 193)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (|has| (-401 |#2|) (-357)))) (-3245 (($ $) 92 (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) 94 (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) 44) (((-671 (-401 |#2|))) 59)) (-3385 (((-401 |#2|) $) 50)) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 111 (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) 112 (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) 102 (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) 85 (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) 210)) (-2145 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) 163)) (-1703 (((-552) $) 167 (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) 162)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) 46) (($ (-1235 (-401 |#2|))) 62) (($ (-1235 |#2|) |#2|) 192)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) 106 (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) 51) (((-671 (-401 |#2|)) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) 159) (((-671 (-401 |#2|)) (-671 $)) 158)) (-1913 (((-1235 $) (-1235 $)) 198)) (-2091 (($ |#3|) 155) (((-3 $ "failed") (-401 |#3|)) 152 (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-3814 (((-627 (-627 |#1|))) 179 (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) 214)) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) 207)) (-3521 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-2789 (($ $ $) 105 (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| (-401 |#2|) (-357)))) (-1375 (($ $) 185)) (-2740 (($) 146 (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) 147 (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) 138 (|has| (-401 |#2|) (-343))) (($ $) 137 (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) 113 (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) 149 (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) 135 (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) 30)) (-4080 (((-754)) 217)) (-1380 (((-1235 $) (-1235 $)) 199)) (-2349 (((-401 |#2|) $) 49)) (-2370 (((-627 (-931 |#1|)) (-1152)) 180 (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) 139 (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) 42 (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) 87 (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) 153)) (-1276 (($ (-627 $)) 98 (|has| (-401 |#2|) (-357))) (($ $ $) 97 (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) 9)) (-1486 (((-671 (-401 |#2|))) 194)) (-2659 (((-671 (-401 |#2|))) 196)) (-1951 (($ $) 114 (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 190)) (-3210 (((-671 (-401 |#2|))) 195)) (-2216 (((-671 (-401 |#2|))) 197)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 191)) (-1668 (((-1235 $)) 203)) (-3402 (((-1235 $)) 204)) (-3177 (((-111) $) 202)) (-1505 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3002 (($) 140 (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) 182)) (-1498 (((-1096) $) 10)) (-2161 (((-754)) 216)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) 96 (|has| (-401 |#2|) (-357))) (($ $ $) 95 (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) 110 (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) 90 (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) 103 (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) 184)) (-1758 (((-3 |#2| "failed")) 183)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) 45) (((-401 |#2|)) 58)) (-4018 (((-754) $) 148 (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) 136 (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) 120 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 119 (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-627 (-1152)) (-627 (-754))) 127 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152) (-754)) 128 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-627 (-1152))) 129 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152)) 130 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-754)) 132 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 134 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) 151 (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 156)) (-3439 (($) 145 (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) 48) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) 47) (((-1235 (-401 |#2|)) $) 64) (((-671 (-401 |#2|)) (-1235 $)) 63)) (-3562 (((-1235 (-401 |#2|)) $) 61) (($ (-1235 (-401 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) 200)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 |#2|)) 35) (($ (-401 (-552))) 84 (-1559 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-1017 (-401 (-552)))))) (($ $) 89 (|has| (-401 |#2|) (-357)))) (-3050 (($ $) 141 (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) 43)) (-3995 (((-754)) 28)) (-4073 (((-111)) 213)) (-2423 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2957 (((-1235 $)) 65)) (-3778 (((-111) $ $) 93 (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2419 (((-111)) 215)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) 122 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 121 (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) 123 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152) (-754)) 124 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-627 (-1152))) 125 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152)) 126 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-754)) 131 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 133 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 118 (|has| (-401 |#2|) (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 115 (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 |#2|)) 37) (($ (-401 |#2|) $) 36) (($ (-401 (-552)) $) 117 (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) 116 (|has| (-401 |#2|) (-357))))) -(((-336 |#1| |#2| |#3|) (-137) (-1193) (-1211 |t#1|) (-1211 (-401 |t#2|))) (T -336)) -((-4080 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) (-2161 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) (-2419 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-4073 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2423 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2423 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-3865 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2145 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2145 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-2257 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3521 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3521 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-3402 (*1 *2) (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) (-1668 (*1 *2) (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-2216 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-2659 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-3210 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-1486 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4))))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4))))) (-3093 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5))))) (-1505 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-1505 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))))) (-1985 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))))) (-1758 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3)))) (-3945 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1193)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-336 *4 *5 *6)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *4 (-357)) (-5 *2 (-627 (-931 *4))))) (-3814 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-627 (-627 *3)))))) -(-13 (-707 (-401 |t#2|) |t#3|) (-10 -8 (-15 -4080 ((-754))) (-15 -2161 ((-754))) (-15 -2419 ((-111))) (-15 -3862 ((-111) |t#1| |t#1|)) (-15 -4073 ((-111))) (-15 -2423 ((-111) |t#1|)) (-15 -2423 ((-111) |t#2|)) (-15 -3865 ((-111))) (-15 -2145 ((-111) |t#1|)) (-15 -2145 ((-111) |t#2|)) (-15 -2257 ((-111))) (-15 -3521 ((-111) |t#1|)) (-15 -3521 ((-111) |t#2|)) (-15 -3402 ((-1235 $))) (-15 -1668 ((-1235 $))) (-15 -3177 ((-111) $)) (-15 -1505 ((-111) $)) (-15 -2912 ((-1235 $) (-1235 $))) (-15 -1380 ((-1235 $) (-1235 $))) (-15 -1913 ((-1235 $) (-1235 $))) (-15 -2216 ((-671 (-401 |t#2|)))) (-15 -2659 ((-671 (-401 |t#2|)))) (-15 -3210 ((-671 (-401 |t#2|)))) (-15 -1486 ((-671 (-401 |t#2|)))) (-15 -2238 ((-2 (|:| |num| (-1235 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2342 ($ (-1235 |t#2|) |t#2|)) (-15 -2559 ((-2 (|:| |num| (-1235 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3093 ($ (-1235 |t#2|) |t#2|)) (-15 -1606 ((-2 (|:| |num| (-671 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1505 ((-111) $ |t#1|)) (-15 -1505 ((-111) $ |t#2|)) (-15 -2942 ($ $ (-1 |t#2| |t#2|))) (-15 -1375 ($ $)) (-15 -1985 (|t#1| $ |t#1| |t#1|)) (-15 -1758 ((-3 |t#2| "failed"))) (-15 -3945 ((-3 |t#2| "failed"))) (-15 -4090 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-357)) (-15 -2370 ((-627 (-931 |t#1|)) (-1152))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -3814 ((-627 (-627 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-38 #1=(-401 |#2|)) . T) ((-38 $) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-101) . T) ((-110 #0# #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-142))) ((-144) |has| (-401 |#2|) (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 |#3|) . T) ((-226 #1#) |has| (-401 |#2|) (-357)) ((-228) -1559 (|has| (-401 |#2|) (-343)) (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357)))) ((-238) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-284) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-301) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-357) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-396) |has| (-401 |#2|) (-343)) ((-362) -1559 (|has| (-401 |#2|) (-362)) (|has| (-401 |#2|) (-343))) ((-343) |has| (-401 |#2|) (-343)) ((-364 #1# |#3|) . T) ((-403 #1# |#3|) . T) ((-371 #1#) . T) ((-405 #1#) . T) ((-445) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-544) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-630 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-630 #1#) . T) ((-630 $) . T) ((-623 #1#) . T) ((-623 (-552)) |has| (-401 |#2|) (-623 (-552))) ((-700 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-700 #1#) . T) ((-700 $) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-707 #1# |#3|) . T) ((-709) . T) ((-879 (-1152)) -12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) ((-899) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1017 (-401 (-552))) |has| (-401 |#2|) (-1017 (-401 (-552)))) ((-1017 #1#) . T) ((-1017 (-552)) |has| (-401 |#2|) (-1017 (-552))) ((-1034 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1034 #1#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| (-401 |#2|) (-343)) ((-1193) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) -(((-337 |#1| |#2|) (-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-900) (-900)) (T -337)) -((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-337 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900))))) -(-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2766 ((-937 (-1096)))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 44)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 41 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 115)) (-1703 ((|#1| $) 86)) (-2342 (($ (-1235 |#1|)) 104)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 98 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 129 (|has| |#1| (-362)))) (-1415 (((-111) $) 48 (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) 45 (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 131 (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 90) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 139 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 146)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 71 (|has| |#1| (-362)))) (-2249 (((-111) $) 118)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) 42)) (-2220 (($) 127 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 93 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) 67) (((-900)) 68)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) 130 (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) 125 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) 96)) (-3439 (($) 128 (|has| |#1| (-362)))) (-3231 (($) 136 (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 59) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 142) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 75)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 138)) (-2957 (((-1235 $)) 117) (((-1235 $) (-900)) 73)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 49 T CONST)) (-1933 (($) 46 T CONST)) (-3406 (($ $) 81 (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 47)) (-2407 (($ $ $) 144) (($ $ |#1|) 145)) (-2396 (($ $) 126) (($ $ $) NIL)) (-2384 (($ $ $) 61)) (** (($ $ (-900)) 148) (($ $ (-754)) 149) (($ $ (-552)) 147)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 77) (($ $ $) 76) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-338 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-343) (-1148 |#1|)) (T -338)) -((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1148 *3))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-339 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-343) (-900)) (T -339)) -((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) -((-3246 (((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 42)) (-1390 (((-937 (-1096)) (-1148 |#1|)) 85)) (-1487 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|)) 78)) (-2318 (((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 86)) (-4092 (((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900)) 13)) (-1941 (((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)) 18))) -(((-340 |#1|) (-10 -7 (-15 -1390 ((-937 (-1096)) (-1148 |#1|))) (-15 -1487 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|))) (-15 -2318 ((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -3246 ((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -4092 ((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900))) (-15 -1941 ((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)))) (-343)) (T -340)) -((-1941 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-3 (-1148 *4) (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-4092 (*1 *2 *3) (|partial| -12 (-5 *3 (-900)) (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-754)) (-5 *1 (-340 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-671 *4)) (-5 *1 (-340 *4)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-5 *1 (-340 *4)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-937 (-1096))) (-5 *1 (-340 *4))))) -(-10 -7 (-15 -1390 ((-937 (-1096)) (-1148 |#1|))) (-15 -1487 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|))) (-15 -2318 ((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -3246 ((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -4092 ((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900))) (-15 -1941 ((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)))) -((-1477 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -1477 (|#3| |#1|)) (-15 -1477 (|#1| |#3|))) (-323 |#2|) (-343) (-323 |#2|)) (T -341)) -((-1477 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-323 *4)))) (-1477 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-323 *4))))) -(-10 -7 (-15 -1477 (|#3| |#1|)) (-15 -1477 (|#1| |#3|))) -((-1415 (((-111) $) 51)) (-2641 (((-816 (-900)) $) 21) (((-900) $) 52)) (-4317 (((-3 $ "failed") $) 16)) (-3002 (($) 9)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93)) (-4018 (((-3 (-754) "failed") $ $) 71) (((-754) $) 60)) (-2942 (($ $ (-754)) NIL) (($ $) 8)) (-3439 (($) 44)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 34)) (-3050 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-342 |#1|) (-10 -8 (-15 -2641 ((-900) |#1|)) (-15 -4018 ((-754) |#1|)) (-15 -1415 ((-111) |#1|)) (-15 -3439 (|#1|)) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -3050 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -4018 ((-3 (-754) "failed") |#1| |#1|)) (-15 -2641 ((-816 (-900)) |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) (-343)) (T -342)) -NIL -(-10 -8 (-15 -2641 ((-900) |#1|)) (-15 -4018 ((-754) |#1|)) (-15 -1415 ((-111) |#1|)) (-15 -3439 (|#1|)) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -3050 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -4018 ((-3 (-754) "failed") |#1| |#1|)) (-15 -2641 ((-816 (-900)) |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-2038 (((-1162 (-900) (-754)) (-552)) 90)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3307 (((-754)) 100)) (-3887 (($) 17 T CONST)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 103)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2740 (($) 88)) (-1415 (((-111) $) 87)) (-4294 (($ $) 76) (($ $ (-754)) 75)) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 78) (((-900) $) 85)) (-2624 (((-111) $) 30)) (-4317 (((-3 $ "failed") $) 99)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-2886 (((-900) $) 102)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 98 T CONST)) (-4153 (($ (-900)) 101)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 91)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 77) (((-754) $) 86)) (-2942 (($ $ (-754)) 96) (($ $) 94)) (-3439 (($) 89)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 92)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3050 (((-3 $ "failed") $) 79) (($ $) 93)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-754)) 97) (($ $) 95)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +((-4199 (*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1237 *1)) (-4 *1 (-323 *3)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-902)) (-4 *4 (-357)) (-5 *2 (-1237 *1)) (-4 *1 (-323 *4)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1237 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) (-5 *2 (-673 *4)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1150 *3)))) (-3521 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1150 *3)))) (-3823 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-902)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-902)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-902)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1150 *1)) (-4 *1 (-323 *4)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-1549 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3149 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2019 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) (-4126 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) (-4 *3 (-357)))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1150 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1150 *3)))) (-1577 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1150 *3))))) +(-13 (-1256 |t#1|) (-1019 |t#1|) (-10 -8 (-15 -4199 ((-1237 $))) (-15 -4199 ((-1237 $) (-902))) (-15 -3464 ((-1237 |t#1|) $)) (-15 -3464 ((-673 |t#1|) (-1237 $))) (-15 -4278 ($ (-1237 |t#1|))) (-15 -2169 ((-1150 |t#1|) $)) (-15 -3521 ((-1150 |t#1|))) (-15 -3823 ((-902))) (-15 -3299 ((-902) $)) (-15 -4346 (|t#1| $)) (-15 -1549 (|t#1| $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-343)) (-15 -2169 ((-1150 $) $ (-902))) (-15 -4346 ($ $ (-902))) (-15 -1549 ($ $ (-902))) (-15 -3149 ($)) (-15 -2019 ($)) (-15 -2092 ((-111) $)) (-15 -4126 ($)) (-15 -2836 ($ $ (-1150 |t#1|))) (-15 -1879 ((-1150 |t#1|) $)) (-15 -1577 ((-1150 |t#1|) $)) (-15 -1577 ((-3 (-1150 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -4029 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-228) |has| |#1| (-362)) ((-238) . T) ((-284) . T) ((-301) . T) ((-1256 |#1|) . T) ((-357) . T) ((-396) -4029 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-362) |has| |#1| (-362)) ((-343) |has| |#1| (-362)) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 |#1|) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1019 |#1|) . T) ((-1036 #0#) . T) ((-1036 |#1|) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| |#1| (-362)) ((-1195) . T) ((-1244 |#1|) . T)) +((-3202 (((-111) $ $) NIL)) (-1684 (($ (-1153) $) 88)) (-2321 (($) 77)) (-1656 (((-1098) (-1098)) 11)) (-3259 (($) 78)) (-4251 (($) 90) (($ (-310 (-683))) 98) (($ (-310 (-685))) 94) (($ (-310 (-678))) 102) (($ (-310 (-373))) 109) (($ (-310 (-552))) 105) (($ (-310 (-166 (-373)))) 113)) (-3455 (($ (-1153) $) 89)) (-3113 (($ (-629 (-844))) 79)) (-3919 (((-1242) $) 75)) (-1981 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3511 (($ (-1098)) 51)) (-1980 (((-1082) $) 25)) (-2053 (($ (-1070 (-933 (-552))) $) 85) (($ (-1070 (-933 (-552))) (-933 (-552)) $) 86)) (-4101 (($ (-1098)) 87)) (-1440 (($ (-1153) $) 115) (($ (-1153) $ $) 116)) (-1758 (($ (-1154) (-629 (-1154))) 76)) (-3436 (($ (-1136)) 82) (($ (-629 (-1136))) 80)) (-3213 (((-844) $) 118)) (-2149 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1154)) (|:| |arrayIndex| (-629 (-933 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1154)) (|:| |rand| (-844)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1153)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3435 (-111)) (|:| -2925 (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |blockBranch| (-629 $)) (|:| |commentBranch| (-629 (-1136))) (|:| |callBranch| (-1136)) (|:| |forBranch| (-2 (|:| -4235 (-1070 (-933 (-552)))) (|:| |span| (-933 (-552))) (|:| -4300 $))) (|:| |labelBranch| (-1098)) (|:| |loopBranch| (-2 (|:| |switch| (-1153)) (|:| -4300 $))) (|:| |commonBranch| (-2 (|:| -4290 (-1154)) (|:| |contents| (-629 (-1154))))) (|:| |printBranch| (-629 (-844)))) $) 44)) (-1462 (($ (-1136)) 187)) (-1557 (($ (-629 $)) 114)) (-2392 (($ (-1154) (-1136)) 120) (($ (-1154) (-310 (-685))) 160) (($ (-1154) (-310 (-683))) 161) (($ (-1154) (-310 (-678))) 162) (($ (-1154) (-673 (-685))) 123) (($ (-1154) (-673 (-683))) 126) (($ (-1154) (-673 (-678))) 129) (($ (-1154) (-1237 (-685))) 132) (($ (-1154) (-1237 (-683))) 135) (($ (-1154) (-1237 (-678))) 138) (($ (-1154) (-673 (-310 (-685)))) 141) (($ (-1154) (-673 (-310 (-683)))) 144) (($ (-1154) (-673 (-310 (-678)))) 147) (($ (-1154) (-1237 (-310 (-685)))) 150) (($ (-1154) (-1237 (-310 (-683)))) 153) (($ (-1154) (-1237 (-310 (-678)))) 156) (($ (-1154) (-629 (-933 (-552))) (-310 (-685))) 157) (($ (-1154) (-629 (-933 (-552))) (-310 (-683))) 158) (($ (-1154) (-629 (-933 (-552))) (-310 (-678))) 159) (($ (-1154) (-310 (-552))) 184) (($ (-1154) (-310 (-373))) 185) (($ (-1154) (-310 (-166 (-373)))) 186) (($ (-1154) (-673 (-310 (-552)))) 165) (($ (-1154) (-673 (-310 (-373)))) 168) (($ (-1154) (-673 (-310 (-166 (-373))))) 171) (($ (-1154) (-1237 (-310 (-552)))) 174) (($ (-1154) (-1237 (-310 (-373)))) 177) (($ (-1154) (-1237 (-310 (-166 (-373))))) 180) (($ (-1154) (-629 (-933 (-552))) (-310 (-552))) 181) (($ (-1154) (-629 (-933 (-552))) (-310 (-373))) 182) (($ (-1154) (-629 (-933 (-552))) (-310 (-166 (-373)))) 183)) (-1613 (((-111) $ $) NIL))) +(((-324) (-13 (-1078) (-10 -8 (-15 -3213 ((-844) $)) (-15 -2053 ($ (-1070 (-933 (-552))) $)) (-15 -2053 ($ (-1070 (-933 (-552))) (-933 (-552)) $)) (-15 -1684 ($ (-1153) $)) (-15 -3455 ($ (-1153) $)) (-15 -3511 ($ (-1098))) (-15 -4101 ($ (-1098))) (-15 -3436 ($ (-1136))) (-15 -3436 ($ (-629 (-1136)))) (-15 -1462 ($ (-1136))) (-15 -4251 ($)) (-15 -4251 ($ (-310 (-683)))) (-15 -4251 ($ (-310 (-685)))) (-15 -4251 ($ (-310 (-678)))) (-15 -4251 ($ (-310 (-373)))) (-15 -4251 ($ (-310 (-552)))) (-15 -4251 ($ (-310 (-166 (-373))))) (-15 -1440 ($ (-1153) $)) (-15 -1440 ($ (-1153) $ $)) (-15 -2392 ($ (-1154) (-1136))) (-15 -2392 ($ (-1154) (-310 (-685)))) (-15 -2392 ($ (-1154) (-310 (-683)))) (-15 -2392 ($ (-1154) (-310 (-678)))) (-15 -2392 ($ (-1154) (-673 (-685)))) (-15 -2392 ($ (-1154) (-673 (-683)))) (-15 -2392 ($ (-1154) (-673 (-678)))) (-15 -2392 ($ (-1154) (-1237 (-685)))) (-15 -2392 ($ (-1154) (-1237 (-683)))) (-15 -2392 ($ (-1154) (-1237 (-678)))) (-15 -2392 ($ (-1154) (-673 (-310 (-685))))) (-15 -2392 ($ (-1154) (-673 (-310 (-683))))) (-15 -2392 ($ (-1154) (-673 (-310 (-678))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-685))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-683))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-678))))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-685)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-683)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-678)))) (-15 -2392 ($ (-1154) (-310 (-552)))) (-15 -2392 ($ (-1154) (-310 (-373)))) (-15 -2392 ($ (-1154) (-310 (-166 (-373))))) (-15 -2392 ($ (-1154) (-673 (-310 (-552))))) (-15 -2392 ($ (-1154) (-673 (-310 (-373))))) (-15 -2392 ($ (-1154) (-673 (-310 (-166 (-373)))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-552))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-373))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-166 (-373)))))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-552)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-373)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-166 (-373))))) (-15 -1557 ($ (-629 $))) (-15 -2321 ($)) (-15 -3259 ($)) (-15 -3113 ($ (-629 (-844)))) (-15 -1758 ($ (-1154) (-629 (-1154)))) (-15 -1981 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2149 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1154)) (|:| |arrayIndex| (-629 (-933 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1154)) (|:| |rand| (-844)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1153)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3435 (-111)) (|:| -2925 (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |blockBranch| (-629 $)) (|:| |commentBranch| (-629 (-1136))) (|:| |callBranch| (-1136)) (|:| |forBranch| (-2 (|:| -4235 (-1070 (-933 (-552)))) (|:| |span| (-933 (-552))) (|:| -4300 $))) (|:| |labelBranch| (-1098)) (|:| |loopBranch| (-2 (|:| |switch| (-1153)) (|:| -4300 $))) (|:| |commonBranch| (-2 (|:| -4290 (-1154)) (|:| |contents| (-629 (-1154))))) (|:| |printBranch| (-629 (-844)))) $)) (-15 -3919 ((-1242) $)) (-15 -1980 ((-1082) $)) (-15 -1656 ((-1098) (-1098)))))) (T -324)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-324)))) (-2053 (*1 *1 *2 *1) (-12 (-5 *2 (-1070 (-933 (-552)))) (-5 *1 (-324)))) (-2053 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1070 (-933 (-552)))) (-5 *3 (-933 (-552))) (-5 *1 (-324)))) (-1684 (*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-324)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-324)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-324)))) (-4251 (*1 *1) (-5 *1 (-324))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-685))) (-5 *1 (-324)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-678))) (-5 *1 (-324)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-1440 (*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324)))) (-1440 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1136)) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-685))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-678))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-685))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-683))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-678))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-685))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-683))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-678))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-685)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-683)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-678)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-685)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-683)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-678)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-685))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-683))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-678))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-552)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-373)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-552)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-373)))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-552))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-373))) (-5 *1 (-324)))) (-2392 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-5 *1 (-324)))) (-2321 (*1 *1) (-5 *1 (-324))) (-3259 (*1 *1) (-5 *1 (-324))) (-3113 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-324)))) (-1758 (*1 *1 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1154)) (-5 *1 (-324)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-324)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1154)) (|:| |arrayIndex| (-629 (-933 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1154)) (|:| |rand| (-844)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1153)) (|:| |thenClause| (-324)) (|:| |elseClause| (-324)))) (|:| |returnBranch| (-2 (|:| -3435 (-111)) (|:| -2925 (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |blockBranch| (-629 (-324))) (|:| |commentBranch| (-629 (-1136))) (|:| |callBranch| (-1136)) (|:| |forBranch| (-2 (|:| -4235 (-1070 (-933 (-552)))) (|:| |span| (-933 (-552))) (|:| -4300 (-324)))) (|:| |labelBranch| (-1098)) (|:| |loopBranch| (-2 (|:| |switch| (-1153)) (|:| -4300 (-324)))) (|:| |commonBranch| (-2 (|:| -4290 (-1154)) (|:| |contents| (-629 (-1154))))) (|:| |printBranch| (-629 (-844))))) (-5 *1 (-324)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-324)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-324)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324))))) +(-13 (-1078) (-10 -8 (-15 -3213 ((-844) $)) (-15 -2053 ($ (-1070 (-933 (-552))) $)) (-15 -2053 ($ (-1070 (-933 (-552))) (-933 (-552)) $)) (-15 -1684 ($ (-1153) $)) (-15 -3455 ($ (-1153) $)) (-15 -3511 ($ (-1098))) (-15 -4101 ($ (-1098))) (-15 -3436 ($ (-1136))) (-15 -3436 ($ (-629 (-1136)))) (-15 -1462 ($ (-1136))) (-15 -4251 ($)) (-15 -4251 ($ (-310 (-683)))) (-15 -4251 ($ (-310 (-685)))) (-15 -4251 ($ (-310 (-678)))) (-15 -4251 ($ (-310 (-373)))) (-15 -4251 ($ (-310 (-552)))) (-15 -4251 ($ (-310 (-166 (-373))))) (-15 -1440 ($ (-1153) $)) (-15 -1440 ($ (-1153) $ $)) (-15 -2392 ($ (-1154) (-1136))) (-15 -2392 ($ (-1154) (-310 (-685)))) (-15 -2392 ($ (-1154) (-310 (-683)))) (-15 -2392 ($ (-1154) (-310 (-678)))) (-15 -2392 ($ (-1154) (-673 (-685)))) (-15 -2392 ($ (-1154) (-673 (-683)))) (-15 -2392 ($ (-1154) (-673 (-678)))) (-15 -2392 ($ (-1154) (-1237 (-685)))) (-15 -2392 ($ (-1154) (-1237 (-683)))) (-15 -2392 ($ (-1154) (-1237 (-678)))) (-15 -2392 ($ (-1154) (-673 (-310 (-685))))) (-15 -2392 ($ (-1154) (-673 (-310 (-683))))) (-15 -2392 ($ (-1154) (-673 (-310 (-678))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-685))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-683))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-678))))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-685)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-683)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-678)))) (-15 -2392 ($ (-1154) (-310 (-552)))) (-15 -2392 ($ (-1154) (-310 (-373)))) (-15 -2392 ($ (-1154) (-310 (-166 (-373))))) (-15 -2392 ($ (-1154) (-673 (-310 (-552))))) (-15 -2392 ($ (-1154) (-673 (-310 (-373))))) (-15 -2392 ($ (-1154) (-673 (-310 (-166 (-373)))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-552))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-373))))) (-15 -2392 ($ (-1154) (-1237 (-310 (-166 (-373)))))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-552)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-373)))) (-15 -2392 ($ (-1154) (-629 (-933 (-552))) (-310 (-166 (-373))))) (-15 -1557 ($ (-629 $))) (-15 -2321 ($)) (-15 -3259 ($)) (-15 -3113 ($ (-629 (-844)))) (-15 -1758 ($ (-1154) (-629 (-1154)))) (-15 -1981 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2149 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1154)) (|:| |arrayIndex| (-629 (-933 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1154)) (|:| |rand| (-844)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1153)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3435 (-111)) (|:| -2925 (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) (|:| |blockBranch| (-629 $)) (|:| |commentBranch| (-629 (-1136))) (|:| |callBranch| (-1136)) (|:| |forBranch| (-2 (|:| -4235 (-1070 (-933 (-552)))) (|:| |span| (-933 (-552))) (|:| -4300 $))) (|:| |labelBranch| (-1098)) (|:| |loopBranch| (-2 (|:| |switch| (-1153)) (|:| -4300 $))) (|:| |commonBranch| (-2 (|:| -4290 (-1154)) (|:| |contents| (-629 (-1154))))) (|:| |printBranch| (-629 (-844)))) $)) (-15 -3919 ((-1242) $)) (-15 -1980 ((-1082) $)) (-15 -1656 ((-1098) (-1098))))) +((-3202 (((-111) $ $) NIL)) (-2648 (((-111) $) 11)) (-2305 (($ |#1|) 8)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2318 (($ |#1|) 9)) (-3213 (((-844) $) 17)) (-1350 ((|#1| $) 12)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 19))) +(((-325 |#1|) (-13 (-832) (-10 -8 (-15 -2305 ($ |#1|)) (-15 -2318 ($ |#1|)) (-15 -2648 ((-111) $)) (-15 -1350 (|#1| $)))) (-832)) (T -325)) +((-2305 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832)))) (-2318 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-832)))) (-1350 (*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832))))) +(-13 (-832) (-10 -8 (-15 -2305 ($ |#1|)) (-15 -2318 ($ |#1|)) (-15 -2648 ((-111) $)) (-15 -1350 (|#1| $)))) +((-2838 (((-324) (-1154) (-933 (-552))) 23)) (-1576 (((-324) (-1154) (-933 (-552))) 27)) (-3655 (((-324) (-1154) (-1070 (-933 (-552))) (-1070 (-933 (-552)))) 26) (((-324) (-1154) (-933 (-552)) (-933 (-552))) 24)) (-2789 (((-324) (-1154) (-933 (-552))) 31))) +(((-326) (-10 -7 (-15 -2838 ((-324) (-1154) (-933 (-552)))) (-15 -3655 ((-324) (-1154) (-933 (-552)) (-933 (-552)))) (-15 -3655 ((-324) (-1154) (-1070 (-933 (-552))) (-1070 (-933 (-552))))) (-15 -1576 ((-324) (-1154) (-933 (-552)))) (-15 -2789 ((-324) (-1154) (-933 (-552)))))) (T -326)) +((-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3655 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-1070 (-933 (-552)))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3655 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) (-5 *1 (-326))))) +(-10 -7 (-15 -2838 ((-324) (-1154) (-933 (-552)))) (-15 -3655 ((-324) (-1154) (-933 (-552)) (-933 (-552)))) (-15 -3655 ((-324) (-1154) (-1070 (-933 (-552))) (-1070 (-933 (-552))))) (-15 -1576 ((-324) (-1154) (-933 (-552)))) (-15 -2789 ((-324) (-1154) (-933 (-552))))) +((-1477 (((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)) 33))) +(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1477 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-357) (-1213 |#5|) (-1213 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -327)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *9 (-357)) (-4 *10 (-1213 *9)) (-4 *11 (-1213 (-401 *10))) (-5 *2 (-330 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-336 *9 *10 *11))))) +(-10 -7 (-15 -1477 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) +((-3850 (((-111) $) 14))) +(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3850 ((-111) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-357) (-1213 |#2|) (-1213 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -328)) +NIL +(-10 -8 (-15 -3850 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3884 (($ $) 26)) (-3850 (((-111) $) 25)) (-2623 (((-1136) $) 9)) (-3165 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 32)) (-2876 (((-1098) $) 10)) (-4126 (((-3 |#4| "failed") $) 24)) (-1620 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-552)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2089 (((-2 (|:| -3273 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20))) +(((-329 |#1| |#2| |#3| |#4|) (-137) (-357) (-1213 |t#1|) (-1213 (-401 |t#2|)) (-336 |t#1| |t#2| |t#3|)) (T -329)) +((-3165 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-407 *4 (-401 *4) *5 *6)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) (-4 *1 (-329 *3 *4 *5 *6)))) (-1620 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) (-1620 (*1 *1 *2 *2) (-12 (-4 *2 (-357)) (-4 *3 (-1213 *2)) (-4 *4 (-1213 (-401 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) (-1620 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1213 *2)) (-4 *5 (-1213 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-336 *2 *4 *5)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-2 (|:| -3273 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) (-3884 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1213 *2)) (-4 *4 (-1213 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111)))) (-4126 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *2 (-336 *3 *4 *5)))) (-1620 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-357)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3165 ((-407 |t#2| (-401 |t#2|) |t#3| |t#4|) $)) (-15 -1620 ($ (-407 |t#2| (-401 |t#2|) |t#3| |t#4|))) (-15 -1620 ($ |t#4|)) (-15 -1620 ($ |t#1| |t#1|)) (-15 -1620 ($ |t#1| |t#1| (-552))) (-15 -2089 ((-2 (|:| -3273 (-407 |t#2| (-401 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3884 ($ $)) (-15 -3850 ((-111) $)) (-15 -4126 ((-3 |t#4| "failed") $)) (-15 -1620 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3884 (($ $) 33)) (-3850 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-1617 (((-1237 |#4|) $) 125)) (-3165 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 31)) (-2876 (((-1098) $) NIL)) (-4126 (((-3 |#4| "failed") $) 36)) (-3965 (((-1237 |#4|) $) 118)) (-1620 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-552)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2089 (((-2 (|:| -3273 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3213 (((-844) $) 17)) (-3297 (($) 14 T CONST)) (-1613 (((-111) $ $) 20)) (-1709 (($ $) 27) (($ $ $) NIL)) (-1698 (($ $ $) 25)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 23))) +(((-330 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3965 ((-1237 |#4|) $)) (-15 -1617 ((-1237 |#4|) $)))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -330)) +((-3965 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-1237 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5)))) (-1617 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-1237 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5))))) +(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3965 ((-1237 |#4|) $)) (-15 -1617 ((-1237 |#4|) $)))) +((-2432 (($ $ (-1154) |#2|) NIL) (($ $ (-629 (-1154)) (-629 |#2|)) 20) (($ $ (-629 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-629 |#2|) (-629 |#2|)) NIL)) (-2060 (($ $ |#2|) 11))) +(((-331 |#1| |#2|) (-10 -8 (-15 -2060 (|#1| |#1| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 |#2|))) (-15 -2432 (|#1| |#1| (-1154) |#2|))) (-332 |#2|) (-1078)) (T -331)) +NIL +(-10 -8 (-15 -2060 (|#1| |#1| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 |#2|))) (-15 -2432 (|#1| |#1| (-1154) |#2|))) +((-1477 (($ (-1 |#1| |#1|) $) 6)) (-2432 (($ $ (-1154) |#1|) 17 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 16 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-629 (-288 |#1|))) 15 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-303 |#1|))) (($ $ (-629 |#1|) (-629 |#1|)) 12 (|has| |#1| (-303 |#1|)))) (-2060 (($ $ |#1|) 11 (|has| |#1| (-280 |#1| |#1|))))) +(((-332 |#1|) (-137) (-1078)) (T -332)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1078))))) +(-13 (-10 -8 (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-280 |t#1| |t#1|)) (-6 (-280 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-506 (-1154) |t#1|)) (-6 (-506 (-1154) |t#1|)) |%noBranch|))) +(((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-506 (-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1154)) $) NIL)) (-2088 (((-111)) 91) (((-111) (-111)) 92)) (-3361 (((-629 (-598 $)) $) NIL)) (-2478 (($ $) NIL)) (-2332 (($ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2172 (($ $ (-288 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL)) (-3489 (($ $) NIL)) (-2455 (($ $) NIL)) (-2305 (($ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-598 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-310 |#3|)) 71) (((-3 $ "failed") (-1154)) 97) (((-3 $ "failed") (-310 (-552))) 59 (|has| |#3| (-1019 (-552)))) (((-3 $ "failed") (-401 (-933 (-552)))) 65 (|has| |#3| (-1019 (-552)))) (((-3 $ "failed") (-933 (-552))) 60 (|has| |#3| (-1019 (-552)))) (((-3 $ "failed") (-310 (-373))) 89 (|has| |#3| (-1019 (-373)))) (((-3 $ "failed") (-401 (-933 (-373)))) 83 (|has| |#3| (-1019 (-373)))) (((-3 $ "failed") (-933 (-373))) 78 (|has| |#3| (-1019 (-373))))) (-2832 (((-598 $) $) NIL) ((|#3| $) NIL) (($ (-310 |#3|)) 72) (($ (-1154)) 98) (($ (-310 (-552))) 61 (|has| |#3| (-1019 (-552)))) (($ (-401 (-933 (-552)))) 66 (|has| |#3| (-1019 (-552)))) (($ (-933 (-552))) 62 (|has| |#3| (-1019 (-552)))) (($ (-310 (-373))) 90 (|has| |#3| (-1019 (-373)))) (($ (-401 (-933 (-373)))) 84 (|has| |#3| (-1019 (-373)))) (($ (-933 (-373))) 80 (|has| |#3| (-1019 (-373))))) (-1293 (((-3 $ "failed") $) NIL)) (-4043 (($) 10)) (-3963 (($ $) NIL) (($ (-629 $)) NIL)) (-3751 (((-629 (-113)) $) NIL)) (-2951 (((-113) (-113)) NIL)) (-4065 (((-111) $) NIL)) (-3302 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-1941 (((-1150 $) (-598 $)) NIL (|has| $ (-1030)))) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 $ $) (-598 $)) NIL)) (-1875 (((-3 (-598 $) "failed") $) NIL)) (-4070 (($ $) 94)) (-2430 (($ $) NIL)) (-2623 (((-1136) $) NIL)) (-3438 (((-629 (-598 $)) $) NIL)) (-4086 (($ (-113) $) 93) (($ (-113) (-629 $)) NIL)) (-3515 (((-111) $ (-113)) NIL) (((-111) $ (-1154)) NIL)) (-2384 (((-756) $) NIL)) (-2876 (((-1098) $) NIL)) (-3633 (((-111) $ $) NIL) (((-111) $ (-1154)) NIL)) (-2855 (($ $) NIL)) (-3117 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-1154) (-1 $ (-629 $))) NIL) (($ $ (-1154) (-1 $ $)) NIL) (($ $ (-629 (-113)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-113) (-1 $ (-629 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2060 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-629 $)) NIL)) (-1877 (($ $) NIL) (($ $ $) NIL)) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL)) (-3521 (($ $) NIL (|has| $ (-1030)))) (-2467 (($ $) NIL)) (-2318 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-598 $)) NIL) (($ |#3|) NIL) (($ (-552)) NIL) (((-310 |#3|) $) 96)) (-2014 (((-756)) NIL)) (-3044 (($ $) NIL) (($ (-629 $)) NIL)) (-1374 (((-111) (-113)) NIL)) (-2409 (($ $) NIL)) (-2382 (($ $) NIL)) (-2395 (($ $) NIL)) (-1578 (($ $) NIL)) (-3297 (($) 95 T CONST)) (-3309 (($) 24 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL))) +(((-333 |#1| |#2| |#3|) (-13 (-296) (-38 |#3|) (-1019 |#3|) (-881 (-1154)) (-10 -8 (-15 -2832 ($ (-310 |#3|))) (-15 -1393 ((-3 $ "failed") (-310 |#3|))) (-15 -2832 ($ (-1154))) (-15 -1393 ((-3 $ "failed") (-1154))) (-15 -3213 ((-310 |#3|) $)) (IF (|has| |#3| (-1019 (-552))) (PROGN (-15 -2832 ($ (-310 (-552)))) (-15 -1393 ((-3 $ "failed") (-310 (-552)))) (-15 -2832 ($ (-401 (-933 (-552))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-552))))) (-15 -2832 ($ (-933 (-552)))) (-15 -1393 ((-3 $ "failed") (-933 (-552))))) |%noBranch|) (IF (|has| |#3| (-1019 (-373))) (PROGN (-15 -2832 ($ (-310 (-373)))) (-15 -1393 ((-3 $ "failed") (-310 (-373)))) (-15 -2832 ($ (-401 (-933 (-373))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-373))))) (-15 -2832 ($ (-933 (-373)))) (-15 -1393 ((-3 $ "failed") (-933 (-373))))) |%noBranch|) (-15 -1578 ($ $)) (-15 -3489 ($ $)) (-15 -2855 ($ $)) (-15 -2430 ($ $)) (-15 -4070 ($ $)) (-15 -2305 ($ $)) (-15 -2318 ($ $)) (-15 -2332 ($ $)) (-15 -2382 ($ $)) (-15 -2395 ($ $)) (-15 -2409 ($ $)) (-15 -2455 ($ $)) (-15 -2467 ($ $)) (-15 -2478 ($ $)) (-15 -4043 ($)) (-15 -3611 ((-629 (-1154)) $)) (-15 -2088 ((-111))) (-15 -2088 ((-111) (-111))))) (-629 (-1154)) (-629 (-1154)) (-381)) (T -333)) +((-2832 (*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 *2)) (-14 *4 (-629 *2)) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 *2)) (-14 *4 (-629 *2)) (-4 *5 (-381)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-933 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-933 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-933 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-933 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-3489 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2855 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2430 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2455 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2467 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-2478 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-4043 (*1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-381)))) (-2088 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381))))) +(-13 (-296) (-38 |#3|) (-1019 |#3|) (-881 (-1154)) (-10 -8 (-15 -2832 ($ (-310 |#3|))) (-15 -1393 ((-3 $ "failed") (-310 |#3|))) (-15 -2832 ($ (-1154))) (-15 -1393 ((-3 $ "failed") (-1154))) (-15 -3213 ((-310 |#3|) $)) (IF (|has| |#3| (-1019 (-552))) (PROGN (-15 -2832 ($ (-310 (-552)))) (-15 -1393 ((-3 $ "failed") (-310 (-552)))) (-15 -2832 ($ (-401 (-933 (-552))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-552))))) (-15 -2832 ($ (-933 (-552)))) (-15 -1393 ((-3 $ "failed") (-933 (-552))))) |%noBranch|) (IF (|has| |#3| (-1019 (-373))) (PROGN (-15 -2832 ($ (-310 (-373)))) (-15 -1393 ((-3 $ "failed") (-310 (-373)))) (-15 -2832 ($ (-401 (-933 (-373))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-373))))) (-15 -2832 ($ (-933 (-373)))) (-15 -1393 ((-3 $ "failed") (-933 (-373))))) |%noBranch|) (-15 -1578 ($ $)) (-15 -3489 ($ $)) (-15 -2855 ($ $)) (-15 -2430 ($ $)) (-15 -4070 ($ $)) (-15 -2305 ($ $)) (-15 -2318 ($ $)) (-15 -2332 ($ $)) (-15 -2382 ($ $)) (-15 -2395 ($ $)) (-15 -2409 ($ $)) (-15 -2455 ($ $)) (-15 -2467 ($ $)) (-15 -2478 ($ $)) (-15 -4043 ($)) (-15 -3611 ((-629 (-1154)) $)) (-15 -2088 ((-111))) (-15 -2088 ((-111) (-111))))) +((-1477 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-334 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1477 (|#8| (-1 |#5| |#1|) |#4|))) (-1195) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-1195) (-1213 |#5|) (-1213 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -334)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1195)) (-4 *8 (-1195)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *9 (-1213 *8)) (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1213 (-401 *9)))))) +(-10 -7 (-15 -1477 (|#8| (-1 |#5| |#1|) |#4|))) +((-2684 (((-2 (|:| |num| (-1237 |#3|)) (|:| |den| |#3|)) $) 38)) (-4278 (($ (-1237 (-401 |#3|)) (-1237 $)) NIL) (($ (-1237 (-401 |#3|))) NIL) (($ (-1237 |#3|) |#3|) 161)) (-2525 (((-1237 $) (-1237 $)) 145)) (-3901 (((-629 (-629 |#2|))) 119)) (-3184 (((-111) |#2| |#2|) 73)) (-3471 (($ $) 139)) (-3503 (((-756)) 31)) (-2317 (((-1237 $) (-1237 $)) 198)) (-1429 (((-629 (-933 |#2|)) (-1154)) 110)) (-2667 (((-111) $) 158)) (-3097 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-2791 (((-3 |#3| "failed")) 50)) (-3140 (((-756)) 170)) (-2060 ((|#2| $ |#2| |#2|) 132)) (-3551 (((-3 |#3| "failed")) 68)) (-3096 (($ $ (-1 (-401 |#3|) (-401 |#3|)) (-756)) NIL) (($ $ (-1 (-401 |#3|) (-401 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL)) (-1889 (((-1237 $) (-1237 $)) 151)) (-3606 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3855 (((-111)) 33))) +(((-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3901 ((-629 (-629 |#2|)))) (-15 -1429 ((-629 (-933 |#2|)) (-1154))) (-15 -3606 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2791 ((-3 |#3| "failed"))) (-15 -3551 ((-3 |#3| "failed"))) (-15 -2060 (|#2| |#1| |#2| |#2|)) (-15 -3471 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3097 ((-111) |#1| |#3|)) (-15 -3097 ((-111) |#1| |#2|)) (-15 -4278 (|#1| (-1237 |#3|) |#3|)) (-15 -2684 ((-2 (|:| |num| (-1237 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2525 ((-1237 |#1|) (-1237 |#1|))) (-15 -2317 ((-1237 |#1|) (-1237 |#1|))) (-15 -1889 ((-1237 |#1|) (-1237 |#1|))) (-15 -3097 ((-111) |#1|)) (-15 -2667 ((-111) |#1|)) (-15 -3184 ((-111) |#2| |#2|)) (-15 -3855 ((-111))) (-15 -3140 ((-756))) (-15 -3503 ((-756))) (-15 -3096 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -3096 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-756))) (-15 -4278 (|#1| (-1237 (-401 |#3|)))) (-15 -4278 (|#1| (-1237 (-401 |#3|)) (-1237 |#1|)))) (-336 |#2| |#3| |#4|) (-1195) (-1213 |#2|) (-1213 (-401 |#3|))) (T -335)) +((-3503 (*1 *2) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-756)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3140 (*1 *2) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-756)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3855 (*1 *2) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3184 (*1 *2 *3 *3) (-12 (-4 *3 (-1195)) (-4 *5 (-1213 *3)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) (-3551 (*1 *2) (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 (-401 *2))) (-4 *2 (-1213 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-2791 (*1 *2) (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 (-401 *2))) (-4 *2 (-1213 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *5 (-1195)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-5 *2 (-629 (-933 *5))) (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) (-3901 (*1 *2) (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-629 (-629 *4))) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6))))) +(-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3901 ((-629 (-629 |#2|)))) (-15 -1429 ((-629 (-933 |#2|)) (-1154))) (-15 -3606 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2791 ((-3 |#3| "failed"))) (-15 -3551 ((-3 |#3| "failed"))) (-15 -2060 (|#2| |#1| |#2| |#2|)) (-15 -3471 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3097 ((-111) |#1| |#3|)) (-15 -3097 ((-111) |#1| |#2|)) (-15 -4278 (|#1| (-1237 |#3|) |#3|)) (-15 -2684 ((-2 (|:| |num| (-1237 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2525 ((-1237 |#1|) (-1237 |#1|))) (-15 -2317 ((-1237 |#1|) (-1237 |#1|))) (-15 -1889 ((-1237 |#1|) (-1237 |#1|))) (-15 -3097 ((-111) |#1|)) (-15 -2667 ((-111) |#1|)) (-15 -3184 ((-111) |#2| |#2|)) (-15 -3855 ((-111))) (-15 -3140 ((-756))) (-15 -3503 ((-756))) (-15 -3096 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -3096 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-756))) (-15 -4278 (|#1| (-1237 (-401 |#3|)))) (-15 -4278 (|#1| (-1237 (-401 |#3|)) (-1237 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2684 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) 193)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 91 (|has| (-401 |#2|) (-357)))) (-3303 (($ $) 92 (|has| (-401 |#2|) (-357)))) (-1334 (((-111) $) 94 (|has| (-401 |#2|) (-357)))) (-2977 (((-673 (-401 |#2|)) (-1237 $)) 44) (((-673 (-401 |#2|))) 59)) (-1549 (((-401 |#2|) $) 50)) (-1271 (((-1164 (-902) (-756)) (-552)) 144 (|has| (-401 |#2|) (-343)))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 111 (|has| (-401 |#2|) (-357)))) (-3343 (((-412 $) $) 112 (|has| (-401 |#2|) (-357)))) (-2393 (((-111) $ $) 102 (|has| (-401 |#2|) (-357)))) (-2663 (((-756)) 85 (|has| (-401 |#2|) (-362)))) (-3216 (((-111)) 210)) (-2966 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 166 (|has| (-401 |#2|) (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) 163)) (-2832 (((-552) $) 167 (|has| (-401 |#2|) (-1019 (-552)))) (((-401 (-552)) $) 165 (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-401 |#2|) $) 162)) (-4278 (($ (-1237 (-401 |#2|)) (-1237 $)) 46) (($ (-1237 (-401 |#2|))) 62) (($ (-1237 |#2|) |#2|) 192)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-401 |#2|) (-343)))) (-4006 (($ $ $) 106 (|has| (-401 |#2|) (-357)))) (-3584 (((-673 (-401 |#2|)) $ (-1237 $)) 51) (((-673 (-401 |#2|)) $) 57)) (-2714 (((-673 (-552)) (-673 $)) 161 (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 160 (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-401 |#2|))) (|:| |vec| (-1237 (-401 |#2|)))) (-673 $) (-1237 $)) 159) (((-673 (-401 |#2|)) (-673 $)) 158)) (-2525 (((-1237 $) (-1237 $)) 198)) (-3884 (($ |#3|) 155) (((-3 $ "failed") (-401 |#3|)) 152 (|has| (-401 |#2|) (-357)))) (-1293 (((-3 $ "failed") $) 32)) (-3901 (((-629 (-629 |#1|))) 179 (|has| |#1| (-362)))) (-3184 (((-111) |#1| |#1|) 214)) (-2128 (((-902)) 52)) (-1332 (($) 88 (|has| (-401 |#2|) (-362)))) (-1568 (((-111)) 207)) (-2847 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-3987 (($ $ $) 105 (|has| (-401 |#2|) (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 100 (|has| (-401 |#2|) (-357)))) (-3471 (($ $) 185)) (-4000 (($) 146 (|has| (-401 |#2|) (-343)))) (-3504 (((-111) $) 147 (|has| (-401 |#2|) (-343)))) (-1788 (($ $ (-756)) 138 (|has| (-401 |#2|) (-343))) (($ $) 137 (|has| (-401 |#2|) (-343)))) (-1677 (((-111) $) 113 (|has| (-401 |#2|) (-357)))) (-4241 (((-902) $) 149 (|has| (-401 |#2|) (-343))) (((-818 (-902)) $) 135 (|has| (-401 |#2|) (-343)))) (-4065 (((-111) $) 30)) (-3503 (((-756)) 217)) (-2317 (((-1237 $) (-1237 $)) 199)) (-4346 (((-401 |#2|) $) 49)) (-1429 (((-629 (-933 |#1|)) (-1154)) 180 (|has| |#1| (-357)))) (-2032 (((-3 $ "failed") $) 139 (|has| (-401 |#2|) (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 109 (|has| (-401 |#2|) (-357)))) (-2169 ((|#3| $) 42 (|has| (-401 |#2|) (-357)))) (-1637 (((-902) $) 87 (|has| (-401 |#2|) (-362)))) (-3874 ((|#3| $) 153)) (-2552 (($ (-629 $)) 98 (|has| (-401 |#2|) (-357))) (($ $ $) 97 (|has| (-401 |#2|) (-357)))) (-2623 (((-1136) $) 9)) (-2930 (((-673 (-401 |#2|))) 194)) (-1303 (((-673 (-401 |#2|))) 196)) (-3701 (($ $) 114 (|has| (-401 |#2|) (-357)))) (-3059 (($ (-1237 |#2|) |#2|) 190)) (-2931 (((-673 (-401 |#2|))) 195)) (-2435 (((-673 (-401 |#2|))) 197)) (-1459 (((-2 (|:| |num| (-673 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1493 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) 191)) (-3953 (((-1237 $)) 203)) (-4197 (((-1237 $)) 204)) (-2667 (((-111) $) 202)) (-3097 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-1977 (($) 140 (|has| (-401 |#2|) (-343)) CONST)) (-2840 (($ (-902)) 86 (|has| (-401 |#2|) (-362)))) (-2791 (((-3 |#2| "failed")) 182)) (-2876 (((-1098) $) 10)) (-3140 (((-756)) 216)) (-4126 (($) 157)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 99 (|has| (-401 |#2|) (-357)))) (-2594 (($ (-629 $)) 96 (|has| (-401 |#2|) (-357))) (($ $ $) 95 (|has| (-401 |#2|) (-357)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 143 (|has| (-401 |#2|) (-343)))) (-3479 (((-412 $) $) 110 (|has| (-401 |#2|) (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 107 (|has| (-401 |#2|) (-357)))) (-3969 (((-3 $ "failed") $ $) 90 (|has| (-401 |#2|) (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 101 (|has| (-401 |#2|) (-357)))) (-3795 (((-756) $) 103 (|has| (-401 |#2|) (-357)))) (-2060 ((|#1| $ |#1| |#1|) 184)) (-3551 (((-3 |#2| "failed")) 183)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 104 (|has| (-401 |#2|) (-357)))) (-1721 (((-401 |#2|) (-1237 $)) 45) (((-401 |#2|)) 58)) (-4147 (((-756) $) 148 (|has| (-401 |#2|) (-343))) (((-3 (-756) "failed") $ $) 136 (|has| (-401 |#2|) (-343)))) (-3096 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) 120 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 119 (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-629 (-1154)) (-629 (-756))) 127 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-1154) (-756)) 128 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-629 (-1154))) 129 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-1154)) 130 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-756)) 132 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3792 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 134 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3792 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1433 (((-673 (-401 |#2|)) (-1237 $) (-1 (-401 |#2|) (-401 |#2|))) 151 (|has| (-401 |#2|) (-357)))) (-3521 ((|#3|) 156)) (-1368 (($) 145 (|has| (-401 |#2|) (-343)))) (-3464 (((-1237 (-401 |#2|)) $ (-1237 $)) 48) (((-673 (-401 |#2|)) (-1237 $) (-1237 $)) 47) (((-1237 (-401 |#2|)) $) 64) (((-673 (-401 |#2|)) (-1237 $)) 63)) (-1522 (((-1237 (-401 |#2|)) $) 61) (($ (-1237 (-401 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 142 (|has| (-401 |#2|) (-343)))) (-1889 (((-1237 $) (-1237 $)) 200)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 |#2|)) 35) (($ (-401 (-552))) 84 (-4029 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-1019 (-401 (-552)))))) (($ $) 89 (|has| (-401 |#2|) (-357)))) (-3878 (($ $) 141 (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-401 |#2|) (-142)))) (-3767 ((|#3| $) 43)) (-2014 (((-756)) 28)) (-1464 (((-111)) 213)) (-3895 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-4199 (((-1237 $)) 65)) (-3589 (((-111) $ $) 93 (|has| (-401 |#2|) (-357)))) (-3606 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-3855 (((-111)) 215)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) 122 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 121 (|has| (-401 |#2|) (-357))) (($ $ (-629 (-1154)) (-629 (-756))) 123 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-1154) (-756)) 124 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-629 (-1154))) 125 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-1154)) 126 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) (-3792 (|has| (-401 |#2|) (-881 (-1154))) (|has| (-401 |#2|) (-357))))) (($ $ (-756)) 131 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3792 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 133 (-4029 (-3792 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3792 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 118 (|has| (-401 |#2|) (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 115 (|has| (-401 |#2|) (-357)))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 |#2|)) 37) (($ (-401 |#2|) $) 36) (($ (-401 (-552)) $) 117 (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) 116 (|has| (-401 |#2|) (-357))))) +(((-336 |#1| |#2| |#3|) (-137) (-1195) (-1213 |t#1|) (-1213 (-401 |t#2|))) (T -336)) +((-3503 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-756)))) (-3140 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-756)))) (-3855 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-3184 (*1 *2 *3 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-1464 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-3895 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-3895 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) (-3216 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-2966 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-2966 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) (-1568 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) (-4197 (*1 *2) (-12 (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)))) (-3953 (*1 *2) (-12 (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))))) (-2525 (*1 *2 *2) (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))))) (-2435 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4))))) (-1303 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4))))) (-2931 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4))))) (-2930 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4))))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1237 *4)) (|:| |den| *4))))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1213 *4)) (-4 *4 (-1195)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1213 (-401 *3))))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1237 *4)) (|:| |den| *4))))) (-3059 (*1 *1 *2 *3) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1213 *4)) (-4 *4 (-1195)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1213 (-401 *3))))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-2 (|:| |num| (-673 *5)) (|:| |den| *5))))) (-3097 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))))) (-3471 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-1213 *2)) (-4 *4 (-1213 (-401 *3))))) (-2060 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-1213 *2)) (-4 *4 (-1213 (-401 *3))))) (-3551 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1195)) (-4 *4 (-1213 (-401 *2))) (-4 *2 (-1213 *3)))) (-2791 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1195)) (-4 *4 (-1213 (-401 *2))) (-4 *2 (-1213 *3)))) (-3606 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-1195)) (-4 *6 (-1213 (-401 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-336 *4 *5 *6)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-4 *4 (-357)) (-5 *2 (-629 (-933 *4))))) (-3901 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-629 (-629 *3)))))) +(-13 (-709 (-401 |t#2|) |t#3|) (-10 -8 (-15 -3503 ((-756))) (-15 -3140 ((-756))) (-15 -3855 ((-111))) (-15 -3184 ((-111) |t#1| |t#1|)) (-15 -1464 ((-111))) (-15 -3895 ((-111) |t#1|)) (-15 -3895 ((-111) |t#2|)) (-15 -3216 ((-111))) (-15 -2966 ((-111) |t#1|)) (-15 -2966 ((-111) |t#2|)) (-15 -1568 ((-111))) (-15 -2847 ((-111) |t#1|)) (-15 -2847 ((-111) |t#2|)) (-15 -4197 ((-1237 $))) (-15 -3953 ((-1237 $))) (-15 -2667 ((-111) $)) (-15 -3097 ((-111) $)) (-15 -1889 ((-1237 $) (-1237 $))) (-15 -2317 ((-1237 $) (-1237 $))) (-15 -2525 ((-1237 $) (-1237 $))) (-15 -2435 ((-673 (-401 |t#2|)))) (-15 -1303 ((-673 (-401 |t#2|)))) (-15 -2931 ((-673 (-401 |t#2|)))) (-15 -2930 ((-673 (-401 |t#2|)))) (-15 -2684 ((-2 (|:| |num| (-1237 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4278 ($ (-1237 |t#2|) |t#2|)) (-15 -1493 ((-2 (|:| |num| (-1237 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3059 ($ (-1237 |t#2|) |t#2|)) (-15 -1459 ((-2 (|:| |num| (-673 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3097 ((-111) $ |t#1|)) (-15 -3097 ((-111) $ |t#2|)) (-15 -3096 ($ $ (-1 |t#2| |t#2|))) (-15 -3471 ($ $)) (-15 -2060 (|t#1| $ |t#1| |t#1|)) (-15 -3551 ((-3 |t#2| "failed"))) (-15 -2791 ((-3 |t#2| "failed"))) (-15 -3606 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-357)) (-15 -1429 ((-629 (-933 |t#1|)) (-1154))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -3901 ((-629 (-629 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-38 #1=(-401 |#2|)) . T) ((-38 $) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-101) . T) ((-110 #0# #0#) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-142))) ((-144) |has| (-401 |#2|) (-144)) ((-599 (-844)) . T) ((-169) . T) ((-600 |#3|) . T) ((-226 #1#) |has| (-401 |#2|) (-357)) ((-228) -4029 (|has| (-401 |#2|) (-343)) (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357)))) ((-238) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-284) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-301) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-357) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-396) |has| (-401 |#2|) (-343)) ((-362) -4029 (|has| (-401 |#2|) (-362)) (|has| (-401 |#2|) (-343))) ((-343) |has| (-401 |#2|) (-343)) ((-364 #1# |#3|) . T) ((-403 #1# |#3|) . T) ((-371 #1#) . T) ((-405 #1#) . T) ((-445) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-544) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-632 #0#) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-632 #1#) . T) ((-632 $) . T) ((-625 #1#) . T) ((-625 (-552)) |has| (-401 |#2|) (-625 (-552))) ((-702 #0#) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-702 #1#) . T) ((-702 $) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-709 #1# |#3|) . T) ((-711) . T) ((-881 (-1154)) -12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154)))) ((-901) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1019 (-401 (-552))) |has| (-401 |#2|) (-1019 (-401 (-552)))) ((-1019 #1#) . T) ((-1019 (-552)) |has| (-401 |#2|) (-1019 (-552))) ((-1036 #0#) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1036 #1#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| (-401 |#2|) (-343)) ((-1195) -4029 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-891 |#1|) (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| (-891 |#1|) (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-891 |#1|) "failed") $) NIL)) (-2832 (((-891 |#1|) $) NIL)) (-4278 (($ (-1237 (-891 |#1|))) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-891 |#1|) (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-891 |#1|) (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| (-891 |#1|) (-362)))) (-3504 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362)))) (($ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| (-891 |#1|) (-362))) (((-818 (-902)) $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| (-891 |#1|) (-362)))) (-2092 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-4346 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-891 |#1|) (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 (-891 |#1|)) $) NIL) (((-1150 $) $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1637 (((-902) $) NIL (|has| (-891 |#1|) (-362)))) (-1879 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362)))) (-1577 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-1150 (-891 |#1|)) "failed") $ $) NIL (|has| (-891 |#1|) (-362)))) (-2836 (($ $ (-1150 (-891 |#1|))) NIL (|has| (-891 |#1|) (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-891 |#1|) (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-3064 (((-939 (-1098))) NIL)) (-4126 (($) NIL (|has| (-891 |#1|) (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-891 |#1|) (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 (-891 |#1|))) NIL)) (-1368 (($) NIL (|has| (-891 |#1|) (-362)))) (-3149 (($) NIL (|has| (-891 |#1|) (-362)))) (-3464 (((-1237 (-891 |#1|)) $) NIL) (((-673 (-891 |#1|)) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-891 |#1|) (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-891 |#1|)) NIL)) (-3878 (($ $) NIL (|has| (-891 |#1|) (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1765 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ (-891 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-891 |#1|)) NIL) (($ (-891 |#1|) $) NIL))) +(((-337 |#1| |#2|) (-13 (-323 (-891 |#1|)) (-10 -7 (-15 -3064 ((-939 (-1098)))))) (-902) (-902)) (T -337)) +((-3064 (*1 *2) (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-337 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902))))) +(-13 (-323 (-891 |#1|)) (-10 -7 (-15 -3064 ((-939 (-1098)))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 44)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) 41 (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 115)) (-2832 ((|#1| $) 86)) (-4278 (($ (-1237 |#1|)) 104)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) 98 (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) 129 (|has| |#1| (-362)))) (-3504 (((-111) $) 48 (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) 45 (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) 131 (|has| |#1| (-362)))) (-2092 (((-111) $) NIL (|has| |#1| (-362)))) (-4346 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) 90) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) 139 (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) NIL (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) NIL (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 146)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) 71 (|has| |#1| (-362)))) (-1498 (((-111) $) 118)) (-2876 (((-1098) $) NIL)) (-3064 (((-939 (-1098))) 42)) (-4126 (($) 127 (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 93 (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) 67) (((-902)) 68)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) 130 (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) 125 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 |#1|)) 96)) (-1368 (($) 128 (|has| |#1| (-362)))) (-3149 (($) 136 (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) 59) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) 142) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 75)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) 138)) (-4199 (((-1237 $)) 117) (((-1237 $) (-902)) 73)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) 49 T CONST)) (-3309 (($) 46 T CONST)) (-4237 (($ $) 81 (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) 47)) (-1720 (($ $ $) 144) (($ $ |#1|) 145)) (-1709 (($ $) 126) (($ $ $) NIL)) (-1698 (($ $ $) 61)) (** (($ $ (-902)) 148) (($ $ (-756)) 149) (($ $ (-552)) 147)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 77) (($ $ $) 76) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-338 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -3064 ((-939 (-1098)))))) (-343) (-1150 |#1|)) (T -338)) +((-3064 (*1 *2) (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1150 *3))))) +(-13 (-323 |#1|) (-10 -7 (-15 -3064 ((-939 (-1098)))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-4278 (($ (-1237 |#1|)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| |#1| (-362)))) (-3504 (((-111) $) NIL (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| |#1| (-362)))) (-2092 (((-111) $) NIL (|has| |#1| (-362)))) (-4346 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) NIL) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) NIL (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) NIL (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-3064 (((-939 (-1098))) NIL)) (-4126 (($) NIL (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 |#1|)) NIL)) (-1368 (($) NIL (|has| |#1| (-362)))) (-3149 (($) NIL (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) NIL) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-339 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -3064 ((-939 (-1098)))))) (-343) (-902)) (T -339)) +((-3064 (*1 *2) (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-902))))) +(-13 (-323 |#1|) (-10 -7 (-15 -3064 ((-939 (-1098)))))) +((-3315 (((-756) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) 42)) (-1945 (((-939 (-1098)) (-1150 |#1|)) 85)) (-2941 (((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) (-1150 |#1|)) 78)) (-4079 (((-673 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) 86)) (-3624 (((-3 (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) "failed") (-902)) 13)) (-1509 (((-3 (-1150 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) (-902)) 18))) +(((-340 |#1|) (-10 -7 (-15 -1945 ((-939 (-1098)) (-1150 |#1|))) (-15 -2941 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) (-1150 |#1|))) (-15 -4079 ((-673 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -3315 ((-756) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -3624 ((-3 (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) "failed") (-902))) (-15 -1509 ((-3 (-1150 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) (-902)))) (-343)) (T -340)) +((-1509 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-3 (-1150 *4) (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-902)) (-5 *2 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) (-4 *4 (-343)) (-5 *2 (-756)) (-5 *1 (-340 *4)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) (-4 *4 (-343)) (-5 *2 (-673 *4)) (-5 *1 (-340 *4)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) (-5 *1 (-340 *4)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-939 (-1098))) (-5 *1 (-340 *4))))) +(-10 -7 (-15 -1945 ((-939 (-1098)) (-1150 |#1|))) (-15 -2941 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) (-1150 |#1|))) (-15 -4079 ((-673 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -3315 ((-756) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -3624 ((-3 (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) "failed") (-902))) (-15 -1509 ((-3 (-1150 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) (-902)))) +((-3213 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -3213 (|#3| |#1|)) (-15 -3213 (|#1| |#3|))) (-323 |#2|) (-343) (-323 |#2|)) (T -341)) +((-3213 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-323 *4)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-323 *4))))) +(-10 -7 (-15 -3213 (|#3| |#1|)) (-15 -3213 (|#1| |#3|))) +((-3504 (((-111) $) 51)) (-4241 (((-818 (-902)) $) 21) (((-902) $) 52)) (-2032 (((-3 $ "failed") $) 16)) (-1977 (($) 9)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 93)) (-4147 (((-3 (-756) "failed") $ $) 71) (((-756) $) 60)) (-3096 (($ $ (-756)) NIL) (($ $) 8)) (-1368 (($) 44)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 34)) (-3878 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-342 |#1|) (-10 -8 (-15 -4241 ((-902) |#1|)) (-15 -4147 ((-756) |#1|)) (-15 -3504 ((-111) |#1|)) (-15 -1368 (|#1|)) (-15 -1507 ((-3 (-1237 |#1|) "failed") (-673 |#1|))) (-15 -3878 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -4147 ((-3 (-756) "failed") |#1| |#1|)) (-15 -4241 ((-818 (-902)) |#1|)) (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)))) (-343)) (T -342)) +NIL +(-10 -8 (-15 -4241 ((-902) |#1|)) (-15 -4147 ((-756) |#1|)) (-15 -3504 ((-111) |#1|)) (-15 -1368 (|#1|)) (-15 -1507 ((-3 (-1237 |#1|) "failed") (-673 |#1|))) (-15 -3878 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -4147 ((-3 (-756) "failed") |#1| |#1|)) (-15 -4241 ((-818 (-902)) |#1|)) (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-1271 (((-1164 (-902) (-756)) (-552)) 90)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-2393 (((-111) $ $) 57)) (-2663 (((-756)) 100)) (-2130 (($) 17 T CONST)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-1332 (($) 103)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-4000 (($) 88)) (-3504 (((-111) $) 87)) (-1788 (($ $) 76) (($ $ (-756)) 75)) (-1677 (((-111) $) 68)) (-4241 (((-818 (-902)) $) 78) (((-902) $) 85)) (-4065 (((-111) $) 30)) (-2032 (((-3 $ "failed") $) 99)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-1637 (((-902) $) 102)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-1977 (($) 98 T CONST)) (-2840 (($ (-902)) 101)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 91)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-4147 (((-3 (-756) "failed") $ $) 77) (((-756) $) 86)) (-3096 (($ $ (-756)) 96) (($ $) 94)) (-1368 (($) 89)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 92)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3878 (((-3 $ "failed") $) 79) (($ $) 93)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-756)) 97) (($ $) 95)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) (((-343) (-137)) (T -343)) -((-3050 (*1 *1 *1) (-4 *1 (-343))) (-3319 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-343)) (-5 *2 (-1235 *1)))) (-3703 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))))) (-2038 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1162 (-900) (-754))))) (-3439 (*1 *1) (-4 *1 (-343))) (-2740 (*1 *1) (-4 *1 (-343))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-754)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-900)))) (-3727 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-396) (-362) (-1127) (-228) (-10 -8 (-15 -3050 ($ $)) (-15 -3319 ((-3 (-1235 $) "failed") (-671 $))) (-15 -3703 ((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552)))))) (-15 -2038 ((-1162 (-900) (-754)) (-552))) (-15 -3439 ($)) (-15 -2740 ($)) (-15 -1415 ((-111) $)) (-15 -4018 ((-754) $)) (-15 -2641 ((-900) $)) (-15 -3727 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-842)) . T) ((-169) . T) ((-228) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) . T) ((-362) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) . T) ((-1193) . T)) -((-2993 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|) 53)) (-3402 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 51))) -(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $)))) (-1211 |#1|) (-403 |#1| |#2|)) (T -344)) -((-2993 (*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3402 (*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096)))))) NIL)) (-2938 (((-671 (-889 |#1|))) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 (-889 |#1|)))) (-15 -3246 ((-754))))) (-900) (-900)) (T -345)) -((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 (-889 *3)) (|:| -4153 (-1096)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 (-889 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900))))) -(-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 (-889 |#1|)))) (-15 -3246 ((-754))))) -((-1465 (((-111) $ $) 61)) (-3024 (((-111) $) 74)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) 92) (($ $ (-900)) 90 (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 148 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) 89)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) 162 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 112)) (-1703 ((|#1| $) 91)) (-2342 (($ (-1235 |#1|)) 58)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 158 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 149 (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 98 (|has| |#1| (-362)))) (-2492 (((-111) $) 175 (|has| |#1| (-362)))) (-2349 ((|#1| $) 94) (($ $ (-900)) 93 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 189) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 134 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) 73 (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) 70 (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) 82 (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) 69 (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 192)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 137 (|has| |#1| (-362)))) (-2249 (((-111) $) 108)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 83)) (-2938 (((-671 |#1|)) 87)) (-2220 (($) 96 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 150 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) 151)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) 62)) (-1376 (((-1148 |#1|)) 152)) (-3439 (($) 133 (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 106) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 124) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 57)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 156)) (-2957 (((-1235 $)) 172) (((-1235 $) (-900)) 101)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 117 T CONST)) (-1933 (($) 33 T CONST)) (-3406 (($ $) 107 (|has| |#1| (-362))) (($ $ (-754)) 99 (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 183)) (-2407 (($ $ $) 104) (($ $ |#1|) 105)) (-2396 (($ $) 177) (($ $ $) 181)) (-2384 (($ $ $) 179)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 138)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 186) (($ $ $) 142) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-346 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) (-343) (-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (T -346)) -((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) *2)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) NIL)) (-2938 (((-671 |#1|)) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) (-343) (-900)) (T -347)) -((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900)))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) -(((-348 |#1| |#2|) (-323 (-889 |#1|)) (-900) (-900)) (T -348)) -NIL -(-323 (-889 |#1|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 120 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) 140 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 93)) (-1703 ((|#1| $) 90)) (-2342 (($ (-1235 |#1|)) 85)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 82 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 42 (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 121 (|has| |#1| (-362)))) (-2492 (((-111) $) 74 (|has| |#1| (-362)))) (-2349 ((|#1| $) 39) (($ $ (-900)) 43 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 65) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 97 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 95 (|has| |#1| (-362)))) (-2249 (((-111) $) 142)) (-1498 (((-1096) $) NIL)) (-2220 (($) 36 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 115 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) 139)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) 59)) (-1376 (((-1148 |#1|)) 88)) (-3439 (($) 126 (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 53) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 138) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 87)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 144)) (-2957 (((-1235 $)) 109) (((-1235 $) (-900)) 49)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 111 T CONST)) (-1933 (($) 32 T CONST)) (-3406 (($ $) 68 (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 107)) (-2407 (($ $ $) 99) (($ $ |#1|) 100)) (-2396 (($ $) 80) (($ $ $) 105)) (-2384 (($ $ $) 103)) (** (($ $ (-900)) NIL) (($ $ (-754)) 44) (($ $ (-552)) 130)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 78) (($ $ $) 56) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-349 |#1| |#2|) (-323 |#1|) (-343) (-1148 |#1|)) (T -349)) +((-3878 (*1 *1 *1) (-4 *1 (-343))) (-1507 (*1 *2 *3) (|partial| -12 (-5 *3 (-673 *1)) (-4 *1 (-343)) (-5 *2 (-1237 *1)))) (-4056 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))))) (-1271 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1164 (-902) (-756))))) (-1368 (*1 *1) (-4 *1 (-343))) (-4000 (*1 *1) (-4 *1 (-343))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-756)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-902)))) (-4274 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-396) (-362) (-1129) (-228) (-10 -8 (-15 -3878 ($ $)) (-15 -1507 ((-3 (-1237 $) "failed") (-673 $))) (-15 -4056 ((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552)))))) (-15 -1271 ((-1164 (-902) (-756)) (-552))) (-15 -1368 ($)) (-15 -4000 ($)) (-15 -3504 ((-111) $)) (-15 -4147 ((-756) $)) (-15 -4241 ((-902) $)) (-15 -4274 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-844)) . T) ((-169) . T) ((-228) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) . T) ((-362) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) . T) ((-1195) . T)) +((-1414 (((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) |#1|) 53)) (-4197 (((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|)))) 51))) +(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) |#1|))) (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $)))) (-1213 |#1|) (-403 |#1| |#2|)) (T -344)) +((-1414 (*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4197 (*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-891 |#1|) (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3315 (((-756)) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| (-891 |#1|) (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-891 |#1|) "failed") $) NIL)) (-2832 (((-891 |#1|) $) NIL)) (-4278 (($ (-1237 (-891 |#1|))) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-891 |#1|) (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-891 |#1|) (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| (-891 |#1|) (-362)))) (-3504 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362)))) (($ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| (-891 |#1|) (-362))) (((-818 (-902)) $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| (-891 |#1|) (-362)))) (-2092 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-4346 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-891 |#1|) (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 (-891 |#1|)) $) NIL) (((-1150 $) $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1637 (((-902) $) NIL (|has| (-891 |#1|) (-362)))) (-1879 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362)))) (-1577 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-1150 (-891 |#1|)) "failed") $ $) NIL (|has| (-891 |#1|) (-362)))) (-2836 (($ $ (-1150 (-891 |#1|))) NIL (|has| (-891 |#1|) (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-891 |#1|) (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-2253 (((-1237 (-629 (-2 (|:| -2925 (-891 |#1|)) (|:| -2840 (-1098)))))) NIL)) (-4051 (((-673 (-891 |#1|))) NIL)) (-4126 (($) NIL (|has| (-891 |#1|) (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-891 |#1|) (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 (-891 |#1|))) NIL)) (-1368 (($) NIL (|has| (-891 |#1|) (-362)))) (-3149 (($) NIL (|has| (-891 |#1|) (-362)))) (-3464 (((-1237 (-891 |#1|)) $) NIL) (((-673 (-891 |#1|)) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-891 |#1|) (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-891 |#1|)) NIL)) (-3878 (($ $) NIL (|has| (-891 |#1|) (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1765 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ (-891 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-891 |#1|)) NIL) (($ (-891 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-323 (-891 |#1|)) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 (-891 |#1|)) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 (-891 |#1|)))) (-15 -3315 ((-756))))) (-902) (-902)) (T -345)) +((-2253 (*1 *2) (-12 (-5 *2 (-1237 (-629 (-2 (|:| -2925 (-891 *3)) (|:| -2840 (-1098)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) (-4051 (*1 *2) (-12 (-5 *2 (-673 (-891 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) (-3315 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902))))) +(-13 (-323 (-891 |#1|)) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 (-891 |#1|)) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 (-891 |#1|)))) (-15 -3315 ((-756))))) +((-3202 (((-111) $ $) 61)) (-3643 (((-111) $) 74)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) 92) (($ $ (-902)) 90 (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) 148 (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3315 (((-756)) 89)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) 162 (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 112)) (-2832 ((|#1| $) 91)) (-4278 (($ (-1237 |#1|)) 58)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) 158 (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) 149 (|has| |#1| (-362)))) (-3504 (((-111) $) NIL (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) 98 (|has| |#1| (-362)))) (-2092 (((-111) $) 175 (|has| |#1| (-362)))) (-4346 ((|#1| $) 94) (($ $ (-902)) 93 (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) 189) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) 134 (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) 73 (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) 70 (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) 82 (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) 69 (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 192)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) 137 (|has| |#1| (-362)))) (-1498 (((-111) $) 108)) (-2876 (((-1098) $) NIL)) (-2253 (((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) 83)) (-4051 (((-673 |#1|)) 87)) (-4126 (($) 96 (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 150 (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) 151)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) 62)) (-3521 (((-1150 |#1|)) 152)) (-1368 (($) 133 (|has| |#1| (-362)))) (-3149 (($) NIL (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) 106) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) 124) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 57)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) 156)) (-4199 (((-1237 $)) 172) (((-1237 $) (-902)) 101)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) 117 T CONST)) (-3309 (($) 33 T CONST)) (-4237 (($ $) 107 (|has| |#1| (-362))) (($ $ (-756)) 99 (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) 183)) (-1720 (($ $ $) 104) (($ $ |#1|) 105)) (-1709 (($ $) 177) (($ $ $) 181)) (-1698 (($ $ $) 179)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 138)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 186) (($ $ $) 142) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-346 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 |#1|))) (-15 -3315 ((-756))))) (-343) (-3 (-1150 |#1|) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (T -346)) +((-2253 (*1 *2) (-12 (-5 *2 (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1150 *3) *2)))) (-4051 (*1 *2) (-12 (-5 *2 (-673 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1150 *3) (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098))))))))) (-3315 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1150 *3) (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098)))))))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 |#1|))) (-15 -3315 ((-756))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3315 (((-756)) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-4278 (($ (-1237 |#1|)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| |#1| (-362)))) (-3504 (((-111) $) NIL (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| |#1| (-362)))) (-2092 (((-111) $) NIL (|has| |#1| (-362)))) (-4346 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) NIL) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) NIL (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) NIL (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-2253 (((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098)))))) NIL)) (-4051 (((-673 |#1|)) NIL)) (-4126 (($) NIL (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 |#1|)) NIL)) (-1368 (($) NIL (|has| |#1| (-362)))) (-3149 (($) NIL (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) NIL) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 |#1|))) (-15 -3315 ((-756))))) (-343) (-902)) (T -347)) +((-2253 (*1 *2) (-12 (-5 *2 (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-902)))) (-4051 (*1 *2) (-12 (-5 *2 (-673 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-902)))) (-3315 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-902))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2253 ((-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))))) (-15 -4051 ((-673 |#1|))) (-15 -3315 ((-756))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-891 |#1|) (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| (-891 |#1|) (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-891 |#1|) "failed") $) NIL)) (-2832 (((-891 |#1|) $) NIL)) (-4278 (($ (-1237 (-891 |#1|))) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-891 |#1|) (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-891 |#1|) (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| (-891 |#1|) (-362)))) (-3504 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362)))) (($ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| (-891 |#1|) (-362))) (((-818 (-902)) $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| (-891 |#1|) (-362)))) (-2092 (((-111) $) NIL (|has| (-891 |#1|) (-362)))) (-4346 (((-891 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-891 |#1|) (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 (-891 |#1|)) $) NIL) (((-1150 $) $ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1637 (((-902) $) NIL (|has| (-891 |#1|) (-362)))) (-1879 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362)))) (-1577 (((-1150 (-891 |#1|)) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-1150 (-891 |#1|)) "failed") $ $) NIL (|has| (-891 |#1|) (-362)))) (-2836 (($ $ (-1150 (-891 |#1|))) NIL (|has| (-891 |#1|) (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-891 |#1|) (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| (-891 |#1|) (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL (|has| (-891 |#1|) (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-891 |#1|) (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| (-891 |#1|) (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 (-891 |#1|))) NIL)) (-1368 (($) NIL (|has| (-891 |#1|) (-362)))) (-3149 (($) NIL (|has| (-891 |#1|) (-362)))) (-3464 (((-1237 (-891 |#1|)) $) NIL) (((-673 (-891 |#1|)) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-891 |#1|) (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-891 |#1|)) NIL)) (-3878 (($ $) NIL (|has| (-891 |#1|) (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| (-891 |#1|) (-142)) (|has| (-891 |#1|) (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1765 (($ $) NIL (|has| (-891 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-891 |#1|) (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ (-891 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-891 |#1|)) NIL) (($ (-891 |#1|) $) NIL))) +(((-348 |#1| |#2|) (-323 (-891 |#1|)) (-902) (-902)) (T -348)) +NIL +(-323 (-891 |#1|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) 120 (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) 140 (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 93)) (-2832 ((|#1| $) 90)) (-4278 (($ (-1237 |#1|)) 85)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) 82 (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) 42 (|has| |#1| (-362)))) (-3504 (((-111) $) NIL (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) 121 (|has| |#1| (-362)))) (-2092 (((-111) $) 74 (|has| |#1| (-362)))) (-4346 ((|#1| $) 39) (($ $ (-902)) 43 (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) 65) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) 97 (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) NIL (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) NIL (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) 95 (|has| |#1| (-362)))) (-1498 (((-111) $) 142)) (-2876 (((-1098) $) NIL)) (-4126 (($) 36 (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 115 (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) 139)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) 59)) (-3521 (((-1150 |#1|)) 88)) (-1368 (($) 126 (|has| |#1| (-362)))) (-3149 (($) NIL (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) 53) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) 138) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 87)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) 144)) (-4199 (((-1237 $)) 109) (((-1237 $) (-902)) 49)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) 111 T CONST)) (-3309 (($) 32 T CONST)) (-4237 (($ $) 68 (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) 107)) (-1720 (($ $ $) 99) (($ $ |#1|) 100)) (-1709 (($ $) 80) (($ $ $) 105)) (-1698 (($ $ $) 103)) (** (($ $ (-902)) NIL) (($ $ (-756)) 44) (($ $ (-552)) 130)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 78) (($ $ $) 56) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-349 |#1| |#2|) (-323 |#1|) (-343) (-1150 |#1|)) (T -349)) NIL (-323 |#1|) -((-3251 ((|#1| (-1148 |#2|)) 52))) -(((-350 |#1| |#2|) (-10 -7 (-15 -3251 (|#1| (-1148 |#2|)))) (-13 (-396) (-10 -7 (-15 -1477 (|#1| |#2|)) (-15 -2886 ((-900) |#1|)) (-15 -2957 ((-1235 |#1|) (-900))) (-15 -3406 (|#1| |#1|)))) (-343)) (T -350)) -((-3251 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-396) (-10 -7 (-15 -1477 (*2 *4)) (-15 -2886 ((-900) *2)) (-15 -2957 ((-1235 *2) (-900))) (-15 -3406 (*2 *2))))) (-5 *1 (-350 *2 *4))))) -(-10 -7 (-15 -3251 (|#1| (-1148 |#2|)))) -((-1356 (((-937 (-1148 |#1|)) (-1148 |#1|)) 36)) (-1279 (((-1148 |#1|) (-900) (-900)) 113) (((-1148 |#1|) (-900)) 112)) (-1415 (((-111) (-1148 |#1|)) 84)) (-3821 (((-900) (-900)) 71)) (-2703 (((-900) (-900)) 74)) (-3137 (((-900) (-900)) 69)) (-2492 (((-111) (-1148 |#1|)) 88)) (-2627 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 101)) (-3688 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 104)) (-1956 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 103)) (-4330 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 102)) (-2863 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 98)) (-2474 (((-1148 |#1|) (-1148 |#1|)) 62)) (-2307 (((-1148 |#1|) (-900)) 107)) (-2968 (((-1148 |#1|) (-900)) 110)) (-4255 (((-1148 |#1|) (-900)) 109)) (-4115 (((-1148 |#1|) (-900)) 108)) (-1569 (((-1148 |#1|) (-900)) 105))) -(((-351 |#1|) (-10 -7 (-15 -1415 ((-111) (-1148 |#1|))) (-15 -2492 ((-111) (-1148 |#1|))) (-15 -3137 ((-900) (-900))) (-15 -3821 ((-900) (-900))) (-15 -2703 ((-900) (-900))) (-15 -1569 ((-1148 |#1|) (-900))) (-15 -2307 ((-1148 |#1|) (-900))) (-15 -4115 ((-1148 |#1|) (-900))) (-15 -4255 ((-1148 |#1|) (-900))) (-15 -2968 ((-1148 |#1|) (-900))) (-15 -2863 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -2627 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -4330 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1956 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3688 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1279 ((-1148 |#1|) (-900))) (-15 -1279 ((-1148 |#1|) (-900) (-900))) (-15 -2474 ((-1148 |#1|) (-1148 |#1|))) (-15 -1356 ((-937 (-1148 |#1|)) (-1148 |#1|)))) (-343)) (T -351)) -((-1356 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-937 (-1148 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1148 *4)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1279 (*1 *2 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1956 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4330 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2627 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2863 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4))))) -(-10 -7 (-15 -1415 ((-111) (-1148 |#1|))) (-15 -2492 ((-111) (-1148 |#1|))) (-15 -3137 ((-900) (-900))) (-15 -3821 ((-900) (-900))) (-15 -2703 ((-900) (-900))) (-15 -1569 ((-1148 |#1|) (-900))) (-15 -2307 ((-1148 |#1|) (-900))) (-15 -4115 ((-1148 |#1|) (-900))) (-15 -4255 ((-1148 |#1|) (-900))) (-15 -2968 ((-1148 |#1|) (-900))) (-15 -2863 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -2627 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -4330 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1956 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3688 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1279 ((-1148 |#1|) (-900))) (-15 -1279 ((-1148 |#1|) (-900) (-900))) (-15 -2474 ((-1148 |#1|) (-1148 |#1|))) (-15 -1356 ((-937 (-1148 |#1|)) (-1148 |#1|)))) -((-1964 (((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|) 34))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1964 ((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|))) (-343) (-1211 |#1|) (-1211 |#2|)) (T -352)) -((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3))))) -(-10 -7 (-15 -1964 ((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-323 |#1|) (-343) (-900)) (T -353)) +((-2067 ((|#1| (-1150 |#2|)) 52))) +(((-350 |#1| |#2|) (-10 -7 (-15 -2067 (|#1| (-1150 |#2|)))) (-13 (-396) (-10 -7 (-15 -3213 (|#1| |#2|)) (-15 -1637 ((-902) |#1|)) (-15 -4199 ((-1237 |#1|) (-902))) (-15 -4237 (|#1| |#1|)))) (-343)) (T -350)) +((-2067 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-396) (-10 -7 (-15 -3213 (*2 *4)) (-15 -1637 ((-902) *2)) (-15 -4199 ((-1237 *2) (-902))) (-15 -4237 (*2 *2))))) (-5 *1 (-350 *2 *4))))) +(-10 -7 (-15 -2067 (|#1| (-1150 |#2|)))) +((-1896 (((-939 (-1150 |#1|)) (-1150 |#1|)) 36)) (-1332 (((-1150 |#1|) (-902) (-902)) 113) (((-1150 |#1|) (-902)) 112)) (-3504 (((-111) (-1150 |#1|)) 84)) (-3971 (((-902) (-902)) 71)) (-3665 (((-902) (-902)) 74)) (-2208 (((-902) (-902)) 69)) (-2092 (((-111) (-1150 |#1|)) 88)) (-4098 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 101)) (-1987 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 104)) (-1628 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 103)) (-4100 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 102)) (-2726 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 98)) (-3208 (((-1150 |#1|) (-1150 |#1|)) 62)) (-4002 (((-1150 |#1|) (-902)) 107)) (-4281 (((-1150 |#1|) (-902)) 110)) (-2730 (((-1150 |#1|) (-902)) 109)) (-3837 (((-1150 |#1|) (-902)) 108)) (-2371 (((-1150 |#1|) (-902)) 105))) +(((-351 |#1|) (-10 -7 (-15 -3504 ((-111) (-1150 |#1|))) (-15 -2092 ((-111) (-1150 |#1|))) (-15 -2208 ((-902) (-902))) (-15 -3971 ((-902) (-902))) (-15 -3665 ((-902) (-902))) (-15 -2371 ((-1150 |#1|) (-902))) (-15 -4002 ((-1150 |#1|) (-902))) (-15 -3837 ((-1150 |#1|) (-902))) (-15 -2730 ((-1150 |#1|) (-902))) (-15 -4281 ((-1150 |#1|) (-902))) (-15 -2726 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -4098 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -4100 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1628 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1987 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1332 ((-1150 |#1|) (-902))) (-15 -1332 ((-1150 |#1|) (-902) (-902))) (-15 -3208 ((-1150 |#1|) (-1150 |#1|))) (-15 -1896 ((-939 (-1150 |#1|)) (-1150 |#1|)))) (-343)) (T -351)) +((-1896 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-939 (-1150 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1150 *4)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1332 (*1 *2 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1987 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1628 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4100 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4098 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2726 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2208 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4))))) +(-10 -7 (-15 -3504 ((-111) (-1150 |#1|))) (-15 -2092 ((-111) (-1150 |#1|))) (-15 -2208 ((-902) (-902))) (-15 -3971 ((-902) (-902))) (-15 -3665 ((-902) (-902))) (-15 -2371 ((-1150 |#1|) (-902))) (-15 -4002 ((-1150 |#1|) (-902))) (-15 -3837 ((-1150 |#1|) (-902))) (-15 -2730 ((-1150 |#1|) (-902))) (-15 -4281 ((-1150 |#1|) (-902))) (-15 -2726 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -4098 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -4100 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1628 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1987 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -1332 ((-1150 |#1|) (-902))) (-15 -1332 ((-1150 |#1|) (-902) (-902))) (-15 -3208 ((-1150 |#1|) (-1150 |#1|))) (-15 -1896 ((-939 (-1150 |#1|)) (-1150 |#1|)))) +((-1704 (((-3 (-629 |#3|) "failed") (-629 |#3|) |#3|) 34))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-3 (-629 |#3|) "failed") (-629 |#3|) |#3|))) (-343) (-1213 |#1|) (-1213 |#2|)) (T -352)) +((-1704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3))))) +(-10 -7 (-15 -1704 ((-3 (-629 |#3|) "failed") (-629 |#3|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| |#1| (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-4278 (($ (-1237 |#1|)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| |#1| (-362)))) (-3504 (((-111) $) NIL (|has| |#1| (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| |#1| (-362))) (((-818 (-902)) $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| |#1| (-362)))) (-2092 (((-111) $) NIL (|has| |#1| (-362)))) (-4346 ((|#1| $) NIL) (($ $ (-902)) NIL (|has| |#1| (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 |#1|) $) NIL) (((-1150 $) $ (-902)) NIL (|has| |#1| (-362)))) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-1879 (((-1150 |#1|) $) NIL (|has| |#1| (-362)))) (-1577 (((-1150 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1150 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-2836 (($ $ (-1150 |#1|)) NIL (|has| |#1| (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| |#1| (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL (|has| |#1| (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| |#1| (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| |#1| (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 |#1|)) NIL)) (-1368 (($) NIL (|has| |#1| (-362)))) (-3149 (($) NIL (|has| |#1| (-362)))) (-3464 (((-1237 |#1|) $) NIL) (((-673 |#1|) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3878 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1765 (($ $) NIL (|has| |#1| (-362))) (($ $ (-756)) NIL (|has| |#1| (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-323 |#1|) (-343) (-902)) (T -353)) NIL (-323 |#1|) -((-3583 (((-111) (-627 (-931 |#1|))) 34)) (-2875 (((-627 (-931 |#1|)) (-627 (-931 |#1|))) 46)) (-3287 (((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|))) 41))) -(((-354 |#1| |#2|) (-10 -7 (-15 -3583 ((-111) (-627 (-931 |#1|)))) (-15 -3287 ((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|)))) (-15 -2875 ((-627 (-931 |#1|)) (-627 (-931 |#1|))))) (-445) (-627 (-1152))) (T -354)) -((-2875 (*1 *2 *2) (-12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) (-3287 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-111)) (-5 *1 (-354 *4 *5)) (-14 *5 (-627 (-1152)))))) -(-10 -7 (-15 -3583 ((-111) (-627 (-931 |#1|)))) (-15 -3287 ((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|)))) (-15 -2875 ((-627 (-931 |#1|)) (-627 (-931 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) 15)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-552) $ (-552)) NIL)) (-2356 (($ (-1 |#1| |#1|) $) 32)) (-4086 (($ (-1 (-552) (-552)) $) 24)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 26)) (-1498 (((-1096) $) NIL)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $) 28)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 38) (($ |#1|) NIL)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ |#1| (-552)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-355 |#1|) (-13 (-466) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -3307 ((-754) $)) (-15 -1389 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-552) (-552)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $)))) (-1076)) (T -355)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-1389 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-355 *3)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-552))))) (-5 *1 (-355 *3)) (-4 *3 (-1076))))) -(-13 (-466) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -3307 ((-754) $)) (-15 -1389 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-552) (-552)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $)))) -((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 13)) (-3245 (($ $) 14)) (-2487 (((-412 $) $) 30)) (-1633 (((-111) $) 26)) (-1951 (($ $) 19)) (-1323 (($ $ $) 23) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) 31)) (-2761 (((-3 $ "failed") $ $) 22)) (-2718 (((-754) $) 25)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 35)) (-3778 (((-111) $ $) 16)) (-2407 (($ $ $) 33))) -(((-356 |#1|) (-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) (-357)) (T -356)) -NIL -(-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +((-2156 (((-111) (-629 (-933 |#1|))) 34)) (-1542 (((-629 (-933 |#1|)) (-629 (-933 |#1|))) 46)) (-2446 (((-3 (-629 (-933 |#1|)) "failed") (-629 (-933 |#1|))) 41))) +(((-354 |#1| |#2|) (-10 -7 (-15 -2156 ((-111) (-629 (-933 |#1|)))) (-15 -2446 ((-3 (-629 (-933 |#1|)) "failed") (-629 (-933 |#1|)))) (-15 -1542 ((-629 (-933 |#1|)) (-629 (-933 |#1|))))) (-445) (-629 (-1154))) (T -354)) +((-1542 (*1 *2 *2) (-12 (-5 *2 (-629 (-933 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-629 (-1154))))) (-2446 (*1 *2 *2) (|partial| -12 (-5 *2 (-629 (-933 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-629 (-1154))))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-445)) (-5 *2 (-111)) (-5 *1 (-354 *4 *5)) (-14 *5 (-629 (-1154)))))) +(-10 -7 (-15 -2156 ((-111) (-629 (-933 |#1|)))) (-15 -2446 ((-3 (-629 (-933 |#1|)) "failed") (-629 (-933 |#1|)))) (-15 -1542 ((-629 (-933 |#1|)) (-629 (-933 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-2663 (((-756) $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) 15)) (-3261 ((|#1| $ (-552)) NIL)) (-1935 (((-552) $ (-552)) NIL)) (-1316 (($ (-1 |#1| |#1|) $) 32)) (-3566 (($ (-1 (-552) (-552)) $) 24)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 26)) (-2876 (((-1098) $) NIL)) (-3772 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-552)))) $) 28)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) 38) (($ |#1|) NIL)) (-3309 (($) 9 T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL) (($ |#1| (-552)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-355 |#1|) (-13 (-466) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2663 ((-756) $)) (-15 -1935 ((-552) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3566 ($ (-1 (-552) (-552)) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-552)))) $)))) (-1078)) (T -355)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1078)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1078)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1078)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) (-1935 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1078)))) (-3566 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-355 *3)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-552))))) (-5 *1 (-355 *3)) (-4 *3 (-1078))))) +(-13 (-466) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2663 ((-756) $)) (-15 -1935 ((-552) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3566 ($ (-1 (-552) (-552)) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-552)))) $)))) +((-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 13)) (-3303 (($ $) 14)) (-3343 (((-412 $) $) 30)) (-1677 (((-111) $) 26)) (-3701 (($ $) 19)) (-2594 (($ $ $) 23) (($ (-629 $)) NIL)) (-3479 (((-412 $) $) 31)) (-3969 (((-3 $ "failed") $ $) 22)) (-3795 (((-756) $) 25)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 35)) (-3589 (((-111) $ $) 16)) (-1720 (($ $ $) 33))) +(((-356 |#1|) (-10 -8 (-15 -1720 (|#1| |#1| |#1|)) (-15 -3701 (|#1| |#1|)) (-15 -1677 ((-111) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3795 ((-756) |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -3589 ((-111) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|))) (-357)) (T -356)) +NIL +(-10 -8 (-15 -1720 (|#1| |#1| |#1|)) (-15 -3701 (|#1| |#1|)) (-15 -1677 ((-111) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3795 ((-756) |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -3589 ((-111) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-4065 (((-111) $) 30)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) (((-357) (-137)) (T -357)) -((-2407 (*1 *1 *1 *1) (-4 *1 (-357)))) -(-13 (-301) (-1193) (-238) (-10 -8 (-15 -2407 ($ $ $)) (-6 -4364) (-6 -4358))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-1465 (((-111) $ $) 7)) (-2035 ((|#2| $ |#2|) 13)) (-1496 (($ $ (-1134)) 18)) (-3689 ((|#2| $) 14)) (-2849 (($ |#1|) 20) (($ |#1| (-1134)) 19)) (-3112 ((|#1| $) 16)) (-1595 (((-1134) $) 9)) (-2548 (((-1134) $) 15)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2219 (($ $) 17)) (-2292 (((-111) $ $) 6))) -(((-358 |#1| |#2|) (-137) (-1076) (-1076)) (T -358)) -((-2849 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1076)) (-4 *4 (-1076)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2219 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-1134)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2035 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -2849 ($ |t#1|)) (-15 -2849 ($ |t#1| (-1134))) (-15 -1496 ($ $ (-1134))) (-15 -2219 ($ $)) (-15 -3112 (|t#1| $)) (-15 -2548 ((-1134) $)) (-15 -3689 (|t#2| $)) (-15 -2035 (|t#2| $ |t#2|)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-2035 ((|#1| $ |#1|) 30)) (-1496 (($ $ (-1134)) 22)) (-1783 (((-3 |#1| "failed") $) 29)) (-3689 ((|#1| $) 27)) (-2849 (($ (-382)) 21) (($ (-382) (-1134)) 20)) (-3112 (((-382) $) 24)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) 25)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19)) (-2219 (($ $) 23)) (-2292 (((-111) $ $) 18))) -(((-359 |#1|) (-13 (-358 (-382) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $)))) (-1076)) (T -359)) -((-1783 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1076))))) -(-13 (-358 (-382) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $)))) -((-3449 (((-1235 (-671 |#2|)) (-1235 $)) 61)) (-2877 (((-671 |#2|) (-1235 $)) 120)) (-2526 ((|#2| $) 32)) (-3029 (((-671 |#2|) $ (-1235 $)) 123)) (-1592 (((-3 $ "failed") $) 75)) (-2141 ((|#2| $) 35)) (-3343 (((-1148 |#2|) $) 83)) (-3119 ((|#2| (-1235 $)) 106)) (-1608 (((-1148 |#2|) $) 28)) (-1819 (((-111)) 100)) (-2342 (($ (-1235 |#2|) (-1235 $)) 113)) (-2040 (((-3 $ "failed") $) 79)) (-3363 (((-111)) 95)) (-1878 (((-111)) 90)) (-3728 (((-111)) 53)) (-1425 (((-671 |#2|) (-1235 $)) 118)) (-4131 ((|#2| $) 31)) (-2593 (((-671 |#2|) $ (-1235 $)) 122)) (-4336 (((-3 $ "failed") $) 73)) (-1856 ((|#2| $) 34)) (-1794 (((-1148 |#2|) $) 82)) (-2806 ((|#2| (-1235 $)) 104)) (-2798 (((-1148 |#2|) $) 26)) (-3485 (((-111)) 99)) (-3570 (((-111)) 92)) (-2011 (((-111)) 51)) (-2344 (((-111)) 87)) (-3361 (((-111)) 101)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) 111)) (-1822 (((-111)) 97)) (-1360 (((-627 (-1235 |#2|))) 86)) (-3656 (((-111)) 98)) (-3304 (((-111)) 96)) (-3258 (((-111)) 46)) (-3699 (((-111)) 102))) -(((-360 |#1| |#2|) (-10 -8 (-15 -3343 ((-1148 |#2|) |#1|)) (-15 -1794 ((-1148 |#2|) |#1|)) (-15 -1360 ((-627 (-1235 |#2|)))) (-15 -1592 ((-3 |#1| "failed") |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-111))) (-15 -3570 ((-111))) (-15 -3363 ((-111))) (-15 -2011 ((-111))) (-15 -3728 ((-111))) (-15 -2344 ((-111))) (-15 -3699 ((-111))) (-15 -3361 ((-111))) (-15 -1819 ((-111))) (-15 -3485 ((-111))) (-15 -3258 ((-111))) (-15 -3656 ((-111))) (-15 -3304 ((-111))) (-15 -1822 ((-111))) (-15 -1608 ((-1148 |#2|) |#1|)) (-15 -2798 ((-1148 |#2|) |#1|)) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2141 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -4131 (|#2| |#1|)) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|)))) (-361 |#2|) (-169)) (T -360)) -((-1822 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3304 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3485 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3361 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3699 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2344 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3728 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2011 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3363 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3570 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1360 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-627 (-1235 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -(-10 -8 (-15 -3343 ((-1148 |#2|) |#1|)) (-15 -1794 ((-1148 |#2|) |#1|)) (-15 -1360 ((-627 (-1235 |#2|)))) (-15 -1592 ((-3 |#1| "failed") |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-111))) (-15 -3570 ((-111))) (-15 -3363 ((-111))) (-15 -2011 ((-111))) (-15 -3728 ((-111))) (-15 -2344 ((-111))) (-15 -3699 ((-111))) (-15 -3361 ((-111))) (-15 -1819 ((-111))) (-15 -3485 ((-111))) (-15 -3258 ((-111))) (-15 -3656 ((-111))) (-15 -3304 ((-111))) (-15 -1822 ((-111))) (-15 -1608 ((-1148 |#2|) |#1|)) (-15 -2798 ((-1148 |#2|) |#1|)) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2141 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -4131 (|#2| |#1|)) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2717 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) 78)) (-2946 (((-1235 $)) 81)) (-3887 (($) 17 T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 40 (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) 65)) (-2526 ((|#1| $) 74)) (-3029 (((-671 |#1|) $ (-1235 $)) 76)) (-1592 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-1407 (($ $ (-900)) 28)) (-2141 ((|#1| $) 72)) (-3343 (((-1148 |#1|) $) 42 (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) 67)) (-1608 (((-1148 |#1|) $) 63)) (-1819 (((-111)) 57)) (-2342 (($ (-1235 |#1|) (-1235 $)) 69)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-4154 (((-900)) 80)) (-3972 (((-111)) 54)) (-1410 (($ $ (-900)) 33)) (-3363 (((-111)) 50)) (-1878 (((-111)) 48)) (-3728 (((-111)) 52)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 41 (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) 66)) (-4131 ((|#1| $) 75)) (-2593 (((-671 |#1|) $ (-1235 $)) 77)) (-4336 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-2896 (($ $ (-900)) 29)) (-1856 ((|#1| $) 73)) (-1794 (((-1148 |#1|) $) 43 (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) 68)) (-2798 (((-1148 |#1|) $) 64)) (-3485 (((-111)) 58)) (-1595 (((-1134) $) 9)) (-3570 (((-111)) 49)) (-2011 (((-111)) 51)) (-2344 (((-111)) 53)) (-1498 (((-1096) $) 10)) (-3361 (((-111)) 56)) (-3133 (((-1235 |#1|) $ (-1235 $)) 71) (((-671 |#1|) (-1235 $) (-1235 $)) 70)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) 79)) (-2493 (($ $ $) 25)) (-1822 (((-111)) 62)) (-1477 (((-842) $) 11)) (-1360 (((-627 (-1235 |#1|))) 44 (|has| |#1| (-544)))) (-4297 (($ $ $ $) 26)) (-3656 (((-111)) 60)) (-2743 (($ $ $) 24)) (-3304 (((-111)) 61)) (-3258 (((-111)) 59)) (-3699 (((-111)) 55)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-1720 (*1 *1 *1 *1) (-4 *1 (-357)))) +(-13 (-301) (-1195) (-238) (-10 -8 (-15 -1720 ($ $ $)) (-6 -4366) (-6 -4360))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-3202 (((-111) $ $) 7)) (-4321 ((|#2| $ |#2|) 13)) (-3018 (($ $ (-1136)) 18)) (-1997 ((|#2| $) 14)) (-3092 (($ |#1|) 20) (($ |#1| (-1136)) 19)) (-4290 ((|#1| $) 16)) (-2623 (((-1136) $) 9)) (-2665 (((-1136) $) 15)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-2469 (($ $) 17)) (-1613 (((-111) $ $) 6))) +(((-358 |#1| |#2|) (-137) (-1078) (-1078)) (T -358)) +((-3092 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-3092 (*1 *1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1078)) (-4 *4 (-1078)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-2469 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1078)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-5 *2 (-1136)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) (-4321 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -3092 ($ |t#1|)) (-15 -3092 ($ |t#1| (-1136))) (-15 -3018 ($ $ (-1136))) (-15 -2469 ($ $)) (-15 -4290 (|t#1| $)) (-15 -2665 ((-1136) $)) (-15 -1997 (|t#2| $)) (-15 -4321 (|t#2| $ |t#2|)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-4321 ((|#1| $ |#1|) 30)) (-3018 (($ $ (-1136)) 22)) (-3765 (((-3 |#1| "failed") $) 29)) (-1997 ((|#1| $) 27)) (-3092 (($ (-382)) 21) (($ (-382) (-1136)) 20)) (-4290 (((-382) $) 24)) (-2623 (((-1136) $) NIL)) (-2665 (((-1136) $) 25)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19)) (-2469 (($ $) 23)) (-1613 (((-111) $ $) 18))) +(((-359 |#1|) (-13 (-358 (-382) |#1|) (-10 -8 (-15 -3765 ((-3 |#1| "failed") $)))) (-1078)) (T -359)) +((-3765 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1078))))) +(-13 (-358 (-382) |#1|) (-10 -8 (-15 -3765 ((-3 |#1| "failed") $)))) +((-1432 (((-1237 (-673 |#2|)) (-1237 $)) 61)) (-1561 (((-673 |#2|) (-1237 $)) 120)) (-2416 ((|#2| $) 32)) (-3695 (((-673 |#2|) $ (-1237 $)) 123)) (-2583 (((-3 $ "failed") $) 75)) (-2932 ((|#2| $) 35)) (-1688 (((-1150 |#2|) $) 83)) (-3332 ((|#2| (-1237 $)) 106)) (-1469 (((-1150 |#2|) $) 28)) (-2890 (((-111)) 100)) (-4278 (($ (-1237 |#2|) (-1237 $)) 113)) (-1293 (((-3 $ "failed") $) 79)) (-1887 (((-111)) 95)) (-2143 (((-111)) 90)) (-4284 (((-111)) 53)) (-3607 (((-673 |#2|) (-1237 $)) 118)) (-3975 ((|#2| $) 31)) (-1837 (((-673 |#2|) $ (-1237 $)) 122)) (-4152 (((-3 $ "failed") $) 73)) (-3231 ((|#2| $) 34)) (-3854 (((-1150 |#2|) $) 82)) (-3400 ((|#2| (-1237 $)) 104)) (-3326 (((-1150 |#2|) $) 26)) (-3724 (((-111)) 99)) (-3329 (((-111)) 92)) (-4108 (((-111)) 51)) (-4297 (((-111)) 87)) (-1864 (((-111)) 101)) (-3464 (((-1237 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) (-1237 $) (-1237 $)) 111)) (-2923 (((-111)) 97)) (-1430 (((-629 (-1237 |#2|))) 86)) (-1640 (((-111)) 98)) (-2646 (((-111)) 96)) (-2127 (((-111)) 46)) (-4028 (((-111)) 102))) +(((-360 |#1| |#2|) (-10 -8 (-15 -1688 ((-1150 |#2|) |#1|)) (-15 -3854 ((-1150 |#2|) |#1|)) (-15 -1430 ((-629 (-1237 |#2|)))) (-15 -2583 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#1| "failed") |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 -2143 ((-111))) (-15 -3329 ((-111))) (-15 -1887 ((-111))) (-15 -4108 ((-111))) (-15 -4284 ((-111))) (-15 -4297 ((-111))) (-15 -4028 ((-111))) (-15 -1864 ((-111))) (-15 -2890 ((-111))) (-15 -3724 ((-111))) (-15 -2127 ((-111))) (-15 -1640 ((-111))) (-15 -2646 ((-111))) (-15 -2923 ((-111))) (-15 -1469 ((-1150 |#2|) |#1|)) (-15 -3326 ((-1150 |#2|) |#1|)) (-15 -1561 ((-673 |#2|) (-1237 |#1|))) (-15 -3607 ((-673 |#2|) (-1237 |#1|))) (-15 -3332 (|#2| (-1237 |#1|))) (-15 -3400 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -2932 (|#2| |#1|)) (-15 -3231 (|#2| |#1|)) (-15 -2416 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3695 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1837 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1432 ((-1237 (-673 |#2|)) (-1237 |#1|)))) (-361 |#2|) (-169)) (T -360)) +((-2923 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2646 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1640 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2127 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3724 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2890 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1864 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4028 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4297 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4284 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4108 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3329 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2143 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1430 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-629 (-1237 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) +(-10 -8 (-15 -1688 ((-1150 |#2|) |#1|)) (-15 -3854 ((-1150 |#2|) |#1|)) (-15 -1430 ((-629 (-1237 |#2|)))) (-15 -2583 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#1| "failed") |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 -2143 ((-111))) (-15 -3329 ((-111))) (-15 -1887 ((-111))) (-15 -4108 ((-111))) (-15 -4284 ((-111))) (-15 -4297 ((-111))) (-15 -4028 ((-111))) (-15 -1864 ((-111))) (-15 -2890 ((-111))) (-15 -3724 ((-111))) (-15 -2127 ((-111))) (-15 -1640 ((-111))) (-15 -2646 ((-111))) (-15 -2923 ((-111))) (-15 -1469 ((-1150 |#2|) |#1|)) (-15 -3326 ((-1150 |#2|) |#1|)) (-15 -1561 ((-673 |#2|) (-1237 |#1|))) (-15 -3607 ((-673 |#2|) (-1237 |#1|))) (-15 -3332 (|#2| (-1237 |#1|))) (-15 -3400 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -2932 (|#2| |#1|)) (-15 -3231 (|#2| |#1|)) (-15 -2416 (|#2| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -3695 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1837 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1432 ((-1237 (-673 |#2|)) (-1237 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3784 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) 19)) (-1432 (((-1237 (-673 |#1|)) (-1237 $)) 78)) (-4124 (((-1237 $)) 81)) (-2130 (($) 17 T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 40 (|has| |#1| (-544)))) (-2004 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-1561 (((-673 |#1|) (-1237 $)) 65)) (-2416 ((|#1| $) 74)) (-3695 (((-673 |#1|) $ (-1237 $)) 76)) (-2583 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-3422 (($ $ (-902)) 28)) (-2932 ((|#1| $) 72)) (-1688 (((-1150 |#1|) $) 42 (|has| |#1| (-544)))) (-3332 ((|#1| (-1237 $)) 67)) (-1469 (((-1150 |#1|) $) 63)) (-2890 (((-111)) 57)) (-4278 (($ (-1237 |#1|) (-1237 $)) 69)) (-1293 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-2128 (((-902)) 80)) (-1756 (((-111)) 54)) (-3454 (($ $ (-902)) 33)) (-1887 (((-111)) 50)) (-2143 (((-111)) 48)) (-4284 (((-111)) 52)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 41 (|has| |#1| (-544)))) (-2299 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-3607 (((-673 |#1|) (-1237 $)) 66)) (-3975 ((|#1| $) 75)) (-1837 (((-673 |#1|) $ (-1237 $)) 77)) (-4152 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-1736 (($ $ (-902)) 29)) (-3231 ((|#1| $) 73)) (-3854 (((-1150 |#1|) $) 43 (|has| |#1| (-544)))) (-3400 ((|#1| (-1237 $)) 68)) (-3326 (((-1150 |#1|) $) 64)) (-3724 (((-111)) 58)) (-2623 (((-1136) $) 9)) (-3329 (((-111)) 49)) (-4108 (((-111)) 51)) (-4297 (((-111)) 53)) (-2876 (((-1098) $) 10)) (-1864 (((-111)) 56)) (-3464 (((-1237 |#1|) $ (-1237 $)) 71) (((-673 |#1|) (-1237 $) (-1237 $)) 70)) (-2566 (((-629 (-933 |#1|)) (-1237 $)) 79)) (-2104 (($ $ $) 25)) (-2923 (((-111)) 62)) (-3213 (((-844) $) 11)) (-1430 (((-629 (-1237 |#1|))) 44 (|has| |#1| (-544)))) (-1826 (($ $ $ $) 26)) (-1640 (((-111)) 60)) (-2845 (($ $ $) 24)) (-2646 (((-111)) 61)) (-2127 (((-111)) 59)) (-4028 (((-111)) 55)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 30)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-361 |#1|) (-137) (-169)) (T -361)) -((-2946 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-361 *3)))) (-4154 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-900)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))))) (-2593 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1235 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3)))) (-1822 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3304 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3656 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3258 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3485 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1819 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3361 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3699 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3972 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2344 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3728 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2011 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3363 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3570 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1878 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2040 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-4336 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1592 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1360 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-627 (-1235 *3))))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1148 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1148 *3)))) (-4034 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) (-4 *1 (-361 *3)))) (-2478 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) (-4 *1 (-361 *3)))) (-2513 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-3994 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-2717 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) -(-13 (-727 |t#1|) (-10 -8 (-15 -2946 ((-1235 $))) (-15 -4154 ((-900))) (-15 -2539 ((-627 (-931 |t#1|)) (-1235 $))) (-15 -3449 ((-1235 (-671 |t#1|)) (-1235 $))) (-15 -2593 ((-671 |t#1|) $ (-1235 $))) (-15 -3029 ((-671 |t#1|) $ (-1235 $))) (-15 -4131 (|t#1| $)) (-15 -2526 (|t#1| $)) (-15 -1856 (|t#1| $)) (-15 -2141 (|t#1| $)) (-15 -3133 ((-1235 |t#1|) $ (-1235 $))) (-15 -3133 ((-671 |t#1|) (-1235 $) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|) (-1235 $))) (-15 -2806 (|t#1| (-1235 $))) (-15 -3119 (|t#1| (-1235 $))) (-15 -1425 ((-671 |t#1|) (-1235 $))) (-15 -2877 ((-671 |t#1|) (-1235 $))) (-15 -2798 ((-1148 |t#1|) $)) (-15 -1608 ((-1148 |t#1|) $)) (-15 -1822 ((-111))) (-15 -3304 ((-111))) (-15 -3656 ((-111))) (-15 -3258 ((-111))) (-15 -3485 ((-111))) (-15 -1819 ((-111))) (-15 -3361 ((-111))) (-15 -3699 ((-111))) (-15 -3972 ((-111))) (-15 -2344 ((-111))) (-15 -3728 ((-111))) (-15 -2011 ((-111))) (-15 -3363 ((-111))) (-15 -3570 ((-111))) (-15 -1878 ((-111))) (IF (|has| |t#1| (-544)) (PROGN (-15 -2040 ((-3 $ "failed") $)) (-15 -4336 ((-3 $ "failed") $)) (-15 -1592 ((-3 $ "failed") $)) (-15 -1360 ((-627 (-1235 |t#1|)))) (-15 -1794 ((-1148 |t#1|) $)) (-15 -3343 ((-1148 |t#1|) $)) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2513 ((-3 $ "failed"))) (-15 -3994 ((-3 $ "failed"))) (-15 -2717 ((-3 $ "failed"))) (-6 -4363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-727 |#1|) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3307 (((-754)) 16)) (-1279 (($) 13)) (-2886 (((-900) $) 14)) (-1595 (((-1134) $) 9)) (-4153 (($ (-900)) 15)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +((-4124 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1237 *1)) (-4 *1 (-361 *3)))) (-2128 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-902)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-629 (-933 *4))))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1237 (-673 *4))))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3464 (*1 *2 *1 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1237 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1237 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1150 *3)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1150 *3)))) (-2923 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2646 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1640 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2127 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3724 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2890 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1864 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4028 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1756 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4297 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4284 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4108 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1887 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3329 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2143 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1293 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-4152 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-2583 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1430 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-629 (-1237 *3))))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1150 *3)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1150 *3)))) (-4255 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4199 (-629 *1)))) (-4 *1 (-361 *3)))) (-3254 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4199 (-629 *1)))) (-4 *1 (-361 *3)))) (-2299 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-2004 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-3784 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) +(-13 (-729 |t#1|) (-10 -8 (-15 -4124 ((-1237 $))) (-15 -2128 ((-902))) (-15 -2566 ((-629 (-933 |t#1|)) (-1237 $))) (-15 -1432 ((-1237 (-673 |t#1|)) (-1237 $))) (-15 -1837 ((-673 |t#1|) $ (-1237 $))) (-15 -3695 ((-673 |t#1|) $ (-1237 $))) (-15 -3975 (|t#1| $)) (-15 -2416 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -2932 (|t#1| $)) (-15 -3464 ((-1237 |t#1|) $ (-1237 $))) (-15 -3464 ((-673 |t#1|) (-1237 $) (-1237 $))) (-15 -4278 ($ (-1237 |t#1|) (-1237 $))) (-15 -3400 (|t#1| (-1237 $))) (-15 -3332 (|t#1| (-1237 $))) (-15 -3607 ((-673 |t#1|) (-1237 $))) (-15 -1561 ((-673 |t#1|) (-1237 $))) (-15 -3326 ((-1150 |t#1|) $)) (-15 -1469 ((-1150 |t#1|) $)) (-15 -2923 ((-111))) (-15 -2646 ((-111))) (-15 -1640 ((-111))) (-15 -2127 ((-111))) (-15 -3724 ((-111))) (-15 -2890 ((-111))) (-15 -1864 ((-111))) (-15 -4028 ((-111))) (-15 -1756 ((-111))) (-15 -4297 ((-111))) (-15 -4284 ((-111))) (-15 -4108 ((-111))) (-15 -1887 ((-111))) (-15 -3329 ((-111))) (-15 -2143 ((-111))) (IF (|has| |t#1| (-544)) (PROGN (-15 -1293 ((-3 $ "failed") $)) (-15 -4152 ((-3 $ "failed") $)) (-15 -2583 ((-3 $ "failed") $)) (-15 -1430 ((-629 (-1237 |t#1|)))) (-15 -3854 ((-1150 |t#1|) $)) (-15 -1688 ((-1150 |t#1|) $)) (-15 -4255 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -3254 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -2299 ((-3 $ "failed"))) (-15 -2004 ((-3 $ "failed"))) (-15 -3784 ((-3 $ "failed"))) (-6 -4365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-702 |#1|) . T) ((-705) . T) ((-729 |#1|) . T) ((-746) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-2663 (((-756)) 16)) (-1332 (($) 13)) (-1637 (((-902) $) 14)) (-2623 (((-1136) $) 9)) (-2840 (($ (-902)) 15)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) (((-362) (-137)) (T -362)) -((-3307 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-754)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-362)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-900)))) (-1279 (*1 *1) (-4 *1 (-362)))) -(-13 (-1076) (-10 -8 (-15 -3307 ((-754))) (-15 -4153 ($ (-900))) (-15 -2886 ((-900) $)) (-15 -1279 ($)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3841 (((-671 |#2|) (-1235 $)) 40)) (-2342 (($ (-1235 |#2|) (-1235 $)) 34)) (-4088 (((-671 |#2|) $ (-1235 $)) 42)) (-1637 ((|#2| (-1235 $)) 13)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) 25))) -(((-363 |#1| |#2| |#3|) (-10 -8 (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) (-364 |#2| |#3|) (-169) (-1211 |#2|)) (T -363)) -NIL -(-10 -8 (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3841 (((-671 |#1|) (-1235 $)) 44)) (-3385 ((|#1| $) 50)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46)) (-4088 (((-671 |#1|) $ (-1235 $)) 51)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1637 ((|#1| (-1235 $)) 45)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3050 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-364 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -364)) -((-4154 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-900)))) (-4088 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) (-4 *1 (-364 *4 *5)) (-4 *5 (-1211 *4)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1211 *2)) (-4 *2 (-169)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) (-4 *2 (-1211 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4154 ((-900))) (-15 -4088 ((-671 |t#1|) $ (-1235 $))) (-15 -3385 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -3133 ((-1235 |t#1|) $ (-1235 $))) (-15 -3133 ((-671 |t#1|) (-1235 $) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|) (-1235 $))) (-15 -1637 (|t#1| (-1235 $))) (-15 -3841 ((-671 |t#1|) (-1235 $))) (-15 -2410 (|t#2| $)) (IF (|has| |t#1| (-357)) (-15 -4205 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2169 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2091 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3516 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1189) (-367 |#1|) (-1189) (-367 |#3|)) (T -365)) -((-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1439 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-2701 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-4298 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3429 (($ $) 25)) (-2967 (((-552) (-1 (-111) |#2|) $) NIL) (((-552) |#2| $) 11) (((-552) |#2| $ (-552)) NIL)) (-3759 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-366 |#1| |#2|) (-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -4298 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1189)) (T -366)) -NIL -(-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -4298 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-367 |#1|) (-137) (-1189)) (T -367)) -((-3759 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-3429 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-1439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-2967 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) (-4298 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-830)) (-5 *2 (-111)))) (-4105 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-2519 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-2701 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830))))) -(-13 (-633 |t#1|) (-10 -8 (-6 -4366) (-15 -3759 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3429 ($ $)) (-15 -4298 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -1439 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -2967 ((-552) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2967 ((-552) |t#1| $)) (-15 -2967 ((-552) |t#1| $ (-552)))) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-6 (-830)) (-15 -3759 ($ $ $)) (-15 -4298 ($ $)) (-15 -1439 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -4105 ($ $ $ (-552))) (-15 -2519 ($ $)) (-15 -2701 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-830)) (-15 -2701 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 32)) (-1963 (($ $ (-754)) 33)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1899 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 36)) (-3627 (($ $) 34)) (-1543 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 37)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3321 (($ $ |#1| $) 31) (($ $ (-627 |#1|) (-627 $)) 30)) (-3567 (((-754) $) 38)) (-1490 (($ $ $) 29)) (-1477 (((-842) $) 11) (($ |#1|) 41) (((-1250 |#1| |#2|) $) 40) (((-1259 |#1| |#2|) $) 39)) (-3069 ((|#2| (-1259 |#1| |#2|) $) 42)) (-1922 (($) 18 T CONST)) (-3014 (($ (-654 |#1|)) 35)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#2|) 28 (|has| |#2| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-368 |#1| |#2|) (-137) (-830) (-169)) (T -368)) -((-3069 (*1 *2 *3 *1) (-12 (-5 *3 (-1259 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-830)) (-4 *2 (-169)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-1250 *3 *4)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-1259 *3 *4)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-754)))) (-1543 (*1 *2 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1899 (*1 *2 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-4 *1 (-368 *3 *4)) (-4 *4 (-169)))) (-3627 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-627 *3)))) (-3321 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *1)) (-4 *1 (-368 *4 *5)) (-4 *4 (-830)) (-4 *5 (-169))))) -(-13 (-618 |t#2|) (-10 -8 (-15 -3069 (|t#2| (-1259 |t#1| |t#2|) $)) (-15 -1477 ($ |t#1|)) (-15 -1477 ((-1250 |t#1| |t#2|) $)) (-15 -1477 ((-1259 |t#1| |t#2|) $)) (-15 -3567 ((-754) $)) (-15 -1543 ((-1259 |t#1| |t#2|) (-1259 |t#1| |t#2|) $)) (-15 -1899 ((-1259 |t#1| |t#2|) (-1259 |t#1| |t#2|) $)) (-15 -3014 ($ (-654 |t#1|))) (-15 -3627 ($ $)) (-15 -1963 ($ $ (-754))) (-15 -1671 ((-627 |t#1|) $)) (-15 -3321 ($ $ |t#1| $)) (-15 -3321 ($ $ (-627 |t#1|) (-627 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-618 |#2|) . T) ((-700 |#2|) . T) ((-1034 |#2|) . T) ((-1076) . T)) -((-2036 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-2708 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-2254 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) -(((-369 |#1| |#2|) (-10 -7 (-15 -2708 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2254 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2036 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1189) (-13 (-367 |#1|) (-10 -7 (-6 -4367)))) (T -369)) -((-2036 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))))) (-2254 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))))) (-2708 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) -(-10 -7 (-15 -2708 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2254 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2036 (|#2| (-1 (-111) |#1| |#1|) |#2|))) -((-1800 (((-671 |#2|) (-671 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 22) (((-671 (-552)) (-671 $)) 14))) -(((-370 |#1| |#2|) (-10 -8 (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 |#2|) (-671 |#1|)))) (-371 |#2|) (-1028)) (T -370)) -NIL -(-10 -8 (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 |#2|) (-671 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1800 (((-671 |#1|) (-671 $)) 34) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 33) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 41 (|has| |#1| (-623 (-552)))) (((-671 (-552)) (-671 $)) 40 (|has| |#1| (-623 (-552))))) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-371 |#1|) (-137) (-1028)) (T -371)) -NIL -(-13 (-623 |t#1|) (-10 -7 (IF (|has| |t#1| (-623 (-552))) (-6 (-623 (-552))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-2932 (((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|) 51) (((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|) 50) (((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|) 47) (((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|) 41)) (-2667 (((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|) 30) (((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|) 18))) -(((-372 |#1|) (-10 -7 (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2667 ((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2667 ((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|))) (-13 (-357) (-828))) (T -372)) -((-2667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-828))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 (-166 (-552)))))) (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 (-166 (-552))))))) (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828)))))) -(-10 -7 (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2667 ((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2667 ((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-3471 (((-552) $) 55)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) 110)) (-1607 (($ $) 82)) (-1467 (($ $) 71)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) 44)) (-4224 (((-111) $ $) NIL)) (-1584 (($ $) 80)) (-1445 (($ $) 69)) (-2422 (((-552) $) 64)) (-1452 (($ $ (-552)) 62)) (-1628 (($ $) NIL)) (-1492 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-2635 (($ $) 112)) (-4039 (((-3 (-552) "failed") $) 189) (((-3 (-401 (-552)) "failed") $) 185)) (-1703 (((-552) $) 187) (((-401 (-552)) $) 183)) (-2813 (($ $ $) NIL)) (-1274 (((-552) $ $) 102)) (-2040 (((-3 $ "failed") $) 114)) (-2640 (((-401 (-552)) $ (-754)) 190) (((-401 (-552)) $ (-754) (-754)) 182)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 73) (((-900) (-900)) 98 (|has| $ (-6 -4357)))) (-2983 (((-111) $) 106)) (-2951 (($) 40)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-3679 (((-1240) (-754)) 152)) (-4095 (((-1240)) 157) (((-1240) (-754)) 158)) (-2402 (((-1240)) 159) (((-1240) (-754)) 160)) (-3840 (((-1240)) 155) (((-1240) (-754)) 156)) (-2641 (((-552) $) 58)) (-2624 (((-111) $) 104)) (-1352 (($ $ (-552)) NIL)) (-1319 (($ $) 48)) (-2349 (($ $) NIL)) (-1508 (((-111) $) 35)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-4093 (($ $ $) NIL) (($) 99 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 17)) (-3970 (($) 87) (($ $) 92)) (-2885 (($) 91) (($ $) 93)) (-4135 (($ $) 83)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 116)) (-3964 (((-900) (-552)) 43 (|has| $ (-6 -4357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) 53)) (-2060 (($ $) 109)) (-2103 (($ (-552) (-552)) 107) (($ (-552) (-552) (-900)) 108)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 19)) (-4111 (($) 94)) (-3154 (($ $) 79)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-900)) 100) (((-900) (-900)) 101 (|has| $ (-6 -4357)))) (-2942 (($ $ (-754)) NIL) (($ $) 115)) (-2531 (((-900) (-552)) 47 (|has| $ (-6 -4357)))) (-1640 (($ $) NIL)) (-1502 (($ $) NIL)) (-1615 (($ $) NIL)) (-1479 (($ $) NIL)) (-1596 (($ $) 81)) (-1456 (($ $) 70)) (-3562 (((-373) $) 175) (((-220) $) 177) (((-871 (-373)) $) NIL) (((-1134) $) 162) (((-528) $) 173) (($ (-220)) 181)) (-1477 (((-842) $) 164) (($ (-552)) 186) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 186) (($ (-401 (-552))) NIL) (((-220) $) 178)) (-3995 (((-754)) NIL)) (-3796 (($ $) 111)) (-3580 (((-900)) 54) (((-900) (-900)) 66 (|has| $ (-6 -4357)))) (-2705 (((-900)) 103)) (-1673 (($ $) 86)) (-1534 (($ $) 46) (($ $ $) 52)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 84)) (-1513 (($ $) 37)) (-1697 (($ $) NIL)) (-1561 (($ $) NIL)) (-3519 (($ $) NIL)) (-1575 (($ $) NIL)) (-1686 (($ $) NIL)) (-1547 (($ $) NIL)) (-1661 (($ $) 85)) (-1524 (($ $) 49)) (-3329 (($ $) 51)) (-1922 (($) 34 T CONST)) (-1933 (($) 38 T CONST)) (-4157 (((-1134) $) 27) (((-1134) $ (-111)) 29) (((-1240) (-805) $) 30) (((-1240) (-805) $ (-111)) 31)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 39)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 42)) (-2407 (($ $ $) 45) (($ $ (-552)) 41)) (-2396 (($ $) 36) (($ $ $) 50)) (-2384 (($ $ $) 61)) (** (($ $ (-900)) 67) (($ $ (-754)) NIL) (($ $ (-552)) 88) (($ $ (-401 (-552))) 125) (($ $ $) 117)) (* (($ (-900) $) 65) (($ (-754) $) NIL) (($ (-552) $) 68) (($ $ $) 60) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-373) (-13 (-398) (-228) (-600 (-1134)) (-811) (-599 (-220)) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1319 ($ $)) (-15 -1274 ((-552) $ $)) (-15 -1452 ($ $ (-552))) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))) (-15 -3970 ($)) (-15 -2885 ($)) (-15 -4111 ($)) (-15 -1534 ($ $ $)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -3562 ($ (-220))) (-15 -2402 ((-1240))) (-15 -2402 ((-1240) (-754))) (-15 -3840 ((-1240))) (-15 -3840 ((-1240) (-754))) (-15 -4095 ((-1240))) (-15 -4095 ((-1240) (-754))) (-15 -3679 ((-1240) (-754))) (-6 -4357) (-6 -4349)))) (T -373)) -((** (*1 *1 *1 *1) (-5 *1 (-373))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1319 (*1 *1 *1) (-5 *1 (-373))) (-1274 (*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-2640 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-3970 (*1 *1) (-5 *1 (-373))) (-2885 (*1 *1) (-5 *1 (-373))) (-4111 (*1 *1) (-5 *1 (-373))) (-1534 (*1 *1 *1 *1) (-5 *1 (-373))) (-3970 (*1 *1 *1) (-5 *1 (-373))) (-2885 (*1 *1 *1) (-5 *1 (-373))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) (-2402 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-3840 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-4095 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373))))) -(-13 (-398) (-228) (-600 (-1134)) (-811) (-599 (-220)) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1319 ($ $)) (-15 -1274 ((-552) $ $)) (-15 -1452 ($ $ (-552))) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))) (-15 -3970 ($)) (-15 -2885 ($)) (-15 -4111 ($)) (-15 -1534 ($ $ $)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -3562 ($ (-220))) (-15 -2402 ((-1240))) (-15 -2402 ((-1240) (-754))) (-15 -3840 ((-1240))) (-15 -3840 ((-1240) (-754))) (-15 -4095 ((-1240))) (-15 -4095 ((-1240) (-754))) (-15 -3679 ((-1240) (-754))) (-6 -4357) (-6 -4349))) -((-1696 (((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|) 46) (((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|) 45) (((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|) 42) (((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|) 36)) (-4187 (((-627 |#1|) (-401 (-931 (-552))) |#1|) 20) (((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|) 30))) -(((-374 |#1|) (-10 -7 (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|)) (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|)) (-15 -4187 ((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|)) (-15 -4187 ((-627 |#1|) (-401 (-931 (-552))) |#1|))) (-13 (-828) (-357))) (T -374)) -((-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-4187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 *5))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 (-552))))) (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 (-552)))))) (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357)))))) -(-10 -7 (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|)) (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|)) (-15 -4187 ((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|)) (-15 -4187 ((-627 |#1|) (-401 (-931 (-552))) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 26)) (-1703 ((|#2| $) 28)) (-2014 (($ $) NIL)) (-3522 (((-754) $) 10)) (-3056 (((-627 $) $) 20)) (-3267 (((-111) $) NIL)) (-3755 (($ |#2| |#1|) 18)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1981 ((|#2| $) 15)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 45) (($ |#2|) 27)) (-1493 (((-627 |#1|) $) 17)) (-1889 ((|#1| $ |#2|) 47)) (-1922 (($) 29 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-375 |#1| |#2|) (-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1028) (-830)) (T -375)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830))))) +((-2663 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-756)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-362)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-902)))) (-1332 (*1 *1) (-4 *1 (-362)))) +(-13 (-1078) (-10 -8 (-15 -2663 ((-756))) (-15 -2840 ($ (-902))) (-15 -1637 ((-902) $)) (-15 -1332 ($)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2977 (((-673 |#2|) (-1237 $)) 40)) (-4278 (($ (-1237 |#2|) (-1237 $)) 34)) (-3584 (((-673 |#2|) $ (-1237 $)) 42)) (-1721 ((|#2| (-1237 $)) 13)) (-3464 (((-1237 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) (-1237 $) (-1237 $)) 25))) +(((-363 |#1| |#2| |#3|) (-10 -8 (-15 -2977 ((-673 |#2|) (-1237 |#1|))) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3584 ((-673 |#2|) |#1| (-1237 |#1|)))) (-364 |#2| |#3|) (-169) (-1213 |#2|)) (T -363)) +NIL +(-10 -8 (-15 -2977 ((-673 |#2|) (-1237 |#1|))) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3584 ((-673 |#2|) |#1| (-1237 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2977 (((-673 |#1|) (-1237 $)) 44)) (-1549 ((|#1| $) 50)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-4278 (($ (-1237 |#1|) (-1237 $)) 46)) (-3584 (((-673 |#1|) $ (-1237 $)) 51)) (-1293 (((-3 $ "failed") $) 32)) (-2128 (((-902)) 52)) (-4065 (((-111) $) 30)) (-4346 ((|#1| $) 49)) (-2169 ((|#2| $) 42 (|has| |#1| (-357)))) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-1721 ((|#1| (-1237 $)) 45)) (-3464 (((-1237 |#1|) $ (-1237 $)) 48) (((-673 |#1|) (-1237 $) (-1237 $)) 47)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3878 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-3767 ((|#2| $) 43)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-364 |#1| |#2|) (-137) (-169) (-1213 |t#1|)) (T -364)) +((-2128 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-902)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) (-3464 (*1 *2 *1 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-1237 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1237 *1)) (-4 *4 (-169)) (-4 *1 (-364 *4 *5)) (-4 *5 (-1213 *4)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1213 *2)) (-4 *2 (-169)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) (-4 *2 (-1213 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2128 ((-902))) (-15 -3584 ((-673 |t#1|) $ (-1237 $))) (-15 -1549 (|t#1| $)) (-15 -4346 (|t#1| $)) (-15 -3464 ((-1237 |t#1|) $ (-1237 $))) (-15 -3464 ((-673 |t#1|) (-1237 $) (-1237 $))) (-15 -4278 ($ (-1237 |t#1|) (-1237 $))) (-15 -1721 (|t#1| (-1237 $))) (-15 -2977 ((-673 |t#1|) (-1237 $))) (-15 -3767 (|t#2| $)) (IF (|has| |t#1| (-357)) (-15 -2169 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) . T) ((-711) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3215 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3884 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1477 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3884 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1191) (-367 |#1|) (-1191) (-367 |#3|)) (T -365)) +((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1191)) (-4 *5 (-1191)) (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3884 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3717 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-3646 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-1296 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3344 (($ $) 25)) (-1456 (((-552) (-1 (-111) |#2|) $) NIL) (((-552) |#2| $) 11) (((-552) |#2| $ (-552)) NIL)) (-1446 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-366 |#1| |#2|) (-10 -8 (-15 -3646 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3717 ((-111) |#1|)) (-15 -1296 (|#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1296 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1191)) (T -366)) +NIL +(-10 -8 (-15 -3646 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3717 ((-111) |#1|)) (-15 -1296 (|#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1296 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3344 (|#1| |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| |#1| (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-1456 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 70)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 84 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 83 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) 85 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 82 (|has| |#1| (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-367 |#1|) (-137) (-1191)) (T -367)) +((-1446 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) (-3344 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)))) (-1296 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) (-3717 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1191)) (-5 *2 (-111)))) (-1456 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1191)) (-5 *2 (-552)))) (-1456 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-552)))) (-1456 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)))) (-1446 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)) (-4 *2 (-832)))) (-1296 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)) (-4 *2 (-832)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1191)) (-4 *3 (-832)) (-5 *2 (-111)))) (-3747 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4369)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) (-2366 (*1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-367 *2)) (-4 *2 (-1191)))) (-3646 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4369)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) (-3646 (*1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-367 *2)) (-4 *2 (-1191)) (-4 *2 (-832))))) +(-13 (-635 |t#1|) (-10 -8 (-6 -4368) (-15 -1446 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3344 ($ $)) (-15 -1296 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -3717 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -1456 ((-552) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1078)) (PROGN (-15 -1456 ((-552) |t#1| $)) (-15 -1456 ((-552) |t#1| $ (-552)))) |%noBranch|) (IF (|has| |t#1| (-832)) (PROGN (-6 (-832)) (-15 -1446 ($ $ $)) (-15 -1296 ($ $)) (-15 -3717 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4369)) (PROGN (-15 -3747 ($ $ $ (-552))) (-15 -2366 ($ $)) (-15 -3646 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-832)) (-15 -3646 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-832) |has| |#1| (-832)) ((-1078) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-1191) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2814 (((-629 |#1|) $) 32)) (-1694 (($ $ (-756)) 33)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2390 (((-1261 |#1| |#2|) (-1261 |#1| |#2|) $) 36)) (-2643 (($ $) 34)) (-2137 (((-1261 |#1| |#2|) (-1261 |#1| |#2|) $) 37)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2432 (($ $ |#1| $) 31) (($ $ (-629 |#1|) (-629 $)) 30)) (-3299 (((-756) $) 38)) (-3226 (($ $ $) 29)) (-3213 (((-844) $) 11) (($ |#1|) 41) (((-1252 |#1| |#2|) $) 40) (((-1261 |#1| |#2|) $) 39)) (-4158 ((|#2| (-1261 |#1| |#2|) $) 42)) (-3297 (($) 18 T CONST)) (-3545 (($ (-656 |#1|)) 35)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#2|) 28 (|has| |#2| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-368 |#1| |#2|) (-137) (-832) (-169)) (T -368)) +((-4158 (*1 *2 *3 *1) (-12 (-5 *3 (-1261 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-832)) (-4 *2 (-169)))) (-3213 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *2 (-1252 *3 *4)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *2 (-1261 *3 *4)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *2 (-756)))) (-2137 (*1 *2 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-2390 (*1 *2 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-4 *1 (-368 *3 *4)) (-4 *4 (-169)))) (-2643 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) (-1694 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *2 (-629 *3)))) (-2432 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 *1)) (-4 *1 (-368 *4 *5)) (-4 *4 (-832)) (-4 *5 (-169))))) +(-13 (-620 |t#2|) (-10 -8 (-15 -4158 (|t#2| (-1261 |t#1| |t#2|) $)) (-15 -3213 ($ |t#1|)) (-15 -3213 ((-1252 |t#1| |t#2|) $)) (-15 -3213 ((-1261 |t#1| |t#2|) $)) (-15 -3299 ((-756) $)) (-15 -2137 ((-1261 |t#1| |t#2|) (-1261 |t#1| |t#2|) $)) (-15 -2390 ((-1261 |t#1| |t#2|) (-1261 |t#1| |t#2|) $)) (-15 -3545 ($ (-656 |t#1|))) (-15 -2643 ($ $)) (-15 -1694 ($ $ (-756))) (-15 -2814 ((-629 |t#1|) $)) (-15 -2432 ($ $ |t#1| $)) (-15 -2432 ($ $ (-629 |t#1|) (-629 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#2|) . T) ((-620 |#2|) . T) ((-702 |#2|) . T) ((-1036 |#2|) . T) ((-1078) . T)) +((-4331 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-3699 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-1540 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) +(((-369 |#1| |#2|) (-10 -7 (-15 -3699 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1540 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -4331 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1191) (-13 (-367 |#1|) (-10 -7 (-6 -4369)))) (T -369)) +((-4331 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369)))))) (-1540 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369)))))) (-3699 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369))))))) +(-10 -7 (-15 -3699 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1540 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -4331 (|#2| (-1 (-111) |#1| |#1|) |#2|))) +((-2714 (((-673 |#2|) (-673 $)) NIL) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 22) (((-673 (-552)) (-673 $)) 14))) +(((-370 |#1| |#2|) (-10 -8 (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 |#2|) (-673 |#1|)))) (-371 |#2|) (-1030)) (T -370)) +NIL +(-10 -8 (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 |#2|) (-673 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2714 (((-673 |#1|) (-673 $)) 34) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 33) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 41 (|has| |#1| (-625 (-552)))) (((-673 (-552)) (-673 $)) 40 (|has| |#1| (-625 (-552))))) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-371 |#1|) (-137) (-1030)) (T -371)) +NIL +(-13 (-625 |t#1|) (-10 -7 (IF (|has| |t#1| (-625 (-552))) (-6 (-625 (-552))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2069 (((-629 (-288 (-933 (-166 |#1|)))) (-288 (-401 (-933 (-166 (-552))))) |#1|) 51) (((-629 (-288 (-933 (-166 |#1|)))) (-401 (-933 (-166 (-552)))) |#1|) 50) (((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-288 (-401 (-933 (-166 (-552)))))) |#1|) 47) (((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-401 (-933 (-166 (-552))))) |#1|) 41)) (-1373 (((-629 (-629 (-166 |#1|))) (-629 (-401 (-933 (-166 (-552))))) (-629 (-1154)) |#1|) 30) (((-629 (-166 |#1|)) (-401 (-933 (-166 (-552)))) |#1|) 18))) +(((-372 |#1|) (-10 -7 (-15 -2069 ((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-401 (-933 (-166 (-552))))) |#1|)) (-15 -2069 ((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-288 (-401 (-933 (-166 (-552)))))) |#1|)) (-15 -2069 ((-629 (-288 (-933 (-166 |#1|)))) (-401 (-933 (-166 (-552)))) |#1|)) (-15 -2069 ((-629 (-288 (-933 (-166 |#1|)))) (-288 (-401 (-933 (-166 (-552))))) |#1|)) (-15 -1373 ((-629 (-166 |#1|)) (-401 (-933 (-166 (-552)))) |#1|)) (-15 -1373 ((-629 (-629 (-166 |#1|))) (-629 (-401 (-933 (-166 (-552))))) (-629 (-1154)) |#1|))) (-13 (-357) (-830))) (T -372)) +((-1373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-401 (-933 (-166 (-552)))))) (-5 *4 (-629 (-1154))) (-5 *2 (-629 (-629 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-830))))) (-1373 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 (-166 (-552))))) (-5 *2 (-629 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-933 (-166 (-552)))))) (-5 *2 (-629 (-288 (-933 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 (-166 (-552))))) (-5 *2 (-629 (-288 (-933 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-288 (-401 (-933 (-166 (-552))))))) (-5 *2 (-629 (-629 (-288 (-933 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 (-166 (-552)))))) (-5 *2 (-629 (-629 (-288 (-933 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830)))))) +(-10 -7 (-15 -2069 ((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-401 (-933 (-166 (-552))))) |#1|)) (-15 -2069 ((-629 (-629 (-288 (-933 (-166 |#1|))))) (-629 (-288 (-401 (-933 (-166 (-552)))))) |#1|)) (-15 -2069 ((-629 (-288 (-933 (-166 |#1|)))) (-401 (-933 (-166 (-552)))) |#1|)) (-15 -2069 ((-629 (-288 (-933 (-166 |#1|)))) (-288 (-401 (-933 (-166 (-552))))) |#1|)) (-15 -1373 ((-629 (-166 |#1|)) (-401 (-933 (-166 (-552)))) |#1|)) (-15 -1373 ((-629 (-629 (-166 |#1|))) (-629 (-401 (-933 (-166 (-552))))) (-629 (-1154)) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 33)) (-3603 (((-552) $) 55)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4157 (($ $) 110)) (-2478 (($ $) 82)) (-2332 (($ $) 71)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) 44)) (-2393 (((-111) $ $) NIL)) (-2455 (($ $) 80)) (-2305 (($ $) 69)) (-3886 (((-552) $) 64)) (-1603 (($ $ (-552)) 62)) (-2506 (($ $) NIL)) (-2359 (($ $) NIL)) (-2130 (($) NIL T CONST)) (-4183 (($ $) 112)) (-1393 (((-3 (-552) "failed") $) 189) (((-3 (-401 (-552)) "failed") $) 185)) (-2832 (((-552) $) 187) (((-401 (-552)) $) 183)) (-4006 (($ $ $) NIL)) (-3424 (((-552) $ $) 102)) (-1293 (((-3 $ "failed") $) 114)) (-4232 (((-401 (-552)) $ (-756)) 190) (((-401 (-552)) $ (-756) (-756)) 182)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-2180 (((-902)) 73) (((-902) (-902)) 98 (|has| $ (-6 -4359)))) (-1338 (((-111) $) 106)) (-4043 (($) 40)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL)) (-1881 (((-1242) (-756)) 152)) (-3642 (((-1242)) 157) (((-1242) (-756)) 158)) (-3693 (((-1242)) 159) (((-1242) (-756)) 160)) (-2967 (((-1242)) 155) (((-1242) (-756)) 156)) (-4241 (((-552) $) 58)) (-4065 (((-111) $) 104)) (-3755 (($ $ (-552)) NIL)) (-1940 (($ $) 48)) (-4346 (($ $) NIL)) (-3127 (((-111) $) 35)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL) (($) NIL (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-2011 (($ $ $) NIL) (($) 99 (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-1833 (((-552) $) 17)) (-1735 (($) 87) (($ $) 92)) (-4070 (($) 91) (($ $) 93)) (-2430 (($ $) 83)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 116)) (-1676 (((-902) (-552)) 43 (|has| $ (-6 -4359)))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) 53)) (-3410 (($ $) 109)) (-3396 (($ (-552) (-552)) 107) (($ (-552) (-552) (-902)) 108)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1406 (((-552) $) 19)) (-3800 (($) 94)) (-2855 (($ $) 79)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-2950 (((-902)) 100) (((-902) (-902)) 101 (|has| $ (-6 -4359)))) (-3096 (($ $ (-756)) NIL) (($ $) 115)) (-2474 (((-902) (-552)) 47 (|has| $ (-6 -4359)))) (-2518 (($ $) NIL)) (-2370 (($ $) NIL)) (-2492 (($ $) NIL)) (-2346 (($ $) NIL)) (-2467 (($ $) 81)) (-2318 (($ $) 70)) (-1522 (((-373) $) 175) (((-220) $) 177) (((-873 (-373)) $) NIL) (((-1136) $) 162) (((-528) $) 173) (($ (-220)) 181)) (-3213 (((-844) $) 164) (($ (-552)) 186) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 186) (($ (-401 (-552))) NIL) (((-220) $) 178)) (-2014 (((-756)) NIL)) (-3763 (($ $) 111)) (-2122 (((-902)) 54) (((-902) (-902)) 66 (|has| $ (-6 -4359)))) (-4174 (((-902)) 103)) (-3843 (($ $) 86)) (-2409 (($ $) 46) (($ $ $) 52)) (-3589 (((-111) $ $) NIL)) (-2530 (($ $) 84)) (-2382 (($ $) 37)) (-3863 (($ $) NIL)) (-2433 (($ $) NIL)) (-3013 (($ $) NIL)) (-2444 (($ $) NIL)) (-3853 (($ $) NIL)) (-2420 (($ $) NIL)) (-2543 (($ $) 85)) (-2395 (($ $) 49)) (-1578 (($ $) 51)) (-3297 (($) 34 T CONST)) (-3309 (($) 38 T CONST)) (-3016 (((-1136) $) 27) (((-1136) $ (-111)) 29) (((-1242) (-807) $) 30) (((-1242) (-807) $ (-111)) 31)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 39)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 42)) (-1720 (($ $ $) 45) (($ $ (-552)) 41)) (-1709 (($ $) 36) (($ $ $) 50)) (-1698 (($ $ $) 61)) (** (($ $ (-902)) 67) (($ $ (-756)) NIL) (($ $ (-552)) 88) (($ $ (-401 (-552))) 125) (($ $ $) 117)) (* (($ (-902) $) 65) (($ (-756) $) NIL) (($ (-552) $) 68) (($ $ $) 60) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-373) (-13 (-398) (-228) (-600 (-1136)) (-813) (-599 (-220)) (-1176) (-600 (-528)) (-10 -8 (-15 -1720 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1940 ($ $)) (-15 -3424 ((-552) $ $)) (-15 -1603 ($ $ (-552))) (-15 -4232 ((-401 (-552)) $ (-756))) (-15 -4232 ((-401 (-552)) $ (-756) (-756))) (-15 -1735 ($)) (-15 -4070 ($)) (-15 -3800 ($)) (-15 -2409 ($ $ $)) (-15 -1735 ($ $)) (-15 -4070 ($ $)) (-15 -1522 ($ (-220))) (-15 -3693 ((-1242))) (-15 -3693 ((-1242) (-756))) (-15 -2967 ((-1242))) (-15 -2967 ((-1242) (-756))) (-15 -3642 ((-1242))) (-15 -3642 ((-1242) (-756))) (-15 -1881 ((-1242) (-756))) (-6 -4359) (-6 -4351)))) (T -373)) +((** (*1 *1 *1 *1) (-5 *1 (-373))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1940 (*1 *1 *1) (-5 *1 (-373))) (-3424 (*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-4232 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-1735 (*1 *1) (-5 *1 (-373))) (-4070 (*1 *1) (-5 *1 (-373))) (-3800 (*1 *1) (-5 *1 (-373))) (-2409 (*1 *1 *1 *1) (-5 *1 (-373))) (-1735 (*1 *1 *1) (-5 *1 (-373))) (-4070 (*1 *1 *1) (-5 *1 (-373))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) (-3693 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) (-2967 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) (-3642 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373))))) +(-13 (-398) (-228) (-600 (-1136)) (-813) (-599 (-220)) (-1176) (-600 (-528)) (-10 -8 (-15 -1720 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1940 ($ $)) (-15 -3424 ((-552) $ $)) (-15 -1603 ($ $ (-552))) (-15 -4232 ((-401 (-552)) $ (-756))) (-15 -4232 ((-401 (-552)) $ (-756) (-756))) (-15 -1735 ($)) (-15 -4070 ($)) (-15 -3800 ($)) (-15 -2409 ($ $ $)) (-15 -1735 ($ $)) (-15 -4070 ($ $)) (-15 -1522 ($ (-220))) (-15 -3693 ((-1242))) (-15 -3693 ((-1242) (-756))) (-15 -2967 ((-1242))) (-15 -2967 ((-1242) (-756))) (-15 -3642 ((-1242))) (-15 -3642 ((-1242) (-756))) (-15 -1881 ((-1242) (-756))) (-6 -4359) (-6 -4351))) +((-4153 (((-629 (-288 (-933 |#1|))) (-288 (-401 (-933 (-552)))) |#1|) 46) (((-629 (-288 (-933 |#1|))) (-401 (-933 (-552))) |#1|) 45) (((-629 (-629 (-288 (-933 |#1|)))) (-629 (-288 (-401 (-933 (-552))))) |#1|) 42) (((-629 (-629 (-288 (-933 |#1|)))) (-629 (-401 (-933 (-552)))) |#1|) 36)) (-3321 (((-629 |#1|) (-401 (-933 (-552))) |#1|) 20) (((-629 (-629 |#1|)) (-629 (-401 (-933 (-552)))) (-629 (-1154)) |#1|) 30))) +(((-374 |#1|) (-10 -7 (-15 -4153 ((-629 (-629 (-288 (-933 |#1|)))) (-629 (-401 (-933 (-552)))) |#1|)) (-15 -4153 ((-629 (-629 (-288 (-933 |#1|)))) (-629 (-288 (-401 (-933 (-552))))) |#1|)) (-15 -4153 ((-629 (-288 (-933 |#1|))) (-401 (-933 (-552))) |#1|)) (-15 -4153 ((-629 (-288 (-933 |#1|))) (-288 (-401 (-933 (-552)))) |#1|)) (-15 -3321 ((-629 (-629 |#1|)) (-629 (-401 (-933 (-552)))) (-629 (-1154)) |#1|)) (-15 -3321 ((-629 |#1|) (-401 (-933 (-552))) |#1|))) (-13 (-830) (-357))) (T -374)) +((-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 (-552)))) (-5 *2 (-629 *4)) (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357))))) (-3321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-401 (-933 (-552))))) (-5 *4 (-629 (-1154))) (-5 *2 (-629 (-629 *5))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-830) (-357))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-933 (-552))))) (-5 *2 (-629 (-288 (-933 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 (-552)))) (-5 *2 (-629 (-288 (-933 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-288 (-401 (-933 (-552)))))) (-5 *2 (-629 (-629 (-288 (-933 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 (-552))))) (-5 *2 (-629 (-629 (-288 (-933 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357)))))) +(-10 -7 (-15 -4153 ((-629 (-629 (-288 (-933 |#1|)))) (-629 (-401 (-933 (-552)))) |#1|)) (-15 -4153 ((-629 (-629 (-288 (-933 |#1|)))) (-629 (-288 (-401 (-933 (-552))))) |#1|)) (-15 -4153 ((-629 (-288 (-933 |#1|))) (-401 (-933 (-552))) |#1|)) (-15 -4153 ((-629 (-288 (-933 |#1|))) (-288 (-401 (-933 (-552)))) |#1|)) (-15 -3321 ((-629 (-629 |#1|)) (-629 (-401 (-933 (-552)))) (-629 (-1154)) |#1|)) (-15 -3321 ((-629 |#1|) (-401 (-933 (-552))) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) 26)) (-2832 ((|#2| $) 28)) (-3766 (($ $) NIL)) (-2856 (((-756) $) 10)) (-3939 (((-629 $) $) 20)) (-2231 (((-111) $) NIL)) (-1727 (($ |#2| |#1|) 18)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2140 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3733 ((|#2| $) 15)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 45) (($ |#2|) 27)) (-2984 (((-629 |#1|) $) 17)) (-2266 ((|#1| $ |#2|) 47)) (-3297 (($) 29 T CONST)) (-2166 (((-629 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-375 |#1| |#2|) (-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1030) (-832)) (T -375)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-832))))) (-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 44)) (-1703 ((|#2| $) 43)) (-2014 (($ $) 30)) (-3522 (((-754) $) 34)) (-3056 (((-627 $) $) 35)) (-3267 (((-111) $) 38)) (-3755 (($ |#2| |#1|) 39)) (-3516 (($ (-1 |#1| |#1|) $) 40)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1981 ((|#2| $) 33)) (-1993 ((|#1| $) 32)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ |#2|) 45)) (-1493 (((-627 |#1|) $) 36)) (-1889 ((|#1| $ |#2|) 41)) (-1922 (($) 18 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-376 |#1| |#2|) (-137) (-1028) (-1076)) (T -376)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)))) (-3755 (*1 *1 *2 *3) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-111)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *3)))) (-3056 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-376 *3 *4)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-754)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076))))) -(-13 (-110 |t#1| |t#1|) (-1017 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1889 (|t#1| $ |t#2|)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3755 ($ |t#2| |t#1|)) (-15 -3267 ((-111) $)) (-15 -1880 ((-627 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1493 ((-627 |t#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (-15 -1981 (|t#2| $)) (-15 -1993 (|t#1| $)) (-15 -3888 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2014 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-700 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) |has| |#1| (-169)) ((-1017 |#2|) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-671 (-681))) 14) (($ (-627 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 11))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#2| "failed") $) 44)) (-2832 ((|#2| $) 43)) (-3766 (($ $) 30)) (-2856 (((-756) $) 34)) (-3939 (((-629 $) $) 35)) (-2231 (((-111) $) 38)) (-1727 (($ |#2| |#1|) 39)) (-1477 (($ (-1 |#1| |#1|) $) 40)) (-2140 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3733 ((|#2| $) 33)) (-3743 ((|#1| $) 32)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ |#2|) 45)) (-2984 (((-629 |#1|) $) 36)) (-2266 ((|#1| $ |#2|) 41)) (-3297 (($) 18 T CONST)) (-2166 (((-629 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-376 |#1| |#2|) (-137) (-1030) (-1078)) (T -376)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1078)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1030)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)))) (-1727 (*1 *1 *2 *3) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1078)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-111)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-629 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-629 *3)))) (-3939 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-629 *1)) (-4 *1 (-376 *3 *4)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-756)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1078)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1030)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1078))))) +(-13 (-110 |t#1| |t#1|) (-1019 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2266 (|t#1| $ |t#2|)) (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (-15 -1727 ($ |t#2| |t#1|)) (-15 -2231 ((-111) $)) (-15 -2166 ((-629 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2984 ((-629 |t#1|) $)) (-15 -3939 ((-629 $) $)) (-15 -2856 ((-756) $)) (-15 -3733 (|t#2| $)) (-15 -3743 (|t#1| $)) (-15 -2140 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3766 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-702 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-702 |#1|) |has| |#1| (-169)) ((-1019 |#2|) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8) (($ (-673 (-683))) 14) (($ (-629 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 11))) (((-377) (-137)) (T -377)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-681))) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-377))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-671 (-681)))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))))) -(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) -((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 21) (((-3 $ "failed") (-671 (-310 (-552)))) 19) (((-3 $ "failed") (-671 (-931 (-373)))) 17) (((-3 $ "failed") (-671 (-931 (-552)))) 15) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 13) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 11)) (-1703 (($ (-671 (-310 (-373)))) 22) (($ (-671 (-310 (-552)))) 20) (($ (-671 (-931 (-373)))) 18) (($ (-671 (-931 (-552)))) 16) (($ (-671 (-401 (-931 (-373))))) 14) (($ (-671 (-401 (-931 (-552))))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-673 (-683))) (-4 *1 (-377)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-377)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-4 *1 (-377))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-673 (-683)))) (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-324))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))))) +(((-599 (-844)) . T) ((-389) . T) ((-1191) . T)) +((-1393 (((-3 $ "failed") (-673 (-310 (-373)))) 21) (((-3 $ "failed") (-673 (-310 (-552)))) 19) (((-3 $ "failed") (-673 (-933 (-373)))) 17) (((-3 $ "failed") (-673 (-933 (-552)))) 15) (((-3 $ "failed") (-673 (-401 (-933 (-373))))) 13) (((-3 $ "failed") (-673 (-401 (-933 (-552))))) 11)) (-2832 (($ (-673 (-310 (-373)))) 22) (($ (-673 (-310 (-552)))) 20) (($ (-673 (-933 (-373)))) 18) (($ (-673 (-933 (-552)))) 16) (($ (-673 (-401 (-933 (-373))))) 14) (($ (-673 (-401 (-933 (-552))))) 12)) (-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8) (($ (-629 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 23))) (((-378) (-137)) (T -378)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-378)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-671 (-310 (-373))))) (-15 -4039 ((-3 $ "failed") (-671 (-310 (-373))))) (-15 -1703 ($ (-671 (-310 (-552))))) (-15 -4039 ((-3 $ "failed") (-671 (-310 (-552))))) (-15 -1703 ($ (-671 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-671 (-931 (-373))))) (-15 -1703 ($ (-671 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-671 (-931 (-552))))) (-15 -1703 ($ (-671 (-401 (-931 (-373)))))) (-15 -4039 ((-3 $ "failed") (-671 (-401 (-931 (-373)))))) (-15 -1703 ($ (-671 (-401 (-931 (-552)))))) (-15 -4039 ((-3 $ "failed") (-671 (-401 (-931 (-552)))))))) -(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28)) (-1922 (($) 12 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-379 |#1| |#2|) (-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|))) (-1028) (-830)) (T -379)) -NIL -(-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) 59)) (-3887 (($) NIL T CONST)) (-1899 (((-3 $ "failed") $ $) 61)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2930 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2624 (((-111) $) 15)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-754) $ (-552)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-2356 (($ (-1 |#1| |#1|) $) 38)) (-4086 (($ (-1 (-754) (-754)) $) 35)) (-1543 (((-3 $ "failed") $ $) 50)) (-1595 (((-1134) $) NIL)) (-2345 (($ $ $) 26)) (-2093 (($ $ $) 24)) (-1498 (((-1096) $) NIL)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) 32)) (-3963 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1477 (((-842) $) 22) (($ |#1|) NIL)) (-1933 (($) 9 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 41)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 63 (|has| |#1| (-830)))) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ |#1| (-754)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-380 |#1|) (-13 (-709) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -3963 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-754) (-754)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) (-1076)) (T -380)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-2093 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-2345 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-1543 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-3963 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2930 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-380 *4)) (-4 *4 (-1076)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-754) (-754))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-380 *3))))) -(-13 (-709) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -3963 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-754) (-754)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 45)) (-1703 (((-552) $) 44)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1816 (($ $ $) 52)) (-4093 (($ $ $) 51)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 46)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 49)) (-2329 (((-111) $ $) 48)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 50)) (-2316 (((-111) $ $) 47)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-378)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-310 (-373)))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-310 (-373)))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-310 (-552)))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-310 (-552)))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-933 (-373)))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-933 (-373)))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-933 (-552)))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-933 (-552)))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-401 (-933 (-373))))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-401 (-933 (-373))))) (-4 *1 (-378)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 (-401 (-933 (-552))))) (-4 *1 (-378)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-673 (-401 (-933 (-552))))) (-4 *1 (-378))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-324))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))) (-15 -2832 ($ (-673 (-310 (-373))))) (-15 -1393 ((-3 $ "failed") (-673 (-310 (-373))))) (-15 -2832 ($ (-673 (-310 (-552))))) (-15 -1393 ((-3 $ "failed") (-673 (-310 (-552))))) (-15 -2832 ($ (-673 (-933 (-373))))) (-15 -1393 ((-3 $ "failed") (-673 (-933 (-373))))) (-15 -2832 ($ (-673 (-933 (-552))))) (-15 -1393 ((-3 $ "failed") (-673 (-933 (-552))))) (-15 -2832 ($ (-673 (-401 (-933 (-373)))))) (-15 -1393 ((-3 $ "failed") (-673 (-401 (-933 (-373)))))) (-15 -2832 ($ (-673 (-401 (-933 (-552)))))) (-15 -1393 ((-3 $ "failed") (-673 (-401 (-933 (-552)))))))) +(((-599 (-844)) . T) ((-389) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-3590 (($ |#1| |#2|) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3687 ((|#2| $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 28)) (-3297 (($) 12 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-379 |#1| |#2|) (-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-702 |#1|)) |%noBranch|))) (-1030) (-832)) (T -379)) +NIL +(-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-702 |#1|)) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-2663 (((-756) $) 59)) (-2130 (($) NIL T CONST)) (-2390 (((-3 $ "failed") $ $) 61)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2058 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-4065 (((-111) $) 15)) (-3261 ((|#1| $ (-552)) NIL)) (-1935 (((-756) $ (-552)) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1316 (($ (-1 |#1| |#1|) $) 38)) (-3566 (($ (-1 (-756) (-756)) $) 35)) (-2137 (((-3 $ "failed") $ $) 50)) (-2623 (((-1136) $) NIL)) (-4307 (($ $ $) 26)) (-3708 (($ $ $) 24)) (-2876 (((-1098) $) NIL)) (-3772 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $) 32)) (-1670 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3213 (((-844) $) 22) (($ |#1|) NIL)) (-3309 (($) 9 T CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 41)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) 63 (|has| |#1| (-832)))) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ |#1| (-756)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-380 |#1|) (-13 (-711) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-756))) (-15 -3708 ($ $ $)) (-15 -4307 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2390 ((-3 $ "failed") $ $)) (-15 -1670 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2058 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2663 ((-756) $)) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $)) (-15 -1935 ((-756) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3566 ($ (-1 (-756) (-756)) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-832)) (-6 (-832)) |%noBranch|))) (-1078)) (T -380)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-3708 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-4307 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-2137 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-2390 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-1670 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) (-2058 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-756))))) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-756)) (-5 *1 (-380 *4)) (-4 *4 (-1078)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1078)))) (-3566 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-756) (-756))) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-380 *3))))) +(-13 (-711) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-756))) (-15 -3708 ($ $ $)) (-15 -4307 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2390 ((-3 $ "failed") $ $)) (-15 -1670 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2058 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2663 ((-756) $)) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $)) (-15 -1935 ((-756) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3566 ($ (-1 (-756) (-756)) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-832)) (-6 (-832)) |%noBranch|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 45)) (-2832 (((-552) $) 44)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-1772 (($ $ $) 52)) (-2011 (($ $ $) 51)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ $) 40)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 46)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 49)) (-1644 (((-111) $ $) 48)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 50)) (-1632 (((-111) $ $) 47)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-381) (-137)) (T -381)) NIL -(-13 (-544) (-830) (-1017 (-552))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-2354 (((-111) $) 20)) (-3960 (((-111) $) 19)) (-2655 (($ (-1134) (-1134) (-1134)) 21)) (-3112 (((-1134) $) 16)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4016 (($ (-1134) (-1134) (-1134)) 14)) (-2214 (((-1134) $) 17)) (-2426 (((-111) $) 18)) (-1572 (((-1134) $) 15)) (-1477 (((-842) $) 12) (($ (-1134)) 13) (((-1134) $) 9)) (-2292 (((-111) $ $) 7))) +(-13 (-544) (-832) (-1019 (-552))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-832) . T) ((-1019 (-552)) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-1297 (((-111) $) 20)) (-1635 (((-111) $) 19)) (-3307 (($ (-1136) (-1136) (-1136)) 21)) (-4290 (((-1136) $) 16)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2694 (($ (-1136) (-1136) (-1136)) 14)) (-2411 (((-1136) $) 17)) (-3926 (((-111) $) 18)) (-2222 (((-1136) $) 15)) (-3213 (((-844) $) 12) (($ (-1136)) 13) (((-1136) $) 9)) (-1613 (((-111) $ $) 7))) (((-382) (-383)) (T -382)) NIL (-383) -((-1465 (((-111) $ $) 7)) (-2354 (((-111) $) 14)) (-3960 (((-111) $) 15)) (-2655 (($ (-1134) (-1134) (-1134)) 13)) (-3112 (((-1134) $) 18)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-4016 (($ (-1134) (-1134) (-1134)) 20)) (-2214 (((-1134) $) 17)) (-2426 (((-111) $) 16)) (-1572 (((-1134) $) 19)) (-1477 (((-842) $) 11) (($ (-1134)) 22) (((-1134) $) 21)) (-2292 (((-111) $ $) 6))) +((-3202 (((-111) $ $) 7)) (-1297 (((-111) $) 14)) (-1635 (((-111) $) 15)) (-3307 (($ (-1136) (-1136) (-1136)) 13)) (-4290 (((-1136) $) 18)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2694 (($ (-1136) (-1136) (-1136)) 20)) (-2411 (((-1136) $) 17)) (-3926 (((-111) $) 16)) (-2222 (((-1136) $) 19)) (-3213 (((-844) $) 11) (($ (-1136)) 22) (((-1136) $) 21)) (-1613 (((-111) $ $) 6))) (((-383) (-137)) (T -383)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-4016 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2655 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ((-1134) $)) (-15 -4016 ($ (-1134) (-1134) (-1134))) (-15 -1572 ((-1134) $)) (-15 -3112 ((-1134) $)) (-15 -2214 ((-1134) $)) (-15 -2426 ((-111) $)) (-15 -3960 ((-111) $)) (-15 -2354 ((-111) $)) (-15 -2655 ($ (-1134) (-1134) (-1134))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1885 (((-842) $) 50)) (-3887 (($) NIL T CONST)) (-1407 (($ $ (-900)) NIL)) (-1410 (($ $ (-900)) NIL)) (-2896 (($ $ (-900)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) 26)) (-2405 (((-754)) 17)) (-4062 (((-842) $) 52)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) NIL)) (-4297 (($ $ $ $) NIL)) (-2743 (($ $ $) NIL)) (-1922 (($) 20 T CONST)) (-2292 (((-111) $ $) 28)) (-2396 (($ $) 34) (($ $ $) 36)) (-2384 (($ $ $) 37)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-384 |#1| |#2| |#3|) (-13 (-727 |#3|) (-10 -8 (-15 -2405 ((-754))) (-15 -4062 ((-842) $)) (-15 -1885 ((-842) $)) (-15 -2220 ($ (-754))))) (-754) (-754) (-169)) (T -384)) -((-2405 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-169)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-169)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) -(-13 (-727 |#3|) (-10 -8 (-15 -2405 ((-754))) (-15 -4062 ((-842) $)) (-15 -1885 ((-842) $)) (-15 -2220 ($ (-754))))) -((-3622 (((-1134)) 10)) (-1995 (((-1123 (-1134))) 28)) (-2769 (((-1240) (-1134)) 25) (((-1240) (-382)) 24)) (-2785 (((-1240)) 26)) (-2601 (((-1123 (-1134))) 27))) -(((-385) (-10 -7 (-15 -2601 ((-1123 (-1134)))) (-15 -1995 ((-1123 (-1134)))) (-15 -2785 ((-1240))) (-15 -2769 ((-1240) (-382))) (-15 -2769 ((-1240) (-1134))) (-15 -3622 ((-1134))))) (T -385)) -((-3622 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-385)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-385)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-385)))) (-2785 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-385)))) (-1995 (*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385)))) (-2601 (*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) -(-10 -7 (-15 -2601 ((-1123 (-1134)))) (-15 -1995 ((-1123 (-1134)))) (-15 -2785 ((-1240))) (-15 -2769 ((-1240) (-382))) (-15 -2769 ((-1240) (-1134))) (-15 -3622 ((-1134)))) -((-2641 (((-754) (-330 |#1| |#2| |#3| |#4|)) 16))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|)))) (-13 (-362) (-357)) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -386)) -((-2641 (*1 *2 *3) (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) (-5 *2 (-754)) (-5 *1 (-386 *4 *5 *6 *7))))) -(-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|)))) -((-1477 (((-388) |#1|) 11))) -(((-387 |#1|) (-10 -7 (-15 -1477 ((-388) |#1|))) (-1076)) (T -387)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1076))))) -(-10 -7 (-15 -1477 ((-388) |#1|))) -((-1465 (((-111) $ $) NIL)) (-1312 (((-627 (-1134)) $ (-627 (-1134))) 38)) (-3549 (((-627 (-1134)) $ (-627 (-1134))) 39)) (-2417 (((-627 (-1134)) $ (-627 (-1134))) 40)) (-3249 (((-627 (-1134)) $) 35)) (-2655 (($) 23)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3525 (((-627 (-1134)) $) 36)) (-1711 (((-627 (-1134)) $) 37)) (-4291 (((-1240) $ (-552)) 33) (((-1240) $) 34)) (-3562 (($ (-842) (-552)) 30)) (-1477 (((-842) $) 42) (($ (-842)) 25)) (-2292 (((-111) $ $) NIL))) -(((-388) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -3525 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3549 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134))))))) (T -388)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-388)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-388)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-388)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-388)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-2655 (*1 *1) (-5 *1 (-388))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-3549 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-1312 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -3525 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3549 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134)))))) -((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) (-2694 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-1297 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-3307 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-1136))) (-15 -3213 ((-1136) $)) (-15 -2694 ($ (-1136) (-1136) (-1136))) (-15 -2222 ((-1136) $)) (-15 -4290 ((-1136) $)) (-15 -2411 ((-1136) $)) (-15 -3926 ((-111) $)) (-15 -1635 ((-111) $)) (-15 -1297 ((-111) $)) (-15 -3307 ($ (-1136) (-1136) (-1136))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2223 (((-844) $) 50)) (-2130 (($) NIL T CONST)) (-3422 (($ $ (-902)) NIL)) (-3454 (($ $ (-902)) NIL)) (-1736 (($ $ (-902)) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($ (-756)) 26)) (-3725 (((-756)) 17)) (-1370 (((-844) $) 52)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) NIL)) (-1826 (($ $ $ $) NIL)) (-2845 (($ $ $) NIL)) (-3297 (($) 20 T CONST)) (-1613 (((-111) $ $) 28)) (-1709 (($ $) 34) (($ $ $) 36)) (-1698 (($ $ $) 37)) (** (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-384 |#1| |#2| |#3|) (-13 (-729 |#3|) (-10 -8 (-15 -3725 ((-756))) (-15 -1370 ((-844) $)) (-15 -2223 ((-844) $)) (-15 -4126 ($ (-756))))) (-756) (-756) (-169)) (T -384)) +((-3725 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-756)) (-14 *4 (-756)) (-4 *5 (-169)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-756)) (-14 *4 (-756)) (-4 *5 (-169)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) +(-13 (-729 |#3|) (-10 -8 (-15 -3725 ((-756))) (-15 -1370 ((-844) $)) (-15 -2223 ((-844) $)) (-15 -4126 ($ (-756))))) +((-2577 (((-1136)) 10)) (-3961 (((-1125 (-1136))) 28)) (-1752 (((-1242) (-1136)) 25) (((-1242) (-382)) 24)) (-2159 (((-1242)) 26)) (-1929 (((-1125 (-1136))) 27))) +(((-385) (-10 -7 (-15 -1929 ((-1125 (-1136)))) (-15 -3961 ((-1125 (-1136)))) (-15 -2159 ((-1242))) (-15 -1752 ((-1242) (-382))) (-15 -1752 ((-1242) (-1136))) (-15 -2577 ((-1136))))) (T -385)) +((-2577 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-385)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-385)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1242)) (-5 *1 (-385)))) (-2159 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-385)))) (-3961 (*1 *2) (-12 (-5 *2 (-1125 (-1136))) (-5 *1 (-385)))) (-1929 (*1 *2) (-12 (-5 *2 (-1125 (-1136))) (-5 *1 (-385))))) +(-10 -7 (-15 -1929 ((-1125 (-1136)))) (-15 -3961 ((-1125 (-1136)))) (-15 -2159 ((-1242))) (-15 -1752 ((-1242) (-382))) (-15 -1752 ((-1242) (-1136))) (-15 -2577 ((-1136)))) +((-4241 (((-756) (-330 |#1| |#2| |#3| |#4|)) 16))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4241 ((-756) (-330 |#1| |#2| |#3| |#4|)))) (-13 (-362) (-357)) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -386)) +((-4241 (*1 *2 *3) (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) (-5 *2 (-756)) (-5 *1 (-386 *4 *5 *6 *7))))) +(-10 -7 (-15 -4241 ((-756) (-330 |#1| |#2| |#3| |#4|)))) +((-3213 (((-388) |#1|) 11))) +(((-387 |#1|) (-10 -7 (-15 -3213 ((-388) |#1|))) (-1078)) (T -387)) +((-3213 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1078))))) +(-10 -7 (-15 -3213 ((-388) |#1|))) +((-3202 (((-111) $ $) NIL)) (-1891 (((-629 (-1136)) $ (-629 (-1136))) 38)) (-3123 (((-629 (-1136)) $ (-629 (-1136))) 39)) (-3835 (((-629 (-1136)) $ (-629 (-1136))) 40)) (-3348 (((-629 (-1136)) $) 35)) (-3307 (($) 23)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2338 (((-629 (-1136)) $) 36)) (-4267 (((-629 (-1136)) $) 37)) (-2595 (((-1242) $ (-552)) 33) (((-1242) $) 34)) (-1522 (($ (-844) (-552)) 30)) (-3213 (((-844) $) 42) (($ (-844)) 25)) (-1613 (((-111) $ $) NIL))) +(((-388) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-844))) (-15 -1522 ($ (-844) (-552))) (-15 -2595 ((-1242) $ (-552))) (-15 -2595 ((-1242) $)) (-15 -4267 ((-629 (-1136)) $)) (-15 -2338 ((-629 (-1136)) $)) (-15 -3307 ($)) (-15 -3348 ((-629 (-1136)) $)) (-15 -3835 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -3123 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -1891 ((-629 (-1136)) $ (-629 (-1136))))))) (T -388)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-388)))) (-1522 (*1 *1 *2 *3) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-388)))) (-2595 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-388)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-388)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) (-3307 (*1 *1) (-5 *1 (-388))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) (-3835 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) (-3123 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) (-1891 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-844))) (-15 -1522 ($ (-844) (-552))) (-15 -2595 ((-1242) $ (-552))) (-15 -2595 ((-1242) $)) (-15 -4267 ((-629 (-1136)) $)) (-15 -2338 ((-629 (-1136)) $)) (-15 -3307 ($)) (-15 -3348 ((-629 (-1136)) $)) (-15 -3835 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -3123 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -1891 ((-629 (-1136)) $ (-629 (-1136)))))) +((-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8))) (((-389) (-137)) (T -389)) -((-2802 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1240))))) -(-13 (-1189) (-599 (-842)) (-10 -8 (-15 -2802 ((-1240) $)))) -(((-599 (-842)) . T) ((-1189) . T)) -((-4039 (((-3 $ "failed") (-310 (-373))) 21) (((-3 $ "failed") (-310 (-552))) 19) (((-3 $ "failed") (-931 (-373))) 17) (((-3 $ "failed") (-931 (-552))) 15) (((-3 $ "failed") (-401 (-931 (-373)))) 13) (((-3 $ "failed") (-401 (-931 (-552)))) 11)) (-1703 (($ (-310 (-373))) 22) (($ (-310 (-552))) 20) (($ (-931 (-373))) 18) (($ (-931 (-552))) 16) (($ (-401 (-931 (-373)))) 14) (($ (-401 (-931 (-552)))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +((-2175 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1242))))) +(-13 (-1191) (-599 (-844)) (-10 -8 (-15 -2175 ((-1242) $)))) +(((-599 (-844)) . T) ((-1191) . T)) +((-1393 (((-3 $ "failed") (-310 (-373))) 21) (((-3 $ "failed") (-310 (-552))) 19) (((-3 $ "failed") (-933 (-373))) 17) (((-3 $ "failed") (-933 (-552))) 15) (((-3 $ "failed") (-401 (-933 (-373)))) 13) (((-3 $ "failed") (-401 (-933 (-552)))) 11)) (-2832 (($ (-310 (-373))) 22) (($ (-310 (-552))) 20) (($ (-933 (-373))) 18) (($ (-933 (-552))) 16) (($ (-401 (-933 (-373)))) 14) (($ (-401 (-933 (-552)))) 12)) (-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8) (($ (-629 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 23))) (((-390) (-137)) (T -390)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-390)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373)))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))))) -(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) -((-1869 (((-627 (-1134)) (-627 (-1134))) 9)) (-2802 (((-1240) (-382)) 27)) (-2283 (((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152))) 60) (((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152)) 35) (((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152))) 34))) -(((-391) (-10 -7 (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)))) (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152))) (-15 -2283 ((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152)))) (-15 -2802 ((-1240) (-382))) (-15 -1869 ((-627 (-1134)) (-627 (-1134)))))) (T -391)) -((-1869 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-391)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *5 (-1155)) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391))))) -(-10 -7 (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)))) (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152))) (-15 -2283 ((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152)))) (-15 -2802 ((-1240) (-382))) (-15 -1869 ((-627 (-1134)) (-627 (-1134))))) -((-2802 (((-1240) $) 38)) (-1477 (((-842) $) 98) (($ (-324)) 100) (($ (-627 (-324))) 99) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 97) (($ (-310 (-683))) 54) (($ (-310 (-681))) 73) (($ (-310 (-676))) 86) (($ (-288 (-310 (-683)))) 68) (($ (-288 (-310 (-681)))) 81) (($ (-288 (-310 (-676)))) 94) (($ (-310 (-552))) 104) (($ (-310 (-373))) 117) (($ (-310 (-166 (-373)))) 130) (($ (-288 (-310 (-552)))) 112) (($ (-288 (-310 (-373)))) 125) (($ (-288 (-310 (-166 (-373))))) 138))) -(((-392 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -1477 ($ (-324))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1477 ($ (-310 (-683)))) (-15 -1477 ($ (-310 (-681)))) (-15 -1477 ($ (-310 (-676)))) (-15 -1477 ($ (-288 (-310 (-683))))) (-15 -1477 ($ (-288 (-310 (-681))))) (-15 -1477 ($ (-288 (-310 (-676))))) (-15 -1477 ($ (-310 (-552)))) (-15 -1477 ($ (-310 (-373)))) (-15 -1477 ($ (-310 (-166 (-373))))) (-15 -1477 ($ (-288 (-310 (-552))))) (-15 -1477 ($ (-288 (-310 (-373))))) (-15 -1477 ($ (-288 (-310 (-166 (-373)))))))) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-1156)) (T -392)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-681)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-676)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-324))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1477 ($ (-310 (-683)))) (-15 -1477 ($ (-310 (-681)))) (-15 -1477 ($ (-310 (-676)))) (-15 -1477 ($ (-288 (-310 (-683))))) (-15 -1477 ($ (-288 (-310 (-681))))) (-15 -1477 ($ (-288 (-310 (-676))))) (-15 -1477 ($ (-310 (-552)))) (-15 -1477 ($ (-310 (-373)))) (-15 -1477 ($ (-310 (-166 (-373))))) (-15 -1477 ($ (-288 (-310 (-552))))) (-15 -1477 ($ (-288 (-310 (-373))))) (-15 -1477 ($ (-288 (-310 (-166 (-373)))))))) -((-1465 (((-111) $ $) NIL)) (-3043 ((|#2| $) 36)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2596 (($ (-401 |#2|)) 85)) (-1469 (((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $) 37)) (-2942 (($ $) 32) (($ $ (-754)) 34)) (-3562 (((-401 |#2|) $) 46)) (-1490 (($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|)))) 31)) (-1477 (((-842) $) 120)) (-4251 (($ $) 33) (($ $ (-754)) 35)) (-2292 (((-111) $ $) NIL)) (-2384 (($ |#2| $) 39))) -(((-393 |#1| |#2|) (-13 (-1076) (-600 (-401 |#2|)) (-10 -8 (-15 -2384 ($ |#2| $)) (-15 -2596 ($ (-401 |#2|))) (-15 -3043 (|#2| $)) (-15 -1469 ((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))))) (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) (-13 (-357) (-144)) (-1211 |#1|)) (T -393)) -((-2384 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) (-4 *2 (-1211 *3)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-3043 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-393 *3 *2)) (-4 *3 (-13 (-357) (-144))))) (-1469 (*1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-2942 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1211 *2)))) (-4251 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1211 *2)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3))))) -(-13 (-1076) (-600 (-401 |#2|)) (-10 -8 (-15 -2384 ($ |#2| $)) (-15 -2596 ($ (-401 |#2|))) (-15 -3043 (|#2| $)) (-15 -1469 ((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))))) (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) -((-1465 (((-111) $ $) 9 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 15 (|has| |#1| (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 14 (|has| |#1| (-865 (-552))))) (-1595 (((-1134) $) 13 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-1498 (((-1096) $) 12 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-1477 (((-842) $) 11 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-2292 (((-111) $ $) 10 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373))))))) -(((-394 |#1|) (-137) (-1189)) (T -394)) -NIL -(-13 (-1189) (-10 -7 (IF (|has| |t#1| (-865 (-552))) (-6 (-865 (-552))) |%noBranch|) (IF (|has| |t#1| (-865 (-373))) (-6 (-865 (-373))) |%noBranch|))) -(((-101) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-599 (-842)) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-1076) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-1189) . T)) -((-4294 (($ $) 10) (($ $ (-754)) 11))) -(((-395 |#1|) (-10 -8 (-15 -4294 (|#1| |#1| (-754))) (-15 -4294 (|#1| |#1|))) (-396)) (T -395)) -NIL -(-10 -8 (-15 -4294 (|#1| |#1| (-754))) (-15 -4294 (|#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-4294 (($ $) 76) (($ $ (-754)) 75)) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 78)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 77)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3050 (((-3 $ "failed") $) 79)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-390)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-933 (-373))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-373))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-933 (-552))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-552))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-373)))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-933 (-373)))) (-4 *1 (-390)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-552)))) (-4 *1 (-390)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-933 (-552)))) (-4 *1 (-390))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-324))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))) (-15 -2832 ($ (-310 (-373)))) (-15 -1393 ((-3 $ "failed") (-310 (-373)))) (-15 -2832 ($ (-310 (-552)))) (-15 -1393 ((-3 $ "failed") (-310 (-552)))) (-15 -2832 ($ (-933 (-373)))) (-15 -1393 ((-3 $ "failed") (-933 (-373)))) (-15 -2832 ($ (-933 (-552)))) (-15 -1393 ((-3 $ "failed") (-933 (-552)))) (-15 -2832 ($ (-401 (-933 (-373))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-373))))) (-15 -2832 ($ (-401 (-933 (-552))))) (-15 -1393 ((-3 $ "failed") (-401 (-933 (-552))))))) +(((-599 (-844)) . T) ((-389) . T) ((-1191) . T)) +((-2059 (((-629 (-1136)) (-629 (-1136))) 9)) (-2175 (((-1242) (-382)) 27)) (-1818 (((-1082) (-1154) (-629 (-1154)) (-1157) (-629 (-1154))) 60) (((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154)) (-1154)) 35) (((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154))) 34))) +(((-391) (-10 -7 (-15 -1818 ((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154)))) (-15 -1818 ((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154)) (-1154))) (-15 -1818 ((-1082) (-1154) (-629 (-1154)) (-1157) (-629 (-1154)))) (-15 -2175 ((-1242) (-382))) (-15 -2059 ((-629 (-1136)) (-629 (-1136)))))) (T -391)) +((-2059 (*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-391)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1242)) (-5 *1 (-391)))) (-1818 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-629 (-1154))) (-5 *5 (-1157)) (-5 *3 (-1154)) (-5 *2 (-1082)) (-5 *1 (-391)))) (-1818 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-629 (-629 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-629 (-3 (|:| |array| (-629 *3)) (|:| |scalar| (-1154))))) (-5 *6 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1082)) (-5 *1 (-391)))) (-1818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-629 (-629 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-629 (-3 (|:| |array| (-629 *3)) (|:| |scalar| (-1154))))) (-5 *6 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1082)) (-5 *1 (-391))))) +(-10 -7 (-15 -1818 ((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154)))) (-15 -1818 ((-1082) (-1154) (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154)))) (-629 (-629 (-3 (|:| |array| (-629 (-1154))) (|:| |scalar| (-1154))))) (-629 (-1154)) (-1154))) (-15 -1818 ((-1082) (-1154) (-629 (-1154)) (-1157) (-629 (-1154)))) (-15 -2175 ((-1242) (-382))) (-15 -2059 ((-629 (-1136)) (-629 (-1136))))) +((-2175 (((-1242) $) 38)) (-3213 (((-844) $) 98) (($ (-324)) 100) (($ (-629 (-324))) 99) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 97) (($ (-310 (-685))) 54) (($ (-310 (-683))) 73) (($ (-310 (-678))) 86) (($ (-288 (-310 (-685)))) 68) (($ (-288 (-310 (-683)))) 81) (($ (-288 (-310 (-678)))) 94) (($ (-310 (-552))) 104) (($ (-310 (-373))) 117) (($ (-310 (-166 (-373)))) 130) (($ (-288 (-310 (-552)))) 112) (($ (-288 (-310 (-373)))) 125) (($ (-288 (-310 (-166 (-373))))) 138))) +(((-392 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -3213 ($ (-324))) (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))) (-15 -3213 ($ (-310 (-685)))) (-15 -3213 ($ (-310 (-683)))) (-15 -3213 ($ (-310 (-678)))) (-15 -3213 ($ (-288 (-310 (-685))))) (-15 -3213 ($ (-288 (-310 (-683))))) (-15 -3213 ($ (-288 (-310 (-678))))) (-15 -3213 ($ (-310 (-552)))) (-15 -3213 ($ (-310 (-373)))) (-15 -3213 ($ (-310 (-166 (-373))))) (-15 -3213 ($ (-288 (-310 (-552))))) (-15 -3213 ($ (-288 (-310 (-373))))) (-15 -3213 ($ (-288 (-310 (-166 (-373)))))))) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-1154)) (-1158)) (T -392)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-685))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-678))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-685)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-678)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-14 *5 (-629 (-1154))) (-14 *6 (-1158))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-324))) (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))) (-15 -3213 ($ (-310 (-685)))) (-15 -3213 ($ (-310 (-683)))) (-15 -3213 ($ (-310 (-678)))) (-15 -3213 ($ (-288 (-310 (-685))))) (-15 -3213 ($ (-288 (-310 (-683))))) (-15 -3213 ($ (-288 (-310 (-678))))) (-15 -3213 ($ (-310 (-552)))) (-15 -3213 ($ (-310 (-373)))) (-15 -3213 ($ (-310 (-166 (-373))))) (-15 -3213 ($ (-288 (-310 (-552))))) (-15 -3213 ($ (-288 (-310 (-373))))) (-15 -3213 ($ (-288 (-310 (-166 (-373)))))))) +((-3202 (((-111) $ $) NIL)) (-3818 ((|#2| $) 36)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-1870 (($ (-401 |#2|)) 85)) (-2774 (((-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|))) $) 37)) (-3096 (($ $) 32) (($ $ (-756)) 34)) (-1522 (((-401 |#2|) $) 46)) (-3226 (($ (-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|)))) 31)) (-3213 (((-844) $) 120)) (-1765 (($ $) 33) (($ $ (-756)) 35)) (-1613 (((-111) $ $) NIL)) (-1698 (($ |#2| $) 39))) +(((-393 |#1| |#2|) (-13 (-1078) (-600 (-401 |#2|)) (-10 -8 (-15 -1698 ($ |#2| $)) (-15 -1870 ($ (-401 |#2|))) (-15 -3818 (|#2| $)) (-15 -2774 ((-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|))) $)) (-15 -3226 ($ (-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|))))) (-15 -3096 ($ $)) (-15 -1765 ($ $)) (-15 -3096 ($ $ (-756))) (-15 -1765 ($ $ (-756))))) (-13 (-357) (-144)) (-1213 |#1|)) (T -393)) +((-1698 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) (-4 *2 (-1213 *3)))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-3818 (*1 *2 *1) (-12 (-4 *2 (-1213 *3)) (-5 *1 (-393 *3 *2)) (-4 *3 (-13 (-357) (-144))))) (-2774 (*1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *2 (-629 (-2 (|:| -1406 (-756)) (|:| -4046 *4) (|:| |num| *4)))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1213 *3)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -1406 (-756)) (|:| -4046 *4) (|:| |num| *4)))) (-4 *4 (-1213 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-3096 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1213 *2)))) (-1765 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1213 *2)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1213 *3)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1213 *3))))) +(-13 (-1078) (-600 (-401 |#2|)) (-10 -8 (-15 -1698 ($ |#2| $)) (-15 -1870 ($ (-401 |#2|))) (-15 -3818 (|#2| $)) (-15 -2774 ((-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|))) $)) (-15 -3226 ($ (-629 (-2 (|:| -1406 (-756)) (|:| -4046 |#2|) (|:| |num| |#2|))))) (-15 -3096 ($ $)) (-15 -1765 ($ $)) (-15 -3096 ($ $ (-756))) (-15 -1765 ($ $ (-756))))) +((-3202 (((-111) $ $) 9 (-4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))))) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 15 (|has| |#1| (-867 (-373)))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 14 (|has| |#1| (-867 (-552))))) (-2623 (((-1136) $) 13 (-4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))))) (-2876 (((-1098) $) 12 (-4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))))) (-3213 (((-844) $) 11 (-4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))))) (-1613 (((-111) $ $) 10 (-4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373))))))) +(((-394 |#1|) (-137) (-1191)) (T -394)) +NIL +(-13 (-1191) (-10 -7 (IF (|has| |t#1| (-867 (-552))) (-6 (-867 (-552))) |%noBranch|) (IF (|has| |t#1| (-867 (-373))) (-6 (-867 (-373))) |%noBranch|))) +(((-101) -4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))) ((-599 (-844)) -4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))) ((-867 (-373)) |has| |#1| (-867 (-373))) ((-867 (-552)) |has| |#1| (-867 (-552))) ((-1078) -4029 (|has| |#1| (-867 (-552))) (|has| |#1| (-867 (-373)))) ((-1191) . T)) +((-1788 (($ $) 10) (($ $ (-756)) 11))) +(((-395 |#1|) (-10 -8 (-15 -1788 (|#1| |#1| (-756))) (-15 -1788 (|#1| |#1|))) (-396)) (T -395)) +NIL +(-10 -8 (-15 -1788 (|#1| |#1| (-756))) (-15 -1788 (|#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1788 (($ $) 76) (($ $ (-756)) 75)) (-1677 (((-111) $) 68)) (-4241 (((-818 (-902)) $) 78)) (-4065 (((-111) $) 30)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-4147 (((-3 (-756) "failed") $ $) 77)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3878 (((-3 $ "failed") $) 79)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) (((-396) (-137)) (T -396)) -((-2641 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-816 (-900))))) (-4018 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-754)))) (-4294 (*1 *1 *1) (-4 *1 (-396))) (-4294 (*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-754))))) -(-13 (-357) (-142) (-10 -8 (-15 -2641 ((-816 (-900)) $)) (-15 -4018 ((-3 (-754) "failed") $ $)) (-15 -4294 ($ $)) (-15 -4294 ($ $ (-754))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-2103 (($ (-552) (-552)) 11) (($ (-552) (-552) (-900)) NIL)) (-3080 (((-900)) 16) (((-900) (-900)) NIL))) -(((-397 |#1|) (-10 -8 (-15 -3080 ((-900) (-900))) (-15 -3080 ((-900))) (-15 -2103 (|#1| (-552) (-552) (-900))) (-15 -2103 (|#1| (-552) (-552)))) (-398)) (T -397)) -((-3080 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398))))) -(-10 -8 (-15 -3080 ((-900) (-900))) (-15 -3080 ((-900))) (-15 -2103 (|#1| (-552) (-552) (-900))) (-15 -2103 (|#1| (-552) (-552)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 (((-552) $) 86)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4019 (($ $) 84)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 94)) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 111)) (-3887 (($) 17 T CONST)) (-2635 (($ $) 83)) (-4039 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-1703 (((-552) $) 98) (((-401 (-552)) $) 95)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-3284 (((-900)) 127) (((-900) (-900)) 124 (|has| $ (-6 -4357)))) (-2983 (((-111) $) 109)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 90)) (-2641 (((-552) $) 133)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 93)) (-2349 (($ $) 89)) (-1508 (((-111) $) 110)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 108) (($) 121 (-12 (-1681 (|has| $ (-6 -4357))) (-1681 (|has| $ (-6 -4349)))))) (-4093 (($ $ $) 107) (($) 120 (-12 (-1681 (|has| $ (-6 -4357))) (-1681 (|has| $ (-6 -4349)))))) (-2948 (((-552) $) 130)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3964 (((-900) (-552)) 123 (|has| $ (-6 -4357)))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 85)) (-2060 (($ $) 87)) (-2103 (($ (-552) (-552)) 135) (($ (-552) (-552) (-900)) 134)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-4067 (((-552) $) 131)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3080 (((-900)) 128) (((-900) (-900)) 125 (|has| $ (-6 -4357)))) (-2531 (((-900) (-552)) 122 (|has| $ (-6 -4357)))) (-3562 (((-373) $) 102) (((-220) $) 101) (((-871 (-373)) $) 91)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-3995 (((-754)) 28)) (-3796 (($ $) 88)) (-3580 (((-900)) 129) (((-900) (-900)) 126 (|has| $ (-6 -4357)))) (-2705 (((-900)) 132)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 112)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 105)) (-2329 (((-111) $ $) 104)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 106)) (-2316 (((-111) $ $) 103)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +((-4241 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-818 (-902))))) (-4147 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-756)))) (-1788 (*1 *1 *1) (-4 *1 (-396))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-756))))) +(-13 (-357) (-142) (-10 -8 (-15 -4241 ((-818 (-902)) $)) (-15 -4147 ((-3 (-756) "failed") $ $)) (-15 -1788 ($ $)) (-15 -1788 ($ $ (-756))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-844)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-3396 (($ (-552) (-552)) 11) (($ (-552) (-552) (-902)) NIL)) (-2950 (((-902)) 16) (((-902) (-902)) NIL))) +(((-397 |#1|) (-10 -8 (-15 -2950 ((-902) (-902))) (-15 -2950 ((-902))) (-15 -3396 (|#1| (-552) (-552) (-902))) (-15 -3396 (|#1| (-552) (-552)))) (-398)) (T -397)) +((-2950 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-397 *3)) (-4 *3 (-398))))) +(-10 -8 (-15 -2950 ((-902) (-902))) (-15 -2950 ((-902))) (-15 -3396 (|#1| (-552) (-552) (-902))) (-15 -3396 (|#1| (-552) (-552)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3603 (((-552) $) 86)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4157 (($ $) 84)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-3489 (($ $) 94)) (-2393 (((-111) $ $) 57)) (-3886 (((-552) $) 111)) (-2130 (($) 17 T CONST)) (-4183 (($ $) 83)) (-1393 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-2832 (((-552) $) 98) (((-401 (-552)) $) 95)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-2180 (((-902)) 127) (((-902) (-902)) 124 (|has| $ (-6 -4359)))) (-1338 (((-111) $) 109)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 90)) (-4241 (((-552) $) 133)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 93)) (-4346 (($ $) 89)) (-3127 (((-111) $) 110)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-1772 (($ $ $) 108) (($) 121 (-12 (-4107 (|has| $ (-6 -4359))) (-4107 (|has| $ (-6 -4351)))))) (-2011 (($ $ $) 107) (($) 120 (-12 (-4107 (|has| $ (-6 -4359))) (-4107 (|has| $ (-6 -4351)))))) (-1833 (((-552) $) 130)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-1676 (((-902) (-552)) 123 (|has| $ (-6 -4359)))) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-2147 (($ $) 85)) (-3410 (($ $) 87)) (-3396 (($ (-552) (-552)) 135) (($ (-552) (-552) (-902)) 134)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-1406 (((-552) $) 131)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-2950 (((-902)) 128) (((-902) (-902)) 125 (|has| $ (-6 -4359)))) (-2474 (((-902) (-552)) 122 (|has| $ (-6 -4359)))) (-1522 (((-373) $) 102) (((-220) $) 101) (((-873 (-373)) $) 91)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-2014 (((-756)) 28)) (-3763 (($ $) 88)) (-2122 (((-902)) 129) (((-902) (-902)) 126 (|has| $ (-6 -4359)))) (-4174 (((-902)) 132)) (-3589 (((-111) $ $) 37)) (-1578 (($ $) 112)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 105)) (-1644 (((-111) $ $) 104)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 106)) (-1632 (((-111) $ $) 103)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) (((-398) (-137)) (T -398)) -((-2103 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) (-2103 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-4 *1 (-398)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-2705 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-3580 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3080 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3284 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) (-5 *2 (-900)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) (-5 *2 (-900)))) (-1816 (*1 *1) (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) (-1681 (|has| *1 (-6 -4349))))) (-4093 (*1 *1) (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) (-1681 (|has| *1 (-6 -4349)))))) -(-13 (-1037) (-10 -8 (-6 -3030) (-15 -2103 ($ (-552) (-552))) (-15 -2103 ($ (-552) (-552) (-900))) (-15 -2641 ((-552) $)) (-15 -2705 ((-900))) (-15 -4067 ((-552) $)) (-15 -2948 ((-552) $)) (-15 -3580 ((-900))) (-15 -3080 ((-900))) (-15 -3284 ((-900))) (IF (|has| $ (-6 -4357)) (PROGN (-15 -3580 ((-900) (-900))) (-15 -3080 ((-900) (-900))) (-15 -3284 ((-900) (-900))) (-15 -3964 ((-900) (-552))) (-15 -2531 ((-900) (-552)))) |%noBranch|) (IF (|has| $ (-6 -4349)) |%noBranch| (IF (|has| $ (-6 -4357)) |%noBranch| (PROGN (-15 -1816 ($)) (-15 -4093 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-871 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-865 (-373)) . T) ((-899) . T) ((-981) . T) ((-1001) . T) ((-1037) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-3516 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 20))) -(((-399 |#1| |#2|) (-10 -7 (-15 -3516 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-544) (-544)) (T -399)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6))))) -(-10 -7 (-15 -3516 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) -((-3516 (((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)) 13))) -(((-400 |#1| |#2|) (-10 -7 (-15 -3516 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) (-544) (-544)) (T -400)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6))))) -(-10 -7 (-15 -3516 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 13)) (-3471 ((|#1| $) 21 (|has| |#1| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#1| (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 17) (((-3 (-1152) "failed") $) NIL (|has| |#1| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 15) (((-1152) $) NIL (|has| |#1| (-1017 (-1152)))) (((-401 (-552)) $) 67 (|has| |#1| (-1017 (-552)))) (((-552) $) NIL (|has| |#1| (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 50)) (-1279 (($) NIL (|has| |#1| (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| |#1| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#1| (-865 (-373))))) (-2624 (((-111) $) 64)) (-3798 (($ $) NIL)) (-2918 ((|#1| $) 71)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1508 (((-111) $) NIL (|has| |#1| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 97)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| |#1| (-301)))) (-2060 ((|#1| $) 28 (|has| |#1| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 135 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 131 (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) NIL)) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1583 (($ $) NIL)) (-2929 ((|#1| $) 73)) (-3562 (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (((-528) $) NIL (|has| |#1| (-600 (-528)))) (((-373) $) NIL (|has| |#1| (-1001))) (((-220) $) NIL (|has| |#1| (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 115 (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 10) (($ (-1152)) NIL (|has| |#1| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) 99 (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 100)) (-3796 ((|#1| $) 26 (|has| |#1| (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-803)))) (-1922 (($) 22 T CONST)) (-1933 (($) 8 T CONST)) (-4157 (((-1134) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1134) $ (-111)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1240) (-805) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1240) (-805) $ (-111)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-811))))) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 56)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 24 (|has| |#1| (-830)))) (-2407 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2396 (($ $) 25) (($ $ $) 55)) (-2384 (($ $ $) 53)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 125)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 60) (($ $ $) 57) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-401 |#1|) (-13 (-971 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4353)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4364)) (-6 -4353) |%noBranch|) |%noBranch|) |%noBranch|))) (-544)) (T -401)) -NIL -(-13 (-971 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4353)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4364)) (-6 -4353) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3841 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 18)) (-2342 (($ (-1235 |#2|) (-1235 $)) NIL) (($ (-1235 |#2|)) 24)) (-4088 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 38)) (-4205 ((|#3| $) 60)) (-1637 ((|#2| (-1235 $)) NIL) ((|#2|) 20)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 22) (((-671 |#2|) (-1235 $)) 36)) (-3562 (((-1235 |#2|) $) 11) (($ (-1235 |#2|)) 13)) (-2410 ((|#3| $) 52))) -(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -4088 ((-671 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3841 ((-671 |#2|))) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -2410 (|#3| |#1|)) (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) (-403 |#2| |#3|) (-169) (-1211 |#2|)) (T -402)) -((-3841 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-1637 (*1 *2) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) -(-10 -8 (-15 -4088 ((-671 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3841 ((-671 |#2|))) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -2410 (|#3| |#1|)) (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3050 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-403 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -403)) -((-2957 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *1)) (-4 *1 (-403 *3 *4)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1211 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *3)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1211 *3)))) (-3841 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3)))) (-1637 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3))))) -(-13 (-364 |t#1| |t#2|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -3562 ((-1235 |t#1|) $)) (-15 -3562 ($ (-1235 |t#1|))) (-15 -3841 ((-671 |t#1|))) (-15 -1637 (|t#1|)) (-15 -4088 ((-671 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-364 |#1| |#2|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) 27) (((-3 (-552) "failed") $) 19)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) 24) (((-552) $) 14)) (-1477 (($ |#2|) NIL) (($ (-401 (-552))) 22) (($ (-552)) 11))) -(((-404 |#1| |#2|) (-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|))) (-405 |#2|) (-1189)) (T -404)) -NIL -(-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|))) -((-4039 (((-3 |#1| "failed") $) 7) (((-3 (-401 (-552)) "failed") $) 16 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 13 (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 8) (((-401 (-552)) $) 15 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 12 (|has| |#1| (-1017 (-552))))) (-1477 (($ |#1|) 6) (($ (-401 (-552))) 17 (|has| |#1| (-1017 (-401 (-552))))) (($ (-552)) 14 (|has| |#1| (-1017 (-552)))))) -(((-405 |#1|) (-137) (-1189)) (T -405)) -NIL -(-13 (-1017 |t#1|) (-10 -7 (IF (|has| |t#1| (-1017 (-552))) (-6 (-1017 (-552))) |%noBranch|) (IF (|has| |t#1| (-1017 (-401 (-552)))) (-6 (-1017 (-401 (-552)))) |%noBranch|))) -(((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T)) -((-3516 (((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)) 33))) -(((-406 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) (-301) (-971 |#1|) (-1211 |#2|) (-13 (-403 |#2| |#3|) (-1017 |#2|)) (-301) (-971 |#5|) (-1211 |#6|) (-13 (-403 |#6| |#7|) (-1017 |#6|))) (T -406)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-971 *5)) (-4 *7 (-1211 *6)) (-4 *8 (-13 (-403 *6 *7) (-1017 *6))) (-4 *9 (-301)) (-4 *10 (-971 *9)) (-4 *11 (-1211 *10)) (-5 *2 (-407 *9 *10 *11 *12)) (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1017 *10)))))) -(-10 -7 (-15 -3516 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) -((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-3410 ((|#4| (-754) (-1235 |#4|)) 56)) (-2624 (((-111) $) NIL)) (-2918 (((-1235 |#4|) $) 17)) (-2349 ((|#2| $) 54)) (-1809 (($ $) 139)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 100)) (-3103 (($ (-1235 |#4|)) 99)) (-1498 (((-1096) $) NIL)) (-2929 ((|#1| $) 18)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 134)) (-2957 (((-1235 |#4|) $) 129)) (-1933 (($) 11 T CONST)) (-2292 (((-111) $ $) 40)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 122)) (* (($ $ $) 121))) -(((-407 |#1| |#2| |#3| |#4|) (-13 (-466) (-10 -8 (-15 -3103 ($ (-1235 |#4|))) (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -2918 ((-1235 |#4|) $)) (-15 -2929 (|#1| $)) (-15 -1809 ($ $)) (-15 -3410 (|#4| (-754) (-1235 |#4|))))) (-301) (-971 |#1|) (-1211 |#2|) (-13 (-403 |#2| |#3|) (-1017 |#2|))) (T -407)) -((-3103 (*1 *1 *2) (-12 (-5 *2 (-1235 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-407 *3 *4 *5 *6)))) (-2957 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) (-2349 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-407 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1017 *2))))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) (-2929 (*1 *2 *1) (-12 (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-301)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) (-1809 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-1235 *2)) (-4 *5 (-301)) (-4 *6 (-971 *5)) (-4 *2 (-13 (-403 *6 *7) (-1017 *6))) (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) -(-13 (-466) (-10 -8 (-15 -3103 ($ (-1235 |#4|))) (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -2918 ((-1235 |#4|) $)) (-15 -2929 (|#1| $)) (-15 -1809 ($ $)) (-15 -3410 (|#4| (-754) (-1235 |#4|))))) -((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2349 ((|#2| $) 61)) (-1532 (($ (-1235 |#4|)) 25) (($ (-407 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1017 |#2|)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 34)) (-2957 (((-1235 |#4|) $) 26)) (-1933 (($) 23 T CONST)) (-2292 (((-111) $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ $ $) 72))) -(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-709) (-10 -8 (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -1532 ($ (-1235 |#4|))) (IF (|has| |#4| (-1017 |#2|)) (-15 -1532 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-301) (-971 |#1|) (-1211 |#2|) (-403 |#2| |#3|) (-1235 |#4|)) (T -408)) -((-2957 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-2349 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1235 *5)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-1235 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1017 *4)) (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) -(-13 (-709) (-10 -8 (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -1532 ($ (-1235 |#4|))) (IF (|has| |#4| (-1017 |#2|)) (-15 -1532 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-169) (-411 |#4|) (-169)) (T -409)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) -((-2717 (((-3 $ "failed")) 86)) (-3449 (((-1235 (-671 |#2|)) (-1235 $)) NIL) (((-1235 (-671 |#2|))) 91)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 85)) (-3994 (((-3 $ "failed")) 84)) (-2877 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 102)) (-3029 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 110)) (-2856 (((-1148 (-931 |#2|))) 55)) (-3119 ((|#2| (-1235 $)) NIL) ((|#2|) 106)) (-2342 (($ (-1235 |#2|) (-1235 $)) NIL) (($ (-1235 |#2|)) 112)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 83)) (-2513 (((-3 $ "failed")) 75)) (-1425 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 100)) (-2593 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 108)) (-1548 (((-1148 (-931 |#2|))) 54)) (-2806 ((|#2| (-1235 $)) NIL) ((|#2|) 104)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 111) (((-671 |#2|) (-1235 $)) 118)) (-3562 (((-1235 |#2|) $) 96) (($ (-1235 |#2|)) 98)) (-2539 (((-627 (-931 |#2|)) (-1235 $)) NIL) (((-627 (-931 |#2|))) 94)) (-3288 (($ (-671 |#2|) $) 90))) -(((-410 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| (-671 |#2|) |#1|)) (-15 -2856 ((-1148 (-931 |#2|)))) (-15 -1548 ((-1148 (-931 |#2|)))) (-15 -3029 ((-671 |#2|) |#1|)) (-15 -2593 ((-671 |#2|) |#1|)) (-15 -2877 ((-671 |#2|))) (-15 -1425 ((-671 |#2|))) (-15 -3119 (|#2|)) (-15 -2806 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -2539 ((-627 (-931 |#2|)))) (-15 -3449 ((-1235 (-671 |#2|)))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -2717 ((-3 |#1| "failed"))) (-15 -3994 ((-3 |#1| "failed"))) (-15 -2513 ((-3 |#1| "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|))) (-15 -2539 ((-627 (-931 |#2|)) (-1235 |#1|)))) (-411 |#2|) (-169)) (T -410)) -((-3449 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2539 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2806 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-3119 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1425 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2877 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1548 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2856 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 -3288 (|#1| (-671 |#2|) |#1|)) (-15 -2856 ((-1148 (-931 |#2|)))) (-15 -1548 ((-1148 (-931 |#2|)))) (-15 -3029 ((-671 |#2|) |#1|)) (-15 -2593 ((-671 |#2|) |#1|)) (-15 -2877 ((-671 |#2|))) (-15 -1425 ((-671 |#2|))) (-15 -3119 (|#2|)) (-15 -2806 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -2539 ((-627 (-931 |#2|)))) (-15 -3449 ((-1235 (-671 |#2|)))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -2717 ((-3 |#1| "failed"))) (-15 -3994 ((-3 |#1| "failed"))) (-15 -2513 ((-3 |#1| "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|))) (-15 -2539 ((-627 (-931 |#2|)) (-1235 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2717 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) 78) (((-1235 (-671 |#1|))) 100)) (-2946 (((-1235 $)) 81)) (-3887 (($) 17 T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 40 (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) 65) (((-671 |#1|)) 92)) (-2526 ((|#1| $) 74)) (-3029 (((-671 |#1|) $ (-1235 $)) 76) (((-671 |#1|) $) 90)) (-1592 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-2856 (((-1148 (-931 |#1|))) 88 (|has| |#1| (-357)))) (-1407 (($ $ (-900)) 28)) (-2141 ((|#1| $) 72)) (-3343 (((-1148 |#1|) $) 42 (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) 67) ((|#1|) 94)) (-1608 (((-1148 |#1|) $) 63)) (-1819 (((-111)) 57)) (-2342 (($ (-1235 |#1|) (-1235 $)) 69) (($ (-1235 |#1|)) 98)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-4154 (((-900)) 80)) (-3972 (((-111)) 54)) (-1410 (($ $ (-900)) 33)) (-3363 (((-111)) 50)) (-1878 (((-111)) 48)) (-3728 (((-111)) 52)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 41 (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) 66) (((-671 |#1|)) 93)) (-4131 ((|#1| $) 75)) (-2593 (((-671 |#1|) $ (-1235 $)) 77) (((-671 |#1|) $) 91)) (-4336 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-1548 (((-1148 (-931 |#1|))) 89 (|has| |#1| (-357)))) (-2896 (($ $ (-900)) 29)) (-1856 ((|#1| $) 73)) (-1794 (((-1148 |#1|) $) 43 (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) 68) ((|#1|) 95)) (-2798 (((-1148 |#1|) $) 64)) (-3485 (((-111)) 58)) (-1595 (((-1134) $) 9)) (-3570 (((-111)) 49)) (-2011 (((-111)) 51)) (-2344 (((-111)) 53)) (-1498 (((-1096) $) 10)) (-3361 (((-111)) 56)) (-1985 ((|#1| $ (-552)) 101)) (-3133 (((-1235 |#1|) $ (-1235 $)) 71) (((-671 |#1|) (-1235 $) (-1235 $)) 70) (((-1235 |#1|) $) 103) (((-671 |#1|) (-1235 $)) 102)) (-3562 (((-1235 |#1|) $) 97) (($ (-1235 |#1|)) 96)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) 79) (((-627 (-931 |#1|))) 99)) (-2493 (($ $ $) 25)) (-1822 (((-111)) 62)) (-1477 (((-842) $) 11)) (-2957 (((-1235 $)) 104)) (-1360 (((-627 (-1235 |#1|))) 44 (|has| |#1| (-544)))) (-4297 (($ $ $ $) 26)) (-3656 (((-111)) 60)) (-3288 (($ (-671 |#1|) $) 87)) (-2743 (($ $ $) 24)) (-3304 (((-111)) 61)) (-3258 (((-111)) 59)) (-3699 (((-111)) 55)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-3396 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) (-3396 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-902)) (-4 *1 (-398)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-4174 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-2122 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) (-2950 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) (-2180 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4359)) (-4 *1 (-398)) (-5 *2 (-902)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4359)) (-4 *1 (-398)) (-5 *2 (-902)))) (-1772 (*1 *1) (-12 (-4 *1 (-398)) (-4107 (|has| *1 (-6 -4359))) (-4107 (|has| *1 (-6 -4351))))) (-2011 (*1 *1) (-12 (-4 *1 (-398)) (-4107 (|has| *1 (-6 -4359))) (-4107 (|has| *1 (-6 -4351)))))) +(-13 (-1039) (-10 -8 (-6 -4311) (-15 -3396 ($ (-552) (-552))) (-15 -3396 ($ (-552) (-552) (-902))) (-15 -4241 ((-552) $)) (-15 -4174 ((-902))) (-15 -1406 ((-552) $)) (-15 -1833 ((-552) $)) (-15 -2122 ((-902))) (-15 -2950 ((-902))) (-15 -2180 ((-902))) (IF (|has| $ (-6 -4359)) (PROGN (-15 -2122 ((-902) (-902))) (-15 -2950 ((-902) (-902))) (-15 -2180 ((-902) (-902))) (-15 -1676 ((-902) (-552))) (-15 -2474 ((-902) (-552)))) |%noBranch|) (IF (|has| $ (-6 -4351)) |%noBranch| (IF (|has| $ (-6 -4359)) |%noBranch| (PROGN (-15 -1772 ($)) (-15 -2011 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-844)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-873 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-830) . T) ((-832) . T) ((-867 (-373)) . T) ((-901) . T) ((-983) . T) ((-1003) . T) ((-1039) . T) ((-1019 (-401 (-552))) . T) ((-1019 (-552)) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-1477 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 20))) +(((-399 |#1| |#2|) (-10 -7 (-15 -1477 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-544) (-544)) (T -399)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6))))) +(-10 -7 (-15 -1477 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) +((-1477 (((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)) 13))) +(((-400 |#1| |#2|) (-10 -7 (-15 -1477 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) (-544) (-544)) (T -400)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6))))) +(-10 -7 (-15 -1477 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 13)) (-3603 ((|#1| $) 21 (|has| |#1| (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| |#1| (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 17) (((-3 (-1154) "failed") $) NIL (|has| |#1| (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552))))) (-2832 ((|#1| $) 15) (((-1154) $) NIL (|has| |#1| (-1019 (-1154)))) (((-401 (-552)) $) 67 (|has| |#1| (-1019 (-552)))) (((-552) $) NIL (|has| |#1| (-1019 (-552))))) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) 50)) (-1332 (($) NIL (|has| |#1| (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| |#1| (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| |#1| (-867 (-373))))) (-4065 (((-111) $) 64)) (-3773 (($ $) NIL)) (-4015 ((|#1| $) 71)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-3127 (((-111) $) NIL (|has| |#1| (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| |#1| (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 97)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| |#1| (-301)))) (-3410 ((|#1| $) 28 (|has| |#1| (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 135 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 131 (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-506 (-1154) |#1|)))) (-3795 (((-756) $) NIL)) (-2060 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2493 (($ $) NIL)) (-4026 ((|#1| $) 73)) (-1522 (((-873 (-552)) $) NIL (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| |#1| (-600 (-873 (-373))))) (((-528) $) NIL (|has| |#1| (-600 (-528)))) (((-373) $) NIL (|has| |#1| (-1003))) (((-220) $) NIL (|has| |#1| (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 115 (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 10) (($ (-1154)) NIL (|has| |#1| (-1019 (-1154))))) (-3878 (((-3 $ "failed") $) 99 (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 100)) (-3763 ((|#1| $) 26 (|has| |#1| (-537)))) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| |#1| (-805)))) (-3297 (($) 22 T CONST)) (-3309 (($) 8 T CONST)) (-3016 (((-1136) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-813)))) (((-1136) $ (-111)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-813)))) (((-1242) (-807) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-813)))) (((-1242) (-807) $ (-111)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-813))))) (-1765 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 56)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) 24 (|has| |#1| (-832)))) (-1720 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1709 (($ $) 25) (($ $ $) 55)) (-1698 (($ $ $) 53)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 125)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 60) (($ $ $) 57) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-401 |#1|) (-13 (-973 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4355)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4366)) (-6 -4355) |%noBranch|) |%noBranch|) |%noBranch|))) (-544)) (T -401)) +NIL +(-13 (-973 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4355)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4366)) (-6 -4355) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2977 (((-673 |#2|) (-1237 $)) NIL) (((-673 |#2|)) 18)) (-4278 (($ (-1237 |#2|) (-1237 $)) NIL) (($ (-1237 |#2|)) 24)) (-3584 (((-673 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) $) 38)) (-2169 ((|#3| $) 60)) (-1721 ((|#2| (-1237 $)) NIL) ((|#2|) 20)) (-3464 (((-1237 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) (-1237 $) (-1237 $)) NIL) (((-1237 |#2|) $) 22) (((-673 |#2|) (-1237 $)) 36)) (-1522 (((-1237 |#2|) $) 11) (($ (-1237 |#2|)) 13)) (-3767 ((|#3| $) 52))) +(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -3584 ((-673 |#2|) |#1|)) (-15 -1721 (|#2|)) (-15 -2977 ((-673 |#2|))) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -2169 (|#3| |#1|)) (-15 -3767 (|#3| |#1|)) (-15 -2977 ((-673 |#2|) (-1237 |#1|))) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3584 ((-673 |#2|) |#1| (-1237 |#1|)))) (-403 |#2| |#3|) (-169) (-1213 |#2|)) (T -402)) +((-2977 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-1721 (*1 *2) (-12 (-4 *4 (-1213 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) +(-10 -8 (-15 -3584 ((-673 |#2|) |#1|)) (-15 -1721 (|#2|)) (-15 -2977 ((-673 |#2|))) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -2169 (|#3| |#1|)) (-15 -3767 (|#3| |#1|)) (-15 -2977 ((-673 |#2|) (-1237 |#1|))) (-15 -1721 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3584 ((-673 |#2|) |#1| (-1237 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2977 (((-673 |#1|) (-1237 $)) 44) (((-673 |#1|)) 59)) (-1549 ((|#1| $) 50)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-4278 (($ (-1237 |#1|) (-1237 $)) 46) (($ (-1237 |#1|)) 62)) (-3584 (((-673 |#1|) $ (-1237 $)) 51) (((-673 |#1|) $) 57)) (-1293 (((-3 $ "failed") $) 32)) (-2128 (((-902)) 52)) (-4065 (((-111) $) 30)) (-4346 ((|#1| $) 49)) (-2169 ((|#2| $) 42 (|has| |#1| (-357)))) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-1721 ((|#1| (-1237 $)) 45) ((|#1|) 58)) (-3464 (((-1237 |#1|) $ (-1237 $)) 48) (((-673 |#1|) (-1237 $) (-1237 $)) 47) (((-1237 |#1|) $) 64) (((-673 |#1|) (-1237 $)) 63)) (-1522 (((-1237 |#1|) $) 61) (($ (-1237 |#1|)) 60)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3878 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-3767 ((|#2| $) 43)) (-2014 (((-756)) 28)) (-4199 (((-1237 $)) 65)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-403 |#1| |#2|) (-137) (-169) (-1213 |t#1|)) (T -403)) +((-4199 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-1237 *1)) (-4 *1 (-403 *3 *4)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-1237 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1213 *3)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-1237 *3)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1213 *3)))) (-2977 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-673 *3)))) (-1721 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-673 *3))))) +(-13 (-364 |t#1| |t#2|) (-10 -8 (-15 -4199 ((-1237 $))) (-15 -3464 ((-1237 |t#1|) $)) (-15 -3464 ((-673 |t#1|) (-1237 $))) (-15 -4278 ($ (-1237 |t#1|))) (-15 -1522 ((-1237 |t#1|) $)) (-15 -1522 ($ (-1237 |t#1|))) (-15 -2977 ((-673 |t#1|))) (-15 -1721 (|t#1|)) (-15 -3584 ((-673 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-364 |#1| |#2|) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) . T) ((-711) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) 27) (((-3 (-552) "failed") $) 19)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) 24) (((-552) $) 14)) (-3213 (($ |#2|) NIL) (($ (-401 (-552))) 22) (($ (-552)) 11))) +(((-404 |#1| |#2|) (-10 -8 (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|))) (-405 |#2|) (-1191)) (T -404)) +NIL +(-10 -8 (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|))) +((-1393 (((-3 |#1| "failed") $) 7) (((-3 (-401 (-552)) "failed") $) 16 (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) 13 (|has| |#1| (-1019 (-552))))) (-2832 ((|#1| $) 8) (((-401 (-552)) $) 15 (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) 12 (|has| |#1| (-1019 (-552))))) (-3213 (($ |#1|) 6) (($ (-401 (-552))) 17 (|has| |#1| (-1019 (-401 (-552))))) (($ (-552)) 14 (|has| |#1| (-1019 (-552)))))) +(((-405 |#1|) (-137) (-1191)) (T -405)) +NIL +(-13 (-1019 |t#1|) (-10 -7 (IF (|has| |t#1| (-1019 (-552))) (-6 (-1019 (-552))) |%noBranch|) (IF (|has| |t#1| (-1019 (-401 (-552)))) (-6 (-1019 (-401 (-552)))) |%noBranch|))) +(((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T)) +((-1477 (((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)) 33))) +(((-406 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1477 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) (-301) (-973 |#1|) (-1213 |#2|) (-13 (-403 |#2| |#3|) (-1019 |#2|)) (-301) (-973 |#5|) (-1213 |#6|) (-13 (-403 |#6| |#7|) (-1019 |#6|))) (T -406)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-973 *5)) (-4 *7 (-1213 *6)) (-4 *8 (-13 (-403 *6 *7) (-1019 *6))) (-4 *9 (-301)) (-4 *10 (-973 *9)) (-4 *11 (-1213 *10)) (-5 *2 (-407 *9 *10 *11 *12)) (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1019 *10)))))) +(-10 -7 (-15 -1477 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) +((-3202 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4260 ((|#4| (-756) (-1237 |#4|)) 56)) (-4065 (((-111) $) NIL)) (-4015 (((-1237 |#4|) $) 17)) (-4346 ((|#2| $) 54)) (-2805 (($ $) 139)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 100)) (-3165 (($ (-1237 |#4|)) 99)) (-2876 (((-1098) $) NIL)) (-4026 ((|#1| $) 18)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) 134)) (-4199 (((-1237 |#4|) $) 129)) (-3309 (($) 11 T CONST)) (-1613 (((-111) $ $) 40)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 122)) (* (($ $ $) 121))) +(((-407 |#1| |#2| |#3| |#4|) (-13 (-466) (-10 -8 (-15 -3165 ($ (-1237 |#4|))) (-15 -4199 ((-1237 |#4|) $)) (-15 -4346 (|#2| $)) (-15 -4015 ((-1237 |#4|) $)) (-15 -4026 (|#1| $)) (-15 -2805 ($ $)) (-15 -4260 (|#4| (-756) (-1237 |#4|))))) (-301) (-973 |#1|) (-1213 |#2|) (-13 (-403 |#2| |#3|) (-1019 |#2|))) (T -407)) +((-3165 (*1 *1 *2) (-12 (-5 *2 (-1237 *6)) (-4 *6 (-13 (-403 *4 *5) (-1019 *4))) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-4 *3 (-301)) (-5 *1 (-407 *3 *4 *5 *6)))) (-4199 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-5 *2 (-1237 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1019 *4))))) (-4346 (*1 *2 *1) (-12 (-4 *4 (-1213 *2)) (-4 *2 (-973 *3)) (-5 *1 (-407 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1019 *2))))) (-4015 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-5 *2 (-1237 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1019 *4))))) (-4026 (*1 *2 *1) (-12 (-4 *3 (-973 *2)) (-4 *4 (-1213 *3)) (-4 *2 (-301)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1019 *3))))) (-2805 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-973 *2)) (-4 *4 (-1213 *3)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1019 *3))))) (-4260 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-1237 *2)) (-4 *5 (-301)) (-4 *6 (-973 *5)) (-4 *2 (-13 (-403 *6 *7) (-1019 *6))) (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1213 *6))))) +(-13 (-466) (-10 -8 (-15 -3165 ($ (-1237 |#4|))) (-15 -4199 ((-1237 |#4|) $)) (-15 -4346 (|#2| $)) (-15 -4015 ((-1237 |#4|) $)) (-15 -4026 (|#1| $)) (-15 -2805 ($ $)) (-15 -4260 (|#4| (-756) (-1237 |#4|))))) +((-3202 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-4346 ((|#2| $) 61)) (-2044 (($ (-1237 |#4|)) 25) (($ (-407 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1019 |#2|)))) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 34)) (-4199 (((-1237 |#4|) $) 26)) (-3309 (($) 23 T CONST)) (-1613 (((-111) $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ $ $) 72))) +(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-711) (-10 -8 (-15 -4199 ((-1237 |#4|) $)) (-15 -4346 (|#2| $)) (-15 -2044 ($ (-1237 |#4|))) (IF (|has| |#4| (-1019 |#2|)) (-15 -2044 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-301) (-973 |#1|) (-1213 |#2|) (-403 |#2| |#3|) (-1237 |#4|)) (T -408)) +((-4199 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-5 *2 (-1237 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-4346 (*1 *2 *1) (-12 (-4 *4 (-1213 *2)) (-4 *2 (-973 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1237 *5)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-1237 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1019 *4)) (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1237 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) +(-13 (-711) (-10 -8 (-15 -4199 ((-1237 |#4|) $)) (-15 -4346 (|#2| $)) (-15 -2044 ($ (-1237 |#4|))) (IF (|has| |#4| (-1019 |#2|)) (-15 -2044 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1477 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-169) (-411 |#4|) (-169)) (T -409)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) +(-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) +((-3784 (((-3 $ "failed")) 86)) (-1432 (((-1237 (-673 |#2|)) (-1237 $)) NIL) (((-1237 (-673 |#2|))) 91)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 85)) (-2004 (((-3 $ "failed")) 84)) (-1561 (((-673 |#2|) (-1237 $)) NIL) (((-673 |#2|)) 102)) (-3695 (((-673 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) $) 110)) (-2637 (((-1150 (-933 |#2|))) 55)) (-3332 ((|#2| (-1237 $)) NIL) ((|#2|) 106)) (-4278 (($ (-1237 |#2|) (-1237 $)) NIL) (($ (-1237 |#2|)) 112)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 83)) (-2299 (((-3 $ "failed")) 75)) (-3607 (((-673 |#2|) (-1237 $)) NIL) (((-673 |#2|)) 100)) (-1837 (((-673 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) $) 108)) (-2173 (((-1150 (-933 |#2|))) 54)) (-3400 ((|#2| (-1237 $)) NIL) ((|#2|) 104)) (-3464 (((-1237 |#2|) $ (-1237 $)) NIL) (((-673 |#2|) (-1237 $) (-1237 $)) NIL) (((-1237 |#2|) $) 111) (((-673 |#2|) (-1237 $)) 118)) (-1522 (((-1237 |#2|) $) 96) (($ (-1237 |#2|)) 98)) (-2566 (((-629 (-933 |#2|)) (-1237 $)) NIL) (((-629 (-933 |#2|))) 94)) (-2639 (($ (-673 |#2|) $) 90))) +(((-410 |#1| |#2|) (-10 -8 (-15 -2639 (|#1| (-673 |#2|) |#1|)) (-15 -2637 ((-1150 (-933 |#2|)))) (-15 -2173 ((-1150 (-933 |#2|)))) (-15 -3695 ((-673 |#2|) |#1|)) (-15 -1837 ((-673 |#2|) |#1|)) (-15 -1561 ((-673 |#2|))) (-15 -3607 ((-673 |#2|))) (-15 -3332 (|#2|)) (-15 -3400 (|#2|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -2566 ((-629 (-933 |#2|)))) (-15 -1432 ((-1237 (-673 |#2|)))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -3784 ((-3 |#1| "failed"))) (-15 -2004 ((-3 |#1| "failed"))) (-15 -2299 ((-3 |#1| "failed"))) (-15 -3254 ((-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed"))) (-15 -4255 ((-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed"))) (-15 -1561 ((-673 |#2|) (-1237 |#1|))) (-15 -3607 ((-673 |#2|) (-1237 |#1|))) (-15 -3332 (|#2| (-1237 |#1|))) (-15 -3400 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3695 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1837 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1432 ((-1237 (-673 |#2|)) (-1237 |#1|))) (-15 -2566 ((-629 (-933 |#2|)) (-1237 |#1|)))) (-411 |#2|) (-169)) (T -410)) +((-1432 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1237 (-673 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2566 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-629 (-933 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3400 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-3332 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-3607 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-673 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1561 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-673 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2173 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1150 (-933 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2637 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1150 (-933 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) +(-10 -8 (-15 -2639 (|#1| (-673 |#2|) |#1|)) (-15 -2637 ((-1150 (-933 |#2|)))) (-15 -2173 ((-1150 (-933 |#2|)))) (-15 -3695 ((-673 |#2|) |#1|)) (-15 -1837 ((-673 |#2|) |#1|)) (-15 -1561 ((-673 |#2|))) (-15 -3607 ((-673 |#2|))) (-15 -3332 (|#2|)) (-15 -3400 (|#2|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4278 (|#1| (-1237 |#2|))) (-15 -2566 ((-629 (-933 |#2|)))) (-15 -1432 ((-1237 (-673 |#2|)))) (-15 -3464 ((-673 |#2|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1|)) (-15 -3784 ((-3 |#1| "failed"))) (-15 -2004 ((-3 |#1| "failed"))) (-15 -2299 ((-3 |#1| "failed"))) (-15 -3254 ((-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed"))) (-15 -4255 ((-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed"))) (-15 -1561 ((-673 |#2|) (-1237 |#1|))) (-15 -3607 ((-673 |#2|) (-1237 |#1|))) (-15 -3332 (|#2| (-1237 |#1|))) (-15 -3400 (|#2| (-1237 |#1|))) (-15 -4278 (|#1| (-1237 |#2|) (-1237 |#1|))) (-15 -3464 ((-673 |#2|) (-1237 |#1|) (-1237 |#1|))) (-15 -3464 ((-1237 |#2|) |#1| (-1237 |#1|))) (-15 -3695 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1837 ((-673 |#2|) |#1| (-1237 |#1|))) (-15 -1432 ((-1237 (-673 |#2|)) (-1237 |#1|))) (-15 -2566 ((-629 (-933 |#2|)) (-1237 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3784 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) 19)) (-1432 (((-1237 (-673 |#1|)) (-1237 $)) 78) (((-1237 (-673 |#1|))) 100)) (-4124 (((-1237 $)) 81)) (-2130 (($) 17 T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 40 (|has| |#1| (-544)))) (-2004 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-1561 (((-673 |#1|) (-1237 $)) 65) (((-673 |#1|)) 92)) (-2416 ((|#1| $) 74)) (-3695 (((-673 |#1|) $ (-1237 $)) 76) (((-673 |#1|) $) 90)) (-2583 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-2637 (((-1150 (-933 |#1|))) 88 (|has| |#1| (-357)))) (-3422 (($ $ (-902)) 28)) (-2932 ((|#1| $) 72)) (-1688 (((-1150 |#1|) $) 42 (|has| |#1| (-544)))) (-3332 ((|#1| (-1237 $)) 67) ((|#1|) 94)) (-1469 (((-1150 |#1|) $) 63)) (-2890 (((-111)) 57)) (-4278 (($ (-1237 |#1|) (-1237 $)) 69) (($ (-1237 |#1|)) 98)) (-1293 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-2128 (((-902)) 80)) (-1756 (((-111)) 54)) (-3454 (($ $ (-902)) 33)) (-1887 (((-111)) 50)) (-2143 (((-111)) 48)) (-4284 (((-111)) 52)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) 41 (|has| |#1| (-544)))) (-2299 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-3607 (((-673 |#1|) (-1237 $)) 66) (((-673 |#1|)) 93)) (-3975 ((|#1| $) 75)) (-1837 (((-673 |#1|) $ (-1237 $)) 77) (((-673 |#1|) $) 91)) (-4152 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-2173 (((-1150 (-933 |#1|))) 89 (|has| |#1| (-357)))) (-1736 (($ $ (-902)) 29)) (-3231 ((|#1| $) 73)) (-3854 (((-1150 |#1|) $) 43 (|has| |#1| (-544)))) (-3400 ((|#1| (-1237 $)) 68) ((|#1|) 95)) (-3326 (((-1150 |#1|) $) 64)) (-3724 (((-111)) 58)) (-2623 (((-1136) $) 9)) (-3329 (((-111)) 49)) (-4108 (((-111)) 51)) (-4297 (((-111)) 53)) (-2876 (((-1098) $) 10)) (-1864 (((-111)) 56)) (-2060 ((|#1| $ (-552)) 101)) (-3464 (((-1237 |#1|) $ (-1237 $)) 71) (((-673 |#1|) (-1237 $) (-1237 $)) 70) (((-1237 |#1|) $) 103) (((-673 |#1|) (-1237 $)) 102)) (-1522 (((-1237 |#1|) $) 97) (($ (-1237 |#1|)) 96)) (-2566 (((-629 (-933 |#1|)) (-1237 $)) 79) (((-629 (-933 |#1|))) 99)) (-2104 (($ $ $) 25)) (-2923 (((-111)) 62)) (-3213 (((-844) $) 11)) (-4199 (((-1237 $)) 104)) (-1430 (((-629 (-1237 |#1|))) 44 (|has| |#1| (-544)))) (-1826 (($ $ $ $) 26)) (-1640 (((-111)) 60)) (-2639 (($ (-673 |#1|) $) 87)) (-2845 (($ $ $) 24)) (-2646 (((-111)) 61)) (-2127 (((-111)) 59)) (-4028 (((-111)) 55)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 30)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-411 |#1|) (-137) (-169)) (T -411)) -((-2957 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-411 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3449 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 (-671 *3))))) (-2539 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-627 (-931 *3))))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-2806 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3119 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-1425 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-2877 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-1548 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1148 (-931 *3))))) (-2856 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1148 (-931 *3))))) (-3288 (*1 *1 *2 *1) (-12 (-5 *2 (-671 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169))))) -(-13 (-361 |t#1|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -1985 (|t#1| $ (-552))) (-15 -3449 ((-1235 (-671 |t#1|)))) (-15 -2539 ((-627 (-931 |t#1|)))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -3562 ((-1235 |t#1|) $)) (-15 -3562 ($ (-1235 |t#1|))) (-15 -2806 (|t#1|)) (-15 -3119 (|t#1|)) (-15 -1425 ((-671 |t#1|))) (-15 -2877 ((-671 |t#1|))) (-15 -2593 ((-671 |t#1|) $)) (-15 -3029 ((-671 |t#1|) $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -1548 ((-1148 (-931 |t#1|)))) (-15 -2856 ((-1148 (-931 |t#1|))))) |%noBranch|) (-15 -3288 ($ (-671 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-361 |#1|) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-727 |#1|) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 45)) (-3175 (($ $) 60)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 148)) (-3245 (($ $) NIL)) (-4058 (((-111) $) 39)) (-2717 ((|#1| $) 13)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-1193)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-1193)))) (-3927 (($ |#1| (-552)) 34)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 118)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 58)) (-2040 (((-3 $ "failed") $) 133)) (-2859 (((-3 (-401 (-552)) "failed") $) 66 (|has| |#1| (-537)))) (-4229 (((-111) $) 62 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 73 (|has| |#1| (-537)))) (-1297 (($ |#1| (-552)) 36)) (-1633 (((-111) $) 154 (|has| |#1| (-1193)))) (-2624 (((-111) $) 46)) (-1937 (((-754) $) 41)) (-3976 (((-3 "nil" "sqfr" "irred" "prime") $ (-552)) 139)) (-2792 ((|#1| $ (-552)) 138)) (-2489 (((-552) $ (-552)) 137)) (-3686 (($ |#1| (-552)) 33)) (-3516 (($ (-1 |#1| |#1|) $) 145)) (-3055 (($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552))))) 61)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-2245 (($ |#1| (-552)) 35)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) 149 (|has| |#1| (-445)))) (-4235 (($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2101 (((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $) 57)) (-2186 (((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $) 12)) (-1727 (((-412 $) $) NIL (|has| |#1| (-1193)))) (-2761 (((-3 $ "failed") $ $) 140)) (-4067 (((-552) $) 134)) (-2496 ((|#1| $) 59)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 88 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) $) NIL (|has| |#1| (-506 (-1152) $))) (($ $ (-627 (-1152)) (-627 $)) 89 (|has| |#1| (-506 (-1152) $))) (($ $ (-627 (-288 $))) 85 (|has| |#1| (-303 $))) (($ $ (-288 $)) NIL (|has| |#1| (-303 $))) (($ $ $ $) NIL (|has| |#1| (-303 $))) (($ $ (-627 $) (-627 $)) NIL (|has| |#1| (-303 $)))) (-1985 (($ $ |#1|) 74 (|has| |#1| (-280 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-280 $ $)))) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-3562 (((-528) $) 30 (|has| |#1| (-600 (-528)))) (((-373) $) 95 (|has| |#1| (-1001))) (((-220) $) 98 (|has| |#1| (-1001)))) (-1477 (((-842) $) 116) (($ (-552)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552)))))) (-3995 (((-754)) 51)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 43 T CONST)) (-1933 (($) 42 T CONST)) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2292 (((-111) $ $) 99)) (-2396 (($ $) 130) (($ $ $) NIL)) (-2384 (($ $ $) 142)) (** (($ $ (-900)) NIL) (($ $ (-754)) 105)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-412 |#1|) (-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -2496 (|#1| $)) (-15 -4067 ((-552) $)) (-15 -3055 ($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2186 ((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -3686 ($ |#1| (-552))) (-15 -2101 ((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $)) (-15 -2245 ($ |#1| (-552))) (-15 -2489 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3976 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1937 ((-754) $)) (-15 -1297 ($ |#1| (-552))) (-15 -3927 ($ |#1| (-552))) (-15 -4235 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2717 (|#1| $)) (-15 -3175 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |#1| (-1193)) (-6 (-1193)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1152) $)) (-6 (-506 (-1152) $)) |%noBranch|))) (-544)) (T -412)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) (-2496 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3055 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-552))))) (-4 *2 (-544)) (-5 *1 (-412 *2)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3686 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -4067 (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2489 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3976 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *4)) (-4 *4 (-544)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-1297 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4235 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2717 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3175 (*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544))))) -(-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -2496 (|#1| $)) (-15 -4067 ((-552) $)) (-15 -3055 ($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2186 ((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -3686 ($ |#1| (-552))) (-15 -2101 ((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $)) (-15 -2245 ($ |#1| (-552))) (-15 -2489 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3976 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1937 ((-754) $)) (-15 -1297 ($ |#1| (-552))) (-15 -3927 ($ |#1| (-552))) (-15 -4235 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2717 (|#1| $)) (-15 -3175 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |#1| (-1193)) (-6 (-1193)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1152) $)) (-6 (-506 (-1152) $)) |%noBranch|))) -((-3938 (((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|)) 21)) (-2027 (((-412 |#1|) (-412 |#1|) (-412 |#1|)) 16))) -(((-413 |#1|) (-10 -7 (-15 -3938 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -2027 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) (-544)) (T -413)) -((-2027 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) (-5 *1 (-413 *4))))) -(-10 -7 (-15 -3938 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -2027 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) -((-1272 ((|#2| |#2|) 166)) (-4084 (((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111)) 57))) -(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4084 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111))) (-15 -1272 (|#2| |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -414)) -((-1272 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1174) (-424 *3))) (-14 *4 (-1152)) (-14 *5 *2))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-14 *6 (-1152)) (-14 *7 *3)))) -(-10 -7 (-15 -4084 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111))) (-15 -1272 (|#2| |#2|))) -((-3516 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1028) (-830)) (-424 |#1|) (-13 (-1028) (-830)) (-424 |#3|)) (T -415)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1028) (-830))) (-4 *6 (-13 (-1028) (-830))) (-4 *2 (-424 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) -((-1272 ((|#2| |#2|) 90)) (-3912 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134)) 48)) (-2670 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134)) 154))) -(((-416 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3912 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -2670 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -1272 (|#2| |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|) (-10 -8 (-15 -1477 ($ |#3|)))) (-828) (-13 (-1213 |#2| |#3|) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $)))) (-962 |#4|) (-1152)) (T -416)) -((-1272 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *2 (-13 (-27) (-1174) (-424 *3) (-10 -8 (-15 -1477 ($ *4))))) (-4 *4 (-828)) (-4 *5 (-13 (-1213 *2 *4) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-962 *5)) (-14 *7 (-1152)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) (-4 *7 (-828)) (-4 *8 (-13 (-1213 *3 *7) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) (-14 *10 (-1152)))) (-3912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) (-4 *7 (-828)) (-4 *8 (-13 (-1213 *3 *7) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) (-14 *10 (-1152))))) -(-10 -7 (-15 -3912 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -2670 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -1272 (|#2| |#2|))) -((-2169 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2091 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3516 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1076) (-419 |#1|) (-1076) (-419 |#3|)) (T -417)) -((-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1076)) (-4 *5 (-1076)) (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1076)) (-4 *2 (-1076)) (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3065 (($) 44)) (-3416 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3694 (($ $ $) 39)) (-3632 (((-111) $ $) 28)) (-3307 (((-754)) 47)) (-1342 (($ (-627 |#2|)) 20) (($) NIL)) (-1279 (($) 53)) (-1854 (((-111) $ $) 13)) (-1816 ((|#2| $) 61)) (-4093 ((|#2| $) 59)) (-2886 (((-900) $) 55)) (-3383 (($ $ $) 35)) (-4153 (($ (-900)) 50)) (-2613 (($ $ |#2|) NIL) (($ $ $) 38)) (-1509 (((-754) (-1 (-111) |#2|) $) NIL) (((-754) |#2| $) 26)) (-1490 (($ (-627 |#2|)) 24)) (-1901 (($ $) 46)) (-1477 (((-842) $) 33)) (-3550 (((-754) $) 21)) (-4243 (($ (-627 |#2|)) 19) (($) NIL)) (-2292 (((-111) $ $) 16))) -(((-418 |#1| |#2|) (-10 -8 (-15 -3307 ((-754))) (-15 -4153 (|#1| (-900))) (-15 -2886 ((-900) |#1|)) (-15 -1279 (|#1|)) (-15 -1816 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -3065 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -3550 ((-754) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -1854 ((-111) |#1| |#1|)) (-15 -4243 (|#1|)) (-15 -4243 (|#1| (-627 |#2|))) (-15 -1342 (|#1|)) (-15 -1342 (|#1| (-627 |#2|))) (-15 -3383 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3632 ((-111) |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#2| |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|))) (-419 |#2|) (-1076)) (T -418)) -((-3307 (*1 *2) (-12 (-4 *4 (-1076)) (-5 *2 (-754)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) -(-10 -8 (-15 -3307 ((-754))) (-15 -4153 (|#1| (-900))) (-15 -2886 ((-900) |#1|)) (-15 -1279 (|#1|)) (-15 -1816 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -3065 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -3550 ((-754) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -1854 ((-111) |#1| |#1|)) (-15 -4243 (|#1|)) (-15 -4243 (|#1| (-627 |#2|))) (-15 -1342 (|#1|)) (-15 -1342 (|#1| (-627 |#2|))) (-15 -3383 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3632 ((-111) |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#2| |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|))) -((-1465 (((-111) $ $) 19)) (-3065 (($) 67 (|has| |#1| (-362)))) (-3416 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3694 (($ $ $) 78)) (-3632 (((-111) $ $) 79)) (-4031 (((-111) $ (-754)) 8)) (-3307 (((-754)) 61 (|has| |#1| (-362)))) (-1342 (($ (-627 |#1|)) 74) (($) 73)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-1279 (($) 64 (|has| |#1| (-362)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 70)) (-1602 (((-111) $ (-754)) 9)) (-1816 ((|#1| $) 65 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 66 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-2886 (((-900) $) 63 (|has| |#1| (-362)))) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 75)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-4153 (($ (-900)) 62 (|has| |#1| (-362)))) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-2613 (($ $ |#1|) 77) (($ $ $) 76)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1901 (($ $) 68 (|has| |#1| (-362)))) (-1477 (((-842) $) 18)) (-3550 (((-754) $) 69)) (-4243 (($ (-627 |#1|)) 72) (($) 71)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-419 |#1|) (-137) (-1076)) (T -419)) -((-3550 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1076)) (-5 *2 (-754)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-362)))) (-3065 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1076)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830))))) -(-13 (-224 |t#1|) (-1074 |t#1|) (-10 -8 (-6 -4366) (-15 -3550 ((-754) $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-15 -1901 ($ $)) (-15 -3065 ($))) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-15 -4093 (|t#1| $)) (-15 -1816 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-224 |#1|) . T) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-362) |has| |#1| (-362)) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) -((-3216 (((-573 |#2|) |#2| (-1152)) 36)) (-3394 (((-573 |#2|) |#2| (-1152)) 20)) (-3067 ((|#2| |#2| (-1152)) 25))) -(((-420 |#1| |#2|) (-10 -7 (-15 -3394 ((-573 |#2|) |#2| (-1152))) (-15 -3216 ((-573 |#2|) |#2| (-1152))) (-15 -3067 (|#2| |#2| (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-29 |#1|))) (T -420)) -((-3067 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1174) (-29 *4))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1174) (-29 *5))))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1174) (-29 *5)))))) -(-10 -7 (-15 -3394 ((-573 |#2|) |#2| (-1152))) (-15 -3216 ((-573 |#2|) |#2| (-1152))) (-15 -3067 (|#2| |#2| (-1152)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1330 (($ |#2| |#1|) 35)) (-1657 (($ |#2| |#1|) 33)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-325 |#2|)) 25)) (-3995 (((-754)) NIL)) (-1922 (($) 10 T CONST)) (-1933 (($) 16 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-421 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4353)) (IF (|has| |#1| (-6 -4353)) (-6 -4353) |%noBranch|) |%noBranch|) (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-325 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -1657 ($ |#2| |#1|)))) (-13 (-169) (-38 (-401 (-552)))) (-13 (-830) (-21))) (T -421)) -((-1477 (*1 *1 *2) (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) (-4 *3 (-13 (-830) (-21))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-830) (-21))) (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) (-1330 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-830) (-21))))) (-1657 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-830) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4353)) (IF (|has| |#1| (-6 -4353)) (-6 -4353) |%noBranch|) |%noBranch|) (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-325 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -1657 ($ |#2| |#1|)))) -((-2747 (((-3 |#2| (-627 |#2|)) |#2| (-1152)) 109))) -(((-422 |#1| |#2|) (-10 -7 (-15 -2747 ((-3 |#2| (-627 |#2|)) |#2| (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -422)) -((-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 *3 (-627 *3))) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1174) (-938) (-29 *5)))))) -(-10 -7 (-15 -2747 ((-3 |#2| (-627 |#2|)) |#2| (-1152)))) -((-1853 (((-627 (-1152)) $) 72)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 273)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) 237)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-1152) "failed") $) 75) (((-3 (-552) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-401 (-931 |#2|)) "failed") $) 324) (((-3 (-931 |#2|) "failed") $) 235) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-1152) $) 30) (((-552) $) NIL) ((|#2| $) 231) (((-401 (-931 |#2|)) $) 305) (((-931 |#2|) $) 232) (((-401 (-552)) $) NIL)) (-4148 (((-113) (-113)) 47)) (-3798 (($ $) 87)) (-3362 (((-3 (-598 $) "failed") $) 228)) (-1684 (((-627 (-598 $)) $) 229)) (-4035 (((-3 (-627 $) "failed") $) 247)) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 254)) (-2746 (((-3 (-627 $) "failed") $) 245)) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 264)) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 251) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 219)) (-1960 (((-111) $) 19)) (-1970 ((|#2| $) 21)) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) 236) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 96) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1152)) 57) (($ $ (-627 (-1152))) 240) (($ $) 241) (($ $ (-113) $ (-1152)) 60) (($ $ (-627 (-113)) (-627 $) (-1152)) 67) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 107) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 242) (($ $ (-1152) (-754) (-1 $ (-627 $))) 94) (($ $ (-1152) (-754) (-1 $ $)) 93)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) 106)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) 238)) (-1583 (($ $) 284)) (-3562 (((-871 (-552)) $) 257) (((-871 (-373)) $) 261) (($ (-412 $)) 320) (((-528) $) NIL)) (-1477 (((-842) $) 239) (($ (-598 $)) 84) (($ (-1152)) 26) (($ |#2|) NIL) (($ (-1101 |#2| (-598 $))) NIL) (($ (-401 |#2|)) 289) (($ (-931 (-401 |#2|))) 329) (($ (-401 (-931 (-401 |#2|)))) 301) (($ (-401 (-931 |#2|))) 295) (($ $) NIL) (($ (-931 |#2|)) 185) (($ (-401 (-552))) 334) (($ (-552)) NIL)) (-3995 (((-754)) 79)) (-3749 (((-111) (-113)) 41)) (-1729 (($ (-1152) $) 33) (($ (-1152) $ $) 34) (($ (-1152) $ $ $) 35) (($ (-1152) $ $ $ $) 36) (($ (-1152) (-627 $)) 39)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) -(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-900) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3995 ((-754))) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-931 |#2|) |#1|)) (-15 -4039 ((-3 (-931 |#2|) "failed") |#1|)) (-15 -1477 (|#1| (-931 |#2|))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1703 ((-401 (-931 |#2|)) |#1|)) (-15 -4039 ((-3 (-401 (-931 |#2|)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-931 |#2|)))) (-15 -1694 ((-401 (-1148 |#1|)) |#1| (-598 |#1|))) (-15 -1477 (|#1| (-401 (-931 (-401 |#2|))))) (-15 -1477 (|#1| (-931 (-401 |#2|)))) (-15 -1477 (|#1| (-401 |#2|))) (-15 -1583 (|#1| |#1|)) (-15 -3562 (|#1| (-412 |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| |#1|)))) (-15 -1382 ((-3 (-2 (|:| |val| |#1|) (|:| -4067 (-552))) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-1152))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-113))) (-15 -3798 (|#1| |#1|)) (-15 -1477 (|#1| (-1101 |#2| (-598 |#1|)))) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 |#1|) (-1152))) (-15 -3321 (|#1| |#1| (-113) |#1| (-1152))) (-15 -3321 (|#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1152)))) (-15 -3321 (|#1| |#1| (-1152))) (-15 -1729 (|#1| (-1152) (-627 |#1|))) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1|)) (-15 -1853 ((-627 (-1152)) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1684 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -1477 (|#1| (-598 |#1|))) (-15 -1477 ((-842) |#1|))) (-424 |#2|) (-830)) (T -423)) -((-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-830)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-3995 (*1 *2) (-12 (-4 *4 (-830)) (-5 *2 (-754)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) -(-10 -8 (-15 * (|#1| (-900) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3995 ((-754))) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-931 |#2|) |#1|)) (-15 -4039 ((-3 (-931 |#2|) "failed") |#1|)) (-15 -1477 (|#1| (-931 |#2|))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1703 ((-401 (-931 |#2|)) |#1|)) (-15 -4039 ((-3 (-401 (-931 |#2|)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-931 |#2|)))) (-15 -1694 ((-401 (-1148 |#1|)) |#1| (-598 |#1|))) (-15 -1477 (|#1| (-401 (-931 (-401 |#2|))))) (-15 -1477 (|#1| (-931 (-401 |#2|)))) (-15 -1477 (|#1| (-401 |#2|))) (-15 -1583 (|#1| |#1|)) (-15 -3562 (|#1| (-412 |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| |#1|)))) (-15 -1382 ((-3 (-2 (|:| |val| |#1|) (|:| -4067 (-552))) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-1152))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-113))) (-15 -3798 (|#1| |#1|)) (-15 -1477 (|#1| (-1101 |#2| (-598 |#1|)))) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 |#1|) (-1152))) (-15 -3321 (|#1| |#1| (-113) |#1| (-1152))) (-15 -3321 (|#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1152)))) (-15 -3321 (|#1| |#1| (-1152))) (-15 -1729 (|#1| (-1152) (-627 |#1|))) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1|)) (-15 -1853 ((-627 (-1152)) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1684 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -1477 (|#1| (-598 |#1|))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 113 (|has| |#1| (-25)))) (-1853 (((-627 (-1152)) $) 200)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 168 (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 140 (|has| |#1| (-544)))) (-3245 (($ $) 141 (|has| |#1| (-544)))) (-4058 (((-111) $) 143 (|has| |#1| (-544)))) (-3443 (((-627 (-598 $)) $) 44)) (-4136 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-2620 (($ $ (-288 $)) 56) (($ $ (-627 (-288 $))) 55) (($ $ (-627 (-598 $)) (-627 $)) 54)) (-4014 (($ $) 160 (|has| |#1| (-544)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-544)))) (-4224 (((-111) $ $) 151 (|has| |#1| (-544)))) (-3887 (($) 101 (-1559 (|has| |#1| (-1088)) (|has| |#1| (-25))) CONST)) (-4039 (((-3 (-598 $) "failed") $) 69) (((-3 (-1152) "failed") $) 213) (((-3 (-552) "failed") $) 206 (|has| |#1| (-1017 (-552)))) (((-3 |#1| "failed") $) 204) (((-3 (-401 (-931 |#1|)) "failed") $) 166 (|has| |#1| (-544))) (((-3 (-931 |#1|) "failed") $) 120 (|has| |#1| (-1028))) (((-3 (-401 (-552)) "failed") $) 95 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-598 $) $) 68) (((-1152) $) 212) (((-552) $) 207 (|has| |#1| (-1017 (-552)))) ((|#1| $) 203) (((-401 (-931 |#1|)) $) 165 (|has| |#1| (-544))) (((-931 |#1|) $) 119 (|has| |#1| (-1028))) (((-401 (-552)) $) 94 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) 155 (|has| |#1| (-544)))) (-1800 (((-671 (-552)) (-671 $)) 134 (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 133 (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 132 (|has| |#1| (-1028))) (((-671 |#1|) (-671 $)) 131 (|has| |#1| (-1028)))) (-2040 (((-3 $ "failed") $) 103 (|has| |#1| (-1088)))) (-2789 (($ $ $) 154 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-544)))) (-1633 (((-111) $) 162 (|has| |#1| (-544)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 209 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 208 (|has| |#1| (-865 (-373))))) (-3820 (($ $) 51) (($ (-627 $)) 50)) (-3795 (((-627 (-113)) $) 43)) (-4148 (((-113) (-113)) 42)) (-2624 (((-111) $) 102 (|has| |#1| (-1088)))) (-1394 (((-111) $) 22 (|has| $ (-1017 (-552))))) (-3798 (($ $) 183 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 184 (|has| |#1| (-1028)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-544)))) (-2602 (((-1148 $) (-598 $)) 25 (|has| $ (-1028)))) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-3516 (($ (-1 $ $) (-598 $)) 36)) (-3362 (((-3 (-598 $) "failed") $) 46)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-544))) (($ $ $) 146 (|has| |#1| (-544)))) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 45)) (-2991 (($ (-113) $) 38) (($ (-113) (-627 $)) 37)) (-4035 (((-3 (-627 $) "failed") $) 189 (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 180 (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 187 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 188 (|has| |#1| (-1088))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 182 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 181 (|has| |#1| (-1028)))) (-2070 (((-111) $ (-113)) 40) (((-111) $ (-1152)) 39)) (-1951 (($ $) 105 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-3476 (((-754) $) 47)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 202)) (-1970 ((|#1| $) 201)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-544)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-544))) (($ $ $) 144 (|has| |#1| (-544)))) (-4094 (((-111) $ $) 35) (((-111) $ (-1152)) 34)) (-1727 (((-412 $) $) 159 (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ $) 139 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-544)))) (-1507 (((-111) $) 23 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) 67) (($ $ (-627 (-598 $)) (-627 $)) 66) (($ $ (-627 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-627 $) (-627 $)) 62) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 33) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 32) (($ $ (-1152) (-1 $ (-627 $))) 31) (($ $ (-1152) (-1 $ $)) 30) (($ $ (-627 (-113)) (-627 (-1 $ $))) 29) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 28) (($ $ (-113) (-1 $ (-627 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1152)) 194 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) 193 (|has| |#1| (-600 (-528)))) (($ $) 192 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 191 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-113)) (-627 $) (-1152)) 190 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 179 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 178 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) 177 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ $)) 176 (|has| |#1| (-1028)))) (-2718 (((-754) $) 152 (|has| |#1| (-544)))) (-1985 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-627 $)) 57)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-544)))) (-2911 (($ $) 49) (($ $ $) 48)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 125 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 124 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 123 (|has| |#1| (-1028))) (($ $ (-1152)) 122 (|has| |#1| (-1028)))) (-1583 (($ $) 173 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 174 (|has| |#1| (-544)))) (-1376 (($ $) 24 (|has| $ (-1028)))) (-3562 (((-871 (-552)) $) 211 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 210 (|has| |#1| (-600 (-871 (-373))))) (($ (-412 $)) 175 (|has| |#1| (-544))) (((-528) $) 97 (|has| |#1| (-600 (-528))))) (-2616 (($ $ $) 108 (|has| |#1| (-466)))) (-2493 (($ $ $) 109 (|has| |#1| (-466)))) (-1477 (((-842) $) 11) (($ (-598 $)) 70) (($ (-1152)) 214) (($ |#1|) 205) (($ (-1101 |#1| (-598 $))) 185 (|has| |#1| (-1028))) (($ (-401 |#1|)) 171 (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) 170 (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) 169 (|has| |#1| (-544))) (($ (-401 (-931 |#1|))) 167 (|has| |#1| (-544))) (($ $) 138 (|has| |#1| (-544))) (($ (-931 |#1|)) 121 (|has| |#1| (-1028))) (($ (-401 (-552))) 96 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552)))))) (($ (-552)) 93 (-1559 (|has| |#1| (-1028)) (|has| |#1| (-1017 (-552)))))) (-3050 (((-3 $ "failed") $) 135 (|has| |#1| (-142)))) (-3995 (((-754)) 130 (|has| |#1| (-1028)))) (-3092 (($ $) 53) (($ (-627 $)) 52)) (-3749 (((-111) (-113)) 41)) (-3778 (((-111) $ $) 142 (|has| |#1| (-544)))) (-1729 (($ (-1152) $) 199) (($ (-1152) $ $) 198) (($ (-1152) $ $ $) 197) (($ (-1152) $ $ $ $) 196) (($ (-1152) (-627 $)) 195)) (-1922 (($) 112 (|has| |#1| (-25)) CONST)) (-1933 (($) 100 (|has| |#1| (-1088)) CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 129 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 128 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 127 (|has| |#1| (-1028))) (($ $ (-1152)) 126 (|has| |#1| (-1028)))) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2407 (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 172 (|has| |#1| (-544))) (($ $ $) 106 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-2396 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2384 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-552)) 107 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-754)) 104 (|has| |#1| (-1088))) (($ $ (-900)) 99 (|has| |#1| (-1088)))) (* (($ (-401 (-552)) $) 164 (|has| |#1| (-544))) (($ $ (-401 (-552))) 163 (|has| |#1| (-544))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-552) $) 118 (|has| |#1| (-21))) (($ (-754) $) 114 (|has| |#1| (-25))) (($ (-900) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1088))))) -(((-424 |#1|) (-137) (-830)) (T -424)) -((-1960 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-111)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-627 (-1152))))) (-1729 (*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-600 (-528))))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-600 (-528))))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-600 (-528))))) (-3321 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1152)) (-4 *1 (-424 *4)) (-4 *4 (-830)) (-4 *4 (-600 (-528))))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 *1)) (-5 *4 (-1152)) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-600 (-528))))) (-4035 (*1 *2 *1) (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-424 *3)))) (-3815 (*1 *2 *1) (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) (-2746 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-424 *3)))) (-2545 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 (-552)) (|:| |var| (-598 *1)))) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-1028)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-1028)))) (-3815 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1028)) (-4 *4 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *4)))) (-3815 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-1028)) (-4 *4 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *4)))) (-1382 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-2 (|:| |val| *1) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) (-5 *4 (-627 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) (-5 *4 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 (-627 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-2929 (*1 *2 *1) (-12 (-4 *3 (-544)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-544)))) (-2407 (*1 *1 *2 *2) (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)) (-4 *4 (-544)) (-5 *2 (-401 (-1148 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-1088))))) -(-13 (-296) (-1017 (-1152)) (-863 |t#1|) (-394 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1960 ((-111) $)) (-15 -1970 (|t#1| $)) (-15 -1853 ((-627 (-1152)) $)) (-15 -1729 ($ (-1152) $)) (-15 -1729 ($ (-1152) $ $)) (-15 -1729 ($ (-1152) $ $ $)) (-15 -1729 ($ (-1152) $ $ $ $)) (-15 -1729 ($ (-1152) (-627 $))) (IF (|has| |t#1| (-600 (-528))) (PROGN (-6 (-600 (-528))) (-15 -3321 ($ $ (-1152))) (-15 -3321 ($ $ (-627 (-1152)))) (-15 -3321 ($ $)) (-15 -3321 ($ $ (-113) $ (-1152))) (-15 -3321 ($ $ (-627 (-113)) (-627 $) (-1152)))) |%noBranch|) (IF (|has| |t#1| (-1088)) (PROGN (-6 (-709)) (-15 ** ($ $ (-754))) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-1017 (-931 |t#1|))) (-6 (-879 (-1152))) (-6 (-371 |t#1|)) (-15 -1477 ($ (-1101 |t#1| (-598 $)))) (-15 -2918 ((-1101 |t#1| (-598 $)) $)) (-15 -3798 ($ $)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152))) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $)) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-1152) (-754) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-1152) (-754) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-357)) (-6 (-1017 (-401 (-931 |t#1|)))) (-15 -3562 ($ (-412 $))) (-15 -2929 ((-1101 |t#1| (-598 $)) $)) (-15 -1583 ($ $)) (-15 -2407 ($ (-1101 |t#1| (-598 $)) (-1101 |t#1| (-598 $)))) (-15 -1477 ($ (-401 |t#1|))) (-15 -1477 ($ (-931 (-401 |t#1|)))) (-15 -1477 ($ (-401 (-931 (-401 |t#1|))))) (-15 -1694 ((-401 (-1148 $)) $ (-598 $))) (IF (|has| |t#1| (-1017 (-552))) (-6 (-1017 (-401 (-552)))) |%noBranch|)) |%noBranch|))) -(((-21) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-23) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-401 (-552))) |has| |#1| (-544)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-544)) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) |has| |#1| (-544)) ((-129) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) |has| |#1| (-544)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-238) |has| |#1| (-544)) ((-284) |has| |#1| (-544)) ((-301) |has| |#1| (-544)) ((-303 $) . T) ((-296) . T) ((-357) |has| |#1| (-544)) ((-371 |#1|) |has| |#1| (-1028)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) |has| |#1| (-544)) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-544)) ((-630 |#1|) |has| |#1| (-169)) ((-630 $) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-623 (-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) ((-623 |#1|) |has| |#1| (-1028)) ((-700 #0#) |has| |#1| (-544)) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) -1559 (|has| |#1| (-1088)) (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-830) . T) ((-879 (-1152)) |has| |#1| (-1028)) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-899) |has| |#1| (-544)) ((-1017 (-401 (-552))) -1559 (|has| |#1| (-1017 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) ((-1017 (-401 (-931 |#1|))) |has| |#1| (-544)) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-598 $)) . T) ((-1017 (-931 |#1|)) |has| |#1| (-1028)) ((-1017 (-1152)) . T) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-544)) ((-1034 |#1|) |has| |#1| (-169)) ((-1034 $) |has| |#1| (-544)) ((-1028) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1035) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1088) -1559 (|has| |#1| (-1088)) (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1076) . T) ((-1189) . T) ((-1193) |has| |#1| (-544))) -((-3958 ((|#2| |#2| |#2|) 33)) (-4148 (((-113) (-113)) 44)) (-1471 ((|#2| |#2|) 66)) (-2939 ((|#2| |#2|) 69)) (-3709 ((|#2| |#2|) 32)) (-2804 ((|#2| |#2| |#2|) 35)) (-3396 ((|#2| |#2| |#2|) 37)) (-3075 ((|#2| |#2| |#2|) 34)) (-1512 ((|#2| |#2| |#2|) 36)) (-3749 (((-111) (-113)) 42)) (-3794 ((|#2| |#2|) 39)) (-2039 ((|#2| |#2|) 38)) (-3329 ((|#2| |#2|) 27)) (-1393 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1974 ((|#2| |#2| |#2|) 31))) -(((-425 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3329 (|#2| |#2|)) (-15 -1393 (|#2| |#2|)) (-15 -1393 (|#2| |#2| |#2|)) (-15 -1974 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2|)) (-15 -1512 (|#2| |#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -1471 (|#2| |#2|))) (-13 (-830) (-544)) (-424 |#1|)) (T -425)) -((-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2039 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1512 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2804 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3075 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3958 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1974 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1393 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1393 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *4)) (-4 *4 (-424 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3329 (|#2| |#2|)) (-15 -1393 (|#2| |#2|)) (-15 -1393 (|#2| |#2| |#2|)) (-15 -1974 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2|)) (-15 -1512 (|#2| |#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -1471 (|#2| |#2|))) -((-2740 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|)) 61))) -(((-426 |#1| |#2|) (-10 -7 (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|))) (IF (|has| |#2| (-27)) (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-544) (-830) (-144)) (-424 |#1|)) (T -426)) -((-2740 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1148 *3)) (|:| |pol2| (-1148 *3)) (|:| |prim| (-1148 *3)))) (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-627 (-1148 *5))) (|:| |prim| (-1148 *5)))) (-5 *1 (-426 *4 *5))))) -(-10 -7 (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|))) (IF (|has| |#2| (-27)) (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2794 (((-1240)) 19)) (-2989 (((-1148 (-401 (-552))) |#2| (-598 |#2|)) 41) (((-401 (-552)) |#2|) 25))) -(((-427 |#1| |#2|) (-10 -7 (-15 -2989 ((-401 (-552)) |#2|)) (-15 -2989 ((-1148 (-401 (-552))) |#2| (-598 |#2|))) (-15 -2794 ((-1240)))) (-13 (-830) (-544) (-1017 (-552))) (-424 |#1|)) (T -427)) -((-2794 (*1 *2) (-12 (-4 *3 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1240)) (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-427 *5 *3)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4))))) -(-10 -7 (-15 -2989 ((-401 (-552)) |#2|)) (-15 -2989 ((-1148 (-401 (-552))) |#2| (-598 |#2|))) (-15 -2794 ((-1240)))) -((-3802 (((-111) $) 28)) (-1535 (((-111) $) 30)) (-2170 (((-111) $) 31)) (-2397 (((-111) $) 34)) (-1648 (((-111) $) 29)) (-3235 (((-111) $) 33)) (-1477 (((-842) $) 18) (($ (-1134)) 27) (($ (-1152)) 23) (((-1152) $) 22) (((-1080) $) 21)) (-3889 (((-111) $) 32)) (-2292 (((-111) $ $) 15))) -(((-428) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ($ (-1152))) (-15 -1477 ((-1152) $)) (-15 -1477 ((-1080) $)) (-15 -3802 ((-111) $)) (-15 -1648 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -3235 ((-111) $)) (-15 -2397 ((-111) $)) (-15 -3889 ((-111) $)) (-15 -1535 ((-111) $)) (-15 -2292 ((-111) $ $))))) (T -428)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-428)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-428)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ($ (-1152))) (-15 -1477 ((-1152) $)) (-15 -1477 ((-1080) $)) (-15 -3802 ((-111) $)) (-15 -1648 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -3235 ((-111) $)) (-15 -2397 ((-111) $)) (-15 -3889 ((-111) $)) (-15 -1535 ((-111) $)) (-15 -2292 ((-111) $ $)))) -((-3585 (((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|) 70)) (-1357 (((-412 |#3|) |#3|) 34)) (-1710 (((-3 (-412 (-1148 (-48))) "failed") |#3|) 46 (|has| |#2| (-1017 (-48))))) (-3290 (((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|) 37))) -(((-429 |#1| |#2| |#3|) (-10 -7 (-15 -1357 ((-412 |#3|) |#3|)) (-15 -3585 ((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|)) (-15 -3290 ((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|)) (IF (|has| |#2| (-1017 (-48))) (-15 -1710 ((-3 (-412 (-1148 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-544) (-830) (-1017 (-552))) (-424 |#1|) (-1211 |#2|)) (T -429)) -((-1710 (*1 *2 *3) (|partial| -12 (-4 *5 (-1017 (-48))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-48)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-3585 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-401 (-552))))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1357 ((-412 |#3|) |#3|)) (-15 -3585 ((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|)) (-15 -3290 ((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|)) (IF (|has| |#2| (-1017 (-48))) (-15 -1710 ((-3 (-412 (-1148 (-48))) "failed") |#3|)) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-2035 (((-1134) $ (-1134)) NIL)) (-1496 (($ $ (-1134)) NIL)) (-3689 (((-1134) $) NIL)) (-3779 (((-382) (-382) (-382)) 17) (((-382) (-382)) 15)) (-2849 (($ (-382)) NIL) (($ (-382) (-1134)) NIL)) (-3112 (((-382) $) NIL)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2200 (((-1240) (-1134)) 9)) (-2629 (((-1240) (-1134)) 10)) (-3068 (((-1240)) 11)) (-1477 (((-842) $) NIL)) (-2219 (($ $) 35)) (-2292 (((-111) $ $) NIL))) -(((-430) (-13 (-358 (-382) (-1134)) (-10 -7 (-15 -3779 ((-382) (-382) (-382))) (-15 -3779 ((-382) (-382))) (-15 -2200 ((-1240) (-1134))) (-15 -2629 ((-1240) (-1134))) (-15 -3068 ((-1240)))))) (T -430)) -((-3779 (*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430)))) (-3068 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-430))))) -(-13 (-358 (-382) (-1134)) (-10 -7 (-15 -3779 ((-382) (-382) (-382))) (-15 -3779 ((-382) (-382))) (-15 -2200 ((-1240) (-1134))) (-15 -2629 ((-1240) (-1134))) (-15 -3068 ((-1240))))) -((-1465 (((-111) $ $) NIL)) (-1558 (((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $) 11)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1359 (($) 32)) (-3919 (($) 38)) (-1269 (($) 34)) (-1750 (($) 36)) (-1676 (($) 33)) (-1616 (($) 35)) (-3148 (($) 37)) (-1829 (((-111) $) 8)) (-1623 (((-627 (-931 (-552))) $) 19)) (-1490 (($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111)) 27) (($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111)) 28)) (-1477 (((-842) $) 23) (($ (-428)) 29)) (-2292 (((-111) $ $) NIL))) -(((-431) (-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -1477 ($ (-428))) (-15 -1558 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -1623 ((-627 (-931 (-552))) $)) (-15 -1829 ((-111) $)) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111))) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111))) (-15 -1359 ($)) (-15 -1676 ($)) (-15 -1269 ($)) (-15 -3919 ($)) (-15 -1616 ($)) (-15 -1750 ($)) (-15 -3148 ($))))) (T -431)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-431)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-431)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-627 (-931 (-552)))) (-5 *1 (-431)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *3 (-627 (-1152))) (-5 *4 (-111)) (-5 *1 (-431)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) (-1359 (*1 *1) (-5 *1 (-431))) (-1676 (*1 *1) (-5 *1 (-431))) (-1269 (*1 *1) (-5 *1 (-431))) (-3919 (*1 *1) (-5 *1 (-431))) (-1616 (*1 *1) (-5 *1 (-431))) (-1750 (*1 *1) (-5 *1 (-431))) (-3148 (*1 *1) (-5 *1 (-431)))) -(-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -1477 ($ (-428))) (-15 -1558 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -1623 ((-627 (-931 (-552))) $)) (-15 -1829 ((-111) $)) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111))) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111))) (-15 -1359 ($)) (-15 -1676 ($)) (-15 -1269 ($)) (-15 -3919 ($)) (-15 -1616 ($)) (-15 -1750 ($)) (-15 -3148 ($)))) -((-1465 (((-111) $ $) NIL)) (-3112 (((-1152) $) 8)) (-1595 (((-1134) $) 16)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 13))) -(((-432 |#1|) (-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) (-1152)) (T -432)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-432 *3)) (-14 *3 *2)))) -(-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) -((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-1235 (-681))) 14) (($ (-627 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 11))) +((-4199 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1237 *1)) (-4 *1 (-411 *3)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) (-5 *2 (-673 *4)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-1432 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 (-673 *3))))) (-2566 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-629 (-933 *3))))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 *3)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-3400 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3332 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3607 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3)))) (-1561 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3)))) (-2173 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1150 (-933 *3))))) (-2637 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1150 (-933 *3))))) (-2639 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169))))) +(-13 (-361 |t#1|) (-10 -8 (-15 -4199 ((-1237 $))) (-15 -3464 ((-1237 |t#1|) $)) (-15 -3464 ((-673 |t#1|) (-1237 $))) (-15 -2060 (|t#1| $ (-552))) (-15 -1432 ((-1237 (-673 |t#1|)))) (-15 -2566 ((-629 (-933 |t#1|)))) (-15 -4278 ($ (-1237 |t#1|))) (-15 -1522 ((-1237 |t#1|) $)) (-15 -1522 ($ (-1237 |t#1|))) (-15 -3400 (|t#1|)) (-15 -3332 (|t#1|)) (-15 -3607 ((-673 |t#1|))) (-15 -1561 ((-673 |t#1|))) (-15 -1837 ((-673 |t#1|) $)) (-15 -3695 ((-673 |t#1|) $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -2173 ((-1150 (-933 |t#1|)))) (-15 -2637 ((-1150 (-933 |t#1|))))) |%noBranch|) (-15 -2639 ($ (-673 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-361 |#1|) . T) ((-632 |#1|) . T) ((-702 |#1|) . T) ((-705) . T) ((-729 |#1|) . T) ((-746) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 45)) (-2644 (($ $) 60)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 148)) (-3303 (($ $) NIL)) (-1334 (((-111) $) 39)) (-3784 ((|#1| $) 13)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-1195)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-1195)))) (-2574 (($ |#1| (-552)) 34)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 118)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 58)) (-1293 (((-3 $ "failed") $) 133)) (-2674 (((-3 (-401 (-552)) "failed") $) 66 (|has| |#1| (-537)))) (-2443 (((-111) $) 62 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 73 (|has| |#1| (-537)))) (-3899 (($ |#1| (-552)) 36)) (-1677 (((-111) $) 154 (|has| |#1| (-1195)))) (-4065 (((-111) $) 46)) (-1475 (((-756) $) 41)) (-1794 (((-3 "nil" "sqfr" "irred" "prime") $ (-552)) 139)) (-3261 ((|#1| $ (-552)) 138)) (-3364 (((-552) $ (-552)) 137)) (-1964 (($ |#1| (-552)) 33)) (-1477 (($ (-1 |#1| |#1|) $) 145)) (-3928 (($ |#1| (-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552))))) 61)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1460 (($ |#1| (-552)) 35)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) 149 (|has| |#1| (-445)))) (-2516 (($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-3772 (((-629 (-2 (|:| -3479 |#1|) (|:| -1406 (-552)))) $) 57)) (-2098 (((-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $) 12)) (-3479 (((-412 $) $) NIL (|has| |#1| (-1195)))) (-3969 (((-3 $ "failed") $ $) 140)) (-1406 (((-552) $) 134)) (-3925 ((|#1| $) 59)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 88 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) $) NIL (|has| |#1| (-506 (-1154) $))) (($ $ (-629 (-1154)) (-629 $)) 89 (|has| |#1| (-506 (-1154) $))) (($ $ (-629 (-288 $))) 85 (|has| |#1| (-303 $))) (($ $ (-288 $)) NIL (|has| |#1| (-303 $))) (($ $ $ $) NIL (|has| |#1| (-303 $))) (($ $ (-629 $) (-629 $)) NIL (|has| |#1| (-303 $)))) (-2060 (($ $ |#1|) 74 (|has| |#1| (-280 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-280 $ $)))) (-3096 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-1522 (((-528) $) 30 (|has| |#1| (-600 (-528)))) (((-373) $) 95 (|has| |#1| (-1003))) (((-220) $) 98 (|has| |#1| (-1003)))) (-3213 (((-844) $) 116) (($ (-552)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552)))))) (-2014 (((-756)) 51)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 43 T CONST)) (-3309 (($) 42 T CONST)) (-1765 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1613 (((-111) $ $) 99)) (-1709 (($ $) 130) (($ $ $) NIL)) (-1698 (($ $ $) 142)) (** (($ $ (-902)) NIL) (($ $ (-756)) 105)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-412 |#1|) (-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -3925 (|#1| $)) (-15 -1406 ((-552) $)) (-15 -3928 ($ |#1| (-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2098 ((-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -1964 ($ |#1| (-552))) (-15 -3772 ((-629 (-2 (|:| -3479 |#1|) (|:| -1406 (-552)))) $)) (-15 -1460 ($ |#1| (-552))) (-15 -3364 ((-552) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -1794 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1475 ((-756) $)) (-15 -3899 ($ |#1| (-552))) (-15 -2574 ($ |#1| (-552))) (-15 -2516 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3784 (|#1| $)) (-15 -2644 ($ $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-1195)) (-6 (-1195)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1154) $)) (-6 (-506 (-1154) $)) |%noBranch|))) (-544)) (T -412)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) (-3925 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3928 (*1 *1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-552))))) (-4 *2 (-544)) (-5 *1 (-412 *2)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-1964 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| -3479 *3) (|:| -1406 (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-1460 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3364 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *4)) (-4 *4 (-544)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3899 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2574 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3784 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2674 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544))))) +(-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -3925 (|#1| $)) (-15 -1406 ((-552) $)) (-15 -3928 ($ |#1| (-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2098 ((-629 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -1964 ($ |#1| (-552))) (-15 -3772 ((-629 (-2 (|:| -3479 |#1|) (|:| -1406 (-552)))) $)) (-15 -1460 ($ |#1| (-552))) (-15 -3364 ((-552) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -1794 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1475 ((-756) $)) (-15 -3899 ($ |#1| (-552))) (-15 -2574 ($ |#1| (-552))) (-15 -2516 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3784 (|#1| $)) (-15 -2644 ($ $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-1195)) (-6 (-1195)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1154) $)) (-6 (-506 (-1154) $)) |%noBranch|))) +((-2712 (((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|)) 21)) (-4256 (((-412 |#1|) (-412 |#1|) (-412 |#1|)) 16))) +(((-413 |#1|) (-10 -7 (-15 -2712 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -4256 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) (-544)) (T -413)) +((-4256 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) (-2712 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) (-5 *1 (-413 *4))))) +(-10 -7 (-15 -2712 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -4256 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) +((-3401 ((|#2| |#2|) 166)) (-3546 (((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111)) 57))) +(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3546 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111))) (-15 -3401 (|#2| |#2|))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|)) (-1154) |#2|) (T -414)) +((-3401 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1176) (-424 *3))) (-14 *4 (-1154)) (-14 *5 *2))) (-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-14 *6 (-1154)) (-14 *7 *3)))) +(-10 -7 (-15 -3546 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111))) (-15 -3401 (|#2| |#2|))) +((-1477 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1030) (-832)) (-424 |#1|) (-13 (-1030) (-832)) (-424 |#3|)) (T -415)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1030) (-832))) (-4 *6 (-13 (-1030) (-832))) (-4 *2 (-424 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|))) +((-3401 ((|#2| |#2|) 90)) (-2399 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136)) 48)) (-1389 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136)) 154))) +(((-416 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2399 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136))) (-15 -1389 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136))) (-15 -3401 (|#2| |#2|))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|) (-10 -8 (-15 -3213 ($ |#3|)))) (-830) (-13 (-1215 |#2| |#3|) (-357) (-1176) (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $)))) (-964 |#4|) (-1154)) (T -416)) +((-3401 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-4 *2 (-13 (-27) (-1176) (-424 *3) (-10 -8 (-15 -3213 ($ *4))))) (-4 *4 (-830)) (-4 *5 (-13 (-1215 *2 *4) (-357) (-1176) (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-964 *5)) (-14 *7 (-1154)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-4 *3 (-13 (-27) (-1176) (-424 *6) (-10 -8 (-15 -3213 ($ *7))))) (-4 *7 (-830)) (-4 *8 (-13 (-1215 *3 *7) (-357) (-1176) (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1136)) (-4 *9 (-964 *8)) (-14 *10 (-1154)))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-4 *3 (-13 (-27) (-1176) (-424 *6) (-10 -8 (-15 -3213 ($ *7))))) (-4 *7 (-830)) (-4 *8 (-13 (-1215 *3 *7) (-357) (-1176) (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1136)) (-4 *9 (-964 *8)) (-14 *10 (-1154))))) +(-10 -7 (-15 -2399 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136))) (-15 -1389 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136))))) |#2| (-111) (-1136))) (-15 -3401 (|#2| |#2|))) +((-3215 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3884 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1477 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3884 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1078) (-419 |#1|) (-1078) (-419 |#3|)) (T -417)) +((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1078)) (-4 *5 (-1078)) (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1078)) (-4 *2 (-1078)) (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3884 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4024 (($) 44)) (-1501 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2041 (($ $ $) 39)) (-2691 (((-111) $ $) 28)) (-2663 (((-756)) 47)) (-1439 (($ (-629 |#2|)) 20) (($) NIL)) (-1332 (($) 53)) (-3207 (((-111) $ $) 13)) (-1772 ((|#2| $) 61)) (-2011 ((|#2| $) 59)) (-1637 (((-902) $) 55)) (-4011 (($ $ $) 35)) (-2840 (($ (-902)) 50)) (-2042 (($ $ |#2|) NIL) (($ $ $) 38)) (-2885 (((-756) (-1 (-111) |#2|) $) NIL) (((-756) |#2| $) 26)) (-3226 (($ (-629 |#2|)) 24)) (-2402 (($ $) 46)) (-3213 (((-844) $) 33)) (-3133 (((-756) $) 21)) (-3541 (($ (-629 |#2|)) 19) (($) NIL)) (-1613 (((-111) $ $) 16))) +(((-418 |#1| |#2|) (-10 -8 (-15 -2663 ((-756))) (-15 -2840 (|#1| (-902))) (-15 -1637 ((-902) |#1|)) (-15 -1332 (|#1|)) (-15 -1772 (|#2| |#1|)) (-15 -2011 (|#2| |#1|)) (-15 -4024 (|#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3133 ((-756) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -3207 ((-111) |#1| |#1|)) (-15 -3541 (|#1|)) (-15 -3541 (|#1| (-629 |#2|))) (-15 -1439 (|#1|)) (-15 -1439 (|#1| (-629 |#2|))) (-15 -4011 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -2691 ((-111) |#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#2| |#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|))) (-419 |#2|) (-1078)) (T -418)) +((-2663 (*1 *2) (-12 (-4 *4 (-1078)) (-5 *2 (-756)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -2663 ((-756))) (-15 -2840 (|#1| (-902))) (-15 -1637 ((-902) |#1|)) (-15 -1332 (|#1|)) (-15 -1772 (|#2| |#1|)) (-15 -2011 (|#2| |#1|)) (-15 -4024 (|#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3133 ((-756) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -3207 ((-111) |#1| |#1|)) (-15 -3541 (|#1|)) (-15 -3541 (|#1| (-629 |#2|))) (-15 -1439 (|#1|)) (-15 -1439 (|#1| (-629 |#2|))) (-15 -4011 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -2691 ((-111) |#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#2| |#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -2885 ((-756) |#2| |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|))) +((-3202 (((-111) $ $) 19)) (-4024 (($) 67 (|has| |#1| (-362)))) (-1501 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2041 (($ $ $) 78)) (-2691 (((-111) $ $) 79)) (-4238 (((-111) $ (-756)) 8)) (-2663 (((-756)) 61 (|has| |#1| (-362)))) (-1439 (($ (-629 |#1|)) 74) (($) 73)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-1332 (($) 64 (|has| |#1| (-362)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) 70)) (-1418 (((-111) $ (-756)) 9)) (-1772 ((|#1| $) 65 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2011 ((|#1| $) 66 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1637 (((-902) $) 63 (|has| |#1| (-362)))) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22)) (-4011 (($ $ $) 75)) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2840 (($ (-902)) 62 (|has| |#1| (-362)))) (-2876 (((-1098) $) 21)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2042 (($ $ |#1|) 77) (($ $ $) 76)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-2402 (($ $) 68 (|has| |#1| (-362)))) (-3213 (((-844) $) 18)) (-3133 (((-756) $) 69)) (-3541 (($ (-629 |#1|)) 72) (($) 71)) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20)) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-419 |#1|) (-137) (-1078)) (T -419)) +((-3133 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1078)) (-5 *2 (-756)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-362)))) (-4024 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1078)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-832)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-832))))) +(-13 (-224 |t#1|) (-1076 |t#1|) (-10 -8 (-6 -4368) (-15 -3133 ((-756) $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-15 -2402 ($ $)) (-15 -4024 ($))) |%noBranch|) (IF (|has| |t#1| (-832)) (PROGN (-15 -2011 (|t#1| $)) (-15 -1772 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-224 |#1|) . T) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-362) |has| |#1| (-362)) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1076 |#1|) . T) ((-1078) . T) ((-1191) . T)) +((-2985 (((-573 |#2|) |#2| (-1154)) 36)) (-4113 (((-573 |#2|) |#2| (-1154)) 20)) (-2858 ((|#2| |#2| (-1154)) 25))) +(((-420 |#1| |#2|) (-10 -7 (-15 -4113 ((-573 |#2|) |#2| (-1154))) (-15 -2985 ((-573 |#2|) |#2| (-1154))) (-15 -2858 (|#2| |#2| (-1154)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-29 |#1|))) (T -420)) +((-2858 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1176) (-29 *4))))) (-2985 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1176) (-29 *5))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1176) (-29 *5)))))) +(-10 -7 (-15 -4113 ((-573 |#2|) |#2| (-1154))) (-15 -2985 ((-573 |#2|) |#2| (-1154))) (-15 -2858 (|#2| |#2| (-1154)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-2040 (($ |#2| |#1|) 35)) (-1909 (($ |#2| |#1|) 33)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-325 |#2|)) 25)) (-2014 (((-756)) NIL)) (-3297 (($) 10 T CONST)) (-3309 (($) 16 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 34)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-421 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4355)) (IF (|has| |#1| (-6 -4355)) (-6 -4355) |%noBranch|) |%noBranch|) (-15 -3213 ($ |#1|)) (-15 -3213 ($ (-325 |#2|))) (-15 -2040 ($ |#2| |#1|)) (-15 -1909 ($ |#2| |#1|)))) (-13 (-169) (-38 (-401 (-552)))) (-13 (-832) (-21))) (T -421)) +((-3213 (*1 *1 *2) (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) (-4 *3 (-13 (-832) (-21))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-832) (-21))) (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) (-2040 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-832) (-21))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-832) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4355)) (IF (|has| |#1| (-6 -4355)) (-6 -4355) |%noBranch|) |%noBranch|) (-15 -3213 ($ |#1|)) (-15 -3213 ($ (-325 |#2|))) (-15 -2040 ($ |#2| |#1|)) (-15 -1909 ($ |#2| |#1|)))) +((-2889 (((-3 |#2| (-629 |#2|)) |#2| (-1154)) 109))) +(((-422 |#1| |#2|) (-10 -7 (-15 -2889 ((-3 |#2| (-629 |#2|)) |#2| (-1154)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-940) (-29 |#1|))) (T -422)) +((-2889 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 *3 (-629 *3))) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1176) (-940) (-29 *5)))))) +(-10 -7 (-15 -2889 ((-3 |#2| (-629 |#2|)) |#2| (-1154)))) +((-3611 (((-629 (-1154)) $) 72)) (-3449 (((-401 (-1150 $)) $ (-598 $)) 273)) (-2172 (($ $ (-288 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-629 (-598 $)) (-629 $)) 237)) (-1393 (((-3 (-598 $) "failed") $) NIL) (((-3 (-1154) "failed") $) 75) (((-3 (-552) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-401 (-933 |#2|)) "failed") $) 324) (((-3 (-933 |#2|) "failed") $) 235) (((-3 (-401 (-552)) "failed") $) NIL)) (-2832 (((-598 $) $) NIL) (((-1154) $) 30) (((-552) $) NIL) ((|#2| $) 231) (((-401 (-933 |#2|)) $) 305) (((-933 |#2|) $) 232) (((-401 (-552)) $) NIL)) (-2951 (((-113) (-113)) 47)) (-3773 (($ $) 87)) (-1875 (((-3 (-598 $) "failed") $) 228)) (-3438 (((-629 (-598 $)) $) 229)) (-4263 (((-3 (-629 $) "failed") $) 247)) (-4073 (((-3 (-2 (|:| |val| $) (|:| -1406 (-552))) "failed") $) 254)) (-2878 (((-3 (-629 $) "failed") $) 245)) (-2630 (((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 $))) "failed") $) 264)) (-3909 (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $) 251) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-1154)) 219)) (-3711 (((-111) $) 19)) (-3722 ((|#2| $) 21)) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) 236) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) 96) (($ $ (-1154) (-1 $ (-629 $))) NIL) (($ $ (-1154) (-1 $ $)) NIL) (($ $ (-629 (-113)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-113) (-1 $ (-629 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1154)) 57) (($ $ (-629 (-1154))) 240) (($ $) 241) (($ $ (-113) $ (-1154)) 60) (($ $ (-629 (-113)) (-629 $) (-1154)) 67) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ $))) 107) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ (-629 $)))) 242) (($ $ (-1154) (-756) (-1 $ (-629 $))) 94) (($ $ (-1154) (-756) (-1 $ $)) 93)) (-2060 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-629 $)) 106)) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) 238)) (-2493 (($ $) 284)) (-1522 (((-873 (-552)) $) 257) (((-873 (-373)) $) 261) (($ (-412 $)) 320) (((-528) $) NIL)) (-3213 (((-844) $) 239) (($ (-598 $)) 84) (($ (-1154)) 26) (($ |#2|) NIL) (($ (-1103 |#2| (-598 $))) NIL) (($ (-401 |#2|)) 289) (($ (-933 (-401 |#2|))) 329) (($ (-401 (-933 (-401 |#2|)))) 301) (($ (-401 (-933 |#2|))) 295) (($ $) NIL) (($ (-933 |#2|)) 185) (($ (-401 (-552))) 334) (($ (-552)) NIL)) (-2014 (((-756)) 79)) (-1374 (((-111) (-113)) 41)) (-3893 (($ (-1154) $) 33) (($ (-1154) $ $) 34) (($ (-1154) $ $ $) 35) (($ (-1154) $ $ $ $) 36) (($ (-1154) (-629 $)) 39)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL))) +(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-902) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2014 ((-756))) (-15 -3213 (|#1| (-552))) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-933 |#2|) |#1|)) (-15 -1393 ((-3 (-933 |#2|) "failed") |#1|)) (-15 -3213 (|#1| (-933 |#2|))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2832 ((-401 (-933 |#2|)) |#1|)) (-15 -1393 ((-3 (-401 (-933 |#2|)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-933 |#2|)))) (-15 -3449 ((-401 (-1150 |#1|)) |#1| (-598 |#1|))) (-15 -3213 (|#1| (-401 (-933 (-401 |#2|))))) (-15 -3213 (|#1| (-933 (-401 |#2|)))) (-15 -3213 (|#1| (-401 |#2|))) (-15 -2493 (|#1| |#1|)) (-15 -1522 (|#1| (-412 |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-756) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-756) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-756)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-756)) (-629 (-1 |#1| |#1|)))) (-15 -4073 ((-3 (-2 (|:| |val| |#1|) (|:| -1406 (-552))) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1| (-1154))) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1| (-113))) (-15 -3773 (|#1| |#1|)) (-15 -3213 (|#1| (-1103 |#2| (-598 |#1|)))) (-15 -2630 ((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2878 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1|)) (-15 -4263 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 |#1|) (-1154))) (-15 -2432 (|#1| |#1| (-113) |#1| (-1154))) (-15 -2432 (|#1| |#1|)) (-15 -2432 (|#1| |#1| (-629 (-1154)))) (-15 -2432 (|#1| |#1| (-1154))) (-15 -3893 (|#1| (-1154) (-629 |#1|))) (-15 -3893 (|#1| (-1154) |#1| |#1| |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1| |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1|)) (-15 -3611 ((-629 (-1154)) |#1|)) (-15 -3722 (|#2| |#1|)) (-15 -3711 ((-111) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -3213 (|#1| (-1154))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| |#1|)))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| |#1|)))) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -3438 ((-629 (-598 |#1|)) |#1|)) (-15 -1875 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2172 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2172 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2172 (|#1| |#1| (-288 |#1|))) (-15 -2060 (|#1| (-113) (-629 |#1|))) (-15 -2060 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -2832 ((-598 |#1|) |#1|)) (-15 -1393 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3213 (|#1| (-598 |#1|))) (-15 -3213 ((-844) |#1|))) (-424 |#2|) (-832)) (T -423)) +((-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-832)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-2014 (*1 *2) (-12 (-4 *4 (-832)) (-5 *2 (-756)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) +(-10 -8 (-15 * (|#1| (-902) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2014 ((-756))) (-15 -3213 (|#1| (-552))) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-933 |#2|) |#1|)) (-15 -1393 ((-3 (-933 |#2|) "failed") |#1|)) (-15 -3213 (|#1| (-933 |#2|))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2832 ((-401 (-933 |#2|)) |#1|)) (-15 -1393 ((-3 (-401 (-933 |#2|)) "failed") |#1|)) (-15 -3213 (|#1| (-401 (-933 |#2|)))) (-15 -3449 ((-401 (-1150 |#1|)) |#1| (-598 |#1|))) (-15 -3213 (|#1| (-401 (-933 (-401 |#2|))))) (-15 -3213 (|#1| (-933 (-401 |#2|)))) (-15 -3213 (|#1| (-401 |#2|))) (-15 -2493 (|#1| |#1|)) (-15 -1522 (|#1| (-412 |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-756) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-756) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-756)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-756)) (-629 (-1 |#1| |#1|)))) (-15 -4073 ((-3 (-2 (|:| |val| |#1|) (|:| -1406 (-552))) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1| (-1154))) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1| (-113))) (-15 -3773 (|#1| |#1|)) (-15 -3213 (|#1| (-1103 |#2| (-598 |#1|)))) (-15 -2630 ((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2878 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -1406 (-552))) "failed") |#1|)) (-15 -4263 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 |#1|) (-1154))) (-15 -2432 (|#1| |#1| (-113) |#1| (-1154))) (-15 -2432 (|#1| |#1|)) (-15 -2432 (|#1| |#1| (-629 (-1154)))) (-15 -2432 (|#1| |#1| (-1154))) (-15 -3893 (|#1| (-1154) (-629 |#1|))) (-15 -3893 (|#1| (-1154) |#1| |#1| |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1| |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1| |#1|)) (-15 -3893 (|#1| (-1154) |#1|)) (-15 -3611 ((-629 (-1154)) |#1|)) (-15 -3722 (|#2| |#1|)) (-15 -3711 ((-111) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -3213 (|#1| (-1154))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-113) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-113)) (-629 (-1 |#1| |#1|)))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| |#1|))) (-15 -2432 (|#1| |#1| (-1154) (-1 |#1| (-629 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| (-629 |#1|))))) (-15 -2432 (|#1| |#1| (-629 (-1154)) (-629 (-1 |#1| |#1|)))) (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -3438 ((-629 (-598 |#1|)) |#1|)) (-15 -1875 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2172 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2172 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2172 (|#1| |#1| (-288 |#1|))) (-15 -2060 (|#1| (-113) (-629 |#1|))) (-15 -2060 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1| |#1|)) (-15 -2060 (|#1| (-113) |#1|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -2432 (|#1| |#1| (-629 (-598 |#1|)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -2832 ((-598 |#1|) |#1|)) (-15 -1393 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3213 (|#1| (-598 |#1|))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 113 (|has| |#1| (-25)))) (-3611 (((-629 (-1154)) $) 200)) (-3449 (((-401 (-1150 $)) $ (-598 $)) 168 (|has| |#1| (-544)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 140 (|has| |#1| (-544)))) (-3303 (($ $) 141 (|has| |#1| (-544)))) (-1334 (((-111) $) 143 (|has| |#1| (-544)))) (-3361 (((-629 (-598 $)) $) 44)) (-4012 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-2172 (($ $ (-288 $)) 56) (($ $ (-629 (-288 $))) 55) (($ $ (-629 (-598 $)) (-629 $)) 54)) (-4116 (($ $) 160 (|has| |#1| (-544)))) (-3343 (((-412 $) $) 161 (|has| |#1| (-544)))) (-2393 (((-111) $ $) 151 (|has| |#1| (-544)))) (-2130 (($) 101 (-4029 (|has| |#1| (-1090)) (|has| |#1| (-25))) CONST)) (-1393 (((-3 (-598 $) "failed") $) 69) (((-3 (-1154) "failed") $) 213) (((-3 (-552) "failed") $) 206 (|has| |#1| (-1019 (-552)))) (((-3 |#1| "failed") $) 204) (((-3 (-401 (-933 |#1|)) "failed") $) 166 (|has| |#1| (-544))) (((-3 (-933 |#1|) "failed") $) 120 (|has| |#1| (-1030))) (((-3 (-401 (-552)) "failed") $) 95 (-4029 (-12 (|has| |#1| (-1019 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1019 (-401 (-552))))))) (-2832 (((-598 $) $) 68) (((-1154) $) 212) (((-552) $) 207 (|has| |#1| (-1019 (-552)))) ((|#1| $) 203) (((-401 (-933 |#1|)) $) 165 (|has| |#1| (-544))) (((-933 |#1|) $) 119 (|has| |#1| (-1030))) (((-401 (-552)) $) 94 (-4029 (-12 (|has| |#1| (-1019 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1019 (-401 (-552))))))) (-4006 (($ $ $) 155 (|has| |#1| (-544)))) (-2714 (((-673 (-552)) (-673 $)) 134 (-3792 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 133 (-3792 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 132 (|has| |#1| (-1030))) (((-673 |#1|) (-673 $)) 131 (|has| |#1| (-1030)))) (-1293 (((-3 $ "failed") $) 103 (|has| |#1| (-1090)))) (-3987 (($ $ $) 154 (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 149 (|has| |#1| (-544)))) (-1677 (((-111) $) 162 (|has| |#1| (-544)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 209 (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 208 (|has| |#1| (-867 (-373))))) (-3963 (($ $) 51) (($ (-629 $)) 50)) (-3751 (((-629 (-113)) $) 43)) (-2951 (((-113) (-113)) 42)) (-4065 (((-111) $) 102 (|has| |#1| (-1090)))) (-3302 (((-111) $) 22 (|has| $ (-1019 (-552))))) (-3773 (($ $) 183 (|has| |#1| (-1030)))) (-4015 (((-1103 |#1| (-598 $)) $) 184 (|has| |#1| (-1030)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 158 (|has| |#1| (-544)))) (-1941 (((-1150 $) (-598 $)) 25 (|has| $ (-1030)))) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-1477 (($ (-1 $ $) (-598 $)) 36)) (-1875 (((-3 (-598 $) "failed") $) 46)) (-2552 (($ (-629 $)) 147 (|has| |#1| (-544))) (($ $ $) 146 (|has| |#1| (-544)))) (-2623 (((-1136) $) 9)) (-3438 (((-629 (-598 $)) $) 45)) (-4086 (($ (-113) $) 38) (($ (-113) (-629 $)) 37)) (-4263 (((-3 (-629 $) "failed") $) 189 (|has| |#1| (-1090)))) (-4073 (((-3 (-2 (|:| |val| $) (|:| -1406 (-552))) "failed") $) 180 (|has| |#1| (-1030)))) (-2878 (((-3 (-629 $) "failed") $) 187 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $) 188 (|has| |#1| (-1090))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-113)) 182 (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-1154)) 181 (|has| |#1| (-1030)))) (-3515 (((-111) $ (-113)) 40) (((-111) $ (-1154)) 39)) (-3701 (($ $) 105 (-4029 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-2384 (((-756) $) 47)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 202)) (-3722 ((|#1| $) 201)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 148 (|has| |#1| (-544)))) (-2594 (($ (-629 $)) 145 (|has| |#1| (-544))) (($ $ $) 144 (|has| |#1| (-544)))) (-3633 (((-111) $ $) 35) (((-111) $ (-1154)) 34)) (-3479 (((-412 $) $) 159 (|has| |#1| (-544)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 156 (|has| |#1| (-544)))) (-3969 (((-3 $ "failed") $ $) 139 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 150 (|has| |#1| (-544)))) (-3117 (((-111) $) 23 (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) 67) (($ $ (-629 (-598 $)) (-629 $)) 66) (($ $ (-629 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-629 $) (-629 $)) 62) (($ $ (-629 (-1154)) (-629 (-1 $ $))) 33) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) 32) (($ $ (-1154) (-1 $ (-629 $))) 31) (($ $ (-1154) (-1 $ $)) 30) (($ $ (-629 (-113)) (-629 (-1 $ $))) 29) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) 28) (($ $ (-113) (-1 $ (-629 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1154)) 194 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-1154))) 193 (|has| |#1| (-600 (-528)))) (($ $) 192 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1154)) 191 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-113)) (-629 $) (-1154)) 190 (|has| |#1| (-600 (-528)))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ $))) 179 (|has| |#1| (-1030))) (($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ (-629 $)))) 178 (|has| |#1| (-1030))) (($ $ (-1154) (-756) (-1 $ (-629 $))) 177 (|has| |#1| (-1030))) (($ $ (-1154) (-756) (-1 $ $)) 176 (|has| |#1| (-1030)))) (-3795 (((-756) $) 152 (|has| |#1| (-544)))) (-2060 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-629 $)) 57)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 153 (|has| |#1| (-544)))) (-1877 (($ $) 49) (($ $ $) 48)) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 125 (|has| |#1| (-1030))) (($ $ (-1154) (-756)) 124 (|has| |#1| (-1030))) (($ $ (-629 (-1154))) 123 (|has| |#1| (-1030))) (($ $ (-1154)) 122 (|has| |#1| (-1030)))) (-2493 (($ $) 173 (|has| |#1| (-544)))) (-4026 (((-1103 |#1| (-598 $)) $) 174 (|has| |#1| (-544)))) (-3521 (($ $) 24 (|has| $ (-1030)))) (-1522 (((-873 (-552)) $) 211 (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) 210 (|has| |#1| (-600 (-873 (-373))))) (($ (-412 $)) 175 (|has| |#1| (-544))) (((-528) $) 97 (|has| |#1| (-600 (-528))))) (-2074 (($ $ $) 108 (|has| |#1| (-466)))) (-2104 (($ $ $) 109 (|has| |#1| (-466)))) (-3213 (((-844) $) 11) (($ (-598 $)) 70) (($ (-1154)) 214) (($ |#1|) 205) (($ (-1103 |#1| (-598 $))) 185 (|has| |#1| (-1030))) (($ (-401 |#1|)) 171 (|has| |#1| (-544))) (($ (-933 (-401 |#1|))) 170 (|has| |#1| (-544))) (($ (-401 (-933 (-401 |#1|)))) 169 (|has| |#1| (-544))) (($ (-401 (-933 |#1|))) 167 (|has| |#1| (-544))) (($ $) 138 (|has| |#1| (-544))) (($ (-933 |#1|)) 121 (|has| |#1| (-1030))) (($ (-401 (-552))) 96 (-4029 (|has| |#1| (-544)) (-12 (|has| |#1| (-1019 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1019 (-401 (-552)))))) (($ (-552)) 93 (-4029 (|has| |#1| (-1030)) (|has| |#1| (-1019 (-552)))))) (-3878 (((-3 $ "failed") $) 135 (|has| |#1| (-142)))) (-2014 (((-756)) 130 (|has| |#1| (-1030)))) (-3044 (($ $) 53) (($ (-629 $)) 52)) (-1374 (((-111) (-113)) 41)) (-3589 (((-111) $ $) 142 (|has| |#1| (-544)))) (-3893 (($ (-1154) $) 199) (($ (-1154) $ $) 198) (($ (-1154) $ $ $) 197) (($ (-1154) $ $ $ $) 196) (($ (-1154) (-629 $)) 195)) (-3297 (($) 112 (|has| |#1| (-25)) CONST)) (-3309 (($) 100 (|has| |#1| (-1090)) CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 129 (|has| |#1| (-1030))) (($ $ (-1154) (-756)) 128 (|has| |#1| (-1030))) (($ $ (-629 (-1154))) 127 (|has| |#1| (-1030))) (($ $ (-1154)) 126 (|has| |#1| (-1030)))) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1720 (($ (-1103 |#1| (-598 $)) (-1103 |#1| (-598 $))) 172 (|has| |#1| (-544))) (($ $ $) 106 (-4029 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-1709 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-1698 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-552)) 107 (-4029 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-756)) 104 (|has| |#1| (-1090))) (($ $ (-902)) 99 (|has| |#1| (-1090)))) (* (($ (-401 (-552)) $) 164 (|has| |#1| (-544))) (($ $ (-401 (-552))) 163 (|has| |#1| (-544))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-552) $) 118 (|has| |#1| (-21))) (($ (-756) $) 114 (|has| |#1| (-25))) (($ (-902) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1090))))) +(((-424 |#1|) (-137) (-832)) (T -424)) +((-3711 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-832)) (-5 *2 (-111)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-832)) (-5 *2 (-629 (-1154))))) (-3893 (*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) (-3893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) (-3893 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) (-3893 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-629 *1)) (-4 *1 (-424 *4)) (-4 *4 (-832)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)) (-4 *3 (-600 (-528))))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-1154))) (-4 *1 (-424 *3)) (-4 *3 (-832)) (-4 *3 (-600 (-528))))) (-2432 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-600 (-528))))) (-2432 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1154)) (-4 *1 (-424 *4)) (-4 *4 (-832)) (-4 *4 (-600 (-528))))) (-2432 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 *1)) (-5 *4 (-1154)) (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-600 (-528))))) (-4263 (*1 *2 *1) (|partial| -12 (-4 *3 (-1090)) (-4 *3 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-424 *3)))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *3 (-1090)) (-4 *3 (-832)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *3)))) (-2878 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-424 *3)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-832)) (-5 *2 (-2 (|:| -4158 (-552)) (|:| |var| (-598 *1)))) (-4 *1 (-424 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1103 *3 (-598 *1))) (-4 *3 (-1030)) (-4 *3 (-832)) (-4 *1 (-424 *3)))) (-4015 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *3 (-832)) (-5 *2 (-1103 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-1030)))) (-3909 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1030)) (-4 *4 (-832)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *4)))) (-3909 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1154)) (-4 *4 (-1030)) (-4 *4 (-832)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *4)))) (-4073 (*1 *2 *1) (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-832)) (-5 *2 (-2 (|:| |val| *1) (|:| -1406 (-552)))) (-4 *1 (-424 *3)))) (-2432 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-756))) (-5 *4 (-629 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) (-2432 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-756))) (-5 *4 (-629 (-1 *1 (-629 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) (-2432 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *4 (-1 *1 (-629 *1))) (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) (-2432 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) (-4 *3 (-832)))) (-4026 (*1 *2 *1) (-12 (-4 *3 (-544)) (-4 *3 (-832)) (-5 *2 (-1103 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-544)))) (-1720 (*1 *1 *2 *2) (-12 (-5 *2 (-1103 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-832)) (-4 *1 (-424 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-832)) (-4 *1 (-424 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-933 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-832)) (-4 *1 (-424 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-832)) (-4 *1 (-424 *3)))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-832)) (-4 *4 (-544)) (-5 *2 (-401 (-1150 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-424 *3)) (-4 *3 (-832)) (-4 *3 (-1090))))) +(-13 (-296) (-1019 (-1154)) (-865 |t#1|) (-394 |t#1|) (-405 |t#1|) (-10 -8 (-15 -3711 ((-111) $)) (-15 -3722 (|t#1| $)) (-15 -3611 ((-629 (-1154)) $)) (-15 -3893 ($ (-1154) $)) (-15 -3893 ($ (-1154) $ $)) (-15 -3893 ($ (-1154) $ $ $)) (-15 -3893 ($ (-1154) $ $ $ $)) (-15 -3893 ($ (-1154) (-629 $))) (IF (|has| |t#1| (-600 (-528))) (PROGN (-6 (-600 (-528))) (-15 -2432 ($ $ (-1154))) (-15 -2432 ($ $ (-629 (-1154)))) (-15 -2432 ($ $)) (-15 -2432 ($ $ (-113) $ (-1154))) (-15 -2432 ($ $ (-629 (-113)) (-629 $) (-1154)))) |%noBranch|) (IF (|has| |t#1| (-1090)) (PROGN (-6 (-711)) (-15 ** ($ $ (-756))) (-15 -4263 ((-3 (-629 $) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2878 ((-3 (-629 $) "failed") $)) (-15 -2630 ((-3 (-2 (|:| -4158 (-552)) (|:| |var| (-598 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-1019 (-933 |t#1|))) (-6 (-881 (-1154))) (-6 (-371 |t#1|)) (-15 -3213 ($ (-1103 |t#1| (-598 $)))) (-15 -4015 ((-1103 |t#1| (-598 $)) $)) (-15 -3773 ($ $)) (-15 -3909 ((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-113))) (-15 -3909 ((-3 (-2 (|:| |var| (-598 $)) (|:| -1406 (-552))) "failed") $ (-1154))) (-15 -4073 ((-3 (-2 (|:| |val| $) (|:| -1406 (-552))) "failed") $)) (-15 -2432 ($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ $)))) (-15 -2432 ($ $ (-629 (-1154)) (-629 (-756)) (-629 (-1 $ (-629 $))))) (-15 -2432 ($ $ (-1154) (-756) (-1 $ (-629 $)))) (-15 -2432 ($ $ (-1154) (-756) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-357)) (-6 (-1019 (-401 (-933 |t#1|)))) (-15 -1522 ($ (-412 $))) (-15 -4026 ((-1103 |t#1| (-598 $)) $)) (-15 -2493 ($ $)) (-15 -1720 ($ (-1103 |t#1| (-598 $)) (-1103 |t#1| (-598 $)))) (-15 -3213 ($ (-401 |t#1|))) (-15 -3213 ($ (-933 (-401 |t#1|)))) (-15 -3213 ($ (-401 (-933 (-401 |t#1|))))) (-15 -3449 ((-401 (-1150 $)) $ (-598 $))) (IF (|has| |t#1| (-1019 (-552))) (-6 (-1019 (-401 (-552)))) |%noBranch|)) |%noBranch|))) +(((-21) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-23) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-401 (-552))) |has| |#1| (-544)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-544)) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) |has| |#1| (-544)) ((-129) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) |has| |#1| (-544)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-873 (-373))) |has| |#1| (-600 (-873 (-373)))) ((-600 (-873 (-552))) |has| |#1| (-600 (-873 (-552)))) ((-238) |has| |#1| (-544)) ((-284) |has| |#1| (-544)) ((-301) |has| |#1| (-544)) ((-303 $) . T) ((-296) . T) ((-357) |has| |#1| (-544)) ((-371 |#1|) |has| |#1| (-1030)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) |has| |#1| (-544)) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-632 #0#) |has| |#1| (-544)) ((-632 |#1|) |has| |#1| (-169)) ((-632 $) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-625 (-552)) -12 (|has| |#1| (-625 (-552))) (|has| |#1| (-1030))) ((-625 |#1|) |has| |#1| (-1030)) ((-702 #0#) |has| |#1| (-544)) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) -4029 (|has| |#1| (-1090)) (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-832) . T) ((-881 (-1154)) |has| |#1| (-1030)) ((-867 (-373)) |has| |#1| (-867 (-373))) ((-867 (-552)) |has| |#1| (-867 (-552))) ((-865 |#1|) . T) ((-901) |has| |#1| (-544)) ((-1019 (-401 (-552))) -4029 (|has| |#1| (-1019 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1019 (-552))))) ((-1019 (-401 (-933 |#1|))) |has| |#1| (-544)) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 (-598 $)) . T) ((-1019 (-933 |#1|)) |has| |#1| (-1030)) ((-1019 (-1154)) . T) ((-1019 |#1|) . T) ((-1036 #0#) |has| |#1| (-544)) ((-1036 |#1|) |has| |#1| (-169)) ((-1036 $) |has| |#1| (-544)) ((-1030) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1037) -4029 (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1090) -4029 (|has| |#1| (-1090)) (|has| |#1| (-1030)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1078) . T) ((-1191) . T) ((-1195) |has| |#1| (-544))) +((-1618 ((|#2| |#2| |#2|) 33)) (-2951 (((-113) (-113)) 44)) (-2799 ((|#2| |#2|) 66)) (-4061 ((|#2| |#2|) 69)) (-4119 ((|#2| |#2|) 32)) (-3381 ((|#2| |#2| |#2|) 35)) (-4135 ((|#2| |#2| |#2|) 37)) (-2906 ((|#2| |#2| |#2|) 34)) (-3158 ((|#2| |#2| |#2|) 36)) (-1374 (((-111) (-113)) 42)) (-3742 ((|#2| |#2|) 39)) (-1280 ((|#2| |#2|) 38)) (-1578 ((|#2| |#2|) 27)) (-3290 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1812 ((|#2| |#2| |#2|) 31))) +(((-425 |#1| |#2|) (-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -1578 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3290 (|#2| |#2| |#2|)) (-15 -1812 (|#2| |#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -1618 (|#2| |#2| |#2|)) (-15 -2906 (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2|)) (-15 -4135 (|#2| |#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2799 (|#2| |#2|))) (-13 (-832) (-544)) (-424 |#1|)) (T -425)) +((-2799 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1280 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4135 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3158 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2906 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1618 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1812 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3290 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *4)) (-4 *4 (-424 *3)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -1578 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3290 (|#2| |#2| |#2|)) (-15 -1812 (|#2| |#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -1618 (|#2| |#2| |#2|)) (-15 -2906 (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2|)) (-15 -4135 (|#2| |#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2799 (|#2| |#2|))) +((-4000 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1150 |#2|)) (|:| |pol2| (-1150 |#2|)) (|:| |prim| (-1150 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-629 (-1150 |#2|))) (|:| |prim| (-1150 |#2|))) (-629 |#2|)) 61))) +(((-426 |#1| |#2|) (-10 -7 (-15 -4000 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-629 (-1150 |#2|))) (|:| |prim| (-1150 |#2|))) (-629 |#2|))) (IF (|has| |#2| (-27)) (-15 -4000 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1150 |#2|)) (|:| |pol2| (-1150 |#2|)) (|:| |prim| (-1150 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-544) (-832) (-144)) (-424 |#1|)) (T -426)) +((-4000 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-544) (-832) (-144))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1150 *3)) (|:| |pol2| (-1150 *3)) (|:| |prim| (-1150 *3)))) (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-544) (-832) (-144))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-629 (-1150 *5))) (|:| |prim| (-1150 *5)))) (-5 *1 (-426 *4 *5))))) +(-10 -7 (-15 -4000 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-629 (-1150 |#2|))) (|:| |prim| (-1150 |#2|))) (-629 |#2|))) (IF (|has| |#2| (-27)) (-15 -4000 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1150 |#2|)) (|:| |pol2| (-1150 |#2|)) (|:| |prim| (-1150 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3282 (((-1242)) 19)) (-1386 (((-1150 (-401 (-552))) |#2| (-598 |#2|)) 41) (((-401 (-552)) |#2|) 25))) +(((-427 |#1| |#2|) (-10 -7 (-15 -1386 ((-401 (-552)) |#2|)) (-15 -1386 ((-1150 (-401 (-552))) |#2| (-598 |#2|))) (-15 -3282 ((-1242)))) (-13 (-832) (-544) (-1019 (-552))) (-424 |#1|)) (T -427)) +((-3282 (*1 *2) (-12 (-4 *3 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-1242)) (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-427 *5 *3)))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4))))) +(-10 -7 (-15 -1386 ((-401 (-552)) |#2|)) (-15 -1386 ((-1150 (-401 (-552))) |#2| (-598 |#2|))) (-15 -3282 ((-1242)))) +((-3805 (((-111) $) 28)) (-2065 (((-111) $) 30)) (-3227 (((-111) $) 31)) (-3641 (((-111) $) 34)) (-1827 (((-111) $) 29)) (-3192 (((-111) $) 33)) (-3213 (((-844) $) 18) (($ (-1136)) 27) (($ (-1154)) 23) (((-1154) $) 22) (((-1082) $) 21)) (-2152 (((-111) $) 32)) (-1613 (((-111) $ $) 15))) +(((-428) (-13 (-599 (-844)) (-10 -8 (-15 -3213 ($ (-1136))) (-15 -3213 ($ (-1154))) (-15 -3213 ((-1154) $)) (-15 -3213 ((-1082) $)) (-15 -3805 ((-111) $)) (-15 -1827 ((-111) $)) (-15 -3227 ((-111) $)) (-15 -3192 ((-111) $)) (-15 -3641 ((-111) $)) (-15 -2152 ((-111) $)) (-15 -2065 ((-111) $)) (-15 -1613 ((-111) $ $))))) (T -428)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-428)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-428)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-428)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-428)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1613 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(-13 (-599 (-844)) (-10 -8 (-15 -3213 ($ (-1136))) (-15 -3213 ($ (-1154))) (-15 -3213 ((-1154) $)) (-15 -3213 ((-1082) $)) (-15 -3805 ((-111) $)) (-15 -1827 ((-111) $)) (-15 -3227 ((-111) $)) (-15 -3192 ((-111) $)) (-15 -3641 ((-111) $)) (-15 -2152 ((-111) $)) (-15 -2065 ((-111) $)) (-15 -1613 ((-111) $ $)))) +((-2179 (((-3 (-412 (-1150 (-401 (-552)))) "failed") |#3|) 70)) (-2780 (((-412 |#3|) |#3|) 34)) (-4259 (((-3 (-412 (-1150 (-48))) "failed") |#3|) 46 (|has| |#2| (-1019 (-48))))) (-2470 (((-3 (|:| |overq| (-1150 (-401 (-552)))) (|:| |overan| (-1150 (-48))) (|:| -4169 (-111))) |#3|) 37))) +(((-429 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-412 |#3|) |#3|)) (-15 -2179 ((-3 (-412 (-1150 (-401 (-552)))) "failed") |#3|)) (-15 -2470 ((-3 (|:| |overq| (-1150 (-401 (-552)))) (|:| |overan| (-1150 (-48))) (|:| -4169 (-111))) |#3|)) (IF (|has| |#2| (-1019 (-48))) (-15 -4259 ((-3 (-412 (-1150 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-544) (-832) (-1019 (-552))) (-424 |#1|) (-1213 |#2|)) (T -429)) +((-4259 (*1 *2 *3) (|partial| -12 (-4 *5 (-1019 (-48))) (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1150 (-48)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5)))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1150 (-401 (-552)))) (|:| |overan| (-1150 (-48))) (|:| -4169 (-111)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5)))) (-2179 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1150 (-401 (-552))))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5)))) (-2780 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5))))) +(-10 -7 (-15 -2780 ((-412 |#3|) |#3|)) (-15 -2179 ((-3 (-412 (-1150 (-401 (-552)))) "failed") |#3|)) (-15 -2470 ((-3 (|:| |overq| (-1150 (-401 (-552)))) (|:| |overan| (-1150 (-48))) (|:| -4169 (-111))) |#3|)) (IF (|has| |#2| (-1019 (-48))) (-15 -4259 ((-3 (-412 (-1150 (-48))) "failed") |#3|)) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-4321 (((-1136) $ (-1136)) NIL)) (-3018 (($ $ (-1136)) NIL)) (-1997 (((-1136) $) NIL)) (-3599 (((-382) (-382) (-382)) 17) (((-382) (-382)) 15)) (-3092 (($ (-382)) NIL) (($ (-382) (-1136)) NIL)) (-4290 (((-382) $) NIL)) (-2623 (((-1136) $) NIL)) (-2665 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2251 (((-1242) (-1136)) 9)) (-4118 (((-1242) (-1136)) 10)) (-2869 (((-1242)) 11)) (-3213 (((-844) $) NIL)) (-2469 (($ $) 35)) (-1613 (((-111) $ $) NIL))) +(((-430) (-13 (-358 (-382) (-1136)) (-10 -7 (-15 -3599 ((-382) (-382) (-382))) (-15 -3599 ((-382) (-382))) (-15 -2251 ((-1242) (-1136))) (-15 -4118 ((-1242) (-1136))) (-15 -2869 ((-1242)))))) (T -430)) +((-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-430)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-430)))) (-2869 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-430))))) +(-13 (-358 (-382) (-1136)) (-10 -7 (-15 -3599 ((-382) (-382) (-382))) (-15 -3599 ((-382) (-382))) (-15 -2251 ((-1242) (-1136))) (-15 -4118 ((-1242) (-1136))) (-15 -2869 ((-1242))))) +((-3202 (((-111) $ $) NIL)) (-2271 (((-3 (|:| |fst| (-428)) (|:| -1899 "void")) $) 11)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3068 (($) 32)) (-2471 (($) 38)) (-3380 (($) 34)) (-3470 (($) 36)) (-3992 (($) 33)) (-1530 (($) 35)) (-2343 (($) 37)) (-2989 (((-111) $) 8)) (-1585 (((-629 (-933 (-552))) $) 19)) (-3226 (($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-1154)) (-111)) 27) (($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-933 (-552))) (-111)) 28)) (-3213 (((-844) $) 23) (($ (-428)) 29)) (-1613 (((-111) $ $) NIL))) +(((-431) (-13 (-1078) (-10 -8 (-15 -3213 ((-844) $)) (-15 -3213 ($ (-428))) (-15 -2271 ((-3 (|:| |fst| (-428)) (|:| -1899 "void")) $)) (-15 -1585 ((-629 (-933 (-552))) $)) (-15 -2989 ((-111) $)) (-15 -3226 ($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-1154)) (-111))) (-15 -3226 ($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-933 (-552))) (-111))) (-15 -3068 ($)) (-15 -3992 ($)) (-15 -3380 ($)) (-15 -2471 ($)) (-15 -1530 ($)) (-15 -3470 ($)) (-15 -2343 ($))))) (T -431)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-431)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *1 (-431)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-629 (-933 (-552)))) (-5 *1 (-431)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *3 (-629 (-1154))) (-5 *4 (-111)) (-5 *1 (-431)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) (-3068 (*1 *1) (-5 *1 (-431))) (-3992 (*1 *1) (-5 *1 (-431))) (-3380 (*1 *1) (-5 *1 (-431))) (-2471 (*1 *1) (-5 *1 (-431))) (-1530 (*1 *1) (-5 *1 (-431))) (-3470 (*1 *1) (-5 *1 (-431))) (-2343 (*1 *1) (-5 *1 (-431)))) +(-13 (-1078) (-10 -8 (-15 -3213 ((-844) $)) (-15 -3213 ($ (-428))) (-15 -2271 ((-3 (|:| |fst| (-428)) (|:| -1899 "void")) $)) (-15 -1585 ((-629 (-933 (-552))) $)) (-15 -2989 ((-111) $)) (-15 -3226 ($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-1154)) (-111))) (-15 -3226 ($ (-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-629 (-933 (-552))) (-111))) (-15 -3068 ($)) (-15 -3992 ($)) (-15 -3380 ($)) (-15 -2471 ($)) (-15 -1530 ($)) (-15 -3470 ($)) (-15 -2343 ($)))) +((-3202 (((-111) $ $) NIL)) (-4290 (((-1154) $) 8)) (-2623 (((-1136) $) 16)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 13))) +(((-432 |#1|) (-13 (-1078) (-10 -8 (-15 -4290 ((-1154) $)))) (-1154)) (T -432)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-432 *3)) (-14 *3 *2)))) +(-13 (-1078) (-10 -8 (-15 -4290 ((-1154) $)))) +((-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8) (($ (-1237 (-683))) 14) (($ (-629 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 11))) (((-433) (-137)) (T -433)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-681))) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-433))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-1235 (-681)))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))))) -(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) -((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 21) (((-3 $ "failed") (-1235 (-310 (-552)))) 19) (((-3 $ "failed") (-1235 (-931 (-373)))) 17) (((-3 $ "failed") (-1235 (-931 (-552)))) 15) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 13) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 11)) (-1703 (($ (-1235 (-310 (-373)))) 22) (($ (-1235 (-310 (-552)))) 20) (($ (-1235 (-931 (-373)))) 18) (($ (-1235 (-931 (-552)))) 16) (($ (-1235 (-401 (-931 (-373))))) 14) (($ (-1235 (-401 (-931 (-552))))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-683))) (-4 *1 (-433)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-433)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-4 *1 (-433))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-1237 (-683)))) (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-324))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))))) +(((-599 (-844)) . T) ((-389) . T) ((-1191) . T)) +((-1393 (((-3 $ "failed") (-1237 (-310 (-373)))) 21) (((-3 $ "failed") (-1237 (-310 (-552)))) 19) (((-3 $ "failed") (-1237 (-933 (-373)))) 17) (((-3 $ "failed") (-1237 (-933 (-552)))) 15) (((-3 $ "failed") (-1237 (-401 (-933 (-373))))) 13) (((-3 $ "failed") (-1237 (-401 (-933 (-552))))) 11)) (-2832 (($ (-1237 (-310 (-373)))) 22) (($ (-1237 (-310 (-552)))) 20) (($ (-1237 (-933 (-373)))) 18) (($ (-1237 (-933 (-552)))) 16) (($ (-1237 (-401 (-933 (-373))))) 14) (($ (-1237 (-401 (-933 (-552))))) 12)) (-2175 (((-1242) $) 7)) (-3213 (((-844) $) 8) (($ (-629 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) 23))) (((-434) (-137)) (T -434)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-434)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434))))) -(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-1235 (-310 (-373))))) (-15 -4039 ((-3 $ "failed") (-1235 (-310 (-373))))) (-15 -1703 ($ (-1235 (-310 (-552))))) (-15 -4039 ((-3 $ "failed") (-1235 (-310 (-552))))) (-15 -1703 ($ (-1235 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-1235 (-931 (-373))))) (-15 -1703 ($ (-1235 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-1235 (-931 (-552))))) (-15 -1703 ($ (-1235 (-401 (-931 (-373)))))) (-15 -4039 ((-3 $ "failed") (-1235 (-401 (-931 (-373)))))) (-15 -1703 ($ (-1235 (-401 (-931 (-552)))))) (-15 -4039 ((-3 $ "failed") (-1235 (-401 (-931 (-552)))))))) -(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) -((-3147 (((-111)) 17)) (-3730 (((-111) (-111)) 18)) (-2301 (((-111)) 13)) (-4132 (((-111) (-111)) 14)) (-2666 (((-111)) 15)) (-4345 (((-111) (-111)) 16)) (-2284 (((-900) (-900)) 21) (((-900)) 20)) (-1937 (((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552))))) 42)) (-2732 (((-900) (-900)) 23) (((-900)) 22)) (-3497 (((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|) 62)) (-3055 (((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552))))))) 126)) (-1523 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)) 152)) (-1685 (((-412 |#1|) |#1| (-754) (-754)) 165) (((-412 |#1|) |#1| (-627 (-754)) (-754)) 162) (((-412 |#1|) |#1| (-627 (-754))) 164) (((-412 |#1|) |#1| (-754)) 163) (((-412 |#1|) |#1|) 161)) (-2637 (((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111)) 167) (((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754)) 168) (((-3 |#1| "failed") (-900) |#1| (-627 (-754))) 170) (((-3 |#1| "failed") (-900) |#1| (-754)) 169) (((-3 |#1| "failed") (-900) |#1|) 171)) (-1727 (((-412 |#1|) |#1| (-754) (-754)) 160) (((-412 |#1|) |#1| (-627 (-754)) (-754)) 156) (((-412 |#1|) |#1| (-627 (-754))) 158) (((-412 |#1|) |#1| (-754)) 157) (((-412 |#1|) |#1|) 155)) (-3999 (((-111) |#1|) 37)) (-4079 (((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552))))) 67)) (-2964 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)) 154))) -(((-435 |#1|) (-10 -7 (-15 -3055 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))))) (-15 -4079 ((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -2732 ((-900))) (-15 -2732 ((-900) (-900))) (-15 -2284 ((-900))) (-15 -2284 ((-900) (-900))) (-15 -1937 ((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -3497 ((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|)) (-15 -3147 ((-111))) (-15 -3730 ((-111) (-111))) (-15 -2301 ((-111))) (-15 -4132 ((-111) (-111))) (-15 -3999 ((-111) |#1|)) (-15 -2666 ((-111))) (-15 -4345 ((-111) (-111))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1| (-754))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1727 ((-412 |#1|) |#1| (-754) (-754))) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1| (-754))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1685 ((-412 |#1|) |#1| (-754) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1|)) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111))) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111))) (-15 -2964 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)))) (-1211 (-552))) (T -435)) -((-2964 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1078 (-754))) (-5 *6 (-754)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-754)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-900)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2666 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2301 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3147 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3497 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2376 (-552)) (|:| -2101 (-627 *3)))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) (-4 *4 (-1211 (-552))) (-5 *2 (-754)) (-5 *1 (-435 *4)))) (-2284 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2284 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2732 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) (-4 *4 (-1211 (-552))) (-5 *2 (-720 (-754))) (-5 *1 (-435 *4)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *4) (|:| -3594 (-552))))))) (-4 *4 (-1211 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) -(-10 -7 (-15 -3055 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))))) (-15 -4079 ((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -2732 ((-900))) (-15 -2732 ((-900) (-900))) (-15 -2284 ((-900))) (-15 -2284 ((-900) (-900))) (-15 -1937 ((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -3497 ((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|)) (-15 -3147 ((-111))) (-15 -3730 ((-111) (-111))) (-15 -2301 ((-111))) (-15 -4132 ((-111) (-111))) (-15 -3999 ((-111) |#1|)) (-15 -2666 ((-111))) (-15 -4345 ((-111) (-111))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1| (-754))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1727 ((-412 |#1|) |#1| (-754) (-754))) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1| (-754))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1685 ((-412 |#1|) |#1| (-754) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1|)) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111))) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111))) (-15 -2964 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)))) -((-2375 (((-552) |#2|) 48) (((-552) |#2| (-754)) 47)) (-3818 (((-552) |#2|) 55)) (-2123 ((|#3| |#2|) 25)) (-2349 ((|#3| |#2| (-900)) 14)) (-3593 ((|#3| |#2|) 15)) (-2598 ((|#3| |#2|) 9)) (-3476 ((|#3| |#2|) 10)) (-4119 ((|#3| |#2| (-900)) 62) ((|#3| |#2|) 30)) (-2595 (((-552) |#2|) 57))) -(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -2595 ((-552) |#2|)) (-15 -4119 (|#3| |#2|)) (-15 -4119 (|#3| |#2| (-900))) (-15 -3818 ((-552) |#2|)) (-15 -2375 ((-552) |#2| (-754))) (-15 -2375 ((-552) |#2|)) (-15 -2349 (|#3| |#2| (-900))) (-15 -2123 (|#3| |#2|)) (-15 -2598 (|#3| |#2|)) (-15 -3476 (|#3| |#2|)) (-15 -3593 (|#3| |#2|))) (-1028) (-1211 |#1|) (-13 (-398) (-1017 |#1|) (-357) (-1174) (-278))) (T -436)) -((-3593 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2123 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1211 *5)) (-4 *6 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))))) (-4119 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2595 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) -(-10 -7 (-15 -2595 ((-552) |#2|)) (-15 -4119 (|#3| |#2|)) (-15 -4119 (|#3| |#2| (-900))) (-15 -3818 ((-552) |#2|)) (-15 -2375 ((-552) |#2| (-754))) (-15 -2375 ((-552) |#2|)) (-15 -2349 (|#3| |#2| (-900))) (-15 -2123 (|#3| |#2|)) (-15 -2598 (|#3| |#2|)) (-15 -3476 (|#3| |#2|)) (-15 -3593 (|#3| |#2|))) -((-2327 ((|#2| (-1235 |#1|)) 36)) (-2490 ((|#2| |#2| |#1|) 49)) (-4181 ((|#2| |#2| |#1|) 41)) (-3429 ((|#2| |#2|) 38)) (-1283 (((-111) |#2|) 30)) (-4124 (((-627 |#2|) (-900) (-412 |#2|)) 17)) (-2637 ((|#2| (-900) (-412 |#2|)) 21)) (-4079 (((-720 (-754)) (-412 |#2|)) 25))) -(((-437 |#1| |#2|) (-10 -7 (-15 -1283 ((-111) |#2|)) (-15 -2327 (|#2| (-1235 |#1|))) (-15 -3429 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -2490 (|#2| |#2| |#1|)) (-15 -4079 ((-720 (-754)) (-412 |#2|))) (-15 -2637 (|#2| (-900) (-412 |#2|))) (-15 -4124 ((-627 |#2|) (-900) (-412 |#2|)))) (-1028) (-1211 |#1|)) (T -437)) -((-4124 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-412 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-1028)) (-5 *2 (-627 *6)) (-5 *1 (-437 *5 *6)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-412 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-437 *5 *2)) (-4 *5 (-1028)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1028)) (-5 *2 (-720 (-754))) (-5 *1 (-437 *4 *5)))) (-2490 (*1 *2 *2 *3) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-4181 (*1 *2 *2 *3) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-1028)) (-4 *2 (-1211 *4)) (-5 *1 (-437 *4 *2)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1283 ((-111) |#2|)) (-15 -2327 (|#2| (-1235 |#1|))) (-15 -3429 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -2490 (|#2| |#2| |#1|)) (-15 -4079 ((-720 (-754)) (-412 |#2|))) (-15 -2637 (|#2| (-900) (-412 |#2|))) (-15 -4124 ((-627 |#2|) (-900) (-412 |#2|)))) -((-2636 (((-754)) 41)) (-3345 (((-754)) 23 (|has| |#1| (-398))) (((-754) (-754)) 22 (|has| |#1| (-398)))) (-1594 (((-552) |#1|) 18 (|has| |#1| (-398)))) (-1747 (((-552) |#1|) 20 (|has| |#1| (-398)))) (-2711 (((-754)) 40) (((-754) (-754)) 39)) (-1779 ((|#1| (-754) (-552)) 29)) (-1825 (((-1240)) 43))) -(((-438 |#1|) (-10 -7 (-15 -1779 (|#1| (-754) (-552))) (-15 -2711 ((-754) (-754))) (-15 -2711 ((-754))) (-15 -2636 ((-754))) (-15 -1825 ((-1240))) (IF (|has| |#1| (-398)) (PROGN (-15 -1747 ((-552) |#1|)) (-15 -1594 ((-552) |#1|)) (-15 -3345 ((-754) (-754))) (-15 -3345 ((-754)))) |%noBranch|)) (-1028)) (T -438)) -((-3345 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1594 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1747 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1825 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2636 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2711 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1028))))) -(-10 -7 (-15 -1779 (|#1| (-754) (-552))) (-15 -2711 ((-754) (-754))) (-15 -2711 ((-754))) (-15 -2636 ((-754))) (-15 -1825 ((-1240))) (IF (|has| |#1| (-398)) (PROGN (-15 -1747 ((-552) |#1|)) (-15 -1594 ((-552) |#1|)) (-15 -3345 ((-754) (-754))) (-15 -3345 ((-754)))) |%noBranch|)) -((-1916 (((-627 (-552)) (-552)) 61)) (-1633 (((-111) (-166 (-552))) 65)) (-1727 (((-412 (-166 (-552))) (-166 (-552))) 60))) -(((-439) (-10 -7 (-15 -1727 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -1916 ((-627 (-552)) (-552))) (-15 -1633 ((-111) (-166 (-552)))))) (T -439)) -((-1633 (*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-439)) (-5 *3 (-552)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) (-5 *3 (-166 (-552)))))) -(-10 -7 (-15 -1727 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -1916 ((-627 (-552)) (-552))) (-15 -1633 ((-111) (-166 (-552))))) -((-2355 ((|#4| |#4| (-627 |#4|)) 61)) (-2835 (((-627 |#4|) (-627 |#4|) (-1134) (-1134)) 17) (((-627 |#4|) (-627 |#4|) (-1134)) 16) (((-627 |#4|) (-627 |#4|)) 11))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2355 (|#4| |#4| (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134) (-1134)))) (-301) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -440)) -((-2835 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-440 *3 *4 *5 *6)))) (-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *2))))) -(-10 -7 (-15 -2355 (|#4| |#4| (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134) (-1134)))) -((-1786 (((-627 (-627 |#4|)) (-627 |#4|) (-111)) 73) (((-627 (-627 |#4|)) (-627 |#4|)) 72) (((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111)) 66) (((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|)) 67)) (-2683 (((-627 (-627 |#4|)) (-627 |#4|) (-111)) 42) (((-627 (-627 |#4|)) (-627 |#4|)) 63))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-111)))) (-13 (-301) (-144)) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -441)) -((-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-1786 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-1786 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-1786 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(-10 -7 (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-111)))) -((-3923 (((-754) |#4|) 12)) (-2013 (((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)))) 31)) (-3193 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3598 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1840 ((|#4| |#4| (-627 |#4|)) 40)) (-1867 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|)) 70)) (-3618 (((-1240) |#4|) 42)) (-2579 (((-1240) (-627 |#4|)) 51)) (-3318 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552)) 48)) (-4077 (((-1240) (-552)) 79)) (-2715 (((-627 |#4|) (-627 |#4|)) 77)) (-4195 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754)) 25)) (-4302 (((-552) |#4|) 78)) (-2538 ((|#4| |#4|) 29)) (-1461 (((-627 |#4|) (-627 |#4|) (-552) (-552)) 56)) (-2907 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552)) 89)) (-3777 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4024 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2150 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1473 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3219 (((-111) |#2| |#2|) 57)) (-3579 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1845 (((-111) |#2| |#2| |#2| |#2|) 60)) (-2608 ((|#4| |#4| (-627 |#4|)) 71))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2608 (|#4| |#4| (-627 |#4|))) (-15 -1840 (|#4| |#4| (-627 |#4|))) (-15 -1461 ((-627 |#4|) (-627 |#4|) (-552) (-552))) (-15 -4024 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3219 ((-111) |#2| |#2|)) (-15 -1845 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3579 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2150 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1867 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|))) (-15 -2538 (|#4| |#4|)) (-15 -2013 ((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))))) (-15 -3598 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3193 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-627 |#4|) (-627 |#4|))) (-15 -4302 ((-552) |#4|)) (-15 -3618 ((-1240) |#4|)) (-15 -3318 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2907 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2579 ((-1240) (-627 |#4|))) (-15 -4077 ((-1240) (-552))) (-15 -3777 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754))) (-15 -3923 ((-754) |#4|))) (-445) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -442)) -((-3923 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-4195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-754)) (|:| -3144 *4))) (-5 *5 (-754)) (-4 *4 (-928 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-3777 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2907 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *4)))) (-3318 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *4)))) (-3618 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-4302 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-552)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3193 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-776)) (-4 *2 (-928 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-445)) (-4 *6 (-830)))) (-2013 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 *3)))) (-5 *4 (-754)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *3)))) (-2538 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-2150 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-776)) (-4 *6 (-928 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3579 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-776)) (-4 *3 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1845 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5)))) (-3219 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1461 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1840 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) -(-10 -7 (-15 -2608 (|#4| |#4| (-627 |#4|))) (-15 -1840 (|#4| |#4| (-627 |#4|))) (-15 -1461 ((-627 |#4|) (-627 |#4|) (-552) (-552))) (-15 -4024 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3219 ((-111) |#2| |#2|)) (-15 -1845 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3579 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2150 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1867 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|))) (-15 -2538 (|#4| |#4|)) (-15 -2013 ((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))))) (-15 -3598 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3193 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-627 |#4|) (-627 |#4|))) (-15 -4302 ((-552) |#4|)) (-15 -3618 ((-1240) |#4|)) (-15 -3318 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2907 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2579 ((-1240) (-627 |#4|))) (-15 -4077 ((-1240) (-552))) (-15 -3777 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754))) (-15 -3923 ((-754) |#4|))) -((-2566 ((|#4| |#4| (-627 |#4|)) 22 (|has| |#1| (-357)))) (-2875 (((-627 |#4|) (-627 |#4|) (-1134) (-1134)) 41) (((-627 |#4|) (-627 |#4|) (-1134)) 40) (((-627 |#4|) (-627 |#4|)) 35))) -(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2875 ((-627 |#4|) (-627 |#4|))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134) (-1134))) (IF (|has| |#1| (-357)) (-15 -2566 (|#4| |#4| (-627 |#4|))) |%noBranch|)) (-445) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -443)) -((-2566 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-357)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *2)))) (-2875 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2875 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-443 *3 *4 *5 *6))))) -(-10 -7 (-15 -2875 ((-627 |#4|) (-627 |#4|))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134) (-1134))) (IF (|has| |#1| (-357)) (-15 -2566 (|#4| |#4| (-627 |#4|))) |%noBranch|)) -((-1276 (($ $ $) 14) (($ (-627 $)) 21)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 41)) (-1323 (($ $ $) NIL) (($ (-627 $)) 22))) -(((-444 |#1|) (-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1276 (|#1| (-627 |#1|))) (-15 -1276 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|))) (-445)) (T -444)) -NIL -(-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1276 (|#1| (-627 |#1|))) (-15 -1276 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-434)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-310 (-373)))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-310 (-373)))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-310 (-552)))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-310 (-552)))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-933 (-373)))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-933 (-373)))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-933 (-552)))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-933 (-552)))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-401 (-933 (-373))))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-401 (-933 (-373))))) (-4 *1 (-434)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1237 (-401 (-933 (-552))))) (-4 *1 (-434)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1237 (-401 (-933 (-552))))) (-4 *1 (-434))))) +(-13 (-389) (-10 -8 (-15 -3213 ($ (-629 (-324)))) (-15 -3213 ($ (-324))) (-15 -3213 ($ (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324)))))) (-15 -2832 ($ (-1237 (-310 (-373))))) (-15 -1393 ((-3 $ "failed") (-1237 (-310 (-373))))) (-15 -2832 ($ (-1237 (-310 (-552))))) (-15 -1393 ((-3 $ "failed") (-1237 (-310 (-552))))) (-15 -2832 ($ (-1237 (-933 (-373))))) (-15 -1393 ((-3 $ "failed") (-1237 (-933 (-373))))) (-15 -2832 ($ (-1237 (-933 (-552))))) (-15 -1393 ((-3 $ "failed") (-1237 (-933 (-552))))) (-15 -2832 ($ (-1237 (-401 (-933 (-373)))))) (-15 -1393 ((-3 $ "failed") (-1237 (-401 (-933 (-373)))))) (-15 -2832 ($ (-1237 (-401 (-933 (-552)))))) (-15 -1393 ((-3 $ "failed") (-1237 (-401 (-933 (-552)))))))) +(((-599 (-844)) . T) ((-389) . T) ((-1191) . T)) +((-2327 (((-111)) 17)) (-4302 (((-111) (-111)) 18)) (-2002 (((-111)) 13)) (-3985 (((-111) (-111)) 14)) (-1365 (((-111)) 15)) (-4224 (((-111) (-111)) 16)) (-1828 (((-902) (-902)) 21) (((-902)) 20)) (-1475 (((-756) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552))))) 42)) (-3920 (((-902) (-902)) 23) (((-902)) 22)) (-3826 (((-2 (|:| -3461 (-552)) (|:| -3772 (-629 |#1|))) |#1|) 62)) (-3928 (((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552))))))) 126)) (-3258 (((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111)) 152)) (-4058 (((-412 |#1|) |#1| (-756) (-756)) 165) (((-412 |#1|) |#1| (-629 (-756)) (-756)) 162) (((-412 |#1|) |#1| (-629 (-756))) 164) (((-412 |#1|) |#1| (-756)) 163) (((-412 |#1|) |#1|) 161)) (-4201 (((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756) (-111)) 167) (((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756)) 168) (((-3 |#1| "failed") (-902) |#1| (-629 (-756))) 170) (((-3 |#1| "failed") (-902) |#1| (-756)) 169) (((-3 |#1| "failed") (-902) |#1|) 171)) (-3479 (((-412 |#1|) |#1| (-756) (-756)) 160) (((-412 |#1|) |#1| (-629 (-756)) (-756)) 156) (((-412 |#1|) |#1| (-629 (-756))) 158) (((-412 |#1|) |#1| (-756)) 157) (((-412 |#1|) |#1|) 155)) (-2046 (((-111) |#1|) 37)) (-3492 (((-722 (-756)) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552))))) 67)) (-4254 (((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111) (-1080 (-756)) (-756)) 154))) +(((-435 |#1|) (-10 -7 (-15 -3928 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))))) (-15 -3492 ((-722 (-756)) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))))) (-15 -3920 ((-902))) (-15 -3920 ((-902) (-902))) (-15 -1828 ((-902))) (-15 -1828 ((-902) (-902))) (-15 -1475 ((-756) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))))) (-15 -3826 ((-2 (|:| -3461 (-552)) (|:| -3772 (-629 |#1|))) |#1|)) (-15 -2327 ((-111))) (-15 -4302 ((-111) (-111))) (-15 -2002 ((-111))) (-15 -3985 ((-111) (-111))) (-15 -2046 ((-111) |#1|)) (-15 -1365 ((-111))) (-15 -4224 ((-111) (-111))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3479 ((-412 |#1|) |#1| (-756))) (-15 -3479 ((-412 |#1|) |#1| (-629 (-756)))) (-15 -3479 ((-412 |#1|) |#1| (-629 (-756)) (-756))) (-15 -3479 ((-412 |#1|) |#1| (-756) (-756))) (-15 -4058 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1| (-756))) (-15 -4058 ((-412 |#1|) |#1| (-629 (-756)))) (-15 -4058 ((-412 |#1|) |#1| (-629 (-756)) (-756))) (-15 -4058 ((-412 |#1|) |#1| (-756) (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1|)) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756) (-111))) (-15 -3258 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111))) (-15 -4254 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111) (-1080 (-756)) (-756)))) (-1213 (-552))) (T -435)) +((-4254 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1080 (-756))) (-5 *6 (-756)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4201 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) (-4201 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) (-4201 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) (-4201 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-902)) (-5 *4 (-756)) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) (-4201 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-902)) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) (-4058 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4058 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4058 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-756))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4058 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4058 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-756))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-1365 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-2002 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-2327 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3826 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3461 (-552)) (|:| -3772 (-629 *3)))) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -3479 *4) (|:| -3299 (-552))))) (-4 *4 (-1213 (-552))) (-5 *2 (-756)) (-5 *1 (-435 *4)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-1828 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3920 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -3479 *4) (|:| -3299 (-552))))) (-4 *4 (-1213 (-552))) (-5 *2 (-722 (-756))) (-5 *1 (-435 *4)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| *4) (|:| -2277 (-552))))))) (-4 *4 (-1213 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) +(-10 -7 (-15 -3928 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))))) (-15 -3492 ((-722 (-756)) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))))) (-15 -3920 ((-902))) (-15 -3920 ((-902) (-902))) (-15 -1828 ((-902))) (-15 -1828 ((-902) (-902))) (-15 -1475 ((-756) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))))) (-15 -3826 ((-2 (|:| -3461 (-552)) (|:| -3772 (-629 |#1|))) |#1|)) (-15 -2327 ((-111))) (-15 -4302 ((-111) (-111))) (-15 -2002 ((-111))) (-15 -3985 ((-111) (-111))) (-15 -2046 ((-111) |#1|)) (-15 -1365 ((-111))) (-15 -4224 ((-111) (-111))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3479 ((-412 |#1|) |#1| (-756))) (-15 -3479 ((-412 |#1|) |#1| (-629 (-756)))) (-15 -3479 ((-412 |#1|) |#1| (-629 (-756)) (-756))) (-15 -3479 ((-412 |#1|) |#1| (-756) (-756))) (-15 -4058 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1| (-756))) (-15 -4058 ((-412 |#1|) |#1| (-629 (-756)))) (-15 -4058 ((-412 |#1|) |#1| (-629 (-756)) (-756))) (-15 -4058 ((-412 |#1|) |#1| (-756) (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1|)) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756))) (-15 -4201 ((-3 |#1| "failed") (-902) |#1| (-629 (-756)) (-756) (-111))) (-15 -3258 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111))) (-15 -4254 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111) (-1080 (-756)) (-756)))) +((-3451 (((-552) |#2|) 48) (((-552) |#2| (-756)) 47)) (-3940 (((-552) |#2|) 55)) (-2745 ((|#3| |#2|) 25)) (-4346 ((|#3| |#2| (-902)) 14)) (-2556 ((|#3| |#2|) 15)) (-1894 ((|#3| |#2|) 9)) (-2384 ((|#3| |#2|) 10)) (-3868 ((|#3| |#2| (-902)) 62) ((|#3| |#2|) 30)) (-1858 (((-552) |#2|) 57))) +(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -1858 ((-552) |#2|)) (-15 -3868 (|#3| |#2|)) (-15 -3868 (|#3| |#2| (-902))) (-15 -3940 ((-552) |#2|)) (-15 -3451 ((-552) |#2| (-756))) (-15 -3451 ((-552) |#2|)) (-15 -4346 (|#3| |#2| (-902))) (-15 -2745 (|#3| |#2|)) (-15 -1894 (|#3| |#2|)) (-15 -2384 (|#3| |#2|)) (-15 -2556 (|#3| |#2|))) (-1030) (-1213 |#1|) (-13 (-398) (-1019 |#1|) (-357) (-1176) (-278))) (T -436)) +((-2556 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) (-2384 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) (-1894 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *2 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1213 *5)))) (-3451 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1213 *4)) (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1213 *5)) (-4 *6 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1213 *4)) (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))))) (-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *2 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1213 *5)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1213 *4)) (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278)))))) +(-10 -7 (-15 -1858 ((-552) |#2|)) (-15 -3868 (|#3| |#2|)) (-15 -3868 (|#3| |#2| (-902))) (-15 -3940 ((-552) |#2|)) (-15 -3451 ((-552) |#2| (-756))) (-15 -3451 ((-552) |#2|)) (-15 -4346 (|#3| |#2| (-902))) (-15 -2745 (|#3| |#2|)) (-15 -1894 (|#3| |#2|)) (-15 -2384 (|#3| |#2|)) (-15 -2556 (|#3| |#2|))) +((-4155 ((|#2| (-1237 |#1|)) 36)) (-3373 ((|#2| |#2| |#1|) 49)) (-3255 ((|#2| |#2| |#1|) 41)) (-3344 ((|#2| |#2|) 38)) (-2706 (((-111) |#2|) 30)) (-3905 (((-629 |#2|) (-902) (-412 |#2|)) 17)) (-4201 ((|#2| (-902) (-412 |#2|)) 21)) (-3492 (((-722 (-756)) (-412 |#2|)) 25))) +(((-437 |#1| |#2|) (-10 -7 (-15 -2706 ((-111) |#2|)) (-15 -4155 (|#2| (-1237 |#1|))) (-15 -3344 (|#2| |#2|)) (-15 -3255 (|#2| |#2| |#1|)) (-15 -3373 (|#2| |#2| |#1|)) (-15 -3492 ((-722 (-756)) (-412 |#2|))) (-15 -4201 (|#2| (-902) (-412 |#2|))) (-15 -3905 ((-629 |#2|) (-902) (-412 |#2|)))) (-1030) (-1213 |#1|)) (T -437)) +((-3905 (*1 *2 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-412 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-1030)) (-5 *2 (-629 *6)) (-5 *1 (-437 *5 *6)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-412 *2)) (-4 *2 (-1213 *5)) (-5 *1 (-437 *5 *2)) (-4 *5 (-1030)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-1030)) (-5 *2 (-722 (-756))) (-5 *1 (-437 *4 *5)))) (-3373 (*1 *2 *2 *3) (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3)))) (-3255 (*1 *2 *2 *3) (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3)))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-1030)) (-4 *2 (-1213 *4)) (-5 *1 (-437 *4 *2)))) (-2706 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -2706 ((-111) |#2|)) (-15 -4155 (|#2| (-1237 |#1|))) (-15 -3344 (|#2| |#2|)) (-15 -3255 (|#2| |#2| |#1|)) (-15 -3373 (|#2| |#2| |#1|)) (-15 -3492 ((-722 (-756)) (-412 |#2|))) (-15 -4201 (|#2| (-902) (-412 |#2|))) (-15 -3905 ((-629 |#2|) (-902) (-412 |#2|)))) +((-4192 (((-756)) 41)) (-1713 (((-756)) 23 (|has| |#1| (-398))) (((-756) (-756)) 22 (|has| |#1| (-398)))) (-2611 (((-552) |#1|) 18 (|has| |#1| (-398)))) (-3448 (((-552) |#1|) 20 (|has| |#1| (-398)))) (-3732 (((-756)) 40) (((-756) (-756)) 39)) (-3723 ((|#1| (-756) (-552)) 29)) (-2946 (((-1242)) 43))) +(((-438 |#1|) (-10 -7 (-15 -3723 (|#1| (-756) (-552))) (-15 -3732 ((-756) (-756))) (-15 -3732 ((-756))) (-15 -4192 ((-756))) (-15 -2946 ((-1242))) (IF (|has| |#1| (-398)) (PROGN (-15 -3448 ((-552) |#1|)) (-15 -2611 ((-552) |#1|)) (-15 -1713 ((-756) (-756))) (-15 -1713 ((-756)))) |%noBranch|)) (-1030)) (T -438)) +((-1713 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030)))) (-1713 (*1 *2 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030)))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030)))) (-2946 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-438 *3)) (-4 *3 (-1030)))) (-4192 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030)))) (-3732 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1030))))) +(-10 -7 (-15 -3723 (|#1| (-756) (-552))) (-15 -3732 ((-756) (-756))) (-15 -3732 ((-756))) (-15 -4192 ((-756))) (-15 -2946 ((-1242))) (IF (|has| |#1| (-398)) (PROGN (-15 -3448 ((-552) |#1|)) (-15 -2611 ((-552) |#1|)) (-15 -1713 ((-756) (-756))) (-15 -1713 ((-756)))) |%noBranch|)) +((-2565 (((-629 (-552)) (-552)) 61)) (-1677 (((-111) (-166 (-552))) 65)) (-3479 (((-412 (-166 (-552))) (-166 (-552))) 60))) +(((-439) (-10 -7 (-15 -3479 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -2565 ((-629 (-552)) (-552))) (-15 -1677 ((-111) (-166 (-552)))))) (T -439)) +((-1677 (*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) (-2565 (*1 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-439)) (-5 *3 (-552)))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) (-5 *3 (-166 (-552)))))) +(-10 -7 (-15 -3479 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -2565 ((-629 (-552)) (-552))) (-15 -1677 ((-111) (-166 (-552))))) +((-1308 ((|#4| |#4| (-629 |#4|)) 61)) (-2381 (((-629 |#4|) (-629 |#4|) (-1136) (-1136)) 17) (((-629 |#4|) (-629 |#4|) (-1136)) 16) (((-629 |#4|) (-629 |#4|)) 11))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1308 (|#4| |#4| (-629 |#4|))) (-15 -2381 ((-629 |#4|) (-629 |#4|))) (-15 -2381 ((-629 |#4|) (-629 |#4|) (-1136))) (-15 -2381 ((-629 |#4|) (-629 |#4|) (-1136) (-1136)))) (-301) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -440)) +((-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2381 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1308 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-440 *4 *5 *6 *2))))) +(-10 -7 (-15 -1308 (|#4| |#4| (-629 |#4|))) (-15 -2381 ((-629 |#4|) (-629 |#4|))) (-15 -2381 ((-629 |#4|) (-629 |#4|) (-1136))) (-15 -2381 ((-629 |#4|) (-629 |#4|) (-1136) (-1136)))) +((-3797 (((-629 (-629 |#4|)) (-629 |#4|) (-111)) 73) (((-629 (-629 |#4|)) (-629 |#4|)) 72) (((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|) (-111)) 66) (((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|)) 67)) (-3486 (((-629 (-629 |#4|)) (-629 |#4|) (-111)) 42) (((-629 (-629 |#4|)) (-629 |#4|)) 63))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3486 ((-629 (-629 |#4|)) (-629 |#4|))) (-15 -3486 ((-629 (-629 |#4|)) (-629 |#4|) (-111))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|) (-111))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-111)))) (-13 (-301) (-144)) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -441)) +((-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-3797 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8)))) (-3797 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(-10 -7 (-15 -3486 ((-629 (-629 |#4|)) (-629 |#4|))) (-15 -3486 ((-629 (-629 |#4|)) (-629 |#4|) (-111))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-629 |#4|) (-111))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|))) (-15 -3797 ((-629 (-629 |#4|)) (-629 |#4|) (-111)))) +((-2523 (((-756) |#4|) 12)) (-4127 (((-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|))) |#4| (-756) (-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|)))) 31)) (-2746 (((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2313 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3091 ((|#4| |#4| (-629 |#4|)) 40)) (-2039 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-629 |#4|)) 70)) (-2526 (((-1242) |#4|) 42)) (-1685 (((-1242) (-629 |#4|)) 51)) (-1495 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552)) 48)) (-1499 (((-1242) (-552)) 79)) (-3762 (((-629 |#4|) (-629 |#4|)) 77)) (-3386 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|)) |#4| (-756)) 25)) (-1860 (((-552) |#4|) 78)) (-2551 ((|#4| |#4|) 29)) (-2708 (((-629 |#4|) (-629 |#4|) (-552) (-552)) 56)) (-1844 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552)) 89)) (-3579 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4198 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3021 (((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2819 (((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3020 (((-111) |#2| |#2|) 57)) (-2114 (((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3122 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1988 ((|#4| |#4| (-629 |#4|)) 71))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1988 (|#4| |#4| (-629 |#4|))) (-15 -3091 (|#4| |#4| (-629 |#4|))) (-15 -2708 ((-629 |#4|) (-629 |#4|) (-552) (-552))) (-15 -4198 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3020 ((-111) |#2| |#2|)) (-15 -3122 ((-111) |#2| |#2| |#2| |#2|)) (-15 -2114 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2819 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3021 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2039 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-629 |#4|))) (-15 -2551 (|#4| |#4|)) (-15 -4127 ((-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|))) |#4| (-756) (-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|))))) (-15 -2313 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2746 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3762 ((-629 |#4|) (-629 |#4|))) (-15 -1860 ((-552) |#4|)) (-15 -2526 ((-1242) |#4|)) (-15 -1495 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -1844 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -1685 ((-1242) (-629 |#4|))) (-15 -1499 ((-1242) (-552))) (-15 -3579 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3386 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|)) |#4| (-756))) (-15 -2523 ((-756) |#4|))) (-445) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -442)) +((-2523 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-756)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-756)) (|:| -2291 *4))) (-5 *5 (-756)) (-4 *4 (-930 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-3579 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-778)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1242)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1242)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1844 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-756)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-778)) (-4 *4 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-832)) (-5 *1 (-442 *5 *6 *7 *4)))) (-1495 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-756)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-778)) (-4 *4 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-832)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2526 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1242)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6)))) (-1860 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-552)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-442 *3 *4 *5 *6)))) (-2746 (*1 *2 *2 *2) (-12 (-5 *2 (-629 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-756)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-778)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-832)) (-5 *1 (-442 *3 *4 *5 *6)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-778)) (-4 *2 (-930 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-445)) (-4 *6 (-832)))) (-4127 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 *3)))) (-5 *4 (-756)) (-4 *3 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-442 *5 *6 *7 *3)))) (-2551 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5)))) (-2039 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-3021 (*1 *2 *3 *2) (-12 (-5 *2 (-629 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-756)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-778)) (-4 *6 (-930 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-832)) (-5 *1 (-442 *4 *3 *5 *6)))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-629 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-756)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-778)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-832)) (-5 *1 (-442 *3 *4 *5 *6)))) (-2114 (*1 *2 *3 *2) (-12 (-5 *2 (-629 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-778)) (-4 *3 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *3)))) (-3122 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-930 *4 *3 *5)))) (-3020 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-930 *4 *3 *5)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-778)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2708 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-552)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3091 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1988 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *2))))) +(-10 -7 (-15 -1988 (|#4| |#4| (-629 |#4|))) (-15 -3091 (|#4| |#4| (-629 |#4|))) (-15 -2708 ((-629 |#4|) (-629 |#4|) (-552) (-552))) (-15 -4198 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3020 ((-111) |#2| |#2|)) (-15 -3122 ((-111) |#2| |#2| |#2| |#2|)) (-15 -2114 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2819 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3021 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2039 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-629 |#4|))) (-15 -2551 (|#4| |#4|)) (-15 -4127 ((-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|))) |#4| (-756) (-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|))))) (-15 -2313 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2746 ((-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-629 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3762 ((-629 |#4|) (-629 |#4|))) (-15 -1860 ((-552) |#4|)) (-15 -2526 ((-1242) |#4|)) (-15 -1495 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -1844 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -1685 ((-1242) (-629 |#4|))) (-15 -1499 ((-1242) (-552))) (-15 -3579 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3386 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-756)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-756)) (|:| -2291 |#4|)) |#4| (-756))) (-15 -2523 ((-756) |#4|))) +((-1555 ((|#4| |#4| (-629 |#4|)) 22 (|has| |#1| (-357)))) (-1542 (((-629 |#4|) (-629 |#4|) (-1136) (-1136)) 41) (((-629 |#4|) (-629 |#4|) (-1136)) 40) (((-629 |#4|) (-629 |#4|)) 35))) +(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1542 ((-629 |#4|) (-629 |#4|))) (-15 -1542 ((-629 |#4|) (-629 |#4|) (-1136))) (-15 -1542 ((-629 |#4|) (-629 |#4|) (-1136) (-1136))) (IF (|has| |#1| (-357)) (-15 -1555 (|#4| |#4| (-629 |#4|))) |%noBranch|)) (-445) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -443)) +((-1555 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-357)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-443 *4 *5 *6 *2)))) (-1542 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-443 *3 *4 *5 *6))))) +(-10 -7 (-15 -1542 ((-629 |#4|) (-629 |#4|))) (-15 -1542 ((-629 |#4|) (-629 |#4|) (-1136))) (-15 -1542 ((-629 |#4|) (-629 |#4|) (-1136) (-1136))) (IF (|has| |#1| (-357)) (-15 -1555 (|#4| |#4| (-629 |#4|))) |%noBranch|)) +((-2552 (($ $ $) 14) (($ (-629 $)) 21)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 41)) (-2594 (($ $ $) NIL) (($ (-629 $)) 22))) +(((-444 |#1|) (-10 -8 (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2552 (|#1| (-629 |#1|))) (-15 -2552 (|#1| |#1| |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|))) (-445)) (T -444)) +NIL +(-10 -8 (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2552 (|#1| (-629 |#1|))) (-15 -2552 (|#1| |#1| |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -2594 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3969 (((-3 $ "failed") $ $) 40)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-445) (-137)) (T -445)) -((-1323 (*1 *1 *1 *1) (-4 *1 (-445))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) (-1276 (*1 *1 *1 *1) (-4 *1 (-445))) (-1276 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-445))))) -(-13 (-544) (-10 -8 (-15 -1323 ($ $ $)) (-15 -1323 ($ (-627 $))) (-15 -1276 ($ $ $)) (-15 -1276 ($ (-627 $))) (-15 -3128 ((-1148 $) (-1148 $) (-1148 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 (-401 (-931 |#1|)))) (-1235 $)) NIL) (((-1235 (-671 (-401 (-931 |#1|))))) NIL)) (-2946 (((-1235 $)) NIL)) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL)) (-3994 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-2877 (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL) (((-671 (-401 (-931 |#1|)))) NIL)) (-2526 (((-401 (-931 |#1|)) $) NIL)) (-3029 (((-671 (-401 (-931 |#1|))) $ (-1235 $)) NIL) (((-671 (-401 (-931 |#1|))) $) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-2856 (((-1148 (-931 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-357))) (((-1148 (-401 (-931 |#1|)))) 84 (|has| |#1| (-544)))) (-1407 (($ $ (-900)) NIL)) (-2141 (((-401 (-931 |#1|)) $) NIL)) (-3343 (((-1148 (-401 (-931 |#1|))) $) 82 (|has| (-401 (-931 |#1|)) (-544)))) (-3119 (((-401 (-931 |#1|)) (-1235 $)) NIL) (((-401 (-931 |#1|))) NIL)) (-1608 (((-1148 (-401 (-931 |#1|))) $) NIL)) (-1819 (((-111)) NIL)) (-2342 (($ (-1235 (-401 (-931 |#1|))) (-1235 $)) 103) (($ (-1235 (-401 (-931 |#1|)))) NIL)) (-2040 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4154 (((-900)) NIL)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) NIL)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL)) (-2513 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-1425 (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL) (((-671 (-401 (-931 |#1|)))) NIL)) (-4131 (((-401 (-931 |#1|)) $) NIL)) (-2593 (((-671 (-401 (-931 |#1|))) $ (-1235 $)) NIL) (((-671 (-401 (-931 |#1|))) $) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-1548 (((-1148 (-931 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-357))) (((-1148 (-401 (-931 |#1|)))) 83 (|has| |#1| (-544)))) (-2896 (($ $ (-900)) NIL)) (-1856 (((-401 (-931 |#1|)) $) NIL)) (-1794 (((-1148 (-401 (-931 |#1|))) $) 77 (|has| (-401 (-931 |#1|)) (-544)))) (-2806 (((-401 (-931 |#1|)) (-1235 $)) NIL) (((-401 (-931 |#1|))) NIL)) (-2798 (((-1148 (-401 (-931 |#1|))) $) NIL)) (-3485 (((-111)) NIL)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL)) (-2011 (((-111)) NIL)) (-2344 (((-111)) NIL)) (-1498 (((-1096) $) NIL)) (-2959 (((-401 (-931 |#1|)) $ $) 71 (|has| |#1| (-544)))) (-1542 (((-401 (-931 |#1|)) $) 93 (|has| |#1| (-544)))) (-3136 (((-401 (-931 |#1|)) $) 95 (|has| |#1| (-544)))) (-4305 (((-1148 (-401 (-931 |#1|))) $) 88 (|has| |#1| (-544)))) (-4236 (((-401 (-931 |#1|))) 72 (|has| |#1| (-544)))) (-1458 (((-401 (-931 |#1|)) $ $) 64 (|has| |#1| (-544)))) (-4049 (((-401 (-931 |#1|)) $) 92 (|has| |#1| (-544)))) (-2443 (((-401 (-931 |#1|)) $) 94 (|has| |#1| (-544)))) (-2819 (((-1148 (-401 (-931 |#1|))) $) 87 (|has| |#1| (-544)))) (-2757 (((-401 (-931 |#1|))) 68 (|has| |#1| (-544)))) (-3897 (($) 101) (($ (-1152)) 107) (($ (-1235 (-1152))) 106) (($ (-1235 $)) 96) (($ (-1152) (-1235 $)) 105) (($ (-1235 (-1152)) (-1235 $)) 104)) (-3361 (((-111)) NIL)) (-1985 (((-401 (-931 |#1|)) $ (-552)) NIL)) (-3133 (((-1235 (-401 (-931 |#1|))) $ (-1235 $)) 98) (((-671 (-401 (-931 |#1|))) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 (-931 |#1|))) $) 40) (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL)) (-3562 (((-1235 (-401 (-931 |#1|))) $) NIL) (($ (-1235 (-401 (-931 |#1|)))) 37)) (-2539 (((-627 (-931 (-401 (-931 |#1|)))) (-1235 $)) NIL) (((-627 (-931 (-401 (-931 |#1|))))) NIL) (((-627 (-931 |#1|)) (-1235 $)) 99 (|has| |#1| (-544))) (((-627 (-931 |#1|))) 100 (|has| |#1| (-544)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL)) (-1477 (((-842) $) NIL) (($ (-1235 (-401 (-931 |#1|)))) NIL)) (-2957 (((-1235 $)) 60)) (-1360 (((-627 (-1235 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL)) (-3288 (($ (-671 (-401 (-931 |#1|))) $) NIL)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL)) (-3258 (((-111)) NIL)) (-3699 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) 97)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 56) (($ $ (-401 (-931 |#1|))) NIL) (($ (-401 (-931 |#1|)) $) NIL) (($ (-1118 |#2| (-401 (-931 |#1|))) $) NIL))) -(((-446 |#1| |#2| |#3| |#4|) (-13 (-411 (-401 (-931 |#1|))) (-630 (-1118 |#2| (-401 (-931 |#1|)))) (-10 -8 (-15 -1477 ($ (-1235 (-401 (-931 |#1|))))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -3897 ($)) (-15 -3897 ($ (-1152))) (-15 -3897 ($ (-1235 (-1152)))) (-15 -3897 ($ (-1235 $))) (-15 -3897 ($ (-1152) (-1235 $))) (-15 -3897 ($ (-1235 (-1152)) (-1235 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1548 ((-1148 (-401 (-931 |#1|))))) (-15 -2819 ((-1148 (-401 (-931 |#1|))) $)) (-15 -4049 ((-401 (-931 |#1|)) $)) (-15 -2443 ((-401 (-931 |#1|)) $)) (-15 -2856 ((-1148 (-401 (-931 |#1|))))) (-15 -4305 ((-1148 (-401 (-931 |#1|))) $)) (-15 -1542 ((-401 (-931 |#1|)) $)) (-15 -3136 ((-401 (-931 |#1|)) $)) (-15 -1458 ((-401 (-931 |#1|)) $ $)) (-15 -2757 ((-401 (-931 |#1|)))) (-15 -2959 ((-401 (-931 |#1|)) $ $)) (-15 -4236 ((-401 (-931 |#1|)))) (-15 -2539 ((-627 (-931 |#1|)) (-1235 $))) (-15 -2539 ((-627 (-931 |#1|))))) |%noBranch|))) (-169) (-900) (-627 (-1152)) (-1235 (-671 |#1|))) (T -446)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 *3)))) (-4 *3 (-169)) (-14 *6 (-1235 (-671 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) (-4034 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2478 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1) (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-900)) (-14 *4 (-627 (-1152))) (-14 *5 (-1235 (-671 *2))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 *2)) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1235 (-1152))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1235 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 *2)) (-14 *7 (-1235 (-671 *4))))) (-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 (-1152))) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) (-1548 (*1 *2) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2856 (*1 *2) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-1458 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2757 (*1 *2) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2959 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4236 (*1 *2) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *2 (-627 (-931 *4))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) (-2539 (*1 *2) (-12 (-5 *2 (-627 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(-13 (-411 (-401 (-931 |#1|))) (-630 (-1118 |#2| (-401 (-931 |#1|)))) (-10 -8 (-15 -1477 ($ (-1235 (-401 (-931 |#1|))))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -3897 ($)) (-15 -3897 ($ (-1152))) (-15 -3897 ($ (-1235 (-1152)))) (-15 -3897 ($ (-1235 $))) (-15 -3897 ($ (-1152) (-1235 $))) (-15 -3897 ($ (-1235 (-1152)) (-1235 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1548 ((-1148 (-401 (-931 |#1|))))) (-15 -2819 ((-1148 (-401 (-931 |#1|))) $)) (-15 -4049 ((-401 (-931 |#1|)) $)) (-15 -2443 ((-401 (-931 |#1|)) $)) (-15 -2856 ((-1148 (-401 (-931 |#1|))))) (-15 -4305 ((-1148 (-401 (-931 |#1|))) $)) (-15 -1542 ((-401 (-931 |#1|)) $)) (-15 -3136 ((-401 (-931 |#1|)) $)) (-15 -1458 ((-401 (-931 |#1|)) $ $)) (-15 -2757 ((-401 (-931 |#1|)))) (-15 -2959 ((-401 (-931 |#1|)) $ $)) (-15 -4236 ((-401 (-931 |#1|)))) (-15 -2539 ((-627 (-931 |#1|)) (-1235 $))) (-15 -2539 ((-627 (-931 |#1|))))) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 13)) (-1853 (((-627 (-844 |#1|)) $) 75)) (-1694 (((-1148 $) $ (-844 |#1|)) 46) (((-1148 |#2|) $) 118)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) 21) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 44) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) 42) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) 80)) (-2014 (($ $) 68)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| |#3| $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 58)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) 123) (($ (-1148 $) (-844 |#1|)) 52)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) 59)) (-1832 (($ |#2| |#3|) 28) (($ $ (-844 |#1|) (-754)) 30) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 ((|#3| $) NIL) (((-754) $ (-844 |#1|)) 50) (((-627 (-754)) $ (-627 (-844 |#1|))) 57)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 |#3| |#3|) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) 39)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) 41)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 40)) (-1970 ((|#2| $) 116)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) 128 (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) 87) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) 90) (($ $ (-844 |#1|) $) 85) (($ $ (-627 (-844 |#1|)) (-627 $)) 106)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) 53) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 ((|#3| $) 67) (((-754) $ (-844 |#1|)) 37) (((-627 (-754)) $ (-627 (-844 |#1|))) 56)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) 125 (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) 145) (($ (-552)) NIL) (($ |#2|) 86) (($ (-844 |#1|)) 31) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ |#3|) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) 17 T CONST)) (-1933 (($) 25 T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) 64 (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 111)) (** (($ $ (-900)) NIL) (($ $ (-754)) 109)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 29) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-447 |#1| |#2| |#3|) (-13 (-928 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028) (-233 (-1383 |#1|) (-754))) (T -447)) -((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-14 *3 (-627 (-1152))) (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-233 (-1383 *3) (-754)))))) -(-13 (-928 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) -((-2446 (((-111) |#1| (-627 |#2|)) 69)) (-1367 (((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|)) 78)) (-2915 (((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|))) 80)) (-3226 ((|#2| |#2| |#1|) 28)) (-1658 (((-754) |#2| (-627 |#2|)) 20))) -(((-448 |#1| |#2|) (-10 -7 (-15 -3226 (|#2| |#2| |#1|)) (-15 -1658 ((-754) |#2| (-627 |#2|))) (-15 -1367 ((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|))) (-15 -2915 ((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|)))) (-15 -2446 ((-111) |#1| (-627 |#2|)))) (-301) (-1211 |#1|)) (T -448)) -((-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-301)) (-5 *2 (-111)) (-5 *1 (-448 *3 *5)))) (-2915 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1235 (-627 *3))) (-4 *4 (-301)) (-5 *2 (-627 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1211 *4)))) (-1367 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-301)) (-4 *6 (-1211 *4)) (-5 *2 (-1235 (-627 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-627 *6)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-301)) (-5 *2 (-754)) (-5 *1 (-448 *5 *3)))) (-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -3226 (|#2| |#2| |#1|)) (-15 -1658 ((-754) |#2| (-627 |#2|))) (-15 -1367 ((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|))) (-15 -2915 ((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|)))) (-15 -2446 ((-111) |#1| (-627 |#2|)))) -((-1727 (((-412 |#5|) |#5|) 24))) -(((-449 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1727 ((-412 |#5|) |#5|))) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-776) (-544) (-544) (-928 |#4| |#2| |#1|)) (T -449)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *5 (-776)) (-4 *7 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) (-4 *3 (-928 *7 *5 *4))))) -(-10 -7 (-15 -1727 ((-412 |#5|) |#5|))) -((-1821 ((|#3|) 37)) (-3128 (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 33))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3128 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1821 (|#3|))) (-776) (-830) (-888) (-928 |#3| |#1| |#2|)) (T -450)) -((-1821 (*1 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-888)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -3128 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1821 (|#3|))) -((-1727 (((-412 (-1148 |#1|)) (-1148 |#1|)) 43))) -(((-451 |#1|) (-10 -7 (-15 -1727 ((-412 (-1148 |#1|)) (-1148 |#1|)))) (-301)) (T -451)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1148 *4))) (-5 *1 (-451 *4)) (-5 *3 (-1148 *4))))) -(-10 -7 (-15 -1727 ((-412 (-1148 |#1|)) (-1148 |#1|)))) -((-1909 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754))) 42) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754))) 41) (((-52) |#2| (-1152) (-288 |#2|)) 35) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 28)) (-1777 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 80) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 79) (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552))) 78) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552))) 77) (((-52) |#2| (-1152) (-288 |#2|)) 72) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 71)) (-1930 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 66) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 64)) (-1920 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552))) 48) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552))) 47))) -(((-452 |#1| |#2|) (-10 -7 (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754)))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754)))) (-15 -1920 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1920 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1930 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1930 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -452)) -((-1777 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) (-1930 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1930 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1920 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-754))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-754))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6))))) -(-10 -7 (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754)))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754)))) (-15 -1920 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1920 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1930 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1930 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))))) -((-3226 ((|#2| |#2| |#1|) 15)) (-3545 (((-627 |#2|) |#2| (-627 |#2|) |#1| (-900)) 69)) (-2081 (((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900)) 60))) -(((-453 |#1| |#2|) (-10 -7 (-15 -2081 ((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900))) (-15 -3545 ((-627 |#2|) |#2| (-627 |#2|) |#1| (-900))) (-15 -3226 (|#2| |#2| |#1|))) (-301) (-1211 |#1|)) (T -453)) -((-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1211 *3)))) (-3545 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-627 *3)) (-5 *5 (-900)) (-4 *3 (-1211 *4)) (-4 *4 (-301)) (-5 *1 (-453 *4 *3)))) (-2081 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-900)) (-4 *5 (-301)) (-4 *3 (-1211 *5)) (-5 *2 (-2 (|:| |plist| (-627 *3)) (|:| |modulo| *5))) (-5 *1 (-453 *5 *3)) (-5 *4 (-627 *3))))) -(-10 -7 (-15 -2081 ((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900))) (-15 -3545 ((-627 |#2|) |#2| (-627 |#2|) |#1| (-900))) (-15 -3226 (|#2| |#2| |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 28)) (-3969 (($ |#3|) 25)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) 32)) (-3934 (($ |#2| |#4| $) 33)) (-1832 (($ |#2| (-696 |#3| |#4| |#5|)) 24)) (-1981 (((-696 |#3| |#4| |#5|) $) 15)) (-3239 ((|#3| $) 19)) (-1721 ((|#4| $) 17)) (-1993 ((|#2| $) 29)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2427 (($ |#2| |#3| |#4|) 26)) (-1922 (($) 36 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-454 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-700 |#6|) (-700 |#2|) (-10 -8 (-15 -1993 (|#2| $)) (-15 -1981 ((-696 |#3| |#4| |#5|) $)) (-15 -1721 (|#4| $)) (-15 -3239 (|#3| $)) (-15 -2014 ($ $)) (-15 -1832 ($ |#2| (-696 |#3| |#4| |#5|))) (-15 -3969 ($ |#3|)) (-15 -2427 ($ |#2| |#3| |#4|)) (-15 -3934 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-627 (-1152)) (-169) (-830) (-233 (-1383 |#1|) (-754)) (-1 (-111) (-2 (|:| -4153 |#3|) (|:| -4067 |#4|)) (-2 (|:| -4153 |#3|) (|:| -4067 |#4|))) (-928 |#2| |#4| (-844 |#1|))) (T -454)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *6 (-233 (-1383 *3) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-830)) (-4 *2 (-928 *4 *6 (-844 *3))))) (-1993 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) (-2 (|:| -4153 *4) (|:| -4067 *5)))) (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-830)) (-4 *7 (-928 *2 *5 (-844 *3))))) (-1981 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *6 (-233 (-1383 *3) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-5 *2 (-696 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) (-4 *5 (-830)) (-4 *8 (-928 *4 *6 (-844 *3))))) (-1721 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-14 *6 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *2)) (-2 (|:| -4153 *5) (|:| -4067 *2)))) (-4 *2 (-233 (-1383 *3) (-754))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) (-4 *5 (-830)) (-4 *7 (-928 *4 *2 (-844 *3))))) (-3239 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) (-2 (|:| -4153 *2) (|:| -4067 *5)))) (-4 *2 (-830)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *7 (-928 *4 *5 (-844 *3))))) (-2014 (*1 *1 *1) (-12 (-14 *2 (-627 (-1152))) (-4 *3 (-169)) (-4 *5 (-233 (-1383 *2) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) (-2 (|:| -4153 *4) (|:| -4067 *5)))) (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-830)) (-4 *7 (-928 *3 *5 (-844 *2))))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-696 *5 *6 *7)) (-4 *5 (-830)) (-4 *6 (-233 (-1383 *4) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-14 *4 (-627 (-1152))) (-4 *2 (-169)) (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-928 *2 *6 (-844 *4))))) (-3969 (*1 *1 *2) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) (-2 (|:| -4153 *2) (|:| -4067 *5)))) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-830)) (-4 *7 (-928 *4 *5 (-844 *3))))) (-2427 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-627 (-1152))) (-4 *2 (-169)) (-4 *4 (-233 (-1383 *5) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *4)) (-2 (|:| -4153 *3) (|:| -4067 *4)))) (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-830)) (-4 *7 (-928 *2 *4 (-844 *5))))) (-3934 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-627 (-1152))) (-4 *2 (-169)) (-4 *3 (-233 (-1383 *4) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *3)) (-2 (|:| -4153 *5) (|:| -4067 *3)))) (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-830)) (-4 *7 (-928 *2 *3 (-844 *4)))))) -(-13 (-700 |#6|) (-700 |#2|) (-10 -8 (-15 -1993 (|#2| $)) (-15 -1981 ((-696 |#3| |#4| |#5|) $)) (-15 -1721 (|#4| $)) (-15 -3239 (|#3| $)) (-15 -2014 ($ $)) (-15 -1832 ($ |#2| (-696 |#3| |#4| |#5|))) (-15 -3969 ($ |#3|)) (-15 -2427 ($ |#2| |#3| |#4|)) (-15 -3934 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1391 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1391 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|) (-13 (-1017 (-401 (-552))) (-357) (-10 -8 (-15 -1477 ($ |#4|)) (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $))))) (T -455)) -((-1391 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-830)) (-4 *5 (-776)) (-4 *6 (-544)) (-4 *7 (-928 *6 *5 *3)) (-5 *1 (-455 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1017 (-401 (-552))) (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $)))))))) -(-10 -7 (-15 -1391 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-1853 (((-627 |#3|) $) 41)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 47)) (-1703 (($ (-627 |#4|)) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#4|) $) 18 (|has| $ (-6 -4366)))) (-4147 ((|#3| $) 45)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 14 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 39)) (-2373 (($) 17)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 16)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528)))) (($ (-627 |#4|)) 49)) (-1490 (($ (-627 |#4|)) 13)) (-4237 (($ $ |#3|) NIL)) (-2286 (($ $ |#3|) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 38) (((-627 |#4|) $) 48)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 30)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-456 |#1| |#2| |#3| |#4|) (-13 (-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3562 ($ (-627 |#4|))) (-6 -4366) (-6 -4367))) (-1028) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -456)) -((-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-456 *3 *4 *5 *6))))) -(-13 (-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3562 ($ (-627 |#4|))) (-6 -4366) (-6 -4367))) -((-1922 (($) 11)) (-1933 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-457 |#1| |#2| |#3|) (-10 -8 (-15 -1933 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1922 (|#1|))) (-458 |#2| |#3|) (-169) (-23)) (T -457)) -NIL -(-10 -8 (-15 -1933 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1922 (|#1|))) -((-1465 (((-111) $ $) 7)) (-4039 (((-3 |#1| "failed") $) 26)) (-1703 ((|#1| $) 25)) (-2735 (($ $ $) 23)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 ((|#2| $) 19)) (-1477 (((-842) $) 11) (($ |#1|) 27)) (-1922 (($) 18 T CONST)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 15) (($ $ $) 13)) (-2384 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2594 (*1 *1 *1 *1) (-4 *1 (-445))) (-2594 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-445)))) (-2552 (*1 *1 *1 *1) (-4 *1 (-445))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-445)))) (-3408 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-445))))) +(-13 (-544) (-10 -8 (-15 -2594 ($ $ $)) (-15 -2594 ($ (-629 $))) (-15 -2552 ($ $ $)) (-15 -2552 ($ (-629 $))) (-15 -3408 ((-1150 $) (-1150 $) (-1150 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3784 (((-3 $ "failed")) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1432 (((-1237 (-673 (-401 (-933 |#1|)))) (-1237 $)) NIL) (((-1237 (-673 (-401 (-933 |#1|))))) NIL)) (-4124 (((-1237 $)) NIL)) (-2130 (($) NIL T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL)) (-2004 (((-3 $ "failed")) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-1561 (((-673 (-401 (-933 |#1|))) (-1237 $)) NIL) (((-673 (-401 (-933 |#1|)))) NIL)) (-2416 (((-401 (-933 |#1|)) $) NIL)) (-3695 (((-673 (-401 (-933 |#1|))) $ (-1237 $)) NIL) (((-673 (-401 (-933 |#1|))) $) NIL)) (-2583 (((-3 $ "failed") $) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-2637 (((-1150 (-933 (-401 (-933 |#1|))))) NIL (|has| (-401 (-933 |#1|)) (-357))) (((-1150 (-401 (-933 |#1|)))) 84 (|has| |#1| (-544)))) (-3422 (($ $ (-902)) NIL)) (-2932 (((-401 (-933 |#1|)) $) NIL)) (-1688 (((-1150 (-401 (-933 |#1|))) $) 82 (|has| (-401 (-933 |#1|)) (-544)))) (-3332 (((-401 (-933 |#1|)) (-1237 $)) NIL) (((-401 (-933 |#1|))) NIL)) (-1469 (((-1150 (-401 (-933 |#1|))) $) NIL)) (-2890 (((-111)) NIL)) (-4278 (($ (-1237 (-401 (-933 |#1|))) (-1237 $)) 103) (($ (-1237 (-401 (-933 |#1|)))) NIL)) (-1293 (((-3 $ "failed") $) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-2128 (((-902)) NIL)) (-1756 (((-111)) NIL)) (-3454 (($ $ (-902)) NIL)) (-1887 (((-111)) NIL)) (-2143 (((-111)) NIL)) (-4284 (((-111)) NIL)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL)) (-2299 (((-3 $ "failed")) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-3607 (((-673 (-401 (-933 |#1|))) (-1237 $)) NIL) (((-673 (-401 (-933 |#1|)))) NIL)) (-3975 (((-401 (-933 |#1|)) $) NIL)) (-1837 (((-673 (-401 (-933 |#1|))) $ (-1237 $)) NIL) (((-673 (-401 (-933 |#1|))) $) NIL)) (-4152 (((-3 $ "failed") $) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-2173 (((-1150 (-933 (-401 (-933 |#1|))))) NIL (|has| (-401 (-933 |#1|)) (-357))) (((-1150 (-401 (-933 |#1|)))) 83 (|has| |#1| (-544)))) (-1736 (($ $ (-902)) NIL)) (-3231 (((-401 (-933 |#1|)) $) NIL)) (-3854 (((-1150 (-401 (-933 |#1|))) $) 77 (|has| (-401 (-933 |#1|)) (-544)))) (-3400 (((-401 (-933 |#1|)) (-1237 $)) NIL) (((-401 (-933 |#1|))) NIL)) (-3326 (((-1150 (-401 (-933 |#1|))) $) NIL)) (-3724 (((-111)) NIL)) (-2623 (((-1136) $) NIL)) (-3329 (((-111)) NIL)) (-4108 (((-111)) NIL)) (-4297 (((-111)) NIL)) (-2876 (((-1098) $) NIL)) (-4217 (((-401 (-933 |#1|)) $ $) 71 (|has| |#1| (-544)))) (-2126 (((-401 (-933 |#1|)) $) 93 (|has| |#1| (-544)))) (-2193 (((-401 (-933 |#1|)) $) 95 (|has| |#1| (-544)))) (-1895 (((-1150 (-401 (-933 |#1|))) $) 88 (|has| |#1| (-544)))) (-2529 (((-401 (-933 |#1|))) 72 (|has| |#1| (-544)))) (-2669 (((-401 (-933 |#1|)) $ $) 64 (|has| |#1| (-544)))) (-4347 (((-401 (-933 |#1|)) $) 92 (|has| |#1| (-544)))) (-2891 (((-401 (-933 |#1|)) $) 94 (|has| |#1| (-544)))) (-2219 (((-1150 (-401 (-933 |#1|))) $) 87 (|has| |#1| (-544)))) (-2988 (((-401 (-933 |#1|))) 68 (|has| |#1| (-544)))) (-2254 (($) 101) (($ (-1154)) 107) (($ (-1237 (-1154))) 106) (($ (-1237 $)) 96) (($ (-1154) (-1237 $)) 105) (($ (-1237 (-1154)) (-1237 $)) 104)) (-1864 (((-111)) NIL)) (-2060 (((-401 (-933 |#1|)) $ (-552)) NIL)) (-3464 (((-1237 (-401 (-933 |#1|))) $ (-1237 $)) 98) (((-673 (-401 (-933 |#1|))) (-1237 $) (-1237 $)) NIL) (((-1237 (-401 (-933 |#1|))) $) 40) (((-673 (-401 (-933 |#1|))) (-1237 $)) NIL)) (-1522 (((-1237 (-401 (-933 |#1|))) $) NIL) (($ (-1237 (-401 (-933 |#1|)))) 37)) (-2566 (((-629 (-933 (-401 (-933 |#1|)))) (-1237 $)) NIL) (((-629 (-933 (-401 (-933 |#1|))))) NIL) (((-629 (-933 |#1|)) (-1237 $)) 99 (|has| |#1| (-544))) (((-629 (-933 |#1|))) 100 (|has| |#1| (-544)))) (-2104 (($ $ $) NIL)) (-2923 (((-111)) NIL)) (-3213 (((-844) $) NIL) (($ (-1237 (-401 (-933 |#1|)))) NIL)) (-4199 (((-1237 $)) 60)) (-1430 (((-629 (-1237 (-401 (-933 |#1|))))) NIL (|has| (-401 (-933 |#1|)) (-544)))) (-1826 (($ $ $ $) NIL)) (-1640 (((-111)) NIL)) (-2639 (($ (-673 (-401 (-933 |#1|))) $) NIL)) (-2845 (($ $ $) NIL)) (-2646 (((-111)) NIL)) (-2127 (((-111)) NIL)) (-4028 (((-111)) NIL)) (-3297 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) 97)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 56) (($ $ (-401 (-933 |#1|))) NIL) (($ (-401 (-933 |#1|)) $) NIL) (($ (-1120 |#2| (-401 (-933 |#1|))) $) NIL))) +(((-446 |#1| |#2| |#3| |#4|) (-13 (-411 (-401 (-933 |#1|))) (-632 (-1120 |#2| (-401 (-933 |#1|)))) (-10 -8 (-15 -3213 ($ (-1237 (-401 (-933 |#1|))))) (-15 -4255 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -3254 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -2254 ($)) (-15 -2254 ($ (-1154))) (-15 -2254 ($ (-1237 (-1154)))) (-15 -2254 ($ (-1237 $))) (-15 -2254 ($ (-1154) (-1237 $))) (-15 -2254 ($ (-1237 (-1154)) (-1237 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -2173 ((-1150 (-401 (-933 |#1|))))) (-15 -2219 ((-1150 (-401 (-933 |#1|))) $)) (-15 -4347 ((-401 (-933 |#1|)) $)) (-15 -2891 ((-401 (-933 |#1|)) $)) (-15 -2637 ((-1150 (-401 (-933 |#1|))))) (-15 -1895 ((-1150 (-401 (-933 |#1|))) $)) (-15 -2126 ((-401 (-933 |#1|)) $)) (-15 -2193 ((-401 (-933 |#1|)) $)) (-15 -2669 ((-401 (-933 |#1|)) $ $)) (-15 -2988 ((-401 (-933 |#1|)))) (-15 -4217 ((-401 (-933 |#1|)) $ $)) (-15 -2529 ((-401 (-933 |#1|)))) (-15 -2566 ((-629 (-933 |#1|)) (-1237 $))) (-15 -2566 ((-629 (-933 |#1|))))) |%noBranch|))) (-169) (-902) (-629 (-1154)) (-1237 (-673 |#1|))) (T -446)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1237 (-401 (-933 *3)))) (-4 *3 (-169)) (-14 *6 (-1237 (-673 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))))) (-4255 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -4199 (-629 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-3254 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -4199 (-629 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2254 (*1 *1) (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-902)) (-14 *4 (-629 (-1154))) (-14 *5 (-1237 (-673 *2))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 *2)) (-14 *6 (-1237 (-673 *3))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1237 (-1154))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1237 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-902)) (-14 *6 (-629 *2)) (-14 *7 (-1237 (-673 *4))))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1237 (-1154))) (-5 *3 (-1237 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-902)) (-14 *6 (-629 (-1154))) (-14 *7 (-1237 (-673 *4))))) (-2173 (*1 *2) (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2637 (*1 *2) (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2988 (*1 *2) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-4217 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2529 (*1 *2) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-1237 (-446 *4 *5 *6 *7))) (-5 *2 (-629 (-933 *4))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-169)) (-14 *5 (-902)) (-14 *6 (-629 (-1154))) (-14 *7 (-1237 (-673 *4))))) (-2566 (*1 *2) (-12 (-5 *2 (-629 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(-13 (-411 (-401 (-933 |#1|))) (-632 (-1120 |#2| (-401 (-933 |#1|)))) (-10 -8 (-15 -3213 ($ (-1237 (-401 (-933 |#1|))))) (-15 -4255 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -3254 ((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed"))) (-15 -2254 ($)) (-15 -2254 ($ (-1154))) (-15 -2254 ($ (-1237 (-1154)))) (-15 -2254 ($ (-1237 $))) (-15 -2254 ($ (-1154) (-1237 $))) (-15 -2254 ($ (-1237 (-1154)) (-1237 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -2173 ((-1150 (-401 (-933 |#1|))))) (-15 -2219 ((-1150 (-401 (-933 |#1|))) $)) (-15 -4347 ((-401 (-933 |#1|)) $)) (-15 -2891 ((-401 (-933 |#1|)) $)) (-15 -2637 ((-1150 (-401 (-933 |#1|))))) (-15 -1895 ((-1150 (-401 (-933 |#1|))) $)) (-15 -2126 ((-401 (-933 |#1|)) $)) (-15 -2193 ((-401 (-933 |#1|)) $)) (-15 -2669 ((-401 (-933 |#1|)) $ $)) (-15 -2988 ((-401 (-933 |#1|)))) (-15 -4217 ((-401 (-933 |#1|)) $ $)) (-15 -2529 ((-401 (-933 |#1|)))) (-15 -2566 ((-629 (-933 |#1|)) (-1237 $))) (-15 -2566 ((-629 (-933 |#1|))))) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 13)) (-3611 (((-629 (-846 |#1|)) $) 75)) (-3449 (((-1150 $) $ (-846 |#1|)) 46) (((-1150 |#2|) $) 118)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3303 (($ $) NIL (|has| |#2| (-544)))) (-1334 (((-111) $) NIL (|has| |#2| (-544)))) (-2349 (((-756) $) 21) (((-756) $ (-629 (-846 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL (|has| |#2| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) 44) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-846 |#1|) "failed") $) NIL)) (-2832 ((|#2| $) 42) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-846 |#1|) $) NIL)) (-3301 (($ $ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-2206 (($ $ (-629 (-552))) 80)) (-3766 (($ $) 68)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#2| (-890)))) (-3423 (($ $ |#2| |#3| $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) 58)) (-3602 (($ (-1150 |#2|) (-846 |#1|)) 123) (($ (-1150 $) (-846 |#1|)) 52)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) 59)) (-3590 (($ |#2| |#3|) 28) (($ $ (-846 |#1|) (-756)) 30) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-846 |#1|)) NIL)) (-3544 ((|#3| $) NIL) (((-756) $ (-846 |#1|)) 50) (((-629 (-756)) $ (-629 (-846 |#1|))) 57)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-3891 (($ (-1 |#3| |#3|) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-3506 (((-3 (-846 |#1|) "failed") $) 39)) (-3733 (($ $) NIL)) (-3743 ((|#2| $) 41)) (-2552 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-846 |#1|)) (|:| -1406 (-756))) "failed") $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) 40)) (-3722 ((|#2| $) 116)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) 128 (|has| |#2| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-890)))) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-846 |#1|) |#2|) 87) (($ $ (-629 (-846 |#1|)) (-629 |#2|)) 90) (($ $ (-846 |#1|) $) 85) (($ $ (-629 (-846 |#1|)) (-629 $)) 106)) (-1721 (($ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-3096 (($ $ (-846 |#1|)) 53) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3299 ((|#3| $) 67) (((-756) $ (-846 |#1|)) 37) (((-629 (-756)) $ (-629 (-846 |#1|))) 56)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-846 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#2| $) 125 (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-3213 (((-844) $) 145) (($ (-552)) NIL) (($ |#2|) 86) (($ (-846 |#1|)) 31) (($ (-401 (-552))) NIL (-4029 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ |#3|) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#2| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#2| (-544)))) (-3297 (($) 17 T CONST)) (-3309 (($) 25 T CONST)) (-1765 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ |#2|) 64 (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 111)) (** (($ $ (-902)) NIL) (($ $ (-756)) 109)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 29) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-447 |#1| |#2| |#3|) (-13 (-930 |#2| |#3| (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) (-629 (-1154)) (-1030) (-233 (-2657 |#1|) (-756))) (T -447)) +((-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-14 *3 (-629 (-1154))) (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-233 (-2657 *3) (-756)))))) +(-13 (-930 |#2| |#3| (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) +((-2924 (((-111) |#1| (-629 |#2|)) 69)) (-2558 (((-3 (-1237 (-629 |#2|)) "failed") (-756) |#1| (-629 |#2|)) 78)) (-1926 (((-3 (-629 |#2|) "failed") |#2| |#1| (-1237 (-629 |#2|))) 80)) (-3098 ((|#2| |#2| |#1|) 28)) (-1921 (((-756) |#2| (-629 |#2|)) 20))) +(((-448 |#1| |#2|) (-10 -7 (-15 -3098 (|#2| |#2| |#1|)) (-15 -1921 ((-756) |#2| (-629 |#2|))) (-15 -2558 ((-3 (-1237 (-629 |#2|)) "failed") (-756) |#1| (-629 |#2|))) (-15 -1926 ((-3 (-629 |#2|) "failed") |#2| |#1| (-1237 (-629 |#2|)))) (-15 -2924 ((-111) |#1| (-629 |#2|)))) (-301) (-1213 |#1|)) (T -448)) +((-2924 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *5)) (-4 *5 (-1213 *3)) (-4 *3 (-301)) (-5 *2 (-111)) (-5 *1 (-448 *3 *5)))) (-1926 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1237 (-629 *3))) (-4 *4 (-301)) (-5 *2 (-629 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1213 *4)))) (-2558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-756)) (-4 *4 (-301)) (-4 *6 (-1213 *4)) (-5 *2 (-1237 (-629 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-629 *6)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-301)) (-5 *2 (-756)) (-5 *1 (-448 *5 *3)))) (-3098 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1213 *3))))) +(-10 -7 (-15 -3098 (|#2| |#2| |#1|)) (-15 -1921 ((-756) |#2| (-629 |#2|))) (-15 -2558 ((-3 (-1237 (-629 |#2|)) "failed") (-756) |#1| (-629 |#2|))) (-15 -1926 ((-3 (-629 |#2|) "failed") |#2| |#1| (-1237 (-629 |#2|)))) (-15 -2924 ((-111) |#1| (-629 |#2|)))) +((-3479 (((-412 |#5|) |#5|) 24))) +(((-449 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3479 ((-412 |#5|) |#5|))) (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154))))) (-778) (-544) (-544) (-930 |#4| |#2| |#1|)) (T -449)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-4 *5 (-778)) (-4 *7 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) (-4 *3 (-930 *7 *5 *4))))) +(-10 -7 (-15 -3479 ((-412 |#5|) |#5|))) +((-2913 ((|#3|) 37)) (-3408 (((-1150 |#4|) (-1150 |#4|) (-1150 |#4|)) 33))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3408 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -2913 (|#3|))) (-778) (-832) (-890) (-930 |#3| |#1| |#2|)) (T -450)) +((-2913 (*1 *2) (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-890)) (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-930 *2 *3 *4)))) (-3408 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-890)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -3408 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -2913 (|#3|))) +((-3479 (((-412 (-1150 |#1|)) (-1150 |#1|)) 43))) +(((-451 |#1|) (-10 -7 (-15 -3479 ((-412 (-1150 |#1|)) (-1150 |#1|)))) (-301)) (T -451)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1150 *4))) (-5 *1 (-451 *4)) (-5 *3 (-1150 *4))))) +(-10 -7 (-15 -3479 ((-412 (-1150 |#1|)) (-1150 |#1|)))) +((-3658 (((-52) |#2| (-1154) (-288 |#2|) (-1204 (-756))) 42) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-756))) 41) (((-52) |#2| (-1154) (-288 |#2|)) 35) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 28)) (-1726 (((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))) 80) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))) 79) (((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552))) 78) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552))) 77) (((-52) |#2| (-1154) (-288 |#2|)) 72) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 71)) (-3682 (((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))) 66) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))) 64)) (-3670 (((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552))) 48) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552))) 47))) +(((-452 |#1| |#2|) (-10 -7 (-15 -3658 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -3658 ((-52) |#2| (-1154) (-288 |#2|))) (-15 -3658 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-756)))) (-15 -3658 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-756)))) (-15 -3670 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552)))) (-15 -3670 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552)))) (-15 -3682 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -3682 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -1726 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|))) (-15 -1726 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552)))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552)))) (-15 -1726 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))))) (-13 (-544) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -452)) +((-1726 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *8))) (-4 *8 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1204 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1726 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-552))) (-4 *7 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) (-3682 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *8))) (-4 *8 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-3682 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1204 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-3670 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-552))) (-4 *7 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-3658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-756))) (-4 *3 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-756))) (-4 *7 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6))))) +(-10 -7 (-15 -3658 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -3658 ((-52) |#2| (-1154) (-288 |#2|))) (-15 -3658 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-756)))) (-15 -3658 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-756)))) (-15 -3670 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552)))) (-15 -3670 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552)))) (-15 -3682 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -3682 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -1726 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|))) (-15 -1726 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1204 (-552)))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-552)))) (-15 -1726 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552)))) (-15 -1726 ((-52) |#2| (-1154) (-288 |#2|) (-1204 (-401 (-552))) (-401 (-552))))) +((-3098 ((|#2| |#2| |#1|) 15)) (-3080 (((-629 |#2|) |#2| (-629 |#2|) |#1| (-902)) 69)) (-3608 (((-2 (|:| |plist| (-629 |#2|)) (|:| |modulo| |#1|)) |#2| (-629 |#2|) |#1| (-902)) 60))) +(((-453 |#1| |#2|) (-10 -7 (-15 -3608 ((-2 (|:| |plist| (-629 |#2|)) (|:| |modulo| |#1|)) |#2| (-629 |#2|) |#1| (-902))) (-15 -3080 ((-629 |#2|) |#2| (-629 |#2|) |#1| (-902))) (-15 -3098 (|#2| |#2| |#1|))) (-301) (-1213 |#1|)) (T -453)) +((-3098 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1213 *3)))) (-3080 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-629 *3)) (-5 *5 (-902)) (-4 *3 (-1213 *4)) (-4 *4 (-301)) (-5 *1 (-453 *4 *3)))) (-3608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-902)) (-4 *5 (-301)) (-4 *3 (-1213 *5)) (-5 *2 (-2 (|:| |plist| (-629 *3)) (|:| |modulo| *5))) (-5 *1 (-453 *5 *3)) (-5 *4 (-629 *3))))) +(-10 -7 (-15 -3608 ((-2 (|:| |plist| (-629 |#2|)) (|:| |modulo| |#1|)) |#2| (-629 |#2|) |#1| (-902))) (-15 -3080 ((-629 |#2|) |#2| (-629 |#2|) |#1| (-902))) (-15 -3098 (|#2| |#2| |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 28)) (-1725 (($ |#3|) 25)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) 32)) (-2661 (($ |#2| |#4| $) 33)) (-3590 (($ |#2| (-698 |#3| |#4| |#5|)) 24)) (-3733 (((-698 |#3| |#4| |#5|) $) 15)) (-3237 ((|#3| $) 19)) (-1275 ((|#4| $) 17)) (-3743 ((|#2| $) 29)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-3936 (($ |#2| |#3| |#4|) 26)) (-3297 (($) 36 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 34)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-454 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-702 |#6|) (-702 |#2|) (-10 -8 (-15 -3743 (|#2| $)) (-15 -3733 ((-698 |#3| |#4| |#5|) $)) (-15 -1275 (|#4| $)) (-15 -3237 (|#3| $)) (-15 -3766 ($ $)) (-15 -3590 ($ |#2| (-698 |#3| |#4| |#5|))) (-15 -1725 ($ |#3|)) (-15 -3936 ($ |#2| |#3| |#4|)) (-15 -2661 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-629 (-1154)) (-169) (-832) (-233 (-2657 |#1|) (-756)) (-1 (-111) (-2 (|:| -2840 |#3|) (|:| -1406 |#4|)) (-2 (|:| -2840 |#3|) (|:| -1406 |#4|))) (-930 |#2| |#4| (-846 |#1|))) (T -454)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) (-4 *6 (-233 (-2657 *3) (-756))) (-14 *7 (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) (-2 (|:| -2840 *5) (|:| -1406 *6)))) (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-832)) (-4 *2 (-930 *4 *6 (-846 *3))))) (-3743 (*1 *2 *1) (-12 (-14 *3 (-629 (-1154))) (-4 *5 (-233 (-2657 *3) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *4) (|:| -1406 *5)) (-2 (|:| -2840 *4) (|:| -1406 *5)))) (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-832)) (-4 *7 (-930 *2 *5 (-846 *3))))) (-3733 (*1 *2 *1) (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) (-4 *6 (-233 (-2657 *3) (-756))) (-14 *7 (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) (-2 (|:| -2840 *5) (|:| -1406 *6)))) (-5 *2 (-698 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) (-4 *5 (-832)) (-4 *8 (-930 *4 *6 (-846 *3))))) (-1275 (*1 *2 *1) (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) (-14 *6 (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *2)) (-2 (|:| -2840 *5) (|:| -1406 *2)))) (-4 *2 (-233 (-2657 *3) (-756))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) (-4 *5 (-832)) (-4 *7 (-930 *4 *2 (-846 *3))))) (-3237 (*1 *2 *1) (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) (-4 *5 (-233 (-2657 *3) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *5)) (-2 (|:| -2840 *2) (|:| -1406 *5)))) (-4 *2 (-832)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *7 (-930 *4 *5 (-846 *3))))) (-3766 (*1 *1 *1) (-12 (-14 *2 (-629 (-1154))) (-4 *3 (-169)) (-4 *5 (-233 (-2657 *2) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *4) (|:| -1406 *5)) (-2 (|:| -2840 *4) (|:| -1406 *5)))) (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-832)) (-4 *7 (-930 *3 *5 (-846 *2))))) (-3590 (*1 *1 *2 *3) (-12 (-5 *3 (-698 *5 *6 *7)) (-4 *5 (-832)) (-4 *6 (-233 (-2657 *4) (-756))) (-14 *7 (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) (-2 (|:| -2840 *5) (|:| -1406 *6)))) (-14 *4 (-629 (-1154))) (-4 *2 (-169)) (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-930 *2 *6 (-846 *4))))) (-1725 (*1 *1 *2) (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) (-4 *5 (-233 (-2657 *3) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *5)) (-2 (|:| -2840 *2) (|:| -1406 *5)))) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-832)) (-4 *7 (-930 *4 *5 (-846 *3))))) (-3936 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-629 (-1154))) (-4 *2 (-169)) (-4 *4 (-233 (-2657 *5) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *3) (|:| -1406 *4)) (-2 (|:| -2840 *3) (|:| -1406 *4)))) (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-832)) (-4 *7 (-930 *2 *4 (-846 *5))))) (-2661 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-629 (-1154))) (-4 *2 (-169)) (-4 *3 (-233 (-2657 *4) (-756))) (-14 *6 (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *3)) (-2 (|:| -2840 *5) (|:| -1406 *3)))) (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-832)) (-4 *7 (-930 *2 *3 (-846 *4)))))) +(-13 (-702 |#6|) (-702 |#2|) (-10 -8 (-15 -3743 (|#2| $)) (-15 -3733 ((-698 |#3| |#4| |#5|) $)) (-15 -1275 (|#4| $)) (-15 -3237 (|#3| $)) (-15 -3766 ($ $)) (-15 -3590 ($ |#2| (-698 |#3| |#4| |#5|))) (-15 -1725 ($ |#3|)) (-15 -3936 ($ |#2| |#3| |#4|)) (-15 -2661 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2484 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2484 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-778) (-832) (-544) (-930 |#3| |#1| |#2|) (-13 (-1019 (-401 (-552))) (-357) (-10 -8 (-15 -3213 ($ |#4|)) (-15 -4015 (|#4| $)) (-15 -4026 (|#4| $))))) (T -455)) +((-2484 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-832)) (-4 *5 (-778)) (-4 *6 (-544)) (-4 *7 (-930 *6 *5 *3)) (-5 *1 (-455 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1019 (-401 (-552))) (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $)))))))) +(-10 -7 (-15 -2484 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3611 (((-629 |#3|) $) 41)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) NIL (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3662 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 47)) (-2832 (($ (-629 |#4|)) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2655 (($ |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4368)))) (-3138 (((-629 |#4|) $) 18 (|has| $ (-6 -4368)))) (-2940 ((|#3| $) 45)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#4|) $) 14 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 21)) (-3420 (((-629 |#3|) $) NIL)) (-2677 (((-111) |#3| $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2876 (((-1098) $) NIL)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 39)) (-3430 (($) 17)) (-2885 (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) 16)) (-1522 (((-528) $) NIL (|has| |#4| (-600 (-528)))) (($ (-629 |#4|)) 49)) (-3226 (($ (-629 |#4|)) 13)) (-2542 (($ $ |#3|) NIL)) (-1853 (($ $ |#3|) NIL)) (-2387 (($ $ |#3|) NIL)) (-3213 (((-844) $) 38) (((-629 |#4|) $) 48)) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 30)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-456 |#1| |#2| |#3| |#4|) (-13 (-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1522 ($ (-629 |#4|))) (-6 -4368) (-6 -4369))) (-1030) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -456)) +((-1522 (*1 *1 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-456 *3 *4 *5 *6))))) +(-13 (-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1522 ($ (-629 |#4|))) (-6 -4368) (-6 -4369))) +((-3297 (($) 11)) (-3309 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-457 |#1| |#2| |#3|) (-10 -8 (-15 -3309 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3297 (|#1|))) (-458 |#2| |#3|) (-169) (-23)) (T -457)) +NIL +(-10 -8 (-15 -3309 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3297 (|#1|))) +((-3202 (((-111) $ $) 7)) (-1393 (((-3 |#1| "failed") $) 26)) (-2832 ((|#1| $) 25)) (-3951 (($ $ $) 23)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3299 ((|#2| $) 19)) (-3213 (((-844) $) 11) (($ |#1|) 27)) (-3297 (($) 18 T CONST)) (-3309 (($) 24 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 15) (($ $ $) 13)) (-1698 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-458 |#1| |#2|) (-137) (-169) (-23)) (T -458)) -((-1933 (*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-463 |t#1| |t#2|) (-1017 |t#1|) (-10 -8 (-15 (-1933) ($) -3488) (-15 -2735 ($ $ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-463 |#1| |#2|) . T) ((-1017 |#1|) . T) ((-1076) . T)) -((-2922 (((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900)) 18)) (-1517 (((-1235 (-1235 (-552))) (-900)) 16))) -(((-459) (-10 -7 (-15 -2922 ((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900))) (-15 -1517 ((-1235 (-1235 (-552))) (-900))))) (T -459)) -((-1517 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 (-552)))) (-5 *1 (-459)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 (-1235 (-552)))) (-5 *3 (-900)) (-5 *1 (-459))))) -(-10 -7 (-15 -2922 ((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900))) (-15 -1517 ((-1235 (-1235 (-552))) (-900)))) -((-2511 (((-552) (-552)) 30) (((-552)) 22)) (-3614 (((-552) (-552)) 26) (((-552)) 18)) (-3173 (((-552) (-552)) 28) (((-552)) 20)) (-1789 (((-111) (-111)) 12) (((-111)) 10)) (-3187 (((-111) (-111)) 11) (((-111)) 9)) (-3529 (((-111) (-111)) 24) (((-111)) 15))) -(((-460) (-10 -7 (-15 -3187 ((-111))) (-15 -1789 ((-111))) (-15 -3187 ((-111) (-111))) (-15 -1789 ((-111) (-111))) (-15 -3529 ((-111))) (-15 -3173 ((-552))) (-15 -3614 ((-552))) (-15 -2511 ((-552))) (-15 -3529 ((-111) (-111))) (-15 -3173 ((-552) (-552))) (-15 -3614 ((-552) (-552))) (-15 -2511 ((-552) (-552))))) (T -460)) -((-2511 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2511 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3614 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3173 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3529 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-1789 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3187 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(-10 -7 (-15 -3187 ((-111))) (-15 -1789 ((-111))) (-15 -3187 ((-111) (-111))) (-15 -1789 ((-111) (-111))) (-15 -3529 ((-111))) (-15 -3173 ((-552))) (-15 -3614 ((-552))) (-15 -2511 ((-552))) (-15 -3529 ((-111) (-111))) (-15 -3173 ((-552) (-552))) (-15 -3614 ((-552) (-552))) (-15 -2511 ((-552) (-552)))) -((-1465 (((-111) $ $) NIL)) (-1516 (((-627 (-373)) $) 28) (((-627 (-373)) $ (-627 (-373))) 96)) (-1894 (((-627 (-1070 (-373))) $) 16) (((-627 (-1070 (-373))) $ (-627 (-1070 (-373)))) 94)) (-2028 (((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853))) 45)) (-1590 (((-627 (-627 (-922 (-220)))) $) 90)) (-1745 (((-1240) $ (-922 (-220)) (-853)) 108)) (-3941 (($ $) 89) (($ (-627 (-627 (-922 (-220))))) 99) (($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900))) 98) (($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257))) 100)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 71)) (-1498 (((-1096) $) NIL)) (-3474 (($) 97)) (-2264 (((-627 (-220)) (-627 (-627 (-922 (-220))))) 56)) (-2288 (((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900)) 102) (((-1240) $ (-922 (-220))) 104) (((-1240) $ (-922 (-220)) (-853) (-853) (-900)) 103)) (-1477 (((-842) $) 114) (($ (-627 (-627 (-922 (-220))))) 109)) (-3785 (((-1240) $ (-922 (-220))) 107)) (-2292 (((-111) $ $) NIL))) -(((-461) (-13 (-1076) (-10 -8 (-15 -3474 ($)) (-15 -3941 ($ $)) (-15 -3941 ($ (-627 (-627 (-922 (-220)))))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257)))) (-15 -1590 ((-627 (-627 (-922 (-220)))) $)) (-15 -3998 ((-552) $)) (-15 -1894 ((-627 (-1070 (-373))) $)) (-15 -1894 ((-627 (-1070 (-373))) $ (-627 (-1070 (-373))))) (-15 -1516 ((-627 (-373)) $)) (-15 -1516 ((-627 (-373)) $ (-627 (-373)))) (-15 -2288 ((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900))) (-15 -2288 ((-1240) $ (-922 (-220)))) (-15 -2288 ((-1240) $ (-922 (-220)) (-853) (-853) (-900))) (-15 -3785 ((-1240) $ (-922 (-220)))) (-15 -1745 ((-1240) $ (-922 (-220)) (-853))) (-15 -1477 ($ (-627 (-627 (-922 (-220)))))) (-15 -1477 ((-842) $)) (-15 -2028 ((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853)))) (-15 -2264 ((-627 (-220)) (-627 (-627 (-922 (-220))))))))) (T -461)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-461)))) (-3474 (*1 *1) (-5 *1 (-461))) (-3941 (*1 *1 *1) (-5 *1 (-461))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-3941 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *4 (-627 (-900))) (-5 *1 (-461)))) (-3941 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *4 (-627 (-900))) (-5 *5 (-627 (-257))) (-5 *1 (-461)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) (-1894 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) (-1516 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) (-1745 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *1 (-461)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-220))) (-5 *1 (-461))))) -(-13 (-1076) (-10 -8 (-15 -3474 ($)) (-15 -3941 ($ $)) (-15 -3941 ($ (-627 (-627 (-922 (-220)))))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257)))) (-15 -1590 ((-627 (-627 (-922 (-220)))) $)) (-15 -3998 ((-552) $)) (-15 -1894 ((-627 (-1070 (-373))) $)) (-15 -1894 ((-627 (-1070 (-373))) $ (-627 (-1070 (-373))))) (-15 -1516 ((-627 (-373)) $)) (-15 -1516 ((-627 (-373)) $ (-627 (-373)))) (-15 -2288 ((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900))) (-15 -2288 ((-1240) $ (-922 (-220)))) (-15 -2288 ((-1240) $ (-922 (-220)) (-853) (-853) (-900))) (-15 -3785 ((-1240) $ (-922 (-220)))) (-15 -1745 ((-1240) $ (-922 (-220)) (-853))) (-15 -1477 ($ (-627 (-627 (-922 (-220)))))) (-15 -1477 ((-842) $)) (-15 -2028 ((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853)))) (-15 -2264 ((-627 (-220)) (-627 (-627 (-922 (-220)))))))) -((-2396 (($ $) NIL) (($ $ $) 11))) -(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|))) (-463 |#2| |#3|) (-169) (-23)) (T -462)) -NIL -(-10 -8 (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 ((|#2| $) 19)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 15) (($ $ $) 13)) (-2384 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-3309 (*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-3951 (*1 *1 *1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-463 |t#1| |t#2|) (-1019 |t#1|) (-10 -8 (-15 (-3309) ($) -3930) (-15 -3951 ($ $ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-463 |#1| |#2|) . T) ((-1019 |#1|) . T) ((-1078) . T)) +((-1983 (((-1237 (-1237 (-552))) (-1237 (-1237 (-552))) (-902)) 18)) (-3191 (((-1237 (-1237 (-552))) (-902)) 16))) +(((-459) (-10 -7 (-15 -1983 ((-1237 (-1237 (-552))) (-1237 (-1237 (-552))) (-902))) (-15 -3191 ((-1237 (-1237 (-552))) (-902))))) (T -459)) +((-3191 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1237 (-1237 (-552)))) (-5 *1 (-459)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 (-1237 (-552)))) (-5 *3 (-902)) (-5 *1 (-459))))) +(-10 -7 (-15 -1983 ((-1237 (-1237 (-552))) (-1237 (-1237 (-552))) (-902))) (-15 -3191 ((-1237 (-1237 (-552))) (-902)))) +((-2278 (((-552) (-552)) 30) (((-552)) 22)) (-2475 (((-552) (-552)) 26) (((-552)) 18)) (-2633 (((-552) (-552)) 28) (((-552)) 20)) (-3825 (((-111) (-111)) 12) (((-111)) 10)) (-2785 (((-111) (-111)) 11) (((-111)) 9)) (-2914 (((-111) (-111)) 24) (((-111)) 15))) +(((-460) (-10 -7 (-15 -2785 ((-111))) (-15 -3825 ((-111))) (-15 -2785 ((-111) (-111))) (-15 -3825 ((-111) (-111))) (-15 -2914 ((-111))) (-15 -2633 ((-552))) (-15 -2475 ((-552))) (-15 -2278 ((-552))) (-15 -2914 ((-111) (-111))) (-15 -2633 ((-552) (-552))) (-15 -2475 ((-552) (-552))) (-15 -2278 ((-552) (-552))))) (T -460)) +((-2278 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2278 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2475 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2633 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-2914 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3825 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2785 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(-10 -7 (-15 -2785 ((-111))) (-15 -3825 ((-111))) (-15 -2785 ((-111) (-111))) (-15 -3825 ((-111) (-111))) (-15 -2914 ((-111))) (-15 -2633 ((-552))) (-15 -2475 ((-552))) (-15 -2278 ((-552))) (-15 -2914 ((-111) (-111))) (-15 -2633 ((-552) (-552))) (-15 -2475 ((-552) (-552))) (-15 -2278 ((-552) (-552)))) +((-3202 (((-111) $ $) NIL)) (-2097 (((-629 (-373)) $) 28) (((-629 (-373)) $ (-629 (-373))) 96)) (-2326 (((-629 (-1072 (-373))) $) 16) (((-629 (-1072 (-373))) $ (-629 (-1072 (-373)))) 94)) (-4264 (((-629 (-629 (-924 (-220)))) (-629 (-629 (-924 (-220)))) (-629 (-855))) 45)) (-2570 (((-629 (-629 (-924 (-220)))) $) 90)) (-1693 (((-1242) $ (-924 (-220)) (-855)) 108)) (-2748 (($ $) 89) (($ (-629 (-629 (-924 (-220))))) 99) (($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902))) 98) (($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902)) (-629 (-257))) 100)) (-2623 (((-1136) $) NIL)) (-2670 (((-552) $) 71)) (-2876 (((-1098) $) NIL)) (-3622 (($) 97)) (-1615 (((-629 (-220)) (-629 (-629 (-924 (-220))))) 56)) (-1876 (((-1242) $ (-629 (-924 (-220))) (-855) (-855) (-902)) 102) (((-1242) $ (-924 (-220))) 104) (((-1242) $ (-924 (-220)) (-855) (-855) (-902)) 103)) (-3213 (((-844) $) 114) (($ (-629 (-629 (-924 (-220))))) 109)) (-3647 (((-1242) $ (-924 (-220))) 107)) (-1613 (((-111) $ $) NIL))) +(((-461) (-13 (-1078) (-10 -8 (-15 -3622 ($)) (-15 -2748 ($ $)) (-15 -2748 ($ (-629 (-629 (-924 (-220)))))) (-15 -2748 ($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902)))) (-15 -2748 ($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902)) (-629 (-257)))) (-15 -2570 ((-629 (-629 (-924 (-220)))) $)) (-15 -2670 ((-552) $)) (-15 -2326 ((-629 (-1072 (-373))) $)) (-15 -2326 ((-629 (-1072 (-373))) $ (-629 (-1072 (-373))))) (-15 -2097 ((-629 (-373)) $)) (-15 -2097 ((-629 (-373)) $ (-629 (-373)))) (-15 -1876 ((-1242) $ (-629 (-924 (-220))) (-855) (-855) (-902))) (-15 -1876 ((-1242) $ (-924 (-220)))) (-15 -1876 ((-1242) $ (-924 (-220)) (-855) (-855) (-902))) (-15 -3647 ((-1242) $ (-924 (-220)))) (-15 -1693 ((-1242) $ (-924 (-220)) (-855))) (-15 -3213 ($ (-629 (-629 (-924 (-220)))))) (-15 -3213 ((-844) $)) (-15 -4264 ((-629 (-629 (-924 (-220)))) (-629 (-629 (-924 (-220)))) (-629 (-855)))) (-15 -1615 ((-629 (-220)) (-629 (-629 (-924 (-220))))))))) (T -461)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-461)))) (-3622 (*1 *1) (-5 *1 (-461))) (-2748 (*1 *1 *1) (-5 *1 (-461))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461)))) (-2748 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) (-5 *4 (-629 (-902))) (-5 *1 (-461)))) (-2748 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) (-5 *4 (-629 (-902))) (-5 *5 (-629 (-257))) (-5 *1 (-461)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-461)))) (-2326 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-461)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-461)))) (-2097 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-461)))) (-1876 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *4 (-855)) (-5 *5 (-902)) (-5 *2 (-1242)) (-5 *1 (-461)))) (-1876 (*1 *2 *1 *3) (-12 (-5 *3 (-924 (-220))) (-5 *2 (-1242)) (-5 *1 (-461)))) (-1876 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-924 (-220))) (-5 *4 (-855)) (-5 *5 (-902)) (-5 *2 (-1242)) (-5 *1 (-461)))) (-3647 (*1 *2 *1 *3) (-12 (-5 *3 (-924 (-220))) (-5 *2 (-1242)) (-5 *1 (-461)))) (-1693 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-924 (-220))) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-461)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461)))) (-4264 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) (-5 *1 (-461)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *2 (-629 (-220))) (-5 *1 (-461))))) +(-13 (-1078) (-10 -8 (-15 -3622 ($)) (-15 -2748 ($ $)) (-15 -2748 ($ (-629 (-629 (-924 (-220)))))) (-15 -2748 ($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902)))) (-15 -2748 ($ (-629 (-629 (-924 (-220)))) (-629 (-855)) (-629 (-855)) (-629 (-902)) (-629 (-257)))) (-15 -2570 ((-629 (-629 (-924 (-220)))) $)) (-15 -2670 ((-552) $)) (-15 -2326 ((-629 (-1072 (-373))) $)) (-15 -2326 ((-629 (-1072 (-373))) $ (-629 (-1072 (-373))))) (-15 -2097 ((-629 (-373)) $)) (-15 -2097 ((-629 (-373)) $ (-629 (-373)))) (-15 -1876 ((-1242) $ (-629 (-924 (-220))) (-855) (-855) (-902))) (-15 -1876 ((-1242) $ (-924 (-220)))) (-15 -1876 ((-1242) $ (-924 (-220)) (-855) (-855) (-902))) (-15 -3647 ((-1242) $ (-924 (-220)))) (-15 -1693 ((-1242) $ (-924 (-220)) (-855))) (-15 -3213 ($ (-629 (-629 (-924 (-220)))))) (-15 -3213 ((-844) $)) (-15 -4264 ((-629 (-629 (-924 (-220)))) (-629 (-629 (-924 (-220)))) (-629 (-855)))) (-15 -1615 ((-629 (-220)) (-629 (-629 (-924 (-220)))))))) +((-1709 (($ $) NIL) (($ $ $) 11))) +(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|))) (-463 |#2| |#3|) (-169) (-23)) (T -462)) +NIL +(-10 -8 (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3299 ((|#2| $) 19)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 15) (($ $ $) 13)) (-1698 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-463 |#1| |#2|) (-137) (-169) (-23)) (T -463)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-1922 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-1076) (-10 -8 (-15 -3567 (|t#2| $)) (-15 (-1922) ($) -3488) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2396 ($ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-2758 (((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|))) 92)) (-3066 (((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))) 90)) (-4242 (((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))) 61))) -(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -3066 ((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -2758 ((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -4242 ((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))))) (-627 (-1152)) (-445) (-445)) (T -464)) -((-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-2 (|:| |dpolys| (-627 (-242 *5 *6))) (|:| |coords| (-627 (-552))))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445)))) (-2758 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) (-4 *6 (-445)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-627 (-627 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) -(-10 -7 (-15 -3066 ((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -2758 ((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -4242 ((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))))) -((-2040 (((-3 $ "failed") $) 11)) (-2616 (($ $ $) 18)) (-2493 (($ $ $) 19)) (-2407 (($ $ $) 9)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 17))) -(((-465 |#1|) (-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) (-466)) (T -465)) -NIL -(-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2624 (((-111) $) 17)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 24)) (-1498 (((-1096) $) 10)) (-2616 (($ $ $) 21)) (-2493 (($ $ $) 20)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 23)) (** (($ $ (-900)) 13) (($ $ (-754)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-3297 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1698 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1709 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-1078) (-10 -8 (-15 -3299 (|t#2| $)) (-15 (-3297) ($) -3930) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1709 ($ $)) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2998 (((-3 (-629 (-474 |#1| |#2|)) "failed") (-629 (-474 |#1| |#2|)) (-629 (-846 |#1|))) 92)) (-4033 (((-629 (-629 (-242 |#1| |#2|))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|))) 90)) (-2593 (((-2 (|:| |dpolys| (-629 (-242 |#1| |#2|))) (|:| |coords| (-629 (-552)))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|))) 61))) +(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -4033 ((-629 (-629 (-242 |#1| |#2|))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|)))) (-15 -2998 ((-3 (-629 (-474 |#1| |#2|)) "failed") (-629 (-474 |#1| |#2|)) (-629 (-846 |#1|)))) (-15 -2593 ((-2 (|:| |dpolys| (-629 (-242 |#1| |#2|))) (|:| |coords| (-629 (-552)))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|))))) (-629 (-1154)) (-445) (-445)) (T -464)) +((-2593 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-846 *5))) (-14 *5 (-629 (-1154))) (-4 *6 (-445)) (-5 *2 (-2 (|:| |dpolys| (-629 (-242 *5 *6))) (|:| |coords| (-629 (-552))))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-629 (-242 *5 *6))) (-4 *7 (-445)))) (-2998 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-474 *4 *5))) (-5 *3 (-629 (-846 *4))) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) (-4 *6 (-445)))) (-4033 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-846 *5))) (-14 *5 (-629 (-1154))) (-4 *6 (-445)) (-5 *2 (-629 (-629 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-629 (-242 *5 *6))) (-4 *7 (-445))))) +(-10 -7 (-15 -4033 ((-629 (-629 (-242 |#1| |#2|))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|)))) (-15 -2998 ((-3 (-629 (-474 |#1| |#2|)) "failed") (-629 (-474 |#1| |#2|)) (-629 (-846 |#1|)))) (-15 -2593 ((-2 (|:| |dpolys| (-629 (-242 |#1| |#2|))) (|:| |coords| (-629 (-552)))) (-629 (-242 |#1| |#2|)) (-629 (-846 |#1|))))) +((-1293 (((-3 $ "failed") $) 11)) (-2074 (($ $ $) 18)) (-2104 (($ $ $) 19)) (-1720 (($ $ $) 9)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 17))) +(((-465 |#1|) (-10 -8 (-15 -2104 (|#1| |#1| |#1|)) (-15 -2074 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -1720 (|#1| |#1| |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902)))) (-466)) (T -465)) +NIL +(-10 -8 (-15 -2104 (|#1| |#1| |#1|)) (-15 -2074 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -1720 (|#1| |#1| |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-2130 (($) 18 T CONST)) (-1293 (((-3 $ "failed") $) 15)) (-4065 (((-111) $) 17)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 24)) (-2876 (((-1098) $) 10)) (-2074 (($ $ $) 21)) (-2104 (($ $ $) 20)) (-3213 (((-844) $) 11)) (-3309 (($) 19 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 23)) (** (($ $ (-902)) 13) (($ $ (-756)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) (((-466) (-137)) (T -466)) -((-1951 (*1 *1 *1) (-4 *1 (-466))) (-2407 (*1 *1 *1 *1) (-4 *1 (-466))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) (-2616 (*1 *1 *1 *1) (-4 *1 (-466))) (-2493 (*1 *1 *1 *1) (-4 *1 (-466)))) -(-13 (-709) (-10 -8 (-15 -1951 ($ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-552))) (-6 -4363) (-15 -2616 ($ $ $)) (-15 -2493 ($ $ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-709) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 17)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) NIL) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 26 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 33 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 27 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 25 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 15)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1231 |#2|)) NIL) (($ (-1220 |#1| |#2| |#3|)) 9) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 18)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 24)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-467 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -1477 ($ (-1220 |#1| |#2| |#3|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -467)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1216 |#1|) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -1477 ($ (-1220 |#1| |#2| |#3|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) 18)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 19)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 16)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-468 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2|) (-1076) (-1076) (-1165 |#1| |#2|) |#2|) (T -468)) -NIL -(-1165 |#1| |#2|) -((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) NIL)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-3 |#4| "failed") $) 37)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 47)) (-4168 (($ $ |#4|) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3528 (((-111) |#3| $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-469 |#1| |#2| |#3| |#4|) (-1182 |#1| |#2| |#3| |#4|) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -469)) -NIL -(-1182 |#1| |#2| |#3| |#4|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2951 (($) 18)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3562 (((-373) $) 22) (((-220) $) 25) (((-401 (-1148 (-552))) $) 19) (((-528) $) 52)) (-1477 (((-842) $) 50) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (((-220) $) 24) (((-373) $) 21)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 36 T CONST)) (-1933 (($) 11 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-470) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))) (-1001) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1148 (-552)))) (-600 (-528)) (-10 -8 (-15 -2951 ($))))) (T -470)) -((-2951 (*1 *1) (-5 *1 (-470)))) -(-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))) (-1001) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1148 (-552)))) (-600 (-528)) (-10 -8 (-15 -2951 ($)))) -((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-471) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -471)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471))))) -(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) 16)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 20)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 18)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) 13)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 19)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 11 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) 15 (|has| $ (-6 -4366))))) -(((-472 |#1| |#2| |#3|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076) (-1134)) (T -472)) -NIL -(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) -((-3740 (((-552) (-552) (-552)) 7)) (-4161 (((-111) (-552) (-552) (-552) (-552)) 11)) (-2458 (((-1235 (-627 (-552))) (-754) (-754)) 23))) -(((-473) (-10 -7 (-15 -3740 ((-552) (-552) (-552))) (-15 -4161 ((-111) (-552) (-552) (-552) (-552))) (-15 -2458 ((-1235 (-627 (-552))) (-754) (-754))))) (T -473)) -((-2458 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1235 (-627 (-552)))) (-5 *1 (-473)))) (-4161 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473)))) (-3740 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) -(-10 -7 (-15 -3740 ((-552) (-552) (-552))) (-15 -4161 ((-111) (-552) (-552) (-552) (-552))) (-15 -2458 ((-1235 (-627 (-552))) (-754) (-754)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) NIL)) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-475 (-1383 |#1|) (-754)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-475 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-475 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-475 (-1383 |#1|) (-754)) (-475 (-1383 |#1|) (-754))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-475 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-475 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-474 |#1| |#2|) (-13 (-928 |#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028)) (T -474)) -((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-474 *3 *4)) (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) -(-13 (-928 |#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) -((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) NIL (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) NIL (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 11)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) NIL)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) NIL (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) NIL (|has| |#2| (-129)) CONST)) (-1933 (($) NIL (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 15 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) NIL (|has| |#2| (-709))) (($ $ |#2|) NIL (|has| |#2| (-709))) (($ |#2| $) NIL (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-475 |#1| |#2|) (-233 |#1| |#2|) (-754) (-776)) (T -475)) +((-3701 (*1 *1 *1) (-4 *1 (-466))) (-1720 (*1 *1 *1 *1) (-4 *1 (-466))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) (-2074 (*1 *1 *1 *1) (-4 *1 (-466))) (-2104 (*1 *1 *1 *1) (-4 *1 (-466)))) +(-13 (-711) (-10 -8 (-15 -3701 ($ $)) (-15 -1720 ($ $ $)) (-15 ** ($ $ (-552))) (-6 -4365) (-15 -2074 ($ $ $)) (-15 -2104 ($ $ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-711) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 17)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) NIL) (($ $ (-401 (-552))) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-401 (-552))) NIL) (($ $ (-1060) (-401 (-552))) NIL) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) 22)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) 26 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 33 (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 27 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) 25 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1233 |#2|)) 15)) (-3299 (((-401 (-552)) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1233 |#2|)) NIL) (($ (-1222 |#1| |#2| |#3|)) 9) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 18)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) 24)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-467 |#1| |#2| |#3|) (-13 (-1218 |#1|) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3213 ($ (-1222 |#1| |#2| |#3|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -467)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1222 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1218 |#1|) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3213 ($ (-1222 |#1| |#2| |#3|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) 18)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) 19)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 16)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) NIL)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-468 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2|) (-1078) (-1078) (-1167 |#1| |#2|) |#2|) (T -468)) +NIL +(-1167 |#1| |#2|) +((-3202 (((-111) $ $) NIL)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) NIL)) (-1830 (((-629 $) (-629 |#4|)) NIL)) (-3611 (((-629 |#3|) $) NIL)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2240 ((|#4| |#4| $) NIL)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) 26 (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3662 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) NIL)) (-2832 (($ (-629 |#4|)) NIL)) (-2715 (((-3 $ "failed") $) 39)) (-3126 ((|#4| |#4| $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2655 (($ |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) NIL)) (-3138 (((-629 |#4|) $) 16 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2940 ((|#3| $) 33)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#4|) $) 17 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 21)) (-3420 (((-629 |#3|) $) NIL)) (-2677 (((-111) |#3| $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-2680 (((-3 |#4| "failed") $) 37)) (-3887 (((-629 |#4|) $) NIL)) (-3287 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2498 ((|#4| |#4| $) NIL)) (-4343 (((-111) $ $) NIL)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3848 ((|#4| |#4| $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-3 |#4| "failed") $) 35)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-1800 (((-3 $ "failed") $ |#4|) 47)) (-3136 (($ $ |#4|) NIL)) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 15)) (-3430 (($) 13)) (-3299 (((-756) $) NIL)) (-2885 (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) 12)) (-1522 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 20)) (-2542 (($ $ |#3|) 42)) (-1853 (($ $ |#3|) 44)) (-3081 (($ $) NIL)) (-2387 (($ $ |#3|) NIL)) (-3213 (((-844) $) 31) (((-629 |#4|) $) 40)) (-1753 (((-756) $) NIL (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) NIL)) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) NIL)) (-2904 (((-111) |#3| $) NIL)) (-1613 (((-111) $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-469 |#1| |#2| |#3| |#4|) (-1184 |#1| |#2| |#3| |#4|) (-544) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -469)) +NIL +(-1184 |#1| |#2| |#3| |#4|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-4043 (($) 18)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-1522 (((-373) $) 22) (((-220) $) 25) (((-401 (-1150 (-552))) $) 19) (((-528) $) 52)) (-3213 (((-844) $) 50) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (((-220) $) 24) (((-373) $) 21)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 36 T CONST)) (-3309 (($) 11 T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-470) (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))) (-1003) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1150 (-552)))) (-600 (-528)) (-10 -8 (-15 -4043 ($))))) (T -470)) +((-4043 (*1 *1) (-5 *1 (-470)))) +(-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))) (-1003) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1150 (-552)))) (-600 (-528)) (-10 -8 (-15 -4043 ($)))) +((-3202 (((-111) $ $) NIL)) (-1300 (((-1113) $) 11)) (-1286 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-471) (-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $))))) (T -471)) +((-1286 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-471)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-471))))) +(-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $)))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) 16)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) 20)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 18)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) 13)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 19)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 11 (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) 15 (|has| $ (-6 -4368))))) +(((-472 |#1| |#2| |#3|) (-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) (-1078) (-1078) (-1136)) (T -472)) +NIL +(-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) +((-1305 (((-552) (-552) (-552)) 7)) (-3060 (((-111) (-552) (-552) (-552) (-552)) 11)) (-4340 (((-1237 (-629 (-552))) (-756) (-756)) 23))) +(((-473) (-10 -7 (-15 -1305 ((-552) (-552) (-552))) (-15 -3060 ((-111) (-552) (-552) (-552) (-552))) (-15 -4340 ((-1237 (-629 (-552))) (-756) (-756))))) (T -473)) +((-4340 (*1 *2 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1237 (-629 (-552)))) (-5 *1 (-473)))) (-3060 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473)))) (-1305 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) +(-10 -7 (-15 -1305 ((-552) (-552) (-552))) (-15 -3060 ((-111) (-552) (-552) (-552) (-552))) (-15 -4340 ((-1237 (-629 (-552))) (-756) (-756)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-846 |#1|)) $) NIL)) (-3449 (((-1150 $) $ (-846 |#1|)) NIL) (((-1150 |#2|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3303 (($ $) NIL (|has| |#2| (-544)))) (-1334 (((-111) $) NIL (|has| |#2| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-846 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL (|has| |#2| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-846 |#1|) "failed") $) NIL)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-846 |#1|) $) NIL)) (-3301 (($ $ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-2206 (($ $ (-629 (-552))) NIL)) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#2| (-890)))) (-3423 (($ $ |#2| (-475 (-2657 |#1|) (-756)) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#2|) (-846 |#1|)) NIL) (($ (-1150 $) (-846 |#1|)) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#2| (-475 (-2657 |#1|) (-756))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-846 |#1|)) NIL)) (-3544 (((-475 (-2657 |#1|) (-756)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-3891 (($ (-1 (-475 (-2657 |#1|) (-756)) (-475 (-2657 |#1|) (-756))) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-3506 (((-3 (-846 |#1|) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#2| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-846 |#1|)) (|:| -1406 (-756))) "failed") $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#2| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-890)))) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-846 |#1|) |#2|) NIL) (($ $ (-629 (-846 |#1|)) (-629 |#2|)) NIL) (($ $ (-846 |#1|) $) NIL) (($ $ (-629 (-846 |#1|)) (-629 $)) NIL)) (-1721 (($ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-3096 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3299 (((-475 (-2657 |#1|) (-756)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-846 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-846 |#1|)) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-475 (-2657 |#1|) (-756))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#2| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#2| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-474 |#1| |#2|) (-13 (-930 |#2| (-475 (-2657 |#1|) (-756)) (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) (-629 (-1154)) (-1030)) (T -474)) +((-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-474 *3 *4)) (-14 *3 (-629 (-1154))) (-4 *4 (-1030))))) +(-13 (-930 |#2| (-475 (-2657 |#1|) (-756)) (-846 |#1|)) (-10 -8 (-15 -2206 ($ $ (-629 (-552)))))) +((-3202 (((-111) $ $) NIL (|has| |#2| (-1078)))) (-3643 (((-111) $) NIL (|has| |#2| (-129)))) (-1725 (($ (-902)) NIL (|has| |#2| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) NIL (|has| |#2| (-778)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#2| (-362)))) (-3886 (((-552) $) NIL (|has| |#2| (-830)))) (-1470 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1078)))) (-2832 (((-552) $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((|#2| $) NIL (|has| |#2| (-1078)))) (-2714 (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL (|has| |#2| (-1030))) (((-673 |#2|) (-673 $)) NIL (|has| |#2| (-1030)))) (-1293 (((-3 $ "failed") $) NIL (|has| |#2| (-711)))) (-1332 (($) NIL (|has| |#2| (-362)))) (-2957 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ (-552)) 11)) (-1338 (((-111) $) NIL (|has| |#2| (-830)))) (-3138 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (|has| |#2| (-711)))) (-3127 (((-111) $) NIL (|has| |#2| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-3278 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-2947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#2| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#2| (-1078)))) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#2| (-362)))) (-2876 (((-1098) $) NIL (|has| |#2| (-1078)))) (-2702 ((|#2| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-3632 ((|#2| $ $) NIL (|has| |#2| (-1030)))) (-3519 (($ (-1237 |#2|)) NIL)) (-3725 (((-132)) NIL (|has| |#2| (-357)))) (-3096 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-2885 (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#2|) $) NIL) (($ (-552)) NIL (-4029 (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (|has| |#2| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (($ |#2|) NIL (|has| |#2| (-1078))) (((-844) $) NIL (|has| |#2| (-599 (-844))))) (-2014 (((-756)) NIL (|has| |#2| (-1030)))) (-2584 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#2| (-830)))) (-3297 (($) NIL (|has| |#2| (-129)) CONST)) (-3309 (($) NIL (|has| |#2| (-711)) CONST)) (-1765 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1613 (((-111) $ $) NIL (|has| |#2| (-1078)))) (-1655 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1632 (((-111) $ $) 15 (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $ $) NIL (|has| |#2| (-1030))) (($ $) NIL (|has| |#2| (-1030)))) (-1698 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-756)) NIL (|has| |#2| (-711))) (($ $ (-902)) NIL (|has| |#2| (-711)))) (* (($ (-552) $) NIL (|has| |#2| (-1030))) (($ $ $) NIL (|has| |#2| (-711))) (($ $ |#2|) NIL (|has| |#2| (-711))) (($ |#2| $) NIL (|has| |#2| (-711))) (($ (-756) $) NIL (|has| |#2| (-129))) (($ (-902) $) NIL (|has| |#2| (-25)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-475 |#1| |#2|) (-233 |#1| |#2|) (-756) (-778)) (T -475)) NIL (-233 |#1| |#2|) -((-1465 (((-111) $ $) NIL)) (-2809 (((-627 (-498)) $) 11)) (-3112 (((-498) $) 10)) (-1595 (((-1134) $) NIL)) (-2382 (($ (-498) (-627 (-498))) 9)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-476) (-13 (-1059) (-10 -8 (-15 -2382 ($ (-498) (-627 (-498)))) (-15 -3112 ((-498) $)) (-15 -2809 ((-627 (-498)) $))))) (T -476)) -((-2382 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-498))) (-5 *2 (-498)) (-5 *1 (-476)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-627 (-498))) (-5 *1 (-476))))) -(-13 (-1059) (-10 -8 (-15 -2382 ($ (-498) (-627 (-498)))) (-15 -3112 ((-498) $)) (-15 -2809 ((-627 (-498)) $)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-1438 (($ $ $) 32)) (-3759 (($ $ $) 31)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4093 ((|#1| $) 26)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 27)) (-3954 (($ |#1| $) 10)) (-4203 (($ (-627 |#1|)) 12)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 23)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 9)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 29)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) 21 (|has| $ (-6 -4366))))) -(((-477 |#1|) (-13 (-947 |#1|) (-10 -8 (-15 -4203 ($ (-627 |#1|))))) (-830)) (T -477)) -((-4203 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-477 *3))))) -(-13 (-947 |#1|) (-10 -8 (-15 -4203 ($ (-627 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ $) 69)) (-2112 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 44)) (-1498 (((-1096) $) NIL)) (-2220 (((-3 |#4| "failed") $) 107)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-552)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1477 (((-842) $) 102)) (-1922 (($) 33 T CONST)) (-2292 (((-111) $ $) 109)) (-2396 (($ $) 72) (($ $ $) NIL)) (-2384 (($ $ $) 70)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 73))) -(((-478 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -478)) +((-3202 (((-111) $ $) NIL)) (-2055 (((-629 (-498)) $) 11)) (-4290 (((-498) $) 10)) (-2623 (((-1136) $) NIL)) (-3522 (($ (-498) (-629 (-498))) 9)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-476) (-13 (-1061) (-10 -8 (-15 -3522 ($ (-498) (-629 (-498)))) (-15 -4290 ((-498) $)) (-15 -2055 ((-629 (-498)) $))))) (T -476)) +((-3522 (*1 *1 *2 *3) (-12 (-5 *3 (-629 (-498))) (-5 *2 (-498)) (-5 *1 (-476)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-629 (-498))) (-5 *1 (-476))))) +(-13 (-1061) (-10 -8 (-15 -3522 ($ (-498) (-629 (-498)))) (-15 -4290 ((-498) $)) (-15 -2055 ((-629 (-498)) $)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3707 (($ $ $) 32)) (-1446 (($ $ $) 31)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2011 ((|#1| $) 26)) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) 27)) (-1580 (($ |#1| $) 10)) (-3452 (($ (-629 |#1|)) 12)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3995 ((|#1| $) 23)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 9)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 29)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) 21 (|has| $ (-6 -4368))))) +(((-477 |#1|) (-13 (-949 |#1|) (-10 -8 (-15 -3452 ($ (-629 |#1|))))) (-832)) (T -477)) +((-3452 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-477 *3))))) +(-13 (-949 |#1|) (-10 -8 (-15 -3452 ($ (-629 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3884 (($ $) 69)) (-3850 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-3165 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 44)) (-2876 (((-1098) $) NIL)) (-4126 (((-3 |#4| "failed") $) 107)) (-1620 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-552)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2089 (((-2 (|:| -3273 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3213 (((-844) $) 102)) (-3297 (($) 33 T CONST)) (-1613 (((-111) $ $) 109)) (-1709 (($ $) 72) (($ $ $) NIL)) (-1698 (($ $ $) 70)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 73))) +(((-478 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -478)) NIL (-329 |#1| |#2| |#3| |#4|) -((-3282 (((-552) (-627 (-552))) 30)) (-3049 ((|#1| (-627 |#1|)) 56)) (-3496 (((-627 |#1|) (-627 |#1|)) 57)) (-1701 (((-627 |#1|) (-627 |#1|)) 59)) (-1323 ((|#1| (-627 |#1|)) 58)) (-3495 (((-627 (-552)) (-627 |#1|)) 33))) -(((-479 |#1|) (-10 -7 (-15 -1323 (|#1| (-627 |#1|))) (-15 -3049 (|#1| (-627 |#1|))) (-15 -1701 ((-627 |#1|) (-627 |#1|))) (-15 -3496 ((-627 |#1|) (-627 |#1|))) (-15 -3495 ((-627 (-552)) (-627 |#1|))) (-15 -3282 ((-552) (-627 (-552))))) (-1211 (-552))) (T -479)) -((-3282 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) (-4 *4 (-1211 *2)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1211 (-552))) (-5 *2 (-627 (-552))) (-5 *1 (-479 *4)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552))))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552)))))) -(-10 -7 (-15 -1323 (|#1| (-627 |#1|))) (-15 -3049 (|#1| (-627 |#1|))) (-15 -1701 ((-627 |#1|) (-627 |#1|))) (-15 -3496 ((-627 |#1|) (-627 |#1|))) (-15 -3495 ((-627 (-552)) (-627 |#1|))) (-15 -3282 ((-552) (-627 (-552))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1862 (($ (-401 (-552))) 9)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 16) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-480) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 16) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -1862 ($ (-401 (-552))))))) (T -480)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 16)) (-5 *1 (-480)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) -(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 16) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -1862 ($ (-401 (-552)))))) -((-3114 (((-627 |#2|) $) 23)) (-3082 (((-111) |#2| $) 28)) (-3509 (((-111) (-1 (-111) |#2|) $) 21)) (-3321 (($ $ (-627 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-627 |#2|) (-627 |#2|)) NIL)) (-1509 (((-754) (-1 (-111) |#2|) $) 22) (((-754) |#2| $) 26)) (-1477 (((-842) $) 37)) (-3299 (((-111) (-1 (-111) |#2|) $) 20)) (-2292 (((-111) $ $) 31)) (-1383 (((-754) $) 17))) -(((-481 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3114 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) (-482 |#2|) (-1189)) (T -481)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3114 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-482 |#1|) (-137) (-1189)) (T -482)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) (-3299 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-3509 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-1509 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-754)))) (-3215 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-3114 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-1509 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-754)))) (-3082 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |t#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |t#1| (-1076)) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4367)) (-15 -3463 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4366)) (PROGN (-15 -3299 ((-111) (-1 (-111) |t#1|) $)) (-15 -3509 ((-111) (-1 (-111) |t#1|) $)) (-15 -1509 ((-754) (-1 (-111) |t#1|) $)) (-15 -3215 ((-627 |t#1|) $)) (-15 -3114 ((-627 |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -1509 ((-754) |t#1| $)) (-15 -3082 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1795 (($ (-1134)) 8)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14) (((-1134) $) 11)) (-2292 (((-111) $ $) 10))) -(((-483) (-13 (-1076) (-599 (-1134)) (-10 -8 (-15 -1795 ($ (-1134)))))) (T -483)) -((-1795 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-483))))) -(-13 (-1076) (-599 (-1134)) (-10 -8 (-15 -1795 ($ (-1134))))) -((-1607 (($ $) 15)) (-1584 (($ $) 24)) (-1628 (($ $) 12)) (-1640 (($ $) 10)) (-1615 (($ $) 17)) (-1596 (($ $) 22))) -(((-484 |#1|) (-10 -8 (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|))) -((-1607 (($ $) 11)) (-1584 (($ $) 10)) (-1628 (($ $) 9)) (-1640 (($ $) 8)) (-1615 (($ $) 7)) (-1596 (($ $) 6))) +((-2397 (((-552) (-629 (-552))) 30)) (-3869 ((|#1| (-629 |#1|)) 56)) (-3816 (((-629 |#1|) (-629 |#1|)) 57)) (-4185 (((-629 |#1|) (-629 |#1|)) 59)) (-2594 ((|#1| (-629 |#1|)) 58)) (-3807 (((-629 (-552)) (-629 |#1|)) 33))) +(((-479 |#1|) (-10 -7 (-15 -2594 (|#1| (-629 |#1|))) (-15 -3869 (|#1| (-629 |#1|))) (-15 -4185 ((-629 |#1|) (-629 |#1|))) (-15 -3816 ((-629 |#1|) (-629 |#1|))) (-15 -3807 ((-629 (-552)) (-629 |#1|))) (-15 -2397 ((-552) (-629 (-552))))) (-1213 (-552))) (T -479)) +((-2397 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) (-4 *4 (-1213 *2)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-1213 (-552))) (-5 *2 (-629 (-552))) (-5 *1 (-479 *4)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1213 (-552))) (-5 *1 (-479 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1213 (-552))) (-5 *1 (-479 *3)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1213 (-552))))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1213 (-552)))))) +(-10 -7 (-15 -2594 (|#1| (-629 |#1|))) (-15 -3869 (|#1| (-629 |#1|))) (-15 -4185 ((-629 |#1|) (-629 |#1|))) (-15 -3816 ((-629 |#1|) (-629 |#1|))) (-15 -3807 ((-629 (-552)) (-629 |#1|))) (-15 -2397 ((-552) (-629 (-552))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-552) $) NIL (|has| (-552) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-552) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-552) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1019 (-552))))) (-2832 (((-552) $) NIL) (((-1154) $) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-552) (-1019 (-552)))) (((-552) $) NIL (|has| (-552) (-1019 (-552))))) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-552) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-552) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-552) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-552) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-552) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-552) (-1129)))) (-3127 (((-111) $) NIL (|has| (-552) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-552) (-832)))) (-1477 (($ (-1 (-552) (-552)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-552) (-1129)) CONST)) (-3284 (($ (-401 (-552))) 9)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-3410 (((-552) $) NIL (|has| (-552) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-552)) (-629 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-1154)) (-629 (-552))) NIL (|has| (-552) (-506 (-1154) (-552)))) (($ $ (-1154) (-552)) NIL (|has| (-552) (-506 (-1154) (-552))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-552) $) NIL)) (-1522 (((-873 (-552)) $) NIL (|has| (-552) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-552) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1003))) (((-220) $) NIL (|has| (-552) (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1154)) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL) (((-985 16) $) 10)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-552) (-890))) (|has| (-552) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-552) $) NIL (|has| (-552) (-537)))) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| (-552) (-805)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1720 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-480) (-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 16) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3284 ($ (-401 (-552))))))) (T -480)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-985 16)) (-5 *1 (-480)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-3284 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) +(-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -3213 ((-985 16) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3284 ($ (-401 (-552)))))) +((-3278 (((-629 |#2|) $) 23)) (-2973 (((-111) |#2| $) 28)) (-3944 (((-111) (-1 (-111) |#2|) $) 21)) (-2432 (($ $ (-629 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-629 |#2|) (-629 |#2|)) NIL)) (-2885 (((-756) (-1 (-111) |#2|) $) 22) (((-756) |#2| $) 26)) (-3213 (((-844) $) 37)) (-2584 (((-111) (-1 (-111) |#2|) $) 20)) (-1613 (((-111) $ $) 31)) (-2657 (((-756) $) 17))) +(((-481 |#1| |#2|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -3278 ((-629 |#2|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|))) (-482 |#2|) (-1191)) (T -481)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#2| |#2|)) (-15 -2432 (|#1| |#1| (-288 |#2|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#2|)))) (-15 -2973 ((-111) |#2| |#1|)) (-15 -2885 ((-756) |#2| |#1|)) (-15 -3278 ((-629 |#2|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#2|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-482 |#1|) (-137) (-1191)) (T -482)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1191)))) (-2947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1191)))) (-2584 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) (-4 *4 (-1191)) (-5 *2 (-111)))) (-3944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) (-4 *4 (-1191)) (-5 *2 (-111)))) (-2885 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) (-4 *4 (-1191)) (-5 *2 (-756)))) (-3138 (*1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) (-5 *2 (-629 *3)))) (-3278 (*1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) (-5 *2 (-629 *3)))) (-2885 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-756)))) (-2973 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-599 (-844))) (-6 (-599 (-844))) |%noBranch|) (IF (|has| |t#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |t#1| (-1078)) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4369)) (-15 -2947 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4368)) (PROGN (-15 -2584 ((-111) (-1 (-111) |t#1|) $)) (-15 -3944 ((-111) (-1 (-111) |t#1|) $)) (-15 -2885 ((-756) (-1 (-111) |t#1|) $)) (-15 -3138 ((-629 |t#1|) $)) (-15 -3278 ((-629 |t#1|) $)) (IF (|has| |t#1| (-1078)) (PROGN (-15 -2885 ((-756) |t#1| $)) (-15 -2973 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3865 (($ (-1136)) 8)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 14) (((-1136) $) 11)) (-1613 (((-111) $ $) 10))) +(((-483) (-13 (-1078) (-599 (-1136)) (-10 -8 (-15 -3865 ($ (-1136)))))) (T -483)) +((-3865 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-483))))) +(-13 (-1078) (-599 (-1136)) (-10 -8 (-15 -3865 ($ (-1136))))) +((-2478 (($ $) 15)) (-2455 (($ $) 24)) (-2506 (($ $) 12)) (-2518 (($ $) 10)) (-2492 (($ $) 17)) (-2467 (($ $) 22))) +(((-484 |#1|) (-10 -8 (-15 -2467 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2506 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -2467 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2506 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|))) +((-2478 (($ $) 11)) (-2455 (($ $) 10)) (-2506 (($ $) 9)) (-2518 (($ $) 8)) (-2492 (($ $) 7)) (-2467 (($ $) 6))) (((-485) (-137)) (T -485)) -((-1607 (*1 *1 *1) (-4 *1 (-485))) (-1584 (*1 *1 *1) (-4 *1 (-485))) (-1628 (*1 *1 *1) (-4 *1 (-485))) (-1640 (*1 *1 *1) (-4 *1 (-485))) (-1615 (*1 *1 *1) (-4 *1 (-485))) (-1596 (*1 *1 *1) (-4 *1 (-485)))) -(-13 (-10 -8 (-15 -1596 ($ $)) (-15 -1615 ($ $)) (-15 -1640 ($ $)) (-15 -1628 ($ $)) (-15 -1584 ($ $)) (-15 -1607 ($ $)))) -((-1727 (((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)) 42))) -(((-486 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) (-357) (-1211 |#1|) (-13 (-357) (-144) (-707 |#1| |#2|)) (-1211 |#3|)) (T -486)) -((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-4 *7 (-13 (-357) (-144) (-707 *5 *6))) (-5 *2 (-412 *3)) (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1211 *7))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-2682 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-3024 (((-111) $) 39)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2303 (((-111) $ $) 64)) (-3443 (((-627 (-598 $)) $) 48)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1304 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-3348 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) 50)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-401 (-552)))) (|:| |vec| (-1235 (-401 (-552))))) (-671 $) (-1235 $)) NIL) (((-671 (-401 (-552))) (-671 $)) NIL)) (-2091 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) 42)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2918 (((-1101 (-552) (-598 $)) $) 37)) (-1352 (($ $ (-552)) NIL)) (-2349 (((-1148 $) (-1148 $) (-598 $)) 78) (((-1148 $) (-1148 $) (-627 (-598 $))) 55) (($ $ (-598 $)) 67) (($ $ (-627 (-598 $))) 68)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2602 (((-1148 $) (-598 $)) 65 (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-1951 (($ $) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2718 (((-754) $) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) 36)) (-2929 (((-1101 (-552) (-598 $)) $) 20)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-3562 (((-373) $) 92) (((-220) $) 100) (((-166 (-373)) $) 108)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1101 (-552) (-598 $))) 21)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) 84)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 10 T CONST)) (-1933 (($) 22 T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 24)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) 44)) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) 46) (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) 27) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) -(((-487) (-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2303 ((-111) $ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $))))))) (T -487)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2091 (*1 *1 *1) (-5 *1 (-487))) (-2303 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-627 (-598 (-487)))) (-5 *1 (-487)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-487)))) (-5 *1 (-487))))) -(-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2303 ((-111) $ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $)))))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 25 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 22 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 21)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 14)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 12 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) 23 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 10 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 13)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 24) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 9 (|has| $ (-6 -4366))))) -(((-488 |#1| |#2|) (-19 |#1|) (-1189) (-552)) (T -488)) +((-2478 (*1 *1 *1) (-4 *1 (-485))) (-2455 (*1 *1 *1) (-4 *1 (-485))) (-2506 (*1 *1 *1) (-4 *1 (-485))) (-2518 (*1 *1 *1) (-4 *1 (-485))) (-2492 (*1 *1 *1) (-4 *1 (-485))) (-2467 (*1 *1 *1) (-4 *1 (-485)))) +(-13 (-10 -8 (-15 -2467 ($ $)) (-15 -2492 ($ $)) (-15 -2518 ($ $)) (-15 -2506 ($ $)) (-15 -2455 ($ $)) (-15 -2478 ($ $)))) +((-3479 (((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)) 42))) +(((-486 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) (-357) (-1213 |#1|) (-13 (-357) (-144) (-709 |#1| |#2|)) (-1213 |#3|)) (T -486)) +((-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-4 *7 (-13 (-357) (-144) (-709 *5 *6))) (-5 *2 (-412 *3)) (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1213 *7))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) +((-3202 (((-111) $ $) NIL)) (-2965 (((-629 $) (-1150 $) (-1154)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-933 $)) NIL)) (-3476 (($ (-1150 $) (-1154)) NIL) (($ (-1150 $)) NIL) (($ (-933 $)) NIL)) (-3643 (((-111) $) 39)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-2022 (((-111) $ $) 64)) (-3361 (((-629 (-598 $)) $) 48)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2172 (($ $ (-288 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1821 (((-629 $) (-1150 $) (-1154)) NIL) (((-629 $) (-1150 $)) NIL) (((-629 $) (-933 $)) NIL)) (-1743 (($ (-1150 $) (-1154)) NIL) (($ (-1150 $)) NIL) (($ (-933 $)) NIL)) (-1393 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-2832 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) 50)) (-4006 (($ $ $) NIL)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-401 (-552)))) (|:| |vec| (-1237 (-401 (-552))))) (-673 $) (-1237 $)) NIL) (((-673 (-401 (-552))) (-673 $)) NIL)) (-3884 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-3963 (($ $) NIL) (($ (-629 $)) NIL)) (-3751 (((-629 (-113)) $) NIL)) (-2951 (((-113) (-113)) NIL)) (-4065 (((-111) $) 42)) (-3302 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-4015 (((-1103 (-552) (-598 $)) $) 37)) (-3755 (($ $ (-552)) NIL)) (-4346 (((-1150 $) (-1150 $) (-598 $)) 78) (((-1150 $) (-1150 $) (-629 (-598 $))) 55) (($ $ (-598 $)) 67) (($ $ (-629 (-598 $))) 68)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1941 (((-1150 $) (-598 $)) 65 (|has| $ (-1030)))) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 $ $) (-598 $)) NIL)) (-1875 (((-3 (-598 $) "failed") $) NIL)) (-2552 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3438 (((-629 (-598 $)) $) NIL)) (-4086 (($ (-113) $) NIL) (($ (-113) (-629 $)) NIL)) (-3515 (((-111) $ (-113)) NIL) (((-111) $ (-1154)) NIL)) (-3701 (($ $) NIL)) (-2384 (((-756) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ (-629 $)) NIL) (($ $ $) NIL)) (-3633 (((-111) $ $) NIL) (((-111) $ (-1154)) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL (|has| $ (-1019 (-552))))) (-2432 (($ $ (-598 $) $) NIL) (($ $ (-629 (-598 $)) (-629 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-1154)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-1154) (-1 $ (-629 $))) NIL) (($ $ (-1154) (-1 $ $)) NIL) (($ $ (-629 (-113)) (-629 (-1 $ $))) NIL) (($ $ (-629 (-113)) (-629 (-1 $ (-629 $)))) NIL) (($ $ (-113) (-1 $ (-629 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-3795 (((-756) $) NIL)) (-2060 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-629 $)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-1877 (($ $) NIL) (($ $ $) NIL)) (-3096 (($ $ (-756)) NIL) (($ $) 36)) (-4026 (((-1103 (-552) (-598 $)) $) 20)) (-3521 (($ $) NIL (|has| $ (-1030)))) (-1522 (((-373) $) 92) (((-220) $) 100) (((-166 (-373)) $) 108)) (-3213 (((-844) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1103 (-552) (-598 $))) 21)) (-2014 (((-756)) NIL)) (-3044 (($ $) NIL) (($ (-629 $)) NIL)) (-1374 (((-111) (-113)) 84)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 10 T CONST)) (-3309 (($) 22 T CONST)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 24)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1720 (($ $ $) 44)) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) 46) (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) 27) (($ (-552) $) NIL) (($ (-756) $) NIL) (($ (-902) $) NIL))) +(((-487) (-13 (-296) (-27) (-1019 (-552)) (-1019 (-401 (-552))) (-625 (-552)) (-1003) (-625 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -3213 ($ (-1103 (-552) (-598 $)))) (-15 -4015 ((-1103 (-552) (-598 $)) $)) (-15 -4026 ((-1103 (-552) (-598 $)) $)) (-15 -3884 ($ $)) (-15 -2022 ((-111) $ $)) (-15 -4346 ((-1150 $) (-1150 $) (-598 $))) (-15 -4346 ((-1150 $) (-1150 $) (-629 (-598 $)))) (-15 -4346 ($ $ (-598 $))) (-15 -4346 ($ $ (-629 (-598 $))))))) (T -487)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-3884 (*1 *1 *1) (-5 *1 (-487))) (-2022 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487)))) (-4346 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) (-4346 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 (-487))) (-5 *3 (-629 (-598 (-487)))) (-5 *1 (-487)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-598 (-487)))) (-5 *1 (-487))))) +(-13 (-296) (-27) (-1019 (-552)) (-1019 (-401 (-552))) (-625 (-552)) (-1003) (-625 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -3213 ($ (-1103 (-552) (-598 $)))) (-15 -4015 ((-1103 (-552) (-598 $)) $)) (-15 -4026 ((-1103 (-552) (-598 $)) $)) (-15 -3884 ($ $)) (-15 -2022 ((-111) $ $)) (-15 -4346 ((-1150 $) (-1150 $) (-598 $))) (-15 -4346 ((-1150 $) (-1150 $) (-629 (-598 $)))) (-15 -4346 ($ $ (-598 $))) (-15 -4346 ($ $ (-629 (-598 $)))))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) 25 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 22 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 21)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 14)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 12 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) 23 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) 10 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 13)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 24) (($ $ (-1204 (-552))) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) 9 (|has| $ (-6 -4368))))) +(((-488 |#1| |#2|) (-19 |#1|) (-1191) (-552)) (T -488)) NIL (-19 |#1|) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL)) (-1566 (($ $ (-552) (-488 |#1| |#3|)) NIL)) (-1666 (($ $ (-552) (-488 |#1| |#2|)) NIL)) (-3887 (($) NIL T CONST)) (-3884 (((-488 |#1| |#3|) $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-488 |#1| |#2|) $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-489 |#1| |#2| |#3|) (-56 |#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) (-1189) (-552) (-552)) (T -489)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2347 (($ $ (-552) (-488 |#1| |#3|)) NIL)) (-3934 (($ $ (-552) (-488 |#1| |#2|)) NIL)) (-2130 (($) NIL T CONST)) (-3413 (((-488 |#1| |#3|) $ (-552)) NIL)) (-2957 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2892 ((|#1| $ (-552) (-552)) NIL)) (-3138 (((-629 |#1|) $) NIL)) (-2389 (((-756) $) NIL)) (-3307 (($ (-756) (-756) |#1|) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3041 (((-488 |#1| |#2|) $ (-552)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-489 |#1| |#2| |#3|) (-56 |#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) (-1191) (-552) (-552)) (T -489)) NIL (-56 |#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) -((-2555 (((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754)) 27)) (-2186 (((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754)) 34)) (-3098 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)) 85))) -(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -2186 ((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754))) (-15 -2555 ((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754))) (-15 -3098 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)))) (-343) (-1211 |#1|) (-1211 |#2|)) (T -490)) -((-3098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7))))) (-5 *5 (-754)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7)))) (-5 *1 (-490 *6 *7 *8)))) (-2555 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-4 *5 (-343)) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6))))) (-5 *1 (-490 *5 *6 *7)) (-5 *3 (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6)))) (-4 *7 (-1211 *6)))) (-2186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-754)) (-4 *3 (-343)) (-4 *5 (-1211 *3)) (-5 *2 (-627 (-1148 *3))) (-5 *1 (-490 *3 *5 *6)) (-4 *6 (-1211 *5))))) -(-10 -7 (-15 -2186 ((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754))) (-15 -2555 ((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754))) (-15 -3098 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)))) -((-1677 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 62)) (-1285 ((|#1| (-671 |#1|) |#1| (-754)) 25)) (-2752 (((-754) (-754) (-754)) 30)) (-3143 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 42)) (-1453 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 50) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 47)) (-1879 ((|#1| (-671 |#1|) (-671 |#1|) |#1| (-552)) 29)) (-3877 ((|#1| (-671 |#1|)) 18))) -(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -3877 (|#1| (-671 |#1|))) (-15 -1285 (|#1| (-671 |#1|) |#1| (-754))) (-15 -1879 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-552))) (-15 -2752 ((-754) (-754) (-754))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3143 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1677 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $)))) (-1211 |#1|) (-403 |#1| |#2|)) (T -491)) -((-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3143 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1453 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1453 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2752 (*1 *2 *2 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1879 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-552)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-1285 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-754)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) -(-10 -7 (-15 -3877 (|#1| (-671 |#1|))) (-15 -1285 (|#1| (-671 |#1|) |#1| (-754))) (-15 -1879 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-552))) (-15 -2752 ((-754) (-754) (-754))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3143 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1677 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) -((-1465 (((-111) $ $) NIL)) (-2831 (($ $) NIL)) (-2543 (($ $ $) 35)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-111) (-830)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-111) $ (-1202 (-552)) (-111)) NIL (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) 36 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-4342 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-3473 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) NIL)) (-2967 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1076))) (((-552) (-111) $) NIL (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3215 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-1881 (($ $ $) 33)) (-1681 (($ $) NIL)) (-3682 (($ $ $) NIL)) (-2655 (($ (-754) (-111)) 23)) (-3170 (($ $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 8 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL)) (-3759 (($ $ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3114 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL)) (-3463 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-111) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1942 (($ $ (-111)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 24)) (-1985 (($ $ (-1202 (-552))) NIL) (((-111) $ (-552)) 18) (((-111) $ (-552) (-111)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-1509 (((-754) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076)))) (((-754) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) 25)) (-3562 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) NIL)) (-2668 (($ (-627 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-1477 (((-842) $) 22)) (-3299 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-2520 (($ $ $) 31)) (-1872 (($ $ $) NIL)) (-2132 (($ $ $) 39)) (-2142 (($ $) 37)) (-2121 (($ $ $) 38)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 26)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 27)) (-1861 (($ $ $) NIL)) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) -(((-492 |#1|) (-13 (-122) (-10 -8 (-15 -2142 ($ $)) (-15 -2132 ($ $ $)) (-15 -2121 ($ $ $)))) (-552)) (T -492)) -((-2142 (*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2132 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2121 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552))))) -(-13 (-122) (-10 -8 (-15 -2142 ($ $)) (-15 -2132 ($ $ $)) (-15 -2121 ($ $ $)))) -((-3886 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|)) 35)) (-1440 (((-1148 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1148 |#4|)) 22)) (-2623 (((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|))) 46)) (-2386 (((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 (|#2| (-1 |#1| |#4|) (-1148 |#4|))) (-15 -1440 ((-1148 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3886 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|))) (-15 -2623 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|)))) (-15 -2386 ((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|))) (-1028) (-1211 |#1|) (-1211 |#2|) (-1028)) (T -493)) -((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *7))) (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1211 *6)))) (-2623 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-671 (-1148 *8))) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-493 *5 *6 *7 *8)) (-4 *7 (-1211 *6)))) (-3886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *4 (-1211 *5)) (-5 *2 (-1148 *7)) (-5 *1 (-493 *5 *4 *6 *7)) (-4 *6 (-1211 *4)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) -(-10 -7 (-15 -1440 (|#2| (-1 |#1| |#4|) (-1148 |#4|))) (-15 -1440 ((-1148 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3886 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|))) (-15 -2623 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|)))) (-15 -2386 ((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4103 (((-1240) $) 19)) (-1985 (((-1134) $ (-1152)) 23)) (-4291 (((-1240) $) 15)) (-1477 (((-842) $) 21) (($ (-1134)) 20)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 9)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) -(((-494) (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -1477 ($ (-1134)))))) (T -494)) -((-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1134)) (-5 *1 (-494)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-494))))) -(-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -1477 ($ (-1134))))) -((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3623 ((|#1| |#4|) 10)) (-2155 ((|#3| |#4|) 17))) -(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3623 (|#1| |#4|)) (-15 -2155 (|#3| |#4|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-544) (-971 |#1|) (-367 |#1|) (-367 |#2|)) (T -495)) -((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-2155 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-4 *2 (-367 *4)) (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))) -(-10 -7 (-15 -3623 (|#1| |#4|)) (-15 -2155 (|#3| |#4|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1465 (((-111) $ $) NIL)) (-2198 (((-111) $ (-627 |#3|)) 105) (((-111) $) 106)) (-3024 (((-111) $) 149)) (-1564 (($ $ |#4|) 97) (($ $ |#4| (-627 |#3|)) 101)) (-3914 (((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|)) 142 (|has| |#3| (-600 (-1152))))) (-2404 (($ $ $) 91) (($ $ |#4|) 89)) (-2624 (((-111) $) 148)) (-1904 (($ $) 109)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 83) (($ (-627 $)) 85)) (-2087 (((-111) |#4| $) 108)) (-3805 (((-111) $ $) 72)) (-3103 (($ (-627 |#4|)) 90)) (-1498 (((-1096) $) NIL)) (-4142 (($ (-627 |#4|)) 146)) (-3444 (((-111) $) 147)) (-2875 (($ $) 74)) (-1379 (((-627 |#4|) $) 63)) (-3742 (((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|)) NIL)) (-1371 (((-111) |#4| $) 77)) (-2405 (((-552) $ (-627 |#3|)) 110) (((-552) $) 111)) (-1477 (((-842) $) 145) (($ (-627 |#4|)) 86)) (-2009 (($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $))) NIL)) (-2292 (((-111) $ $) 73)) (-2384 (($ $ $) 93)) (** (($ $ (-754)) 96)) (* (($ $ $) 95))) -(((-496 |#1| |#2| |#3| |#4|) (-13 (-1076) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 -2384 ($ $ $)) (-15 -2624 ((-111) $)) (-15 -3024 ((-111) $)) (-15 -1371 ((-111) |#4| $)) (-15 -3805 ((-111) $ $)) (-15 -2087 ((-111) |#4| $)) (-15 -2198 ((-111) $ (-627 |#3|))) (-15 -2198 ((-111) $)) (-15 -3383 ($ $ $)) (-15 -3383 ($ (-627 $))) (-15 -2404 ($ $ $)) (-15 -2404 ($ $ |#4|)) (-15 -2875 ($ $)) (-15 -3742 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|))) (-15 -2009 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -2405 ((-552) $ (-627 |#3|))) (-15 -2405 ((-552) $)) (-15 -1904 ($ $)) (-15 -3103 ($ (-627 |#4|))) (-15 -4142 ($ (-627 |#4|))) (-15 -3444 ((-111) $)) (-15 -1379 ((-627 |#4|) $)) (-15 -1477 ($ (-627 |#4|))) (-15 -1564 ($ $ |#4|)) (-15 -1564 ($ $ |#4| (-627 |#3|))) (IF (|has| |#3| (-600 (-1152))) (-15 -3914 ((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|))) |%noBranch|))) (-357) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -496)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2624 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-3024 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1371 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-3805 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2087 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2198 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-627 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2404 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-2875 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) (|:| |genIdeal| (-496 *4 *5 *6 *7)))) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) (|:| |genIdeal| (-496 *3 *4 *5 *6)))) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2405 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1904 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-3444 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *6)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-928 *4 *5 *6)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *6 (-600 (-1152))) (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1141 (-627 (-931 *4)) (-627 (-288 (-931 *4))))) (-5 *1 (-496 *4 *5 *6 *7))))) -(-13 (-1076) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 -2384 ($ $ $)) (-15 -2624 ((-111) $)) (-15 -3024 ((-111) $)) (-15 -1371 ((-111) |#4| $)) (-15 -3805 ((-111) $ $)) (-15 -2087 ((-111) |#4| $)) (-15 -2198 ((-111) $ (-627 |#3|))) (-15 -2198 ((-111) $)) (-15 -3383 ($ $ $)) (-15 -3383 ($ (-627 $))) (-15 -2404 ($ $ $)) (-15 -2404 ($ $ |#4|)) (-15 -2875 ($ $)) (-15 -3742 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|))) (-15 -2009 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -2405 ((-552) $ (-627 |#3|))) (-15 -2405 ((-552) $)) (-15 -1904 ($ $)) (-15 -3103 ($ (-627 |#4|))) (-15 -4142 ($ (-627 |#4|))) (-15 -3444 ((-111) $)) (-15 -1379 ((-627 |#4|) $)) (-15 -1477 ($ (-627 |#4|))) (-15 -1564 ($ $ |#4|)) (-15 -1564 ($ $ |#4| (-627 |#3|))) (IF (|has| |#3| (-600 (-1152))) (-15 -3914 ((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|))) |%noBranch|))) -((-3255 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 150)) (-2117 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 151)) (-3744 (((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 108)) (-1633 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) NIL)) (-3930 (((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 153)) (-2728 (((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))) 165))) -(((-497 |#1| |#2|) (-10 -7 (-15 -3255 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2117 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1633 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3744 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3930 ((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2728 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))))) (-627 (-1152)) (-754)) (T -497)) -((-2728 (*1 *2 *2 *3) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *1 (-497 *4 *5)))) (-3930 (*1 *2 *3) (-12 (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-627 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552)))))) (-5 *1 (-497 *4 *5)) (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *4 (-754)) (-844 *3) (-242 *3 (-401 (-552))))) (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-497 *3 *4)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5))))) -(-10 -7 (-15 -3255 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2117 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1633 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3744 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3930 ((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2728 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1152) $) 8)) (-2292 (((-111) $ $) NIL))) -(((-498) (-13 (-1059) (-599 (-1152)))) (T -498)) -NIL -(-13 (-1059) (-599 (-1152))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) 12 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 11) (($ $ $) 24)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 18))) -(((-499 |#1| |#2|) (-13 (-21) (-501 |#1| |#2|)) (-21) (-830)) (T -499)) +((-2741 (((-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-756) (-756)) 27)) (-2098 (((-629 (-1150 |#1|)) |#1| (-756) (-756) (-756)) 34)) (-3116 (((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-629 |#3|) (-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-756)) 85))) +(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -2098 ((-629 (-1150 |#1|)) |#1| (-756) (-756) (-756))) (-15 -2741 ((-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-756) (-756))) (-15 -3116 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-629 |#3|) (-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-756)))) (-343) (-1213 |#1|) (-1213 |#2|)) (T -490)) +((-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 (-2 (|:| -4199 (-673 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-673 *7))))) (-5 *5 (-756)) (-4 *8 (-1213 *7)) (-4 *7 (-1213 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -4199 (-673 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-673 *7)))) (-5 *1 (-490 *6 *7 *8)))) (-2741 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-756)) (-4 *5 (-343)) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -4199 (-673 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-673 *6))))) (-5 *1 (-490 *5 *6 *7)) (-5 *3 (-2 (|:| -4199 (-673 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-673 *6)))) (-4 *7 (-1213 *6)))) (-2098 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-756)) (-4 *3 (-343)) (-4 *5 (-1213 *3)) (-5 *2 (-629 (-1150 *3))) (-5 *1 (-490 *3 *5 *6)) (-4 *6 (-1213 *5))))) +(-10 -7 (-15 -2098 ((-629 (-1150 |#1|)) |#1| (-756) (-756) (-756))) (-15 -2741 ((-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-756) (-756))) (-15 -3116 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) (-629 |#3|) (-629 (-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) (-756)))) +((-4001 (((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|)))) 62)) (-2717 ((|#1| (-673 |#1|) |#1| (-756)) 25)) (-2933 (((-756) (-756) (-756)) 30)) (-2279 (((-673 |#1|) (-673 |#1|) (-673 |#1|)) 42)) (-3839 (((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|) 50) (((-673 |#1|) (-673 |#1|) (-673 |#1|)) 47)) (-2154 ((|#1| (-673 |#1|) (-673 |#1|) |#1| (-552)) 29)) (-3350 ((|#1| (-673 |#1|)) 18))) +(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -3350 (|#1| (-673 |#1|))) (-15 -2717 (|#1| (-673 |#1|) |#1| (-756))) (-15 -2154 (|#1| (-673 |#1|) (-673 |#1|) |#1| (-552))) (-15 -2933 ((-756) (-756) (-756))) (-15 -3839 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -3839 ((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|)) (-15 -2279 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4001 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|)))))) (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $)))) (-1213 |#1|) (-403 |#1| |#2|)) (T -491)) +((-4001 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2279 (*1 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3839 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-673 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2933 (*1 *2 *2 *2) (-12 (-5 *2 (-756)) (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2154 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-673 *2)) (-5 *4 (-552)) (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *5 (-1213 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-2717 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-673 *2)) (-5 *4 (-756)) (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-4 *5 (-1213 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-673 *2)) (-4 *4 (-1213 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) +(-10 -7 (-15 -3350 (|#1| (-673 |#1|))) (-15 -2717 (|#1| (-673 |#1|) |#1| (-756))) (-15 -2154 (|#1| (-673 |#1|) (-673 |#1|) |#1| (-552))) (-15 -2933 ((-756) (-756) (-756))) (-15 -3839 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -3839 ((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|)) (-15 -2279 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4001 ((-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|))) (-2 (|:| -4199 (-673 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-673 |#1|)))))) +((-3202 (((-111) $ $) NIL)) (-3072 (($ $) NIL)) (-2520 (($ $ $) 35)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) $) NIL (|has| (-111) (-832))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-3646 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-832)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-1296 (($ $) NIL (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-111) $ (-1204 (-552)) (-111)) NIL (|has| $ (-6 -4369))) (((-111) $ (-552) (-111)) 36 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-2655 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-3884 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-2957 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4369)))) (-2892 (((-111) $ (-552)) NIL)) (-1456 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1078))) (((-552) (-111) $) NIL (|has| (-111) (-1078))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3138 (((-629 (-111)) $) NIL (|has| $ (-6 -4368)))) (-3167 (($ $ $) 33)) (-4107 (($ $) NIL)) (-1917 (($ $ $) NIL)) (-3307 (($ (-756) (-111)) 23)) (-2589 (($ $ $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 8 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL)) (-1446 (($ $ $) NIL (|has| (-111) (-832))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3278 (((-629 (-111)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL)) (-2947 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-111) $) NIL (|has| (-552) (-832)))) (-3073 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1518 (($ $ (-111)) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-111)) (-629 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078)))) (($ $ (-629 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078))))) (-3627 (((-629 (-111)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 24)) (-2060 (($ $ (-1204 (-552))) NIL) (((-111) $ (-552)) 18) (((-111) $ (-552) (-111)) NIL)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2885 (((-756) (-111) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-111) (-1078)))) (((-756) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) 25)) (-1522 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-3226 (($ (-629 (-111))) NIL)) (-4319 (($ (-629 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-3213 (((-844) $) 22)) (-2584 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4368)))) (-3792 (($ $ $) 31)) (-2038 (($ $ $) NIL)) (-2345 (($ $ $) 39)) (-2358 (($ $) 37)) (-2331 (($ $ $) 38)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 26)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 27)) (-2026 (($ $ $) NIL)) (-2657 (((-756) $) 10 (|has| $ (-6 -4368))))) +(((-492 |#1|) (-13 (-122) (-10 -8 (-15 -2358 ($ $)) (-15 -2345 ($ $ $)) (-15 -2331 ($ $ $)))) (-552)) (T -492)) +((-2358 (*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2345 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2331 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552))))) +(-13 (-122) (-10 -8 (-15 -2358 ($ $)) (-15 -2345 ($ $ $)) (-15 -2331 ($ $ $)))) +((-3425 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1150 |#4|)) 35)) (-3728 (((-1150 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1150 |#4|)) 22)) (-4057 (((-3 (-673 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-673 (-1150 |#4|))) 46)) (-3554 (((-1150 (-1150 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 (|#2| (-1 |#1| |#4|) (-1150 |#4|))) (-15 -3728 ((-1150 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3425 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1150 |#4|))) (-15 -4057 ((-3 (-673 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-673 (-1150 |#4|)))) (-15 -3554 ((-1150 (-1150 |#4|)) (-1 |#4| |#1|) |#3|))) (-1030) (-1213 |#1|) (-1213 |#2|) (-1030)) (T -493)) +((-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1030)) (-4 *7 (-1030)) (-4 *6 (-1213 *5)) (-5 *2 (-1150 (-1150 *7))) (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1213 *6)))) (-4057 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-673 (-1150 *8))) (-4 *5 (-1030)) (-4 *8 (-1030)) (-4 *6 (-1213 *5)) (-5 *2 (-673 *6)) (-5 *1 (-493 *5 *6 *7 *8)) (-4 *7 (-1213 *6)))) (-3425 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1150 *7)) (-4 *5 (-1030)) (-4 *7 (-1030)) (-4 *2 (-1213 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1213 *2)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1030)) (-4 *7 (-1030)) (-4 *4 (-1213 *5)) (-5 *2 (-1150 *7)) (-5 *1 (-493 *5 *4 *6 *7)) (-4 *6 (-1213 *4)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1150 *7)) (-4 *5 (-1030)) (-4 *7 (-1030)) (-4 *2 (-1213 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1213 *2))))) +(-10 -7 (-15 -3728 (|#2| (-1 |#1| |#4|) (-1150 |#4|))) (-15 -3728 ((-1150 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3425 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1150 |#4|))) (-15 -4057 ((-3 (-673 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-673 (-1150 |#4|)))) (-15 -3554 ((-1150 (-1150 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3726 (((-1242) $) 19)) (-2060 (((-1136) $ (-1154)) 23)) (-2595 (((-1242) $) 15)) (-3213 (((-844) $) 21) (($ (-1136)) 20)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 9)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 8))) +(((-494) (-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $)) (-15 -3213 ($ (-1136)))))) (T -494)) +((-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1136)) (-5 *1 (-494)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-494)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-494)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-494))))) +(-13 (-832) (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) (-15 -3726 ((-1242) $)) (-15 -3213 ($ (-1136))))) +((-1774 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2592 ((|#1| |#4|) 10)) (-3075 ((|#3| |#4|) 17))) +(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2592 (|#1| |#4|)) (-15 -3075 (|#3| |#4|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-544) (-973 |#1|) (-367 |#1|) (-367 |#2|)) (T -495)) +((-1774 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) (-4 *2 (-367 *4)) (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -2592 (|#1| |#4|)) (-15 -3075 (|#3| |#4|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3202 (((-111) $ $) NIL)) (-2230 (((-111) $ (-629 |#3|)) 105) (((-111) $) 106)) (-3643 (((-111) $) 149)) (-2320 (($ $ |#4|) 97) (($ $ |#4| (-629 |#3|)) 101)) (-2424 (((-1143 (-629 (-933 |#1|)) (-629 (-288 (-933 |#1|)))) (-629 |#4|)) 142 (|has| |#3| (-600 (-1154))))) (-3713 (($ $ $) 91) (($ $ |#4|) 89)) (-4065 (((-111) $) 148)) (-2439 (($ $) 109)) (-2623 (((-1136) $) NIL)) (-4011 (($ $ $) 83) (($ (-629 $)) 85)) (-3664 (((-111) |#4| $) 108)) (-3832 (((-111) $ $) 72)) (-3165 (($ (-629 |#4|)) 90)) (-2876 (((-1098) $) NIL)) (-2894 (($ (-629 |#4|)) 146)) (-1405 (((-111) $) 147)) (-1542 (($ $) 74)) (-1284 (((-629 |#4|) $) 63)) (-1321 (((-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $)) $ (-629 |#3|)) NIL)) (-2155 (((-111) |#4| $) 77)) (-3725 (((-552) $ (-629 |#3|)) 110) (((-552) $) 111)) (-3213 (((-844) $) 145) (($ (-629 |#4|)) 86)) (-4083 (($ (-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $))) NIL)) (-1613 (((-111) $ $) 73)) (-1698 (($ $ $) 93)) (** (($ $ (-756)) 96)) (* (($ $ $) 95))) +(((-496 |#1| |#2| |#3| |#4|) (-13 (-1078) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-756))) (-15 -1698 ($ $ $)) (-15 -4065 ((-111) $)) (-15 -3643 ((-111) $)) (-15 -2155 ((-111) |#4| $)) (-15 -3832 ((-111) $ $)) (-15 -3664 ((-111) |#4| $)) (-15 -2230 ((-111) $ (-629 |#3|))) (-15 -2230 ((-111) $)) (-15 -4011 ($ $ $)) (-15 -4011 ($ (-629 $))) (-15 -3713 ($ $ $)) (-15 -3713 ($ $ |#4|)) (-15 -1542 ($ $)) (-15 -1321 ((-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $)) $ (-629 |#3|))) (-15 -4083 ($ (-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $)))) (-15 -3725 ((-552) $ (-629 |#3|))) (-15 -3725 ((-552) $)) (-15 -2439 ($ $)) (-15 -3165 ($ (-629 |#4|))) (-15 -2894 ($ (-629 |#4|))) (-15 -1405 ((-111) $)) (-15 -1284 ((-629 |#4|) $)) (-15 -3213 ($ (-629 |#4|))) (-15 -2320 ($ $ |#4|)) (-15 -2320 ($ $ |#4| (-629 |#3|))) (IF (|has| |#3| (-600 (-1154))) (-15 -2424 ((-1143 (-629 (-933 |#1|)) (-629 (-288 (-933 |#1|)))) (-629 |#4|))) |%noBranch|))) (-357) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -496)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-1698 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-4065 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-3643 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-2155 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-3664 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6)))) (-2230 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-4011 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-629 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-3713 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-3713 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5)))) (-1542 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-1321 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) (-5 *2 (-2 (|:| |mval| (-673 *4)) (|:| |invmval| (-673 *4)) (|:| |genIdeal| (-496 *4 *5 *6 *7)))) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-673 *3)) (|:| |invmval| (-673 *3)) (|:| |genIdeal| (-496 *3 *4 *5 *6)))) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-3725 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6)))) (-3725 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-552)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-2439 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-3165 (*1 *1 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)))) (-1405 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-1284 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *6)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)))) (-2320 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5)))) (-2320 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-930 *4 *5 *6)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *5 *6)) (-4 *6 (-600 (-1154))) (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1143 (-629 (-933 *4)) (-629 (-288 (-933 *4))))) (-5 *1 (-496 *4 *5 *6 *7))))) +(-13 (-1078) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-756))) (-15 -1698 ($ $ $)) (-15 -4065 ((-111) $)) (-15 -3643 ((-111) $)) (-15 -2155 ((-111) |#4| $)) (-15 -3832 ((-111) $ $)) (-15 -3664 ((-111) |#4| $)) (-15 -2230 ((-111) $ (-629 |#3|))) (-15 -2230 ((-111) $)) (-15 -4011 ($ $ $)) (-15 -4011 ($ (-629 $))) (-15 -3713 ($ $ $)) (-15 -3713 ($ $ |#4|)) (-15 -1542 ($ $)) (-15 -1321 ((-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $)) $ (-629 |#3|))) (-15 -4083 ($ (-2 (|:| |mval| (-673 |#1|)) (|:| |invmval| (-673 |#1|)) (|:| |genIdeal| $)))) (-15 -3725 ((-552) $ (-629 |#3|))) (-15 -3725 ((-552) $)) (-15 -2439 ($ $)) (-15 -3165 ($ (-629 |#4|))) (-15 -2894 ($ (-629 |#4|))) (-15 -1405 ((-111) $)) (-15 -1284 ((-629 |#4|) $)) (-15 -3213 ($ (-629 |#4|))) (-15 -2320 ($ $ |#4|)) (-15 -2320 ($ $ |#4| (-629 |#3|))) (IF (|has| |#3| (-600 (-1154))) (-15 -2424 ((-1143 (-629 (-933 |#1|)) (-629 (-288 (-933 |#1|)))) (-629 |#4|))) |%noBranch|))) +((-2099 (((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) 150)) (-3900 (((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) 151)) (-3729 (((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) 108)) (-1677 (((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) NIL)) (-2614 (((-629 (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) 153)) (-3880 (((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-629 (-846 |#1|))) 165))) +(((-497 |#1| |#2|) (-10 -7 (-15 -2099 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3900 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1677 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3729 ((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2614 ((-629 (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3880 ((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-629 (-846 |#1|))))) (-629 (-1154)) (-756)) (T -497)) +((-3880 (*1 *2 *2 *3) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552))))) (-5 *3 (-629 (-846 *4))) (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *1 (-497 *4 *5)))) (-2614 (*1 *2 *3) (-12 (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-629 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552)))))) (-5 *1 (-497 *4 *5)) (-5 *3 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552))))))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *4 (-756)) (-846 *3) (-242 *3 (-401 (-552))))) (-14 *3 (-629 (-1154))) (-14 *4 (-756)) (-5 *1 (-497 *3 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5))))) +(-10 -7 (-15 -2099 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3900 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1677 ((-111) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3729 ((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2614 ((-629 (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3880 ((-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-756)) (-846 |#1|) (-242 |#1| (-401 (-552)))) (-629 (-846 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 11) (((-1159) $) NIL) (($ (-1159)) NIL) (((-1154) $) 8)) (-1613 (((-111) $ $) NIL))) +(((-498) (-13 (-1061) (-599 (-1154)))) (T -498)) +NIL +(-13 (-1061) (-599 (-1154))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-3590 (($ |#1| |#2|) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3687 ((|#2| $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-3297 (($) 12 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) 11) (($ $ $) 24)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 18))) +(((-499 |#1| |#2|) (-13 (-21) (-501 |#1| |#2|)) (-21) (-832)) (T -499)) NIL (-13 (-21) (-501 |#1| |#2|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 12)) (-3887 (($) NIL T CONST)) (-2014 (($ $) 28)) (-1832 (($ |#1| |#2|) 25)) (-3516 (($ (-1 |#1| |#1|) $) 27)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) 29)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) 10 T CONST)) (-2292 (((-111) $ $) NIL)) (-2384 (($ $ $) 18)) (* (($ (-900) $) NIL) (($ (-754) $) 23))) -(((-500 |#1| |#2|) (-13 (-23) (-501 |#1| |#2|)) (-23) (-830)) (T -500)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 12)) (-2130 (($) NIL T CONST)) (-3766 (($ $) 28)) (-3590 (($ |#1| |#2|) 25)) (-1477 (($ (-1 |#1| |#1|) $) 27)) (-3687 ((|#2| $) NIL)) (-3743 ((|#1| $) 29)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-3297 (($) 10 T CONST)) (-1613 (((-111) $ $) NIL)) (-1698 (($ $ $) 18)) (* (($ (-902) $) NIL) (($ (-756) $) 23))) +(((-500 |#1| |#2|) (-13 (-23) (-501 |#1| |#2|)) (-23) (-832)) (T -500)) NIL (-13 (-23) (-501 |#1| |#2|)) -((-1465 (((-111) $ $) 7)) (-2014 (($ $) 13)) (-1832 (($ |#1| |#2|) 16)) (-3516 (($ (-1 |#1| |#1|) $) 17)) (-1436 ((|#2| $) 14)) (-1993 ((|#1| $) 15)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-501 |#1| |#2|) (-137) (-1076) (-830)) (T -501)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-830)))) (-1832 (*1 *1 *2 *3) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1076)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-830)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830))))) -(-13 (-1076) (-10 -8 (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -1832 ($ |t#1| |t#2|)) (-15 -1993 (|t#1| $)) (-15 -1436 (|t#2| $)) (-15 -2014 ($ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 13)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) -(((-502 |#1| |#2|) (-13 (-775) (-501 |#1| |#2|)) (-775) (-830)) (T -502)) -NIL -(-13 (-775) (-501 |#1| |#2|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) 16)) (-4136 (((-3 $ "failed") $ $) 13)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) -(((-503 |#1| |#2|) (-13 (-776) (-501 |#1| |#2|)) (-776) (-830)) (T -503)) -NIL -(-13 (-776) (-501 |#1| |#2|)) -((-1465 (((-111) $ $) NIL)) (-2014 (($ $) 25)) (-1832 (($ |#1| |#2|) 22)) (-3516 (($ (-1 |#1| |#1|) $) 24)) (-1436 ((|#2| $) 27)) (-1993 ((|#1| $) 26)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21)) (-2292 (((-111) $ $) 14))) -(((-504 |#1| |#2|) (-501 |#1| |#2|) (-1076) (-830)) (T -504)) +((-3202 (((-111) $ $) 7)) (-3766 (($ $) 13)) (-3590 (($ |#1| |#2|) 16)) (-1477 (($ (-1 |#1| |#1|) $) 17)) (-3687 ((|#2| $) 14)) (-3743 ((|#1| $) 15)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-501 |#1| |#2|) (-137) (-1078) (-832)) (T -501)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-832)))) (-3590 (*1 *1 *2 *3) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-832)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-832)) (-4 *2 (-1078)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-832)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-832))))) +(-13 (-1078) (-10 -8 (-15 -1477 ($ (-1 |t#1| |t#1|) $)) (-15 -3590 ($ |t#1| |t#2|)) (-15 -3743 (|t#1| $)) (-15 -3687 (|t#2| $)) (-15 -3766 ($ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-3590 (($ |#1| |#2|) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3687 ((|#2| $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-3297 (($) NIL T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 13)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL))) +(((-502 |#1| |#2|) (-13 (-777) (-501 |#1| |#2|)) (-777) (-832)) (T -502)) +NIL +(-13 (-777) (-501 |#1| |#2|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3305 (($ $ $) 16)) (-4012 (((-3 $ "failed") $ $) 13)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-3590 (($ |#1| |#2|) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3687 ((|#2| $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL)) (-3297 (($) NIL T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL))) +(((-503 |#1| |#2|) (-13 (-778) (-501 |#1| |#2|)) (-778) (-832)) (T -503)) +NIL +(-13 (-778) (-501 |#1| |#2|)) +((-3202 (((-111) $ $) NIL)) (-3766 (($ $) 25)) (-3590 (($ |#1| |#2|) 22)) (-1477 (($ (-1 |#1| |#1|) $) 24)) (-3687 ((|#2| $) 27)) (-3743 ((|#1| $) 26)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21)) (-1613 (((-111) $ $) 14))) +(((-504 |#1| |#2|) (-501 |#1| |#2|) (-1078) (-832)) (T -504)) NIL (-501 |#1| |#2|) -((-3321 (($ $ (-627 |#2|) (-627 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-505 |#1| |#2| |#3|) (-10 -8 (-15 -3321 (|#1| |#1| |#2| |#3|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#3|)))) (-506 |#2| |#3|) (-1076) (-1189)) (T -505)) +((-2432 (($ $ (-629 |#2|) (-629 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-505 |#1| |#2| |#3|) (-10 -8 (-15 -2432 (|#1| |#1| |#2| |#3|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#3|)))) (-506 |#2| |#3|) (-1078) (-1191)) (T -505)) NIL -(-10 -8 (-15 -3321 (|#1| |#1| |#2| |#3|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#3|)))) -((-3321 (($ $ (-627 |#1|) (-627 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-506 |#1| |#2|) (-137) (-1076) (-1189)) (T -506)) -((-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *5)) (-4 *1 (-506 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1189)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1189))))) -(-13 (-10 -8 (-15 -3321 ($ $ |t#1| |t#2|)) (-15 -3321 ($ $ (-627 |t#1|) (-627 |t#2|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 16)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 18)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) 23)) (-3547 ((|#2| $ (-552)) 21)) (-2356 (($ (-1 |#1| |#1|) $) 46)) (-1820 (($ (-1 |#2| |#2|) $) 43)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) 53 (|has| |#2| (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 42) (($ |#1|) NIL)) (-1889 ((|#2| |#1| $) 49)) (-1922 (($) 11 T CONST)) (-2292 (((-111) $ $) 29)) (-2384 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-900) $) NIL) (($ (-754) $) 36) (($ |#2| |#1|) 31))) -(((-507 |#1| |#2| |#3|) (-317 |#1| |#2|) (-1076) (-129) |#2|) (T -507)) +(-10 -8 (-15 -2432 (|#1| |#1| |#2| |#3|)) (-15 -2432 (|#1| |#1| (-629 |#2|) (-629 |#3|)))) +((-2432 (($ $ (-629 |#1|) (-629 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-506 |#1| |#2|) (-137) (-1078) (-1191)) (T -506)) +((-2432 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 *5)) (-4 *1 (-506 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1191)))) (-2432 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1191))))) +(-13 (-10 -8 (-15 -2432 ($ $ |t#1| |t#2|)) (-15 -2432 ($ $ (-629 |t#1|) (-629 |t#2|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 16)) (-2622 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))) $) 18)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756) $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-3261 ((|#1| $ (-552)) 23)) (-3103 ((|#2| $ (-552)) 21)) (-1316 (($ (-1 |#1| |#1|) $) 46)) (-2902 (($ (-1 |#2| |#2|) $) 43)) (-2623 (((-1136) $) NIL)) (-2996 (($ $ $) 53 (|has| |#2| (-777)))) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 42) (($ |#1|) NIL)) (-2266 ((|#2| |#1| $) 49)) (-3297 (($) 11 T CONST)) (-1613 (((-111) $ $) 29)) (-1698 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-902) $) NIL) (($ (-756) $) 36) (($ |#2| |#1|) 31))) +(((-507 |#1| |#2| |#3|) (-317 |#1| |#2|) (-1078) (-129) |#2|) (T -507)) NIL (-317 |#1| |#2|) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-3083 (((-111) (-111)) 25)) (-2950 ((|#1| $ (-552) |#1|) 28 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 52)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-2820 (($ $) 56 (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) 44)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-2729 (($ $ (-552)) 13)) (-1387 (((-754) $) 11)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 23)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 21 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) 20 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ $ $ (-552)) 51) (($ |#1| $ (-552)) 37)) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3181 (($ (-627 |#1|)) 29)) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 19 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 40)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 16)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 33) (($ $ (-1202 (-552))) NIL)) (-3010 (($ $ (-1202 (-552))) 50) (($ $ (-552)) 45)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) 41 (|has| $ (-6 -4367)))) (-2973 (($ $) 32)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) 42) (($ $ |#1|) 39)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 17 (|has| $ (-6 -4366))))) -(((-508 |#1| |#2|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) (-1189) (-552)) (T -508)) -((-3181 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-508 *3 *4)) (-14 *4 (-552)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 (-552)))) (-2729 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 *2))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 (-552))))) -(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) -((-1465 (((-111) $ $) NIL)) (-2947 (((-1111) $) 11)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3375 (((-1111) $) 13)) (-2242 (((-1111) $) 9)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-509) (-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)) (-15 -2947 ((-1111) $)) (-15 -3375 ((-1111) $))))) (T -509)) -((-2242 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) -(-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)) (-15 -2947 ((-1111) $)) (-15 -3375 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-569 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-569 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-569 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-569 |#1|) "failed") $) NIL)) (-1703 (((-569 |#1|) $) NIL)) (-2342 (($ (-1235 (-569 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-569 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-569 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-569 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-569 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-569 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-2349 (((-569 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-569 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-569 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-569 |#1|) (-362)))) (-1980 (((-1148 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362)))) (-2259 (((-1148 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-1148 (-569 |#1|)) "failed") $ $) NIL (|has| (-569 |#1|) (-362)))) (-3520 (($ $ (-1148 (-569 |#1|))) NIL (|has| (-569 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-569 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| (-569 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-569 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-569 |#1|))) NIL)) (-3439 (($) NIL (|has| (-569 |#1|) (-362)))) (-3231 (($) NIL (|has| (-569 |#1|) (-362)))) (-3133 (((-1235 (-569 |#1|)) $) NIL) (((-671 (-569 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-569 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-569 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-569 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-569 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-569 |#1|)) NIL) (($ (-569 |#1|) $) NIL))) -(((-510 |#1| |#2|) (-323 (-569 |#1|)) (-900) (-900)) (T -510)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-2982 (((-111) (-111)) 25)) (-1470 ((|#1| $ (-552) |#1|) 28 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) 52)) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2232 (($ $) 56 (|has| |#1| (-1078)))) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) NIL (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) 44)) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3892 (($ $ (-552)) 13)) (-1910 (((-756) $) 11)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 23)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 21 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-3707 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) 20 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1580 (($ $ $ (-552)) 51) (($ |#1| $ (-552)) 37)) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2718 (($ (-629 |#1|)) 29)) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) 19 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 40)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 16)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 33) (($ $ (-1204 (-552))) NIL)) (-3502 (($ $ (-1204 (-552))) 50) (($ $ (-552)) 45)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) 41 (|has| $ (-6 -4369)))) (-1487 (($ $) 32)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-2380 (($ $ $) 42) (($ $ |#1|) 39)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) 17 (|has| $ (-6 -4368))))) +(((-508 |#1| |#2|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -2718 ($ (-629 |#1|))) (-15 -1910 ((-756) $)) (-15 -3892 ($ $ (-552))) (-15 -2982 ((-111) (-111))))) (-1191) (-552)) (T -508)) +((-2718 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-508 *3 *4)) (-14 *4 (-552)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) (-14 *4 (-552)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) (-14 *4 *2))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) (-14 *4 (-552))))) +(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -2718 ($ (-629 |#1|))) (-15 -1910 ((-756) $)) (-15 -3892 ($ $ (-552))) (-15 -2982 ((-111) (-111))))) +((-3202 (((-111) $ $) NIL)) (-4136 (((-1113) $) 11)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-1992 (((-1113) $) 13)) (-3921 (((-1113) $) 9)) (-3213 (((-844) $) 21) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-509) (-13 (-1061) (-10 -8 (-15 -3921 ((-1113) $)) (-15 -4136 ((-1113) $)) (-15 -1992 ((-1113) $))))) (T -509)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509))))) +(-13 (-1061) (-10 -8 (-15 -3921 ((-1113) $)) (-15 -4136 ((-1113) $)) (-15 -1992 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (((-569 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-569 |#1|) (-362)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-569 |#1|) (-362)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL (|has| (-569 |#1|) (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-569 |#1|) "failed") $) NIL)) (-2832 (((-569 |#1|) $) NIL)) (-4278 (($ (-1237 (-569 |#1|))) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-569 |#1|) (-362)))) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-569 |#1|) (-362)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL (|has| (-569 |#1|) (-362)))) (-3504 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-1788 (($ $ (-756)) NIL (-4029 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362)))) (($ $) NIL (-4029 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-1677 (((-111) $) NIL)) (-4241 (((-902) $) NIL (|has| (-569 |#1|) (-362))) (((-818 (-902)) $) NIL (-4029 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| (-569 |#1|) (-362)))) (-2092 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-4346 (((-569 |#1|) $) NIL) (($ $ (-902)) NIL (|has| (-569 |#1|) (-362)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-569 |#1|) (-362)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 (-569 |#1|)) $) NIL) (((-1150 $) $ (-902)) NIL (|has| (-569 |#1|) (-362)))) (-1637 (((-902) $) NIL (|has| (-569 |#1|) (-362)))) (-1879 (((-1150 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362)))) (-1577 (((-1150 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-1150 (-569 |#1|)) "failed") $ $) NIL (|has| (-569 |#1|) (-362)))) (-2836 (($ $ (-1150 (-569 |#1|))) NIL (|has| (-569 |#1|) (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-569 |#1|) (-362)) CONST)) (-2840 (($ (-902)) NIL (|has| (-569 |#1|) (-362)))) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL (|has| (-569 |#1|) (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-569 |#1|) (-362)))) (-3479 (((-412 $) $) NIL)) (-3823 (((-818 (-902))) NIL) (((-902)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-756) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-756) "failed") $ $) NIL (-4029 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-3725 (((-132)) NIL)) (-3096 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-569 |#1|) (-362)))) (-3299 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-3521 (((-1150 (-569 |#1|))) NIL)) (-1368 (($) NIL (|has| (-569 |#1|) (-362)))) (-3149 (($) NIL (|has| (-569 |#1|) (-362)))) (-3464 (((-1237 (-569 |#1|)) $) NIL) (((-673 (-569 |#1|)) (-1237 $)) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-569 |#1|) (-362)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-569 |#1|)) NIL)) (-3878 (($ $) NIL (|has| (-569 |#1|) (-362))) (((-3 $ "failed") $) NIL (-4029 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL) (((-1237 $) (-902)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-569 |#1|) (-362)))) (-1765 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-756)) NIL (|has| (-569 |#1|) (-362)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL) (($ $ (-569 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-569 |#1|)) NIL) (($ (-569 |#1|) $) NIL))) +(((-510 |#1| |#2|) (-323 (-569 |#1|)) (-902) (-902)) (T -510)) NIL (-323 (-569 |#1|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) 35)) (-1566 (($ $ (-552) |#4|) NIL)) (-1666 (($ $ (-552) |#5|) NIL)) (-3887 (($) NIL T CONST)) (-3884 ((|#4| $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) 34)) (-3413 ((|#1| $ (-552) (-552)) 32)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) 28)) (-2655 (($ (-754) (-754) |#1|) 25)) (-3572 (((-754) $) 30)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) 26)) (-3511 (((-552) $) 27)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 29)) (-2780 (((-552) $) 31)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) 38 (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 16)) (-1985 ((|#1| $ (-552) (-552)) 33) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 ((|#5| $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-511 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1189) (-552) (-552) (-367 |#1|) (-367 |#1|)) (T -511)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) 35)) (-2347 (($ $ (-552) |#4|) NIL)) (-3934 (($ $ (-552) |#5|) NIL)) (-2130 (($) NIL T CONST)) (-3413 ((|#4| $ (-552)) NIL)) (-2957 ((|#1| $ (-552) (-552) |#1|) 34)) (-2892 ((|#1| $ (-552) (-552)) 32)) (-3138 (((-629 |#1|) $) NIL)) (-2389 (((-756) $) 28)) (-3307 (($ (-756) (-756) |#1|) 25)) (-2401 (((-756) $) 30)) (-1418 (((-111) $ (-756)) NIL)) (-3534 (((-552) $) 26)) (-3966 (((-552) $) 27)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) 29)) (-3162 (((-552) $) 31)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) 38 (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 14)) (-3430 (($) 16)) (-2060 ((|#1| $ (-552) (-552)) 33) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3041 ((|#5| $ (-552)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-511 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1191) (-552) (-552) (-367 |#1|) (-367 |#1|)) (T -511)) NIL (-56 |#1| |#4| |#5|) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 59 (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 23 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 21 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4367))) (($ $ "rest" $) 24 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) 28 (|has| $ (-6 -4367)))) (-3429 (($ $) 29)) (-3351 (($ $) 18) (($ $ (-754)) 32)) (-2820 (($ $) 55 (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) 27 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 31 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) 51 (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) 13) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 12)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) 17)) (-2373 (($) 16)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2978 (((-111) $) 34)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) 36)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) 35)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 26)) (-3151 (($ $ $) 54) (($ $ |#1|) NIL)) (-2668 (($ $ $) NIL) (($ |#1| $) 10) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (((-842) $) 46 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 48 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 9 (|has| $ (-6 -4366))))) -(((-512 |#1| |#2|) (-648 |#1|) (-1189) (-552)) (T -512)) -NIL -(-648 |#1|) -((-1472 ((|#4| |#4|) 27)) (-4154 (((-754) |#4|) 32)) (-1610 (((-754) |#4|) 33)) (-2960 (((-627 |#3|) |#4|) 40 (|has| |#3| (-6 -4367)))) (-2952 (((-3 |#4| "failed") |#4|) 51)) (-2638 ((|#4| |#4|) 44)) (-1530 ((|#1| |#4|) 43))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1472 (|#4| |#4|)) (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (IF (|has| |#3| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|) (-15 -1530 (|#1| |#4|)) (-15 -2638 (|#4| |#4|)) (-15 -2952 ((-3 |#4| "failed") |#4|))) (-357) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -513)) -((-2952 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-2960 (*1 *2 *3) (-12 (|has| *6 (-6 -4367)) (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -1472 (|#4| |#4|)) (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (IF (|has| |#3| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|) (-15 -1530 (|#1| |#4|)) (-15 -2638 (|#4| |#4|)) (-15 -2952 ((-3 |#4| "failed") |#4|))) -((-1472 ((|#8| |#4|) 20)) (-2960 (((-627 |#3|) |#4|) 29 (|has| |#7| (-6 -4367)))) (-2952 (((-3 |#8| "failed") |#4|) 23))) -(((-514 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1472 (|#8| |#4|)) (-15 -2952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|)) (-544) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|) (-971 |#1|) (-367 |#5|) (-367 |#5|) (-669 |#5| |#6| |#7|)) (T -514)) -((-2960 (*1 *2 *3) (-12 (|has| *9 (-6 -4367)) (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-627 *6)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) (-4 *10 (-669 *7 *8 *9)))) (-2952 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-1472 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))) -(-10 -7 (-15 -1472 (|#8| |#4|)) (-15 -2952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) NIL)) (-2129 (($ $ $) NIL)) (-3595 (($ (-588 |#1| |#3|)) NIL) (($ $) NIL)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) 12)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-588 |#1| |#3|)) NIL)) (-1666 (($ $ (-552) (-588 |#1| |#2|)) NIL)) (-1665 (($ (-754) |#1|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 21 (|has| |#1| (-301)))) (-3884 (((-588 |#1| |#3|) $ (-552)) NIL)) (-4154 (((-754) $) 24 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) 26 (|has| |#1| (-544)))) (-2960 (((-627 (-588 |#1| |#2|)) $) 29 (|has| |#1| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) 19 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 10)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 11)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#1|))) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 33 (|has| |#1| (-357)))) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) 17 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-588 |#1| |#2|) $ (-552)) NIL)) (-1477 (($ (-588 |#1| |#2|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-588 |#1| |#2|) $ (-588 |#1| |#2|)) NIL) (((-588 |#1| |#3|) (-588 |#1| |#3|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-515 |#1| |#2| |#3|) (-669 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) (-1028) (-552) (-552)) (T -515)) -NIL -(-669 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2100 (((-627 (-1188)) $) 13)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL) (($ (-627 (-1188))) 11)) (-2292 (((-111) $ $) NIL))) -(((-516) (-13 (-1059) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2100 ((-627 (-1188)) $))))) (T -516)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516))))) -(-13 (-1059) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2100 ((-627 (-1188)) $)))) -((-1465 (((-111) $ $) NIL)) (-3731 (((-1111) $) 14)) (-1595 (((-1134) $) NIL)) (-1278 (((-1152) $) 11)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-517) (-13 (-1059) (-10 -8 (-15 -1278 ((-1152) $)) (-15 -3731 ((-1111) $))))) (T -517)) -((-1278 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-517)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-517))))) -(-13 (-1059) (-10 -8 (-15 -1278 ((-1152) $)) (-15 -3731 ((-1111) $)))) -((-3166 (((-1096) $ (-127)) 17))) -(((-518 |#1|) (-10 -8 (-15 -3166 ((-1096) |#1| (-127)))) (-519)) (T -518)) -NIL -(-10 -8 (-15 -3166 ((-1096) |#1| (-127)))) -((-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-2219 (($ $) 6))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) NIL)) (-2210 ((|#1| $) NIL)) (-1785 (($ $) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 59 (|has| $ (-6 -4369)))) (-3717 (((-111) $) NIL (|has| |#1| (-832))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-3646 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4369)))) (-1296 (($ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-2830 (($ $ $) 23 (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 21 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4369))) (($ $ "rest" $) 24 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) NIL)) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2196 ((|#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2366 (($ $) 28 (|has| $ (-6 -4369)))) (-3344 (($ $) 29)) (-2715 (($ $) 18) (($ $ (-756)) 32)) (-2232 (($ $) 55 (|has| |#1| (-1078)))) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) NIL (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) NIL)) (-2655 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-2268 (((-111) $) NIL)) (-1456 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078))) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3138 (((-629 |#1|) $) 27 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 31 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-3707 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-1446 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2563 (($ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) 51 (|has| |#1| (-1078)))) (-2680 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-1580 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) 13) (($ $ (-756)) NIL)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-1352 (((-111) $) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 12)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) 17)) (-3430 (($) 16)) (-2060 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1204 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL)) (-3153 (((-552) $ $) NIL)) (-3502 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-1289 (((-111) $) 34)) (-2760 (($ $) NIL)) (-4022 (($ $) NIL (|has| $ (-6 -4369)))) (-3058 (((-756) $) NIL)) (-2963 (($ $) 36)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) 35)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 26)) (-2380 (($ $ $) 54) (($ $ |#1|) NIL)) (-4319 (($ $ $) NIL) (($ |#1| $) 10) (($ (-629 $)) NIL) (($ $ |#1|) NIL)) (-3213 (((-844) $) 46 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 48 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) 9 (|has| $ (-6 -4368))))) +(((-512 |#1| |#2|) (-650 |#1|) (-1191) (-552)) (T -512)) +NIL +(-650 |#1|) +((-2810 ((|#4| |#4|) 27)) (-2128 (((-756) |#4|) 32)) (-1486 (((-756) |#4|) 33)) (-4229 (((-629 |#3|) |#4|) 40 (|has| |#3| (-6 -4369)))) (-4156 (((-3 |#4| "failed") |#4|) 51)) (-4211 ((|#4| |#4|) 44)) (-2021 ((|#1| |#4|) 43))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2810 (|#4| |#4|)) (-15 -2128 ((-756) |#4|)) (-15 -1486 ((-756) |#4|)) (IF (|has| |#3| (-6 -4369)) (-15 -4229 ((-629 |#3|) |#4|)) |%noBranch|) (-15 -2021 (|#1| |#4|)) (-15 -4211 (|#4| |#4|)) (-15 -4156 ((-3 |#4| "failed") |#4|))) (-357) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|)) (T -513)) +((-4156 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-4211 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5)))) (-4229 (*1 *2 *3) (-12 (|has| *6 (-6 -4369)) (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-629 *6)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(-10 -7 (-15 -2810 (|#4| |#4|)) (-15 -2128 ((-756) |#4|)) (-15 -1486 ((-756) |#4|)) (IF (|has| |#3| (-6 -4369)) (-15 -4229 ((-629 |#3|) |#4|)) |%noBranch|) (-15 -2021 (|#1| |#4|)) (-15 -4211 (|#4| |#4|)) (-15 -4156 ((-3 |#4| "failed") |#4|))) +((-2810 ((|#8| |#4|) 20)) (-4229 (((-629 |#3|) |#4|) 29 (|has| |#7| (-6 -4369)))) (-4156 (((-3 |#8| "failed") |#4|) 23))) +(((-514 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2810 (|#8| |#4|)) (-15 -4156 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4369)) (-15 -4229 ((-629 |#3|) |#4|)) |%noBranch|)) (-544) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|) (-973 |#1|) (-367 |#5|) (-367 |#5|) (-671 |#5| |#6| |#7|)) (T -514)) +((-4229 (*1 *2 *3) (-12 (|has| *9 (-6 -4369)) (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-973 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-629 *6)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-671 *4 *5 *6)) (-4 *10 (-671 *7 *8 *9)))) (-4156 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-973 *4)) (-4 *2 (-671 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-671 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-2810 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-973 *4)) (-4 *2 (-671 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-671 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))) +(-10 -7 (-15 -2810 (|#8| |#4|)) (-15 -4156 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4369)) (-15 -4229 ((-629 |#3|) |#4|)) |%noBranch|)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756) (-756)) NIL)) (-2811 (($ $ $) NIL)) (-2289 (($ (-588 |#1| |#3|)) NIL) (($ $) NIL)) (-4021 (((-111) $) NIL)) (-2613 (($ $ (-552) (-552)) 12)) (-4037 (($ $ (-552) (-552)) NIL)) (-1728 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-3035 (($ $) NIL)) (-2779 (((-111) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2683 (($ $ (-552) (-552) $) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552)) $) NIL)) (-2347 (($ $ (-552) (-588 |#1| |#3|)) NIL)) (-3934 (($ $ (-552) (-588 |#1| |#2|)) NIL)) (-3924 (($ (-756) |#1|) NIL)) (-2130 (($) NIL T CONST)) (-2810 (($ $) 21 (|has| |#1| (-301)))) (-3413 (((-588 |#1| |#3|) $ (-552)) NIL)) (-2128 (((-756) $) 24 (|has| |#1| (-544)))) (-2957 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2892 ((|#1| $ (-552) (-552)) NIL)) (-3138 (((-629 |#1|) $) NIL)) (-1486 (((-756) $) 26 (|has| |#1| (-544)))) (-4229 (((-629 (-588 |#1| |#2|)) $) 29 (|has| |#1| (-544)))) (-2389 (((-756) $) NIL)) (-3307 (($ (-756) (-756) |#1|) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3427 ((|#1| $) 19 (|has| |#1| (-6 (-4370 "*"))))) (-3534 (((-552) $) 10)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) 11)) (-3162 (((-552) $) NIL)) (-3516 (($ (-629 (-629 |#1|))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3397 (((-629 (-629 |#1|)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-4156 (((-3 $ "failed") $) 33 (|has| |#1| (-357)))) (-2944 (($ $ $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552))) NIL)) (-2843 (($ (-629 |#1|)) NIL) (($ (-629 $)) NIL)) (-1379 (((-111) $) NIL)) (-2021 ((|#1| $) 17 (|has| |#1| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3041 (((-588 |#1| |#2|) $ (-552)) NIL)) (-3213 (($ (-588 |#1| |#2|)) NIL) (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-588 |#1| |#2|) $ (-588 |#1| |#2|)) NIL) (((-588 |#1| |#3|) (-588 |#1| |#3|) $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-515 |#1| |#2| |#3|) (-671 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) (-1030) (-552) (-552)) (T -515)) +NIL +(-671 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3761 (((-629 (-1190)) $) 13)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20) (((-1159) $) NIL) (($ (-1159)) NIL) (($ (-629 (-1190))) 11)) (-1613 (((-111) $ $) NIL))) +(((-516) (-13 (-1061) (-10 -8 (-15 -3213 ($ (-629 (-1190)))) (-15 -3761 ((-629 (-1190)) $))))) (T -516)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-516)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-516))))) +(-13 (-1061) (-10 -8 (-15 -3213 ($ (-629 (-1190)))) (-15 -3761 ((-629 (-1190)) $)))) +((-3202 (((-111) $ $) NIL)) (-4313 (((-1113) $) 14)) (-2623 (((-1136) $) NIL)) (-3458 (((-1154) $) 11)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-517) (-13 (-1061) (-10 -8 (-15 -3458 ((-1154) $)) (-15 -4313 ((-1113) $))))) (T -517)) +((-3458 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-517)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-517))))) +(-13 (-1061) (-10 -8 (-15 -3458 ((-1154) $)) (-15 -4313 ((-1113) $)))) +((-2537 (((-1098) $ (-127)) 17))) +(((-518 |#1|) (-10 -8 (-15 -2537 ((-1098) |#1| (-127)))) (-519)) (T -518)) +NIL +(-10 -8 (-15 -2537 ((-1098) |#1| (-127)))) +((-2537 (((-1098) $ (-127)) 7)) (-3042 (((-1098) $) 8)) (-2469 (($ $) 6))) (((-519) (-137)) (T -519)) -((-2764 (*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1096)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1096))))) -(-13 (-170) (-10 -8 (-15 -2764 ((-1096) $)) (-15 -3166 ((-1096) $ (-127))))) +((-3042 (*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1098)))) (-2537 (*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1098))))) +(-13 (-170) (-10 -8 (-15 -3042 ((-1098) $)) (-15 -2537 ((-1098) $ (-127))))) (((-170) . T)) -((-2845 (((-1148 |#1|) (-754)) 76)) (-3385 (((-1235 |#1|) (-1235 |#1|) (-900)) 69)) (-1377 (((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|) 84)) (-2996 (((-1235 |#1|) (-1235 |#1|) (-754)) 36)) (-1279 (((-1235 |#1|) (-900)) 71)) (-4247 (((-1235 |#1|) (-1235 |#1|) (-552)) 24)) (-3144 (((-1148 |#1|) (-1235 |#1|)) 77)) (-2611 (((-1235 |#1|) (-900)) 95)) (-2492 (((-111) (-1235 |#1|)) 80)) (-2349 (((-1235 |#1|) (-1235 |#1|) (-900)) 62)) (-4205 (((-1148 |#1|) (-1235 |#1|)) 89)) (-2886 (((-900) (-1235 |#1|)) 59)) (-1951 (((-1235 |#1|) (-1235 |#1|)) 30)) (-4153 (((-1235 |#1|) (-900) (-900)) 97)) (-2631 (((-1235 |#1|) (-1235 |#1|) (-1096) (-1096)) 23)) (-1447 (((-1235 |#1|) (-1235 |#1|) (-754) (-1096)) 37)) (-2957 (((-1235 (-1235 |#1|)) (-900)) 94)) (-2407 (((-1235 |#1|) (-1235 |#1|) (-1235 |#1|)) 81)) (** (((-1235 |#1|) (-1235 |#1|) (-552)) 45)) (* (((-1235 |#1|) (-1235 |#1|) (-1235 |#1|)) 25))) -(((-520 |#1|) (-10 -7 (-15 -1377 ((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|)) (-15 -1279 ((-1235 |#1|) (-900))) (-15 -4153 ((-1235 |#1|) (-900) (-900))) (-15 -3144 ((-1148 |#1|) (-1235 |#1|))) (-15 -2845 ((-1148 |#1|) (-754))) (-15 -1447 ((-1235 |#1|) (-1235 |#1|) (-754) (-1096))) (-15 -2996 ((-1235 |#1|) (-1235 |#1|) (-754))) (-15 -2631 ((-1235 |#1|) (-1235 |#1|) (-1096) (-1096))) (-15 -4247 ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 ** ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 * ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2407 ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2349 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -3385 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -1951 ((-1235 |#1|) (-1235 |#1|))) (-15 -2886 ((-900) (-1235 |#1|))) (-15 -2492 ((-111) (-1235 |#1|))) (-15 -2957 ((-1235 (-1235 |#1|)) (-900))) (-15 -2611 ((-1235 |#1|) (-900))) (-15 -4205 ((-1148 |#1|) (-1235 |#1|)))) (-343)) (T -520)) -((-4205 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 *4))) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-520 *4)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-900)) (-5 *1 (-520 *4)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (-3385 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2407 (*1 *2 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-4247 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2631 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1096)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-1447 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1235 *5)) (-5 *3 (-754)) (-5 *4 (-1096)) (-4 *5 (-343)) (-5 *1 (-520 *5)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)))) (-4153 (*1 *2 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-1240)) (-5 *1 (-520 *4))))) -(-10 -7 (-15 -1377 ((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|)) (-15 -1279 ((-1235 |#1|) (-900))) (-15 -4153 ((-1235 |#1|) (-900) (-900))) (-15 -3144 ((-1148 |#1|) (-1235 |#1|))) (-15 -2845 ((-1148 |#1|) (-754))) (-15 -1447 ((-1235 |#1|) (-1235 |#1|) (-754) (-1096))) (-15 -2996 ((-1235 |#1|) (-1235 |#1|) (-754))) (-15 -2631 ((-1235 |#1|) (-1235 |#1|) (-1096) (-1096))) (-15 -4247 ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 ** ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 * ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2407 ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2349 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -3385 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -1951 ((-1235 |#1|) (-1235 |#1|))) (-15 -2886 ((-900) (-1235 |#1|))) (-15 -2492 ((-111) (-1235 |#1|))) (-15 -2957 ((-1235 (-1235 |#1|)) (-900))) (-15 -2611 ((-1235 |#1|) (-900))) (-15 -4205 ((-1148 |#1|) (-1235 |#1|)))) -((-3166 (((-1096) $ (-127)) NIL)) (-2764 (((-1096) $) 21)) (-2542 (((-1096) $ (-1096)) 25)) (-2967 (((-1096) $) 24)) (-1300 (((-111) $) 19)) (-2662 (($ (-382)) 12) (($ (-1134)) 14)) (-4098 (((-111) $) 22)) (-1477 (((-842) $) 28)) (-2219 (($ $) 23))) -(((-521) (-13 (-519) (-599 (-842)) (-10 -8 (-15 -2662 ($ (-382))) (-15 -2662 ($ (-1134))) (-15 -4098 ((-111) $)) (-15 -1300 ((-111) $)) (-15 -2967 ((-1096) $)) (-15 -2542 ((-1096) $ (-1096)))))) (T -521)) -((-2662 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-521)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-521)))) (-2542 (*1 *2 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-521))))) -(-13 (-519) (-599 (-842)) (-10 -8 (-15 -2662 ($ (-382))) (-15 -2662 ($ (-1134))) (-15 -4098 ((-111) $)) (-15 -1300 ((-111) $)) (-15 -2967 ((-1096) $)) (-15 -2542 ((-1096) $ (-1096))))) -((-2484 (((-1 |#1| |#1|) |#1|) 11)) (-3422 (((-1 |#1| |#1|)) 10))) -(((-522 |#1|) (-10 -7 (-15 -3422 ((-1 |#1| |#1|))) (-15 -2484 ((-1 |#1| |#1|) |#1|))) (-13 (-709) (-25))) (T -522)) -((-2484 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25))))) (-3422 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) -(-10 -7 (-15 -3422 ((-1 |#1| |#1|))) (-15 -2484 ((-1 |#1| |#1|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ (-754) |#1|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 (-754) (-754)) $) NIL)) (-1436 ((|#1| $) NIL)) (-1993 (((-754) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) -(((-523 |#1|) (-13 (-776) (-501 (-754) |#1|)) (-830)) (T -523)) -NIL -(-13 (-776) (-501 (-754) |#1|)) -((-3620 (((-627 |#2|) (-1148 |#1|) |#3|) 83)) (-3368 (((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))) 100)) (-1897 (((-1148 |#1|) (-671 |#1|)) 95))) -(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -1897 ((-1148 |#1|) (-671 |#1|))) (-15 -3620 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3368 ((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))))) (-357) (-357) (-13 (-357) (-828))) (T -524)) -((-3368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-412 (-1148 *6)) (-1148 *6))) (-4 *6 (-357)) (-5 *2 (-627 (-2 (|:| |outval| *7) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 *7)))))) (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-828))))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-357)) (-5 *2 (-627 *6)) (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *2 (-1148 *4)) (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-828)))))) -(-10 -7 (-15 -1897 ((-1148 |#1|) (-671 |#1|))) (-15 -3620 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3368 ((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))))) -((-1525 (((-1096) $ (-127)) 24)) (-3928 (((-1096) $ (-128)) NIL)) (-3166 (((-1096) $ (-127)) 23)) (-2764 (((-1096) $) NIL)) (-3664 (((-111) $) 17)) (-2424 (((-3 $ "failed") (-567) (-933)) 10) (((-3 $ "failed") (-483) (-933)) 13)) (-1477 (((-842) $) 32)) (-2219 (($ $) 22))) -(((-525) (-13 (-750 (-567)) (-599 (-842)) (-10 -8 (-15 -2424 ((-3 $ "failed") (-483) (-933)))))) (T -525)) -((-2424 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *3 (-933)) (-5 *1 (-525))))) -(-13 (-750 (-567)) (-599 (-842)) (-10 -8 (-15 -2424 ((-3 $ "failed") (-483) (-933))))) -((-3596 (((-823 (-552))) 12)) (-3610 (((-823 (-552))) 14)) (-2962 (((-816 (-552))) 9))) -(((-526) (-10 -7 (-15 -2962 ((-816 (-552)))) (-15 -3596 ((-823 (-552)))) (-15 -3610 ((-823 (-552)))))) (T -526)) -((-3610 (*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) (-3596 (*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) (-2962 (*1 *2) (-12 (-5 *2 (-816 (-552))) (-5 *1 (-526))))) -(-10 -7 (-15 -2962 ((-816 (-552)))) (-15 -3596 ((-823 (-552)))) (-15 -3610 ((-823 (-552))))) -((-3499 (((-528) (-1152)) 15)) (-3072 ((|#1| (-528)) 20))) -(((-527 |#1|) (-10 -7 (-15 -3499 ((-528) (-1152))) (-15 -3072 (|#1| (-528)))) (-1189)) (T -527)) -((-3072 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1189)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-528)) (-5 *1 (-527 *4)) (-4 *4 (-1189))))) -(-10 -7 (-15 -3499 ((-528) (-1152))) (-15 -3072 (|#1| (-528)))) -((-1465 (((-111) $ $) NIL)) (-1519 (((-1134) $) 47)) (-1891 (((-111) $) 43)) (-2909 (((-1152) $) 44)) (-2563 (((-111) $) 41)) (-2258 (((-1134) $) 42)) (-1938 (($ (-1134)) 48)) (-3631 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2043 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-3494 (($ $ (-627 (-1152))) 20)) (-3072 (((-52) $) 22)) (-2170 (((-111) $) NIL)) (-2933 (((-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-4218 (($ $ (-627 (-1152)) (-1152)) 60)) (-2305 (((-111) $) NIL)) (-2103 (((-220) $) NIL)) (-1427 (($ $) 38)) (-4301 (((-842) $) NIL)) (-1651 (((-111) $ $) NIL)) (-1985 (($ $ (-552)) NIL) (($ $ (-627 (-552))) NIL)) (-1790 (((-627 $) $) 28)) (-1555 (((-1152) (-627 $)) 49)) (-3562 (($ (-627 $)) 56) (($ (-1134)) NIL) (($ (-1152)) 18) (($ (-552)) 8) (($ (-220)) 25) (($ (-842)) NIL) (((-1080) $) 11) (($ (-1080)) 12)) (-2390 (((-1152) (-1152) (-627 $)) 52)) (-1477 (((-842) $) 46)) (-1328 (($ $) 51)) (-1314 (($ $) 50)) (-3780 (($ $ (-627 $)) 57)) (-3233 (((-111) $) 27)) (-1922 (($) 9 T CONST)) (-1933 (($) 10 T CONST)) (-2292 (((-111) $ $) 61)) (-2407 (($ $ $) 66)) (-2384 (($ $ $) 62)) (** (($ $ (-754)) 65) (($ $ (-552)) 64)) (* (($ $ $) 63)) (-1383 (((-552) $) NIL))) -(((-528) (-13 (-1079 (-1134) (-1152) (-552) (-220) (-842)) (-600 (-1080)) (-10 -8 (-15 -3072 ((-52) $)) (-15 -3562 ($ (-1080))) (-15 -3780 ($ $ (-627 $))) (-15 -4218 ($ $ (-627 (-1152)) (-1152))) (-15 -3494 ($ $ (-627 (-1152)))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ (-552))) (-15 0 ($) -3488) (-15 1 ($) -3488) (-15 -1427 ($ $)) (-15 -1519 ((-1134) $)) (-15 -1938 ($ (-1134))) (-15 -1555 ((-1152) (-627 $))) (-15 -2390 ((-1152) (-1152) (-627 $)))))) (T -528)) -((-3072 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-528)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-528))) (-5 *1 (-528)))) (-4218 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1152)) (-5 *1 (-528)))) (-3494 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-528)))) (-2384 (*1 *1 *1 *1) (-5 *1 (-528))) (* (*1 *1 *1 *1) (-5 *1 (-528))) (-2407 (*1 *1 *1 *1) (-5 *1 (-528))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-528)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) (-1922 (*1 *1) (-5 *1 (-528))) (-1933 (*1 *1) (-5 *1 (-528))) (-1427 (*1 *1 *1) (-5 *1 (-528))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-528)))) (-1938 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-528)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-627 (-528))) (-5 *2 (-1152)) (-5 *1 (-528)))) (-2390 (*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-528))) (-5 *1 (-528))))) -(-13 (-1079 (-1134) (-1152) (-552) (-220) (-842)) (-600 (-1080)) (-10 -8 (-15 -3072 ((-52) $)) (-15 -3562 ($ (-1080))) (-15 -3780 ($ $ (-627 $))) (-15 -4218 ($ $ (-627 (-1152)) (-1152))) (-15 -3494 ($ $ (-627 (-1152)))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ (-552))) (-15 (-1922) ($) -3488) (-15 (-1933) ($) -3488) (-15 -1427 ($ $)) (-15 -1519 ((-1134) $)) (-15 -1938 ($ (-1134))) (-15 -1555 ((-1152) (-627 $))) (-15 -2390 ((-1152) (-1152) (-627 $))))) -((-3590 ((|#2| |#2|) 17)) (-3153 ((|#2| |#2|) 13)) (-3371 ((|#2| |#2| (-552) (-552)) 20)) (-1817 ((|#2| |#2|) 15))) -(((-529 |#1| |#2|) (-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) (-13 (-544) (-144)) (-1226 |#1|)) (T -529)) -((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1226 *4)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) -((-1289 (((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))) 32)) (-3101 (((-627 |#2|) (-931 |#1|) |#3|) 53) (((-627 |#2|) (-1148 |#1|) |#3|) 52)) (-2799 (((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|) 91))) -(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3101 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3101 ((-627 |#2|) (-931 |#1|) |#3|)) (-15 -2799 ((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|)) (-15 -1289 ((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))))) (-445) (-357) (-13 (-357) (-828))) (T -530)) -((-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1152))) (-4 *6 (-357)) (-5 *2 (-627 (-288 (-931 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-13 (-357) (-828))))) (-2799 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) (-4 *5 (-13 (-357) (-828))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) -(-10 -7 (-15 -3101 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3101 ((-627 |#2|) (-931 |#1|) |#3|)) (-15 -2799 ((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|)) (-15 -1289 ((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))))) -((-3226 ((|#2| |#2| |#1|) 17)) (-2955 ((|#2| (-627 |#2|)) 27)) (-1550 ((|#2| (-627 |#2|)) 46))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2955 (|#2| (-627 |#2|))) (-15 -1550 (|#2| (-627 |#2|))) (-15 -3226 (|#2| |#2| |#1|))) (-301) (-1211 |#1|) |#1| (-1 |#1| |#1| (-754))) (T -531)) -((-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-754))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1211 *3)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754))))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) -(-10 -7 (-15 -2955 (|#2| (-627 |#2|))) (-15 -1550 (|#2| (-627 |#2|))) (-15 -3226 (|#2| |#2| |#1|))) -((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))) 80) (((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|))) 169))) -(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|)))) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))))) (-830) (-776) (-13 (-301) (-144)) (-928 |#3| |#2| |#1|)) (T -532)) -((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *8 (-928 *7 *6 *5)) (-5 *2 (-412 (-1148 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1148 *8)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-928 *7 *6 *5))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|)))) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))))) -((-3590 ((|#4| |#4|) 74)) (-3153 ((|#4| |#4|) 70)) (-3371 ((|#4| |#4| (-552) (-552)) 76)) (-1817 ((|#4| |#4|) 72))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3153 (|#4| |#4|)) (-15 -1817 (|#4| |#4|)) (-15 -3590 (|#4| |#4|)) (-15 -3371 (|#4| |#4| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1211 |#1|) (-707 |#1| |#2|) (-1226 |#3|)) (T -533)) -((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-4 *5 (-1211 *4)) (-4 *6 (-707 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1226 *6)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5))))) -(-10 -7 (-15 -3153 (|#4| |#4|)) (-15 -1817 (|#4| |#4|)) (-15 -3590 (|#4| |#4|)) (-15 -3371 (|#4| |#4| (-552) (-552)))) -((-3590 ((|#2| |#2|) 27)) (-3153 ((|#2| |#2|) 23)) (-3371 ((|#2| |#2| (-552) (-552)) 29)) (-1817 ((|#2| |#2|) 25))) -(((-534 |#1| |#2|) (-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1226 |#1|)) (T -534)) -((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) -((-1831 (((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)) 14) (((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|)) 13) (((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|)) 26))) -(((-535 |#1| |#2|) (-10 -7 (-15 -1831 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) (-1028) (-1211 |#1|)) (T -535)) -((-1831 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) (-1831 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) (-1831 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1831 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) -((-2002 (($ $ $) 79)) (-2487 (((-412 $) $) 47)) (-4039 (((-3 (-552) "failed") $) 59)) (-1703 (((-552) $) 37)) (-2859 (((-3 (-401 (-552)) "failed") $) 74)) (-4229 (((-111) $) 24)) (-2411 (((-401 (-552)) $) 72)) (-1633 (((-111) $) 50)) (-3428 (($ $ $ $) 86)) (-2983 (((-111) $) 16)) (-1868 (($ $ $) 57)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 69)) (-4317 (((-3 $ "failed") $) 64)) (-4117 (($ $) 23)) (-3556 (($ $ $) 84)) (-3002 (($) 60)) (-2610 (($ $) 53)) (-1727 (((-412 $) $) 45)) (-1507 (((-111) $) 14)) (-2718 (((-754) $) 28)) (-2942 (($ $ (-754)) NIL) (($ $) 10)) (-2973 (($ $) 17)) (-3562 (((-552) $) NIL) (((-528) $) 36) (((-871 (-552)) $) 40) (((-373) $) 31) (((-220) $) 33)) (-3995 (((-754)) 8)) (-3240 (((-111) $ $) 20)) (-3697 (($ $ $) 55))) -(((-536 |#1|) (-10 -8 (-15 -3556 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2973 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2002 (|#1| |#1| |#1|)) (-15 -3240 ((-111) |#1| |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -3697 (|#1| |#1| |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -3562 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2983 ((-111) |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -3995 ((-754)))) (-537)) (T -536)) -((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-536 *3)) (-4 *3 (-537))))) -(-10 -8 (-15 -3556 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2973 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2002 (|#1| |#1| |#1|)) (-15 -3240 ((-111) |#1| |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -3697 (|#1| |#1| |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -3562 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2983 ((-111) |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -3995 ((-754)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-2002 (($ $ $) 82)) (-4136 (((-3 $ "failed") $ $) 19)) (-3633 (($ $ $ $) 71)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-4224 (((-111) $ $) 122)) (-2422 (((-552) $) 111)) (-1452 (($ $ $) 85)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 103)) (-1703 (((-552) $) 102)) (-2813 (($ $ $) 126)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 101) (((-671 (-552)) (-671 $)) 100)) (-2040 (((-3 $ "failed") $) 32)) (-2859 (((-3 (-401 (-552)) "failed") $) 79)) (-4229 (((-111) $) 81)) (-2411 (((-401 (-552)) $) 80)) (-1279 (($) 78) (($ $) 77)) (-2789 (($ $ $) 125)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 120)) (-1633 (((-111) $) 51)) (-3428 (($ $ $ $) 69)) (-3537 (($ $ $) 83)) (-2983 (((-111) $) 113)) (-1868 (($ $ $) 94)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 97)) (-2624 (((-111) $) 30)) (-1394 (((-111) $) 89)) (-4317 (((-3 $ "failed") $) 91)) (-1508 (((-111) $) 112)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 129)) (-1969 (($ $ $ $) 70)) (-1816 (($ $ $) 114)) (-4093 (($ $ $) 115)) (-4117 (($ $) 73)) (-3593 (($ $) 86)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-3556 (($ $ $) 68)) (-3002 (($) 90 T CONST)) (-3445 (($ $) 75)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2610 (($ $) 95)) (-1727 (((-412 $) $) 48)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 127)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 121)) (-1507 (((-111) $) 88)) (-2718 (((-754) $) 123)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 124)) (-2942 (($ $ (-754)) 108) (($ $) 106)) (-1313 (($ $) 74)) (-2973 (($ $) 76)) (-3562 (((-552) $) 105) (((-528) $) 99) (((-871 (-552)) $) 98) (((-373) $) 93) (((-220) $) 92)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 104)) (-3995 (((-754)) 28)) (-3240 (((-111) $ $) 84)) (-3697 (($ $ $) 96)) (-2705 (($) 87)) (-3778 (((-111) $ $) 37)) (-2166 (($ $ $ $) 72)) (-3329 (($ $) 110)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-754)) 109) (($ $) 107)) (-2351 (((-111) $ $) 117)) (-2329 (((-111) $ $) 118)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 116)) (-2316 (((-111) $ $) 119)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-2511 (((-1150 |#1|) (-756)) 76)) (-1549 (((-1237 |#1|) (-1237 |#1|) (-902)) 69)) (-3531 (((-1242) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) |#1|) 84)) (-1441 (((-1237 |#1|) (-1237 |#1|) (-756)) 36)) (-1332 (((-1237 |#1|) (-902)) 71)) (-2645 (((-1237 |#1|) (-1237 |#1|) (-552)) 24)) (-2291 (((-1150 |#1|) (-1237 |#1|)) 77)) (-2019 (((-1237 |#1|) (-902)) 95)) (-2092 (((-111) (-1237 |#1|)) 80)) (-4346 (((-1237 |#1|) (-1237 |#1|) (-902)) 62)) (-2169 (((-1150 |#1|) (-1237 |#1|)) 89)) (-1637 (((-902) (-1237 |#1|)) 59)) (-3701 (((-1237 |#1|) (-1237 |#1|)) 30)) (-2840 (((-1237 |#1|) (-902) (-902)) 97)) (-4140 (((-1237 |#1|) (-1237 |#1|) (-1098) (-1098)) 23)) (-3793 (((-1237 |#1|) (-1237 |#1|) (-756) (-1098)) 37)) (-4199 (((-1237 (-1237 |#1|)) (-902)) 94)) (-1720 (((-1237 |#1|) (-1237 |#1|) (-1237 |#1|)) 81)) (** (((-1237 |#1|) (-1237 |#1|) (-552)) 45)) (* (((-1237 |#1|) (-1237 |#1|) (-1237 |#1|)) 25))) +(((-520 |#1|) (-10 -7 (-15 -3531 ((-1242) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) |#1|)) (-15 -1332 ((-1237 |#1|) (-902))) (-15 -2840 ((-1237 |#1|) (-902) (-902))) (-15 -2291 ((-1150 |#1|) (-1237 |#1|))) (-15 -2511 ((-1150 |#1|) (-756))) (-15 -3793 ((-1237 |#1|) (-1237 |#1|) (-756) (-1098))) (-15 -1441 ((-1237 |#1|) (-1237 |#1|) (-756))) (-15 -4140 ((-1237 |#1|) (-1237 |#1|) (-1098) (-1098))) (-15 -2645 ((-1237 |#1|) (-1237 |#1|) (-552))) (-15 ** ((-1237 |#1|) (-1237 |#1|) (-552))) (-15 * ((-1237 |#1|) (-1237 |#1|) (-1237 |#1|))) (-15 -1720 ((-1237 |#1|) (-1237 |#1|) (-1237 |#1|))) (-15 -4346 ((-1237 |#1|) (-1237 |#1|) (-902))) (-15 -1549 ((-1237 |#1|) (-1237 |#1|) (-902))) (-15 -3701 ((-1237 |#1|) (-1237 |#1|))) (-15 -1637 ((-902) (-1237 |#1|))) (-15 -2092 ((-111) (-1237 |#1|))) (-15 -4199 ((-1237 (-1237 |#1|)) (-902))) (-15 -2019 ((-1237 |#1|) (-902))) (-15 -2169 ((-1150 |#1|) (-1237 |#1|)))) (-343)) (T -520)) +((-2169 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-1150 *4)) (-5 *1 (-520 *4)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1237 (-1237 *4))) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-520 *4)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-902)) (-5 *1 (-520 *4)))) (-3701 (*1 *2 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (-1549 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-902)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-4346 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-902)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-1720 (*1 *2 *2 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-4140 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1098)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-1441 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-3793 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1237 *5)) (-5 *3 (-756)) (-5 *4 (-1098)) (-4 *5 (-343)) (-5 *1 (-520 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1150 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-1150 *4)) (-5 *1 (-520 *4)))) (-2840 (*1 *2 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) (-4 *4 (-343)) (-5 *2 (-1242)) (-5 *1 (-520 *4))))) +(-10 -7 (-15 -3531 ((-1242) (-1237 (-629 (-2 (|:| -2925 |#1|) (|:| -2840 (-1098))))) |#1|)) (-15 -1332 ((-1237 |#1|) (-902))) (-15 -2840 ((-1237 |#1|) (-902) (-902))) (-15 -2291 ((-1150 |#1|) (-1237 |#1|))) (-15 -2511 ((-1150 |#1|) (-756))) (-15 -3793 ((-1237 |#1|) (-1237 |#1|) (-756) (-1098))) (-15 -1441 ((-1237 |#1|) (-1237 |#1|) (-756))) (-15 -4140 ((-1237 |#1|) (-1237 |#1|) (-1098) (-1098))) (-15 -2645 ((-1237 |#1|) (-1237 |#1|) (-552))) (-15 ** ((-1237 |#1|) (-1237 |#1|) (-552))) (-15 * ((-1237 |#1|) (-1237 |#1|) (-1237 |#1|))) (-15 -1720 ((-1237 |#1|) (-1237 |#1|) (-1237 |#1|))) (-15 -4346 ((-1237 |#1|) (-1237 |#1|) (-902))) (-15 -1549 ((-1237 |#1|) (-1237 |#1|) (-902))) (-15 -3701 ((-1237 |#1|) (-1237 |#1|))) (-15 -1637 ((-902) (-1237 |#1|))) (-15 -2092 ((-111) (-1237 |#1|))) (-15 -4199 ((-1237 (-1237 |#1|)) (-902))) (-15 -2019 ((-1237 |#1|) (-902))) (-15 -2169 ((-1150 |#1|) (-1237 |#1|)))) +((-2537 (((-1098) $ (-127)) NIL)) (-3042 (((-1098) $) 21)) (-2607 (((-1098) $ (-1098)) 25)) (-1456 (((-1098) $) 24)) (-1773 (((-111) $) 19)) (-1329 (($ (-382)) 12) (($ (-1136)) 14)) (-3673 (((-111) $) 22)) (-3213 (((-844) $) 28)) (-2469 (($ $) 23))) +(((-521) (-13 (-519) (-599 (-844)) (-10 -8 (-15 -1329 ($ (-382))) (-15 -1329 ($ (-1136))) (-15 -3673 ((-111) $)) (-15 -1773 ((-111) $)) (-15 -1456 ((-1098) $)) (-15 -2607 ((-1098) $ (-1098)))))) (T -521)) +((-1329 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-521)))) (-3673 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-521)))) (-2607 (*1 *2 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-521))))) +(-13 (-519) (-599 (-844)) (-10 -8 (-15 -1329 ($ (-382))) (-15 -1329 ($ (-1136))) (-15 -3673 ((-111) $)) (-15 -1773 ((-111) $)) (-15 -1456 ((-1098) $)) (-15 -2607 ((-1098) $ (-1098))))) +((-3911 (((-1 |#1| |#1|) |#1|) 11)) (-4336 (((-1 |#1| |#1|)) 10))) +(((-522 |#1|) (-10 -7 (-15 -4336 ((-1 |#1| |#1|))) (-15 -3911 ((-1 |#1| |#1|) |#1|))) (-13 (-711) (-25))) (T -522)) +((-3911 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-711) (-25))))) (-4336 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-711) (-25)))))) +(-10 -7 (-15 -4336 ((-1 |#1| |#1|))) (-15 -3911 ((-1 |#1| |#1|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3305 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-3590 (($ (-756) |#1|) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 (-756) (-756)) $) NIL)) (-3687 ((|#1| $) NIL)) (-3743 (((-756) $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20)) (-3297 (($) NIL T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL))) +(((-523 |#1|) (-13 (-778) (-501 (-756) |#1|)) (-832)) (T -523)) +NIL +(-13 (-778) (-501 (-756) |#1|)) +((-2553 (((-629 |#2|) (-1150 |#1|) |#3|) 83)) (-1922 (((-629 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#2|))))) (-673 |#1|) |#3| (-1 (-412 (-1150 |#1|)) (-1150 |#1|))) 100)) (-2365 (((-1150 |#1|) (-673 |#1|)) 95))) +(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -2365 ((-1150 |#1|) (-673 |#1|))) (-15 -2553 ((-629 |#2|) (-1150 |#1|) |#3|)) (-15 -1922 ((-629 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#2|))))) (-673 |#1|) |#3| (-1 (-412 (-1150 |#1|)) (-1150 |#1|))))) (-357) (-357) (-13 (-357) (-830))) (T -524)) +((-1922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *6)) (-5 *5 (-1 (-412 (-1150 *6)) (-1150 *6))) (-4 *6 (-357)) (-5 *2 (-629 (-2 (|:| |outval| *7) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 *7)))))) (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-830))))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *5)) (-4 *5 (-357)) (-5 *2 (-629 *6)) (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830))))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-673 *4)) (-4 *4 (-357)) (-5 *2 (-1150 *4)) (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-830)))))) +(-10 -7 (-15 -2365 ((-1150 |#1|) (-673 |#1|))) (-15 -2553 ((-629 |#2|) (-1150 |#1|) |#3|)) (-15 -1922 ((-629 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#2|))))) (-673 |#1|) |#3| (-1 (-412 (-1150 |#1|)) (-1150 |#1|))))) +((-3268 (((-1098) $ (-127)) 25)) (-2586 (((-1098) $ (-128)) 27)) (-2537 (((-1098) $ (-127)) 23)) (-3042 (((-1098) $) 24)) (-1729 (((-111) $) 17)) (-3904 (((-3 $ "failed") (-567) (-935)) 10) (((-3 $ "failed") (-483) (-935)) 13)) (-3213 (((-844) $) 35)) (-2469 (($ $) 22))) +(((-525) (-13 (-752 (-567)) (-599 (-844)) (-10 -8 (-15 -3904 ((-3 $ "failed") (-483) (-935)))))) (T -525)) +((-3904 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *3 (-935)) (-5 *1 (-525))))) +(-13 (-752 (-567)) (-599 (-844)) (-10 -8 (-15 -3904 ((-3 $ "failed") (-483) (-935))))) +((-1638 (((-825 (-552))) 12)) (-1648 (((-825 (-552))) 14)) (-4053 (((-818 (-552))) 9))) +(((-526) (-10 -7 (-15 -4053 ((-818 (-552)))) (-15 -1638 ((-825 (-552)))) (-15 -1648 ((-825 (-552)))))) (T -526)) +((-1648 (*1 *2) (-12 (-5 *2 (-825 (-552))) (-5 *1 (-526)))) (-1638 (*1 *2) (-12 (-5 *2 (-825 (-552))) (-5 *1 (-526)))) (-4053 (*1 *2) (-12 (-5 *2 (-818 (-552))) (-5 *1 (-526))))) +(-10 -7 (-15 -4053 ((-818 (-552)))) (-15 -1638 ((-825 (-552)))) (-15 -1648 ((-825 (-552))))) +((-3845 (((-528) (-1154)) 15)) (-4143 ((|#1| (-528)) 20))) +(((-527 |#1|) (-10 -7 (-15 -3845 ((-528) (-1154))) (-15 -4143 (|#1| (-528)))) (-1191)) (T -527)) +((-4143 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1191)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-528)) (-5 *1 (-527 *4)) (-4 *4 (-1191))))) +(-10 -7 (-15 -3845 ((-528) (-1154))) (-15 -4143 (|#1| (-528)))) +((-3202 (((-111) $ $) NIL)) (-3212 (((-1136) $) 47)) (-2288 (((-111) $) 43)) (-3542 (((-1154) $) 44)) (-1529 (((-111) $) 41)) (-3986 (((-1136) $) 42)) (-1482 (($ (-1136)) 48)) (-2679 (((-111) $) NIL)) (-2400 (((-111) $) NIL)) (-1320 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-2775 (($ $ (-629 (-1154))) 20)) (-4143 (((-52) $) 22)) (-3227 (((-111) $) NIL)) (-3563 (((-552) $) NIL)) (-2876 (((-1098) $) NIL)) (-2403 (($ $ (-629 (-1154)) (-1154)) 60)) (-3983 (((-111) $) NIL)) (-3396 (((-220) $) NIL)) (-1802 (($ $) 38)) (-1452 (((-844) $) NIL)) (-2771 (((-111) $ $) NIL)) (-2060 (($ $ (-552)) NIL) (($ $ (-629 (-552))) NIL)) (-3552 (((-629 $) $) 28)) (-4304 (((-1154) (-629 $)) 49)) (-1522 (($ (-629 $)) 56) (($ (-1136)) NIL) (($ (-1154)) 18) (($ (-552)) 8) (($ (-220)) 25) (($ (-844)) NIL) (((-1082) $) 11) (($ (-1082)) 12)) (-2872 (((-1154) (-1154) (-629 $)) 52)) (-3213 (((-844) $) 46)) (-2588 (($ $) 51)) (-2576 (($ $) 50)) (-3609 (($ $ (-629 $)) 57)) (-3171 (((-111) $) 27)) (-3297 (($) 9 T CONST)) (-3309 (($) 10 T CONST)) (-1613 (((-111) $ $) 61)) (-1720 (($ $ $) 66)) (-1698 (($ $ $) 62)) (** (($ $ (-756)) 65) (($ $ (-552)) 64)) (* (($ $ $) 63)) (-2657 (((-552) $) NIL))) +(((-528) (-13 (-1081 (-1136) (-1154) (-552) (-220) (-844)) (-600 (-1082)) (-10 -8 (-15 -4143 ((-52) $)) (-15 -1522 ($ (-1082))) (-15 -3609 ($ $ (-629 $))) (-15 -2403 ($ $ (-629 (-1154)) (-1154))) (-15 -2775 ($ $ (-629 (-1154)))) (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 -1720 ($ $ $)) (-15 ** ($ $ (-756))) (-15 ** ($ $ (-552))) (-15 0 ($) -3930) (-15 1 ($) -3930) (-15 -1802 ($ $)) (-15 -3212 ((-1136) $)) (-15 -1482 ($ (-1136))) (-15 -4304 ((-1154) (-629 $))) (-15 -2872 ((-1154) (-1154) (-629 $)))))) (T -528)) +((-4143 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-528)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-528))) (-5 *1 (-528)))) (-2403 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-1154)) (-5 *1 (-528)))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-528)))) (-1698 (*1 *1 *1 *1) (-5 *1 (-528))) (* (*1 *1 *1 *1) (-5 *1 (-528))) (-1720 (*1 *1 *1 *1) (-5 *1 (-528))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-528)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) (-3297 (*1 *1) (-5 *1 (-528))) (-3309 (*1 *1) (-5 *1 (-528))) (-1802 (*1 *1 *1) (-5 *1 (-528))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-528)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-528)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-629 (-528))) (-5 *2 (-1154)) (-5 *1 (-528)))) (-2872 (*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-528))) (-5 *1 (-528))))) +(-13 (-1081 (-1136) (-1154) (-552) (-220) (-844)) (-600 (-1082)) (-10 -8 (-15 -4143 ((-52) $)) (-15 -1522 ($ (-1082))) (-15 -3609 ($ $ (-629 $))) (-15 -2403 ($ $ (-629 (-1154)) (-1154))) (-15 -2775 ($ $ (-629 (-1154)))) (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 -1720 ($ $ $)) (-15 ** ($ $ (-756))) (-15 ** ($ $ (-552))) (-15 (-3297) ($) -3930) (-15 (-3309) ($) -3930) (-15 -1802 ($ $)) (-15 -3212 ((-1136) $)) (-15 -1482 ($ (-1136))) (-15 -4304 ((-1154) (-629 $))) (-15 -2872 ((-1154) (-1154) (-629 $))))) +((-2247 ((|#2| |#2|) 17)) (-2407 ((|#2| |#2|) 13)) (-1948 ((|#2| |#2| (-552) (-552)) 20)) (-2879 ((|#2| |#2|) 15))) +(((-529 |#1| |#2|) (-10 -7 (-15 -2407 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -1948 (|#2| |#2| (-552) (-552)))) (-13 (-544) (-144)) (-1228 |#1|)) (T -529)) +((-1948 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1228 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1228 *3)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1228 *3)))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1228 *3))))) +(-10 -7 (-15 -2407 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -1948 (|#2| |#2| (-552) (-552)))) +((-1431 (((-629 (-288 (-933 |#2|))) (-629 |#2|) (-629 (-1154))) 32)) (-3146 (((-629 |#2|) (-933 |#1|) |#3|) 53) (((-629 |#2|) (-1150 |#1|) |#3|) 52)) (-3337 (((-629 (-629 |#2|)) (-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154)) |#3|) 91))) +(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3146 ((-629 |#2|) (-1150 |#1|) |#3|)) (-15 -3146 ((-629 |#2|) (-933 |#1|) |#3|)) (-15 -3337 ((-629 (-629 |#2|)) (-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154)) |#3|)) (-15 -1431 ((-629 (-288 (-933 |#2|))) (-629 |#2|) (-629 (-1154))))) (-445) (-357) (-13 (-357) (-830))) (T -530)) +((-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-1154))) (-4 *6 (-357)) (-5 *2 (-629 (-288 (-933 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-13 (-357) (-830))))) (-3337 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) (-4 *6 (-445)) (-5 *2 (-629 (-629 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) (-4 *5 (-13 (-357) (-830))))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-933 *5)) (-4 *5 (-445)) (-5 *2 (-629 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830))))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *5)) (-4 *5 (-445)) (-5 *2 (-629 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830)))))) +(-10 -7 (-15 -3146 ((-629 |#2|) (-1150 |#1|) |#3|)) (-15 -3146 ((-629 |#2|) (-933 |#1|) |#3|)) (-15 -3337 ((-629 (-629 |#2|)) (-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154)) |#3|)) (-15 -1431 ((-629 (-288 (-933 |#2|))) (-629 |#2|) (-629 (-1154))))) +((-3098 ((|#2| |#2| |#1|) 17)) (-4178 ((|#2| (-629 |#2|)) 27)) (-2202 ((|#2| (-629 |#2|)) 46))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4178 (|#2| (-629 |#2|))) (-15 -2202 (|#2| (-629 |#2|))) (-15 -3098 (|#2| |#2| |#1|))) (-301) (-1213 |#1|) |#1| (-1 |#1| |#1| (-756))) (T -531)) +((-3098 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-756))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1213 *3)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-756))))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-756)))))) +(-10 -7 (-15 -4178 (|#2| (-629 |#2|))) (-15 -2202 (|#2| (-629 |#2|))) (-15 -3098 (|#2| |#2| |#1|))) +((-3479 (((-412 (-1150 |#4|)) (-1150 |#4|) (-1 (-412 (-1150 |#3|)) (-1150 |#3|))) 80) (((-412 |#4|) |#4| (-1 (-412 (-1150 |#3|)) (-1150 |#3|))) 169))) +(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4| (-1 (-412 (-1150 |#3|)) (-1150 |#3|)))) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|) (-1 (-412 (-1150 |#3|)) (-1150 |#3|))))) (-832) (-778) (-13 (-301) (-144)) (-930 |#3| |#2| |#1|)) (T -532)) +((-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1150 *7)) (-1150 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-832)) (-4 *6 (-778)) (-4 *8 (-930 *7 *6 *5)) (-5 *2 (-412 (-1150 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1150 *8)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1150 *7)) (-1150 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-832)) (-4 *6 (-778)) (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-930 *7 *6 *5))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4| (-1 (-412 (-1150 |#3|)) (-1150 |#3|)))) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|) (-1 (-412 (-1150 |#3|)) (-1150 |#3|))))) +((-2247 ((|#4| |#4|) 74)) (-2407 ((|#4| |#4|) 70)) (-1948 ((|#4| |#4| (-552) (-552)) 76)) (-2879 ((|#4| |#4|) 72))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2407 (|#4| |#4|)) (-15 -2879 (|#4| |#4|)) (-15 -2247 (|#4| |#4|)) (-15 -1948 (|#4| |#4| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1213 |#1|) (-709 |#1| |#2|) (-1228 |#3|)) (T -533)) +((-1948 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-4 *5 (-1213 *4)) (-4 *6 (-709 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1228 *6)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5)))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5))))) +(-10 -7 (-15 -2407 (|#4| |#4|)) (-15 -2879 (|#4| |#4|)) (-15 -2247 (|#4| |#4|)) (-15 -1948 (|#4| |#4| (-552) (-552)))) +((-2247 ((|#2| |#2|) 27)) (-2407 ((|#2| |#2|) 23)) (-1948 ((|#2| |#2| (-552) (-552)) 29)) (-2879 ((|#2| |#2|) 25))) +(((-534 |#1| |#2|) (-10 -7 (-15 -2407 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -1948 (|#2| |#2| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1228 |#1|)) (T -534)) +((-1948 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1228 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1228 *3)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1228 *3)))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1228 *3))))) +(-10 -7 (-15 -2407 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -1948 (|#2| |#2| (-552) (-552)))) +((-3011 (((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)) 14) (((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|)) 13) (((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|)) 26))) +(((-535 |#1| |#2|) (-10 -7 (-15 -3011 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3011 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3011 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) (-1030) (-1213 |#1|)) (T -535)) +((-3011 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1213 *4)))) (-3011 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1213 *4)))) (-3011 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1030)) (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1213 *5))))) +(-10 -7 (-15 -3011 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3011 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3011 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) +((-4025 (($ $ $) 79)) (-3343 (((-412 $) $) 47)) (-1393 (((-3 (-552) "failed") $) 59)) (-2832 (((-552) $) 37)) (-2674 (((-3 (-401 (-552)) "failed") $) 74)) (-2443 (((-111) $) 24)) (-3777 (((-401 (-552)) $) 72)) (-1677 (((-111) $) 50)) (-1299 (($ $ $ $) 86)) (-1338 (((-111) $) 16)) (-2048 (($ $ $) 57)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 69)) (-2032 (((-3 $ "failed") $) 64)) (-3922 (($ $) 23)) (-3198 (($ $ $) 84)) (-1977 (($) 60)) (-2006 (($ $) 53)) (-3479 (((-412 $) $) 45)) (-3117 (((-111) $) 14)) (-3795 (((-756) $) 28)) (-3096 (($ $ (-756)) NIL) (($ $) 10)) (-1487 (($ $) 17)) (-1522 (((-552) $) NIL) (((-528) $) 36) (((-873 (-552)) $) 40) (((-373) $) 31) (((-220) $) 33)) (-2014 (((-756)) 8)) (-3246 (((-111) $ $) 20)) (-2075 (($ $ $) 55))) +(((-536 |#1|) (-10 -8 (-15 -3198 (|#1| |#1| |#1|)) (-15 -1299 (|#1| |#1| |#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -3117 ((-111) |#1|)) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2075 (|#1| |#1| |#1|)) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -1522 ((-552) |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1338 ((-111) |#1|)) (-15 -3795 ((-756) |#1|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -1677 ((-111) |#1|)) (-15 -2014 ((-756)))) (-537)) (T -536)) +((-2014 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-536 *3)) (-4 *3 (-537))))) +(-10 -8 (-15 -3198 (|#1| |#1| |#1|)) (-15 -1299 (|#1| |#1| |#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -3117 ((-111) |#1|)) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2075 (|#1| |#1| |#1|)) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -1522 ((-552) |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -1338 ((-111) |#1|)) (-15 -3795 ((-756) |#1|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -1677 ((-111) |#1|)) (-15 -2014 ((-756)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4025 (($ $ $) 82)) (-4012 (((-3 $ "failed") $ $) 19)) (-2704 (($ $ $ $) 71)) (-4116 (($ $) 49)) (-3343 (((-412 $) $) 50)) (-2393 (((-111) $ $) 122)) (-3886 (((-552) $) 111)) (-1603 (($ $ $) 85)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 103)) (-2832 (((-552) $) 102)) (-4006 (($ $ $) 126)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 101) (((-673 (-552)) (-673 $)) 100)) (-1293 (((-3 $ "failed") $) 32)) (-2674 (((-3 (-401 (-552)) "failed") $) 79)) (-2443 (((-111) $) 81)) (-3777 (((-401 (-552)) $) 80)) (-1332 (($) 78) (($ $) 77)) (-3987 (($ $ $) 125)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 120)) (-1677 (((-111) $) 51)) (-1299 (($ $ $ $) 69)) (-2990 (($ $ $) 83)) (-1338 (((-111) $) 113)) (-2048 (($ $ $) 94)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 97)) (-4065 (((-111) $) 30)) (-3302 (((-111) $) 89)) (-2032 (((-3 $ "failed") $) 91)) (-3127 (((-111) $) 112)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 129)) (-1760 (($ $ $ $) 70)) (-1772 (($ $ $) 114)) (-2011 (($ $ $) 115)) (-3922 (($ $) 73)) (-2556 (($ $) 86)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3198 (($ $ $) 68)) (-1977 (($) 90 T CONST)) (-3864 (($ $) 75)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-2006 (($ $) 95)) (-3479 (((-412 $) $) 48)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 127)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 121)) (-3117 (((-111) $) 88)) (-3795 (((-756) $) 123)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 124)) (-3096 (($ $ (-756)) 108) (($ $) 106)) (-2045 (($ $) 74)) (-1487 (($ $) 76)) (-1522 (((-552) $) 105) (((-528) $) 99) (((-873 (-552)) $) 98) (((-373) $) 93) (((-220) $) 92)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 104)) (-2014 (((-756)) 28)) (-3246 (((-111) $ $) 84)) (-2075 (($ $ $) 96)) (-4174 (($) 87)) (-3589 (((-111) $ $) 37)) (-3182 (($ $ $ $) 72)) (-1578 (($ $) 110)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-756)) 109) (($ $) 107)) (-1666 (((-111) $ $) 117)) (-1644 (((-111) $ $) 118)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 116)) (-1632 (((-111) $ $) 119)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-537) (-137)) (T -537)) -((-1394 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-2705 (*1 *1) (-4 *1 (-537))) (-3593 (*1 *1 *1) (-4 *1 (-537))) (-1452 (*1 *1 *1 *1) (-4 *1 (-537))) (-3240 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-3537 (*1 *1 *1 *1) (-4 *1 (-537))) (-2002 (*1 *1 *1 *1) (-4 *1 (-537))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-1279 (*1 *1) (-4 *1 (-537))) (-1279 (*1 *1 *1) (-4 *1 (-537))) (-2973 (*1 *1 *1) (-4 *1 (-537))) (-3445 (*1 *1 *1) (-4 *1 (-537))) (-1313 (*1 *1 *1) (-4 *1 (-537))) (-4117 (*1 *1 *1) (-4 *1 (-537))) (-2166 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3633 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-1969 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3428 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3556 (*1 *1 *1 *1) (-4 *1 (-537)))) -(-13 (-1193) (-301) (-803) (-228) (-600 (-552)) (-1017 (-552)) (-623 (-552)) (-600 (-528)) (-600 (-871 (-552))) (-865 (-552)) (-140) (-1001) (-144) (-1127) (-10 -8 (-15 -1394 ((-111) $)) (-15 -1507 ((-111) $)) (-6 -4365) (-15 -2705 ($)) (-15 -3593 ($ $)) (-15 -1452 ($ $ $)) (-15 -3240 ((-111) $ $)) (-15 -3537 ($ $ $)) (-15 -2002 ($ $ $)) (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $)) (-15 -1279 ($)) (-15 -1279 ($ $)) (-15 -2973 ($ $)) (-15 -3445 ($ $)) (-15 -1313 ($ $)) (-15 -4117 ($ $)) (-15 -2166 ($ $ $ $)) (-15 -3633 ($ $ $ $)) (-15 -1969 ($ $ $ $)) (-15 -3428 ($ $ $ $)) (-15 -3556 ($ $ $)) (-6 -4364))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-140) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-528)) . T) ((-600 (-552)) . T) ((-600 (-871 (-552))) . T) ((-228) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-623 (-552)) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-803) . T) ((-828) . T) ((-830) . T) ((-865 (-552)) . T) ((-899) . T) ((-1001) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) . T) ((-1193) . T)) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-538 |#1| |#2| |#3|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366)))) (T -538)) -NIL -(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) -((-1643 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))) 51))) -(((-539 |#1| |#2|) (-10 -7 (-15 -1643 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))))) (-13 (-830) (-544)) (-13 (-27) (-424 |#1|))) (T -539)) -((-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1148 *3) (-1148 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-830) (-544))) (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) -(-10 -7 (-15 -1643 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))))) -((-1791 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-1446 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3283 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-540 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1791 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1446 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-830) (-544) (-1017 (-552))) (-13 (-27) (-424 |#1|)) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -540)) -((-1446 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-4 *7 (-1211 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) (-4 *2 (-336 *5 *6 *7)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8))))) -(-10 -7 (-15 -3283 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1791 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1446 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1923 (((-111) (-552) (-552)) 10)) (-3601 (((-552) (-552)) 7)) (-2180 (((-552) (-552) (-552)) 8))) -(((-541) (-10 -7 (-15 -3601 ((-552) (-552))) (-15 -2180 ((-552) (-552) (-552))) (-15 -1923 ((-111) (-552) (-552))))) (T -541)) -((-1923 (*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541)))) (-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) -(-10 -7 (-15 -3601 ((-552) (-552))) (-15 -2180 ((-552) (-552) (-552))) (-15 -1923 ((-111) (-552) (-552)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2359 ((|#1| $) 59)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1607 (($ $) 89)) (-1467 (($ $) 72)) (-2796 ((|#1| $) 60)) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 71)) (-1584 (($ $) 88)) (-1445 (($ $) 73)) (-1628 (($ $) 87)) (-1492 (($ $) 74)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 67)) (-1703 (((-552) $) 66)) (-2040 (((-3 $ "failed") $) 32)) (-3891 (($ |#1| |#1|) 64)) (-2983 (((-111) $) 58)) (-2951 (($) 99)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 70)) (-1508 (((-111) $) 57)) (-1816 (($ $ $) 105)) (-4093 (($ $ $) 104)) (-4135 (($ $) 96)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-2712 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-401 (-552))) 62)) (-4191 ((|#1| $) 61)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-3154 (($ $) 97)) (-1640 (($ $) 86)) (-1502 (($ $) 75)) (-1615 (($ $) 85)) (-1479 (($ $) 76)) (-1596 (($ $) 84)) (-1456 (($ $) 77)) (-2584 (((-111) $ |#1|) 56)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 68)) (-3995 (((-754)) 28)) (-1673 (($ $) 95)) (-1534 (($ $) 83)) (-3778 (((-111) $ $) 37)) (-1652 (($ $) 94)) (-1513 (($ $) 82)) (-1697 (($ $) 93)) (-1561 (($ $) 81)) (-3519 (($ $) 92)) (-1575 (($ $) 80)) (-1686 (($ $) 91)) (-1547 (($ $) 79)) (-1661 (($ $) 90)) (-1524 (($ $) 78)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 102)) (-2329 (((-111) $ $) 101)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 103)) (-2316 (((-111) $ $) 100)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ $) 98) (($ $ (-401 (-552))) 69)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-542 |#1|) (-137) (-13 (-398) (-1174))) (T -542)) -((-2712 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-3891 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2712 (*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) (-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111))))) -(-13 (-445) (-830) (-1174) (-981) (-1017 (-552)) (-10 -8 (-6 -3030) (-15 -2712 ($ |t#1| |t#1|)) (-15 -3891 ($ |t#1| |t#1|)) (-15 -2712 ($ |t#1|)) (-15 -2712 ($ (-401 (-552)))) (-15 -4191 (|t#1| $)) (-15 -2796 (|t#1| $)) (-15 -2359 (|t#1| $)) (-15 -2983 ((-111) $)) (-15 -1508 ((-111) $)) (-15 -2584 ((-111) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-278) . T) ((-284) . T) ((-445) . T) ((-485) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-981) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) . T) ((-1177) . T)) -((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 9)) (-3245 (($ $) 11)) (-4058 (((-111) $) 18)) (-2040 (((-3 $ "failed") $) 16)) (-3778 (((-111) $ $) 20))) -(((-543 |#1|) (-10 -8 (-15 -4058 ((-111) |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) (-544)) (T -543)) -NIL -(-10 -8 (-15 -4058 ((-111) |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +((-3302 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-4174 (*1 *1) (-4 *1 (-537))) (-2556 (*1 *1 *1) (-4 *1 (-537))) (-1603 (*1 *1 *1 *1) (-4 *1 (-537))) (-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-2990 (*1 *1 *1 *1) (-4 *1 (-537))) (-4025 (*1 *1 *1 *1) (-4 *1 (-537))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-2674 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-1332 (*1 *1) (-4 *1 (-537))) (-1332 (*1 *1 *1) (-4 *1 (-537))) (-1487 (*1 *1 *1) (-4 *1 (-537))) (-3864 (*1 *1 *1) (-4 *1 (-537))) (-2045 (*1 *1 *1) (-4 *1 (-537))) (-3922 (*1 *1 *1) (-4 *1 (-537))) (-3182 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2704 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-1760 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-1299 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3198 (*1 *1 *1 *1) (-4 *1 (-537)))) +(-13 (-1195) (-301) (-805) (-228) (-600 (-552)) (-1019 (-552)) (-625 (-552)) (-600 (-528)) (-600 (-873 (-552))) (-867 (-552)) (-140) (-1003) (-144) (-1129) (-10 -8 (-15 -3302 ((-111) $)) (-15 -3117 ((-111) $)) (-6 -4367) (-15 -4174 ($)) (-15 -2556 ($ $)) (-15 -1603 ($ $ $)) (-15 -3246 ((-111) $ $)) (-15 -2990 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $)) (-15 -1332 ($)) (-15 -1332 ($ $)) (-15 -1487 ($ $)) (-15 -3864 ($ $)) (-15 -2045 ($ $)) (-15 -3922 ($ $)) (-15 -3182 ($ $ $ $)) (-15 -2704 ($ $ $ $)) (-15 -1760 ($ $ $ $)) (-15 -1299 ($ $ $ $)) (-15 -3198 ($ $ $)) (-6 -4366))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-844)) . T) ((-140) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-528)) . T) ((-600 (-552)) . T) ((-600 (-873 (-552))) . T) ((-228) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-625 (-552)) . T) ((-702 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-805) . T) ((-830) . T) ((-832) . T) ((-867 (-552)) . T) ((-901) . T) ((-1003) . T) ((-1019 (-552)) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) . T) ((-1195) . T)) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) NIL)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) NIL)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-538 |#1| |#2| |#3|) (-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) (-1078) (-1078) (-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368)))) (T -538)) +NIL +(-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) +((-1778 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1150 |#2|) (-1150 |#2|))) 51))) +(((-539 |#1| |#2|) (-10 -7 (-15 -1778 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1150 |#2|) (-1150 |#2|))))) (-13 (-832) (-544)) (-13 (-27) (-424 |#1|))) (T -539)) +((-1778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1150 *3) (-1150 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-832) (-544))) (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) +(-10 -7 (-15 -1778 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1150 |#2|) (-1150 |#2|))))) +((-3834 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3781 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2412 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-540 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2412 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3834 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3781 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-832) (-544) (-1019 (-552))) (-13 (-27) (-424 |#1|)) (-1213 |#2|) (-1213 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -540)) +((-3781 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-4 *7 (-1213 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) (-4 *2 (-336 *5 *6 *7)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1213 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) (-4 *8 (-1213 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1213 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) (-4 *8 (-1213 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8))))) +(-10 -7 (-15 -2412 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3834 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3781 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2629 (((-111) (-552) (-552)) 10)) (-2354 (((-552) (-552)) 7)) (-3335 (((-552) (-552) (-552)) 8))) +(((-541) (-10 -7 (-15 -2354 ((-552) (-552))) (-15 -3335 ((-552) (-552) (-552))) (-15 -2629 ((-111) (-552) (-552))))) (T -541)) +((-2629 (*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541)))) (-3335 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(-10 -7 (-15 -2354 ((-552) (-552))) (-15 -3335 ((-552) (-552) (-552))) (-15 -2629 ((-111) (-552) (-552)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4054 ((|#1| $) 59)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-2478 (($ $) 89)) (-2332 (($ $) 72)) (-3305 ((|#1| $) 60)) (-4012 (((-3 $ "failed") $ $) 19)) (-3489 (($ $) 71)) (-2455 (($ $) 88)) (-2305 (($ $) 73)) (-2506 (($ $) 87)) (-2359 (($ $) 74)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 67)) (-2832 (((-552) $) 66)) (-1293 (((-3 $ "failed") $) 32)) (-2176 (($ |#1| |#1|) 64)) (-1338 (((-111) $) 58)) (-4043 (($) 99)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 70)) (-3127 (((-111) $) 57)) (-1772 (($ $ $) 105)) (-2011 (($ $ $) 104)) (-2430 (($ $) 96)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3741 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-401 (-552))) 62)) (-3341 ((|#1| $) 61)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3969 (((-3 $ "failed") $ $) 40)) (-2855 (($ $) 97)) (-2518 (($ $) 86)) (-2370 (($ $) 75)) (-2492 (($ $) 85)) (-2346 (($ $) 76)) (-2467 (($ $) 84)) (-2318 (($ $) 77)) (-1738 (((-111) $ |#1|) 56)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 68)) (-2014 (((-756)) 28)) (-3843 (($ $) 95)) (-2409 (($ $) 83)) (-3589 (((-111) $ $) 37)) (-2530 (($ $) 94)) (-2382 (($ $) 82)) (-3863 (($ $) 93)) (-2433 (($ $) 81)) (-3013 (($ $) 92)) (-2444 (($ $) 80)) (-3853 (($ $) 91)) (-2420 (($ $) 79)) (-2543 (($ $) 90)) (-2395 (($ $) 78)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 102)) (-1644 (((-111) $ $) 101)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 103)) (-1632 (((-111) $ $) 100)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ $) 98) (($ $ (-401 (-552))) 69)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-542 |#1|) (-137) (-13 (-398) (-1176))) (T -542)) +((-3741 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-2176 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-3741 (*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111)))) (-1738 (*1 *2 *1 *3) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111))))) +(-13 (-445) (-832) (-1176) (-983) (-1019 (-552)) (-10 -8 (-6 -4311) (-15 -3741 ($ |t#1| |t#1|)) (-15 -2176 ($ |t#1| |t#1|)) (-15 -3741 ($ |t#1|)) (-15 -3741 ($ (-401 (-552)))) (-15 -3341 (|t#1| $)) (-15 -3305 (|t#1| $)) (-15 -4054 (|t#1| $)) (-15 -1338 ((-111) $)) (-15 -3127 ((-111) $)) (-15 -1738 ((-111) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-278) . T) ((-284) . T) ((-445) . T) ((-485) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-832) . T) ((-983) . T) ((-1019 (-552)) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) . T) ((-1179) . T)) +((-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 9)) (-3303 (($ $) 11)) (-1334 (((-111) $) 18)) (-1293 (((-3 $ "failed") $) 16)) (-3589 (((-111) $ $) 20))) +(((-543 |#1|) (-10 -8 (-15 -1334 ((-111) |#1|)) (-15 -3589 ((-111) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|))) (-544)) (T -543)) +NIL +(-10 -8 (-15 -1334 ((-111) |#1|)) (-15 -3589 ((-111) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -2245 ((-2 (|:| -3784 |#1|) (|:| -4355 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ $) 40)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-544) (-137)) (T -544)) -((-2761 (*1 *1 *1 *1) (|partial| -4 *1 (-544))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2717 *1) (|:| -4353 *1) (|:| |associate| *1))) (-4 *1 (-544)))) (-3245 (*1 *1 *1) (-4 *1 (-544))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) -(-13 (-169) (-38 $) (-284) (-10 -8 (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1887 ((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $)) (-15 -3245 ($ $)) (-15 -3778 ((-111) $ $)) (-15 -4058 ((-111) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3357 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|)) 37)) (-1335 (((-573 |#2|) |#2| (-1152)) 62)) (-1740 (((-3 |#2| "failed") |#2| (-1152)) 152)) (-3922 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))) 155)) (-3599 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|) 40))) -(((-545 |#1| |#2|) (-10 -7 (-15 -3599 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|)) (-15 -3357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|))) (-15 -1740 ((-3 |#2| "failed") |#2| (-1152))) (-15 -1335 ((-573 |#2|) |#2| (-1152))) (-15 -3922 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -545)) -((-3922 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1152)) (-5 *6 (-627 (-598 *3))) (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *7 *3)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1740 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3357 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *6 *3)))) (-3599 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) -(-10 -7 (-15 -3599 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|)) (-15 -3357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|))) (-15 -1740 ((-3 |#2| "failed") |#2| (-1152))) (-15 -1335 ((-573 |#2|) |#2| (-1152))) (-15 -3922 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))))) -((-2487 (((-412 |#1|) |#1|) 18)) (-1727 (((-412 |#1|) |#1|) 33)) (-2021 (((-3 |#1| "failed") |#1|) 44)) (-2299 (((-412 |#1|) |#1|) 51))) -(((-546 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -2299 ((-412 |#1|) |#1|)) (-15 -2021 ((-3 |#1| "failed") |#1|))) (-537)) (T -546)) -((-2021 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))) (-2299 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-2487 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -2299 ((-412 |#1|) |#1|)) (-15 -2021 ((-3 |#1| "failed") |#1|))) -((-3555 (($) 9)) (-3431 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 35)) (-1296 (((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 32)) (-3954 (($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3666 (($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2162 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-2083 (((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3269 (((-1240)) 12))) -(((-547) (-10 -8 (-15 -3555 ($)) (-15 -3269 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3666 ($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3431 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2083 ((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2162 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -547)) -((-2162 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-3431 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-547)))) (-3269 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-547)))) (-3555 (*1 *1) (-5 *1 (-547)))) -(-10 -8 (-15 -3555 ($)) (-15 -3269 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3666 ($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3431 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2083 ((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2162 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-1694 (((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|)) 32)) (-1585 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|)) 110)) (-3296 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 80) (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|)) 52)) (-1833 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|))) 87) (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|)) 109)) (-2786 (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|)) 111)) (-2225 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 128 (|has| |#3| (-638 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|)) 127 (|has| |#3| (-638 |#2|)))) (-1842 ((|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|) 50)) (-2079 (((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|)) 31))) -(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1694 ((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|))) (-15 -1842 (|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|)) (-15 -2079 ((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552))) (-13 (-424 |#1|) (-27) (-1174)) (-1076)) (T -548)) -((-2225 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1148 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-2225 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1148 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-1148 (-401 (-1148 *6)))) (-5 *1 (-548 *5 *6 *7)) (-5 *3 (-1148 *6)) (-4 *7 (-1076)))) (-1842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1148 (-401 (-1148 *2)))) (-5 *4 (-598 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1076)))) (-1694 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-1148 (-401 (-1148 *3)))) (-5 *1 (-548 *6 *3 *7)) (-5 *5 (-1148 *3)) (-4 *7 (-1076)))) (-2786 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-401 (-1148 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) (-2786 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-1148 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) (-1585 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) (-1585 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-1148 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) (-1833 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-1833 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-3296 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-3296 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) -(-10 -7 (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1694 ((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|))) (-15 -1842 (|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|)) (-15 -2079 ((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))))) |%noBranch|)) -((-3182 (((-552) (-552) (-754)) 66)) (-2347 (((-552) (-552)) 65)) (-3860 (((-552) (-552)) 64)) (-4106 (((-552) (-552)) 69)) (-2529 (((-552) (-552) (-552)) 49)) (-1827 (((-552) (-552) (-552)) 46)) (-3450 (((-401 (-552)) (-552)) 20)) (-3837 (((-552) (-552)) 21)) (-4121 (((-552) (-552)) 58)) (-1990 (((-552) (-552)) 32)) (-2622 (((-627 (-552)) (-552)) 63)) (-3098 (((-552) (-552) (-552) (-552) (-552)) 44)) (-3559 (((-401 (-552)) (-552)) 41))) -(((-549) (-10 -7 (-15 -3559 ((-401 (-552)) (-552))) (-15 -3098 ((-552) (-552) (-552) (-552) (-552))) (-15 -2622 ((-627 (-552)) (-552))) (-15 -1990 ((-552) (-552))) (-15 -4121 ((-552) (-552))) (-15 -3837 ((-552) (-552))) (-15 -3450 ((-401 (-552)) (-552))) (-15 -1827 ((-552) (-552) (-552))) (-15 -2529 ((-552) (-552) (-552))) (-15 -4106 ((-552) (-552))) (-15 -3860 ((-552) (-552))) (-15 -2347 ((-552) (-552))) (-15 -3182 ((-552) (-552) (-754))))) (T -549)) -((-3182 (*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-754)) (-5 *1 (-549)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2529 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-1827 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3098 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) -(-10 -7 (-15 -3559 ((-401 (-552)) (-552))) (-15 -3098 ((-552) (-552) (-552) (-552) (-552))) (-15 -2622 ((-627 (-552)) (-552))) (-15 -1990 ((-552) (-552))) (-15 -4121 ((-552) (-552))) (-15 -3837 ((-552) (-552))) (-15 -3450 ((-401 (-552)) (-552))) (-15 -1827 ((-552) (-552) (-552))) (-15 -2529 ((-552) (-552) (-552))) (-15 -4106 ((-552) (-552))) (-15 -3860 ((-552) (-552))) (-15 -2347 ((-552) (-552))) (-15 -3182 ((-552) (-552) (-754)))) -((-1644 (((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1644 ((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -550)) -((-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3874 *3))) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7))))) -(-10 -7 (-15 -1644 ((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1644 (((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 18))) -(((-551 |#1| |#2|) (-10 -7 (-15 -1644 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -551)) -((-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| (-401 *6)) (|:| -3874 (-401 *6)) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -1644 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 25)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 88)) (-3245 (($ $) 89)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) 43)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) 82)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) 81)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 62) (((-671 (-552)) (-671 $)) 58)) (-2040 (((-3 $ "failed") $) 85)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) 64) (($ $) 65)) (-2789 (($ $ $) 80)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) 55)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) 26)) (-1394 (((-111) $) 75)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) 35)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) 44)) (-1816 (($ $ $) 77)) (-4093 (($ $ $) 76)) (-4117 (($ $) NIL)) (-3593 (($ $) 41)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) 54)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) 31)) (-1498 (((-1096) $) 34)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 119)) (-1323 (($ $ $) 86) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) 105)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 84)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 79)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) 32)) (-2973 (($ $) 30)) (-3562 (((-552) $) 40) (((-528) $) 52) (((-871 (-552)) $) NIL) (((-373) $) 47) (((-220) $) 49) (((-1134) $) 53)) (-1477 (((-842) $) 38) (($ (-552)) 39) (($ $) NIL) (($ (-552)) 39)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) 29)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) 42)) (-3329 (($ $) 63)) (-1922 (($) 27 T CONST)) (-1933 (($) 28 T CONST)) (-4157 (((-1134) $) 20) (((-1134) $ (-111)) 22) (((-1240) (-805) $) 23) (((-1240) (-805) $ (-111)) 24)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 66)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 67)) (-2396 (($ $) 68) (($ $ $) 70)) (-2384 (($ $ $) 69)) (** (($ $ (-900)) NIL) (($ $ (-754)) 74)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 72) (($ $ $) 71))) -(((-552) (-13 (-537) (-600 (-1134)) (-811) (-10 -8 (-15 -1279 ($ $)) (-6 -4353) (-6 -4358) (-6 -4354) (-6 -4348)))) (T -552)) -((-1279 (*1 *1 *1) (-5 *1 (-552)))) -(-13 (-537) (-600 (-1134)) (-811) (-10 -8 (-15 -1279 ($ $)) (-6 -4353) (-6 -4358) (-6 -4354) (-6 -4348))) -((-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040)) 108) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752)) 110)) (-2747 (((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152)) 172) (((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134)) 171) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040)) 176) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373)) 177) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373)) 178) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373))))) 179) (((-1014) (-310 (-373)) (-1070 (-823 (-373)))) 167) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373)) 166) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373)) 162) (((-1014) (-752)) 155) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040)) 161))) -(((-553) (-10 -7 (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040))) (-15 -2747 ((-1014) (-752))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152))))) (T -553)) -((-2747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) (-5 *5 (-1152)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) (-5 *5 (-1134)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *1 (-553)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553))))) -(-10 -7 (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040))) (-15 -2747 ((-1014) (-752))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152)))) -((-3531 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|)) 184)) (-1306 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|)) 98)) (-1924 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|) 180)) (-3399 (((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152))) 189)) (-2042 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152)) 197 (|has| |#3| (-638 |#2|))))) -(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1306 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -1924 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -3531 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|))) (-15 -3399 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2042 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552))) (-13 (-424 |#1|) (-27) (-1174)) (-1076)) (T -554)) -((-2042 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1152)) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-3399 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-4 *2 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1076)))) (-3531 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1076)))) (-1924 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076)))) (-1306 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) -(-10 -7 (-15 -1306 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -1924 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -3531 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|))) (-15 -3399 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2042 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152))) |%noBranch|)) -((-3766 (((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152)) 64)) (-4217 (((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|)) 164 (-12 (|has| |#2| (-1115)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)) 147 (-12 (|has| |#2| (-613)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552)))))) (-2389 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)) 148 (-12 (|has| |#2| (-613)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552))))))) -(((-555 |#1| |#2|) (-10 -7 (-15 -3766 ((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (PROGN (IF (|has| |#2| (-613)) (PROGN (-15 -2389 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) (IF (|has| |#2| (-1115)) (-15 -4217 ((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-830) (-1017 (-552)) (-445) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -555)) -((-4217 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1152)) (-5 *4 (-823 *2)) (-4 *2 (-1115)) (-4 *2 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *1 (-555 *5 *2)))) (-4217 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-2389 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| -3767 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) -(-10 -7 (-15 -3766 ((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (PROGN (IF (|has| |#2| (-613)) (PROGN (-15 -2389 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) (IF (|has| |#2| (-1115)) (-15 -4217 ((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3997 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))) 41)) (-2747 (((-573 (-401 |#2|)) (-401 |#2|)) 28)) (-2847 (((-3 (-401 |#2|) "failed") (-401 |#2|)) 17)) (-2447 (((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|)) 48))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2747 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2847 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2447 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3997 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -556)) -((-3997 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-627 (-401 *6))) (-5 *3 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2447 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3446 (-401 *5)) (|:| |coeff| (-401 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5)))) (-2847 (*1 *2 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144) (-1017 (-552)))) (-5 *1 (-556 *3 *4)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-573 (-401 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) -(-10 -7 (-15 -2747 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2847 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2447 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3997 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))))) -((-3706 (((-3 (-552) "failed") |#1|) 14)) (-2170 (((-111) |#1|) 13)) (-2933 (((-552) |#1|) 9))) -(((-557 |#1|) (-10 -7 (-15 -2933 ((-552) |#1|)) (-15 -2170 ((-111) |#1|)) (-15 -3706 ((-3 (-552) "failed") |#1|))) (-1017 (-552))) (T -557)) -((-3706 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2)))) (-2170 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1017 (-552))))) (-2933 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2))))) -(-10 -7 (-15 -2933 ((-552) |#1|)) (-15 -2170 ((-111) |#1|)) (-15 -3706 ((-3 (-552) "failed") |#1|))) -((-3464 (((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|)))) 48)) (-3394 (((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152)) 28)) (-3806 (((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152)) 23)) (-2109 (((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))) 35))) -(((-558 |#1|) (-10 -7 (-15 -3394 ((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3806 ((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152))) (-15 -3464 ((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|))))) (-15 -2109 ((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))))) (-13 (-544) (-1017 (-552)) (-144))) (T -558)) -((-2109 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-2 (|:| -3446 (-401 (-931 *5))) (|:| |coeff| (-401 (-931 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5))))) (-3464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 (-401 (-931 *6)))) (-5 *3 (-401 (-931 *6))) (-4 *6 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-3806 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-1017 (-552)) (-144))) (-5 *1 (-558 *4)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-573 (-401 (-931 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5)))))) -(-10 -7 (-15 -3394 ((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3806 ((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152))) (-15 -3464 ((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|))))) (-15 -2109 ((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))))) -((-1465 (((-111) $ $) 58)) (-3024 (((-111) $) 36)) (-2359 ((|#1| $) 30)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) 62)) (-1607 (($ $) 122)) (-1467 (($ $) 102)) (-2796 ((|#1| $) 28)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL)) (-1584 (($ $) 124)) (-1445 (($ $) 98)) (-1628 (($ $) 126)) (-1492 (($ $) 106)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 77)) (-1703 (((-552) $) 79)) (-2040 (((-3 $ "failed") $) 61)) (-3891 (($ |#1| |#1|) 26)) (-2983 (((-111) $) 33)) (-2951 (($) 88)) (-2624 (((-111) $) 43)) (-1352 (($ $ (-552)) NIL)) (-1508 (((-111) $) 34)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4135 (($ $) 90)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-2712 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-401 (-552))) 76)) (-4191 ((|#1| $) 27)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) 64) (($ (-627 $)) NIL)) (-2761 (((-3 $ "failed") $ $) 63)) (-3154 (($ $) 92)) (-1640 (($ $) 130)) (-1502 (($ $) 104)) (-1615 (($ $) 132)) (-1479 (($ $) 108)) (-1596 (($ $) 128)) (-1456 (($ $) 100)) (-2584 (((-111) $ |#1|) 31)) (-1477 (((-842) $) 84) (($ (-552)) 66) (($ $) NIL) (($ (-552)) 66)) (-3995 (((-754)) 86)) (-1673 (($ $) 144)) (-1534 (($ $) 114)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 142)) (-1513 (($ $) 110)) (-1697 (($ $) 140)) (-1561 (($ $) 120)) (-3519 (($ $) 138)) (-1575 (($ $) 118)) (-1686 (($ $) 136)) (-1547 (($ $) 116)) (-1661 (($ $) 134)) (-1524 (($ $) 112)) (-1922 (($) 21 T CONST)) (-1933 (($) 10 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 37)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35)) (-2396 (($ $) 41) (($ $ $) 42)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) 54) (($ $ (-754)) NIL) (($ $ $) 94) (($ $ (-401 (-552))) 146)) (* (($ (-900) $) 51) (($ (-754) $) NIL) (($ (-552) $) 50) (($ $ $) 48))) -(((-559 |#1|) (-542 |#1|) (-13 (-398) (-1174))) (T -559)) +((-3969 (*1 *1 *1 *1) (|partial| -4 *1 (-544))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3784 *1) (|:| -4355 *1) (|:| |associate| *1))) (-4 *1 (-544)))) (-3303 (*1 *1 *1) (-4 *1 (-544))) (-3589 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) +(-13 (-169) (-38 $) (-284) (-10 -8 (-15 -3969 ((-3 $ "failed") $ $)) (-15 -2245 ((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $)) (-15 -3303 ($ $)) (-15 -3589 ((-111) $ $)) (-15 -1334 ((-111) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1829 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1154) (-629 |#2|)) 37)) (-2093 (((-573 |#2|) |#2| (-1154)) 62)) (-3383 (((-3 |#2| "failed") |#2| (-1154)) 152)) (-2512 (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) (-598 |#2|) (-629 (-598 |#2|))) 155)) (-2328 (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) |#2|) 40))) +(((-545 |#1| |#2|) (-10 -7 (-15 -2328 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) |#2|)) (-15 -1829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1154) (-629 |#2|))) (-15 -3383 ((-3 |#2| "failed") |#2| (-1154))) (-15 -2093 ((-573 |#2|) |#2| (-1154))) (-15 -2512 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) (-598 |#2|) (-629 (-598 |#2|))))) (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -545)) +((-2512 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1154)) (-5 *6 (-629 (-598 *3))) (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *7))) (-4 *7 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-545 *7 *3)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3383 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-1829 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *6 *3)))) (-2328 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(-10 -7 (-15 -2328 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) |#2|)) (-15 -1829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1154) (-629 |#2|))) (-15 -3383 ((-3 |#2| "failed") |#2| (-1154))) (-15 -2093 ((-573 |#2|) |#2| (-1154))) (-15 -2512 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1154) (-598 |#2|) (-629 (-598 |#2|))))) +((-3343 (((-412 |#1|) |#1|) 18)) (-3479 (((-412 |#1|) |#1|) 33)) (-4200 (((-3 |#1| "failed") |#1|) 44)) (-1982 (((-412 |#1|) |#1|) 51))) +(((-546 |#1|) (-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -1982 ((-412 |#1|) |#1|)) (-15 -4200 ((-3 |#1| "failed") |#1|))) (-537)) (T -546)) +((-4200 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-3343 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -1982 ((-412 |#1|) |#1|)) (-15 -4200 ((-3 |#1| "failed") |#1|))) +((-3187 (($) 9)) (-1967 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 35)) (-1376 (((-629 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 32)) (-1580 (($ (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1747 (($ (-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3360 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-3627 (((-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2241 (((-1242)) 12))) +(((-547) (-10 -8 (-15 -3187 ($)) (-15 -2241 ((-1242))) (-15 -1376 ((-629 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1747 ($ (-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1580 ($ (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1967 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3627 ((-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3360 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -547)) +((-3360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-1967 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-1580 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) (-1747 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-547)))) (-2241 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-547)))) (-3187 (*1 *1) (-5 *1 (-547)))) +(-10 -8 (-15 -3187 ($)) (-15 -2241 ((-1242))) (-15 -1376 ((-629 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1747 ($ (-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1580 ($ (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1967 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3627 ((-629 (-2 (|:| -2670 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3360 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-3449 (((-1150 (-401 (-1150 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1150 |#2|)) 32)) (-2508 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) |#2| (-1150 |#2|)) 110)) (-2546 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|))) 80) (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|)) 52)) (-3024 (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1150 |#2|))) 87) (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1150 |#2|)) 109)) (-3217 (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) (-598 |#2|) |#2| (-401 (-1150 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) |#2| (-1150 |#2|)) 111)) (-2532 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|))) 128 (|has| |#3| (-640 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|)) 127 (|has| |#3| (-640 |#2|)))) (-3602 ((|#2| (-1150 (-401 (-1150 |#2|))) (-598 |#2|) |#2|) 50)) (-3874 (((-1150 (-401 (-1150 |#2|))) (-1150 |#2|) (-598 |#2|)) 31))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2546 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|))) (-15 -2546 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3024 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1150 |#2|))) (-15 -3024 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -2508 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) |#2| (-1150 |#2|))) (-15 -2508 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) |#2| (-1150 |#2|))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3449 ((-1150 (-401 (-1150 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1150 |#2|))) (-15 -3602 (|#2| (-1150 (-401 (-1150 |#2|))) (-598 |#2|) |#2|)) (-15 -3874 ((-1150 (-401 (-1150 |#2|))) (-1150 |#2|) (-598 |#2|))) (IF (|has| |#3| (-640 |#2|)) (PROGN (-15 -2532 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|))) (-15 -2532 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|))))) |%noBranch|)) (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552))) (-13 (-424 |#1|) (-27) (-1176)) (-1078)) (T -548)) +((-2532 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1150 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1176))) (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078)))) (-2532 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1150 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1176))) (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1176))) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-1150 (-401 (-1150 *6)))) (-5 *1 (-548 *5 *6 *7)) (-5 *3 (-1150 *6)) (-4 *7 (-1078)))) (-3602 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1150 (-401 (-1150 *2)))) (-5 *4 (-598 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1176))) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1078)))) (-3449 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-1150 (-401 (-1150 *3)))) (-5 *1 (-548 *6 *3 *7)) (-5 *5 (-1150 *3)) (-4 *7 (-1078)))) (-3217 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) (-5 *5 (-401 (-1150 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1078)))) (-3217 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) (-5 *5 (-1150 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1078)))) (-2508 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) (-5 *6 (-401 (-1150 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1176))) (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1078)))) (-2508 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) (-5 *6 (-1150 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1176))) (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1078)))) (-3024 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1150 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078)))) (-3024 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1150 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078)))) (-2546 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1150 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078)))) (-2546 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1150 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078))))) +(-10 -7 (-15 -2546 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|))) (-15 -2546 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3024 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1150 |#2|))) (-15 -3024 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -2508 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) |#2| (-1150 |#2|))) (-15 -2508 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) |#2| (-1150 |#2|))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)) (-598 |#2|) |#2| (-401 (-1150 |#2|)))) (-15 -3449 ((-1150 (-401 (-1150 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1150 |#2|))) (-15 -3602 (|#2| (-1150 (-401 (-1150 |#2|))) (-598 |#2|) |#2|)) (-15 -3874 ((-1150 (-401 (-1150 |#2|))) (-1150 |#2|) (-598 |#2|))) (IF (|has| |#3| (-640 |#2|)) (PROGN (-15 -2532 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1150 |#2|))) (-15 -2532 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1150 |#2|))))) |%noBranch|)) +((-2733 (((-552) (-552) (-756)) 66)) (-4326 (((-552) (-552)) 65)) (-3161 (((-552) (-552)) 64)) (-3758 (((-552) (-552)) 69)) (-2451 (((-552) (-552) (-552)) 49)) (-2969 (((-552) (-552) (-552)) 46)) (-3404 (((-401 (-552)) (-552)) 20)) (-2934 (((-552) (-552)) 21)) (-3877 (((-552) (-552)) 58)) (-1974 (((-552) (-552)) 32)) (-4044 (((-629 (-552)) (-552)) 63)) (-3116 (((-552) (-552) (-552) (-552) (-552)) 44)) (-3233 (((-401 (-552)) (-552)) 41))) +(((-549) (-10 -7 (-15 -3233 ((-401 (-552)) (-552))) (-15 -3116 ((-552) (-552) (-552) (-552) (-552))) (-15 -4044 ((-629 (-552)) (-552))) (-15 -1974 ((-552) (-552))) (-15 -3877 ((-552) (-552))) (-15 -2934 ((-552) (-552))) (-15 -3404 ((-401 (-552)) (-552))) (-15 -2969 ((-552) (-552) (-552))) (-15 -2451 ((-552) (-552) (-552))) (-15 -3758 ((-552) (-552))) (-15 -3161 ((-552) (-552))) (-15 -4326 ((-552) (-552))) (-15 -2733 ((-552) (-552) (-756))))) (T -549)) +((-2733 (*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-756)) (-5 *1 (-549)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2451 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2969 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3404 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-4044 (*1 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3116 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3233 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) +(-10 -7 (-15 -3233 ((-401 (-552)) (-552))) (-15 -3116 ((-552) (-552) (-552) (-552) (-552))) (-15 -4044 ((-629 (-552)) (-552))) (-15 -1974 ((-552) (-552))) (-15 -3877 ((-552) (-552))) (-15 -2934 ((-552) (-552))) (-15 -3404 ((-401 (-552)) (-552))) (-15 -2969 ((-552) (-552) (-552))) (-15 -2451 ((-552) (-552) (-552))) (-15 -3758 ((-552) (-552))) (-15 -3161 ((-552) (-552))) (-15 -4326 ((-552) (-552))) (-15 -2733 ((-552) (-552) (-756)))) +((-1790 (((-2 (|:| |answer| |#4|) (|:| -3318 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1790 ((-2 (|:| |answer| |#4|) (|:| -3318 |#4|)) |#4| (-1 |#2| |#2|)))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -550)) +((-1790 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-4 *7 (-1213 (-401 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3318 *3))) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7))))) +(-10 -7 (-15 -1790 ((-2 (|:| |answer| |#4|) (|:| -3318 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1790 (((-2 (|:| |answer| (-401 |#2|)) (|:| -3318 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 18))) +(((-551 |#1| |#2|) (-10 -7 (-15 -1790 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3318 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1213 |#1|)) (T -551)) +((-1790 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| (-401 *6)) (|:| -3318 (-401 *6)) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -1790 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3318 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 25)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 88)) (-3303 (($ $) 89)) (-1334 (((-111) $) NIL)) (-4025 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2704 (($ $ $ $) 43)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL)) (-1603 (($ $ $) 82)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL)) (-2832 (((-552) $) NIL)) (-4006 (($ $ $) 81)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 62) (((-673 (-552)) (-673 $)) 58)) (-1293 (((-3 $ "failed") $) 85)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL)) (-2443 (((-111) $) NIL)) (-3777 (((-401 (-552)) $) NIL)) (-1332 (($) 64) (($ $) 65)) (-3987 (($ $ $) 80)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1299 (($ $ $ $) NIL)) (-2990 (($ $ $) 55)) (-1338 (((-111) $) NIL)) (-2048 (($ $ $) NIL)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL)) (-4065 (((-111) $) 26)) (-3302 (((-111) $) 75)) (-2032 (((-3 $ "failed") $) NIL)) (-3127 (((-111) $) 35)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1760 (($ $ $ $) 44)) (-1772 (($ $ $) 77)) (-2011 (($ $ $) 76)) (-3922 (($ $) NIL)) (-2556 (($ $) 41)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) 54)) (-3198 (($ $ $) NIL)) (-1977 (($) NIL T CONST)) (-3864 (($ $) 31)) (-2876 (((-1098) $) 34)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 119)) (-2594 (($ $ $) 86) (($ (-629 $)) NIL)) (-2006 (($ $) NIL)) (-3479 (((-412 $) $) 105)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) 84)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 79)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-2045 (($ $) 32)) (-1487 (($ $) 30)) (-1522 (((-552) $) 40) (((-528) $) 52) (((-873 (-552)) $) NIL) (((-373) $) 47) (((-220) $) 49) (((-1136) $) 53)) (-3213 (((-844) $) 38) (($ (-552)) 39) (($ $) NIL) (($ (-552)) 39)) (-2014 (((-756)) NIL)) (-3246 (((-111) $ $) NIL)) (-2075 (($ $ $) NIL)) (-4174 (($) 29)) (-3589 (((-111) $ $) NIL)) (-3182 (($ $ $ $) 42)) (-1578 (($ $) 63)) (-3297 (($) 27 T CONST)) (-3309 (($) 28 T CONST)) (-3016 (((-1136) $) 20) (((-1136) $ (-111)) 22) (((-1242) (-807) $) 23) (((-1242) (-807) $ (-111)) 24)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 66)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 67)) (-1709 (($ $) 68) (($ $ $) 70)) (-1698 (($ $ $) 69)) (** (($ $ (-902)) NIL) (($ $ (-756)) 74)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 72) (($ $ $) 71))) +(((-552) (-13 (-537) (-600 (-1136)) (-813) (-10 -8 (-15 -1332 ($ $)) (-6 -4355) (-6 -4360) (-6 -4356) (-6 -4350)))) (T -552)) +((-1332 (*1 *1 *1) (-5 *1 (-552)))) +(-13 (-537) (-600 (-1136)) (-813) (-10 -8 (-15 -1332 ($ $)) (-6 -4355) (-6 -4360) (-6 -4356) (-6 -4350))) +((-3102 (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754) (-1042)) 108) (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754)) 110)) (-2889 (((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1154)) 172) (((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1136)) 171) (((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373) (-1042)) 176) (((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373)) 177) (((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373)) 178) (((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373))))) 179) (((-1016) (-310 (-373)) (-1072 (-825 (-373)))) 167) (((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373)) 166) (((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373)) 162) (((-1016) (-754)) 155) (((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373) (-1042)) 161))) +(((-553) (-10 -7 (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373) (-1042))) (-15 -2889 ((-1016) (-754))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373) (-1042))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754) (-1042))) (-15 -2889 ((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1136))) (-15 -2889 ((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1154))))) (T -553)) +((-2889 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-825 (-373)))) (-5 *5 (-1154)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-825 (-373)))) (-5 *5 (-1136)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-1042)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) (-5 *1 (-553)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) (-5 *5 (-373)) (-5 *6 (-1042)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1016)) (-5 *1 (-553)))) (-2889 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) (-5 *5 (-373)) (-5 *6 (-1042)) (-5 *2 (-1016)) (-5 *1 (-553))))) +(-10 -7 (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373) (-1042))) (-15 -2889 ((-1016) (-754))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-1072 (-825 (-373))))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373))) (-15 -2889 ((-1016) (-310 (-373)) (-629 (-1072 (-825 (-373)))) (-373) (-373) (-1042))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016))) (-754) (-1042))) (-15 -2889 ((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1136))) (-15 -2889 ((-3 (-1016) "failed") (-310 (-373)) (-1070 (-825 (-373))) (-1154)))) +((-2935 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|)) 184)) (-1835 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|)) 98)) (-2640 (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|) 180)) (-4165 (((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154))) 189)) (-1312 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1154)) 197 (|has| |#3| (-640 |#2|))))) +(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -2640 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -2935 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|))) (-15 -4165 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)))) (IF (|has| |#3| (-640 |#2|)) (-15 -1312 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1154))) |%noBranch|)) (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552))) (-13 (-424 |#1|) (-27) (-1176)) (-1078)) (T -554)) +((-1312 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1154)) (-4 *4 (-13 (-424 *7) (-27) (-1176))) (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078)))) (-4165 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) (-4 *2 (-13 (-424 *5) (-27) (-1176))) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1078)))) (-2935 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1176))) (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1078)))) (-2640 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1176))) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1078)))) (-1835 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1176))) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1078))))) +(-10 -7 (-15 -1835 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -2640 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -2935 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-629 |#2|))) (-15 -4165 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1154)))) (IF (|has| |#3| (-640 |#2|)) (-15 -1312 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4199 (-629 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1154))) |%noBranch|)) +((-3477 (((-2 (|:| -3487 |#2|) (|:| |nconst| |#2|)) |#2| (-1154)) 64)) (-2316 (((-3 |#2| "failed") |#2| (-1154) (-825 |#2|) (-825 |#2|)) 164 (-12 (|has| |#2| (-1117)) (|has| |#1| (-600 (-873 (-552)))) (|has| |#1| (-867 (-552))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)) 147 (-12 (|has| |#2| (-615)) (|has| |#1| (-600 (-873 (-552)))) (|has| |#1| (-867 (-552)))))) (-3582 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)) 148 (-12 (|has| |#2| (-615)) (|has| |#1| (-600 (-873 (-552)))) (|has| |#1| (-867 (-552))))))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3477 ((-2 (|:| -3487 |#2|) (|:| |nconst| |#2|)) |#2| (-1154))) (IF (|has| |#1| (-600 (-873 (-552)))) (IF (|has| |#1| (-867 (-552))) (PROGN (IF (|has| |#2| (-615)) (PROGN (-15 -3582 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154))) (-15 -2316 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)))) |%noBranch|) (IF (|has| |#2| (-1117)) (-15 -2316 ((-3 |#2| "failed") |#2| (-1154) (-825 |#2|) (-825 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-832) (-1019 (-552)) (-445) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -555)) +((-2316 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1154)) (-5 *4 (-825 *2)) (-4 *2 (-1117)) (-4 *2 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-600 (-873 (-552)))) (-4 *5 (-867 (-552))) (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) (-5 *1 (-555 *5 *2)))) (-2316 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-600 (-873 (-552)))) (-4 *5 (-867 (-552))) (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-615)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3582 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-600 (-873 (-552)))) (-4 *5 (-867 (-552))) (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-615)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) (-5 *2 (-2 (|:| -3487 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(-10 -7 (-15 -3477 ((-2 (|:| -3487 |#2|) (|:| |nconst| |#2|)) |#2| (-1154))) (IF (|has| |#1| (-600 (-873 (-552)))) (IF (|has| |#1| (-867 (-552))) (PROGN (IF (|has| |#2| (-615)) (PROGN (-15 -3582 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154))) (-15 -2316 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)))) |%noBranch|) (IF (|has| |#2| (-1117)) (-15 -2316 ((-3 |#2| "failed") |#2| (-1154) (-825 |#2|) (-825 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2037 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-629 (-401 |#2|))) 41)) (-2889 (((-573 (-401 |#2|)) (-401 |#2|)) 28)) (-2534 (((-3 (-401 |#2|) "failed") (-401 |#2|)) 17)) (-2937 (((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|)) 48))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2889 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2534 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2937 ((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -2037 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-629 (-401 |#2|))))) (-13 (-357) (-144) (-1019 (-552))) (-1213 |#1|)) (T -556)) +((-2037 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-629 (-401 *6))) (-5 *3 (-401 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2937 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| -1411 (-401 *5)) (|:| |coeff| (-401 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5)))) (-2534 (*1 *2 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-13 (-357) (-144) (-1019 (-552)))) (-5 *1 (-556 *3 *4)))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) (-5 *2 (-573 (-401 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) +(-10 -7 (-15 -2889 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2534 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2937 ((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -2037 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-629 (-401 |#2|))))) +((-4085 (((-3 (-552) "failed") |#1|) 14)) (-3227 (((-111) |#1|) 13)) (-3563 (((-552) |#1|) 9))) +(((-557 |#1|) (-10 -7 (-15 -3563 ((-552) |#1|)) (-15 -3227 ((-111) |#1|)) (-15 -4085 ((-3 (-552) "failed") |#1|))) (-1019 (-552))) (T -557)) +((-4085 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1019 *2)))) (-3227 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1019 (-552))))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1019 *2))))) +(-10 -7 (-15 -3563 ((-552) |#1|)) (-15 -3227 ((-111) |#1|)) (-15 -4085 ((-3 (-552) "failed") |#1|))) +((-3532 (((-3 (-2 (|:| |mainpart| (-401 (-933 |#1|))) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 (-933 |#1|))) (|:| |logand| (-401 (-933 |#1|))))))) "failed") (-401 (-933 |#1|)) (-1154) (-629 (-401 (-933 |#1|)))) 48)) (-4113 (((-573 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-1154)) 28)) (-3841 (((-3 (-401 (-933 |#1|)) "failed") (-401 (-933 |#1|)) (-1154)) 23)) (-3840 (((-3 (-2 (|:| -1411 (-401 (-933 |#1|))) (|:| |coeff| (-401 (-933 |#1|)))) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|))) 35))) +(((-558 |#1|) (-10 -7 (-15 -4113 ((-573 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -3841 ((-3 (-401 (-933 |#1|)) "failed") (-401 (-933 |#1|)) (-1154))) (-15 -3532 ((-3 (-2 (|:| |mainpart| (-401 (-933 |#1|))) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 (-933 |#1|))) (|:| |logand| (-401 (-933 |#1|))))))) "failed") (-401 (-933 |#1|)) (-1154) (-629 (-401 (-933 |#1|))))) (-15 -3840 ((-3 (-2 (|:| -1411 (-401 (-933 |#1|))) (|:| |coeff| (-401 (-933 |#1|)))) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|))))) (-13 (-544) (-1019 (-552)) (-144))) (T -558)) +((-3840 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-1019 (-552)) (-144))) (-5 *2 (-2 (|:| -1411 (-401 (-933 *5))) (|:| |coeff| (-401 (-933 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-933 *5))))) (-3532 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 (-401 (-933 *6)))) (-5 *3 (-401 (-933 *6))) (-4 *6 (-13 (-544) (-1019 (-552)) (-144))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-3841 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-401 (-933 *4))) (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-1019 (-552)) (-144))) (-5 *1 (-558 *4)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-1019 (-552)) (-144))) (-5 *2 (-573 (-401 (-933 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-933 *5)))))) +(-10 -7 (-15 -4113 ((-573 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -3841 ((-3 (-401 (-933 |#1|)) "failed") (-401 (-933 |#1|)) (-1154))) (-15 -3532 ((-3 (-2 (|:| |mainpart| (-401 (-933 |#1|))) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 (-933 |#1|))) (|:| |logand| (-401 (-933 |#1|))))))) "failed") (-401 (-933 |#1|)) (-1154) (-629 (-401 (-933 |#1|))))) (-15 -3840 ((-3 (-2 (|:| -1411 (-401 (-933 |#1|))) (|:| |coeff| (-401 (-933 |#1|)))) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|))))) +((-3202 (((-111) $ $) 58)) (-3643 (((-111) $) 36)) (-4054 ((|#1| $) 30)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) 62)) (-2478 (($ $) 122)) (-2332 (($ $) 102)) (-3305 ((|#1| $) 28)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $) NIL)) (-2455 (($ $) 124)) (-2305 (($ $) 98)) (-2506 (($ $) 126)) (-2359 (($ $) 106)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) 77)) (-2832 (((-552) $) 79)) (-1293 (((-3 $ "failed") $) 61)) (-2176 (($ |#1| |#1|) 26)) (-1338 (((-111) $) 33)) (-4043 (($) 88)) (-4065 (((-111) $) 43)) (-3755 (($ $ (-552)) NIL)) (-3127 (((-111) $) 34)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2430 (($ $) 90)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3741 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-401 (-552))) 76)) (-3341 ((|#1| $) 27)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) 64) (($ (-629 $)) NIL)) (-3969 (((-3 $ "failed") $ $) 63)) (-2855 (($ $) 92)) (-2518 (($ $) 130)) (-2370 (($ $) 104)) (-2492 (($ $) 132)) (-2346 (($ $) 108)) (-2467 (($ $) 128)) (-2318 (($ $) 100)) (-1738 (((-111) $ |#1|) 31)) (-3213 (((-844) $) 84) (($ (-552)) 66) (($ $) NIL) (($ (-552)) 66)) (-2014 (((-756)) 86)) (-3843 (($ $) 144)) (-2409 (($ $) 114)) (-3589 (((-111) $ $) NIL)) (-2530 (($ $) 142)) (-2382 (($ $) 110)) (-3863 (($ $) 140)) (-2433 (($ $) 120)) (-3013 (($ $) 138)) (-2444 (($ $) 118)) (-3853 (($ $) 136)) (-2420 (($ $) 116)) (-2543 (($ $) 134)) (-2395 (($ $) 112)) (-3297 (($) 21 T CONST)) (-3309 (($) 10 T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 37)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 35)) (-1709 (($ $) 41) (($ $ $) 42)) (-1698 (($ $ $) 40)) (** (($ $ (-902)) 54) (($ $ (-756)) NIL) (($ $ $) 94) (($ $ (-401 (-552))) 146)) (* (($ (-902) $) 51) (($ (-756) $) NIL) (($ (-552) $) 50) (($ $ $) 48))) +(((-559 |#1|) (-542 |#1|) (-13 (-398) (-1176))) (T -559)) NIL (-542 |#1|) -((-1964 (((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552))) 24))) -(((-560) (-10 -7 (-15 -1964 ((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552)))))) (T -560)) -((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 (-552)))) (-5 *3 (-1148 (-552))) (-5 *1 (-560))))) -(-10 -7 (-15 -1964 ((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552))))) -((-2452 (((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152)) 19)) (-2371 (((-627 (-598 |#2|)) (-627 |#2|) (-1152)) 23)) (-3416 (((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|))) 11)) (-2147 ((|#2| |#2| (-1152)) 54 (|has| |#1| (-544)))) (-3737 ((|#2| |#2| (-1152)) 78 (-12 (|has| |#2| (-278)) (|has| |#1| (-445))))) (-3948 (((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152)) 25)) (-4278 (((-598 |#2|) (-627 (-598 |#2|))) 24)) (-3323 (((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) 103 (-12 (|has| |#2| (-278)) (|has| |#2| (-613)) (|has| |#2| (-1017 (-1152))) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-445)) (|has| |#1| (-865 (-552))))))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2452 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152))) (-15 -4278 ((-598 |#2|) (-627 (-598 |#2|)))) (-15 -3948 ((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152))) (-15 -3416 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|)))) (-15 -2371 ((-627 (-598 |#2|)) (-627 |#2|) (-1152))) (IF (|has| |#1| (-544)) (-15 -2147 (|#2| |#2| (-1152))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3737 (|#2| |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (IF (|has| |#2| (-613)) (IF (|has| |#2| (-1017 (-1152))) (-15 -3323 ((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-830) (-424 |#1|)) (T -561)) -((-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-573 *3) *3 (-1152))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1152))) (-4 *3 (-278)) (-4 *3 (-613)) (-4 *3 (-1017 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1152)) (-4 *7 (-600 (-871 (-552)))) (-4 *7 (-445)) (-4 *7 (-865 (-552))) (-4 *7 (-830)) (-5 *2 (-573 *3)) (-5 *1 (-561 *7 *3)))) (-3737 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-445)) (-4 *4 (-830)) (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4)))) (-2147 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-544)) (-4 *4 (-830)) (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-1152)) (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *2 (-627 (-598 *6))) (-5 *1 (-561 *5 *6)))) (-3416 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-830)) (-5 *1 (-561 *3 *4)))) (-3948 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-598 *6))) (-5 *4 (-1152)) (-5 *2 (-598 *6)) (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *1 (-561 *5 *6)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-627 (-598 *5))) (-4 *4 (-830)) (-5 *2 (-598 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4)))) (-2452 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-598 *5))) (-5 *3 (-1152)) (-4 *5 (-424 *4)) (-4 *4 (-830)) (-5 *1 (-561 *4 *5))))) -(-10 -7 (-15 -2452 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152))) (-15 -4278 ((-598 |#2|) (-627 (-598 |#2|)))) (-15 -3948 ((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152))) (-15 -3416 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|)))) (-15 -2371 ((-627 (-598 |#2|)) (-627 |#2|) (-1152))) (IF (|has| |#1| (-544)) (-15 -2147 (|#2| |#2| (-1152))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3737 (|#2| |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (IF (|has| |#2| (-613)) (IF (|has| |#2| (-1017 (-1152))) (-15 -3323 ((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2406 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|)) 172)) (-3469 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|))) 148)) (-2765 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|))) 145)) (-4055 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1797 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2058 (((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|)) 175)) (-2273 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|)) 178)) (-3389 (((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 84)) (-1765 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2364 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|))) 152)) (-3791 (((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 137)) (-2228 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 162)) (-2428 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|)) 183))) -(((-562 |#1| |#2|) (-10 -7 (-15 -1797 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2228 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -2406 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2273 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2428 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3469 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|)))) (-15 -2364 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|)))) (-15 -2058 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3791 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3389 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1765 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -562)) -((-1765 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-3389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-3791 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111))) (-552) *4)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *1 (-562 *4 *5)))) (-4055 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1211 *4)))) (-2765 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-627 (-401 *7))) (-4 *7 (-1211 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2058 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -3446 (-401 *6)) (|:| |coeff| (-401 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-2364 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2791 *7) (|:| |sol?| (-111))) (-552) *7)) (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-3469 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2428 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2273 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-627 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) -(-10 -7 (-15 -1797 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2228 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -2406 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2273 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2428 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3469 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|)))) (-15 -2364 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|)))) (-15 -2058 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3791 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3389 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1765 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1450 (((-3 |#2| "failed") |#2| (-1152) (-1152)) 10))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1450 ((-3 |#2| "failed") |#2| (-1152) (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-1115) (-29 |#1|))) (T -563)) -((-1450 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-1115) (-29 *4)))))) -(-10 -7 (-15 -1450 ((-3 |#2| "failed") |#2| (-1152) (-1152)))) -((-1525 (((-1096) $ (-127)) 12)) (-3928 (((-1096) $ (-128)) 11)) (-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-2219 (($ $) 6))) +((-1704 (((-3 (-629 (-1150 (-552))) "failed") (-629 (-1150 (-552))) (-1150 (-552))) 24))) +(((-560) (-10 -7 (-15 -1704 ((-3 (-629 (-1150 (-552))) "failed") (-629 (-1150 (-552))) (-1150 (-552)))))) (T -560)) +((-1704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 (-552)))) (-5 *3 (-1150 (-552))) (-5 *1 (-560))))) +(-10 -7 (-15 -1704 ((-3 (-629 (-1150 (-552))) "failed") (-629 (-1150 (-552))) (-1150 (-552))))) +((-2991 (((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-1154)) 19)) (-3405 (((-629 (-598 |#2|)) (-629 |#2|) (-1154)) 23)) (-1501 (((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-629 (-598 |#2|))) 11)) (-2986 ((|#2| |#2| (-1154)) 54 (|has| |#1| (-544)))) (-1272 ((|#2| |#2| (-1154)) 78 (-12 (|has| |#2| (-278)) (|has| |#1| (-445))))) (-1525 (((-598 |#2|) (-598 |#2|) (-629 (-598 |#2|)) (-1154)) 25)) (-1654 (((-598 |#2|) (-629 (-598 |#2|))) 24)) (-1532 (((-573 |#2|) |#2| (-1154) (-1 (-573 |#2|) |#2| (-1154)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154))) 103 (-12 (|has| |#2| (-278)) (|has| |#2| (-615)) (|has| |#2| (-1019 (-1154))) (|has| |#1| (-600 (-873 (-552)))) (|has| |#1| (-445)) (|has| |#1| (-867 (-552))))))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2991 ((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-1154))) (-15 -1654 ((-598 |#2|) (-629 (-598 |#2|)))) (-15 -1525 ((-598 |#2|) (-598 |#2|) (-629 (-598 |#2|)) (-1154))) (-15 -1501 ((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-629 (-598 |#2|)))) (-15 -3405 ((-629 (-598 |#2|)) (-629 |#2|) (-1154))) (IF (|has| |#1| (-544)) (-15 -2986 (|#2| |#2| (-1154))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -1272 (|#2| |#2| (-1154))) (IF (|has| |#1| (-600 (-873 (-552)))) (IF (|has| |#1| (-867 (-552))) (IF (|has| |#2| (-615)) (IF (|has| |#2| (-1019 (-1154))) (-15 -1532 ((-573 |#2|) |#2| (-1154) (-1 (-573 |#2|) |#2| (-1154)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-832) (-424 |#1|)) (T -561)) +((-1532 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-573 *3) *3 (-1154))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1154))) (-4 *3 (-278)) (-4 *3 (-615)) (-4 *3 (-1019 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1154)) (-4 *7 (-600 (-873 (-552)))) (-4 *7 (-445)) (-4 *7 (-867 (-552))) (-4 *7 (-832)) (-5 *2 (-573 *3)) (-5 *1 (-561 *7 *3)))) (-1272 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-445)) (-4 *4 (-832)) (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-544)) (-4 *4 (-832)) (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-1154)) (-4 *6 (-424 *5)) (-4 *5 (-832)) (-5 *2 (-629 (-598 *6))) (-5 *1 (-561 *5 *6)))) (-1501 (*1 *2 *2 *2) (-12 (-5 *2 (-629 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-832)) (-5 *1 (-561 *3 *4)))) (-1525 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-629 (-598 *6))) (-5 *4 (-1154)) (-5 *2 (-598 *6)) (-4 *6 (-424 *5)) (-4 *5 (-832)) (-5 *1 (-561 *5 *6)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-629 (-598 *5))) (-4 *4 (-832)) (-5 *2 (-598 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4)))) (-2991 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-598 *5))) (-5 *3 (-1154)) (-4 *5 (-424 *4)) (-4 *4 (-832)) (-5 *1 (-561 *4 *5))))) +(-10 -7 (-15 -2991 ((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-1154))) (-15 -1654 ((-598 |#2|) (-629 (-598 |#2|)))) (-15 -1525 ((-598 |#2|) (-598 |#2|) (-629 (-598 |#2|)) (-1154))) (-15 -1501 ((-629 (-598 |#2|)) (-629 (-598 |#2|)) (-629 (-598 |#2|)))) (-15 -3405 ((-629 (-598 |#2|)) (-629 |#2|) (-1154))) (IF (|has| |#1| (-544)) (-15 -2986 (|#2| |#2| (-1154))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -1272 (|#2| |#2| (-1154))) (IF (|has| |#1| (-600 (-873 (-552)))) (IF (|has| |#1| (-867 (-552))) (IF (|has| |#2| (-615)) (IF (|has| |#2| (-1019 (-1154))) (-15 -1532 ((-573 |#2|) |#2| (-1154) (-1 (-573 |#2|) |#2| (-1154)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1154)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3735 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-629 |#1|) "failed") (-552) |#1| |#1|)) 172)) (-3583 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-629 (-401 |#2|))) 148)) (-3054 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-629 (-401 |#2|))) 145)) (-1310 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3883 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3399 (((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|)) 175)) (-1700 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|)) 178)) (-4059 (((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 84)) (-3601 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1375 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-629 (-401 |#2|))) 152)) (-3709 (((-3 (-609 |#1| |#2|) "failed") (-609 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 137)) (-2573 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 162)) (-3945 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|)) 183))) +(((-562 |#1| |#2|) (-10 -7 (-15 -3883 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2573 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3735 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-629 |#1|) "failed") (-552) |#1| |#1|))) (-15 -1700 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -3945 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3583 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-629 (-401 |#2|)))) (-15 -1375 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-629 (-401 |#2|)))) (-15 -3399 ((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -3054 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-629 (-401 |#2|)))) (-15 -1310 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3709 ((-3 (-609 |#1| |#2|) "failed") (-609 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -4059 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3601 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-357) (-1213 |#1|)) (T -562)) +((-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-3709 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-609 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3428 *4) (|:| |sol?| (-111))) (-552) *4)) (-4 *4 (-357)) (-4 *5 (-1213 *4)) (-5 *1 (-562 *4 *5)))) (-1310 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1213 *4)))) (-3054 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-629 (-401 *7))) (-4 *7 (-1213 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-3399 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1411 (-401 *6)) (|:| |coeff| (-401 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-1375 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3428 *7) (|:| |sol?| (-111))) (-552) *7)) (-5 *6 (-629 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1213 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-3583 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1411 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-629 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1213 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-3945 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3428 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -1411 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-1700 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1411 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -1411 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-629 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2573 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3428 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-3883 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1411 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(-10 -7 (-15 -3883 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2573 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3735 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-629 |#1|) "failed") (-552) |#1| |#1|))) (-15 -1700 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -3945 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3583 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-629 (-401 |#2|)))) (-15 -1375 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-629 (-401 |#2|)))) (-15 -3399 ((-3 (-2 (|:| -1411 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -3054 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-629 (-401 |#2|)))) (-15 -1310 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3709 ((-3 (-609 |#1| |#2|) "failed") (-609 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3428 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -4059 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3601 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3820 (((-3 |#2| "failed") |#2| (-1154) (-1154)) 10))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3820 ((-3 |#2| "failed") |#2| (-1154) (-1154)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-940) (-1117) (-29 |#1|))) (T -563)) +((-3820 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1154)) (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1176) (-940) (-1117) (-29 *4)))))) +(-10 -7 (-15 -3820 ((-3 |#2| "failed") |#2| (-1154) (-1154)))) +((-3268 (((-1098) $ (-127)) 12)) (-2586 (((-1098) $ (-128)) 11)) (-2537 (((-1098) $ (-127)) 7)) (-3042 (((-1098) $) 8)) (-2469 (($ $) 6))) (((-564) (-137)) (T -564)) NIL -(-13 (-519) (-840)) -(((-170) . T) ((-519) . T) ((-840) . T)) -((-1525 (((-1096) $ (-127)) NIL)) (-3928 (((-1096) $ (-128)) NIL)) (-3166 (((-1096) $ (-127)) NIL)) (-2764 (((-1096) $) NIL)) (-1300 (((-111) $) NIL)) (-3725 (($ (-382)) 14) (($ (-1134)) 16)) (-1477 (((-842) $) NIL)) (-2219 (($ $) NIL))) -(((-565) (-13 (-564) (-599 (-842)) (-10 -8 (-15 -3725 ($ (-382))) (-15 -3725 ($ (-1134))) (-15 -1300 ((-111) $))))) (T -565)) -((-3725 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-565)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565))))) -(-13 (-564) (-599 (-842)) (-10 -8 (-15 -3725 ($ (-382))) (-15 -3725 ($ (-1134))) (-15 -1300 ((-111) $)))) -((-1465 (((-111) $ $) NIL)) (-1395 (($) 7 T CONST)) (-1595 (((-1134) $) NIL)) (-1268 (($) 6 T CONST)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14)) (-3436 (($) 8 T CONST)) (-2292 (((-111) $ $) 10))) -(((-566) (-13 (-1076) (-10 -8 (-15 -1268 ($) -3488) (-15 -1395 ($) -3488) (-15 -3436 ($) -3488)))) (T -566)) -((-1268 (*1 *1) (-5 *1 (-566))) (-1395 (*1 *1) (-5 *1 (-566))) (-3436 (*1 *1) (-5 *1 (-566)))) -(-13 (-1076) (-10 -8 (-15 -1268 ($) -3488) (-15 -1395 ($) -3488) (-15 -3436 ($) -3488))) -((-1465 (((-111) $ $) NIL)) (-1291 (((-3 $ "failed") (-483)) 13)) (-1595 (((-1134) $) NIL)) (-1957 (($ (-1134)) 9)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28)) (-3581 (((-208 4 (-128)) $) 16)) (-2292 (((-111) $ $) 19))) -(((-567) (-13 (-1076) (-10 -8 (-15 -1957 ($ (-1134))) (-15 -3581 ((-208 4 (-128)) $)) (-15 -1291 ((-3 $ "failed") (-483)))))) (T -567)) -((-1957 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-567)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567)))) (-1291 (*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) -(-13 (-1076) (-10 -8 (-15 -1957 ($ (-1134))) (-15 -3581 ((-208 4 (-128)) $)) (-15 -1291 ((-3 $ "failed") (-483))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) 66)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) 72)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 58)) (-1497 (($ $) 34)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) 15)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) 29)) (-3752 (((-552) $) 32)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) 21)) (-2761 (((-3 $ "failed") $ $) 59)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) 16)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 61)) (-3080 (((-1132 (-552)) $) 18)) (-2890 (($ $) 23)) (-1477 (((-842) $) 87) (($ (-552)) 52) (($ $) NIL)) (-3995 (((-754)) 14)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) 36)) (-1922 (($) 35 T CONST)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 39)) (-2396 (($ $) 51) (($ $ $) 37)) (-2384 (($ $ $) 50)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 54) (($ $ $) 55))) -(((-568 |#1| |#2|) (-848 |#1|) (-552) (-111)) (T -568)) -NIL -(-848 |#1|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 21)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) 47)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 $ "failed") $) 75)) (-1703 (($ $) 74)) (-2342 (($ (-1235 $)) 73)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 49)) (-1415 (((-111) $) NIL)) (-4294 (($ $) NIL) (($ $ (-754)) NIL)) (-1633 (((-111) $) NIL)) (-2641 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-2624 (((-111) $) NIL)) (-2611 (($) 37 (|has| $ (-362)))) (-2492 (((-111) $) NIL (|has| $ (-362)))) (-2349 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 $) $ (-900)) NIL (|has| $ (-362))) (((-1148 $) $) 83)) (-2886 (((-900) $) 55)) (-1980 (((-1148 $) $) NIL (|has| $ (-362)))) (-2259 (((-3 (-1148 $) "failed") $ $) NIL (|has| $ (-362))) (((-1148 $) $) NIL (|has| $ (-362)))) (-3520 (($ $ (-1148 $)) NIL (|has| $ (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL T CONST)) (-4153 (($ (-900)) 48)) (-2249 (((-111) $) 67)) (-1498 (((-1096) $) NIL)) (-2220 (($) 19 (|has| $ (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 42)) (-1727 (((-412 $) $) NIL)) (-3804 (((-900)) 66) (((-816 (-900))) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL) (((-754) $) NIL)) (-2405 (((-132)) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-3567 (((-900) $) 65) (((-816 (-900)) $) NIL)) (-1376 (((-1148 $)) 82)) (-3439 (($) 54)) (-3231 (($) 38 (|has| $ (-362)))) (-3133 (((-671 $) (-1235 $)) NIL) (((-1235 $) $) 71)) (-3562 (((-552) $) 28)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) 30) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3995 (((-754)) 39)) (-2957 (((-1235 $) (-900)) 77) (((-1235 $)) 76)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 22 T CONST)) (-1933 (($) 18 T CONST)) (-3406 (($ $ (-754)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 26)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 61) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-569 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-900)) (T -569)) +(-13 (-519) (-842)) +(((-170) . T) ((-519) . T) ((-842) . T)) +((-3268 (((-1098) $ (-127)) NIL)) (-2586 (((-1098) $ (-128)) NIL)) (-2537 (((-1098) $ (-127)) NIL)) (-3042 (((-1098) $) NIL)) (-1773 (((-111) $) NIL)) (-4257 (($ (-382)) 14) (($ (-1136)) 16)) (-3213 (((-844) $) NIL)) (-2469 (($ $) NIL))) +(((-565) (-13 (-564) (-599 (-844)) (-10 -8 (-15 -4257 ($ (-382))) (-15 -4257 ($ (-1136))) (-15 -1773 ((-111) $))))) (T -565)) +((-4257 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565)))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-565)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565))))) +(-13 (-564) (-599 (-844)) (-10 -8 (-15 -4257 ($ (-382))) (-15 -4257 ($ (-1136))) (-15 -1773 ((-111) $)))) +((-3202 (((-111) $ $) NIL)) (-3783 (($) 7 T CONST)) (-2623 (((-1136) $) NIL)) (-1392 (($) 6 T CONST)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 14)) (-1351 (($) 8 T CONST)) (-1613 (((-111) $ $) 10))) +(((-566) (-13 (-1078) (-10 -8 (-15 -1392 ($) -3930) (-15 -3783 ($) -3930) (-15 -1351 ($) -3930)))) (T -566)) +((-1392 (*1 *1) (-5 *1 (-566))) (-3783 (*1 *1) (-5 *1 (-566))) (-1351 (*1 *1) (-5 *1 (-566)))) +(-13 (-1078) (-10 -8 (-15 -1392 ($) -3930) (-15 -3783 ($) -3930) (-15 -1351 ($) -3930))) +((-3202 (((-111) $ $) NIL)) (-1884 (((-3 $ "failed") (-483)) 13)) (-2623 (((-1136) $) NIL)) (-1639 (($ (-1136)) 9)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 28)) (-2131 (((-208 4 (-128)) $) 16)) (-1613 (((-111) $ $) 19))) +(((-567) (-13 (-1078) (-10 -8 (-15 -1639 ($ (-1136))) (-15 -2131 ((-208 4 (-128)) $)) (-15 -1884 ((-3 $ "failed") (-483)))))) (T -567)) +((-1639 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-567)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567)))) (-1884 (*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) +(-13 (-1078) (-10 -8 (-15 -1639 ($ (-1136))) (-15 -2131 ((-208 4 (-128)) $)) (-15 -1884 ((-3 $ "failed") (-483))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $ (-552)) 66)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-2450 (($ (-1150 (-552)) (-552)) 72)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) 58)) (-3029 (($ $) 34)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4241 (((-756) $) 15)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3714 (((-552)) 29)) (-1401 (((-552) $) 32)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3136 (($ $ (-552)) 21)) (-3969 (((-3 $ "failed") $ $) 59)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) 16)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 61)) (-2950 (((-1134 (-552)) $) 18)) (-1680 (($ $) 23)) (-3213 (((-844) $) 87) (($ (-552)) 52) (($ $) NIL)) (-2014 (((-756)) 14)) (-3589 (((-111) $ $) NIL)) (-4311 (((-552) $ (-552)) 36)) (-3297 (($) 35 T CONST)) (-3309 (($) 19 T CONST)) (-1613 (((-111) $ $) 39)) (-1709 (($ $) 51) (($ $ $) 37)) (-1698 (($ $ $) 50)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 54) (($ $ $) 55))) +(((-568 |#1| |#2|) (-850 |#1|) (-552) (-111)) (T -568)) +NIL +(-850 |#1|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 21)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (($ $ (-902)) NIL (|has| $ (-362))) (($ $) NIL)) (-1271 (((-1164 (-902) (-756)) (-552)) 47)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 $ "failed") $) 75)) (-2832 (($ $) 74)) (-4278 (($ (-1237 $)) 73)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) 32)) (-1332 (($) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) 49)) (-3504 (((-111) $) NIL)) (-1788 (($ $) NIL) (($ $ (-756)) NIL)) (-1677 (((-111) $) NIL)) (-4241 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-4065 (((-111) $) NIL)) (-2019 (($) 37 (|has| $ (-362)))) (-2092 (((-111) $) NIL (|has| $ (-362)))) (-4346 (($ $ (-902)) NIL (|has| $ (-362))) (($ $) NIL)) (-2032 (((-3 $ "failed") $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 $) $ (-902)) NIL (|has| $ (-362))) (((-1150 $) $) 83)) (-1637 (((-902) $) 55)) (-1879 (((-1150 $) $) NIL (|has| $ (-362)))) (-1577 (((-3 (-1150 $) "failed") $ $) NIL (|has| $ (-362))) (((-1150 $) $) NIL (|has| $ (-362)))) (-2836 (($ $ (-1150 $)) NIL (|has| $ (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL T CONST)) (-2840 (($ (-902)) 48)) (-1498 (((-111) $) 67)) (-2876 (((-1098) $) NIL)) (-4126 (($) 19 (|has| $ (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 42)) (-3479 (((-412 $) $) NIL)) (-3823 (((-902)) 66) (((-818 (-902))) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-3 (-756) "failed") $ $) NIL) (((-756) $) NIL)) (-3725 (((-132)) NIL)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-3299 (((-902) $) 65) (((-818 (-902)) $) NIL)) (-3521 (((-1150 $)) 82)) (-1368 (($) 54)) (-3149 (($) 38 (|has| $ (-362)))) (-3464 (((-673 $) (-1237 $)) NIL) (((-1237 $) $) 71)) (-1522 (((-552) $) 28)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) 30) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3878 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2014 (((-756)) 39)) (-4199 (((-1237 $) (-902)) 77) (((-1237 $)) 76)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) 22 T CONST)) (-3309 (($) 18 T CONST)) (-4237 (($ $ (-756)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 26)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 61) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-569 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-902)) (T -569)) NIL (-13 (-343) (-323 $) (-600 (-552))) -((-3026 (((-1240) (-1134)) 10))) -(((-570) (-10 -7 (-15 -3026 ((-1240) (-1134))))) (T -570)) -((-3026 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-570))))) -(-10 -7 (-15 -3026 ((-1240) (-1134)))) -((-2843 (((-573 |#2|) (-573 |#2|)) 40)) (-2496 (((-627 |#2|) (-573 |#2|)) 42)) (-1464 ((|#2| (-573 |#2|)) 48))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2843 ((-573 |#2|) (-573 |#2|))) (-15 -2496 ((-627 |#2|) (-573 |#2|))) (-15 -1464 (|#2| (-573 |#2|)))) (-13 (-445) (-1017 (-552)) (-830) (-623 (-552))) (-13 (-29 |#1|) (-1174))) (T -571)) -((-1464 (*1 *2 *3) (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1174))) (-5 *1 (-571 *4 *2)) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1174))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-627 *5)) (-5 *1 (-571 *4 *5)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1174))) (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *1 (-571 *3 *4))))) -(-10 -7 (-15 -2843 ((-573 |#2|) (-573 |#2|))) (-15 -2496 ((-627 |#2|) (-573 |#2|))) (-15 -1464 (|#2| (-573 |#2|)))) -((-3516 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|)) 30))) -(((-572 |#1| |#2|) (-10 -7 (-15 -3516 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -3516 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3516 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3516 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-357) (-357)) (T -572)) -((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-572 *5 *6)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3446 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -3446 *6) (|:| |coeff| *6))) (-5 *1 (-572 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6))))) -(-10 -7 (-15 -3516 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -3516 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3516 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3516 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 69)) (-1703 ((|#1| $) NIL)) (-3446 ((|#1| $) 26)) (-4196 (((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2987 (($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3874 (((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $) 27)) (-1595 (((-1134) $) NIL)) (-3096 (($ |#1| |#1|) 33) (($ |#1| (-1152)) 44 (|has| |#1| (-1017 (-1152))))) (-1498 (((-1096) $) NIL)) (-2713 (((-111) $) 30)) (-2942 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1152)) 82 (|has| |#1| (-879 (-1152))))) (-1477 (((-842) $) 96) (($ |#1|) 25)) (-1922 (($) 16 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 15) (($ $ $) NIL)) (-2384 (($ $ $) 78)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 14) (($ (-401 (-552)) $) 36) (($ $ (-401 (-552))) NIL))) -(((-573 |#1|) (-13 (-700 (-401 (-552))) (-1017 |#1|) (-10 -8 (-15 -2987 ($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3446 (|#1| $)) (-15 -3874 ((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $)) (-15 -4196 ((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2713 ((-111) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-879 (-1152))) (-15 -2942 (|#1| $ (-1152))) |%noBranch|) (IF (|has| |#1| (-1017 (-1152))) (-15 -3096 ($ |#1| (-1152))) |%noBranch|))) (-357)) (T -573)) -((-2987 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *2)) (|:| |logand| (-1148 *2))))) (-5 *4 (-627 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-357)) (-5 *1 (-573 *2)))) (-3446 (*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *3)) (|:| |logand| (-1148 *3))))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-3096 (*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-2942 (*1 *2 *1 *3) (-12 (-4 *2 (-357)) (-4 *2 (-879 *3)) (-5 *1 (-573 *2)) (-5 *3 (-1152)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *1 (-573 *2)) (-4 *2 (-1017 *3)) (-4 *2 (-357))))) -(-13 (-700 (-401 (-552))) (-1017 |#1|) (-10 -8 (-15 -2987 ($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3446 (|#1| $)) (-15 -3874 ((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $)) (-15 -4196 ((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2713 ((-111) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-879 (-1152))) (-15 -2942 (|#1| $ (-1152))) |%noBranch|) (IF (|has| |#1| (-1017 (-1152))) (-15 -3096 ($ |#1| (-1152))) |%noBranch|))) -((-1978 (((-111) |#1|) 16)) (-3553 (((-3 |#1| "failed") |#1|) 14)) (-1582 (((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|) 31) (((-3 |#1| "failed") |#1| (-754)) 18)) (-1726 (((-111) |#1| (-754)) 19)) (-3337 ((|#1| |#1|) 32)) (-3324 ((|#1| |#1| (-754)) 34))) -(((-574 |#1|) (-10 -7 (-15 -1726 ((-111) |#1| (-754))) (-15 -1582 ((-3 |#1| "failed") |#1| (-754))) (-15 -1582 ((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|)) (-15 -3324 (|#1| |#1| (-754))) (-15 -1978 ((-111) |#1|)) (-15 -3553 ((-3 |#1| "failed") |#1|)) (-15 -3337 (|#1| |#1|))) (-537)) (T -574)) -((-3337 (*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-3553 (*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1978 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1582 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2705 *3) (|:| -4067 (-754)))) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-1582 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -1726 ((-111) |#1| (-754))) (-15 -1582 ((-3 |#1| "failed") |#1| (-754))) (-15 -1582 ((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|)) (-15 -3324 (|#1| |#1| (-754))) (-15 -1978 ((-111) |#1|)) (-15 -3553 ((-3 |#1| "failed") |#1|)) (-15 -3337 (|#1| |#1|))) -((-1808 (((-1148 |#1|) (-900)) 27))) -(((-575 |#1|) (-10 -7 (-15 -1808 ((-1148 |#1|) (-900)))) (-343)) (T -575)) -((-1808 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-575 *4)) (-4 *4 (-343))))) -(-10 -7 (-15 -1808 ((-1148 |#1|) (-900)))) -((-2843 (((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|)))) 27)) (-2747 (((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152)) 34 (|has| |#1| (-144)))) (-2496 (((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|)))) 19)) (-3067 (((-310 |#1|) (-401 (-931 |#1|)) (-1152)) 32 (|has| |#1| (-144)))) (-1464 (((-310 |#1|) (-573 (-401 (-931 |#1|)))) 21))) -(((-576 |#1|) (-10 -7 (-15 -2843 ((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|))))) (-15 -2496 ((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|))))) (-15 -1464 ((-310 |#1|) (-573 (-401 (-931 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2747 ((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3067 ((-310 |#1|) (-401 (-931 |#1|)) (-1152)))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (T -576)) -((-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-310 *5)) (-5 *1 (-576 *5)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-3 (-310 *5) (-627 (-310 *5)))) (-5 *1 (-576 *5)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-931 *4)))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-576 *4)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-931 *4)))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-627 (-310 *4))) (-5 *1 (-576 *4)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-573 (-401 (-931 *3)))) (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *1 (-576 *3))))) -(-10 -7 (-15 -2843 ((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|))))) (-15 -2496 ((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|))))) (-15 -1464 ((-310 |#1|) (-573 (-401 (-931 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2747 ((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3067 ((-310 |#1|) (-401 (-931 |#1|)) (-1152)))) |%noBranch|)) -((-4321 (((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552)))) 46) (((-627 (-671 (-552))) (-627 (-552))) 47) (((-671 (-552)) (-627 (-552)) (-884 (-552))) 42)) (-2823 (((-754) (-627 (-552))) 40))) -(((-577) (-10 -7 (-15 -2823 ((-754) (-627 (-552)))) (-15 -4321 ((-671 (-552)) (-627 (-552)) (-884 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552))))))) (T -577)) -((-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-552))) (-5 *4 (-627 (-884 (-552)))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-552))) (-5 *4 (-884 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-577)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-754)) (-5 *1 (-577))))) -(-10 -7 (-15 -2823 ((-754) (-627 (-552)))) (-15 -4321 ((-671 (-552)) (-627 (-552)) (-884 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552)))))) -((-3001 (((-627 |#5|) |#5| (-111)) 73)) (-1811 (((-111) |#5| (-627 |#5|)) 30))) -(((-578 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3001 ((-627 |#5|) |#5| (-111))) (-15 -1811 ((-111) |#5| (-627 |#5|)))) (-13 (-301) (-144)) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3| |#4|)) (T -578)) -((-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1085 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-578 *5 *6 *7 *8 *3)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-627 *3)) (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1085 *5 *6 *7 *8))))) -(-10 -7 (-15 -3001 ((-627 |#5|) |#5| (-111))) (-15 -1811 ((-111) |#5| (-627 |#5|)))) -((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-579) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -579)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579))))) -(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) -((-1465 (((-111) $ $) NIL (|has| (-141) (-1076)))) (-2726 (($ $) 34)) (-1349 (($ $) NIL)) (-3064 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 51)) (-4003 (((-111) $ $ (-552)) 46)) (-2843 (((-627 $) $ (-141)) 60) (((-627 $) $ (-138)) 61)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-141) (-830))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-141) $ (-552) (-141)) 45 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3702 (($ $ (-141)) 64) (($ $ (-138)) 65)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3754 (($ $ (-1202 (-552)) $) 44)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4342 (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) NIL)) (-4050 (((-111) $ $) 72)) (-2967 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 48 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 47) (((-552) (-138) $ (-552)) 50)) (-3215 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 9)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 28 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2285 (((-552) $) 42 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 73)) (-3835 (((-754) $ $ (-141)) 70)) (-3463 (($ (-1 (-141) (-141)) $) 33 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3053 (($ $) 37)) (-3769 (($ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3712 (($ $ (-141)) 62) (($ $ (-138)) 63)) (-1595 (((-1134) $) 38 (|has| (-141) (-1076)))) (-3252 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) 23)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-552) $) 69) (((-1096) $) NIL (|has| (-141) (-1076)))) (-3340 (((-141) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1942 (($ $ (-141)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) NIL)) (-1275 (((-111) $) 12)) (-2373 (($) 10)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) 52) (($ $ (-1202 (-552))) 21) (($ $ $) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4105 (($ $ $ (-552)) 66 (|has| $ (-6 -4367)))) (-2973 (($ $) 17)) (-3562 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) NIL)) (-2668 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) 16) (($ (-627 $)) 67)) (-1477 (($ (-141)) NIL) (((-842) $) 27 (|has| (-141) (-599 (-842))))) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2292 (((-111) $ $) 14 (|has| (-141) (-1076)))) (-2340 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2316 (((-111) $ $) 15 (|has| (-141) (-830)))) (-1383 (((-754) $) 13 (|has| $ (-6 -4366))))) -(((-580 |#1|) (-13 (-1120) (-10 -8 (-15 -1498 ((-552) $)))) (-552)) (T -580)) -((-1498 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2)))) -(-13 (-1120) (-10 -8 (-15 -1498 ((-552) $)))) -((-2707 (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|)) 32))) -(((-581 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|))) (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|)) (T -581)) -((-2707 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070 *3)) (-4 *3 (-928 *7 *6 *4)) (-4 *6 (-776)) (-4 *4 (-830)) (-4 *7 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *6 *4 *7 *3))))) -(-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|))) (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 63)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 54) (($ $ (-552) (-552)) 55)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 60)) (-2507 (($ $) 100)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1287 (((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552))) 224)) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 34)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2391 (((-111) $) NIL)) (-2641 (((-552) $) 58) (((-552) $ (-552)) 59)) (-2624 (((-111) $) NIL)) (-3322 (($ $ (-900)) 76)) (-3045 (($ (-1 |#1| (-552)) $) 73)) (-3267 (((-111) $) 25)) (-1832 (($ |#1| (-552)) 22) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 67)) (-2586 (($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 13)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-2019 (((-3 $ "failed") $ $ (-111)) 99)) (-4000 (($ $ $) 108)) (-1498 (((-1096) $) NIL)) (-4323 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 15)) (-4060 (((-1005 (-823 (-552))) $) 14)) (-4168 (($ $ (-552)) 45)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-1985 ((|#1| $ (-552)) 57) (($ $ $) NIL (|has| (-552) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3567 (((-552) $) NIL)) (-2890 (($ $) 46)) (-1477 (((-842) $) NIL) (($ (-552)) 28) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 27 (|has| |#1| (-169)))) (-1889 ((|#1| $ (-552)) 56)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 37)) (-3174 ((|#1| $) NIL)) (-2203 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-2807 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-2570 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-2842 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-1649 (($ $) 189 (|has| |#1| (-38 (-401 (-552)))))) (-3715 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-3435 (($ $ (-401 (-552))) 166 (|has| |#1| (-38 (-401 (-552)))))) (-2838 (($ $ |#1|) 146 (|has| |#1| (-38 (-401 (-552)))))) (-4108 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-2674 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-1912 (($ $) 191 (|has| |#1| (-38 (-401 (-552)))))) (-1466 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-2324 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-3256 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3910 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1290 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-1835 (($ $) 197 (|has| |#1| (-38 (-401 (-552)))))) (-4248 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-2177 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-2171 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-2479 (($ $) 201 (|has| |#1| (-38 (-401 (-552)))))) (-1906 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-1576 (($ $) 203 (|has| |#1| (-38 (-401 (-552)))))) (-4138 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-2120 (($ $) 199 (|has| |#1| (-38 (-401 (-552)))))) (-2062 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-3398 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-4329 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-1922 (($) 29 T CONST)) (-1933 (($) 38 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2292 (((-111) $ $) 65)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 84) (($ $ $) 64)) (-2384 (($ $ $) 81)) (** (($ $ (-900)) NIL) (($ $ (-754)) 103)) (* (($ (-900) $) 89) (($ (-754) $) 87) (($ (-552) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-582 |#1|) (-13 (-1213 |#1| (-552)) (-10 -8 (-15 -2586 ($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4060 ((-1005 (-823 (-552))) $)) (-15 -4323 ((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -3267 ((-111) $)) (-15 -3045 ($ (-1 |#1| (-552)) $)) (-15 -2019 ((-3 $ "failed") $ $ (-111))) (-15 -2507 ($ $)) (-15 -4000 ($ $ $)) (-15 -1287 ((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -3435 ($ $ (-401 (-552)))) (-15 -2674 ($ $)) (-15 -4108 ($ $)) (-15 -2842 ($ $)) (-15 -1290 ($ $)) (-15 -2807 ($ $)) (-15 -3256 ($ $)) (-15 -3715 ($ $)) (-15 -1466 ($ $)) (-15 -2171 ($ $)) (-15 -4329 ($ $)) (-15 -4248 ($ $)) (-15 -2062 ($ $)) (-15 -1906 ($ $)) (-15 -4138 ($ $)) (-15 -2570 ($ $)) (-15 -3910 ($ $)) (-15 -2203 ($ $)) (-15 -2324 ($ $)) (-15 -1649 ($ $)) (-15 -1912 ($ $)) (-15 -2177 ($ $)) (-15 -3398 ($ $)) (-15 -1835 ($ $)) (-15 -2120 ($ $)) (-15 -2479 ($ $)) (-15 -1576 ($ $))) |%noBranch|))) (-1028)) (T -582)) -((-3267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-2586 (*1 *1 *2 *3) (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1028)) (-5 *1 (-582 *4)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) (-2019 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-2507 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028)))) (-4000 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028)))) (-1287 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *6)))) (-5 *4 (-1005 (-823 (-552)))) (-5 *5 (-1152)) (-5 *7 (-401 (-552))) (-4 *6 (-1028)) (-5 *2 (-842)) (-5 *1 (-582 *6)))) (-2747 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2838 (*1 *1 *1 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1028)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4108 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2842 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1290 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3256 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3715 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1466 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4329 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1906 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2479 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(-13 (-1213 |#1| (-552)) (-10 -8 (-15 -2586 ($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4060 ((-1005 (-823 (-552))) $)) (-15 -4323 ((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -3267 ((-111) $)) (-15 -3045 ($ (-1 |#1| (-552)) $)) (-15 -2019 ((-3 $ "failed") $ $ (-111))) (-15 -2507 ($ $)) (-15 -4000 ($ $ $)) (-15 -1287 ((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -3435 ($ $ (-401 (-552)))) (-15 -2674 ($ $)) (-15 -4108 ($ $)) (-15 -2842 ($ $)) (-15 -1290 ($ $)) (-15 -2807 ($ $)) (-15 -3256 ($ $)) (-15 -3715 ($ $)) (-15 -1466 ($ $)) (-15 -2171 ($ $)) (-15 -4329 ($ $)) (-15 -4248 ($ $)) (-15 -2062 ($ $)) (-15 -1906 ($ $)) (-15 -4138 ($ $)) (-15 -2570 ($ $)) (-15 -3910 ($ $)) (-15 -2203 ($ $)) (-15 -2324 ($ $)) (-15 -1649 ($ $)) (-15 -1912 ($ $)) (-15 -2177 ($ $)) (-15 -3398 ($ $)) (-15 -1835 ($ $)) (-15 -2120 ($ $)) (-15 -2479 ($ $)) (-15 -1576 ($ $))) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1777 (($ (-1132 |#1|)) 9)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 42)) (-2391 (((-111) $) 52)) (-2641 (((-754) $) 55) (((-754) $ (-754)) 54)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ $) 44 (|has| |#1| (-544)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-1132 |#1|) $) 23)) (-3995 (((-754)) 51)) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 10 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) 22)) (-2396 (($ $) 30) (($ $ $) 16)) (-2384 (($ $ $) 25)) (** (($ $ (-900)) NIL) (($ $ (-754)) 49)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-552)) 36))) -(((-583 |#1|) (-13 (-1028) (-10 -8 (-15 -1493 ((-1132 |#1|) $)) (-15 -1777 ($ (-1132 |#1|))) (-15 -2391 ((-111) $)) (-15 -2641 ((-754) $)) (-15 -2641 ((-754) $ (-754))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) (-1028)) (T -583)) -((-1493 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-583 *3)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-2641 (*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1028))))) -(-13 (-1028) (-10 -8 (-15 -1493 ((-1132 |#1|) $)) (-15 -1777 ($ (-1132 |#1|))) (-15 -2391 ((-111) $)) (-15 -2641 ((-754) $)) (-15 -2641 ((-754) $ (-754))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) -((-3516 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 15))) -(((-584 |#1| |#2|) (-10 -7 (-15 -3516 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1189) (-1189)) (T -584)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6))))) -(-10 -7 (-15 -3516 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) -((-3516 (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)) 20) (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|)) 19) (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 18))) -(((-585 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)))) (-1189) (-1189) (-1189)) (T -585)) -((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1132 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-585 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-585 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-587 *8)) (-5 *1 (-585 *6 *7 *8))))) -(-10 -7 (-15 -3516 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)))) -((-3542 ((|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))) 55)) (-2007 (((-166 |#2|) |#3|) 117)) (-3395 ((|#3| (-166 |#2|)) 44)) (-1847 ((|#2| |#3|) 19)) (-1518 ((|#3| |#2|) 33))) -(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3395 (|#3| (-166 |#2|))) (-15 -1847 (|#2| |#3|)) (-15 -1518 (|#3| |#2|)) (-15 -2007 ((-166 |#2|) |#3|)) (-15 -3542 (|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))))) (-13 (-544) (-830)) (-13 (-424 |#1|) (-981) (-1174)) (-13 (-424 (-166 |#1|)) (-981) (-1174))) (T -586)) -((-3542 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-627 (-1152))) (-4 *2 (-13 (-424 (-166 *5)) (-981) (-1174))) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-586 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-981) (-1174))))) (-2007 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-5 *2 (-166 *5)) (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174))))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-981) (-1174))))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-5 *1 (-586 *4 *2 *3)) (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174))))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) (-5 *1 (-586 *4 *5 *2))))) -(-10 -7 (-15 -3395 (|#3| (-166 |#2|))) (-15 -1847 (|#2| |#3|)) (-15 -1518 (|#3| |#2|)) (-15 -2007 ((-166 |#2|) |#3|)) (-15 -3542 (|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))))) -((-2536 (($ (-1 (-111) |#1|) $) 17)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ (-1 |#1| |#1|) |#1|) 9)) (-2509 (($ (-1 (-111) |#1|) $) 13)) (-2524 (($ (-1 (-111) |#1|) $) 15)) (-1490 (((-1132 |#1|) $) 18)) (-1477 (((-842) $) NIL))) -(((-587 |#1|) (-13 (-599 (-842)) (-10 -8 (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)) (-15 -2536 ($ (-1 (-111) |#1|) $)) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -1490 ((-1132 |#1|) $)))) (-1189)) (T -587)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2509 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2524 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1189))))) -(-13 (-599 (-842)) (-10 -8 (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)) (-15 -2536 ($ (-1 (-111) |#1|) $)) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -1490 ((-1132 |#1|) $)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-588 |#1| |#2|) (-1233 |#1|) (-1189) (-552)) (T -588)) -NIL -(-1233 |#1|) -((-3305 (((-1240) $ |#2| |#2|) 36)) (-3661 ((|#2| $) 23)) (-2285 ((|#2| $) 21)) (-3463 (($ (-1 |#3| |#3|) $) 32)) (-3516 (($ (-1 |#3| |#3|) $) 30)) (-3340 ((|#3| $) 26)) (-1942 (($ $ |#3|) 33)) (-2181 (((-111) |#3| $) 17)) (-2083 (((-627 |#3|) $) 15)) (-1985 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -3305 ((-1240) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -3340 (|#3| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -2181 ((-111) |#3| |#1|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|))) (-590 |#2| |#3|) (-1076) (-1189)) (T -589)) -NIL -(-10 -8 (-15 -3305 ((-1240) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -3340 (|#3| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -2181 ((-111) |#3| |#1|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#2| (-1076)))) (-3305 (((-1240) $ |#1| |#1|) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-3473 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 51)) (-3215 (((-627 |#2|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 43 (|has| |#1| (-830)))) (-3114 (((-627 |#2|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 44 (|has| |#1| (-830)))) (-3463 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#2| (-1076)))) (-3892 (((-627 |#1|) $) 46)) (-2358 (((-111) |#1| $) 47)) (-1498 (((-1096) $) 21 (|has| |#2| (-1076)))) (-3340 ((|#2| $) 42 (|has| |#1| (-830)))) (-1942 (($ $ |#2|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1509 (((-754) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4366))) (((-754) |#2| $) 28 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#2| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#2| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-590 |#1| |#2|) (-137) (-1076) (-1189)) (T -590)) -((-2083 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-627 *4)))) (-2358 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-627 *3)))) (-2181 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1076)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *3 (-830)) (-4 *2 (-1189)))) (-1942 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3305 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-1240))))) -(-13 (-482 |t#2|) (-282 |t#1| |t#2|) (-10 -8 (-15 -2083 ((-627 |t#2|) $)) (-15 -2358 ((-111) |t#1| $)) (-15 -3892 ((-627 |t#1|) $)) (IF (|has| |t#2| (-1076)) (IF (|has| $ (-6 -4366)) (-15 -2181 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-15 -2285 (|t#1| $)) (-15 -3661 (|t#1| $)) (-15 -3340 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -1942 ($ $ |t#2|)) (-15 -3305 ((-1240) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1076)) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842)))) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-1076) |has| |#2| (-1076)) ((-1189) . T)) -((-1477 (((-842) $) 19) (((-128) $) 14) (($ (-128)) 13))) -(((-591) (-13 (-599 (-842)) (-599 (-128)) (-10 -8 (-15 -1477 ($ (-128)))))) (T -591)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591))))) -(-13 (-599 (-842)) (-599 (-128)) (-10 -8 (-15 -1477 ($ (-128))))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1188) $) 14) (($ (-627 (-1188))) 13)) (-2697 (((-627 (-1188)) $) 10)) (-2292 (((-111) $ $) NIL))) -(((-592) (-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2697 ((-627 (-1188)) $))))) (T -592)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592))))) -(-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2697 ((-627 (-1188)) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1235 (-671 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2946 (((-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3994 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2877 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2526 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3029 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1592 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2856 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3343 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3119 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1608 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1819 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2342 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1235 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4154 (((-900)) NIL (|has| |#2| (-361 |#1|)))) (-3972 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1878 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3728 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2513 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1425 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4131 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2593 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4336 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1548 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1794 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2806 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2798 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3485 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2011 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2344 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1985 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3133 (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $) (-1235 $)) NIL (|has| |#2| (-361 |#1|))) (((-1235 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3562 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2539 (((-627 (-931 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-627 (-931 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1477 (((-842) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2957 (((-1235 $)) NIL (|has| |#2| (-411 |#1|)))) (-1360 (((-627 (-1235 |#1|))) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3288 (($ (-671 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3258 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3699 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 24)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-593 |#1| |#2|) (-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-727 |#1|)) (T -593)) -((-1477 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-727 *3))))) -(-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-2035 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) 33)) (-2642 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL) (($) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-1134) |#1|) 43)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#1| "failed") (-1134) $) 46)) (-3887 (($) NIL T CONST)) (-1496 (($ $ (-1134)) 24)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2265 (((-3 |#1| "failed") (-1134) $) 47) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (|has| $ (-6 -4366)))) (-4342 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-3689 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) 32)) (-3473 ((|#1| $ (-1134) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-1134)) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2319 (($ $) 48)) (-2849 (($ (-382)) 22) (($ (-382) (-1134)) 21)) (-3112 (((-382) $) 34)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1296 (((-627 (-1134)) $) 39)) (-3619 (((-111) (-1134) $) NIL)) (-2548 (((-1134) $) 35)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 37)) (-1985 ((|#1| $ (-1134) |#1|) NIL) ((|#1| $ (-1134)) 42)) (-3028 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL) (($) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1477 (((-842) $) 20)) (-2219 (($ $) 25)) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 19)) (-1383 (((-754) $) 41 (|has| $ (-6 -4366))))) -(((-594 |#1|) (-13 (-358 (-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-1165 (-1134) |#1|) (-10 -8 (-6 -4366) (-15 -2319 ($ $)))) (-1076)) (T -594)) -((-2319 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1076))))) -(-13 (-358 (-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-1165 (-1134) |#1|) (-10 -8 (-6 -4366) (-15 -2319 ($ $)))) -((-3082 (((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 15)) (-1296 (((-627 |#2|) $) 19)) (-3619 (((-111) |#2| $) 12))) -(((-595 |#1| |#2| |#3|) (-10 -8 (-15 -1296 ((-627 |#2|) |#1|)) (-15 -3619 ((-111) |#2| |#1|)) (-15 -3082 ((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|))) (-596 |#2| |#3|) (-1076) (-1076)) (T -595)) -NIL -(-10 -8 (-15 -1296 ((-627 |#2|) |#1|)) (-15 -3619 ((-111) |#2| |#1|)) (-15 -3082 ((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|))) -((-1465 (((-111) $ $) 19 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40)) (-1498 (((-1096) $) 21 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51)) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50)) (-1477 (((-842) $) 18 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-596 |#1| |#2|) (-137) (-1076) (-1076)) (T -596)) -((-3619 (*1 *2 *3 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-111)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-627 *3)))) (-2265 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-3602 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) -(-13 (-224 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))) (-10 -8 (-15 -3619 ((-111) |t#1| $)) (-15 -1296 ((-627 |t#1|) $)) (-15 -2265 ((-3 |t#2| "failed") |t#1| $)) (-15 -3602 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) ((-599 (-842)) -1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-303 #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-482 #0#) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-1076) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) ((-1189) . T)) -((-3475 (((-598 |#2|) |#1|) 15)) (-2224 (((-3 |#1| "failed") (-598 |#2|)) 19))) -(((-597 |#1| |#2|) (-10 -7 (-15 -3475 ((-598 |#2|) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-598 |#2|)))) (-830) (-830)) (T -597)) -((-2224 (*1 *2 *3) (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-830)) (-4 *2 (-830)) (-5 *1 (-597 *2 *4)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-830)) (-4 *4 (-830))))) -(-10 -7 (-15 -3475 ((-598 |#2|) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-598 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3320 (((-3 (-1152) "failed") $) 37)) (-2944 (((-1240) $ (-754)) 26)) (-2967 (((-754) $) 25)) (-4148 (((-113) $) 12)) (-3112 (((-1152) $) 20)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2991 (($ (-113) (-627 |#1|) (-754)) 30) (($ (-1152)) 31)) (-2070 (((-111) $ (-113)) 18) (((-111) $ (-1152)) 16)) (-3476 (((-754) $) 22)) (-1498 (((-1096) $) NIL)) (-3562 (((-871 (-552)) $) 77 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 84 (|has| |#1| (-600 (-871 (-373))))) (((-528) $) 69 (|has| |#1| (-600 (-528))))) (-1477 (((-842) $) 55)) (-1731 (((-627 |#1|) $) 24)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 41)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 42))) -(((-598 |#1|) (-13 (-130) (-863 |#1|) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4148 ((-113) $)) (-15 -1731 ((-627 |#1|) $)) (-15 -3476 ((-754) $)) (-15 -2991 ($ (-113) (-627 |#1|) (-754))) (-15 -2991 ($ (-1152))) (-15 -3320 ((-3 (-1152) "failed") $)) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-830)) (T -598)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-2991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-830)) (-5 *1 (-598 *5)))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-3320 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830))))) -(-13 (-130) (-863 |#1|) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4148 ((-113) $)) (-15 -1731 ((-627 |#1|) $)) (-15 -3476 ((-754) $)) (-15 -2991 ($ (-113) (-627 |#1|) (-754))) (-15 -2991 ($ (-1152))) (-15 -3320 ((-3 (-1152) "failed") $)) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) -((-1477 ((|#1| $) 6))) -(((-599 |#1|) (-137) (-1189)) (T -599)) -((-1477 (*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1189))))) -(-13 (-10 -8 (-15 -1477 (|t#1| $)))) -((-3562 ((|#1| $) 6))) -(((-600 |#1|) (-137) (-1189)) (T -600)) -((-3562 (*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1189))))) -(-13 (-10 -8 (-15 -3562 (|t#1| $)))) -((-2600 (((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)) 15) (((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 16))) -(((-601 |#1| |#2|) (-10 -7 (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -601)) -((-2600 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-1148 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6)))) (-2600 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-1148 (-401 *5))) (-5 *1 (-601 *4 *5)) (-5 *3 (-401 *5))))) -(-10 -7 (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) -((-1465 (((-111) $ $) NIL)) (-1645 (($) 11 T CONST)) (-2503 (($) 12 T CONST)) (-1881 (($ $ $) 24)) (-1681 (($ $) 22)) (-1595 (((-1134) $) NIL)) (-2516 (($ $ $) 25)) (-1498 (((-1096) $) NIL)) (-1336 (($) 10 T CONST)) (-1655 (($ $ $) 26)) (-1477 (((-842) $) 30)) (-1911 (((-111) $ (|[\|\|]| -1336)) 19) (((-111) $ (|[\|\|]| -1645)) 21) (((-111) $ (|[\|\|]| -2503)) 17)) (-2520 (($ $ $) 23)) (-2292 (((-111) $ $) 15))) -(((-602) (-13 (-946) (-10 -8 (-15 -1336 ($) -3488) (-15 -1645 ($) -3488) (-15 -2503 ($) -3488) (-15 -1911 ((-111) $ (|[\|\|]| -1336))) (-15 -1911 ((-111) $ (|[\|\|]| -1645))) (-15 -1911 ((-111) $ (|[\|\|]| -2503)))))) (T -602)) -((-1336 (*1 *1) (-5 *1 (-602))) (-1645 (*1 *1) (-5 *1 (-602))) (-2503 (*1 *1) (-5 *1 (-602))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1336)) (-5 *2 (-111)) (-5 *1 (-602)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1645)) (-5 *2 (-111)) (-5 *1 (-602)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2503)) (-5 *2 (-111)) (-5 *1 (-602))))) -(-13 (-946) (-10 -8 (-15 -1336 ($) -3488) (-15 -1645 ($) -3488) (-15 -2503 ($) -3488) (-15 -1911 ((-111) $ (|[\|\|]| -1336))) (-15 -1911 ((-111) $ (|[\|\|]| -1645))) (-15 -1911 ((-111) $ (|[\|\|]| -2503))))) -((-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) -(((-603 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-604 |#2|) (-1028)) (T -603)) -NIL -(-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 34)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-604 |#1|) (-137) (-1028)) (T -604)) -((-1477 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1028))))) -(-13 (-1028) (-630 |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-2624 (((-111) $) NIL)) (-2918 ((|#1| $) 13)) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2929 ((|#3| $) 15)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL)) (-3995 (((-754)) 20)) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) 12 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2407 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-605 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-709) |#2|)) (T -605)) -((-2407 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-709) *4)))) (-2407 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-709) *4)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-709) *3)))) (-2929 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) -((-1315 ((|#2| |#2| (-1152) (-1152)) 18))) -(((-606 |#1| |#2|) (-10 -7 (-15 -1315 (|#2| |#2| (-1152) (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -606)) -((-1315 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-29 *4)))))) -(-10 -7 (-15 -1315 (|#2| |#2| (-1152) (-1152)))) -((-1465 (((-111) $ $) 56)) (-3024 (((-111) $) 52)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1824 ((|#1| $) 49)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-4194 (((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)) 97 (|has| |#1| (-357)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 24)) (-2040 (((-3 $ "failed") $) 75)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-2641 (((-552) $) 19)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) 36)) (-1832 (($ |#1| (-552)) 21)) (-1993 ((|#1| $) 51)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) 87 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) 79)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2718 (((-754) $) 99 (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 98 (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3567 (((-552) $) 34)) (-3562 (((-401 |#2|) $) 42)) (-1477 (((-842) $) 62) (($ (-552)) 32) (($ $) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 31) (($ |#2|) 22)) (-1889 ((|#1| $ (-552)) 63)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 29)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 9 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) 17)) (-2396 (($ $) 46) (($ $ $) NIL)) (-2384 (($ $ $) 76)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 26) (($ $ $) 44))) -(((-607 |#1| |#2|) (-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1017 |#2|) (-10 -8 (-15 -3267 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -2641 ((-552) $)) (-15 -2014 ($ $)) (-15 -1993 (|#1| $)) (-15 -1824 (|#1| $)) (-15 -1889 (|#1| $ (-552))) (-15 -1832 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -4194 ((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) (-544) (-1211 |#1|)) (T -607)) -((-3267 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-3567 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-2641 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-2014 (*1 *1 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1993 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1824 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3043 (-607 *4 *5)) (|:| -1469 (-401 *5)))) (-5 *1 (-607 *4 *5)) (-5 *3 (-401 *5))))) -(-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1017 |#2|) (-10 -8 (-15 -3267 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -2641 ((-552) $)) (-15 -2014 ($ $)) (-15 -1993 (|#1| $)) (-15 -1824 (|#1| $)) (-15 -1889 (|#1| $ (-552))) (-15 -1832 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -4194 ((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) -((-1361 (((-627 |#6|) (-627 |#4|) (-111)) 47)) (-2486 ((|#6| |#6|) 40))) -(((-608 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2486 (|#6| |#6|)) (-15 -1361 ((-627 |#6|) (-627 |#4|) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|) (-1085 |#1| |#2| |#3| |#4|)) (T -608)) -((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *10)) (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *10 (-1085 *5 *6 *7 *8)))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *2 (-1085 *3 *4 *5 *6))))) -(-10 -7 (-15 -2486 (|#6| |#6|)) (-15 -1361 ((-627 |#6|) (-627 |#4|) (-111)))) -((-2156 (((-111) |#3| (-754) (-627 |#3|)) 23)) (-3746 (((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)) 55))) -(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2156 ((-111) |#3| (-754) (-627 |#3|))) (-15 -3746 ((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)))) (-830) (-776) (-301) (-928 |#3| |#2| |#1|)) (T -609)) -((-3746 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2101 (-627 (-2 (|:| |irr| *10) (|:| -3594 (-552))))))) (-5 *6 (-627 *3)) (-5 *7 (-627 *8)) (-4 *8 (-830)) (-4 *3 (-301)) (-4 *10 (-928 *3 *9 *8)) (-4 *9 (-776)) (-5 *2 (-2 (|:| |polfac| (-627 *10)) (|:| |correct| *3) (|:| |corrfact| (-627 (-1148 *3))))) (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-627 (-1148 *3))))) (-2156 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-754)) (-5 *5 (-627 *3)) (-4 *3 (-301)) (-4 *6 (-830)) (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-609 *6 *7 *3 *8)) (-4 *8 (-928 *3 *7 *6))))) -(-10 -7 (-15 -2156 ((-111) |#3| (-754) (-627 |#3|))) (-15 -3746 ((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)))) -((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-610) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -610)) -((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610))))) -(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3627 (($ $) 67)) (-4135 (((-646 |#1| |#2|) $) 52)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 70)) (-3333 (((-627 (-288 |#2|)) $ $) 33)) (-1498 (((-1096) $) NIL)) (-3154 (($ (-646 |#1| |#2|)) 48)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 58) (((-1250 |#1| |#2|) $) NIL) (((-1255 |#1| |#2|) $) 66)) (-1933 (($) 53 T CONST)) (-1712 (((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $) 31)) (-4346 (((-627 (-646 |#1| |#2|)) (-627 |#1|)) 65)) (-1880 (((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $) 37)) (-2292 (((-111) $ $) 54)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 44))) -(((-611 |#1| |#2| |#3|) (-13 (-466) (-10 -8 (-15 -3154 ($ (-646 |#1| |#2|))) (-15 -4135 ((-646 |#1| |#2|) $)) (-15 -1880 ((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $)) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1255 |#1| |#2|) $)) (-15 -3627 ($ $)) (-15 -1671 ((-627 |#1|) $)) (-15 -4346 ((-627 (-646 |#1| |#2|)) (-627 |#1|))) (-15 -1712 ((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $)) (-15 -3333 ((-627 (-288 |#2|)) $ $)))) (-830) (-13 (-169) (-700 (-401 (-552)))) (-900)) (T -611)) -((-3154 (*1 *1 *2) (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-5 *1 (-611 *3 *4 *5)) (-14 *5 (-900)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-646 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-872 *3)) (|:| |c| *4)))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1255 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-611 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-13 (-169) (-700 (-401 (-552))))) (-14 *4 (-900)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-646 *4 *5))) (-5 *1 (-611 *4 *5 *6)) (-4 *5 (-13 (-169) (-700 (-401 (-552))))) (-14 *6 (-900)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-654 *3)) (|:| |c| *4)))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-3333 (*1 *2 *1 *1) (-12 (-5 *2 (-627 (-288 *4))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) -(-13 (-466) (-10 -8 (-15 -3154 ($ (-646 |#1| |#2|))) (-15 -4135 ((-646 |#1| |#2|) $)) (-15 -1880 ((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $)) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1255 |#1| |#2|) $)) (-15 -3627 ($ $)) (-15 -1671 ((-627 |#1|) $)) (-15 -4346 ((-627 (-646 |#1| |#2|)) (-627 |#1|))) (-15 -1712 ((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $)) (-15 -3333 ((-627 (-288 |#2|)) $ $)))) -((-1361 (((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)) 72) (((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111)) 58)) (-3583 (((-111) (-627 (-763 |#1| (-844 |#2|)))) 23)) (-4044 (((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)) 71)) (-2546 (((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111)) 57)) (-2875 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|)))) 27)) (-3287 (((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|)))) 26))) -(((-612 |#1| |#2|) (-10 -7 (-15 -3583 ((-111) (-627 (-763 |#1| (-844 |#2|))))) (-15 -3287 ((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|))))) (-15 -2875 ((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))))) (-15 -2546 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -4044 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)))) (-445) (-627 (-1152))) (T -612)) -((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) (-5 *1 (-612 *5 *6)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-612 *5 *6)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) (-5 *1 (-612 *5 *6)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-612 *5 *6)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4)))) (-3287 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-627 (-763 *4 (-844 *5)))) (-4 *4 (-445)) (-14 *5 (-627 (-1152))) (-5 *2 (-111)) (-5 *1 (-612 *4 *5))))) -(-10 -7 (-15 -3583 ((-111) (-627 (-763 |#1| (-844 |#2|))))) (-15 -3287 ((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|))))) (-15 -2875 ((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))))) (-15 -2546 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -4044 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)))) -((-1607 (($ $) 38)) (-1467 (($ $) 21)) (-1584 (($ $) 37)) (-1445 (($ $) 22)) (-1628 (($ $) 36)) (-1492 (($ $) 23)) (-2951 (($) 48)) (-4135 (($ $) 45)) (-2059 (($ $) 17)) (-3096 (($ $ (-1068 $)) 7) (($ $ (-1152)) 6)) (-3154 (($ $) 46)) (-1398 (($ $) 15)) (-1430 (($ $) 16)) (-1640 (($ $) 35)) (-1502 (($ $) 24)) (-1615 (($ $) 34)) (-1479 (($ $) 25)) (-1596 (($ $) 33)) (-1456 (($ $) 26)) (-1673 (($ $) 44)) (-1534 (($ $) 32)) (-1652 (($ $) 43)) (-1513 (($ $) 31)) (-1697 (($ $) 42)) (-1561 (($ $) 30)) (-3519 (($ $) 41)) (-1575 (($ $) 29)) (-1686 (($ $) 40)) (-1547 (($ $) 28)) (-1661 (($ $) 39)) (-1524 (($ $) 27)) (-3903 (($ $) 19)) (-2499 (($ $) 20)) (-4173 (($ $) 18)) (** (($ $ $) 47))) -(((-613) (-137)) (T -613)) -((-2499 (*1 *1 *1) (-4 *1 (-613))) (-3903 (*1 *1 *1) (-4 *1 (-613))) (-4173 (*1 *1 *1) (-4 *1 (-613))) (-2059 (*1 *1 *1) (-4 *1 (-613))) (-1430 (*1 *1 *1) (-4 *1 (-613))) (-1398 (*1 *1 *1) (-4 *1 (-613)))) -(-13 (-938) (-1174) (-10 -8 (-15 -2499 ($ $)) (-15 -3903 ($ $)) (-15 -4173 ($ $)) (-15 -2059 ($ $)) (-15 -1430 ($ $)) (-15 -1398 ($ $)))) -(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-938) . T) ((-1174) . T) ((-1177) . T)) -((-4148 (((-113) (-113)) 83)) (-2059 ((|#2| |#2|) 30)) (-3096 ((|#2| |#2| (-1068 |#2|)) 79) ((|#2| |#2| (-1152)) 52)) (-1398 ((|#2| |#2|) 29)) (-1430 ((|#2| |#2|) 31)) (-3749 (((-111) (-113)) 34)) (-3903 ((|#2| |#2|) 26)) (-2499 ((|#2| |#2|) 28)) (-4173 ((|#2| |#2|) 27))) -(((-614 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -2499 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1152))) (-15 -3096 (|#2| |#2| (-1068 |#2|)))) (-13 (-830) (-544)) (-13 (-424 |#1|) (-981) (-1174))) (T -614)) -((-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *4)) (-4 *4 (-13 (-424 *3) (-981) (-1174))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-614 *4 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174)))))) -(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -2499 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1152))) (-15 -3096 (|#2| |#2| (-1068 |#2|)))) -((-2781 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 53)) (-2738 (((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 68)) (-1326 (((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|)) 70) (((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|)) 69)) (-4213 (((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|))) 108)) (-3936 (((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 83)) (-2940 (((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|))) 118)) (-1624 (((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|))) 58)) (-3106 (((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 41)) (-2431 (((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|))) 50)) (-4269 (((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|))) 91))) -(((-615 |#1| |#2|) (-10 -7 (-15 -4213 ((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|)))) (-15 -2940 ((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|)))) (-15 -2738 ((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -3106 ((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1624 ((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|)))) (-15 -4269 ((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -3936 ((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -2431 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -2781 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) (-627 (-1152)) (-445)) (T -615)) -((-2781 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-474 *4 *5)) (-5 *1 (-615 *4 *5)))) (-2431 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5)))) (-3936 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-844 *4)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5)))) (-4269 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-242 *5 *6))) (-4 *6 (-445)) (-5 *2 (-242 *5 *6)) (-14 *5 (-627 (-1152))) (-5 *1 (-615 *5 *6)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-1235 *6)) (-5 *1 (-615 *5 *6)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-627 (-474 *3 *4))) (-14 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-615 *3 *4)))) (-1326 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) (-4 *6 (-445)))) (-1326 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) (-4 *6 (-445)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-627 (-242 *4 *5))) (-5 *1 (-615 *4 *5)))) (-2940 (*1 *2 *3) (-12 (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |glbase| (-627 (-242 *4 *5))) (|:| |glval| (-627 (-552))))) (-5 *1 (-615 *4 *5)) (-5 *3 (-627 (-242 *4 *5))))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |gblist| (-627 (-242 *4 *5))) (|:| |gvlist| (-627 (-552))))) (-5 *1 (-615 *4 *5))))) -(-10 -7 (-15 -4213 ((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|)))) (-15 -2940 ((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|)))) (-15 -2738 ((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -3106 ((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1624 ((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|)))) (-15 -4269 ((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -3936 ((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -2431 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -2781 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-52) $ (-1134) (-52)) 16) (((-52) $ (-1152) (-52)) 17)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1134) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1134) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-52) $ (-1134) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1134)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-2319 (($ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1284 (($ (-382)) 9)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1134)) $) NIL)) (-3619 (((-111) (-1134) $) NIL)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-3340 (((-52) $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1134)) 14) (((-52) $ (-1134) (-52)) NIL) (((-52) $ (-1152)) 15)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-616) (-13 (-1165 (-1134) (-52)) (-10 -8 (-15 -1284 ($ (-382))) (-15 -2319 ($ $)) (-15 -1985 ((-52) $ (-1152))) (-15 -2950 ((-52) $ (-1152) (-52)))))) (T -616)) -((-1284 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-616)))) (-2319 (*1 *1 *1) (-5 *1 (-616))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-616)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1152)) (-5 *1 (-616))))) -(-13 (-1165 (-1134) (-52)) (-10 -8 (-15 -1284 ($ (-382))) (-15 -2319 ($ $)) (-15 -1985 ((-52) $ (-1152))) (-15 -2950 ((-52) $ (-1152) (-52))))) -((-2407 (($ $ |#2|) 10))) -(((-617 |#1| |#2|) (-10 -8 (-15 -2407 (|#1| |#1| |#2|))) (-618 |#2|) (-169)) (T -617)) -NIL -(-10 -8 (-15 -2407 (|#1| |#1| |#2|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1490 (($ $ $) 29)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 28 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-618 |#1|) (-137) (-169)) (T -618)) -((-1490 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(-13 (-700 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1490 ($ $ $)) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1235 (-671 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2946 (((-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3994 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2877 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2526 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3029 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1592 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2856 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3343 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3119 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1608 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1819 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2342 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1235 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4154 (((-900)) NIL (|has| |#2| (-361 |#1|)))) (-3972 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1878 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3728 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2513 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1425 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4131 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2593 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4336 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1548 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1794 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2806 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2798 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3485 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2011 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2344 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1985 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3133 (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $) (-1235 $)) NIL (|has| |#2| (-361 |#1|))) (((-1235 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3562 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2539 (((-627 (-931 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-627 (-931 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1477 (((-842) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2957 (((-1235 $)) NIL (|has| |#2| (-411 |#1|)))) (-1360 (((-627 (-1235 |#1|))) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3288 (($ (-671 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3258 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3699 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1922 (($) 15 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 17)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-727 |#1|)) (T -619)) -((-1477 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-619 *3 *2)) (-4 *2 (-727 *3))))) -(-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) -((-1484 (((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)) 82) (((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|))) 104)) (-2008 (((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|))) 109))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1484 ((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|)))) (-15 -2008 ((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|)))) (-15 -1484 ((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -620)) -((-1484 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1134)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-823 *3)) (-5 *1 (-620 *6 *3)))) (-2008 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-816 *3))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-816 *3)) (-5 *1 (-620 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-823 *3))) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (-823 *3) (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) "failed")) (-5 *1 (-620 *5 *3))))) -(-10 -7 (-15 -1484 ((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|)))) (-15 -2008 ((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|)))) (-15 -1484 ((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)))) -((-1484 (((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)) 80) (((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 20) (((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|)))) 35)) (-2008 (((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 23) (((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|)))) 43))) -(((-621 |#1|) (-10 -7 (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)))) (-445)) (T -621)) -((-1484 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-401 (-931 *6)))) (-5 *5 (-1134)) (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-823 *3)) (-5 *1 (-621 *6)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-445)) (-5 *2 (-816 *3)) (-5 *1 (-621 *5)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-816 (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-816 (-401 (-931 *5)))) (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-445)) (-5 *2 (-3 (-823 *3) (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) "failed")) (-5 *1 (-621 *5)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-823 (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-3 (-823 (-401 (-931 *5))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 *5))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 *5))) "failed"))) "failed")) (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5)))))) -(-10 -7 (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)))) -((-3274 (((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|) 57 (-1681 (|has| |#1| (-357)))) (((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|) 42 (|has| |#1| (-357)))) (-2998 (((-111) (-1235 |#2|)) 30)) (-3505 (((-3 (-1235 |#1|) "failed") (-1235 |#2|)) 33))) -(((-622 |#1| |#2|) (-10 -7 (-15 -2998 ((-111) (-1235 |#2|))) (-15 -3505 ((-3 (-1235 |#1|) "failed") (-1235 |#2|))) (IF (|has| |#1| (-357)) (-15 -3274 ((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|)) (-15 -3274 ((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|)))) (-544) (-623 |#1|)) (T -622)) -((-3274 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-1681 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1235 (-401 *5))) (-5 *1 (-622 *5 *4)))) (-3274 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-1235 *5)) (-5 *1 (-622 *5 *4)))) (-3505 (*1 *2 *3) (|partial| -12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) (-5 *2 (-1235 *4)) (-5 *1 (-622 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) (-5 *2 (-111)) (-5 *1 (-622 *4 *5))))) -(-10 -7 (-15 -2998 ((-111) (-1235 |#2|))) (-15 -3505 ((-3 (-1235 |#1|) "failed") (-1235 |#2|))) (IF (|has| |#1| (-357)) (-15 -3274 ((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|)) (-15 -3274 ((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1800 (((-671 |#1|) (-671 $)) 34) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 33)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-623 |#1|) (-137) (-1028)) (T -623)) -((-1800 (*1 *2 *3) (-12 (-5 *3 (-671 *1)) (-4 *1 (-623 *4)) (-4 *4 (-1028)) (-5 *2 (-671 *4)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *1)) (-5 *4 (-1235 *1)) (-4 *1 (-623 *5)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 *5))))))) -(-13 (-1028) (-10 -8 (-15 -1800 ((-671 |t#1|) (-671 $))) (-15 -1800 ((-2 (|:| -2515 (-671 |t#1|)) (|:| |vec| (-1235 |t#1|))) (-671 $) (-1235 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3835 ((|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|) 17) ((|#2| (-627 |#1|) (-627 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|)) 12))) -(((-624 |#1| |#2|) (-10 -7 (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|)) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)))) (-1076) (-1189)) (T -624)) -((-3835 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-624 *5 *6)))) (-3835 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 *5)) (-4 *6 (-1076)) (-4 *5 (-1189)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6))))) -(-10 -7 (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|)) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)))) -((-2169 (((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|) 18)) (-3516 (((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)) 13))) -(((-625 |#1| |#2|) (-10 -7 (-15 -2169 ((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) (-1189) (-1189)) (T -625)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-625 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-625 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-627 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-627 *5)) (-5 *1 (-625 *6 *5))))) -(-10 -7 (-15 -2169 ((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) -((-3516 (((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)) 13))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)))) (-1189) (-1189) (-1189)) (T -626)) -((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-627 *6)) (-5 *5 (-627 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-627 *8)) (-5 *1 (-626 *6 *7 *8))))) -(-10 -7 (-15 -3516 ((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-1364 (($ $ $) 32 (|has| |#1| (-1076)))) (-1353 (($ $ $) 34 (|has| |#1| (-1076)))) (-1341 (($ $ $) 37 (|has| |#1| (-1076)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $) NIL) (($ $ (-754)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) 31 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1900 (((-111) $) 9)) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2997 (($) 7)) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) 36) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 45 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3848 (($ |#1| $) 10)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ $) 30) (($ |#1| $) NIL) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1307 (($ $ $) 11)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 26 (|has| |#1| (-811))) (((-1134) $ (-111)) 27 (|has| |#1| (-811))) (((-1240) (-805) $) 28 (|has| |#1| (-811))) (((-1240) (-805) $ (-111)) 29 (|has| |#1| (-811)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-627 |#1|) (-13 (-648 |#1|) (-10 -8 (-15 -2997 ($)) (-15 -1900 ((-111) $)) (-15 -3848 ($ |#1| $)) (-15 -1307 ($ $ $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1364 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -1341 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1189)) (T -627)) -((-2997 (*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-627 *3)) (-4 *3 (-1189)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1307 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1364 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)))) (-1353 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)))) (-1341 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) -(-13 (-648 |#1|) (-10 -8 (-15 -2997 ($)) (-15 -1900 ((-111) $)) (-15 -3848 ($ |#1| $)) (-15 -1307 ($ $ $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1364 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -1341 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1157) $) NIL) (($ (-1157)) NIL) ((|#1| $) 8)) (-2292 (((-111) $ $) NIL))) -(((-628 |#1|) (-13 (-1059) (-599 |#1|)) (-1076)) (T -628)) -NIL -(-13 (-1059) (-599 |#1|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3364 (($ |#1| |#1| $) 43)) (-4031 (((-111) $ (-754)) NIL)) (-4289 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2820 (($ $) 45)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 52 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 9 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 37)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 46)) (-3954 (($ |#1| $) 26) (($ |#1| $ (-754)) 42)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-4133 ((|#1| $) 48)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 21)) (-2373 (($) 25)) (-3630 (((-111) $) 50)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 59)) (-3028 (($) 23) (($ (-627 |#1|)) 18)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) 56 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 19)) (-3562 (((-528) $) 34 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-1477 (((-842) $) 14 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 22)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 61 (|has| |#1| (-1076)))) (-1383 (((-754) $) 16 (|has| $ (-6 -4366))))) -(((-629 |#1|) (-13 (-677 |#1|) (-10 -8 (-6 -4366) (-15 -3630 ((-111) $)) (-15 -3364 ($ |#1| |#1| $)))) (-1076)) (T -629)) -((-3630 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1076)))) (-3364 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1076))))) -(-13 (-677 |#1|) (-10 -8 (-6 -4366) (-15 -3630 ((-111) $)) (-15 -3364 ($ |#1| |#1| $)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23))) -(((-630 |#1|) (-137) (-1035)) (T -630)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1035))))) +((-3661 (((-1242) (-1136)) 10))) +(((-570) (-10 -7 (-15 -3661 ((-1242) (-1136))))) (T -570)) +((-3661 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-570))))) +(-10 -7 (-15 -3661 ((-1242) (-1136)))) +((-2483 (((-573 |#2|) (-573 |#2|)) 40)) (-3925 (((-629 |#2|) (-573 |#2|)) 42)) (-2744 ((|#2| (-573 |#2|)) 48))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2483 ((-573 |#2|) (-573 |#2|))) (-15 -3925 ((-629 |#2|) (-573 |#2|))) (-15 -2744 (|#2| (-573 |#2|)))) (-13 (-445) (-1019 (-552)) (-832) (-625 (-552))) (-13 (-29 |#1|) (-1176))) (T -571)) +((-2744 (*1 *2 *3) (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1176))) (-5 *1 (-571 *4 *2)) (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1176))) (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *2 (-629 *5)) (-5 *1 (-571 *4 *5)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1176))) (-4 *3 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *1 (-571 *3 *4))))) +(-10 -7 (-15 -2483 ((-573 |#2|) (-573 |#2|))) (-15 -3925 ((-629 |#2|) (-573 |#2|))) (-15 -2744 (|#2| (-573 |#2|)))) +((-1477 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|)) 30))) +(((-572 |#1| |#2|) (-10 -7 (-15 -1477 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -1477 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1477 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1477 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-357) (-357)) (T -572)) +((-1477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-572 *5 *6)))) (-1477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) (-1477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1411 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -1411 *6) (|:| |coeff| *6))) (-5 *1 (-572 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6))))) +(-10 -7 (-15 -1477 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -1477 ((-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1411 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1477 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1477 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 69)) (-2832 ((|#1| $) NIL)) (-1411 ((|#1| $) 26)) (-3395 (((-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1371 (($ |#1| (-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) (-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3318 (((-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) $) 27)) (-2623 (((-1136) $) NIL)) (-3094 (($ |#1| |#1|) 33) (($ |#1| (-1154)) 44 (|has| |#1| (-1019 (-1154))))) (-2876 (((-1098) $) NIL)) (-3752 (((-111) $) 30)) (-3096 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1154)) 82 (|has| |#1| (-881 (-1154))))) (-3213 (((-844) $) 96) (($ |#1|) 25)) (-3297 (($) 16 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) 15) (($ $ $) NIL)) (-1698 (($ $ $) 78)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 14) (($ (-401 (-552)) $) 36) (($ $ (-401 (-552))) NIL))) +(((-573 |#1|) (-13 (-702 (-401 (-552))) (-1019 |#1|) (-10 -8 (-15 -1371 ($ |#1| (-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) (-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1411 (|#1| $)) (-15 -3318 ((-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) $)) (-15 -3395 ((-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3752 ((-111) $)) (-15 -3094 ($ |#1| |#1|)) (-15 -3096 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-881 (-1154))) (-15 -3096 (|#1| $ (-1154))) |%noBranch|) (IF (|has| |#1| (-1019 (-1154))) (-15 -3094 ($ |#1| (-1154))) |%noBranch|))) (-357)) (T -573)) +((-1371 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 *2)) (|:| |logand| (-1150 *2))))) (-5 *4 (-629 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-357)) (-5 *1 (-573 *2)))) (-1411 (*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 *3)) (|:| |logand| (-1150 *3))))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-3094 (*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-3096 (*1 *2 *1 *3) (-12 (-4 *2 (-357)) (-4 *2 (-881 *3)) (-5 *1 (-573 *2)) (-5 *3 (-1154)))) (-3094 (*1 *1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *1 (-573 *2)) (-4 *2 (-1019 *3)) (-4 *2 (-357))))) +(-13 (-702 (-401 (-552))) (-1019 |#1|) (-10 -8 (-15 -1371 ($ |#1| (-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) (-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1411 (|#1| $)) (-15 -3318 ((-629 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 |#1|)) (|:| |logand| (-1150 |#1|)))) $)) (-15 -3395 ((-629 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3752 ((-111) $)) (-15 -3094 ($ |#1| |#1|)) (-15 -3096 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-881 (-1154))) (-15 -3096 (|#1| $ (-1154))) |%noBranch|) (IF (|has| |#1| (-1019 (-1154))) (-15 -3094 ($ |#1| (-1154))) |%noBranch|))) +((-1856 (((-111) |#1|) 16)) (-3166 (((-3 |#1| "failed") |#1|) 14)) (-2479 (((-2 (|:| -4174 |#1|) (|:| -1406 (-756))) |#1|) 31) (((-3 |#1| "failed") |#1| (-756)) 18)) (-1323 (((-111) |#1| (-756)) 19)) (-1645 ((|#1| |#1|) 32)) (-1541 ((|#1| |#1| (-756)) 34))) +(((-574 |#1|) (-10 -7 (-15 -1323 ((-111) |#1| (-756))) (-15 -2479 ((-3 |#1| "failed") |#1| (-756))) (-15 -2479 ((-2 (|:| -4174 |#1|) (|:| -1406 (-756))) |#1|)) (-15 -1541 (|#1| |#1| (-756))) (-15 -1856 ((-111) |#1|)) (-15 -3166 ((-3 |#1| "failed") |#1|)) (-15 -1645 (|#1| |#1|))) (-537)) (T -574)) +((-1645 (*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-3166 (*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-1541 (*1 *2 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4174 *3) (|:| -1406 (-756)))) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-2479 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-756)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1323 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -1323 ((-111) |#1| (-756))) (-15 -2479 ((-3 |#1| "failed") |#1| (-756))) (-15 -2479 ((-2 (|:| -4174 |#1|) (|:| -1406 (-756))) |#1|)) (-15 -1541 (|#1| |#1| (-756))) (-15 -1856 ((-111) |#1|)) (-15 -3166 ((-3 |#1| "failed") |#1|)) (-15 -1645 (|#1| |#1|))) +((-2793 (((-1150 |#1|) (-902)) 27))) +(((-575 |#1|) (-10 -7 (-15 -2793 ((-1150 |#1|) (-902)))) (-343)) (T -575)) +((-2793 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-575 *4)) (-4 *4 (-343))))) +(-10 -7 (-15 -2793 ((-1150 |#1|) (-902)))) +((-2483 (((-573 (-401 (-933 |#1|))) (-573 (-401 (-933 |#1|)))) 27)) (-2889 (((-3 (-310 |#1|) (-629 (-310 |#1|))) (-401 (-933 |#1|)) (-1154)) 34 (|has| |#1| (-144)))) (-3925 (((-629 (-310 |#1|)) (-573 (-401 (-933 |#1|)))) 19)) (-2858 (((-310 |#1|) (-401 (-933 |#1|)) (-1154)) 32 (|has| |#1| (-144)))) (-2744 (((-310 |#1|) (-573 (-401 (-933 |#1|)))) 21))) +(((-576 |#1|) (-10 -7 (-15 -2483 ((-573 (-401 (-933 |#1|))) (-573 (-401 (-933 |#1|))))) (-15 -3925 ((-629 (-310 |#1|)) (-573 (-401 (-933 |#1|))))) (-15 -2744 ((-310 |#1|) (-573 (-401 (-933 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2889 ((-3 (-310 |#1|) (-629 (-310 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -2858 ((-310 |#1|) (-401 (-933 |#1|)) (-1154)))) |%noBranch|)) (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (T -576)) +((-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *2 (-310 *5)) (-5 *1 (-576 *5)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *2 (-3 (-310 *5) (-629 (-310 *5)))) (-5 *1 (-576 *5)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-933 *4)))) (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-576 *4)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-933 *4)))) (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *2 (-629 (-310 *4))) (-5 *1 (-576 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-573 (-401 (-933 *3)))) (-4 *3 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) (-5 *1 (-576 *3))))) +(-10 -7 (-15 -2483 ((-573 (-401 (-933 |#1|))) (-573 (-401 (-933 |#1|))))) (-15 -3925 ((-629 (-310 |#1|)) (-573 (-401 (-933 |#1|))))) (-15 -2744 ((-310 |#1|) (-573 (-401 (-933 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2889 ((-3 (-310 |#1|) (-629 (-310 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -2858 ((-310 |#1|) (-401 (-933 |#1|)) (-1154)))) |%noBranch|)) +((-2076 (((-629 (-673 (-552))) (-629 (-552)) (-629 (-886 (-552)))) 46) (((-629 (-673 (-552))) (-629 (-552))) 47) (((-673 (-552)) (-629 (-552)) (-886 (-552))) 42)) (-2264 (((-756) (-629 (-552))) 40))) +(((-577) (-10 -7 (-15 -2264 ((-756) (-629 (-552)))) (-15 -2076 ((-673 (-552)) (-629 (-552)) (-886 (-552)))) (-15 -2076 ((-629 (-673 (-552))) (-629 (-552)))) (-15 -2076 ((-629 (-673 (-552))) (-629 (-552)) (-629 (-886 (-552))))))) (T -577)) +((-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-552))) (-5 *4 (-629 (-886 (-552)))) (-5 *2 (-629 (-673 (-552)))) (-5 *1 (-577)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-629 (-673 (-552)))) (-5 *1 (-577)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-552))) (-5 *4 (-886 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-577)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-756)) (-5 *1 (-577))))) +(-10 -7 (-15 -2264 ((-756) (-629 (-552)))) (-15 -2076 ((-673 (-552)) (-629 (-552)) (-886 (-552)))) (-15 -2076 ((-629 (-673 (-552))) (-629 (-552)))) (-15 -2076 ((-629 (-673 (-552))) (-629 (-552)) (-629 (-886 (-552)))))) +((-1474 (((-629 |#5|) |#5| (-111)) 73)) (-2824 (((-111) |#5| (-629 |#5|)) 30))) +(((-578 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1474 ((-629 |#5|) |#5| (-111))) (-15 -2824 ((-111) |#5| (-629 |#5|)))) (-13 (-301) (-144)) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -578)) +((-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-578 *5 *6 *7 *8 *3)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-629 *3)) (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1087 *5 *6 *7 *8))))) +(-10 -7 (-15 -1474 ((-629 |#5|) |#5| (-111))) (-15 -2824 ((-111) |#5| (-629 |#5|)))) +((-3202 (((-111) $ $) NIL)) (-1300 (((-1113) $) 11)) (-1286 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-579) (-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $))))) (T -579)) +((-1286 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-579)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-579))))) +(-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $)))) +((-3202 (((-111) $ $) NIL (|has| (-141) (-1078)))) (-3861 (($ $) 34)) (-2302 (($ $) NIL)) (-4013 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-1270 (((-111) $ $) 51)) (-4330 (((-111) $ $ (-552)) 46)) (-2483 (((-629 $) $ (-141)) 60) (((-629 $) $ (-138)) 61)) (-3717 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-832)))) (-3646 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-832))))) (-1296 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-141) $ (-552) (-141)) 45 (|has| $ (-6 -4369))) (((-141) $ (-1204 (-552)) (-141)) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2224 (($ $ (-141)) 64) (($ $ (-138)) 65)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-1897 (($ $ (-1204 (-552)) $) 44)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-2655 (($ (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2957 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4369)))) (-2892 (((-141) $ (-552)) NIL)) (-1291 (((-111) $ $) 72)) (-1456 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1078))) (((-552) (-141) $ (-552)) 48 (|has| (-141) (-1078))) (((-552) $ $ (-552)) 47) (((-552) (-138) $ (-552)) 50)) (-3138 (((-629 (-141)) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) (-141)) 9)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 28 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| (-141) (-832)))) (-1446 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-832)))) (-3278 (((-629 (-141)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-1842 (((-552) $) 42 (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-141) (-832)))) (-1508 (((-111) $ $ (-141)) 73)) (-1806 (((-756) $ $ (-141)) 70)) (-2947 (($ (-1 (-141) (-141)) $) 33 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3906 (($ $) 37)) (-3507 (($ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2235 (($ $ (-141)) 62) (($ $ (-138)) 63)) (-2623 (((-1136) $) 38 (|has| (-141) (-1078)))) (-1759 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) 23)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-552) $) 69) (((-1098) $) NIL (|has| (-141) (-1078)))) (-2702 (((-141) $) NIL (|has| (-552) (-832)))) (-3073 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1518 (($ $ (-141)) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-629 (-141)) (-629 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3627 (((-629 (-141)) $) NIL)) (-3435 (((-111) $) 12)) (-3430 (($) 10)) (-2060 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) 52) (($ $ (-1204 (-552))) 21) (($ $ $) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368))) (((-756) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3747 (($ $ $ (-552)) 66 (|has| $ (-6 -4369)))) (-1487 (($ $) 17)) (-1522 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-3226 (($ (-629 (-141))) NIL)) (-4319 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) 16) (($ (-629 $)) 67)) (-3213 (($ (-141)) NIL) (((-844) $) 27 (|has| (-141) (-599 (-844))))) (-2584 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1613 (((-111) $ $) 14 (|has| (-141) (-1078)))) (-1655 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1632 (((-111) $ $) 15 (|has| (-141) (-832)))) (-2657 (((-756) $) 13 (|has| $ (-6 -4368))))) +(((-580 |#1|) (-13 (-1122) (-10 -8 (-15 -2876 ((-552) $)))) (-552)) (T -580)) +((-2876 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2)))) +(-13 (-1122) (-10 -8 (-15 -2876 ((-552) $)))) +((-2994 (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1072 |#4|)) 32))) +(((-581 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2994 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1072 |#4|))) (-15 -2994 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) (-778) (-832) (-544) (-930 |#3| |#1| |#2|)) (T -581)) +((-2994 (*1 *2 *3 *4) (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-930 *6 *5 *4)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1072 *3)) (-4 *3 (-930 *7 *6 *4)) (-4 *6 (-778)) (-4 *4 (-832)) (-4 *7 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *6 *4 *7 *3))))) +(-10 -7 (-15 -2994 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1072 |#4|))) (-15 -2994 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 63)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-552)) 54) (($ $ (-552) (-552)) 55)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 60)) (-2246 (($ $) 100)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3946 (((-844) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1007 (-825 (-552))) (-1154) |#1| (-401 (-552))) 224)) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 34)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3593 (((-111) $) NIL)) (-4241 (((-552) $) 58) (((-552) $ (-552)) 59)) (-4065 (((-111) $) NIL)) (-1524 (($ $ (-902)) 76)) (-3838 (($ (-1 |#1| (-552)) $) 73)) (-2231 (((-111) $) 25)) (-3590 (($ |#1| (-552)) 22) (($ $ (-1060) (-552)) NIL) (($ $ (-629 (-1060)) (-629 (-552))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) 67)) (-1762 (($ (-1007 (-825 (-552))) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 13)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2889 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-4180 (((-3 $ "failed") $ $ (-111)) 99)) (-2057 (($ $ $) 108)) (-2876 (((-1098) $) NIL)) (-2095 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 15)) (-1354 (((-1007 (-825 (-552))) $) 14)) (-3136 (($ $ (-552)) 45)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2060 ((|#1| $ (-552)) 57) (($ $ $) NIL (|has| (-552) (-1090)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3299 (((-552) $) NIL)) (-1680 (($ $) 46)) (-3213 (((-844) $) NIL) (($ (-552)) 28) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 27 (|has| |#1| (-169)))) (-2266 ((|#1| $ (-552)) 56)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) 37)) (-4046 ((|#1| $) NIL)) (-2282 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-3411 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-1591 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-2472 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-1841 (($ $) 189 (|has| |#1| (-38 (-401 (-552)))))) (-4171 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-1343 (($ $ (-401 (-552))) 166 (|has| |#1| (-38 (-401 (-552)))))) (-2425 (($ $ |#1|) 146 (|has| |#1| (-38 (-401 (-552)))))) (-3769 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-1425 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-2513 (($ $) 191 (|has| |#1| (-38 (-401 (-552)))))) (-2755 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-4122 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-2108 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-2374 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1442 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-3034 (($ $) 197 (|has| |#1| (-38 (-401 (-552)))))) (-2652 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-3304 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-3238 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-3265 (($ $) 201 (|has| |#1| (-38 (-401 (-552)))))) (-2462 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-2421 (($ $) 203 (|has| |#1| (-38 (-401 (-552)))))) (-4034 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-3931 (($ $) 199 (|has| |#1| (-38 (-401 (-552)))))) (-3434 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-4154 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-4089 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-4311 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3297 (($) 29 T CONST)) (-3309 (($) 38 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-1613 (((-111) $ $) 65)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) 84) (($ $ $) 64)) (-1698 (($ $ $) 81)) (** (($ $ (-902)) NIL) (($ $ (-756)) 103)) (* (($ (-902) $) 89) (($ (-756) $) 87) (($ (-552) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-582 |#1|) (-13 (-1215 |#1| (-552)) (-10 -8 (-15 -1762 ($ (-1007 (-825 (-552))) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -1354 ((-1007 (-825 (-552))) $)) (-15 -2095 ((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1726 ($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2231 ((-111) $)) (-15 -3838 ($ (-1 |#1| (-552)) $)) (-15 -4180 ((-3 $ "failed") $ $ (-111))) (-15 -2246 ($ $)) (-15 -2057 ($ $ $)) (-15 -3946 ((-844) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1007 (-825 (-552))) (-1154) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $)) (-15 -2425 ($ $ |#1|)) (-15 -1343 ($ $ (-401 (-552)))) (-15 -1425 ($ $)) (-15 -3769 ($ $)) (-15 -2472 ($ $)) (-15 -1442 ($ $)) (-15 -3411 ($ $)) (-15 -2108 ($ $)) (-15 -4171 ($ $)) (-15 -2755 ($ $)) (-15 -3238 ($ $)) (-15 -4089 ($ $)) (-15 -2652 ($ $)) (-15 -3434 ($ $)) (-15 -2462 ($ $)) (-15 -4034 ($ $)) (-15 -1591 ($ $)) (-15 -2374 ($ $)) (-15 -2282 ($ $)) (-15 -4122 ($ $)) (-15 -1841 ($ $)) (-15 -2513 ($ $)) (-15 -3304 ($ $)) (-15 -4154 ($ $)) (-15 -3034 ($ $)) (-15 -3931 ($ $)) (-15 -3265 ($ $)) (-15 -2421 ($ $))) |%noBranch|))) (-1030)) (T -582)) +((-2231 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1030)))) (-1762 (*1 *1 *2 *3) (-12 (-5 *2 (-1007 (-825 (-552)))) (-5 *3 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1030)) (-5 *1 (-582 *4)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1007 (-825 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1030)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-1030)))) (-1726 (*1 *1 *2) (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1030)) (-5 *1 (-582 *3)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1030)) (-5 *1 (-582 *3)))) (-4180 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1030)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1030)))) (-2057 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1030)))) (-3946 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *6)))) (-5 *4 (-1007 (-825 (-552)))) (-5 *5 (-1154)) (-5 *7 (-401 (-552))) (-4 *6 (-1030)) (-5 *2 (-844)) (-5 *1 (-582 *6)))) (-2889 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2425 (*1 *1 *1 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1030)))) (-1425 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3769 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2472 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-4171 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2755 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3238 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-4089 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2652 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2462 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-4034 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-4122 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-1841 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2513 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3304 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3034 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3931 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) (-2421 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(-13 (-1215 |#1| (-552)) (-10 -8 (-15 -1762 ($ (-1007 (-825 (-552))) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -1354 ((-1007 (-825 (-552))) $)) (-15 -2095 ((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1726 ($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2231 ((-111) $)) (-15 -3838 ($ (-1 |#1| (-552)) $)) (-15 -4180 ((-3 $ "failed") $ $ (-111))) (-15 -2246 ($ $)) (-15 -2057 ($ $ $)) (-15 -3946 ((-844) (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1007 (-825 (-552))) (-1154) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $)) (-15 -2425 ($ $ |#1|)) (-15 -1343 ($ $ (-401 (-552)))) (-15 -1425 ($ $)) (-15 -3769 ($ $)) (-15 -2472 ($ $)) (-15 -1442 ($ $)) (-15 -3411 ($ $)) (-15 -2108 ($ $)) (-15 -4171 ($ $)) (-15 -2755 ($ $)) (-15 -3238 ($ $)) (-15 -4089 ($ $)) (-15 -2652 ($ $)) (-15 -3434 ($ $)) (-15 -2462 ($ $)) (-15 -4034 ($ $)) (-15 -1591 ($ $)) (-15 -2374 ($ $)) (-15 -2282 ($ $)) (-15 -4122 ($ $)) (-15 -1841 ($ $)) (-15 -2513 ($ $)) (-15 -3304 ($ $)) (-15 -4154 ($ $)) (-15 -3034 ($ $)) (-15 -3931 ($ $)) (-15 -3265 ($ $)) (-15 -2421 ($ $))) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1726 (($ (-1134 |#1|)) 9)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) 42)) (-3593 (((-111) $) 52)) (-4241 (((-756) $) 55) (((-756) $ (-756)) 54)) (-4065 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ $) 44 (|has| |#1| (-544)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-1134 |#1|) $) 23)) (-2014 (((-756)) 51)) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 10 T CONST)) (-3309 (($) 14 T CONST)) (-1613 (((-111) $ $) 22)) (-1709 (($ $) 30) (($ $ $) 16)) (-1698 (($ $ $) 25)) (** (($ $ (-902)) NIL) (($ $ (-756)) 49)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-552)) 36))) +(((-583 |#1|) (-13 (-1030) (-10 -8 (-15 -2984 ((-1134 |#1|) $)) (-15 -1726 ($ (-1134 |#1|))) (-15 -3593 ((-111) $)) (-15 -4241 ((-756) $)) (-15 -4241 ((-756) $ (-756))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) (-1030)) (T -583)) +((-2984 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) (-1726 (*1 *1 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-583 *3)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) (-4241 (*1 *2 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1030))))) +(-13 (-1030) (-10 -8 (-15 -2984 ((-1134 |#1|) $)) (-15 -1726 ($ (-1134 |#1|))) (-15 -3593 ((-111) $)) (-15 -4241 ((-756) $)) (-15 -4241 ((-756) $ (-756))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) +((-1477 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 15))) +(((-584 |#1| |#2|) (-10 -7 (-15 -1477 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1191) (-1191)) (T -584)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6))))) +(-10 -7 (-15 -1477 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) +((-1477 (((-1134 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1134 |#2|)) 20) (((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-587 |#2|)) 19) (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 18))) +(((-585 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-587 |#2|))) (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1134 |#2|)))) (-1191) (-1191) (-1191)) (T -585)) +((-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1134 *7)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) (-5 *1 (-585 *6 *7 *8)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1134 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) (-5 *1 (-585 *6 *7 *8)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-587 *8)) (-5 *1 (-585 *6 *7 *8))))) +(-10 -7 (-15 -1477 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-587 |#2|))) (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1134 |#2|)))) +((-3046 ((|#3| |#3| (-629 (-598 |#3|)) (-629 (-1154))) 55)) (-4064 (((-166 |#2|) |#3|) 117)) (-4123 ((|#3| (-166 |#2|)) 44)) (-3143 ((|#2| |#3|) 19)) (-3201 ((|#3| |#2|) 33))) +(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -4123 (|#3| (-166 |#2|))) (-15 -3143 (|#2| |#3|)) (-15 -3201 (|#3| |#2|)) (-15 -4064 ((-166 |#2|) |#3|)) (-15 -3046 (|#3| |#3| (-629 (-598 |#3|)) (-629 (-1154))))) (-13 (-544) (-832)) (-13 (-424 |#1|) (-983) (-1176)) (-13 (-424 (-166 |#1|)) (-983) (-1176))) (T -586)) +((-3046 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-629 (-598 *2))) (-5 *4 (-629 (-1154))) (-4 *2 (-13 (-424 (-166 *5)) (-983) (-1176))) (-4 *5 (-13 (-544) (-832))) (-5 *1 (-586 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-983) (-1176))))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832))) (-5 *2 (-166 *5)) (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-983) (-1176))) (-4 *3 (-13 (-424 (-166 *4)) (-983) (-1176))))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832))) (-4 *2 (-13 (-424 (-166 *4)) (-983) (-1176))) (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-983) (-1176))))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-832))) (-4 *2 (-13 (-424 *4) (-983) (-1176))) (-5 *1 (-586 *4 *2 *3)) (-4 *3 (-13 (-424 (-166 *4)) (-983) (-1176))))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-983) (-1176))) (-4 *4 (-13 (-544) (-832))) (-4 *2 (-13 (-424 (-166 *4)) (-983) (-1176))) (-5 *1 (-586 *4 *5 *2))))) +(-10 -7 (-15 -4123 (|#3| (-166 |#2|))) (-15 -3143 (|#2| |#3|)) (-15 -3201 (|#3| |#2|)) (-15 -4064 ((-166 |#2|) |#3|)) (-15 -3046 (|#3| |#3| (-629 (-598 |#3|)) (-629 (-1154))))) +((-3954 (($ (-1 (-111) |#1|) $) 17)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (($ (-1 |#1| |#1|) |#1|) 9)) (-3935 (($ (-1 (-111) |#1|) $) 13)) (-3943 (($ (-1 (-111) |#1|) $) 15)) (-3226 (((-1134 |#1|) $) 18)) (-3213 (((-844) $) NIL))) +(((-587 |#1|) (-13 (-599 (-844)) (-10 -8 (-15 -1477 ($ (-1 |#1| |#1|) $)) (-15 -3935 ($ (-1 (-111) |#1|) $)) (-15 -3943 ($ (-1 (-111) |#1|) $)) (-15 -3954 ($ (-1 (-111) |#1|) $)) (-15 -4340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3226 ((-1134 |#1|) $)))) (-1191)) (T -587)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) (-3935 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) (-3943 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) (-4340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1191))))) +(-13 (-599 (-844)) (-10 -8 (-15 -1477 ($ (-1 |#1| |#1|) $)) (-15 -3935 ($ (-1 (-111) |#1|) $)) (-15 -3943 ($ (-1 (-111) |#1|) $)) (-15 -3954 ($ (-1 (-111) |#1|) $)) (-15 -4340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3226 ((-1134 |#1|) $)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756)) NIL (|has| |#1| (-23)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1920 (((-673 |#1|) $ $) NIL (|has| |#1| (-1030)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3994 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-1745 (((-111) $ (-756)) NIL)) (-2556 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-3632 ((|#1| $ $) NIL (|has| |#1| (-1030)))) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2449 (($ $ $) NIL (|has| |#1| (-1030)))) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1709 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1698 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-711))) (($ $ |#1|) NIL (|has| |#1| (-711)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-588 |#1| |#2|) (-1235 |#1|) (-1191) (-552)) (T -588)) +NIL +(-1235 |#1|) +((-2660 (((-1242) $ |#2| |#2|) 36)) (-1695 ((|#2| $) 23)) (-1842 ((|#2| $) 21)) (-2947 (($ (-1 |#3| |#3|) $) 32)) (-1477 (($ (-1 |#3| |#3|) $) 30)) (-2702 ((|#3| $) 26)) (-1518 (($ $ |#3|) 33)) (-3347 (((-111) |#3| $) 17)) (-3627 (((-629 |#3|) $) 15)) (-2060 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -2660 ((-1242) |#1| |#2| |#2|)) (-15 -1518 (|#1| |#1| |#3|)) (-15 -2702 (|#3| |#1|)) (-15 -1695 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -3347 ((-111) |#3| |#1|)) (-15 -3627 ((-629 |#3|) |#1|)) (-15 -2060 (|#3| |#1| |#2|)) (-15 -2060 (|#3| |#1| |#2| |#3|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1477 (|#1| (-1 |#3| |#3|) |#1|))) (-590 |#2| |#3|) (-1078) (-1191)) (T -589)) +NIL +(-10 -8 (-15 -2660 ((-1242) |#1| |#2| |#2|)) (-15 -1518 (|#1| |#1| |#3|)) (-15 -2702 (|#3| |#1|)) (-15 -1695 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -3347 ((-111) |#3| |#1|)) (-15 -3627 ((-629 |#3|) |#1|)) (-15 -2060 (|#3| |#1| |#2|)) (-15 -2060 (|#3| |#1| |#2| |#3|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1477 (|#1| (-1 |#3| |#3|) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#2| (-1078)))) (-2660 (((-1242) $ |#1| |#1|) 40 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-2957 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) 51)) (-3138 (((-629 |#2|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-1695 ((|#1| $) 43 (|has| |#1| (-832)))) (-3278 (((-629 |#2|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1842 ((|#1| $) 44 (|has| |#1| (-832)))) (-2947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#2| (-1078)))) (-2190 (((-629 |#1|) $) 46)) (-1335 (((-111) |#1| $) 47)) (-2876 (((-1098) $) 21 (|has| |#2| (-1078)))) (-2702 ((|#2| $) 42 (|has| |#1| (-832)))) (-1518 (($ $ |#2|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2885 (((-756) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4368))) (((-756) |#2| $) 28 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#2| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#2| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-590 |#1| |#2|) (-137) (-1078) (-1191)) (T -590)) +((-3627 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) (-5 *2 (-629 *4)))) (-1335 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) (-5 *2 (-111)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) (-5 *2 (-629 *3)))) (-3347 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1078)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-111)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1191)) (-4 *2 (-1078)) (-4 *2 (-832)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1191)) (-4 *2 (-1078)) (-4 *2 (-832)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1078)) (-4 *3 (-832)) (-4 *2 (-1191)))) (-1518 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) (-2660 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) (-5 *2 (-1242))))) +(-13 (-482 |t#2|) (-282 |t#1| |t#2|) (-10 -8 (-15 -3627 ((-629 |t#2|) $)) (-15 -1335 ((-111) |t#1| $)) (-15 -2190 ((-629 |t#1|) $)) (IF (|has| |t#2| (-1078)) (IF (|has| $ (-6 -4368)) (-15 -3347 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-832)) (PROGN (-15 -1842 (|t#1| $)) (-15 -1695 (|t#1| $)) (-15 -2702 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4369)) (PROGN (-15 -1518 ($ $ |t#2|)) (-15 -2660 ((-1242) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1078)) ((-599 (-844)) -4029 (|has| |#2| (-1078)) (|has| |#2| (-599 (-844)))) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-1078) |has| |#2| (-1078)) ((-1191) . T)) +((-3213 (((-844) $) 19) (((-128) $) 14) (($ (-128)) 13))) +(((-591) (-13 (-599 (-844)) (-599 (-128)) (-10 -8 (-15 -3213 ($ (-128)))))) (T -591)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591))))) +(-13 (-599 (-844)) (-599 (-128)) (-10 -8 (-15 -3213 ($ (-128))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (((-1159) $) NIL) (($ (-1159)) NIL) (((-1190) $) 14) (($ (-629 (-1190))) 13)) (-4087 (((-629 (-1190)) $) 10)) (-1613 (((-111) $ $) NIL))) +(((-592) (-13 (-1061) (-599 (-1190)) (-10 -8 (-15 -3213 ($ (-629 (-1190)))) (-15 -4087 ((-629 (-1190)) $))))) (T -592)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-592)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-592))))) +(-13 (-1061) (-599 (-1190)) (-10 -8 (-15 -3213 ($ (-629 (-1190)))) (-15 -4087 ((-629 (-1190)) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3784 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1432 (((-1237 (-673 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1237 (-673 |#1|)) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-4124 (((-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2130 (($) NIL T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2004 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1561 (((-673 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2416 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3695 (((-673 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2583 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2637 (((-1150 (-933 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-3422 (($ $ (-902)) NIL)) (-2932 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1688 (((-1150 |#1|) $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3332 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1469 (((-1150 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-2890 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4278 (($ (-1237 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1237 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2128 (((-902)) NIL (|has| |#2| (-361 |#1|)))) (-1756 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3454 (($ $ (-902)) NIL)) (-1887 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2143 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4284 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2299 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3607 (((-673 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-3975 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1837 (((-673 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-4152 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2173 (((-1150 (-933 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1736 (($ $ (-902)) NIL)) (-3231 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3854 (((-1150 |#1|) $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3400 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-3326 (((-1150 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3724 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2623 (((-1136) $) NIL)) (-3329 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4108 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4297 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2876 (((-1098) $) NIL)) (-1864 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2060 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3464 (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-411 |#1|))) (((-1237 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $) (-1237 $)) NIL (|has| |#2| (-361 |#1|))) (((-1237 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1522 (($ (-1237 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1237 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2566 (((-629 (-933 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-629 (-933 |#1|)) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2104 (($ $ $) NIL)) (-2923 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3213 (((-844) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4199 (((-1237 $)) NIL (|has| |#2| (-411 |#1|)))) (-1430 (((-629 (-1237 |#1|))) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1826 (($ $ $ $) NIL)) (-1640 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2639 (($ (-673 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2845 (($ $ $) NIL)) (-2646 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2127 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4028 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3297 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) 24)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-593 |#1| |#2|) (-13 (-729 |#1|) (-599 |#2|) (-10 -8 (-15 -3213 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-729 |#1|)) (T -593)) +((-3213 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-729 *3))))) +(-13 (-729 |#1|) (-599 |#2|) (-10 -8 (-15 -3213 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-4321 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) 33)) (-3295 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL) (($) NIL)) (-2660 (((-1242) $ (-1136) (-1136)) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-1136) |#1|) 43)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#1| "failed") (-1136) $) 46)) (-2130 (($) NIL T CONST)) (-3018 (($ $ (-1136)) 24)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-1625 (((-3 |#1| "failed") (-1136) $) 47) (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (|has| $ (-6 -4368)))) (-2655 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-3884 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-1997 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) 32)) (-2957 ((|#1| $ (-1136) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-1136)) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-4092 (($ $) 48)) (-3092 (($ (-382)) 22) (($ (-382) (-1136)) 21)) (-4290 (((-382) $) 34)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-1136) $) NIL (|has| (-1136) (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368))) (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (((-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-1842 (((-1136) $) NIL (|has| (-1136) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1376 (((-629 (-1136)) $) 39)) (-2539 (((-111) (-1136) $) NIL)) (-2665 (((-1136) $) 35)) (-3105 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-2190 (((-629 (-1136)) $) NIL)) (-1335 (((-111) (-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 ((|#1| $) NIL (|has| (-1136) (-832)))) (-3073 (((-3 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) "failed") (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-629 (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 37)) (-2060 ((|#1| $ (-1136) |#1|) NIL) ((|#1| $ (-1136)) 42)) (-3680 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL) (($) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (((-756) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (((-756) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-3213 (((-844) $) 20)) (-2469 (($ $) 25)) (-1663 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 19)) (-2657 (((-756) $) 41 (|has| $ (-6 -4368))))) +(((-594 |#1|) (-13 (-358 (-382) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) (-1167 (-1136) |#1|) (-10 -8 (-6 -4368) (-15 -4092 ($ $)))) (-1078)) (T -594)) +((-4092 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1078))))) +(-13 (-358 (-382) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) (-1167 (-1136) |#1|) (-10 -8 (-6 -4368) (-15 -4092 ($ $)))) +((-2973 (((-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) 15)) (-1376 (((-629 |#2|) $) 19)) (-2539 (((-111) |#2| $) 12))) +(((-595 |#1| |#2| |#3|) (-10 -8 (-15 -1376 ((-629 |#2|) |#1|)) (-15 -2539 ((-111) |#2| |#1|)) (-15 -2973 ((-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|))) (-596 |#2| |#3|) (-1078) (-1078)) (T -595)) +NIL +(-10 -8 (-15 -1376 ((-629 |#2|) |#1|)) (-15 -2539 ((-111) |#2| |#1|)) (-15 -2973 ((-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|))) +((-3202 (((-111) $ $) 19 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 55 (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) 61)) (-2130 (($) 7 T CONST)) (-2738 (($ $) 58 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 46 (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 62)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 54 (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 56 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 53 (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-1376 (((-629 |#1|) $) 63)) (-2539 (((-111) |#1| $) 64)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 39)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 40)) (-2876 (((-1098) $) 21 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 51)) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 41)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) 26 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 25 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 24 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 23 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3680 (($) 49) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 48)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 31 (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 50)) (-3213 (((-844) $) 18 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 42)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-596 |#1| |#2|) (-137) (-1078) (-1078)) (T -596)) +((-2539 (*1 *2 *3 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-5 *2 (-111)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-5 *2 (-629 *3)))) (-1625 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) (-3078 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(-13 (-224 (-2 (|:| -2670 |t#1|) (|:| -3360 |t#2|))) (-10 -8 (-15 -2539 ((-111) |t#1| $)) (-15 -1376 ((-629 |t#1|) $)) (-15 -1625 ((-3 |t#2| "failed") |t#1| $)) (-15 -3078 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((-101) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) ((-599 (-844)) -4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-303 #0#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-482 #0#) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-1078) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) ((-1191) . T)) +((-3631 (((-598 |#2|) |#1|) 15)) (-2522 (((-3 |#1| "failed") (-598 |#2|)) 19))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3631 ((-598 |#2|) |#1|)) (-15 -2522 ((-3 |#1| "failed") (-598 |#2|)))) (-832) (-832)) (T -597)) +((-2522 (*1 *2 *3) (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-832)) (-4 *2 (-832)) (-5 *1 (-597 *2 *4)))) (-3631 (*1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-832)) (-4 *4 (-832))))) +(-10 -7 (-15 -3631 ((-598 |#2|) |#1|)) (-15 -2522 ((-3 |#1| "failed") (-598 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-1514 (((-3 (-1154) "failed") $) 37)) (-4105 (((-1242) $ (-756)) 26)) (-1456 (((-756) $) 25)) (-2951 (((-113) $) 12)) (-4290 (((-1154) $) 20)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-4086 (($ (-113) (-629 |#1|) (-756)) 30) (($ (-1154)) 31)) (-3515 (((-111) $ (-113)) 18) (((-111) $ (-1154)) 16)) (-2384 (((-756) $) 22)) (-2876 (((-1098) $) NIL)) (-1522 (((-873 (-552)) $) 77 (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) 84 (|has| |#1| (-600 (-873 (-373))))) (((-528) $) 69 (|has| |#1| (-600 (-528))))) (-3213 (((-844) $) 55)) (-1350 (((-629 |#1|) $) 24)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 41)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 42))) +(((-598 |#1|) (-13 (-130) (-865 |#1|) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -2951 ((-113) $)) (-15 -1350 ((-629 |#1|) $)) (-15 -2384 ((-756) $)) (-15 -4086 ($ (-113) (-629 |#1|) (-756))) (-15 -4086 ($ (-1154))) (-15 -1514 ((-3 (-1154) "failed") $)) (-15 -3515 ((-111) $ (-113))) (-15 -3515 ((-111) $ (-1154))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-832)) (T -598)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-4086 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-629 *5)) (-5 *4 (-756)) (-4 *5 (-832)) (-5 *1 (-598 *5)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-832)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-832))))) +(-13 (-130) (-865 |#1|) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -2951 ((-113) $)) (-15 -1350 ((-629 |#1|) $)) (-15 -2384 ((-756) $)) (-15 -4086 ($ (-113) (-629 |#1|) (-756))) (-15 -4086 ($ (-1154))) (-15 -1514 ((-3 (-1154) "failed") $)) (-15 -3515 ((-111) $ (-113))) (-15 -3515 ((-111) $ (-1154))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +((-3213 ((|#1| $) 6))) +(((-599 |#1|) (-137) (-1191)) (T -599)) +((-3213 (*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -3213 (|t#1| $)))) +((-1522 ((|#1| $) 6))) +(((-600 |#1|) (-137) (-1191)) (T -600)) +((-1522 (*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -1522 (|t#1| $)))) +((-1918 (((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)) 15) (((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 16))) +(((-601 |#1| |#2|) (-10 -7 (-15 -1918 ((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -1918 ((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) (-13 (-144) (-27) (-1019 (-552)) (-1019 (-401 (-552)))) (-1213 |#1|)) (T -601)) +((-1918 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-144) (-27) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-1150 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6)))) (-1918 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-144) (-27) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-1150 (-401 *5))) (-5 *1 (-601 *4 *5)) (-5 *3 (-401 *5))))) +(-10 -7 (-15 -1918 ((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -1918 ((-3 (-1150 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) +((-3213 (($ |#1|) 6))) +(((-602 |#1|) (-137) (-1191)) (T -602)) +((-3213 (*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -3213 ($ |t#1|)))) +((-3202 (((-111) $ $) NIL)) (-2800 (($) 11 T CONST)) (-3775 (($) 12 T CONST)) (-3167 (($ $ $) 24)) (-4107 (($ $) 22)) (-2623 (((-1136) $) NIL)) (-2494 (($ $ $) 25)) (-2876 (((-1098) $) NIL)) (-2608 (($) 10 T CONST)) (-1886 (($ $ $) 26)) (-3213 (((-844) $) 30)) (-3285 (((-111) $ (|[\|\|]| -2608)) 19) (((-111) $ (|[\|\|]| -2800)) 21) (((-111) $ (|[\|\|]| -3775)) 17)) (-3792 (($ $ $) 23)) (-1613 (((-111) $ $) 15))) +(((-603) (-13 (-948) (-10 -8 (-15 -2608 ($) -3930) (-15 -2800 ($) -3930) (-15 -3775 ($) -3930) (-15 -3285 ((-111) $ (|[\|\|]| -2608))) (-15 -3285 ((-111) $ (|[\|\|]| -2800))) (-15 -3285 ((-111) $ (|[\|\|]| -3775)))))) (T -603)) +((-2608 (*1 *1) (-5 *1 (-603))) (-2800 (*1 *1) (-5 *1 (-603))) (-3775 (*1 *1) (-5 *1 (-603))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2608)) (-5 *2 (-111)) (-5 *1 (-603)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2800)) (-5 *2 (-111)) (-5 *1 (-603)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3775)) (-5 *2 (-111)) (-5 *1 (-603))))) +(-13 (-948) (-10 -8 (-15 -2608 ($) -3930) (-15 -2800 ($) -3930) (-15 -3775 ($) -3930) (-15 -3285 ((-111) $ (|[\|\|]| -2608))) (-15 -3285 ((-111) $ (|[\|\|]| -2800))) (-15 -3285 ((-111) $ (|[\|\|]| -3775))))) +((-1522 (($ |#1|) 6))) +(((-604 |#1|) (-137) (-1191)) (T -604)) +((-1522 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -1522 ($ |t#1|)))) +((-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) +(((-605 |#1| |#2|) (-10 -8 (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-606 |#2|) (-1030)) (T -605)) +NIL +(-10 -8 (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 34)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-606 |#1|) (-137) (-1030)) (T -606)) +((-3213 (*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1030))))) +(-13 (-1030) (-632 |t#1|) (-10 -8 (-15 -3213 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3886 (((-552) $) NIL (|has| |#1| (-830)))) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-1338 (((-111) $) NIL (|has| |#1| (-830)))) (-4065 (((-111) $) NIL)) (-4015 ((|#1| $) 13)) (-3127 (((-111) $) NIL (|has| |#1| (-830)))) (-1772 (($ $ $) NIL (|has| |#1| (-830)))) (-2011 (($ $ $) NIL (|has| |#1| (-830)))) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4026 ((|#3| $) 15)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL)) (-2014 (((-756)) 20)) (-1578 (($ $) NIL (|has| |#1| (-830)))) (-3297 (($) NIL T CONST)) (-3309 (($) 12 T CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1720 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-607 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (-15 -1720 ($ $ |#3|)) (-15 -1720 ($ |#1| |#3|)) (-15 -4015 (|#1| $)) (-15 -4026 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-711) |#2|)) (T -607)) +((-1720 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-711) *4)))) (-1720 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-607 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-711) *4)))) (-4015 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-607 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-711) *3)))) (-4026 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-711) *4)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (-15 -1720 ($ $ |#3|)) (-15 -1720 ($ |#1| |#3|)) (-15 -4015 (|#1| $)) (-15 -4026 (|#3| $)))) +((-1904 ((|#2| |#2| (-1154) (-1154)) 18))) +(((-608 |#1| |#2|) (-10 -7 (-15 -1904 (|#2| |#2| (-1154) (-1154)))) (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-940) (-29 |#1|))) (T -608)) +((-1904 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-608 *4 *2)) (-4 *2 (-13 (-1176) (-940) (-29 *4)))))) +(-10 -7 (-15 -1904 (|#2| |#2| (-1154) (-1154)))) +((-3202 (((-111) $ $) 56)) (-3643 (((-111) $) 52)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-2936 ((|#1| $) 49)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3376 (((-2 (|:| -3818 $) (|:| -2774 (-401 |#2|))) (-401 |#2|)) 97 (|has| |#1| (-357)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) 24)) (-1293 (((-3 $ "failed") $) 75)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-4241 (((-552) $) 19)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) 36)) (-3590 (($ |#1| (-552)) 21)) (-3743 ((|#1| $) 51)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) 87 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ $) 79)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3795 (((-756) $) 99 (|has| |#1| (-357)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 98 (|has| |#1| (-357)))) (-3096 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3299 (((-552) $) 34)) (-1522 (((-401 |#2|) $) 42)) (-3213 (((-844) $) 62) (($ (-552)) 32) (($ $) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) 31) (($ |#2|) 22)) (-2266 ((|#1| $ (-552)) 63)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) 29)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 9 T CONST)) (-3309 (($) 12 T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1613 (((-111) $ $) 17)) (-1709 (($ $) 46) (($ $ $) NIL)) (-1698 (($ $ $) 76)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 26) (($ $ $) 44))) +(((-609 |#1| |#2|) (-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1019 |#2|) (-10 -8 (-15 -2231 ((-111) $)) (-15 -3299 ((-552) $)) (-15 -4241 ((-552) $)) (-15 -3766 ($ $)) (-15 -3743 (|#1| $)) (-15 -2936 (|#1| $)) (-15 -2266 (|#1| $ (-552))) (-15 -3590 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -3376 ((-2 (|:| -3818 $) (|:| -2774 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) (-544) (-1213 |#1|)) (T -609)) +((-2231 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-609 *3 *4)) (-4 *4 (-1213 *3)))) (-3299 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-609 *3 *4)) (-4 *4 (-1213 *3)))) (-4241 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-609 *3 *4)) (-4 *4 (-1213 *3)))) (-3766 (*1 *1 *1) (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2)))) (-2936 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-609 *2 *4)) (-4 *4 (-1213 *2)))) (-3590 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-609 *2 *4)) (-4 *4 (-1213 *2)))) (-3376 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| -3818 (-609 *4 *5)) (|:| -2774 (-401 *5)))) (-5 *1 (-609 *4 *5)) (-5 *3 (-401 *5))))) +(-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1019 |#2|) (-10 -8 (-15 -2231 ((-111) $)) (-15 -3299 ((-552) $)) (-15 -4241 ((-552) $)) (-15 -3766 ($ $)) (-15 -3743 (|#1| $)) (-15 -2936 (|#1| $)) (-15 -2266 (|#1| $ (-552))) (-15 -3590 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -3376 ((-2 (|:| -3818 $) (|:| -2774 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) +((-1830 (((-629 |#6|) (-629 |#4|) (-111)) 47)) (-3330 ((|#6| |#6|) 40))) +(((-610 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3330 (|#6| |#6|)) (-15 -1830 ((-629 |#6|) (-629 |#4|) (-111)))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|) (-1087 |#1| |#2| |#3| |#4|)) (T -610)) +((-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 *10)) (-5 *1 (-610 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *10 (-1087 *5 *6 *7 *8)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-610 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *2 (-1087 *3 *4 *5 *6))))) +(-10 -7 (-15 -3330 (|#6| |#6|)) (-15 -1830 ((-629 |#6|) (-629 |#4|) (-111)))) +((-3086 (((-111) |#3| (-756) (-629 |#3|)) 23)) (-1348 (((-3 (-2 (|:| |polfac| (-629 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-629 (-1150 |#3|)))) "failed") |#3| (-629 (-1150 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3772 (-629 (-2 (|:| |irr| |#4|) (|:| -2277 (-552)))))) (-629 |#3|) (-629 |#1|) (-629 |#3|)) 55))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3086 ((-111) |#3| (-756) (-629 |#3|))) (-15 -1348 ((-3 (-2 (|:| |polfac| (-629 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-629 (-1150 |#3|)))) "failed") |#3| (-629 (-1150 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3772 (-629 (-2 (|:| |irr| |#4|) (|:| -2277 (-552)))))) (-629 |#3|) (-629 |#1|) (-629 |#3|)))) (-832) (-778) (-301) (-930 |#3| |#2| |#1|)) (T -611)) +((-1348 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3772 (-629 (-2 (|:| |irr| *10) (|:| -2277 (-552))))))) (-5 *6 (-629 *3)) (-5 *7 (-629 *8)) (-4 *8 (-832)) (-4 *3 (-301)) (-4 *10 (-930 *3 *9 *8)) (-4 *9 (-778)) (-5 *2 (-2 (|:| |polfac| (-629 *10)) (|:| |correct| *3) (|:| |corrfact| (-629 (-1150 *3))))) (-5 *1 (-611 *8 *9 *3 *10)) (-5 *4 (-629 (-1150 *3))))) (-3086 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-756)) (-5 *5 (-629 *3)) (-4 *3 (-301)) (-4 *6 (-832)) (-4 *7 (-778)) (-5 *2 (-111)) (-5 *1 (-611 *6 *7 *3 *8)) (-4 *8 (-930 *3 *7 *6))))) +(-10 -7 (-15 -3086 ((-111) |#3| (-756) (-629 |#3|))) (-15 -1348 ((-3 (-2 (|:| |polfac| (-629 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-629 (-1150 |#3|)))) "failed") |#3| (-629 (-1150 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3772 (-629 (-2 (|:| |irr| |#4|) (|:| -2277 (-552)))))) (-629 |#3|) (-629 |#1|) (-629 |#3|)))) +((-3202 (((-111) $ $) NIL)) (-1300 (((-1113) $) 11)) (-1286 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-612) (-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $))))) (T -612)) +((-1286 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-612)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-612))))) +(-13 (-1061) (-10 -8 (-15 -1286 ((-1113) $)) (-15 -1300 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-2814 (((-629 |#1|) $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-2643 (($ $) 67)) (-2430 (((-648 |#1| |#2|) $) 52)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 70)) (-1616 (((-629 (-288 |#2|)) $ $) 33)) (-2876 (((-1098) $) NIL)) (-2855 (($ (-648 |#1| |#2|)) 48)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) 58) (((-1252 |#1| |#2|) $) NIL) (((-1257 |#1| |#2|) $) 66)) (-3309 (($) 53 T CONST)) (-4277 (((-629 (-2 (|:| |k| (-656 |#1|)) (|:| |c| |#2|))) $) 31)) (-4234 (((-629 (-648 |#1| |#2|)) (-629 |#1|)) 65)) (-2166 (((-629 (-2 (|:| |k| (-874 |#1|)) (|:| |c| |#2|))) $) 37)) (-1613 (((-111) $ $) 54)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 44))) +(((-613 |#1| |#2| |#3|) (-13 (-466) (-10 -8 (-15 -2855 ($ (-648 |#1| |#2|))) (-15 -2430 ((-648 |#1| |#2|) $)) (-15 -2166 ((-629 (-2 (|:| |k| (-874 |#1|)) (|:| |c| |#2|))) $)) (-15 -3213 ((-1252 |#1| |#2|) $)) (-15 -3213 ((-1257 |#1| |#2|) $)) (-15 -2643 ($ $)) (-15 -2814 ((-629 |#1|) $)) (-15 -4234 ((-629 (-648 |#1| |#2|)) (-629 |#1|))) (-15 -4277 ((-629 (-2 (|:| |k| (-656 |#1|)) (|:| |c| |#2|))) $)) (-15 -1616 ((-629 (-288 |#2|)) $ $)))) (-832) (-13 (-169) (-702 (-401 (-552)))) (-902)) (T -613)) +((-2855 (*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-5 *1 (-613 *3 *4 *5)) (-14 *5 (-902)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-648 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |k| (-874 *3)) (|:| |c| *4)))) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-613 *2 *3 *4)) (-4 *2 (-832)) (-4 *3 (-13 (-169) (-702 (-401 (-552))))) (-14 *4 (-902)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-832)) (-5 *2 (-629 (-648 *4 *5))) (-5 *1 (-613 *4 *5 *6)) (-4 *5 (-13 (-169) (-702 (-401 (-552))))) (-14 *6 (-902)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |k| (-656 *3)) (|:| |c| *4)))) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) (-1616 (*1 *2 *1 *1) (-12 (-5 *2 (-629 (-288 *4))) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902))))) +(-13 (-466) (-10 -8 (-15 -2855 ($ (-648 |#1| |#2|))) (-15 -2430 ((-648 |#1| |#2|) $)) (-15 -2166 ((-629 (-2 (|:| |k| (-874 |#1|)) (|:| |c| |#2|))) $)) (-15 -3213 ((-1252 |#1| |#2|) $)) (-15 -3213 ((-1257 |#1| |#2|) $)) (-15 -2643 ($ $)) (-15 -2814 ((-629 |#1|) $)) (-15 -4234 ((-629 (-648 |#1| |#2|)) (-629 |#1|))) (-15 -4277 ((-629 (-2 (|:| |k| (-656 |#1|)) (|:| |c| |#2|))) $)) (-15 -1616 ((-629 (-288 |#2|)) $ $)))) +((-1830 (((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111)) 72) (((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111)) 58)) (-2156 (((-111) (-629 (-765 |#1| (-846 |#2|)))) 23)) (-4318 (((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111)) 71)) (-2642 (((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111)) 57)) (-1542 (((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|)))) 27)) (-2446 (((-3 (-629 (-765 |#1| (-846 |#2|))) "failed") (-629 (-765 |#1| (-846 |#2|)))) 26))) +(((-614 |#1| |#2|) (-10 -7 (-15 -2156 ((-111) (-629 (-765 |#1| (-846 |#2|))))) (-15 -2446 ((-3 (-629 (-765 |#1| (-846 |#2|))) "failed") (-629 (-765 |#1| (-846 |#2|))))) (-15 -1542 ((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|))))) (-15 -2642 ((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -4318 ((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -1830 ((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -1830 ((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111)))) (-445) (-629 (-1154))) (T -614)) +((-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1124 *5 (-523 (-846 *6)) (-846 *6) (-765 *5 (-846 *6))))) (-5 *1 (-614 *5 *6)))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-614 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1124 *5 (-523 (-846 *6)) (-846 *6) (-765 *5 (-846 *6))))) (-5 *1 (-614 *5 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-614 *5 *6)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-629 (-765 *3 (-846 *4)))) (-4 *3 (-445)) (-14 *4 (-629 (-1154))) (-5 *1 (-614 *3 *4)))) (-2446 (*1 *2 *2) (|partial| -12 (-5 *2 (-629 (-765 *3 (-846 *4)))) (-4 *3 (-445)) (-14 *4 (-629 (-1154))) (-5 *1 (-614 *3 *4)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-629 (-765 *4 (-846 *5)))) (-4 *4 (-445)) (-14 *5 (-629 (-1154))) (-5 *2 (-111)) (-5 *1 (-614 *4 *5))))) +(-10 -7 (-15 -2156 ((-111) (-629 (-765 |#1| (-846 |#2|))))) (-15 -2446 ((-3 (-629 (-765 |#1| (-846 |#2|))) "failed") (-629 (-765 |#1| (-846 |#2|))))) (-15 -1542 ((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|))))) (-15 -2642 ((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -4318 ((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -1830 ((-629 (-1027 |#1| |#2|)) (-629 (-765 |#1| (-846 |#2|))) (-111))) (-15 -1830 ((-629 (-1124 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|)))) (-629 (-765 |#1| (-846 |#2|))) (-111)))) +((-2478 (($ $) 38)) (-2332 (($ $) 21)) (-2455 (($ $) 37)) (-2305 (($ $) 22)) (-2506 (($ $) 36)) (-2359 (($ $) 23)) (-4043 (($) 48)) (-2430 (($ $) 45)) (-2541 (($ $) 17)) (-3094 (($ $ (-1070 $)) 7) (($ $ (-1154)) 6)) (-2855 (($ $) 46)) (-2260 (($ $) 15)) (-2293 (($ $) 16)) (-2518 (($ $) 35)) (-2370 (($ $) 24)) (-2492 (($ $) 34)) (-2346 (($ $) 25)) (-2467 (($ $) 33)) (-2318 (($ $) 26)) (-3843 (($ $) 44)) (-2409 (($ $) 32)) (-2530 (($ $) 43)) (-2382 (($ $) 31)) (-3863 (($ $) 42)) (-2433 (($ $) 30)) (-3013 (($ $) 41)) (-2444 (($ $) 29)) (-3853 (($ $) 40)) (-2420 (($ $) 28)) (-2543 (($ $) 39)) (-2395 (($ $) 27)) (-2310 (($ $) 19)) (-2157 (($ $) 20)) (-3178 (($ $) 18)) (** (($ $ $) 47))) +(((-615) (-137)) (T -615)) +((-2157 (*1 *1 *1) (-4 *1 (-615))) (-2310 (*1 *1 *1) (-4 *1 (-615))) (-3178 (*1 *1 *1) (-4 *1 (-615))) (-2541 (*1 *1 *1) (-4 *1 (-615))) (-2293 (*1 *1 *1) (-4 *1 (-615))) (-2260 (*1 *1 *1) (-4 *1 (-615)))) +(-13 (-940) (-1176) (-10 -8 (-15 -2157 ($ $)) (-15 -2310 ($ $)) (-15 -3178 ($ $)) (-15 -2541 ($ $)) (-15 -2293 ($ $)) (-15 -2260 ($ $)))) +(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-940) . T) ((-1176) . T) ((-1179) . T)) +((-2951 (((-113) (-113)) 83)) (-2541 ((|#2| |#2|) 30)) (-3094 ((|#2| |#2| (-1070 |#2|)) 79) ((|#2| |#2| (-1154)) 52)) (-2260 ((|#2| |#2|) 29)) (-2293 ((|#2| |#2|) 31)) (-1374 (((-111) (-113)) 34)) (-2310 ((|#2| |#2|) 26)) (-2157 ((|#2| |#2|) 28)) (-3178 ((|#2| |#2|) 27))) +(((-616 |#1| |#2|) (-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -2157 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -3094 (|#2| |#2| (-1154))) (-15 -3094 (|#2| |#2| (-1070 |#2|)))) (-13 (-832) (-544)) (-13 (-424 |#1|) (-983) (-1176))) (T -616)) +((-3094 (*1 *2 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-13 (-424 *4) (-983) (-1176))) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-616 *4 *2)))) (-3094 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-616 *4 *2)) (-4 *2 (-13 (-424 *4) (-983) (-1176))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-3178 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-2157 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) (-4 *2 (-13 (-424 *3) (-983) (-1176))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *4)) (-4 *4 (-13 (-424 *3) (-983) (-1176))))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-616 *4 *5)) (-4 *5 (-13 (-424 *4) (-983) (-1176)))))) +(-10 -7 (-15 -1374 ((-111) (-113))) (-15 -2951 ((-113) (-113))) (-15 -2157 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -3094 (|#2| |#2| (-1154))) (-15 -3094 (|#2| |#2| (-1070 |#2|)))) +((-3173 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 53)) (-3979 (((-629 (-242 |#1| |#2|)) (-629 (-474 |#1| |#2|))) 68)) (-2005 (((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-846 |#1|)) 70) (((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)) (-846 |#1|)) 69)) (-2269 (((-2 (|:| |gblist| (-629 (-242 |#1| |#2|))) (|:| |gvlist| (-629 (-552)))) (-629 (-474 |#1| |#2|))) 108)) (-2686 (((-629 (-474 |#1| |#2|)) (-846 |#1|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|))) 83)) (-4071 (((-2 (|:| |glbase| (-629 (-242 |#1| |#2|))) (|:| |glval| (-629 (-552)))) (-629 (-242 |#1| |#2|))) 118)) (-1594 (((-1237 |#2|) (-474 |#1| |#2|) (-629 (-474 |#1| |#2|))) 58)) (-3199 (((-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|))) 41)) (-2783 (((-242 |#1| |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|))) 50)) (-1566 (((-242 |#1| |#2|) (-629 |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|))) 91))) +(((-617 |#1| |#2|) (-10 -7 (-15 -2269 ((-2 (|:| |gblist| (-629 (-242 |#1| |#2|))) (|:| |gvlist| (-629 (-552)))) (-629 (-474 |#1| |#2|)))) (-15 -4071 ((-2 (|:| |glbase| (-629 (-242 |#1| |#2|))) (|:| |glval| (-629 (-552)))) (-629 (-242 |#1| |#2|)))) (-15 -3979 ((-629 (-242 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -2005 ((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)) (-846 |#1|))) (-15 -2005 ((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-846 |#1|))) (-15 -3199 ((-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -1594 ((-1237 |#2|) (-474 |#1| |#2|) (-629 (-474 |#1| |#2|)))) (-15 -1566 ((-242 |#1| |#2|) (-629 |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|)))) (-15 -2686 ((-629 (-474 |#1| |#2|)) (-846 |#1|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -2783 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|)))) (-15 -3173 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) (-629 (-1154)) (-445)) (T -617)) +((-3173 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *2 (-474 *4 *5)) (-5 *1 (-617 *4 *5)))) (-2783 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-617 *4 *5)))) (-2686 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-629 (-474 *4 *5))) (-5 *3 (-846 *4)) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-617 *4 *5)))) (-1566 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-242 *5 *6))) (-4 *6 (-445)) (-5 *2 (-242 *5 *6)) (-14 *5 (-629 (-1154))) (-5 *1 (-617 *5 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) (-14 *5 (-629 (-1154))) (-4 *6 (-445)) (-5 *2 (-1237 *6)) (-5 *1 (-617 *5 *6)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-629 (-474 *3 *4))) (-14 *3 (-629 (-1154))) (-4 *4 (-445)) (-5 *1 (-617 *3 *4)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-474 *5 *6))) (-5 *4 (-846 *5)) (-14 *5 (-629 (-1154))) (-5 *2 (-474 *5 *6)) (-5 *1 (-617 *5 *6)) (-4 *6 (-445)))) (-2005 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-629 (-474 *5 *6))) (-5 *4 (-846 *5)) (-14 *5 (-629 (-1154))) (-5 *2 (-474 *5 *6)) (-5 *1 (-617 *5 *6)) (-4 *6 (-445)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-629 (-474 *4 *5))) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *2 (-629 (-242 *4 *5))) (-5 *1 (-617 *4 *5)))) (-4071 (*1 *2 *3) (-12 (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |glbase| (-629 (-242 *4 *5))) (|:| |glval| (-629 (-552))))) (-5 *1 (-617 *4 *5)) (-5 *3 (-629 (-242 *4 *5))))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-629 (-474 *4 *5))) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |gblist| (-629 (-242 *4 *5))) (|:| |gvlist| (-629 (-552))))) (-5 *1 (-617 *4 *5))))) +(-10 -7 (-15 -2269 ((-2 (|:| |gblist| (-629 (-242 |#1| |#2|))) (|:| |gvlist| (-629 (-552)))) (-629 (-474 |#1| |#2|)))) (-15 -4071 ((-2 (|:| |glbase| (-629 (-242 |#1| |#2|))) (|:| |glval| (-629 (-552)))) (-629 (-242 |#1| |#2|)))) (-15 -3979 ((-629 (-242 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -2005 ((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)) (-846 |#1|))) (-15 -2005 ((-474 |#1| |#2|) (-629 (-474 |#1| |#2|)) (-846 |#1|))) (-15 -3199 ((-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -1594 ((-1237 |#2|) (-474 |#1| |#2|) (-629 (-474 |#1| |#2|)))) (-15 -1566 ((-242 |#1| |#2|) (-629 |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|)))) (-15 -2686 ((-629 (-474 |#1| |#2|)) (-846 |#1|) (-629 (-474 |#1| |#2|)) (-629 (-474 |#1| |#2|)))) (-15 -2783 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-629 (-242 |#1| |#2|)))) (-15 -3173 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL)) (-2660 (((-1242) $ (-1136) (-1136)) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-52) $ (-1136) (-52)) 16) (((-52) $ (-1154) (-52)) 17)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 (-52) "failed") (-1136) $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078))))) (-1625 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-3 (-52) "failed") (-1136) $) NIL)) (-2655 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (((-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-2957 (((-52) $ (-1136) (-52)) NIL (|has| $ (-6 -4369)))) (-2892 (((-52) $ (-1136)) NIL)) (-3138 (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-4092 (($ $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-1136) $) NIL (|has| (-1136) (-832)))) (-3278 (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-1842 (((-1136) $) NIL (|has| (-1136) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1402 (($ (-382)) 9)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078))))) (-1376 (((-629 (-1136)) $) NIL)) (-2539 (((-111) (-1136) $) NIL)) (-3105 (((-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL)) (-1580 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL)) (-2190 (((-629 (-1136)) $) NIL)) (-1335 (((-111) (-1136) $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078))))) (-2702 (((-52) $) NIL (|has| (-1136) (-832)))) (-3073 (((-3 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) "failed") (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL)) (-1518 (($ $ (-52)) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (($ $ (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (($ $ (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-52)) (-629 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-629 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-3627 (((-629 (-52)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 (((-52) $ (-1136)) 14) (((-52) $ (-1136) (-52)) NIL) (((-52) $ (-1154)) 15)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078)))) (((-756) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078)))) (((-756) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-52) (-599 (-844))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 (-52))) (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-618) (-13 (-1167 (-1136) (-52)) (-10 -8 (-15 -1402 ($ (-382))) (-15 -4092 ($ $)) (-15 -2060 ((-52) $ (-1154))) (-15 -1470 ((-52) $ (-1154) (-52)))))) (T -618)) +((-1402 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-618)))) (-4092 (*1 *1 *1) (-5 *1 (-618))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-52)) (-5 *1 (-618)))) (-1470 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1154)) (-5 *1 (-618))))) +(-13 (-1167 (-1136) (-52)) (-10 -8 (-15 -1402 ($ (-382))) (-15 -4092 ($ $)) (-15 -2060 ((-52) $ (-1154))) (-15 -1470 ((-52) $ (-1154) (-52))))) +((-1720 (($ $ |#2|) 10))) +(((-619 |#1| |#2|) (-10 -8 (-15 -1720 (|#1| |#1| |#2|))) (-620 |#2|) (-169)) (T -619)) +NIL +(-10 -8 (-15 -1720 (|#1| |#1| |#2|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3226 (($ $ $) 29)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 28 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-620 |#1|) (-137) (-169)) (T -620)) +((-3226 (*1 *1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-169)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) +(-13 (-702 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3226 ($ $ $)) (IF (|has| |t#1| (-357)) (-15 -1720 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-702 |#1|) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3784 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1432 (((-1237 (-673 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1237 (-673 |#1|)) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-4124 (((-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2130 (($) NIL T CONST)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2004 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1561 (((-673 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2416 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3695 (((-673 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2583 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2637 (((-1150 (-933 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-3422 (($ $ (-902)) NIL)) (-2932 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1688 (((-1150 |#1|) $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3332 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1469 (((-1150 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-2890 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4278 (($ (-1237 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1237 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2128 (((-902)) NIL (|has| |#2| (-361 |#1|)))) (-1756 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3454 (($ $ (-902)) NIL)) (-1887 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2143 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4284 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2299 (((-3 $ "failed")) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3607 (((-673 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-3975 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1837 (((-673 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-4152 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2173 (((-1150 (-933 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1736 (($ $ (-902)) NIL)) (-3231 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3854 (((-1150 |#1|) $) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3400 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-3326 (((-1150 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3724 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2623 (((-1136) $) NIL)) (-3329 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4108 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4297 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2876 (((-1098) $) NIL)) (-1864 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2060 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3464 (((-673 |#1|) (-1237 $)) NIL (|has| |#2| (-411 |#1|))) (((-1237 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-673 |#1|) (-1237 $) (-1237 $)) NIL (|has| |#2| (-361 |#1|))) (((-1237 |#1|) $ (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-1522 (($ (-1237 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1237 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2566 (((-629 (-933 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-629 (-933 |#1|)) (-1237 $)) NIL (|has| |#2| (-361 |#1|)))) (-2104 (($ $ $) NIL)) (-2923 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3213 (((-844) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4199 (((-1237 $)) NIL (|has| |#2| (-411 |#1|)))) (-1430 (((-629 (-1237 |#1|))) NIL (-4029 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1826 (($ $ $ $) NIL)) (-1640 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2639 (($ (-673 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2845 (($ $ $) NIL)) (-2646 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2127 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4028 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3297 (($) 15 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) 17)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-621 |#1| |#2|) (-13 (-729 |#1|) (-599 |#2|) (-10 -8 (-15 -3213 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-729 |#1|)) (T -621)) +((-3213 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-621 *3 *2)) (-4 *2 (-729 *3))))) +(-13 (-729 |#1|) (-599 |#2|) (-10 -8 (-15 -3213 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) +((-2907 (((-3 (-825 |#2|) "failed") |#2| (-288 |#2|) (-1136)) 82) (((-3 (-825 |#2|) (-2 (|:| |leftHandLimit| (-3 (-825 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-825 |#2|) "failed"))) "failed") |#2| (-288 (-825 |#2|))) 104)) (-4074 (((-3 (-818 |#2|) "failed") |#2| (-288 (-818 |#2|))) 109))) +(((-622 |#1| |#2|) (-10 -7 (-15 -2907 ((-3 (-825 |#2|) (-2 (|:| |leftHandLimit| (-3 (-825 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-825 |#2|) "failed"))) "failed") |#2| (-288 (-825 |#2|)))) (-15 -4074 ((-3 (-818 |#2|) "failed") |#2| (-288 (-818 |#2|)))) (-15 -2907 ((-3 (-825 |#2|) "failed") |#2| (-288 |#2|) (-1136)))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -622)) +((-2907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1136)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-825 *3)) (-5 *1 (-622 *6 *3)))) (-4074 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-818 *3))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-818 *3)) (-5 *1 (-622 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-825 *3))) (-4 *3 (-13 (-27) (-1176) (-424 *5))) (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-3 (-825 *3) (-2 (|:| |leftHandLimit| (-3 (-825 *3) "failed")) (|:| |rightHandLimit| (-3 (-825 *3) "failed"))) "failed")) (-5 *1 (-622 *5 *3))))) +(-10 -7 (-15 -2907 ((-3 (-825 |#2|) (-2 (|:| |leftHandLimit| (-3 (-825 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-825 |#2|) "failed"))) "failed") |#2| (-288 (-825 |#2|)))) (-15 -4074 ((-3 (-818 |#2|) "failed") |#2| (-288 (-818 |#2|)))) (-15 -2907 ((-3 (-825 |#2|) "failed") |#2| (-288 |#2|) (-1136)))) +((-2907 (((-3 (-825 (-401 (-933 |#1|))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))) (-1136)) 80) (((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|)))) 20) (((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-825 (-933 |#1|)))) 35)) (-4074 (((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|)))) 23) (((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-818 (-933 |#1|)))) 43))) +(((-623 |#1|) (-10 -7 (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-825 (-933 |#1|))))) (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -4074 ((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-818 (-933 |#1|))))) (-15 -4074 ((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))) (-1136)))) (-445)) (T -623)) +((-2907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-401 (-933 *6)))) (-5 *5 (-1136)) (-5 *3 (-401 (-933 *6))) (-4 *6 (-445)) (-5 *2 (-825 *3)) (-5 *1 (-623 *6)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) (-4 *5 (-445)) (-5 *2 (-818 *3)) (-5 *1 (-623 *5)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-818 (-933 *5)))) (-4 *5 (-445)) (-5 *2 (-818 (-401 (-933 *5)))) (-5 *1 (-623 *5)) (-5 *3 (-401 (-933 *5))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) (-4 *5 (-445)) (-5 *2 (-3 (-825 *3) (-2 (|:| |leftHandLimit| (-3 (-825 *3) "failed")) (|:| |rightHandLimit| (-3 (-825 *3) "failed"))) "failed")) (-5 *1 (-623 *5)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-825 (-933 *5)))) (-4 *5 (-445)) (-5 *2 (-3 (-825 (-401 (-933 *5))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 *5))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 *5))) "failed"))) "failed")) (-5 *1 (-623 *5)) (-5 *3 (-401 (-933 *5)))))) +(-10 -7 (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-825 (-933 |#1|))))) (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-825 (-401 (-933 |#1|))) "failed"))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -4074 ((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-818 (-933 |#1|))))) (-15 -4074 ((-818 (-401 (-933 |#1|))) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -2907 ((-3 (-825 (-401 (-933 |#1|))) "failed") (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))) (-1136)))) +((-2295 (((-3 (-1237 (-401 |#1|)) "failed") (-1237 |#2|) |#2|) 57 (-4107 (|has| |#1| (-357)))) (((-3 (-1237 |#1|) "failed") (-1237 |#2|) |#2|) 42 (|has| |#1| (-357)))) (-1453 (((-111) (-1237 |#2|)) 30)) (-3903 (((-3 (-1237 |#1|) "failed") (-1237 |#2|)) 33))) +(((-624 |#1| |#2|) (-10 -7 (-15 -1453 ((-111) (-1237 |#2|))) (-15 -3903 ((-3 (-1237 |#1|) "failed") (-1237 |#2|))) (IF (|has| |#1| (-357)) (-15 -2295 ((-3 (-1237 |#1|) "failed") (-1237 |#2|) |#2|)) (-15 -2295 ((-3 (-1237 (-401 |#1|)) "failed") (-1237 |#2|) |#2|)))) (-544) (-625 |#1|)) (T -624)) +((-2295 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 *5)) (-4107 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1237 (-401 *5))) (-5 *1 (-624 *5 *4)))) (-2295 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 *5)) (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-1237 *5)) (-5 *1 (-624 *5 *4)))) (-3903 (*1 *2 *3) (|partial| -12 (-5 *3 (-1237 *5)) (-4 *5 (-625 *4)) (-4 *4 (-544)) (-5 *2 (-1237 *4)) (-5 *1 (-624 *4 *5)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1237 *5)) (-4 *5 (-625 *4)) (-4 *4 (-544)) (-5 *2 (-111)) (-5 *1 (-624 *4 *5))))) +(-10 -7 (-15 -1453 ((-111) (-1237 |#2|))) (-15 -3903 ((-3 (-1237 |#1|) "failed") (-1237 |#2|))) (IF (|has| |#1| (-357)) (-15 -2295 ((-3 (-1237 |#1|) "failed") (-1237 |#2|) |#2|)) (-15 -2295 ((-3 (-1237 (-401 |#1|)) "failed") (-1237 |#2|) |#2|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2714 (((-673 |#1|) (-673 $)) 34) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 33)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-625 |#1|) (-137) (-1030)) (T -625)) +((-2714 (*1 *2 *3) (-12 (-5 *3 (-673 *1)) (-4 *1 (-625 *4)) (-4 *4 (-1030)) (-5 *2 (-673 *4)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *1)) (-5 *4 (-1237 *1)) (-4 *1 (-625 *5)) (-4 *5 (-1030)) (-5 *2 (-2 (|:| -2325 (-673 *5)) (|:| |vec| (-1237 *5))))))) +(-13 (-1030) (-10 -8 (-15 -2714 ((-673 |t#1|) (-673 $))) (-15 -2714 ((-2 (|:| -2325 (-673 |t#1|)) (|:| |vec| (-1237 |t#1|))) (-673 $) (-1237 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1806 ((|#2| (-629 |#1|) (-629 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-629 |#1|) (-629 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) |#2|) 17) ((|#2| (-629 |#1|) (-629 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|)) 12))) +(((-626 |#1| |#2|) (-10 -7 (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|))) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1|)) (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) |#2|)) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1| |#2|)) (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) (-1 |#2| |#1|))) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1| (-1 |#2| |#1|)))) (-1078) (-1191)) (T -626)) +((-1806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1078)) (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) (-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-629 *5)) (-5 *4 (-629 *6)) (-4 *5 (-1078)) (-4 *6 (-1191)) (-5 *1 (-626 *5 *6)))) (-1806 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-4 *5 (-1078)) (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) (-1806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 *5)) (-4 *6 (-1078)) (-4 *5 (-1191)) (-5 *2 (-1 *5 *6)) (-5 *1 (-626 *6 *5)))) (-1806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-4 *5 (-1078)) (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *6)) (-4 *5 (-1078)) (-4 *6 (-1191)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *6))))) +(-10 -7 (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|))) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1|)) (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) |#2|)) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1| |#2|)) (-15 -1806 ((-1 |#2| |#1|) (-629 |#1|) (-629 |#2|) (-1 |#2| |#1|))) (-15 -1806 (|#2| (-629 |#1|) (-629 |#2|) |#1| (-1 |#2| |#1|)))) +((-3215 (((-629 |#2|) (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|) 16)) (-3884 ((|#2| (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|) 18)) (-1477 (((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)) 13))) +(((-627 |#1| |#2|) (-10 -7 (-15 -3215 ((-629 |#2|) (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|)) (-15 -1477 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) (-1191) (-1191)) (T -627)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-629 *6)) (-5 *1 (-627 *5 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-629 *5)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-627 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-629 *6)) (-4 *6 (-1191)) (-4 *5 (-1191)) (-5 *2 (-629 *5)) (-5 *1 (-627 *6 *5))))) +(-10 -7 (-15 -3215 ((-629 |#2|) (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-629 |#1|) |#2|)) (-15 -1477 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) +((-1477 (((-629 |#3|) (-1 |#3| |#1| |#2|) (-629 |#1|) (-629 |#2|)) 13))) +(((-628 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-629 |#3|) (-1 |#3| |#1| |#2|) (-629 |#1|) (-629 |#2|)))) (-1191) (-1191) (-1191)) (T -628)) +((-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-629 *6)) (-5 *5 (-629 *7)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-629 *8)) (-5 *1 (-628 *6 *7 *8))))) +(-10 -7 (-15 -1477 ((-629 |#3|) (-1 |#3| |#1| |#2|) (-629 |#1|) (-629 |#2|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) NIL)) (-2210 ((|#1| $) NIL)) (-1785 (($ $) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) $) NIL (|has| |#1| (-832))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-3646 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1296 (($ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-2830 (($ $ $) NIL (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "rest" $) NIL (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2628 (($ $ $) 32 (|has| |#1| (-1078)))) (-2616 (($ $ $) 34 (|has| |#1| (-1078)))) (-2603 (($ $ $) 37 (|has| |#1| (-1078)))) (-1740 (($ (-1 (-111) |#1|) $) NIL)) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2196 ((|#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2715 (($ $) NIL) (($ $ (-756)) NIL)) (-2232 (($ $) NIL (|has| |#1| (-1078)))) (-2738 (($ $) 31 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) NIL (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) NIL)) (-2655 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-2268 (((-111) $) NIL)) (-1456 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078))) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3274 (((-111) $) 9)) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4283 (($) 7)) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-3707 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1446 (($ $ $) NIL (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2563 (($ |#1|) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2680 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-1580 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-1352 (((-111) $) NIL)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1204 (-552))) NIL) ((|#1| $ (-552)) 36) ((|#1| $ (-552) |#1|) NIL)) (-3153 (((-552) $ $) NIL)) (-3502 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-1289 (((-111) $) NIL)) (-2760 (($ $) NIL)) (-4022 (($ $) NIL (|has| $ (-6 -4369)))) (-3058 (((-756) $) NIL)) (-2963 (($ $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) 45 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-2461 (($ |#1| $) 10)) (-2380 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4319 (($ $ $) 30) (($ |#1| $) NIL) (($ (-629 $)) NIL) (($ $ |#1|) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2579 (($ $ $) 11)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3016 (((-1136) $) 26 (|has| |#1| (-813))) (((-1136) $ (-111)) 27 (|has| |#1| (-813))) (((-1242) (-807) $) 28 (|has| |#1| (-813))) (((-1242) (-807) $ (-111)) 29 (|has| |#1| (-813)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-629 |#1|) (-13 (-650 |#1|) (-10 -8 (-15 -4283 ($)) (-15 -3274 ((-111) $)) (-15 -2461 ($ |#1| $)) (-15 -2579 ($ $ $)) (IF (|has| |#1| (-1078)) (PROGN (-15 -2628 ($ $ $)) (-15 -2616 ($ $ $)) (-15 -2603 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|))) (-1191)) (T -629)) +((-4283 (*1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1191)))) (-2461 (*1 *1 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191)))) (-2579 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191)))) (-2628 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191)))) (-2616 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191)))) (-2603 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191))))) +(-13 (-650 |#1|) (-10 -8 (-15 -4283 ($)) (-15 -3274 ((-111) $)) (-15 -2461 ($ |#1| $)) (-15 -2579 ($ $ $)) (IF (|has| |#1| (-1078)) (PROGN (-15 -2628 ($ $ $)) (-15 -2616 ($ $ $)) (-15 -2603 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 11) (((-1159) $) NIL) (($ (-1159)) NIL) ((|#1| $) 8)) (-1613 (((-111) $ $) NIL))) +(((-630 |#1|) (-13 (-1061) (-599 |#1|)) (-1078)) (T -630)) +NIL +(-13 (-1061) (-599 |#1|)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2728 (($ |#1| |#1| $) 43)) (-4238 (((-111) $ (-756)) NIL)) (-1740 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2232 (($ $) 45)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) 52 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 9 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 37)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) 46)) (-1580 (($ |#1| $) 26) (($ |#1| $ (-756)) 42)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3995 ((|#1| $) 48)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 21)) (-3430 (($) 25)) (-2666 (((-111) $) 50)) (-3441 (((-629 (-2 (|:| -3360 |#1|) (|:| -2885 (-756)))) $) 59)) (-3680 (($) 23) (($ (-629 |#1|)) 18)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) 56 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 19)) (-1522 (((-528) $) 34 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-3213 (((-844) $) 14 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 22)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 61 (|has| |#1| (-1078)))) (-2657 (((-756) $) 16 (|has| $ (-6 -4368))))) +(((-631 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4368) (-15 -2666 ((-111) $)) (-15 -2728 ($ |#1| |#1| $)))) (-1078)) (T -631)) +((-2666 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-631 *3)) (-4 *3 (-1078)))) (-2728 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1078))))) +(-13 (-679 |#1|) (-10 -8 (-6 -4368) (-15 -2666 ((-111) $)) (-15 -2728 ($ |#1| |#1| $)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23))) +(((-632 |#1|) (-137) (-1037)) (T -632)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1037))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) 15)) (-4178 (($ $ |#1|) 56)) (-2519 (($ $) 32)) (-3429 (($ $) 31)) (-4039 (((-3 |#1| "failed") $) 48)) (-1703 ((|#1| $) NIL)) (-1801 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2267 (((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552)) 46)) (-2792 ((|#1| $ (-552)) 30)) (-1389 ((|#2| $ (-552)) 29)) (-2356 (($ (-1 |#1| |#1|) $) 34)) (-4086 (($ (-1 |#2| |#2|) $) 38)) (-3952 (($) 10)) (-2893 (($ |#1| |#2|) 22)) (-3063 (($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|)))) 23)) (-1514 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 13)) (-2537 (($ |#1| $) 57)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2815 (((-111) $ $) 60)) (-1477 (((-842) $) 19) (($ |#1|) 16)) (-2292 (((-111) $ $) 25))) -(((-631 |#1| |#2| |#3|) (-13 (-1076) (-1017 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552))) (-15 -1514 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $)) (-15 -2893 ($ |#1| |#2|)) (-15 -3063 ($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))))) (-15 -1389 (|#2| $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3429 ($ $)) (-15 -2519 ($ $)) (-15 -3307 ((-754) $)) (-15 -3952 ($)) (-15 -4178 ($ $ |#1|)) (-15 -2537 ($ |#1| $)) (-15 -1801 ($ |#1| |#2| $)) (-15 -1801 ($ $ $)) (-15 -2815 ((-111) $ $)) (-15 -4086 ($ (-1 |#2| |#2|) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)))) (-1076) (-23) |#2|) (T -631)) -((-2267 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-552)) (-5 *2 (-842)) (-5 *1 (-631 *5 *6 *7)) (-4 *5 (-1076)) (-4 *6 (-23)) (-14 *7 *6))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-631 *4 *2 *5)) (-4 *4 (-1076)) (-14 *5 *2))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-1076)) (-5 *1 (-631 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3429 (*1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2519 (*1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-3952 (*1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-4178 (*1 *1 *1 *2) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2537 (*1 *1 *2 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-1801 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-1801 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-631 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1076) (-1017 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552))) (-15 -1514 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $)) (-15 -2893 ($ |#1| |#2|)) (-15 -3063 ($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))))) (-15 -1389 (|#2| $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3429 ($ $)) (-15 -2519 ($ $)) (-15 -3307 ((-754) $)) (-15 -3952 ($)) (-15 -4178 ($ $ |#1|)) (-15 -2537 ($ |#1| $)) (-15 -1801 ($ |#1| |#2| $)) (-15 -1801 ($ $ $)) (-15 -2815 ((-111) $ $)) (-15 -4086 ($ (-1 |#2| |#2|) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)))) -((-2285 (((-552) $) 24)) (-3252 (($ |#2| $ (-552)) 22) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) 12)) (-2358 (((-111) (-552) $) 15)) (-2668 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-627 $)) NIL))) -(((-632 |#1| |#2|) (-10 -8 (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2285 ((-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2358 ((-111) (-552) |#1|))) (-633 |#2|) (-1189)) (T -632)) -NIL -(-10 -8 (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2285 ((-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2358 ((-111) (-552) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-633 |#1|) (-137) (-1189)) (T -633)) -((-2655 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-2668 (*1 *1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3252 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-3252 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1202 (-552))) (|has| *1 (-6 -4367)) (-4 *1 (-633 *2)) (-4 *2 (-1189))))) -(-13 (-590 (-552) |t#1|) (-148 |t#1|) (-10 -8 (-15 -2655 ($ (-754) |t#1|)) (-15 -2668 ($ $ |t#1|)) (-15 -2668 ($ |t#1| $)) (-15 -2668 ($ $ $)) (-15 -2668 ($ (-627 $))) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1985 ($ $ (-1202 (-552)))) (-15 -3907 ($ $ (-552))) (-15 -3907 ($ $ (-1202 (-552)))) (-15 -3252 ($ |t#1| $ (-552))) (-15 -3252 ($ $ $ (-552))) (IF (|has| $ (-6 -4367)) (-15 -2950 (|t#1| $ (-1202 (-552)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1696 (((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152)) 44))) -(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152))) (-15 -1696 ((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938)) (-638 |#2|)) (T -634)) -((-1696 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1174) (-938))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152))) (-15 -1696 ((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) NIL (|has| |#1| (-357)))) (-2032 (($ $ (-754)) NIL (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) NIL)) (-3801 (($ $ $) NIL (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-635 |#1|) (-638 |#1|) (-228)) (T -635)) -NIL -(-638 |#1|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) NIL (|has| |#1| (-357)))) (-2032 (($ $ (-754)) NIL (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3801 (($ $ $) NIL (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-636 |#1| |#2|) (-13 (-638 |#1|) (-280 |#2| |#2|)) (-228) (-13 (-630 |#1|) (-10 -8 (-15 -2942 ($ $))))) (T -636)) -NIL -(-13 (-638 |#1|) (-280 |#2| |#2|)) -((-3659 (($ $) 26)) (-2279 (($ $) 24)) (-4251 (($) 12))) -(((-637 |#1| |#2|) (-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4251 (|#1|))) (-638 |#2|) (-1028)) (T -637)) -NIL -(-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4251 (|#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3659 (($ $) 80 (|has| |#1| (-357)))) (-4182 (($ $ $) 82 (|has| |#1| (-357)))) (-2032 (($ $ (-754)) 81 (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1768 (($ $ $) 43 (|has| |#1| (-357)))) (-2585 (($ $ $) 44 (|has| |#1| (-357)))) (-4281 (($ $ $) 46 (|has| |#1| (-357)))) (-4214 (($ $ $) 41 (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 40 (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 45 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-1703 (((-552) $) 73 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 66)) (-2014 (($ $) 62)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 53 (|has| |#1| (-445)))) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 60)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 56 (|has| |#1| (-544)))) (-3465 (((-754) $) 64)) (-2753 (($ $ $) 50 (|has| |#1| (-357)))) (-4009 (($ $ $) 51 (|has| |#1| (-357)))) (-2016 (($ $ $) 39 (|has| |#1| (-357)))) (-2812 (($ $ $) 48 (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 47 (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 52 (|has| |#1| (-357)))) (-1993 ((|#1| $) 63)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) 85)) (-3801 (($ $ $) 79 (|has| |#1| (-357)))) (-3567 (((-754) $) 65)) (-3495 ((|#1| $) 54 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 68)) (-1493 (((-627 |#1|) $) 59)) (-1889 ((|#1| $ (-754)) 61)) (-3995 (((-754)) 28)) (-3288 ((|#1| $ |#1| |#1|) 58)) (-2279 (($ $) 83)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($) 84)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-638 |#1|) (-137) (-1028)) (T -638)) -((-4251 (*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-638 *3)) (-4 *3 (-1028)) (-4 *3 (-357)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(-13 (-832 |t#1|) (-280 |t#1| |t#1|) (-10 -8 (-15 -4251 ($)) (-15 -2279 ($ $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -4182 ($ $ $)) (-15 -2032 ($ $ (-754))) (-15 -3659 ($ $)) (-15 -3801 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-280 |#1| |#1|) . T) ((-405 |#1|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-832 |#1|) . T)) -((-2453 (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))) 74 (|has| |#1| (-27)))) (-1727 (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))) 73 (|has| |#1| (-27))) (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 17))) -(((-639 |#1| |#2|) (-10 -7 (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)))) (-15 -2453 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))))) |%noBranch|)) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -639)) -((-2453 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-635 (-401 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-401 *6)))))) -(-10 -7 (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)))) (-15 -2453 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) 28 (|has| |#1| (-357)))) (-2032 (($ $ (-754)) 31 (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) 24)) (-3801 (($ $ $) 33 (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) 20) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) 23)) (-2279 (($ $) NIL)) (-1922 (($) 21 T CONST)) (-1933 (($) 8 T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-640 |#1| |#2|) (-638 |#1|) (-1028) (-1 |#1| |#1|)) (T -640)) -NIL -(-638 |#1|) -((-4182 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2032 ((|#2| |#2| (-754) (-1 |#1| |#1|)) 40)) (-3801 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-641 |#1| |#2|) (-10 -7 (-15 -4182 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2032 (|#2| |#2| (-754) (-1 |#1| |#1|))) (-15 -3801 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-357) (-638 |#1|)) (T -641)) -((-3801 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4)))) (-2032 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5)))) (-4182 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4))))) -(-10 -7 (-15 -4182 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2032 (|#2| |#2| (-754) (-1 |#1| |#1|))) (-15 -3801 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-1872 (($ $ $) 9))) -(((-642 |#1|) (-10 -8 (-15 -1872 (|#1| |#1| |#1|))) (-643)) (T -642)) -NIL -(-10 -8 (-15 -1872 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-2831 (($ $) 10)) (-1872 (($ $ $) 8)) (-2292 (((-111) $ $) 6)) (-1861 (($ $ $) 9))) -(((-643) (-137)) (T -643)) -((-2831 (*1 *1 *1) (-4 *1 (-643))) (-1861 (*1 *1 *1 *1) (-4 *1 (-643))) (-1872 (*1 *1 *1 *1) (-4 *1 (-643)))) -(-13 (-101) (-10 -8 (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2663 (((-756) $) 15)) (-3222 (($ $ |#1|) 56)) (-2366 (($ $) 32)) (-3344 (($ $) 31)) (-1393 (((-3 |#1| "failed") $) 48)) (-2832 ((|#1| $) NIL)) (-2958 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-1647 (((-844) $ (-1 (-844) (-844) (-844)) (-1 (-844) (-844) (-844)) (-552)) 46)) (-3261 ((|#1| $ (-552)) 30)) (-1935 ((|#2| $ (-552)) 29)) (-1316 (($ (-1 |#1| |#1|) $) 34)) (-3566 (($ (-1 |#2| |#2|) $) 38)) (-1562 (($) 10)) (-1714 (($ |#1| |#2|) 22)) (-4004 (($ (-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|)))) 23)) (-3169 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))) $) 13)) (-2540 (($ |#1| $) 57)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2177 (((-111) $ $) 60)) (-3213 (((-844) $) 19) (($ |#1|) 16)) (-1613 (((-111) $ $) 25))) +(((-633 |#1| |#2| |#3|) (-13 (-1078) (-1019 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-1 (-844) (-844) (-844)) (-1 (-844) (-844) (-844)) (-552))) (-15 -3169 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))) $)) (-15 -1714 ($ |#1| |#2|)) (-15 -4004 ($ (-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))))) (-15 -1935 (|#2| $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3344 ($ $)) (-15 -2366 ($ $)) (-15 -2663 ((-756) $)) (-15 -1562 ($)) (-15 -3222 ($ $ |#1|)) (-15 -2540 ($ |#1| $)) (-15 -2958 ($ |#1| |#2| $)) (-15 -2958 ($ $ $)) (-15 -2177 ((-111) $ $)) (-15 -3566 ($ (-1 |#2| |#2|) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)))) (-1078) (-23) |#2|) (T -633)) +((-1647 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-844) (-844) (-844))) (-5 *4 (-552)) (-5 *2 (-844)) (-5 *1 (-633 *5 *6 *7)) (-4 *5 (-1078)) (-4 *6 (-23)) (-14 *7 *6))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4))) (-1714 (*1 *1 *2 *3) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-4004 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))) (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-633 *3 *4 *5)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-633 *4 *2 *5)) (-4 *4 (-1078)) (-14 *5 *2))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-1078)) (-5 *1 (-633 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3344 (*1 *1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4))) (-1562 (*1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-3222 (*1 *1 *1 *2) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2540 (*1 *1 *2 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2958 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2958 (*1 *1 *1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3))) (-2177 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4))) (-3566 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-633 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1078) (-1019 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-1 (-844) (-844) (-844)) (-1 (-844) (-844) (-844)) (-552))) (-15 -3169 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))) $)) (-15 -1714 ($ |#1| |#2|)) (-15 -4004 ($ (-629 (-2 (|:| |gen| |#1|) (|:| -2855 |#2|))))) (-15 -1935 (|#2| $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3344 ($ $)) (-15 -2366 ($ $)) (-15 -2663 ((-756) $)) (-15 -1562 ($)) (-15 -3222 ($ $ |#1|)) (-15 -2540 ($ |#1| $)) (-15 -2958 ($ |#1| |#2| $)) (-15 -2958 ($ $ $)) (-15 -2177 ((-111) $ $)) (-15 -3566 ($ (-1 |#2| |#2|) $)) (-15 -1316 ($ (-1 |#1| |#1|) $)))) +((-1842 (((-552) $) 24)) (-1759 (($ |#2| $ (-552)) 22) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) 12)) (-1335 (((-111) (-552) $) 15)) (-4319 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-629 $)) NIL))) +(((-634 |#1| |#2|) (-10 -8 (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -1842 ((-552) |#1|)) (-15 -2190 ((-629 (-552)) |#1|)) (-15 -1335 ((-111) (-552) |#1|))) (-635 |#2|) (-1191)) (T -634)) +NIL +(-10 -8 (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -4319 (|#1| (-629 |#1|))) (-15 -4319 (|#1| |#1| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -1842 ((-552) |#1|)) (-15 -2190 ((-629 (-552)) |#1|)) (-15 -1335 ((-111) (-552) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 70)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-635 |#1|) (-137) (-1191)) (T -635)) +((-3307 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-4319 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) (-4319 (*1 *1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) (-4319 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) (-4319 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-1477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-1759 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-635 *2)) (-4 *2 (-1191)))) (-1759 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) (-1470 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1204 (-552))) (|has| *1 (-6 -4369)) (-4 *1 (-635 *2)) (-4 *2 (-1191))))) +(-13 (-590 (-552) |t#1|) (-148 |t#1|) (-10 -8 (-15 -3307 ($ (-756) |t#1|)) (-15 -4319 ($ $ |t#1|)) (-15 -4319 ($ |t#1| $)) (-15 -4319 ($ $ $)) (-15 -4319 ($ (-629 $))) (-15 -1477 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2060 ($ $ (-1204 (-552)))) (-15 -2012 ($ $ (-552))) (-15 -2012 ($ $ (-1204 (-552)))) (-15 -1759 ($ |t#1| $ (-552))) (-15 -1759 ($ $ $ (-552))) (IF (|has| $ (-6 -4369)) (-15 -1470 (|t#1| $ (-1204 (-552)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-4153 (((-3 |#2| "failed") |#3| |#2| (-1154) |#2| (-629 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) "failed") |#3| |#2| (-1154)) 44))) +(((-636 |#1| |#2| |#3|) (-10 -7 (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) "failed") |#3| |#2| (-1154))) (-15 -4153 ((-3 |#2| "failed") |#3| |#2| (-1154) |#2| (-629 |#2|)))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144)) (-13 (-29 |#1|) (-1176) (-940)) (-640 |#2|)) (T -636)) +((-4153 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 *2)) (-4 *2 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *1 (-636 *6 *2 *3)) (-4 *3 (-640 *2)))) (-4153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1154)) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1176) (-940))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4199 (-629 *4)))) (-5 *1 (-636 *6 *4 *3)) (-4 *3 (-640 *4))))) +(-10 -7 (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) "failed") |#3| |#2| (-1154))) (-15 -4153 ((-3 |#2| "failed") |#3| |#2| (-1154) |#2| (-629 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-1673 (($ $) NIL (|has| |#1| (-357)))) (-3266 (($ $ $) NIL (|has| |#1| (-357)))) (-4292 (($ $ (-756)) NIL (|has| |#1| (-357)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3621 (($ $ $) NIL (|has| |#1| (-357)))) (-1748 (($ $ $) NIL (|has| |#1| (-357)))) (-1675 (($ $ $) NIL (|has| |#1| (-357)))) (-2280 (($ $ $) NIL (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-4065 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) NIL)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-3544 (((-756) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-357)))) (-4072 (($ $ $) NIL (|has| |#1| (-357)))) (-4149 (($ $ $) NIL (|has| |#1| (-357)))) (-2153 (($ $ $) NIL (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2060 ((|#1| $ |#1|) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-357)))) (-3299 (((-756) $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) NIL)) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-2639 ((|#1| $ |#1| |#1|) NIL)) (-1768 (($ $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($) NIL)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-637 |#1|) (-640 |#1|) (-228)) (T -637)) +NIL +(-640 |#1|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-1673 (($ $) NIL (|has| |#1| (-357)))) (-3266 (($ $ $) NIL (|has| |#1| (-357)))) (-4292 (($ $ (-756)) NIL (|has| |#1| (-357)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3621 (($ $ $) NIL (|has| |#1| (-357)))) (-1748 (($ $ $) NIL (|has| |#1| (-357)))) (-1675 (($ $ $) NIL (|has| |#1| (-357)))) (-2280 (($ $ $) NIL (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-4065 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) NIL)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-3544 (((-756) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-357)))) (-4072 (($ $ $) NIL (|has| |#1| (-357)))) (-4149 (($ $ $) NIL (|has| |#1| (-357)))) (-2153 (($ $ $) NIL (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2060 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3796 (($ $ $) NIL (|has| |#1| (-357)))) (-3299 (((-756) $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) NIL)) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-2639 ((|#1| $ |#1| |#1|) NIL)) (-1768 (($ $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($) NIL)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-638 |#1| |#2|) (-13 (-640 |#1|) (-280 |#2| |#2|)) (-228) (-13 (-632 |#1|) (-10 -8 (-15 -3096 ($ $))))) (T -638)) +NIL +(-13 (-640 |#1|) (-280 |#2| |#2|)) +((-1673 (($ $) 26)) (-1768 (($ $) 24)) (-1765 (($) 12))) +(((-639 |#1| |#2|) (-10 -8 (-15 -1673 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1765 (|#1|))) (-640 |#2|) (-1030)) (T -639)) +NIL +(-10 -8 (-15 -1673 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1765 (|#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-1673 (($ $) 80 (|has| |#1| (-357)))) (-3266 (($ $ $) 82 (|has| |#1| (-357)))) (-4292 (($ $ (-756)) 81 (|has| |#1| (-357)))) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3621 (($ $ $) 43 (|has| |#1| (-357)))) (-1748 (($ $ $) 44 (|has| |#1| (-357)))) (-1675 (($ $ $) 46 (|has| |#1| (-357)))) (-2280 (($ $ $) 41 (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 40 (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 45 (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-2832 (((-552) $) 73 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 66)) (-3766 (($ $) 62)) (-1293 (((-3 $ "failed") $) 32)) (-3471 (($ $) 53 (|has| |#1| (-445)))) (-4065 (((-111) $) 30)) (-3590 (($ |#1| (-756)) 60)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55 (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 56 (|has| |#1| (-544)))) (-3544 (((-756) $) 64)) (-2945 (($ $ $) 50 (|has| |#1| (-357)))) (-4072 (($ $ $) 51 (|has| |#1| (-357)))) (-4149 (($ $ $) 39 (|has| |#1| (-357)))) (-2153 (($ $ $) 48 (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 47 (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 52 (|has| |#1| (-357)))) (-3743 ((|#1| $) 63)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-2060 ((|#1| $ |#1|) 85)) (-3796 (($ $ $) 79 (|has| |#1| (-357)))) (-3299 (((-756) $) 65)) (-3807 ((|#1| $) 54 (|has| |#1| (-445)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) 68)) (-2984 (((-629 |#1|) $) 59)) (-2266 ((|#1| $ (-756)) 61)) (-2014 (((-756)) 28)) (-2639 ((|#1| $ |#1| |#1|) 58)) (-1768 (($ $) 83)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($) 84)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-640 |#1|) (-137) (-1030)) (T -640)) +((-1765 (*1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)))) (-1768 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)))) (-3266 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-4292 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-640 *3)) (-4 *3 (-1030)) (-4 *3 (-357)))) (-1673 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(-13 (-834 |t#1|) (-280 |t#1| |t#1|) (-10 -8 (-15 -1765 ($)) (-15 -1768 ($ $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -3266 ($ $ $)) (-15 -4292 ($ $ (-756))) (-15 -1673 ($ $)) (-15 -3796 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-280 |#1| |#1|) . T) ((-405 |#1|) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) |has| |#1| (-169)) ((-711) . T) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-834 |#1|) . T)) +((-3000 (((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|))) 74 (|has| |#1| (-27)))) (-3479 (((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|))) 73 (|has| |#1| (-27))) (((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|)) 17))) +(((-641 |#1| |#2|) (-10 -7 (-15 -3479 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3479 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|)))) (-15 -3000 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|))))) |%noBranch|)) (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552)))) (-1213 |#1|)) (T -641)) +((-3000 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-637 (-401 *5)))) (-5 *1 (-641 *4 *5)) (-5 *3 (-637 (-401 *5))))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-637 (-401 *5)))) (-5 *1 (-641 *4 *5)) (-5 *3 (-637 (-401 *5))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-637 (-401 *6)))) (-5 *1 (-641 *5 *6)) (-5 *3 (-637 (-401 *6)))))) +(-10 -7 (-15 -3479 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3479 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|)))) (-15 -3000 ((-629 (-637 (-401 |#2|))) (-637 (-401 |#2|))))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-1673 (($ $) NIL (|has| |#1| (-357)))) (-3266 (($ $ $) 28 (|has| |#1| (-357)))) (-4292 (($ $ (-756)) 31 (|has| |#1| (-357)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3621 (($ $ $) NIL (|has| |#1| (-357)))) (-1748 (($ $ $) NIL (|has| |#1| (-357)))) (-1675 (($ $ $) NIL (|has| |#1| (-357)))) (-2280 (($ $ $) NIL (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-4065 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) NIL)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-3544 (((-756) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-357)))) (-4072 (($ $ $) NIL (|has| |#1| (-357)))) (-4149 (($ $ $) NIL (|has| |#1| (-357)))) (-2153 (($ $ $) NIL (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2060 ((|#1| $ |#1|) 24)) (-3796 (($ $ $) 33 (|has| |#1| (-357)))) (-3299 (((-756) $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) 20) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) NIL)) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-2639 ((|#1| $ |#1| |#1|) 23)) (-1768 (($ $) NIL)) (-3297 (($) 21 T CONST)) (-3309 (($) 8 T CONST)) (-1765 (($) NIL)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-642 |#1| |#2|) (-640 |#1|) (-1030) (-1 |#1| |#1|)) (T -642)) +NIL +(-640 |#1|) +((-3266 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-4292 ((|#2| |#2| (-756) (-1 |#1| |#1|)) 40)) (-3796 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-643 |#1| |#2|) (-10 -7 (-15 -3266 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4292 (|#2| |#2| (-756) (-1 |#1| |#1|))) (-15 -3796 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-357) (-640 |#1|)) (T -643)) +((-3796 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-643 *4 *2)) (-4 *2 (-640 *4)))) (-4292 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-643 *5 *2)) (-4 *2 (-640 *5)))) (-3266 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-643 *4 *2)) (-4 *2 (-640 *4))))) +(-10 -7 (-15 -3266 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4292 (|#2| |#2| (-756) (-1 |#1| |#1|))) (-15 -3796 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2038 (($ $ $) 9))) +(((-644 |#1|) (-10 -8 (-15 -2038 (|#1| |#1| |#1|))) (-645)) (T -644)) +NIL +(-10 -8 (-15 -2038 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3072 (($ $) 10)) (-2038 (($ $ $) 8)) (-1613 (((-111) $ $) 6)) (-2026 (($ $ $) 9))) +(((-645) (-137)) (T -645)) +((-3072 (*1 *1 *1) (-4 *1 (-645))) (-2026 (*1 *1 *1 *1) (-4 *1 (-645))) (-2038 (*1 *1 *1 *1) (-4 *1 (-645)))) +(-13 (-101) (-10 -8 (-15 -3072 ($ $)) (-15 -2026 ($ $ $)) (-15 -2038 ($ $ $)))) (((-101) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 15)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2918 ((|#1| $) 21)) (-1816 (($ $ $) NIL (|has| |#1| (-774)))) (-4093 (($ $ $) NIL (|has| |#1| (-774)))) (-1595 (((-1134) $) 46)) (-1498 (((-1096) $) NIL)) (-2929 ((|#3| $) 22)) (-1477 (((-842) $) 42)) (-1922 (($) 10 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2316 (((-111) $ $) 24 (|has| |#1| (-774)))) (-2407 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2396 (($ $) 17) (($ $ $) NIL)) (-2384 (($ $ $) 27)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-644 |#1| |#2| |#3|) (-13 (-700 |#2|) (-10 -8 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) (-700 |#2|) (-169) (|SubsetCategory| (-709) |#2|)) (T -644)) -((-2407 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)) (-4 *2 (|SubsetCategory| (-709) *4)))) (-2407 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-700 *4)) (-4 *3 (|SubsetCategory| (-709) *4)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-700 *3)) (-5 *1 (-644 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-709) *3)))) (-2929 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4))))) -(-13 (-700 |#2|) (-10 -8 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) -((-2296 (((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)) 33))) -(((-645 |#1|) (-10 -7 (-15 -2296 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)))) (-888)) (T -645)) -((-2296 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *4))) (-5 *3 (-1148 *4)) (-4 *4 (-888)) (-5 *1 (-645 *4))))) -(-10 -7 (-15 -2296 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 82)) (-1963 (($ $ (-754)) 90)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1899 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 48)) (-4039 (((-3 (-654 |#1|) "failed") $) NIL)) (-1703 (((-654 |#1|) $) NIL)) (-2014 (($ $) 89)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-654 |#1|) |#2|) 68)) (-3627 (($ $) 86)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 47)) (-3888 (((-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-654 |#1|) $) NIL)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ |#1| $) 30) (($ $ (-627 |#1|) (-627 $)) 32)) (-3567 (((-754) $) 88)) (-1490 (($ $ $) 20) (($ (-654 |#1|) (-654 |#1|)) 77) (($ (-654 |#1|) $) 75) (($ $ (-654 |#1|)) 76)) (-1477 (((-842) $) NIL) (($ |#1|) 74) (((-1250 |#1| |#2|) $) 58) (((-1259 |#1| |#2|) $) 41) (($ (-654 |#1|)) 25)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-654 |#1|)) NIL)) (-3069 ((|#2| (-1259 |#1| |#2|) $) 43)) (-1922 (($) 23 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2223 (((-3 $ "failed") (-1250 |#1| |#2|)) 60)) (-3014 (($ (-654 |#1|)) 14)) (-2292 (((-111) $ $) 44)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) 66) (($ $ $) NIL)) (-2384 (($ $ $) 29)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-654 |#1|)) NIL))) -(((-646 |#1| |#2|) (-13 (-368 |#1| |#2|) (-376 |#2| (-654 |#1|)) (-10 -8 (-15 -2223 ((-3 $ "failed") (-1250 |#1| |#2|))) (-15 -1490 ($ (-654 |#1|) (-654 |#1|))) (-15 -1490 ($ (-654 |#1|) $)) (-15 -1490 ($ $ (-654 |#1|))))) (-830) (-169)) (T -646)) -((-2223 (*1 *1 *2) (|partial| -12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *1 (-646 *3 *4)))) (-1490 (*1 *1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169)))) (-1490 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169))))) -(-13 (-368 |#1| |#2|) (-376 |#2| (-654 |#1|)) (-10 -8 (-15 -2223 ((-3 $ "failed") (-1250 |#1| |#2|))) (-15 -1490 ($ (-654 |#1|) (-654 |#1|))) (-15 -1490 ($ (-654 |#1|) $)) (-15 -1490 ($ $ (-654 |#1|))))) -((-1439 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-2701 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-4289 (($ (-1 (-111) |#2|) $) 28)) (-2519 (($ $) 56)) (-2820 (($ $) 64)) (-2265 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2967 (((-552) |#2| $ (-552)) 61) (((-552) |#2| $) NIL) (((-552) (-1 (-111) |#2|) $) 47)) (-2655 (($ (-754) |#2|) 54)) (-1438 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-3759 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-3516 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1299 (($ |#2|) 15)) (-3954 (($ $ $ (-552)) 36) (($ |#2| $ (-552)) 34)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3010 (($ $ (-1202 (-552))) 44) (($ $ (-552)) 38)) (-4105 (($ $ $ (-552)) 60)) (-2973 (($ $) 58)) (-2316 (((-111) $ $) 66))) -(((-647 |#1| |#2|) (-10 -8 (-15 -1299 (|#1| |#2|)) (-15 -3010 (|#1| |#1| (-552))) (-15 -3010 (|#1| |#1| (-1202 (-552)))) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| |#2| |#1| (-552))) (-15 -3954 (|#1| |#1| |#1| (-552))) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -3759 (|#1| |#1| |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -2519 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-754) |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) (-648 |#2|) (-1189)) (T -647)) -NIL -(-10 -8 (-15 -1299 (|#1| |#2|)) (-15 -3010 (|#1| |#1| (-552))) (-15 -3010 (|#1| |#1| (-1202 (-552)))) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| |#2| |#1| (-552))) (-15 -3954 (|#1| |#1| |#1| (-552))) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -3759 (|#1| |#1| |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -2519 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-754) |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-1439 (((-111) $) 142 (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-2701 (($ $) 146 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4367)))) (-4298 (($ $) 141 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 129)) (-2536 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4366)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-2519 (($ $) 144 (|has| $ (-6 -4367)))) (-3429 (($ $) 134)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-2820 (($ $) 131 (|has| |#1| (-1076)))) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 130 (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) 125)) (-4342 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4366))) (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-2967 (((-552) |#1| $ (-552)) 139 (|has| |#1| (-1076))) (((-552) |#1| $) 138 (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) 137)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-1816 (($ $ $) 147 (|has| |#1| (-830)))) (-1438 (($ $ $) 132 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-3759 (($ $ $) 140 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-4093 (($ $ $) 148 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1299 (($ |#1|) 122)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3954 (($ $ $ (-552)) 127) (($ |#1| $ (-552)) 126)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-2361 (((-111) $) 84)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3010 (($ $ (-1202 (-552))) 124) (($ $ (-552)) 123)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 143 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61) (($ $ |#1|) 60)) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 150 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 151 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 149 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 152 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-648 |#1|) (-137) (-1189)) (T -648)) -((-1299 (*1 *1 *2) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1189))))) -(-13 (-1125 |t#1|) (-367 |t#1|) (-276 |t#1|) (-10 -8 (-15 -1299 ($ |t#1|)))) -(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-276 |#1|) . T) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-989 |#1|) . T) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1125 |#1|) . T) ((-1189) . T) ((-1223 |#1|) . T)) -((-1696 (((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|))) 22) (((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)) 14)) (-4154 (((-754) (-671 |#1|) (-1235 |#1|)) 30)) (-3313 (((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|)) 24)) (-2146 (((-111) (-671 |#1|) (-1235 |#1|)) 27))) -(((-649 |#1|) (-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|))) (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|)))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|)))) (-15 -3313 ((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|))) (-15 -2146 ((-111) (-671 |#1|) (-1235 |#1|))) (-15 -4154 ((-754) (-671 |#1|) (-1235 |#1|)))) (-357)) (T -649)) -((-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-5 *2 (-754)) (-5 *1 (-649 *5)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-5 *2 (-111)) (-5 *1 (-649 *5)))) (-3313 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1235 *4)) (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *1 (-649 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5)))))) (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5)))))) (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5))))) (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5))))) (-5 *1 (-649 *5)) (-5 *4 (-1235 *5))))) -(-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|))) (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|)))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|)))) (-15 -3313 ((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|))) (-15 -2146 ((-111) (-671 |#1|) (-1235 |#1|))) (-15 -4154 ((-754) (-671 |#1|) (-1235 |#1|)))) -((-1696 (((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|) 45)) (-4154 (((-754) |#4| |#3|) 17)) (-3313 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2146 (((-111) |#4| |#3|) 13))) -(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|)) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|))) (-15 -3313 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2146 ((-111) |#4| |#3|)) (-15 -4154 ((-754) |#4| |#3|))) (-357) (-13 (-367 |#1|) (-10 -7 (-6 -4367))) (-13 (-367 |#1|) (-10 -7 (-6 -4367))) (-669 |#1| |#2| |#3|)) (T -650)) -((-4154 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-754)) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-111)) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-3313 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4367)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))) (-5 *1 (-650 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-627 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2957 (-627 *7))))) (-5 *1 (-650 *5 *6 *7 *3)) (-5 *4 (-627 *7)) (-4 *3 (-669 *5 *6 *7)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|)) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|))) (-15 -3313 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2146 ((-111) |#4| |#3|)) (-15 -4154 ((-754) |#4| |#3|))) -((-3788 (((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)) 45))) -(((-651 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 ((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)))) (-544) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -651)) -((-3788 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *7)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 (-401 *8)) "failed")) (|:| -2957 (-627 (-1235 (-401 *8)))))) (-5 *1 (-651 *5 *6 *7 *8))))) -(-10 -7 (-15 -3788 ((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-3385 ((|#2| $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#2|))) NIL) (((-1235 (-671 |#2|)) (-1235 $)) NIL)) (-3944 (((-111) $) NIL)) (-2946 (((-1235 $)) 37)) (-4031 (((-111) $ (-754)) NIL)) (-1665 (($ |#2|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) NIL (|has| |#2| (-301)))) (-3884 (((-235 |#1| |#2|) $ (-552)) NIL)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#2| (-544)))) (-3994 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2877 (((-671 |#2|)) NIL) (((-671 |#2|) (-1235 $)) NIL)) (-2526 ((|#2| $) NIL)) (-3029 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1235 $)) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-2856 (((-1148 (-931 |#2|))) NIL (|has| |#2| (-357)))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#2| $) NIL)) (-3343 (((-1148 |#2|) $) NIL (|has| |#2| (-544)))) (-3119 ((|#2|) NIL) ((|#2| (-1235 $)) NIL)) (-1608 (((-1148 |#2|) $) NIL)) (-1819 (((-111)) NIL)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-2342 (($ (-1235 |#2|)) NIL) (($ (-1235 |#2|) (-1235 $)) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-4154 (((-754) $) NIL (|has| |#2| (-544))) (((-900)) 38)) (-3413 ((|#2| $ (-552) (-552)) NIL)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL)) (-1610 (((-754) $) NIL (|has| |#2| (-544)))) (-2960 (((-627 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-544)))) (-3560 (((-754) $) NIL)) (-3363 (((-111)) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#2| $) NIL (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#2|))) NIL)) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3127 (((-627 (-627 |#2|)) $) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#2| (-544)))) (-2513 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1425 (((-671 |#2|)) NIL) (((-671 |#2|) (-1235 $)) NIL)) (-4131 ((|#2| $) NIL)) (-2593 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1235 $)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1548 (((-1148 (-931 |#2|))) NIL (|has| |#2| (-357)))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#2| $) NIL)) (-1794 (((-1148 |#2|) $) NIL (|has| |#2| (-544)))) (-2806 ((|#2|) NIL) ((|#2| (-1235 $)) NIL)) (-2798 (((-1148 |#2|) $) NIL)) (-3485 (((-111)) NIL)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL)) (-2011 (((-111)) NIL)) (-2344 (((-111)) NIL)) (-2952 (((-3 $ "failed") $) NIL (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) 22) ((|#2| $ (-552)) NIL)) (-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3877 ((|#2| $) NIL)) (-3202 (($ (-627 |#2|)) NIL)) (-4064 (((-111) $) NIL)) (-2372 (((-235 |#1| |#2|) $) NIL)) (-1530 ((|#2| $) NIL (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-3133 (((-671 |#2|) (-1235 $)) NIL) (((-1235 |#2|) $) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $ (-1235 $)) 25)) (-3562 (($ (-1235 |#2|)) NIL) (((-1235 |#2|) $) NIL)) (-2539 (((-627 (-931 |#2|))) NIL) (((-627 (-931 |#2|)) (-1235 $)) NIL)) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL)) (-2152 (((-235 |#1| |#2|) $ (-552)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (((-671 |#2|) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) 36)) (-1360 (((-627 (-1235 |#2|))) NIL (|has| |#2| (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL)) (-3288 (($ (-671 |#2|) $) NIL)) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL)) (-3258 (((-111)) NIL)) (-3699 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-652 |#1| |#2|) (-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-411 |#2|)) (-900) (-169)) (T -652)) -NIL -(-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-411 |#2|)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3575 (((-627 (-1111)) $) 10)) (-1477 (((-842) $) 18) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-653) (-13 (-1059) (-10 -8 (-15 -3575 ((-627 (-1111)) $))))) (T -653)) -((-3575 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-653))))) -(-13 (-1059) (-10 -8 (-15 -3575 ((-627 (-1111)) $)))) -((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) NIL)) (-2791 (($ $) 52)) (-3221 (((-111) $) NIL)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1678 (((-3 $ "failed") (-802 |#1|)) 23)) (-3218 (((-111) (-802 |#1|)) 15)) (-1551 (($ (-802 |#1|)) 24)) (-3637 (((-111) $ $) 30)) (-3593 (((-900) $) 37)) (-2776 (($ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1727 (((-627 $) (-802 |#1|)) 17)) (-1477 (((-842) $) 43) (($ |#1|) 34) (((-802 |#1|) $) 39) (((-659 |#1|) $) 44)) (-3036 (((-58 (-627 $)) (-627 |#1|) (-900)) 57)) (-3349 (((-627 $) (-627 |#1|) (-900)) 60)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 53)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 38))) -(((-654 |#1|) (-13 (-830) (-1017 |#1|) (-10 -8 (-15 -3221 ((-111) $)) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ((-659 |#1|) $)) (-15 -1727 ((-627 $) (-802 |#1|))) (-15 -3218 ((-111) (-802 |#1|))) (-15 -1551 ($ (-802 |#1|))) (-15 -1678 ((-3 $ "failed") (-802 |#1|))) (-15 -1671 ((-627 |#1|) $)) (-15 -3036 ((-58 (-627 $)) (-627 |#1|) (-900))) (-15 -3349 ((-627 $) (-627 |#1|) (-900))))) (-830)) (T -654)) -((-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-654 *4))) (-5 *1 (-654 *4)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-111)) (-5 *1 (-654 *4)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3)))) (-1678 (*1 *1 *2) (|partial| -12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) (-5 *2 (-58 (-627 (-654 *5)))) (-5 *1 (-654 *5)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) (-5 *2 (-627 (-654 *5))) (-5 *1 (-654 *5))))) -(-13 (-830) (-1017 |#1|) (-10 -8 (-15 -3221 ((-111) $)) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ((-659 |#1|) $)) (-15 -1727 ((-627 $) (-802 |#1|))) (-15 -3218 ((-111) (-802 |#1|))) (-15 -1551 ($ (-802 |#1|))) (-15 -1678 ((-3 $ "failed") (-802 |#1|))) (-15 -1671 ((-627 |#1|) $)) (-15 -3036 ((-58 (-627 $)) (-627 |#1|) (-900))) (-15 -3349 ((-627 $) (-627 |#1|) (-900))))) -((-4288 ((|#2| $) 76)) (-1700 (($ $) 96)) (-4031 (((-111) $ (-754)) 26)) (-3351 (($ $) 85) (($ $ (-754)) 88)) (-3592 (((-111) $) 97)) (-2336 (((-627 $) $) 72)) (-3726 (((-111) $ $) 71)) (-1602 (((-111) $ (-754)) 24)) (-3661 (((-552) $) 46)) (-2285 (((-552) $) 45)) (-3971 (((-111) $ (-754)) 22)) (-3810 (((-111) $) 74)) (-1294 ((|#2| $) 89) (($ $ (-754)) 92)) (-3252 (($ $ $ (-552)) 62) (($ |#2| $ (-552)) 61)) (-3892 (((-627 (-552)) $) 44)) (-2358 (((-111) (-552) $) 42)) (-3340 ((|#2| $) NIL) (($ $ (-754)) 84)) (-4168 (($ $ (-552)) 100)) (-2361 (((-111) $) 99)) (-3509 (((-111) (-1 (-111) |#2|) $) 32)) (-2083 (((-627 |#2|) $) 33)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1202 (-552))) 58) ((|#2| $ (-552)) 40) ((|#2| $ (-552) |#2|) 41)) (-1848 (((-552) $ $) 70)) (-3907 (($ $ (-1202 (-552))) 57) (($ $ (-552)) 51)) (-2978 (((-111) $) 66)) (-1805 (($ $) 81)) (-3543 (((-754) $) 80)) (-4149 (($ $) 79)) (-1490 (($ (-627 |#2|)) 37)) (-2890 (($ $) 101)) (-2535 (((-627 $) $) 69)) (-3415 (((-111) $ $) 68)) (-3299 (((-111) (-1 (-111) |#2|) $) 31)) (-2292 (((-111) $ $) 18)) (-1383 (((-754) $) 29))) -(((-655 |#1| |#2|) (-10 -8 (-15 -2890 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-552))) (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -2083 ((-627 |#2|) |#1|)) (-15 -2358 ((-111) (-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2285 ((-552) |#1|)) (-15 -3661 ((-552) |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1848 ((-552) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) (-656 |#2|) (-1189)) (T -655)) -NIL -(-10 -8 (-15 -2890 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-552))) (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -2083 ((-627 |#2|) |#1|)) (-15 -2358 ((-111) (-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2285 ((-552) |#1|)) (-15 -3661 ((-552) |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1848 ((-552) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 102)) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-2860 (($ $) 124)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 103)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-3939 (((-754) $) 123)) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-2421 (($ $) 126)) (-4244 (((-111) $) 127)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3566 ((|#1| $) 125)) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-4168 (($ $ (-552)) 122)) (-2361 (((-111) $) 84)) (-1298 (((-111) $) 128)) (-3076 (((-111) $) 129)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-2890 (($ $) 121)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-656 |#1|) (-137) (-1189)) (T -656)) -((-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-2421 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-2860 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) -(-13 (-1125 |t#1|) (-10 -8 (-15 -4342 ($ (-1 (-111) |t#1|) $)) (-15 -2536 ($ (-1 (-111) |t#1|) $)) (-15 -3076 ((-111) $)) (-15 -1298 ((-111) $)) (-15 -4244 ((-111) $)) (-15 -2421 ($ $)) (-15 -3566 (|t#1| $)) (-15 -2860 ($ $)) (-15 -3939 ((-754) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1125 |#1|) . T) ((-1189) . T) ((-1223 |#1|) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3786 (($ (-754) (-754) (-754)) 33 (|has| |#1| (-1028)))) (-4031 (((-111) $ (-754)) NIL)) (-1372 ((|#1| $ (-754) (-754) (-754) |#1|) 27)) (-3887 (($) NIL T CONST)) (-1801 (($ $ $) 37 (|has| |#1| (-1028)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2866 (((-1235 (-754)) $) 9)) (-2736 (($ (-1152) $ $) 22)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2048 (($ (-754)) 35 (|has| |#1| (-1028)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-754) (-754) (-754)) 25)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1490 (($ (-627 (-627 (-627 |#1|)))) 44)) (-1477 (($ (-937 (-937 (-937 |#1|)))) 15) (((-937 (-937 (-937 |#1|))) $) 12) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-657 |#1|) (-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1028)) (PROGN (-15 -3786 ($ (-754) (-754) (-754))) (-15 -2048 ($ (-754))) (-15 -1801 ($ $ $))) |%noBranch|) (-15 -1490 ($ (-627 (-627 (-627 |#1|))))) (-15 -1985 (|#1| $ (-754) (-754) (-754))) (-15 -1372 (|#1| $ (-754) (-754) (-754) |#1|)) (-15 -1477 ($ (-937 (-937 (-937 |#1|))))) (-15 -1477 ((-937 (-937 (-937 |#1|))) $)) (-15 -2736 ($ (-1152) $ $)) (-15 -2866 ((-1235 (-754)) $)))) (-1076)) (T -657)) -((-3786 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) (-4 *3 (-1076)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) (-4 *3 (-1076)))) (-1801 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1028)) (-4 *2 (-1076)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-627 *3)))) (-4 *3 (-1076)) (-5 *1 (-657 *3)))) (-1985 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) (-1372 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-4 *3 (-1076)) (-5 *1 (-657 *3)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-5 *1 (-657 *3)) (-4 *3 (-1076)))) (-2736 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-657 *3)) (-4 *3 (-1076)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1235 (-754))) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) -(-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1028)) (PROGN (-15 -3786 ($ (-754) (-754) (-754))) (-15 -2048 ($ (-754))) (-15 -1801 ($ $ $))) |%noBranch|) (-15 -1490 ($ (-627 (-627 (-627 |#1|))))) (-15 -1985 (|#1| $ (-754) (-754) (-754))) (-15 -1372 (|#1| $ (-754) (-754) (-754) |#1|)) (-15 -1477 ($ (-937 (-937 (-937 |#1|))))) (-15 -1477 ((-937 (-937 (-937 |#1|))) $)) (-15 -2736 ($ (-1152) $ $)) (-15 -2866 ((-1235 (-754)) $)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3134 (((-476) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 12)) (-2292 (((-111) $ $) NIL))) -(((-658) (-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -3122 ((-1111) $))))) (T -658)) -((-3134 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-658)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-658))))) -(-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -3122 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 14)) (-2791 (($ $) 18)) (-3221 (((-111) $) 19)) (-4039 (((-3 |#1| "failed") $) 22)) (-1703 ((|#1| $) 20)) (-3351 (($ $) 36)) (-3627 (($ $) 24)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3637 (((-111) $ $) 42)) (-3593 (((-900) $) 38)) (-2776 (($ $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) 35)) (-1477 (((-842) $) 31) (($ |#1|) 23) (((-802 |#1|) $) 27)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 12)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 40)) (* (($ $ $) 34))) -(((-659 |#1|) (-13 (-830) (-1017 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -3340 (|#1| $)) (-15 -2776 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -3627 ($ $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -2791 ($ $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -659)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830))))) -(-13 (-830) (-1017 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -3340 (|#1| $)) (-15 -2776 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -3627 ($ $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -2791 ($ $)) (-15 -1671 ((-627 |#1|) $)))) -((-3982 ((|#1| (-1 |#1| (-754) |#1|) (-754) |#1|) 11)) (-3915 ((|#1| (-1 |#1| |#1|) (-754) |#1|) 9))) -(((-660 |#1|) (-10 -7 (-15 -3915 (|#1| (-1 |#1| |#1|) (-754) |#1|)) (-15 -3982 (|#1| (-1 |#1| (-754) |#1|) (-754) |#1|))) (-1076)) (T -660)) -((-3982 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-754) *2)) (-5 *4 (-754)) (-4 *2 (-1076)) (-5 *1 (-660 *2)))) (-3915 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-754)) (-4 *2 (-1076)) (-5 *1 (-660 *2))))) -(-10 -7 (-15 -3915 (|#1| (-1 |#1| |#1|) (-754) |#1|)) (-15 -3982 (|#1| (-1 |#1| (-754) |#1|) (-754) |#1|))) -((-3807 ((|#2| |#1| |#2|) 9)) (-3797 ((|#1| |#1| |#2|) 8))) -(((-661 |#1| |#2|) (-10 -7 (-15 -3797 (|#1| |#1| |#2|)) (-15 -3807 (|#2| |#1| |#2|))) (-1076) (-1076)) (T -661)) -((-3807 (*1 *2 *3 *2) (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(-10 -7 (-15 -3797 (|#1| |#1| |#2|)) (-15 -3807 (|#2| |#1| |#2|))) -((-3359 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3359 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1076) (-1076) (-1076)) (T -662)) -((-3359 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)) (-5 *1 (-662 *5 *6 *2))))) -(-10 -7 (-15 -3359 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 20)) (-3901 (((-627 (-1188)) $) 18)) (-2632 (($ (-627 (-1188)) (-1188)) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 29) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1188) $) 21) (($ (-1094)) 10)) (-2292 (((-111) $ $) NIL))) -(((-663) (-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-1094))) (-15 -2632 ($ (-627 (-1188)) (-1188))) (-15 -3901 ((-627 (-1188)) $)) (-15 -2816 ((-1188) $))))) (T -663)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-663)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1188))) (-5 *3 (-1188)) (-5 *1 (-663)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-663)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-663))))) -(-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-1094))) (-15 -2632 ($ (-627 (-1188)) (-1188))) (-15 -3901 ((-627 (-1188)) $)) (-15 -2816 ((-1188) $)))) -((-3982 (((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)) 23)) (-1488 (((-1 |#1|) |#1|) 8)) (-2618 ((|#1| |#1|) 16)) (-3369 (((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1477 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-754)) 20))) -(((-664 |#1|) (-10 -7 (-15 -1488 ((-1 |#1|) |#1|)) (-15 -1477 ((-1 |#1|) |#1|)) (-15 -3369 (|#1| (-1 |#1| |#1|))) (-15 -3369 ((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552))) (-15 -2618 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-754))) (-15 -3982 ((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)))) (-1076)) (T -664)) -((-3982 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-754) *3)) (-4 *3 (-1076)) (-5 *1 (-664 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *4 (-1076)) (-5 *1 (-664 *4)))) (-2618 (*1 *2 *2) (-12 (-5 *1 (-664 *2)) (-4 *2 (-1076)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-627 *5) (-627 *5))) (-5 *4 (-552)) (-5 *2 (-627 *5)) (-5 *1 (-664 *5)) (-4 *5 (-1076)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-664 *2)) (-4 *2 (-1076)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076)))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076))))) -(-10 -7 (-15 -1488 ((-1 |#1|) |#1|)) (-15 -1477 ((-1 |#1|) |#1|)) (-15 -3369 (|#1| (-1 |#1| |#1|))) (-15 -3369 ((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552))) (-15 -2618 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-754))) (-15 -3982 ((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)))) -((-2127 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2213 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3488 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3767 (((-1 |#2| |#1|) |#2|) 11))) -(((-665 |#1| |#2|) (-10 -7 (-15 -3767 ((-1 |#2| |#1|) |#2|)) (-15 -2213 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3488 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2127 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1076) (-1076)) (T -665)) -((-2127 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5)) (-4 *4 (-1076)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-5 *2 (-1 *5)) (-5 *1 (-665 *4 *5)))) (-3767 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-665 *4 *3)) (-4 *4 (-1076)) (-4 *3 (-1076))))) -(-10 -7 (-15 -3767 ((-1 |#2| |#1|) |#2|)) (-15 -2213 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3488 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2127 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4215 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3844 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2409 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3905 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2514 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3844 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2409 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3905 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2514 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4215 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1076) (-1076) (-1076)) (T -666)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-1 *7 *5)) (-5 *1 (-666 *5 *6 *7)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-666 *4 *5 *6)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *4 (-1076)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *5 (-1076)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *4 *5 *6)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1076)) (-4 *4 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *5 *4 *6))))) -(-10 -7 (-15 -3844 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2409 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3905 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2514 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4215 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2091 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3516 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3516 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2091 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1028) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|) (-1028) (-367 |#5|) (-367 |#5|) (-669 |#5| |#6| |#7|)) (T -667)) -((-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1028)) (-4 *2 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))) -(-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3516 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2091 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2099 (($ (-754) (-754)) 33)) (-2129 (($ $ $) 56)) (-3595 (($ |#3|) 52) (($ $) 53)) (-2311 (((-111) $) 28)) (-2232 (($ $ (-552) (-552)) 58)) (-3700 (($ $ (-552) (-552)) 59)) (-1966 (($ $ (-552) (-552) (-552) (-552)) 63)) (-2456 (($ $) 54)) (-3944 (((-111) $) 14)) (-1459 (($ $ (-552) (-552) $) 64)) (-2950 ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) 62)) (-1665 (($ (-754) |#2|) 39)) (-4176 (($ (-627 (-627 |#2|))) 37)) (-3127 (((-627 (-627 |#2|)) $) 57)) (-3838 (($ $ $) 55)) (-2761 (((-3 $ "failed") $ |#2|) 91)) (-1985 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-627 (-552)) (-627 (-552))) 61)) (-3202 (($ (-627 |#2|)) 40) (($ (-627 $)) 42)) (-4064 (((-111) $) 24)) (-1477 (($ |#4|) 47) (((-842) $) NIL)) (-3847 (((-111) $) 30)) (-2407 (($ $ |#2|) 93)) (-2396 (($ $ $) 68) (($ $) 71)) (-2384 (($ $ $) 66)) (** (($ $ (-754)) 80) (($ $ (-552)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-552) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#2|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1966 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -3700 (|#1| |#1| (-552) (-552))) (-15 -2232 (|#1| |#1| (-552) (-552))) (-15 -2950 (|#1| |#1| (-627 (-552)) (-627 (-552)) |#1|)) (-15 -1985 (|#1| |#1| (-627 (-552)) (-627 (-552)))) (-15 -3127 ((-627 (-627 |#2|)) |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3595 (|#1| |#3|)) (-15 -1477 (|#1| |#4|)) (-15 -3202 (|#1| (-627 |#1|))) (-15 -3202 (|#1| (-627 |#2|))) (-15 -1665 (|#1| (-754) |#2|)) (-15 -4176 (|#1| (-627 (-627 |#2|)))) (-15 -2099 (|#1| (-754) (-754))) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552)))) (-669 |#2| |#3| |#4|) (-1028) (-367 |#2|) (-367 |#2|)) (T -668)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#2|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1966 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -3700 (|#1| |#1| (-552) (-552))) (-15 -2232 (|#1| |#1| (-552) (-552))) (-15 -2950 (|#1| |#1| (-627 (-552)) (-627 (-552)) |#1|)) (-15 -1985 (|#1| |#1| (-627 (-552)) (-627 (-552)))) (-15 -3127 ((-627 (-627 |#2|)) |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3595 (|#1| |#3|)) (-15 -1477 (|#1| |#4|)) (-15 -3202 (|#1| (-627 |#1|))) (-15 -3202 (|#1| (-627 |#2|))) (-15 -1665 (|#1| (-754) |#2|)) (-15 -4176 (|#1| (-627 (-627 |#2|)))) (-15 -2099 (|#1| (-754) (-754))) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) 97)) (-2129 (($ $ $) 87)) (-3595 (($ |#2|) 91) (($ $) 90)) (-2311 (((-111) $) 99)) (-2232 (($ $ (-552) (-552)) 83)) (-3700 (($ $ (-552) (-552)) 82)) (-1966 (($ $ (-552) (-552) (-552) (-552)) 81)) (-2456 (($ $) 89)) (-3944 (((-111) $) 101)) (-4031 (((-111) $ (-754)) 8)) (-1459 (($ $ (-552) (-552) $) 80)) (-2950 ((|#1| $ (-552) (-552) |#1|) 44) (($ $ (-627 (-552)) (-627 (-552)) $) 84)) (-1566 (($ $ (-552) |#2|) 42)) (-1666 (($ $ (-552) |#3|) 41)) (-1665 (($ (-754) |#1|) 95)) (-3887 (($) 7 T CONST)) (-1472 (($ $) 67 (|has| |#1| (-301)))) (-3884 ((|#2| $ (-552)) 46)) (-4154 (((-754) $) 66 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) 43)) (-3413 ((|#1| $ (-552) (-552)) 48)) (-3215 (((-627 |#1|) $) 30)) (-1610 (((-754) $) 65 (|has| |#1| (-544)))) (-2960 (((-627 |#3|) $) 64 (|has| |#1| (-544)))) (-3560 (((-754) $) 51)) (-2655 (($ (-754) (-754) |#1|) 57)) (-3572 (((-754) $) 50)) (-1602 (((-111) $ (-754)) 9)) (-1744 ((|#1| $) 62 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 55)) (-3511 (((-552) $) 53)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 54)) (-2780 (((-552) $) 52)) (-4176 (($ (-627 (-627 |#1|))) 96)) (-3463 (($ (-1 |#1| |#1|) $) 34)) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3127 (((-627 (-627 |#1|)) $) 86)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 61 (|has| |#1| (-357)))) (-3838 (($ $ $) 88)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) 56)) (-2761 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47) (($ $ (-627 (-552)) (-627 (-552))) 85)) (-3202 (($ (-627 |#1|)) 94) (($ (-627 $)) 93)) (-4064 (((-111) $) 100)) (-1530 ((|#1| $) 63 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-2152 ((|#3| $ (-552)) 45)) (-1477 (($ |#3|) 92) (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 98)) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) 68 (|has| |#1| (-357)))) (-2396 (($ $ $) 78) (($ $) 77)) (-2384 (($ $ $) 79)) (** (($ $ (-754)) 70) (($ $ (-552)) 60 (|has| |#1| (-357)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-552) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-669 |#1| |#2| |#3|) (-137) (-1028) (-367 |t#1|) (-367 |t#1|)) (T -669)) -((-3944 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2099 (*1 *1 *2 *2) (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-3595 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2456 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2129 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-627 (-627 *3))))) (-1985 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2950 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2232 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3700 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1966 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1459 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1028)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-301)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-627 *5)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-2952 (*1 *1 *1) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3944 ((-111) $)) (-15 -4064 ((-111) $)) (-15 -2311 ((-111) $)) (-15 -3847 ((-111) $)) (-15 -2099 ($ (-754) (-754))) (-15 -4176 ($ (-627 (-627 |t#1|)))) (-15 -1665 ($ (-754) |t#1|)) (-15 -3202 ($ (-627 |t#1|))) (-15 -3202 ($ (-627 $))) (-15 -1477 ($ |t#3|)) (-15 -3595 ($ |t#2|)) (-15 -3595 ($ $)) (-15 -2456 ($ $)) (-15 -3838 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3127 ((-627 (-627 |t#1|)) $)) (-15 -1985 ($ $ (-627 (-552)) (-627 (-552)))) (-15 -2950 ($ $ (-627 (-552)) (-627 (-552)) $)) (-15 -2232 ($ $ (-552) (-552))) (-15 -3700 ($ $ (-552) (-552))) (-15 -1966 ($ $ (-552) (-552) (-552) (-552))) (-15 -1459 ($ $ (-552) (-552) $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-552) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-754))) (IF (|has| |t#1| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-301)) (-15 -1472 ($ $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -4154 ((-754) $)) (-15 -1610 ((-754) $)) (-15 -2960 ((-627 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4368 "*"))) (PROGN (-15 -1530 (|t#1| $)) (-15 -1744 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -2952 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-56 |#1| |#2| |#3|) . T) ((-1189) . T)) -((-1472 ((|#4| |#4|) 72 (|has| |#1| (-301)))) (-4154 (((-754) |#4|) 99 (|has| |#1| (-544)))) (-1610 (((-754) |#4|) 76 (|has| |#1| (-544)))) (-2960 (((-627 |#3|) |#4|) 83 (|has| |#1| (-544)))) (-2867 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 111 (|has| |#1| (-301)))) (-1744 ((|#1| |#4|) 35)) (-3565 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-544)))) (-2952 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-357)))) (-1949 ((|#4| |#4|) 68 (|has| |#1| (-544)))) (-3776 ((|#4| |#4| |#1| (-552) (-552)) 43)) (-4076 ((|#4| |#4| (-552) (-552)) 38)) (-2221 ((|#4| |#4| |#1| (-552) (-552)) 48)) (-1530 ((|#1| |#4|) 78)) (-2279 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-544))))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1530 (|#1| |#4|)) (-15 -1744 (|#1| |#4|)) (-15 -4076 (|#4| |#4| (-552) (-552))) (-15 -3776 (|#4| |#4| |#1| (-552) (-552))) (-15 -2221 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (-15 -2960 ((-627 |#3|) |#4|)) (-15 -1949 (|#4| |#4|)) (-15 -3565 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -1472 (|#4| |#4|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -670)) -((-2952 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3565 (*1 *2 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2960 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-2221 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-3776 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-4076 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-670 *4 *5 *6 *2)) (-4 *2 (-669 *4 *5 *6)))) (-1744 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5))))) -(-10 -7 (-15 -1530 (|#1| |#4|)) (-15 -1744 (|#1| |#4|)) (-15 -4076 (|#4| |#4| (-552) (-552))) (-15 -3776 (|#4| |#4| |#1| (-552) (-552))) (-15 -2221 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (-15 -2960 ((-627 |#3|) |#4|)) (-15 -1949 (|#4| |#4|)) (-15 -3565 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -1472 (|#4| |#4|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) 47)) (-2129 (($ $ $) NIL)) (-3595 (($ (-1235 |#1|)) NIL) (($ $) NIL)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) 12)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-1235 |#1|)) NIL)) (-1666 (($ $ (-552) (-1235 |#1|)) NIL)) (-1665 (($ (-754) |#1|) 22)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 31 (|has| |#1| (-301)))) (-3884 (((-1235 |#1|) $ (-552)) NIL)) (-4154 (((-754) $) 33 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) 51)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) 35 (|has| |#1| (-544)))) (-2960 (((-627 (-1235 |#1|)) $) 38 (|has| |#1| (-544)))) (-3560 (((-754) $) 20)) (-2655 (($ (-754) (-754) |#1|) 16)) (-3572 (((-754) $) 21)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) 29 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 9)) (-3511 (((-552) $) 10)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 11)) (-2780 (((-552) $) 48)) (-4176 (($ (-627 (-627 |#1|))) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) 60)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 45 (|has| |#1| (-357)))) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL) (($ (-1235 |#1|)) 52)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) 27 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 64 (|has| |#1| (-600 (-528))))) (-2152 (((-1235 |#1|) $ (-552)) NIL)) (-1477 (($ (-1235 |#1|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) 23) (($ $ (-552)) 46 (|has| |#1| (-357)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1235 |#1|) $ (-1235 |#1|)) NIL) (((-1235 |#1|) (-1235 |#1|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-671 |#1|) (-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 -3202 ($ (-1235 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 $ "failed") $)) |%noBranch|))) (-1028)) (T -671)) -((-2952 (*1 *1 *1) (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-357)) (-4 *2 (-1028)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-671 *3))))) -(-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 -3202 ($ (-1235 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 $ "failed") $)) |%noBranch|))) -((-2174 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 25)) (-3588 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 21)) (-2235 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754)) 26)) (-3751 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 14)) (-3412 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 18) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 16)) (-1954 (((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|)) 20)) (-3353 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 12)) (** (((-671 |#1|) (-671 |#1|) (-754)) 30))) -(((-672 |#1|) (-10 -7 (-15 -3353 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3751 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1954 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -3588 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -2174 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2235 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754))) (-15 ** ((-671 |#1|) (-671 |#1|) (-754)))) (-1028)) (T -672)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-672 *4)))) (-2235 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-672 *4)))) (-2174 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3588 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-1954 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3412 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3751 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3353 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(-10 -7 (-15 -3353 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3751 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1954 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -3588 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -2174 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2235 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754))) (-15 ** ((-671 |#1|) (-671 |#1|) (-754)))) -((-3071 (($) 8 T CONST)) (-1477 (((-842) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-1911 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3071)) 16)) (-3007 ((|#1| $) 11))) -(((-673 |#1|) (-13 (-1230) (-599 (-842)) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| |#1|))) (-15 -1911 ((-111) $ (|[\|\|]| -3071))) (-15 -1477 ($ |#1|)) (-15 -1477 (|#1| $)) (-15 -3007 (|#1| $)) (-15 -3071 ($) -3488))) (-599 (-842))) (T -673)) -((-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-842))) (-5 *2 (-111)) (-5 *1 (-673 *4)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3071)) (-5 *2 (-111)) (-5 *1 (-673 *4)) (-4 *4 (-599 (-842))))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-1477 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-3007 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-3071 (*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842)))))) -(-13 (-1230) (-599 (-842)) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| |#1|))) (-15 -1911 ((-111) $ (|[\|\|]| -3071))) (-15 -1477 ($ |#1|)) (-15 -1477 (|#1| $)) (-15 -3007 (|#1| $)) (-15 -3071 ($) -3488))) -((-4259 ((|#2| |#2| |#4|) 25)) (-4220 (((-671 |#2|) |#3| |#4|) 31)) (-3038 (((-671 |#2|) |#2| |#4|) 30)) (-3117 (((-1235 |#2|) |#2| |#4|) 16)) (-2633 ((|#2| |#3| |#4|) 24)) (-1539 (((-671 |#2|) |#3| |#4| (-754) (-754)) 38)) (-2800 (((-671 |#2|) |#2| |#4| (-754)) 37))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3117 ((-1235 |#2|) |#2| |#4|)) (-15 -2633 (|#2| |#3| |#4|)) (-15 -4259 (|#2| |#2| |#4|)) (-15 -3038 ((-671 |#2|) |#2| |#4|)) (-15 -2800 ((-671 |#2|) |#2| |#4| (-754))) (-15 -4220 ((-671 |#2|) |#3| |#4|)) (-15 -1539 ((-671 |#2|) |#3| |#4| (-754) (-754)))) (-1076) (-879 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4366)))) (T -674)) -((-1539 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *7 (-879 *6)) (-5 *2 (-671 *7)) (-5 *1 (-674 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366)))))) (-4220 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *6 (-879 *5)) (-5 *2 (-671 *6)) (-5 *1 (-674 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-2800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *3 (-879 *6)) (-5 *2 (-671 *3)) (-5 *1 (-674 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366)))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-671 *3)) (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-4259 (*1 *2 *2 *3) (-12 (-4 *4 (-1076)) (-4 *2 (-879 *4)) (-5 *1 (-674 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4366)))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *2 (-879 *5)) (-5 *1 (-674 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-3117 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-1235 *3)) (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) -(-10 -7 (-15 -3117 ((-1235 |#2|) |#2| |#4|)) (-15 -2633 (|#2| |#3| |#4|)) (-15 -4259 (|#2| |#2| |#4|)) (-15 -3038 ((-671 |#2|) |#2| |#4|)) (-15 -2800 ((-671 |#2|) |#2| |#4| (-754))) (-15 -4220 ((-671 |#2|) |#3| |#4|)) (-15 -1539 ((-671 |#2|) |#3| |#4| (-754) (-754)))) -((-1971 (((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)) 20)) (-3623 ((|#1| (-671 |#2|)) 9)) (-2155 (((-671 |#1|) (-671 |#2|)) 18))) -(((-675 |#1| |#2|) (-10 -7 (-15 -3623 (|#1| (-671 |#2|))) (-15 -2155 ((-671 |#1|) (-671 |#2|))) (-15 -1971 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) (-544) (-971 |#1|)) (T -675)) -((-1971 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) (-5 *1 (-675 *4 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) (-5 *2 (-671 *4)) (-5 *1 (-675 *4 *5)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-675 *2 *4))))) -(-10 -7 (-15 -3623 (|#1| (-671 |#2|))) (-15 -2155 ((-671 |#1|) (-671 |#2|))) (-15 -1971 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-3841 (((-671 (-681))) NIL) (((-671 (-681)) (-1235 $)) NIL)) (-3385 (((-681) $) NIL)) (-1607 (($ $) NIL (|has| (-681) (-1174)))) (-1467 (($ $) NIL (|has| (-681) (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-681) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-4014 (($ $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-2487 (((-412 $) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-1737 (($ $) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-4224 (((-111) $ $) NIL (|has| (-681) (-301)))) (-3307 (((-754)) NIL (|has| (-681) (-362)))) (-1584 (($ $) NIL (|has| (-681) (-1174)))) (-1445 (($ $) NIL (|has| (-681) (-1174)))) (-1628 (($ $) NIL (|has| (-681) (-1174)))) (-1492 (($ $) NIL (|has| (-681) (-1174)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-681) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-681) (-1017 (-401 (-552)))))) (-1703 (((-552) $) NIL) (((-681) $) NIL) (((-401 (-552)) $) NIL (|has| (-681) (-1017 (-401 (-552)))))) (-2342 (($ (-1235 (-681))) NIL) (($ (-1235 (-681)) (-1235 $)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-681) (-343)))) (-2813 (($ $ $) NIL (|has| (-681) (-301)))) (-4088 (((-671 (-681)) $) NIL) (((-671 (-681)) $ (-1235 $)) NIL)) (-1800 (((-671 (-681)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-681))) (|:| |vec| (-1235 (-681)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-681) (-623 (-552)))) (((-671 (-552)) (-671 $)) NIL (|has| (-681) (-623 (-552))))) (-2091 (((-3 $ "failed") (-401 (-1148 (-681)))) NIL (|has| (-681) (-357))) (($ (-1148 (-681))) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1749 (((-681) $) 29)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-681) (-537)))) (-4229 (((-111) $) NIL (|has| (-681) (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| (-681) (-537)))) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-681) (-362)))) (-2789 (($ $ $) NIL (|has| (-681) (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-681) (-301)))) (-2740 (($) NIL (|has| (-681) (-343)))) (-1415 (((-111) $) NIL (|has| (-681) (-343)))) (-4294 (($ $) NIL (|has| (-681) (-343))) (($ $ (-754)) NIL (|has| (-681) (-343)))) (-1633 (((-111) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-3890 (((-2 (|:| |r| (-681)) (|:| |phi| (-681))) $) NIL (-12 (|has| (-681) (-1037)) (|has| (-681) (-1174))))) (-2951 (($) NIL (|has| (-681) (-1174)))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-681) (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-681) (-865 (-552))))) (-2641 (((-816 (-900)) $) NIL (|has| (-681) (-343))) (((-900) $) NIL (|has| (-681) (-343)))) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174))))) (-2349 (((-681) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-681) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-681) (-301)))) (-4205 (((-1148 (-681)) $) NIL (|has| (-681) (-357)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 (-681) (-681)) $) NIL)) (-2886 (((-900) $) NIL (|has| (-681) (-362)))) (-4135 (($ $) NIL (|has| (-681) (-1174)))) (-2079 (((-1148 (-681)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-681) (-301))) (($ $ $) NIL (|has| (-681) (-301)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| (-681) (-357)))) (-3002 (($) NIL (|has| (-681) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-681) (-362)))) (-2547 (($) NIL)) (-1759 (((-681) $) 31)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-681) (-301)))) (-1323 (($ (-627 $)) NIL (|has| (-681) (-301))) (($ $ $) NIL (|has| (-681) (-301)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-681) (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-1727 (((-412 $) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-681) (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-681) (-301)))) (-2761 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-681)) NIL (|has| (-681) (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-681) (-301)))) (-3154 (($ $) NIL (|has| (-681) (-1174)))) (-3321 (($ $ (-1152) (-681)) NIL (|has| (-681) (-506 (-1152) (-681)))) (($ $ (-627 (-1152)) (-627 (-681))) NIL (|has| (-681) (-506 (-1152) (-681)))) (($ $ (-627 (-288 (-681)))) NIL (|has| (-681) (-303 (-681)))) (($ $ (-288 (-681))) NIL (|has| (-681) (-303 (-681)))) (($ $ (-681) (-681)) NIL (|has| (-681) (-303 (-681)))) (($ $ (-627 (-681)) (-627 (-681))) NIL (|has| (-681) (-303 (-681))))) (-2718 (((-754) $) NIL (|has| (-681) (-301)))) (-1985 (($ $ (-681)) NIL (|has| (-681) (-280 (-681) (-681))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-681) (-301)))) (-1637 (((-681)) NIL) (((-681) (-1235 $)) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL (|has| (-681) (-343))) (((-754) $) NIL (|has| (-681) (-343)))) (-2942 (($ $ (-1 (-681) (-681))) NIL) (($ $ (-1 (-681) (-681)) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-754)) NIL (|has| (-681) (-228))) (($ $) NIL (|has| (-681) (-228)))) (-4070 (((-671 (-681)) (-1235 $) (-1 (-681) (-681))) NIL (|has| (-681) (-357)))) (-1376 (((-1148 (-681))) NIL)) (-1640 (($ $) NIL (|has| (-681) (-1174)))) (-1502 (($ $) NIL (|has| (-681) (-1174)))) (-3439 (($) NIL (|has| (-681) (-343)))) (-1615 (($ $) NIL (|has| (-681) (-1174)))) (-1479 (($ $) NIL (|has| (-681) (-1174)))) (-1596 (($ $) NIL (|has| (-681) (-1174)))) (-1456 (($ $) NIL (|has| (-681) (-1174)))) (-3133 (((-671 (-681)) (-1235 $)) NIL) (((-1235 (-681)) $) NIL) (((-671 (-681)) (-1235 $) (-1235 $)) NIL) (((-1235 (-681)) $ (-1235 $)) NIL)) (-3562 (((-528) $) NIL (|has| (-681) (-600 (-528)))) (((-166 (-220)) $) NIL (|has| (-681) (-1001))) (((-166 (-373)) $) NIL (|has| (-681) (-1001))) (((-871 (-373)) $) NIL (|has| (-681) (-600 (-871 (-373))))) (((-871 (-552)) $) NIL (|has| (-681) (-600 (-871 (-552))))) (($ (-1148 (-681))) NIL) (((-1148 (-681)) $) NIL) (($ (-1235 (-681))) NIL) (((-1235 (-681)) $) NIL)) (-2616 (($ $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| $ (-142)) (|has| (-681) (-888))) (|has| (-681) (-343))))) (-3040 (($ (-681) (-681)) 12)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-681)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-552))) 19) (($ (-166 (-681))) 28) (($ (-166 (-683))) 25) (((-166 (-373)) $) 33) (($ (-401 (-552))) NIL (-1559 (|has| (-681) (-1017 (-401 (-552)))) (|has| (-681) (-357))))) (-3050 (($ $) NIL (|has| (-681) (-343))) (((-3 $ "failed") $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| $ (-142)) (|has| (-681) (-888))) (|has| (-681) (-142))))) (-2410 (((-1148 (-681)) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL)) (-1673 (($ $) NIL (|has| (-681) (-1174)))) (-1534 (($ $) NIL (|has| (-681) (-1174)))) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) NIL (|has| (-681) (-1174)))) (-1513 (($ $) NIL (|has| (-681) (-1174)))) (-1697 (($ $) NIL (|has| (-681) (-1174)))) (-1561 (($ $) NIL (|has| (-681) (-1174)))) (-1731 (((-681) $) NIL (|has| (-681) (-1174)))) (-3519 (($ $) NIL (|has| (-681) (-1174)))) (-1575 (($ $) NIL (|has| (-681) (-1174)))) (-1686 (($ $) NIL (|has| (-681) (-1174)))) (-1547 (($ $) NIL (|has| (-681) (-1174)))) (-1661 (($ $) NIL (|has| (-681) (-1174)))) (-1524 (($ $) NIL (|has| (-681) (-1174)))) (-3329 (($ $) NIL (|has| (-681) (-1037)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 (-681) (-681))) NIL) (($ $ (-1 (-681) (-681)) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-754)) NIL (|has| (-681) (-228))) (($ $) NIL (|has| (-681) (-228)))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-681) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ $) NIL (|has| (-681) (-1174))) (($ $ (-401 (-552))) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174)))) (($ $ (-552)) NIL (|has| (-681) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-681) $) NIL) (($ $ (-681)) NIL) (($ (-401 (-552)) $) NIL (|has| (-681) (-357))) (($ $ (-401 (-552))) NIL (|has| (-681) (-357))))) -(((-676) (-13 (-381) (-163 (-681)) (-10 -8 (-15 -1477 ($ (-166 (-373)))) (-15 -1477 ($ (-166 (-552)))) (-15 -1477 ($ (-166 (-681)))) (-15 -1477 ($ (-166 (-683)))) (-15 -1477 ((-166 (-373)) $))))) (T -676)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-676)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676))))) -(-13 (-381) (-163 (-681)) (-10 -8 (-15 -1477 ($ (-166 (-373)))) (-15 -1477 ($ (-166 (-552)))) (-15 -1477 ($ (-166 (-681)))) (-15 -1477 ($ (-166 (-683)))) (-15 -1477 ((-166 (-373)) $)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-677 |#1|) (-137) (-1076)) (T -677)) -((-3954 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-677 *2)) (-4 *2 (-1076)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1076)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1076)) (-5 *2 (-627 (-2 (|:| -2162 *3) (|:| -1509 (-754)))))))) -(-13 (-230 |t#1|) (-10 -8 (-15 -3954 ($ |t#1| $ (-754))) (-15 -2820 ($ $)) (-15 -3131 ((-627 (-2 (|:| -2162 |t#1|) (|:| -1509 (-754)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3787 (((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552)) 47)) (-2365 ((|#1| |#1| (-552)) 46)) (-1323 ((|#1| |#1| |#1| (-552)) 36)) (-1727 (((-627 |#1|) |#1| (-552)) 39)) (-4207 ((|#1| |#1| (-552) |#1| (-552)) 32)) (-2151 (((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552)) 45))) -(((-678 |#1|) (-10 -7 (-15 -1323 (|#1| |#1| |#1| (-552))) (-15 -2365 (|#1| |#1| (-552))) (-15 -1727 ((-627 |#1|) |#1| (-552))) (-15 -2151 ((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552))) (-15 -3787 ((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552))) (-15 -4207 (|#1| |#1| (-552) |#1| (-552)))) (-1211 (-552))) (T -678)) -((-4207 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| -1727 *5) (|:| -3567 (-552))))) (-5 *4 (-552)) (-4 *5 (-1211 *4)) (-5 *2 (-627 *5)) (-5 *1 (-678 *5)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -3567 *4)))) (-5 *1 (-678 *3)) (-4 *3 (-1211 *4)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-627 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1211 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) (-1323 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -1323 (|#1| |#1| |#1| (-552))) (-15 -2365 (|#1| |#1| (-552))) (-15 -1727 ((-627 |#1|) |#1| (-552))) (-15 -2151 ((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552))) (-15 -3787 ((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552))) (-15 -4207 (|#1| |#1| (-552) |#1| (-552)))) -((-2975 (((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 17)) (-3932 (((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 40) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 42) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 44)) (-4249 (((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257))) NIL)) (-2552 (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 45))) -(((-679) (-10 -7 (-15 -3932 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2552 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -4249 ((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2975 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -679)) -((-2975 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1 (-220) (-220) (-220) (-220))) (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *1 (-679)))) (-4249 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-2552 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-3932 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *1 (-679)))) (-3932 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-3932 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679))))) -(-10 -7 (-15 -3932 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2552 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -4249 ((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2975 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) -((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|)) 73) (((-412 |#4|) |#4|) 221))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) (-830) (-776) (-343) (-928 |#3| |#2| |#1|)) (T -680)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 84)) (-3471 (((-552) $) 30)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-3887 (($) NIL T CONST)) (-2635 (($ $) NIL)) (-4039 (((-3 (-552) "failed") $) 73) (((-3 (-401 (-552)) "failed") $) 26) (((-3 (-373) "failed") $) 70)) (-1703 (((-552) $) 75) (((-401 (-552)) $) 67) (((-373) $) 68)) (-2813 (($ $ $) 96)) (-2040 (((-3 $ "failed") $) 87)) (-2789 (($ $ $) 95)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 77) (((-900) (-900)) 76)) (-2983 (((-111) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-2641 (((-552) $) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (($ $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2770 (((-552) (-552)) 81) (((-552)) 82)) (-1816 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-1381 (((-552) (-552)) 79) (((-552)) 80)) (-4093 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 16)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 91)) (-3964 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL)) (-2060 (($ $) NIL)) (-2103 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-900)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 92)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 22)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 94)) (-3080 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2531 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-871 (-373)) $) NIL)) (-1477 (((-842) $) 52) (($ (-552)) 63) (($ $) NIL) (($ (-401 (-552))) 66) (($ (-552)) 63) (($ (-401 (-552))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-683)) 55)) (-3995 (((-754)) 103)) (-4222 (($ (-552) (-552) (-900)) 44)) (-3796 (($ $) NIL)) (-3580 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2705 (((-900)) 35) (((-900) (-900)) 78)) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) 32 T CONST)) (-1933 (($) 17 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 83)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 101)) (-2407 (($ $ $) 65)) (-2396 (($ $) 99) (($ $ $) 100)) (-2384 (($ $ $) 98)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 90)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 97) (($ $ $) 88) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-681) (-13 (-398) (-381) (-357) (-1017 (-373)) (-1017 (-401 (-552))) (-144) (-10 -8 (-15 -3284 ((-900) (-900))) (-15 -3284 ((-900))) (-15 -2705 ((-900) (-900))) (-15 -1381 ((-552) (-552))) (-15 -1381 ((-552))) (-15 -2770 ((-552) (-552))) (-15 -2770 ((-552))) (-15 -1477 ((-373) $)) (-15 -1477 ($ (-683))) (-15 -2948 ((-552) $)) (-15 -4067 ((-552) $)) (-15 -4222 ($ (-552) (-552) (-900)))))) (T -681)) -((-4067 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-3284 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-1381 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2770 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-681)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-683)) (-5 *1 (-681)))) (-4222 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-5 *1 (-681))))) -(-13 (-398) (-381) (-357) (-1017 (-373)) (-1017 (-401 (-552))) (-144) (-10 -8 (-15 -3284 ((-900) (-900))) (-15 -3284 ((-900))) (-15 -2705 ((-900) (-900))) (-15 -1381 ((-552) (-552))) (-15 -1381 ((-552))) (-15 -2770 ((-552) (-552))) (-15 -2770 ((-552))) (-15 -1477 ((-373) $)) (-15 -1477 ($ (-683))) (-15 -2948 ((-552) $)) (-15 -4067 ((-552) $)) (-15 -4222 ($ (-552) (-552) (-900))))) -((-4315 (((-671 |#1|) (-671 |#1|) |#1| |#1|) 65)) (-1472 (((-671 |#1|) (-671 |#1|) |#1|) 48)) (-1556 (((-671 |#1|) (-671 |#1|) |#1|) 66)) (-3031 (((-671 |#1|) (-671 |#1|)) 49)) (-2867 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 64))) -(((-682 |#1|) (-10 -7 (-15 -3031 ((-671 |#1|) (-671 |#1|))) (-15 -1472 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1556 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -4315 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) (-301)) (T -682)) -((-2867 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-682 *3)) (-4 *3 (-301)))) (-4315 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) -(-10 -7 (-15 -3031 ((-671 |#1|) (-671 |#1|))) (-15 -1472 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1556 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -4315 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 27)) (-1703 (((-552) $) 25)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($ $) NIL) (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) NIL)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) NIL)) (-1816 (($ $ $) NIL)) (-2454 (((-900) (-900)) 10) (((-900)) 9)) (-4093 (($ $ $) NIL)) (-4117 (($ $) NIL)) (-3593 (($ $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1313 (($ $) NIL)) (-2973 (($ $) NIL)) (-3562 (((-220) $) NIL) (((-373) $) NIL) (((-871 (-552)) $) NIL) (((-528) $) NIL) (((-552) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) 24) (($ $) NIL) (($ (-552)) 24) (((-310 $) (-310 (-552))) 18)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) NIL)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL) (($ $ (-754)) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-683) (-13 (-381) (-537) (-10 -8 (-15 -2454 ((-900) (-900))) (-15 -2454 ((-900))) (-15 -1477 ((-310 $) (-310 (-552))))))) (T -683)) -((-2454 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) (-2454 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-683))) (-5 *1 (-683))))) -(-13 (-381) (-537) (-10 -8 (-15 -2454 ((-900) (-900))) (-15 -2454 ((-900))) (-15 -1477 ((-310 $) (-310 (-552)))))) -((-2477 (((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)) 19)) (-4061 (((-1 |#4| |#2| |#3|) (-1152)) 12))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4061 ((-1 |#4| |#2| |#3|) (-1152))) (-15 -2477 ((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)))) (-600 (-528)) (-1189) (-1189) (-1189)) (T -684)) -((-2477 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *3 *5 *6 *7)) (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *7 (-1189)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *7 (-1189))))) -(-10 -7 (-15 -4061 ((-1 |#4| |#2| |#3|) (-1152))) (-15 -2477 ((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)))) -((-1465 (((-111) $ $) NIL)) (-2944 (((-1240) $ (-754)) 14)) (-2967 (((-754) $) 12)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 25)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 24))) -(((-685 |#1|) (-13 (-130) (-599 |#1|) (-10 -8 (-15 -1477 ($ |#1|)))) (-1076)) (T -685)) -((-1477 (*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1076))))) -(-13 (-130) (-599 |#1|) (-10 -8 (-15 -1477 ($ |#1|)))) -((-2575 (((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)) 34) (((-1 (-220) (-220)) |#1| (-1152)) 39))) -(((-686 |#1|) (-10 -7 (-15 -2575 ((-1 (-220) (-220)) |#1| (-1152))) (-15 -2575 ((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)))) (-600 (-528))) (T -686)) -((-2575 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-686 *3)) (-4 *3 (-600 (-528))))) (-2575 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-686 *3)) (-4 *3 (-600 (-528)))))) -(-10 -7 (-15 -2575 ((-1 (-220) (-220)) |#1| (-1152))) (-15 -2575 ((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)))) -((-4218 (((-1152) |#1| (-1152) (-627 (-1152))) 9) (((-1152) |#1| (-1152) (-1152) (-1152)) 12) (((-1152) |#1| (-1152) (-1152)) 11) (((-1152) |#1| (-1152)) 10))) -(((-687 |#1|) (-10 -7 (-15 -4218 ((-1152) |#1| (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-627 (-1152))))) (-600 (-528))) (T -687)) -((-4218 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528)))))) -(-10 -7 (-15 -4218 ((-1152) |#1| (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-627 (-1152))))) -((-2605 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-688 |#1| |#2|) (-10 -7 (-15 -2605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1189) (-1189)) (T -688)) -((-2605 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-688 *3 *4)) (-4 *3 (-1189)) (-4 *4 (-1189))))) -(-10 -7 (-15 -2605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-4159 (((-1 |#3| |#2|) (-1152)) 11)) (-2477 (((-1 |#3| |#2|) |#1| (-1152)) 21))) -(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-1 |#3| |#2|) (-1152))) (-15 -2477 ((-1 |#3| |#2|) |#1| (-1152)))) (-600 (-528)) (-1189) (-1189)) (T -689)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *3 *5 *6)) (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) -(-10 -7 (-15 -4159 ((-1 |#3| |#2|) (-1152))) (-15 -2477 ((-1 |#3| |#2|) |#1| (-1152)))) -((-2233 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|) 62)) (-2724 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|) 75)) (-4177 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|) 34))) -(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4177 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|)) (-15 -2724 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|)) (-15 -2233 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -690)) -((-2233 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-627 (-1148 *13))) (-5 *3 (-1148 *13)) (-5 *4 (-627 *12)) (-5 *5 (-627 *10)) (-5 *6 (-627 *13)) (-5 *7 (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *13))))) (-5 *8 (-627 (-754))) (-5 *9 (-1235 (-627 (-1148 *10)))) (-4 *12 (-830)) (-4 *10 (-301)) (-4 *13 (-928 *10 *11 *12)) (-4 *11 (-776)) (-5 *1 (-690 *11 *12 *10 *13)))) (-2724 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-627 *11)) (-5 *5 (-627 (-1148 *9))) (-5 *6 (-627 *9)) (-5 *7 (-627 *12)) (-5 *8 (-627 (-754))) (-4 *11 (-830)) (-4 *9 (-301)) (-4 *12 (-928 *9 *10 *11)) (-4 *10 (-776)) (-5 *2 (-627 (-1148 *12))) (-5 *1 (-690 *10 *11 *9 *12)) (-5 *3 (-1148 *12)))) (-4177 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-627 (-1148 *11))) (-5 *3 (-1148 *11)) (-5 *4 (-627 *10)) (-5 *5 (-627 *8)) (-5 *6 (-627 (-754))) (-5 *7 (-1235 (-627 (-1148 *8)))) (-4 *10 (-830)) (-4 *8 (-301)) (-4 *11 (-928 *8 *9 *10)) (-4 *9 (-776)) (-5 *1 (-690 *9 *10 *8 *11))))) -(-10 -7 (-15 -4177 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|)) (-15 -2724 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|)) (-15 -2233 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 39)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 37)) (-3465 (((-754) $) 41)) (-1993 ((|#1| $) 40)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 (((-754) $) 42)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-1889 ((|#1| $ (-754)) 38)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-691 |#1|) (-137) (-1028)) (T -691)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028))))) -(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3567 ((-754) $)) (-15 -3465 ((-754) $)) (-15 -1993 (|t#1| $)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ (-754))) (-15 -1832 ($ |t#1| (-754))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3516 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-692 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 (|#6| (-1 |#4| |#1|) |#3|))) (-544) (-1211 |#1|) (-1211 (-401 |#2|)) (-544) (-1211 |#4|) (-1211 (-401 |#5|))) (T -692)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-401 *8))) (-5 *1 (-692 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-401 *6))) (-4 *8 (-1211 *7))))) -(-10 -7 (-15 -3516 (|#6| (-1 |#4| |#1|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1972 (((-1134) (-842)) 31)) (-4291 (((-1240) (-1134)) 28)) (-3260 (((-1134) (-842)) 24)) (-3577 (((-1134) (-842)) 25)) (-1477 (((-842) $) NIL) (((-1134) (-842)) 23)) (-2292 (((-111) $ $) NIL))) -(((-693) (-13 (-1076) (-10 -7 (-15 -1477 ((-1134) (-842))) (-15 -3260 ((-1134) (-842))) (-15 -3577 ((-1134) (-842))) (-15 -1972 ((-1134) (-842))) (-15 -4291 ((-1240) (-1134)))))) (T -693)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-693))))) -(-13 (-1076) (-10 -7 (-15 -1477 ((-1134) (-842))) (-15 -3260 ((-1134) (-842))) (-15 -3577 ((-1134) (-842))) (-15 -1972 ((-1134) (-842))) (-15 -4291 ((-1240) (-1134))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2091 (($ |#1| |#2|) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 ((|#2| $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3677 (((-3 $ "failed") $ $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) ((|#1| $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-357) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) -((-3484 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2091 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-357) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)))) -((-1465 (((-111) $ $) 78)) (-3024 (((-111) $) 30)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) NIL (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3307 (((-754)) 47 (|has| |#1| (-362)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-2650 ((|#2| |#2|) 44)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 34)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2091 (($ |#2|) 42)) (-2040 (((-3 $ "failed") $) 86)) (-1279 (($) 51 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) NIL (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-3594 (((-937 $)) 80)) (-2061 (($ $ |#1| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 77) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3484 ((|#2|) 45)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-2079 ((|#2| $) 41)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) 28)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2760 (($ $) 79 (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 87 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) 32) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-4276 (((-937 $)) 36)) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) 61) (($ (-552)) NIL) (($ |#1|) 58) (($ (-1058)) NIL) (($ |#2|) 68) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) 63) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 20 T CONST)) (-3018 (((-1235 |#1|) $) 75)) (-1368 (($ (-1235 |#1|)) 50)) (-1933 (($) 8 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2741 (((-1235 |#1|) $) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 69)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 72) (($ $ $) NIL)) (-2384 (($ $ $) 33)) (** (($ $ (-900)) NIL) (($ $ (-754)) 81)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 57) (($ $ $) 74) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-695 |#1| |#2|) (-13 (-1211 |#1|) (-10 -8 (-15 -2650 (|#2| |#2|)) (-15 -3484 (|#2|)) (-15 -2091 ($ |#2|)) (-15 -2079 (|#2| $)) (-15 -1477 ($ |#2|)) (-15 -3018 ((-1235 |#1|) $)) (-15 -1368 ($ (-1235 |#1|))) (-15 -2741 ((-1235 |#1|) $)) (-15 -3594 ((-937 $))) (-15 -4276 ((-937 $))) (IF (|has| |#1| (-343)) (-15 -2760 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) (-1028) (-1211 |#1|)) (T -695)) -((-2650 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-3484 (*1 *2) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) (-2091 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-3018 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-2741 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-3594 (*1 *2) (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-4276 (*1 *2) (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-2760 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1028)) (-5 *1 (-695 *2 *3)) (-4 *3 (-1211 *2))))) -(-13 (-1211 |#1|) (-10 -8 (-15 -2650 (|#2| |#2|)) (-15 -3484 (|#2|)) (-15 -2091 ($ |#2|)) (-15 -2079 (|#2| $)) (-15 -1477 ($ |#2|)) (-15 -3018 ((-1235 |#1|) $)) (-15 -1368 ($ (-1235 |#1|))) (-15 -2741 ((-1235 |#1|) $)) (-15 -3594 ((-937 $))) (-15 -4276 ((-937 $))) (IF (|has| |#1| (-343)) (-15 -2760 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-4153 ((|#1| $) 13)) (-1498 (((-1096) $) NIL)) (-4067 ((|#2| $) 12)) (-1490 (($ |#1| |#2|) 16)) (-1477 (((-842) $) NIL) (($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|))) 15) (((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $) 14)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 11))) -(((-696 |#1| |#2| |#3|) (-13 (-830) (-10 -8 (-15 -4067 (|#2| $)) (-15 -4153 (|#1| $)) (-15 -1477 ($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (-15 -1477 ((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $)) (-15 -1490 ($ |#1| |#2|)))) (-830) (-1076) (-1 (-111) (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (T -696)) -((-4067 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-696 *3 *2 *4)) (-4 *3 (-830)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *2)) (-2 (|:| -4153 *3) (|:| -4067 *2)))))) (-4153 (*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-696 *2 *3 *4)) (-4 *3 (-1076)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) (-2 (|:| -4153 *2) (|:| -4067 *3)))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-4 *3 (-830)) (-4 *4 (-1076)) (-5 *1 (-696 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-5 *1 (-696 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-1076)) (-14 *5 (-1 (-111) *2 *2)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-1076)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) (-2 (|:| -4153 *2) (|:| -4067 *3))))))) -(-13 (-830) (-10 -8 (-15 -4067 (|#2| $)) (-15 -4153 (|#1| $)) (-15 -1477 ($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (-15 -1477 ((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $)) (-15 -1490 ($ |#1| |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 59)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-1703 ((|#1| $) NIL) (((-113) $) 39)) (-2040 (((-3 $ "failed") $) 90)) (-3684 ((|#2| (-113) |#2|) 82)) (-2624 (((-111) $) NIL)) (-1962 (($ |#1| (-355 (-113))) 14)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2322 (($ $ (-1 |#2| |#2|)) 58)) (-2201 (($ $ (-1 |#2| |#2|)) 44)) (-1985 ((|#2| $ |#2|) 33)) (-3830 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-1477 (((-842) $) 66) (($ (-552)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 37)) (-2279 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-1922 (($) 21 T CONST)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 48) (($ $ $) NIL)) (-2384 (($ $ $) 73)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) 57)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) -(((-697 |#1| |#2|) (-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#2| |#2|))) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#2| (-113) |#2|)) (-15 -1962 ($ |#1| (-355 (-113)))))) (-1028) (-630 |#1|)) (T -697)) -((-2279 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-2279 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-3830 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *5)) (-4 *5 (-630 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)) (-4 *4 (-630 *3)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *2)) (-4 *2 (-630 *4)))) (-1962 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1028)) (-5 *1 (-697 *2 *4)) (-4 *4 (-630 *2))))) -(-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#2| |#2|))) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#2| (-113) |#2|)) (-15 -1962 ($ |#1| (-355 (-113)))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ |#1| |#2|) 25)) (-2040 (((-3 $ "failed") $) 48)) (-2624 (((-111) $) 35)) (-3484 ((|#2| $) 12)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 49)) (-1498 (((-1096) $) NIL)) (-3677 (((-3 $ "failed") $ $) 47)) (-1477 (((-842) $) 24) (($ (-552)) 19) ((|#1| $) 13)) (-3995 (((-754)) 28)) (-1922 (($) 16 T CONST)) (-1933 (($) 30 T CONST)) (-2292 (((-111) $ $) 38)) (-2396 (($ $) 43) (($ $ $) 37)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 21) (($ $ $) 20))) -(((-698 |#1| |#2| |#3| |#4| |#5|) (-13 (-1028) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -698)) -((-2040 (*1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2091 (*1 *1 *2 *3) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1951 (*1 *1 *1) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1028) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)))) -((* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-699 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-700 |#2|) (-169)) (T -699)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-700 |#1|) (-137) (-169)) (T -700)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 15)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-4015 ((|#1| $) 21)) (-1772 (($ $ $) NIL (|has| |#1| (-776)))) (-2011 (($ $ $) NIL (|has| |#1| (-776)))) (-2623 (((-1136) $) 46)) (-2876 (((-1098) $) NIL)) (-4026 ((|#3| $) 22)) (-3213 (((-844) $) 42)) (-3297 (($) 10 T CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-776)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-776)))) (-1613 (((-111) $ $) 20)) (-1655 (((-111) $ $) NIL (|has| |#1| (-776)))) (-1632 (((-111) $ $) 24 (|has| |#1| (-776)))) (-1720 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1709 (($ $) 17) (($ $ $) NIL)) (-1698 (($ $ $) 27)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-646 |#1| |#2| |#3|) (-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) (-15 -1720 ($ $ |#3|)) (-15 -1720 ($ |#1| |#3|)) (-15 -4015 (|#1| $)) (-15 -4026 (|#3| $)))) (-702 |#2|) (-169) (|SubsetCategory| (-711) |#2|)) (T -646)) +((-1720 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-646 *3 *4 *2)) (-4 *3 (-702 *4)) (-4 *2 (|SubsetCategory| (-711) *4)))) (-1720 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-646 *2 *4 *3)) (-4 *2 (-702 *4)) (-4 *3 (|SubsetCategory| (-711) *4)))) (-4015 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-702 *3)) (-5 *1 (-646 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-711) *3)))) (-4026 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-711) *4)) (-5 *1 (-646 *3 *4 *2)) (-4 *3 (-702 *4))))) +(-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) (-15 -1720 ($ $ |#3|)) (-15 -1720 ($ |#1| |#3|)) (-15 -4015 (|#1| $)) (-15 -4026 (|#3| $)))) +((-1958 (((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|)) 33))) +(((-647 |#1|) (-10 -7 (-15 -1958 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|)))) (-890)) (T -647)) +((-1958 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 *4))) (-5 *3 (-1150 *4)) (-4 *4 (-890)) (-5 *1 (-647 *4))))) +(-10 -7 (-15 -1958 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2814 (((-629 |#1|) $) 82)) (-1694 (($ $ (-756)) 90)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-2390 (((-1261 |#1| |#2|) (-1261 |#1| |#2|) $) 48)) (-1393 (((-3 (-656 |#1|) "failed") $) NIL)) (-2832 (((-656 |#1|) $) NIL)) (-3766 (($ $) 89)) (-2856 (((-756) $) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ (-656 |#1|) |#2|) 68)) (-2643 (($ $) 86)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-2137 (((-1261 |#1| |#2|) (-1261 |#1| |#2|) $) 47)) (-2140 (((-2 (|:| |k| (-656 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3733 (((-656 |#1|) $) NIL)) (-3743 ((|#2| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2432 (($ $ |#1| $) 30) (($ $ (-629 |#1|) (-629 $)) 32)) (-3299 (((-756) $) 88)) (-3226 (($ $ $) 20) (($ (-656 |#1|) (-656 |#1|)) 77) (($ (-656 |#1|) $) 75) (($ $ (-656 |#1|)) 76)) (-3213 (((-844) $) NIL) (($ |#1|) 74) (((-1252 |#1| |#2|) $) 58) (((-1261 |#1| |#2|) $) 41) (($ (-656 |#1|)) 25)) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-656 |#1|)) NIL)) (-4158 ((|#2| (-1261 |#1| |#2|) $) 43)) (-3297 (($) 23 T CONST)) (-2166 (((-629 (-2 (|:| |k| (-656 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2510 (((-3 $ "failed") (-1252 |#1| |#2|)) 60)) (-3545 (($ (-656 |#1|)) 14)) (-1613 (((-111) $ $) 44)) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) 66) (($ $ $) NIL)) (-1698 (($ $ $) 29)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-656 |#1|)) NIL))) +(((-648 |#1| |#2|) (-13 (-368 |#1| |#2|) (-376 |#2| (-656 |#1|)) (-10 -8 (-15 -2510 ((-3 $ "failed") (-1252 |#1| |#2|))) (-15 -3226 ($ (-656 |#1|) (-656 |#1|))) (-15 -3226 ($ (-656 |#1|) $)) (-15 -3226 ($ $ (-656 |#1|))))) (-832) (-169)) (T -648)) +((-2510 (*1 *1 *2) (|partial| -12 (-5 *2 (-1252 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *1 (-648 *3 *4)))) (-3226 (*1 *1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) (-4 *4 (-169)))) (-3226 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) (-4 *4 (-169)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) (-4 *4 (-169))))) +(-13 (-368 |#1| |#2|) (-376 |#2| (-656 |#1|)) (-10 -8 (-15 -2510 ((-3 $ "failed") (-1252 |#1| |#2|))) (-15 -3226 ($ (-656 |#1|) (-656 |#1|))) (-15 -3226 ($ (-656 |#1|) $)) (-15 -3226 ($ $ (-656 |#1|))))) +((-3717 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-3646 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-1740 (($ (-1 (-111) |#2|) $) 28)) (-2366 (($ $) 56)) (-2232 (($ $) 64)) (-1625 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-3884 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1456 (((-552) |#2| $ (-552)) 61) (((-552) |#2| $) NIL) (((-552) (-1 (-111) |#2|) $) 47)) (-3307 (($ (-756) |#2|) 54)) (-3707 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-1446 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-1477 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2563 (($ |#2|) 15)) (-1580 (($ $ $ (-552)) 36) (($ |#2| $ (-552)) 34)) (-3073 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3502 (($ $ (-1204 (-552))) 44) (($ $ (-552)) 38)) (-3747 (($ $ $ (-552)) 60)) (-1487 (($ $) 58)) (-1632 (((-111) $ $) 66))) +(((-649 |#1| |#2|) (-10 -8 (-15 -2563 (|#1| |#2|)) (-15 -3502 (|#1| |#1| (-552))) (-15 -3502 (|#1| |#1| (-1204 (-552)))) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1580 (|#1| |#2| |#1| (-552))) (-15 -1580 (|#1| |#1| |#1| (-552))) (-15 -3707 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1740 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -2232 (|#1| |#1|)) (-15 -3707 (|#1| |#1| |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3717 ((-111) |#1|)) (-15 -3747 (|#1| |#1| |#1| (-552))) (-15 -2366 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3307 (|#1| (-756) |#2|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1487 (|#1| |#1|))) (-650 |#2|) (-1191)) (T -649)) +NIL +(-10 -8 (-15 -2563 (|#1| |#2|)) (-15 -3502 (|#1| |#1| (-552))) (-15 -3502 (|#1| |#1| (-1204 (-552)))) (-15 -1625 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1580 (|#1| |#2| |#1| (-552))) (-15 -1580 (|#1| |#1| |#1| (-552))) (-15 -3707 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1740 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1625 (|#1| |#2| |#1|)) (-15 -2232 (|#1| |#1|)) (-15 -3707 (|#1| |#1| |#1|)) (-15 -1446 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3717 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1456 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1456 ((-552) |#2| |#1|)) (-15 -1456 ((-552) |#2| |#1| (-552))) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3717 ((-111) |#1|)) (-15 -3747 (|#1| |#1| |#1| (-552))) (-15 -2366 (|#1| |#1|)) (-15 -3646 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3884 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3073 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3307 (|#1| (-756) |#2|)) (-15 -1477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1487 (|#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-2210 ((|#1| $) 65)) (-1785 (($ $) 67)) (-2660 (((-1242) $ (-552) (-552)) 97 (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 52 (|has| $ (-6 -4369)))) (-3717 (((-111) $) 142 (|has| |#1| (-832))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-3646 (($ $) 146 (-12 (|has| |#1| (-832)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4369)))) (-1296 (($ $) 141 (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-2830 (($ $ $) 56 (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) 54 (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 58 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4369))) (($ $ "rest" $) 55 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 117 (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-1740 (($ (-1 (-111) |#1|) $) 129)) (-3954 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4368)))) (-2196 ((|#1| $) 66)) (-2130 (($) 7 T CONST)) (-2366 (($ $) 144 (|has| $ (-6 -4369)))) (-3344 (($ $) 134)) (-2715 (($ $) 73) (($ $ (-756)) 71)) (-2232 (($ $) 131 (|has| |#1| (-1078)))) (-2738 (($ $) 99 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 130 (|has| |#1| (-1078))) (($ (-1 (-111) |#1|) $) 125)) (-2655 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4368))) (($ |#1| $) 100 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2957 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 87)) (-2268 (((-111) $) 83)) (-1456 (((-552) |#1| $ (-552)) 139 (|has| |#1| (-1078))) (((-552) |#1| $) 138 (|has| |#1| (-1078))) (((-552) (-1 (-111) |#1|) $) 137)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) 108)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 95 (|has| (-552) (-832)))) (-1772 (($ $ $) 147 (|has| |#1| (-832)))) (-3707 (($ $ $) 132 (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-1446 (($ $ $) 140 (|has| |#1| (-832))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 94 (|has| (-552) (-832)))) (-2011 (($ $ $) 148 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2563 (($ |#1|) 122)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2680 ((|#1| $) 70) (($ $ (-756)) 68)) (-1580 (($ $ $ (-552)) 127) (($ |#1| $ (-552)) 126)) (-1759 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2190 (((-629 (-552)) $) 92)) (-1335 (((-111) (-552) $) 91)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 76) (($ $ (-756)) 74)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1518 (($ $ |#1|) 96 (|has| $ (-6 -4369)))) (-1352 (((-111) $) 84)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 90)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1204 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-3153 (((-552) $ $) 44)) (-3502 (($ $ (-1204 (-552))) 124) (($ $ (-552)) 123)) (-2012 (($ $ (-1204 (-552))) 114) (($ $ (-552)) 113)) (-1289 (((-111) $) 46)) (-2760 (($ $) 62)) (-4022 (($ $) 59 (|has| $ (-6 -4369)))) (-3058 (((-756) $) 63)) (-2963 (($ $) 64)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 143 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 107)) (-2380 (($ $ $) 61) (($ $ |#1|) 60)) (-4319 (($ $ $) 78) (($ |#1| $) 77) (($ (-629 $)) 110) (($ $ |#1|) 109)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 150 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 151 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) 149 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 152 (|has| |#1| (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-650 |#1|) (-137) (-1191)) (T -650)) +((-2563 (*1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1191))))) +(-13 (-1127 |t#1|) (-367 |t#1|) (-276 |t#1|) (-10 -8 (-15 -2563 ($ |t#1|)))) +(((-34) . T) ((-101) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-276 |#1|) . T) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-832) |has| |#1| (-832)) ((-991 |#1|) . T) ((-1078) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-1127 |#1|) . T) ((-1191) . T) ((-1225 |#1|) . T)) +((-4153 (((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-629 (-629 |#1|)) (-629 (-1237 |#1|))) 22) (((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-673 |#1|) (-629 (-1237 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-629 (-629 |#1|)) (-1237 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|)) 14)) (-2128 (((-756) (-673 |#1|) (-1237 |#1|)) 30)) (-1461 (((-3 (-1237 |#1|) "failed") (-673 |#1|) (-1237 |#1|)) 24)) (-2975 (((-111) (-673 |#1|) (-1237 |#1|)) 27))) +(((-651 |#1|) (-10 -7 (-15 -4153 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|))) (-15 -4153 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-629 (-629 |#1|)) (-1237 |#1|))) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-673 |#1|) (-629 (-1237 |#1|)))) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-629 (-629 |#1|)) (-629 (-1237 |#1|)))) (-15 -1461 ((-3 (-1237 |#1|) "failed") (-673 |#1|) (-1237 |#1|))) (-15 -2975 ((-111) (-673 |#1|) (-1237 |#1|))) (-15 -2128 ((-756) (-673 |#1|) (-1237 |#1|)))) (-357)) (T -651)) +((-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-357)) (-5 *2 (-756)) (-5 *1 (-651 *5)))) (-2975 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-357)) (-5 *2 (-111)) (-5 *1 (-651 *5)))) (-1461 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1237 *4)) (-5 *3 (-673 *4)) (-4 *4 (-357)) (-5 *1 (-651 *4)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-629 *5))) (-4 *5 (-357)) (-5 *2 (-629 (-2 (|:| |particular| (-3 (-1237 *5) "failed")) (|:| -4199 (-629 (-1237 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-629 (-1237 *5))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *5)) (-4 *5 (-357)) (-5 *2 (-629 (-2 (|:| |particular| (-3 (-1237 *5) "failed")) (|:| -4199 (-629 (-1237 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-629 (-1237 *5))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-629 *5))) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1237 *5) "failed")) (|:| -4199 (-629 (-1237 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1237 *5)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1237 *5) "failed")) (|:| -4199 (-629 (-1237 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1237 *5))))) +(-10 -7 (-15 -4153 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|))) (-15 -4153 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-629 (-629 |#1|)) (-1237 |#1|))) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-673 |#1|) (-629 (-1237 |#1|)))) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|))))) (-629 (-629 |#1|)) (-629 (-1237 |#1|)))) (-15 -1461 ((-3 (-1237 |#1|) "failed") (-673 |#1|) (-1237 |#1|))) (-15 -2975 ((-111) (-673 |#1|) (-1237 |#1|))) (-15 -2128 ((-756) (-673 |#1|) (-1237 |#1|)))) +((-4153 (((-629 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|)))) |#4| (-629 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|) 45)) (-2128 (((-756) |#4| |#3|) 17)) (-1461 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2975 (((-111) |#4| |#3|) 13))) +(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4153 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|)) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|)))) |#4| (-629 |#3|))) (-15 -1461 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2975 ((-111) |#4| |#3|)) (-15 -2128 ((-756) |#4| |#3|))) (-357) (-13 (-367 |#1|) (-10 -7 (-6 -4369))) (-13 (-367 |#1|) (-10 -7 (-6 -4369))) (-671 |#1| |#2| |#3|)) (T -652)) +((-2128 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-756)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4)))) (-2975 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-111)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4)))) (-1461 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4369)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369)))) (-5 *1 (-652 *4 *5 *2 *3)) (-4 *3 (-671 *4 *5 *2)))) (-4153 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-629 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4199 (-629 *7))))) (-5 *1 (-652 *5 *6 *7 *3)) (-5 *4 (-629 *7)) (-4 *3 (-671 *5 *6 *7)))) (-4153 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4))))) +(-10 -7 (-15 -4153 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|)) (-15 -4153 ((-629 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|)))) |#4| (-629 |#3|))) (-15 -1461 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2975 ((-111) |#4| |#3|)) (-15 -2128 ((-756) |#4| |#3|))) +((-3678 (((-2 (|:| |particular| (-3 (-1237 (-401 |#4|)) "failed")) (|:| -4199 (-629 (-1237 (-401 |#4|))))) (-629 |#4|) (-629 |#3|)) 45))) +(((-653 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3678 ((-2 (|:| |particular| (-3 (-1237 (-401 |#4|)) "failed")) (|:| -4199 (-629 (-1237 (-401 |#4|))))) (-629 |#4|) (-629 |#3|)))) (-544) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -653)) +((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *7)) (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-5 *2 (-2 (|:| |particular| (-3 (-1237 (-401 *8)) "failed")) (|:| -4199 (-629 (-1237 (-401 *8)))))) (-5 *1 (-653 *5 *6 *7 *8))))) +(-10 -7 (-15 -3678 ((-2 (|:| |particular| (-3 (-1237 (-401 |#4|)) "failed")) (|:| -4199 (-629 (-1237 (-401 |#4|))))) (-629 |#4|) (-629 |#3|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3784 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1549 ((|#2| $) NIL)) (-4021 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1432 (((-1237 (-673 |#2|))) NIL) (((-1237 (-673 |#2|)) (-1237 $)) NIL)) (-2779 (((-111) $) NIL)) (-4124 (((-1237 $)) 37)) (-4238 (((-111) $ (-756)) NIL)) (-3924 (($ |#2|) NIL)) (-2130 (($) NIL T CONST)) (-2810 (($ $) NIL (|has| |#2| (-301)))) (-3413 (((-235 |#1| |#2|) $ (-552)) NIL)) (-3254 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (|has| |#2| (-544)))) (-2004 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1561 (((-673 |#2|)) NIL) (((-673 |#2|) (-1237 $)) NIL)) (-2416 ((|#2| $) NIL)) (-3695 (((-673 |#2|) $) NIL) (((-673 |#2|) $ (-1237 $)) NIL)) (-2583 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-2637 (((-1150 (-933 |#2|))) NIL (|has| |#2| (-357)))) (-3422 (($ $ (-902)) NIL)) (-2932 ((|#2| $) NIL)) (-1688 (((-1150 |#2|) $) NIL (|has| |#2| (-544)))) (-3332 ((|#2|) NIL) ((|#2| (-1237 $)) NIL)) (-1469 (((-1150 |#2|) $) NIL)) (-2890 (((-111)) NIL)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) ((|#2| $) NIL)) (-4278 (($ (-1237 |#2|)) NIL) (($ (-1237 |#2|) (-1237 $)) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2128 (((-756) $) NIL (|has| |#2| (-544))) (((-902)) 38)) (-2892 ((|#2| $ (-552) (-552)) NIL)) (-1756 (((-111)) NIL)) (-3454 (($ $ (-902)) NIL)) (-3138 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL)) (-1486 (((-756) $) NIL (|has| |#2| (-544)))) (-4229 (((-629 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-544)))) (-2389 (((-756) $) NIL)) (-1887 (((-111)) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3427 ((|#2| $) NIL (|has| |#2| (-6 (-4370 "*"))))) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-3516 (($ (-629 (-629 |#2|))) NIL)) (-2947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-629 (-629 |#2|)) $) NIL)) (-2143 (((-111)) NIL)) (-4284 (((-111)) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-4255 (((-3 (-2 (|:| |particular| $) (|:| -4199 (-629 $))) "failed")) NIL (|has| |#2| (-544)))) (-2299 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-3607 (((-673 |#2|)) NIL) (((-673 |#2|) (-1237 $)) NIL)) (-3975 ((|#2| $) NIL)) (-1837 (((-673 |#2|) $) NIL) (((-673 |#2|) $ (-1237 $)) NIL)) (-4152 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-2173 (((-1150 (-933 |#2|))) NIL (|has| |#2| (-357)))) (-1736 (($ $ (-902)) NIL)) (-3231 ((|#2| $) NIL)) (-3854 (((-1150 |#2|) $) NIL (|has| |#2| (-544)))) (-3400 ((|#2|) NIL) ((|#2| (-1237 $)) NIL)) (-3326 (((-1150 |#2|) $) NIL)) (-3724 (((-111)) NIL)) (-2623 (((-1136) $) NIL)) (-3329 (((-111)) NIL)) (-4108 (((-111)) NIL)) (-4297 (((-111)) NIL)) (-4156 (((-3 $ "failed") $) NIL (|has| |#2| (-357)))) (-2876 (((-1098) $) NIL)) (-1864 (((-111)) NIL)) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3944 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) 22) ((|#2| $ (-552)) NIL)) (-3096 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3350 ((|#2| $) NIL)) (-2843 (($ (-629 |#2|)) NIL)) (-1379 (((-111) $) NIL)) (-3417 (((-235 |#1| |#2|) $) NIL)) (-2021 ((|#2| $) NIL (|has| |#2| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1487 (($ $) NIL)) (-3464 (((-673 |#2|) (-1237 $)) NIL) (((-1237 |#2|) $) NIL) (((-673 |#2|) (-1237 $) (-1237 $)) NIL) (((-1237 |#2|) $ (-1237 $)) 25)) (-1522 (($ (-1237 |#2|)) NIL) (((-1237 |#2|) $) NIL)) (-2566 (((-629 (-933 |#2|))) NIL) (((-629 (-933 |#2|)) (-1237 $)) NIL)) (-2104 (($ $ $) NIL)) (-2923 (((-111)) NIL)) (-3041 (((-235 |#1| |#2|) $ (-552)) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1019 (-401 (-552))))) (($ |#2|) NIL) (((-673 |#2|) $) NIL)) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) 36)) (-1430 (((-629 (-1237 |#2|))) NIL (|has| |#2| (-544)))) (-1826 (($ $ $ $) NIL)) (-1640 (((-111)) NIL)) (-2639 (($ (-673 |#2|) $) NIL)) (-2584 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-2845 (($ $ $) NIL)) (-2646 (((-111)) NIL)) (-2127 (((-111)) NIL)) (-4028 (((-111)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#2| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-654 |#1| |#2|) (-13 (-1101 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-673 |#2|)) (-411 |#2|)) (-902) (-169)) (T -654)) +NIL +(-13 (-1101 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-673 |#2|)) (-411 |#2|)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3374 (((-629 (-1113)) $) 10)) (-3213 (((-844) $) 18) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-655) (-13 (-1061) (-10 -8 (-15 -3374 ((-629 (-1113)) $))))) (T -655)) +((-3374 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-655))))) +(-13 (-1061) (-10 -8 (-15 -3374 ((-629 (-1113)) $)))) +((-3202 (((-111) $ $) NIL)) (-2814 (((-629 |#1|) $) NIL)) (-3428 (($ $) 52)) (-3040 (((-111) $) NIL)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-4008 (((-3 $ "failed") (-804 |#1|)) 23)) (-3007 (((-111) (-804 |#1|)) 15)) (-2216 (($ (-804 |#1|)) 24)) (-2752 (((-111) $ $) 30)) (-2556 (((-902) $) 37)) (-3416 (($ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3479 (((-629 $) (-804 |#1|)) 17)) (-3213 (((-844) $) 43) (($ |#1|) 34) (((-804 |#1|) $) 39) (((-661 |#1|) $) 44)) (-3759 (((-58 (-629 $)) (-629 |#1|) (-902)) 57)) (-1754 (((-629 $) (-629 |#1|) (-902)) 60)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 53)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 38))) +(((-656 |#1|) (-13 (-832) (-1019 |#1|) (-10 -8 (-15 -3040 ((-111) $)) (-15 -3416 ($ $)) (-15 -3428 ($ $)) (-15 -2556 ((-902) $)) (-15 -2752 ((-111) $ $)) (-15 -3213 ((-804 |#1|) $)) (-15 -3213 ((-661 |#1|) $)) (-15 -3479 ((-629 $) (-804 |#1|))) (-15 -3007 ((-111) (-804 |#1|))) (-15 -2216 ($ (-804 |#1|))) (-15 -4008 ((-3 $ "failed") (-804 |#1|))) (-15 -2814 ((-629 |#1|) $)) (-15 -3759 ((-58 (-629 $)) (-629 |#1|) (-902))) (-15 -1754 ((-629 $) (-629 |#1|) (-902))))) (-832)) (T -656)) +((-3040 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-832)))) (-3428 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-832)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-804 *4)) (-4 *4 (-832)) (-5 *2 (-629 (-656 *4))) (-5 *1 (-656 *4)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-804 *4)) (-4 *4 (-832)) (-5 *2 (-111)) (-5 *1 (-656 *4)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-804 *3)) (-4 *3 (-832)) (-5 *1 (-656 *3)))) (-4008 (*1 *1 *2) (|partial| -12 (-5 *2 (-804 *3)) (-4 *3 (-832)) (-5 *1 (-656 *3)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-902)) (-4 *5 (-832)) (-5 *2 (-58 (-629 (-656 *5)))) (-5 *1 (-656 *5)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-902)) (-4 *5 (-832)) (-5 *2 (-629 (-656 *5))) (-5 *1 (-656 *5))))) +(-13 (-832) (-1019 |#1|) (-10 -8 (-15 -3040 ((-111) $)) (-15 -3416 ($ $)) (-15 -3428 ($ $)) (-15 -2556 ((-902) $)) (-15 -2752 ((-111) $ $)) (-15 -3213 ((-804 |#1|) $)) (-15 -3213 ((-661 |#1|) $)) (-15 -3479 ((-629 $) (-804 |#1|))) (-15 -3007 ((-111) (-804 |#1|))) (-15 -2216 ($ (-804 |#1|))) (-15 -4008 ((-3 $ "failed") (-804 |#1|))) (-15 -2814 ((-629 |#1|) $)) (-15 -3759 ((-58 (-629 $)) (-629 |#1|) (-902))) (-15 -1754 ((-629 $) (-629 |#1|) (-902))))) +((-2925 ((|#2| $) 76)) (-1785 (($ $) 96)) (-4238 (((-111) $ (-756)) 26)) (-2715 (($ $) 85) (($ $ (-756)) 88)) (-2268 (((-111) $) 97)) (-4236 (((-629 $) $) 72)) (-4266 (((-111) $ $) 71)) (-1418 (((-111) $ (-756)) 24)) (-1695 (((-552) $) 46)) (-1842 (((-552) $) 45)) (-1745 (((-111) $ (-756)) 22)) (-3862 (((-111) $) 74)) (-2680 ((|#2| $) 89) (($ $ (-756)) 92)) (-1759 (($ $ $ (-552)) 62) (($ |#2| $ (-552)) 61)) (-2190 (((-629 (-552)) $) 44)) (-1335 (((-111) (-552) $) 42)) (-2702 ((|#2| $) NIL) (($ $ (-756)) 84)) (-3136 (($ $ (-552)) 100)) (-1352 (((-111) $) 99)) (-3944 (((-111) (-1 (-111) |#2|) $) 32)) (-3627 (((-629 |#2|) $) 33)) (-2060 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1204 (-552))) 58) ((|#2| $ (-552)) 40) ((|#2| $ (-552) |#2|) 41)) (-3153 (((-552) $ $) 70)) (-2012 (($ $ (-1204 (-552))) 57) (($ $ (-552)) 51)) (-1289 (((-111) $) 66)) (-2760 (($ $) 81)) (-3058 (((-756) $) 80)) (-2963 (($ $) 79)) (-3226 (($ (-629 |#2|)) 37)) (-1680 (($ $) 101)) (-2527 (((-629 $) $) 69)) (-4298 (((-111) $ $) 68)) (-2584 (((-111) (-1 (-111) |#2|) $) 31)) (-1613 (((-111) $ $) 18)) (-2657 (((-756) $) 29))) +(((-657 |#1| |#2|) (-10 -8 (-15 -1680 (|#1| |#1|)) (-15 -3136 (|#1| |#1| (-552))) (-15 -2268 ((-111) |#1|)) (-15 -1352 ((-111) |#1|)) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -3627 ((-629 |#2|) |#1|)) (-15 -1335 ((-111) (-552) |#1|)) (-15 -2190 ((-629 (-552)) |#1|)) (-15 -1842 ((-552) |#1|)) (-15 -1695 ((-552) |#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -2760 (|#1| |#1|)) (-15 -3058 ((-756) |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "last")) (-15 -2680 (|#2| |#1|)) (-15 -2715 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| "rest")) (-15 -2715 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "first")) (-15 -2702 (|#2| |#1|)) (-15 -4266 ((-111) |#1| |#1|)) (-15 -4298 ((-111) |#1| |#1|)) (-15 -3153 ((-552) |#1| |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756)))) (-658 |#2|) (-1191)) (T -657)) +NIL +(-10 -8 (-15 -1680 (|#1| |#1|)) (-15 -3136 (|#1| |#1| (-552))) (-15 -2268 ((-111) |#1|)) (-15 -1352 ((-111) |#1|)) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -3627 ((-629 |#2|) |#1|)) (-15 -1335 ((-111) (-552) |#1|)) (-15 -2190 ((-629 (-552)) |#1|)) (-15 -1842 ((-552) |#1|)) (-15 -1695 ((-552) |#1|)) (-15 -3226 (|#1| (-629 |#2|))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -2012 (|#1| |#1| (-552))) (-15 -2012 (|#1| |#1| (-1204 (-552)))) (-15 -1759 (|#1| |#2| |#1| (-552))) (-15 -1759 (|#1| |#1| |#1| (-552))) (-15 -2760 (|#1| |#1|)) (-15 -3058 ((-756) |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "last")) (-15 -2680 (|#2| |#1|)) (-15 -2715 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| "rest")) (-15 -2715 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "first")) (-15 -2702 (|#2| |#1|)) (-15 -4266 ((-111) |#1| |#1|)) (-15 -4298 ((-111) |#1| |#1|)) (-15 -3153 ((-552) |#1| |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -3944 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-2210 ((|#1| $) 65)) (-1785 (($ $) 67)) (-2660 (((-1242) $ (-552) (-552)) 97 (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 52 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-2830 (($ $ $) 56 (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) 54 (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 58 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4369))) (($ $ "rest" $) 55 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 117 (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 102)) (-2196 ((|#1| $) 66)) (-2130 (($) 7 T CONST)) (-2687 (($ $) 124)) (-2715 (($ $) 73) (($ $ (-756)) 71)) (-2738 (($ $) 99 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 100 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 103)) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2957 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 87)) (-2268 (((-111) $) 83)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-2727 (((-756) $) 123)) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) 108)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 95 (|has| (-552) (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 94 (|has| (-552) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-3875 (($ $) 126)) (-2609 (((-111) $) 127)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2680 ((|#1| $) 70) (($ $ (-756)) 68)) (-1759 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2190 (((-629 (-552)) $) 92)) (-1335 (((-111) (-552) $) 91)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3286 ((|#1| $) 125)) (-2702 ((|#1| $) 76) (($ $ (-756)) 74)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1518 (($ $ |#1|) 96 (|has| $ (-6 -4369)))) (-3136 (($ $ (-552)) 122)) (-1352 (((-111) $) 84)) (-1761 (((-111) $) 128)) (-2916 (((-111) $) 129)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 90)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1204 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-3153 (((-552) $ $) 44)) (-2012 (($ $ (-1204 (-552))) 114) (($ $ (-552)) 113)) (-1289 (((-111) $) 46)) (-2760 (($ $) 62)) (-4022 (($ $) 59 (|has| $ (-6 -4369)))) (-3058 (((-756) $) 63)) (-2963 (($ $) 64)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 107)) (-2380 (($ $ $) 61 (|has| $ (-6 -4369))) (($ $ |#1|) 60 (|has| $ (-6 -4369)))) (-4319 (($ $ $) 78) (($ |#1| $) 77) (($ (-629 $)) 110) (($ $ |#1|) 109)) (-1680 (($ $) 121)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-658 |#1|) (-137) (-1191)) (T -658)) +((-2655 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-3875 (*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191)))) (-2687 (*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191))))) +(-13 (-1127 |t#1|) (-10 -8 (-15 -2655 ($ (-1 (-111) |t#1|) $)) (-15 -3954 ($ (-1 (-111) |t#1|) $)) (-15 -2916 ((-111) $)) (-15 -1761 ((-111) $)) (-15 -2609 ((-111) $)) (-15 -3875 ($ $)) (-15 -3286 (|t#1| $)) (-15 -2687 ($ $)) (-15 -2727 ((-756) $)) (-15 -3136 ($ $ (-552))) (-15 -1680 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1127 |#1|) . T) ((-1191) . T) ((-1225 |#1|) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3655 (($ (-756) (-756) (-756)) 33 (|has| |#1| (-1030)))) (-4238 (((-111) $ (-756)) NIL)) (-2485 ((|#1| $ (-756) (-756) (-756) |#1|) 27)) (-2130 (($) NIL T CONST)) (-2958 (($ $ $) 37 (|has| |#1| (-1030)))) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2758 (((-1237 (-756)) $) 9)) (-3962 (($ (-1154) $ $) 22)) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1356 (($ (-756)) 35 (|has| |#1| (-1030)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-756) (-756) (-756)) 25)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3226 (($ (-629 (-629 (-629 |#1|)))) 44)) (-3213 (($ (-939 (-939 (-939 |#1|)))) 15) (((-939 (-939 (-939 |#1|))) $) 12) (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-659 |#1|) (-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1030)) (PROGN (-15 -3655 ($ (-756) (-756) (-756))) (-15 -1356 ($ (-756))) (-15 -2958 ($ $ $))) |%noBranch|) (-15 -3226 ($ (-629 (-629 (-629 |#1|))))) (-15 -2060 (|#1| $ (-756) (-756) (-756))) (-15 -2485 (|#1| $ (-756) (-756) (-756) |#1|)) (-15 -3213 ($ (-939 (-939 (-939 |#1|))))) (-15 -3213 ((-939 (-939 (-939 |#1|))) $)) (-15 -3962 ($ (-1154) $ $)) (-15 -2758 ((-1237 (-756)) $)))) (-1078)) (T -659)) +((-3655 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-756)) (-5 *1 (-659 *3)) (-4 *3 (-1030)) (-4 *3 (-1078)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-659 *3)) (-4 *3 (-1030)) (-4 *3 (-1078)))) (-2958 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1030)) (-4 *2 (-1078)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-629 *3)))) (-4 *3 (-1078)) (-5 *1 (-659 *3)))) (-2060 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-756)) (-5 *1 (-659 *2)) (-4 *2 (-1078)))) (-2485 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-659 *2)) (-4 *2 (-1078)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-939 (-939 (-939 *3)))) (-4 *3 (-1078)) (-5 *1 (-659 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-939 (-939 (-939 *3)))) (-5 *1 (-659 *3)) (-4 *3 (-1078)))) (-3962 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-659 *3)) (-4 *3 (-1078)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1237 (-756))) (-5 *1 (-659 *3)) (-4 *3 (-1078))))) +(-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1030)) (PROGN (-15 -3655 ($ (-756) (-756) (-756))) (-15 -1356 ($ (-756))) (-15 -2958 ($ $ $))) |%noBranch|) (-15 -3226 ($ (-629 (-629 (-629 |#1|))))) (-15 -2060 (|#1| $ (-756) (-756) (-756))) (-15 -2485 (|#1| $ (-756) (-756) (-756) |#1|)) (-15 -3213 ($ (-939 (-939 (-939 |#1|))))) (-15 -3213 ((-939 (-939 (-939 |#1|))) $)) (-15 -3962 ($ (-1154) $ $)) (-15 -2758 ((-1237 (-756)) $)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2170 (((-476) $) 10)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 12)) (-1613 (((-111) $ $) NIL))) +(((-660) (-13 (-1061) (-10 -8 (-15 -2170 ((-476) $)) (-15 -4300 ((-1113) $))))) (T -660)) +((-2170 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-660)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-660))))) +(-13 (-1061) (-10 -8 (-15 -2170 ((-476) $)) (-15 -4300 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-2814 (((-629 |#1|) $) 14)) (-3428 (($ $) 18)) (-3040 (((-111) $) 19)) (-1393 (((-3 |#1| "failed") $) 22)) (-2832 ((|#1| $) 20)) (-2715 (($ $) 36)) (-2643 (($ $) 24)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2752 (((-111) $ $) 42)) (-2556 (((-902) $) 38)) (-3416 (($ $) 17)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 ((|#1| $) 35)) (-3213 (((-844) $) 31) (($ |#1|) 23) (((-804 |#1|) $) 27)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 12)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 40)) (* (($ $ $) 34))) +(((-661 |#1|) (-13 (-832) (-1019 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3213 ((-804 |#1|) $)) (-15 -2702 (|#1| $)) (-15 -3416 ($ $)) (-15 -2556 ((-902) $)) (-15 -2752 ((-111) $ $)) (-15 -2643 ($ $)) (-15 -2715 ($ $)) (-15 -3040 ((-111) $)) (-15 -3428 ($ $)) (-15 -2814 ((-629 |#1|) $)))) (-832)) (T -661)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) (-2702 (*1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) (-3428 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-661 *3)) (-4 *3 (-832))))) +(-13 (-832) (-1019 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3213 ((-804 |#1|) $)) (-15 -2702 (|#1| $)) (-15 -3416 ($ $)) (-15 -2556 ((-902) $)) (-15 -2752 ((-111) $ $)) (-15 -2643 ($ $)) (-15 -2715 ($ $)) (-15 -3040 ((-111) $)) (-15 -3428 ($ $)) (-15 -2814 ((-629 |#1|) $)))) +((-1865 ((|#1| (-1 |#1| (-756) |#1|) (-756) |#1|) 11)) (-2781 ((|#1| (-1 |#1| |#1|) (-756) |#1|) 9))) +(((-662 |#1|) (-10 -7 (-15 -2781 (|#1| (-1 |#1| |#1|) (-756) |#1|)) (-15 -1865 (|#1| (-1 |#1| (-756) |#1|) (-756) |#1|))) (-1078)) (T -662)) +((-1865 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-756) *2)) (-5 *4 (-756)) (-4 *2 (-1078)) (-5 *1 (-662 *2)))) (-2781 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-756)) (-4 *2 (-1078)) (-5 *1 (-662 *2))))) +(-10 -7 (-15 -2781 (|#1| (-1 |#1| |#1|) (-756) |#1|)) (-15 -1865 (|#1| (-1 |#1| (-756) |#1|) (-756) |#1|))) +((-1767 ((|#2| |#1| |#2|) 9)) (-1755 ((|#1| |#1| |#2|) 8))) +(((-663 |#1| |#2|) (-10 -7 (-15 -1755 (|#1| |#1| |#2|)) (-15 -1767 (|#2| |#1| |#2|))) (-1078) (-1078)) (T -663)) +((-1767 (*1 *2 *3 *2) (-12 (-5 *1 (-663 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *1 (-663 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(-10 -7 (-15 -1755 (|#1| |#1| |#2|)) (-15 -1767 (|#2| |#1| |#2|))) +((-3180 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -3180 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1078) (-1078) (-1078)) (T -664)) +((-3180 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)) (-5 *1 (-664 *5 *6 *2))))) +(-10 -7 (-15 -3180 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-1355 (((-1190) $) 20)) (-2536 (((-629 (-1190)) $) 18)) (-4150 (($ (-629 (-1190)) (-1190)) 13)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 29) (((-1159) $) NIL) (($ (-1159)) NIL) (((-1190) $) 21) (($ (-1096)) 10)) (-1613 (((-111) $ $) NIL))) +(((-665) (-13 (-1061) (-599 (-1190)) (-10 -8 (-15 -3213 ($ (-1096))) (-15 -4150 ($ (-629 (-1190)) (-1190))) (-15 -2536 ((-629 (-1190)) $)) (-15 -1355 ((-1190) $))))) (T -665)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-665)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-629 (-1190))) (-5 *3 (-1190)) (-5 *1 (-665)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-665)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-665))))) +(-13 (-1061) (-599 (-1190)) (-10 -8 (-15 -3213 ($ (-1096))) (-15 -4150 ($ (-629 (-1190)) (-1190))) (-15 -2536 ((-629 (-1190)) $)) (-15 -1355 ((-1190) $)))) +((-1865 (((-1 |#1| (-756) |#1|) (-1 |#1| (-756) |#1|)) 23)) (-2952 (((-1 |#1|) |#1|) 8)) (-3273 ((|#1| |#1|) 16)) (-1933 (((-629 |#1|) (-1 (-629 |#1|) (-629 |#1|)) (-552)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3213 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-756)) 20))) +(((-666 |#1|) (-10 -7 (-15 -2952 ((-1 |#1|) |#1|)) (-15 -3213 ((-1 |#1|) |#1|)) (-15 -1933 (|#1| (-1 |#1| |#1|))) (-15 -1933 ((-629 |#1|) (-1 (-629 |#1|) (-629 |#1|)) (-552))) (-15 -3273 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-756))) (-15 -1865 ((-1 |#1| (-756) |#1|) (-1 |#1| (-756) |#1|)))) (-1078)) (T -666)) +((-1865 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-756) *3)) (-4 *3 (-1078)) (-5 *1 (-666 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *4 (-1078)) (-5 *1 (-666 *4)))) (-3273 (*1 *2 *2) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1078)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-629 *5) (-629 *5))) (-5 *4 (-552)) (-5 *2 (-629 *5)) (-5 *1 (-666 *5)) (-4 *5 (-1078)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-666 *2)) (-4 *2 (-1078)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-666 *3)) (-4 *3 (-1078)))) (-2952 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-666 *3)) (-4 *3 (-1078))))) +(-10 -7 (-15 -2952 ((-1 |#1|) |#1|)) (-15 -3213 ((-1 |#1|) |#1|)) (-15 -1933 (|#1| (-1 |#1| |#1|))) (-15 -1933 ((-629 |#1|) (-1 (-629 |#1|) (-629 |#1|)) (-552))) (-15 -3273 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-756))) (-15 -1865 ((-1 |#1| (-756) |#1|) (-1 |#1| (-756) |#1|)))) +((-2790 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2398 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3930 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3487 (((-1 |#2| |#1|) |#2|) 11))) +(((-667 |#1| |#2|) (-10 -7 (-15 -3487 ((-1 |#2| |#1|) |#2|)) (-15 -2398 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3930 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2790 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1078) (-1078)) (T -667)) +((-2790 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-5 *2 (-1 *5 *4)) (-5 *1 (-667 *4 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1078)) (-5 *2 (-1 *5 *4)) (-5 *1 (-667 *4 *5)) (-4 *4 (-1078)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-5 *2 (-1 *5)) (-5 *1 (-667 *4 *5)))) (-3487 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-667 *4 *3)) (-4 *4 (-1078)) (-4 *3 (-1078))))) +(-10 -7 (-15 -3487 ((-1 |#2| |#1|) |#2|)) (-15 -2398 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3930 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2790 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2292 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3009 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3756 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2336 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2314 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-668 |#1| |#2| |#3|) (-10 -7 (-15 -3009 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3756 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2336 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2314 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2292 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1078) (-1078) (-1078)) (T -668)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-1 *7 *5)) (-5 *1 (-668 *5 *6 *7)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-668 *4 *5 *6)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-668 *4 *5 *6)) (-4 *4 (-1078)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1078)) (-4 *6 (-1078)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-668 *4 *5 *6)) (-4 *5 (-1078)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-1 *6 *5)) (-5 *1 (-668 *4 *5 *6)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1078)) (-4 *4 (-1078)) (-4 *6 (-1078)) (-5 *2 (-1 *6 *5)) (-5 *1 (-668 *5 *4 *6))))) +(-10 -7 (-15 -3009 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3756 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2336 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2314 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2292 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3884 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1477 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1477 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1477 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3884 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1030) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|) (-1030) (-367 |#5|) (-367 |#5|) (-671 |#5| |#6| |#7|)) (T -669)) +((-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-669 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-671 *5 *6 *7)) (-4 *10 (-671 *2 *8 *9)))) (-1477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1030)) (-4 *8 (-1030)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-671 *8 *9 *10)) (-5 *1 (-669 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-671 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1030)) (-4 *8 (-1030)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-671 *8 *9 *10)) (-5 *1 (-669 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-671 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))) +(-10 -7 (-15 -1477 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1477 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3884 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2306 (($ (-756) (-756)) 33)) (-2811 (($ $ $) 56)) (-2289 (($ |#3|) 52) (($ $) 53)) (-4021 (((-111) $) 28)) (-2613 (($ $ (-552) (-552)) 58)) (-4037 (($ $ (-552) (-552)) 59)) (-1728 (($ $ (-552) (-552) (-552) (-552)) 63)) (-3035 (($ $) 54)) (-2779 (((-111) $) 14)) (-2683 (($ $ (-552) (-552) $) 64)) (-1470 ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-629 (-552)) (-629 (-552)) $) 62)) (-3924 (($ (-756) |#2|) 39)) (-3516 (($ (-629 (-629 |#2|))) 37)) (-3397 (((-629 (-629 |#2|)) $) 57)) (-2944 (($ $ $) 55)) (-3969 (((-3 $ "failed") $ |#2|) 91)) (-2060 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-629 (-552)) (-629 (-552))) 61)) (-2843 (($ (-629 |#2|)) 40) (($ (-629 $)) 42)) (-1379 (((-111) $) 24)) (-3213 (($ |#4|) 47) (((-844) $) NIL)) (-3043 (((-111) $) 30)) (-1720 (($ $ |#2|) 93)) (-1709 (($ $ $) 68) (($ $) 71)) (-1698 (($ $ $) 66)) (** (($ $ (-756)) 80) (($ $ (-552)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-552) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -1720 (|#1| |#1| |#2|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-756))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1728 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4037 (|#1| |#1| (-552) (-552))) (-15 -2613 (|#1| |#1| (-552) (-552))) (-15 -1470 (|#1| |#1| (-629 (-552)) (-629 (-552)) |#1|)) (-15 -2060 (|#1| |#1| (-629 (-552)) (-629 (-552)))) (-15 -3397 ((-629 (-629 |#2|)) |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2944 (|#1| |#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2289 (|#1| |#3|)) (-15 -3213 (|#1| |#4|)) (-15 -2843 (|#1| (-629 |#1|))) (-15 -2843 (|#1| (-629 |#2|))) (-15 -3924 (|#1| (-756) |#2|)) (-15 -3516 (|#1| (-629 (-629 |#2|)))) (-15 -2306 (|#1| (-756) (-756))) (-15 -3043 ((-111) |#1|)) (-15 -4021 ((-111) |#1|)) (-15 -1379 ((-111) |#1|)) (-15 -2779 ((-111) |#1|)) (-15 -1470 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552)))) (-671 |#2| |#3| |#4|) (-1030) (-367 |#2|) (-367 |#2|)) (T -670)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -1720 (|#1| |#1| |#2|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-756))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1728 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4037 (|#1| |#1| (-552) (-552))) (-15 -2613 (|#1| |#1| (-552) (-552))) (-15 -1470 (|#1| |#1| (-629 (-552)) (-629 (-552)) |#1|)) (-15 -2060 (|#1| |#1| (-629 (-552)) (-629 (-552)))) (-15 -3397 ((-629 (-629 |#2|)) |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2944 (|#1| |#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2289 (|#1| |#3|)) (-15 -3213 (|#1| |#4|)) (-15 -2843 (|#1| (-629 |#1|))) (-15 -2843 (|#1| (-629 |#2|))) (-15 -3924 (|#1| (-756) |#2|)) (-15 -3516 (|#1| (-629 (-629 |#2|)))) (-15 -2306 (|#1| (-756) (-756))) (-15 -3043 ((-111) |#1|)) (-15 -4021 ((-111) |#1|)) (-15 -1379 ((-111) |#1|)) (-15 -2779 ((-111) |#1|)) (-15 -1470 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) (-552)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2306 (($ (-756) (-756)) 97)) (-2811 (($ $ $) 87)) (-2289 (($ |#2|) 91) (($ $) 90)) (-4021 (((-111) $) 99)) (-2613 (($ $ (-552) (-552)) 83)) (-4037 (($ $ (-552) (-552)) 82)) (-1728 (($ $ (-552) (-552) (-552) (-552)) 81)) (-3035 (($ $) 89)) (-2779 (((-111) $) 101)) (-4238 (((-111) $ (-756)) 8)) (-2683 (($ $ (-552) (-552) $) 80)) (-1470 ((|#1| $ (-552) (-552) |#1|) 44) (($ $ (-629 (-552)) (-629 (-552)) $) 84)) (-2347 (($ $ (-552) |#2|) 42)) (-3934 (($ $ (-552) |#3|) 41)) (-3924 (($ (-756) |#1|) 95)) (-2130 (($) 7 T CONST)) (-2810 (($ $) 67 (|has| |#1| (-301)))) (-3413 ((|#2| $ (-552)) 46)) (-2128 (((-756) $) 66 (|has| |#1| (-544)))) (-2957 ((|#1| $ (-552) (-552) |#1|) 43)) (-2892 ((|#1| $ (-552) (-552)) 48)) (-3138 (((-629 |#1|) $) 30)) (-1486 (((-756) $) 65 (|has| |#1| (-544)))) (-4229 (((-629 |#3|) $) 64 (|has| |#1| (-544)))) (-2389 (((-756) $) 51)) (-3307 (($ (-756) (-756) |#1|) 57)) (-2401 (((-756) $) 50)) (-1418 (((-111) $ (-756)) 9)) (-3427 ((|#1| $) 62 (|has| |#1| (-6 (-4370 "*"))))) (-3534 (((-552) $) 55)) (-3966 (((-552) $) 53)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3660 (((-552) $) 54)) (-3162 (((-552) $) 52)) (-3516 (($ (-629 (-629 |#1|))) 96)) (-2947 (($ (-1 |#1| |#1|) $) 34)) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3397 (((-629 (-629 |#1|)) $) 86)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-4156 (((-3 $ "failed") $) 61 (|has| |#1| (-357)))) (-2944 (($ $ $) 88)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) 56)) (-3969 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-544)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47) (($ $ (-629 (-552)) (-629 (-552))) 85)) (-2843 (($ (-629 |#1|)) 94) (($ (-629 $)) 93)) (-1379 (((-111) $) 100)) (-2021 ((|#1| $) 63 (|has| |#1| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3041 ((|#3| $ (-552)) 45)) (-3213 (($ |#3|) 92) (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-3043 (((-111) $) 98)) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1720 (($ $ |#1|) 68 (|has| |#1| (-357)))) (-1709 (($ $ $) 78) (($ $) 77)) (-1698 (($ $ $) 79)) (** (($ $ (-756)) 70) (($ $ (-552)) 60 (|has| |#1| (-357)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-552) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-671 |#1| |#2| |#3|) (-137) (-1030) (-367 |t#1|) (-367 |t#1|)) (T -671)) +((-2779 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2306 (*1 *1 *2 *2) (-12 (-5 *2 (-756)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3924 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2843 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2843 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-2289 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *1 (-671 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-2289 (*1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3035 (*1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2944 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2811 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-629 (-629 *3))))) (-2060 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-629 (-552))) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1470 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-629 (-552))) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2613 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4037 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1728 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2683 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1698 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1709 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-671 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-671 *3 *2 *4)) (-4 *3 (-1030)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3969 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (-2810 (*1 *1 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-301)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-756)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-756)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-629 *5)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) (-4156 (*1 *1 *1) (|partial| -12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4369) (-6 -4368) (-15 -2779 ((-111) $)) (-15 -1379 ((-111) $)) (-15 -4021 ((-111) $)) (-15 -3043 ((-111) $)) (-15 -2306 ($ (-756) (-756))) (-15 -3516 ($ (-629 (-629 |t#1|)))) (-15 -3924 ($ (-756) |t#1|)) (-15 -2843 ($ (-629 |t#1|))) (-15 -2843 ($ (-629 $))) (-15 -3213 ($ |t#3|)) (-15 -2289 ($ |t#2|)) (-15 -2289 ($ $)) (-15 -3035 ($ $)) (-15 -2944 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -3397 ((-629 (-629 |t#1|)) $)) (-15 -2060 ($ $ (-629 (-552)) (-629 (-552)))) (-15 -1470 ($ $ (-629 (-552)) (-629 (-552)) $)) (-15 -2613 ($ $ (-552) (-552))) (-15 -4037 ($ $ (-552) (-552))) (-15 -1728 ($ $ (-552) (-552) (-552) (-552))) (-15 -2683 ($ $ (-552) (-552) $)) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -1709 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-552) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-756))) (IF (|has| |t#1| (-544)) (-15 -3969 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -1720 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-301)) (-15 -2810 ($ $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2128 ((-756) $)) (-15 -1486 ((-756) $)) (-15 -4229 ((-629 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4370 "*"))) (PROGN (-15 -2021 (|t#1| $)) (-15 -3427 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -4156 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-56 |#1| |#2| |#3|) . T) ((-1191) . T)) +((-2810 ((|#4| |#4|) 72 (|has| |#1| (-301)))) (-2128 (((-756) |#4|) 99 (|has| |#1| (-544)))) (-1486 (((-756) |#4|) 76 (|has| |#1| (-544)))) (-4229 (((-629 |#3|) |#4|) 83 (|has| |#1| (-544)))) (-2768 (((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|) 111 (|has| |#1| (-301)))) (-3427 ((|#1| |#4|) 35)) (-3276 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-544)))) (-4156 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-357)))) (-1581 ((|#4| |#4|) 68 (|has| |#1| (-544)))) (-3570 ((|#4| |#4| |#1| (-552) (-552)) 43)) (-1491 ((|#4| |#4| (-552) (-552)) 38)) (-2481 ((|#4| |#4| |#1| (-552) (-552)) 48)) (-2021 ((|#1| |#4|) 78)) (-1768 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-544))))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2021 (|#1| |#4|)) (-15 -3427 (|#1| |#4|)) (-15 -1491 (|#4| |#4| (-552) (-552))) (-15 -3570 (|#4| |#4| |#1| (-552) (-552))) (-15 -2481 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -2128 ((-756) |#4|)) (-15 -1486 ((-756) |#4|)) (-15 -4229 ((-629 |#3|) |#4|)) (-15 -1581 (|#4| |#4|)) (-15 -3276 ((-3 |#4| "failed") |#4|)) (-15 -1768 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -2810 (|#4| |#4|)) (-15 -2768 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -4156 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|)) (T -672)) +((-4156 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-2768 (*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-672 *3 *4 *5 *6)) (-4 *6 (-671 *3 *4 *5)))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-1768 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-3276 (*1 *2 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-4229 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-629 *6)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-2481 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-672 *3 *5 *6 *2)) (-4 *2 (-671 *3 *5 *6)))) (-3570 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-672 *3 *5 *6 *2)) (-4 *2 (-671 *3 *5 *6)))) (-1491 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-672 *4 *5 *6 *2)) (-4 *2 (-671 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-672 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5)))) (-2021 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-672 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5))))) +(-10 -7 (-15 -2021 (|#1| |#4|)) (-15 -3427 (|#1| |#4|)) (-15 -1491 (|#4| |#4| (-552) (-552))) (-15 -3570 (|#4| |#4| |#1| (-552) (-552))) (-15 -2481 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -2128 ((-756) |#4|)) (-15 -1486 ((-756) |#4|)) (-15 -4229 ((-629 |#3|) |#4|)) (-15 -1581 (|#4| |#4|)) (-15 -3276 ((-3 |#4| "failed") |#4|)) (-15 -1768 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -2810 (|#4| |#4|)) (-15 -2768 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -4156 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756) (-756)) 47)) (-2811 (($ $ $) NIL)) (-2289 (($ (-1237 |#1|)) NIL) (($ $) NIL)) (-4021 (((-111) $) NIL)) (-2613 (($ $ (-552) (-552)) 12)) (-4037 (($ $ (-552) (-552)) NIL)) (-1728 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-3035 (($ $) NIL)) (-2779 (((-111) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2683 (($ $ (-552) (-552) $) NIL)) (-1470 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552)) $) NIL)) (-2347 (($ $ (-552) (-1237 |#1|)) NIL)) (-3934 (($ $ (-552) (-1237 |#1|)) NIL)) (-3924 (($ (-756) |#1|) 22)) (-2130 (($) NIL T CONST)) (-2810 (($ $) 31 (|has| |#1| (-301)))) (-3413 (((-1237 |#1|) $ (-552)) NIL)) (-2128 (((-756) $) 33 (|has| |#1| (-544)))) (-2957 ((|#1| $ (-552) (-552) |#1|) 51)) (-2892 ((|#1| $ (-552) (-552)) NIL)) (-3138 (((-629 |#1|) $) NIL)) (-1486 (((-756) $) 35 (|has| |#1| (-544)))) (-4229 (((-629 (-1237 |#1|)) $) 38 (|has| |#1| (-544)))) (-2389 (((-756) $) 20)) (-3307 (($ (-756) (-756) |#1|) 16)) (-2401 (((-756) $) 21)) (-1418 (((-111) $ (-756)) NIL)) (-3427 ((|#1| $) 29 (|has| |#1| (-6 (-4370 "*"))))) (-3534 (((-552) $) 9)) (-3966 (((-552) $) 10)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3660 (((-552) $) 11)) (-3162 (((-552) $) 48)) (-3516 (($ (-629 (-629 |#1|))) NIL)) (-2947 (($ (-1 |#1| |#1|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3397 (((-629 (-629 |#1|)) $) 60)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-4156 (((-3 $ "failed") $) 45 (|has| |#1| (-357)))) (-2944 (($ $ $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-1518 (($ $ |#1|) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-629 (-552)) (-629 (-552))) NIL)) (-2843 (($ (-629 |#1|)) NIL) (($ (-629 $)) NIL) (($ (-1237 |#1|)) 52)) (-1379 (((-111) $) NIL)) (-2021 ((|#1| $) 27 (|has| |#1| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-1522 (((-528) $) 64 (|has| |#1| (-600 (-528))))) (-3041 (((-1237 |#1|) $ (-552)) NIL)) (-3213 (($ (-1237 |#1|)) NIL) (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $ $) NIL) (($ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) 23) (($ $ (-552)) 46 (|has| |#1| (-357)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1237 |#1|) $ (-1237 |#1|)) NIL) (((-1237 |#1|) (-1237 |#1|) $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-673 |#1|) (-13 (-671 |#1| (-1237 |#1|) (-1237 |#1|)) (-10 -8 (-15 -2843 ($ (-1237 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -4156 ((-3 $ "failed") $)) |%noBranch|))) (-1030)) (T -673)) +((-4156 (*1 *1 *1) (|partial| -12 (-5 *1 (-673 *2)) (-4 *2 (-357)) (-4 *2 (-1030)))) (-2843 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1030)) (-5 *1 (-673 *3))))) +(-13 (-671 |#1| (-1237 |#1|) (-1237 |#1|)) (-10 -8 (-15 -2843 ($ (-1237 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -4156 ((-3 $ "failed") $)) |%noBranch|))) +((-3270 (((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|)) 25)) (-2225 (((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|) 21)) (-2647 (((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-756)) 26)) (-1390 (((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|)) 14)) (-4279 (((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|)) 18) (((-673 |#1|) (-673 |#1|) (-673 |#1|)) 16)) (-1609 (((-673 |#1|) (-673 |#1|) |#1| (-673 |#1|)) 20)) (-1791 (((-673 |#1|) (-673 |#1|) (-673 |#1|)) 12)) (** (((-673 |#1|) (-673 |#1|) (-756)) 30))) +(((-674 |#1|) (-10 -7 (-15 -1791 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -1390 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4279 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4279 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -1609 ((-673 |#1|) (-673 |#1|) |#1| (-673 |#1|))) (-15 -2225 ((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|)) (-15 -3270 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -2647 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-756))) (-15 ** ((-673 |#1|) (-673 |#1|) (-756)))) (-1030)) (T -674)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-673 *4)) (-5 *3 (-756)) (-4 *4 (-1030)) (-5 *1 (-674 *4)))) (-2647 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-673 *4)) (-5 *3 (-756)) (-4 *4 (-1030)) (-5 *1 (-674 *4)))) (-3270 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-2225 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-1609 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-4279 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-4279 (*1 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-1390 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) (-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(-10 -7 (-15 -1791 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -1390 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4279 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4279 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -1609 ((-673 |#1|) (-673 |#1|) |#1| (-673 |#1|))) (-15 -2225 ((-673 |#1|) (-673 |#1|) (-673 |#1|) |#1|)) (-15 -3270 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -2647 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-673 |#1|) (-756))) (-15 ** ((-673 |#1|) (-673 |#1|) (-756)))) +((-3691 (($) 8 T CONST)) (-3213 (((-844) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3285 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3691)) 16)) (-1512 ((|#1| $) 11))) +(((-675 |#1|) (-13 (-1232) (-599 (-844)) (-10 -8 (-15 -3285 ((-111) $ (|[\|\|]| |#1|))) (-15 -3285 ((-111) $ (|[\|\|]| -3691))) (-15 -3213 ($ |#1|)) (-15 -3213 (|#1| $)) (-15 -1512 (|#1| $)) (-15 -3691 ($) -3930))) (-599 (-844))) (T -675)) +((-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-844))) (-5 *2 (-111)) (-5 *1 (-675 *4)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3691)) (-5 *2 (-111)) (-5 *1 (-675 *4)) (-4 *4 (-599 (-844))))) (-3213 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) (-3213 (*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) (-1512 (*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) (-3691 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844)))))) +(-13 (-1232) (-599 (-844)) (-10 -8 (-15 -3285 ((-111) $ (|[\|\|]| |#1|))) (-15 -3285 ((-111) $ (|[\|\|]| -3691))) (-15 -3213 ($ |#1|)) (-15 -3213 (|#1| $)) (-15 -1512 (|#1| $)) (-15 -3691 ($) -3930))) +((-2772 ((|#2| |#2| |#4|) 25)) (-2344 (((-673 |#2|) |#3| |#4|) 31)) (-3779 (((-673 |#2|) |#2| |#4|) 30)) (-3312 (((-1237 |#2|) |#2| |#4|) 16)) (-4161 ((|#2| |#3| |#4|) 24)) (-2107 (((-673 |#2|) |#3| |#4| (-756) (-756)) 38)) (-3349 (((-673 |#2|) |#2| |#4| (-756)) 37))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 ((-1237 |#2|) |#2| |#4|)) (-15 -4161 (|#2| |#3| |#4|)) (-15 -2772 (|#2| |#2| |#4|)) (-15 -3779 ((-673 |#2|) |#2| |#4|)) (-15 -3349 ((-673 |#2|) |#2| |#4| (-756))) (-15 -2344 ((-673 |#2|) |#3| |#4|)) (-15 -2107 ((-673 |#2|) |#3| |#4| (-756) (-756)))) (-1078) (-881 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4368)))) (T -676)) +((-2107 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-756)) (-4 *6 (-1078)) (-4 *7 (-881 *6)) (-5 *2 (-673 *7)) (-5 *1 (-676 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4368)))))) (-2344 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-4 *6 (-881 *5)) (-5 *2 (-673 *6)) (-5 *1 (-676 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368)))))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-756)) (-4 *6 (-1078)) (-4 *3 (-881 *6)) (-5 *2 (-673 *3)) (-5 *1 (-676 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4368)))))) (-3779 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-4 *3 (-881 *5)) (-5 *2 (-673 *3)) (-5 *1 (-676 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368)))))) (-2772 (*1 *2 *2 *3) (-12 (-4 *4 (-1078)) (-4 *2 (-881 *4)) (-5 *1 (-676 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4368)))))) (-4161 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-4 *2 (-881 *5)) (-5 *1 (-676 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368)))))) (-3312 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-4 *3 (-881 *5)) (-5 *2 (-1237 *3)) (-5 *1 (-676 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368))))))) +(-10 -7 (-15 -3312 ((-1237 |#2|) |#2| |#4|)) (-15 -4161 (|#2| |#3| |#4|)) (-15 -2772 (|#2| |#2| |#4|)) (-15 -3779 ((-673 |#2|) |#2| |#4|)) (-15 -3349 ((-673 |#2|) |#2| |#4| (-756))) (-15 -2344 ((-673 |#2|) |#3| |#4|)) (-15 -2107 ((-673 |#2|) |#3| |#4| (-756) (-756)))) +((-1774 (((-2 (|:| |num| (-673 |#1|)) (|:| |den| |#1|)) (-673 |#2|)) 20)) (-2592 ((|#1| (-673 |#2|)) 9)) (-3075 (((-673 |#1|) (-673 |#2|)) 18))) +(((-677 |#1| |#2|) (-10 -7 (-15 -2592 (|#1| (-673 |#2|))) (-15 -3075 ((-673 |#1|) (-673 |#2|))) (-15 -1774 ((-2 (|:| |num| (-673 |#1|)) (|:| |den| |#1|)) (-673 |#2|)))) (-544) (-973 |#1|)) (T -677)) +((-1774 (*1 *2 *3) (-12 (-5 *3 (-673 *5)) (-4 *5 (-973 *4)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| (-673 *4)) (|:| |den| *4))) (-5 *1 (-677 *4 *5)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-673 *5)) (-4 *5 (-973 *4)) (-4 *4 (-544)) (-5 *2 (-673 *4)) (-5 *1 (-677 *4 *5)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-673 *4)) (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-677 *2 *4))))) +(-10 -7 (-15 -2592 (|#1| (-673 |#2|))) (-15 -3075 ((-673 |#1|) (-673 |#2|))) (-15 -1774 ((-2 (|:| |num| (-673 |#1|)) (|:| |den| |#1|)) (-673 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-2977 (((-673 (-683))) NIL) (((-673 (-683)) (-1237 $)) NIL)) (-1549 (((-683) $) NIL)) (-2478 (($ $) NIL (|has| (-683) (-1176)))) (-2332 (($ $) NIL (|has| (-683) (-1176)))) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-683) (-343)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-683) (-301)) (|has| (-683) (-890))))) (-4116 (($ $) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| (-683) (-890))) (|has| (-683) (-357))))) (-3343 (((-412 $) $) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| (-683) (-890))) (|has| (-683) (-357))))) (-3489 (($ $) NIL (-12 (|has| (-683) (-983)) (|has| (-683) (-1176))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-683) (-301)) (|has| (-683) (-890))))) (-2393 (((-111) $ $) NIL (|has| (-683) (-301)))) (-2663 (((-756)) NIL (|has| (-683) (-362)))) (-2455 (($ $) NIL (|has| (-683) (-1176)))) (-2305 (($ $) NIL (|has| (-683) (-1176)))) (-2506 (($ $) NIL (|has| (-683) (-1176)))) (-2359 (($ $) NIL (|has| (-683) (-1176)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-683) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-683) (-1019 (-401 (-552)))))) (-2832 (((-552) $) NIL) (((-683) $) NIL) (((-401 (-552)) $) NIL (|has| (-683) (-1019 (-401 (-552)))))) (-4278 (($ (-1237 (-683))) NIL) (($ (-1237 (-683)) (-1237 $)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-683) (-343)))) (-4006 (($ $ $) NIL (|has| (-683) (-301)))) (-3584 (((-673 (-683)) $) NIL) (((-673 (-683)) $ (-1237 $)) NIL)) (-2714 (((-673 (-683)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-683))) (|:| |vec| (-1237 (-683)))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-683) (-625 (-552)))) (((-673 (-552)) (-673 $)) NIL (|has| (-683) (-625 (-552))))) (-3884 (((-3 $ "failed") (-401 (-1150 (-683)))) NIL (|has| (-683) (-357))) (($ (-1150 (-683))) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3499 (((-683) $) 29)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-683) (-537)))) (-2443 (((-111) $) NIL (|has| (-683) (-537)))) (-3777 (((-401 (-552)) $) NIL (|has| (-683) (-537)))) (-2128 (((-902)) NIL)) (-1332 (($) NIL (|has| (-683) (-362)))) (-3987 (($ $ $) NIL (|has| (-683) (-301)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| (-683) (-301)))) (-4000 (($) NIL (|has| (-683) (-343)))) (-3504 (((-111) $) NIL (|has| (-683) (-343)))) (-1788 (($ $) NIL (|has| (-683) (-343))) (($ $ (-756)) NIL (|has| (-683) (-343)))) (-1677 (((-111) $) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| (-683) (-890))) (|has| (-683) (-357))))) (-2163 (((-2 (|:| |r| (-683)) (|:| |phi| (-683))) $) NIL (-12 (|has| (-683) (-1039)) (|has| (-683) (-1176))))) (-4043 (($) NIL (|has| (-683) (-1176)))) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-683) (-867 (-373)))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-683) (-867 (-552))))) (-4241 (((-818 (-902)) $) NIL (|has| (-683) (-343))) (((-902) $) NIL (|has| (-683) (-343)))) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (-12 (|has| (-683) (-983)) (|has| (-683) (-1176))))) (-4346 (((-683) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-683) (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-683) (-301)))) (-2169 (((-1150 (-683)) $) NIL (|has| (-683) (-357)))) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1477 (($ (-1 (-683) (-683)) $) NIL)) (-1637 (((-902) $) NIL (|has| (-683) (-362)))) (-2430 (($ $) NIL (|has| (-683) (-1176)))) (-3874 (((-1150 (-683)) $) NIL)) (-2552 (($ (-629 $)) NIL (|has| (-683) (-301))) (($ $ $) NIL (|has| (-683) (-301)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| (-683) (-357)))) (-1977 (($) NIL (|has| (-683) (-343)) CONST)) (-2840 (($ (-902)) NIL (|has| (-683) (-362)))) (-2650 (($) NIL)) (-3509 (((-683) $) 31)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| (-683) (-301)))) (-2594 (($ (-629 $)) NIL (|has| (-683) (-301))) (($ $ $) NIL (|has| (-683) (-301)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-683) (-343)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-683) (-301)) (|has| (-683) (-890))))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-683) (-301)) (|has| (-683) (-890))))) (-3479 (((-412 $) $) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| (-683) (-890))) (|has| (-683) (-357))))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-683) (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| (-683) (-301)))) (-3969 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-683)) NIL (|has| (-683) (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-683) (-301)))) (-2855 (($ $) NIL (|has| (-683) (-1176)))) (-2432 (($ $ (-1154) (-683)) NIL (|has| (-683) (-506 (-1154) (-683)))) (($ $ (-629 (-1154)) (-629 (-683))) NIL (|has| (-683) (-506 (-1154) (-683)))) (($ $ (-629 (-288 (-683)))) NIL (|has| (-683) (-303 (-683)))) (($ $ (-288 (-683))) NIL (|has| (-683) (-303 (-683)))) (($ $ (-683) (-683)) NIL (|has| (-683) (-303 (-683)))) (($ $ (-629 (-683)) (-629 (-683))) NIL (|has| (-683) (-303 (-683))))) (-3795 (((-756) $) NIL (|has| (-683) (-301)))) (-2060 (($ $ (-683)) NIL (|has| (-683) (-280 (-683) (-683))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| (-683) (-301)))) (-1721 (((-683)) NIL) (((-683) (-1237 $)) NIL)) (-4147 (((-3 (-756) "failed") $ $) NIL (|has| (-683) (-343))) (((-756) $) NIL (|has| (-683) (-343)))) (-3096 (($ $ (-1 (-683) (-683))) NIL) (($ $ (-1 (-683) (-683)) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-1154)) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-756)) NIL (|has| (-683) (-228))) (($ $) NIL (|has| (-683) (-228)))) (-1433 (((-673 (-683)) (-1237 $) (-1 (-683) (-683))) NIL (|has| (-683) (-357)))) (-3521 (((-1150 (-683))) NIL)) (-2518 (($ $) NIL (|has| (-683) (-1176)))) (-2370 (($ $) NIL (|has| (-683) (-1176)))) (-1368 (($) NIL (|has| (-683) (-343)))) (-2492 (($ $) NIL (|has| (-683) (-1176)))) (-2346 (($ $) NIL (|has| (-683) (-1176)))) (-2467 (($ $) NIL (|has| (-683) (-1176)))) (-2318 (($ $) NIL (|has| (-683) (-1176)))) (-3464 (((-673 (-683)) (-1237 $)) NIL) (((-1237 (-683)) $) NIL) (((-673 (-683)) (-1237 $) (-1237 $)) NIL) (((-1237 (-683)) $ (-1237 $)) NIL)) (-1522 (((-528) $) NIL (|has| (-683) (-600 (-528)))) (((-166 (-220)) $) NIL (|has| (-683) (-1003))) (((-166 (-373)) $) NIL (|has| (-683) (-1003))) (((-873 (-373)) $) NIL (|has| (-683) (-600 (-873 (-373))))) (((-873 (-552)) $) NIL (|has| (-683) (-600 (-873 (-552))))) (($ (-1150 (-683))) NIL) (((-1150 (-683)) $) NIL) (($ (-1237 (-683))) NIL) (((-1237 (-683)) $) NIL)) (-2074 (($ $) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| $ (-142)) (|has| (-683) (-890))) (|has| (-683) (-343))))) (-4320 (($ (-683) (-683)) 12)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-683)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-552))) 19) (($ (-166 (-683))) 28) (($ (-166 (-685))) 25) (((-166 (-373)) $) 33) (($ (-401 (-552))) NIL (-4029 (|has| (-683) (-1019 (-401 (-552)))) (|has| (-683) (-357))))) (-3878 (($ $) NIL (|has| (-683) (-343))) (((-3 $ "failed") $) NIL (-4029 (-12 (|has| (-683) (-301)) (|has| $ (-142)) (|has| (-683) (-890))) (|has| (-683) (-142))))) (-3767 (((-1150 (-683)) $) NIL)) (-2014 (((-756)) NIL)) (-4199 (((-1237 $)) NIL)) (-3843 (($ $) NIL (|has| (-683) (-1176)))) (-2409 (($ $) NIL (|has| (-683) (-1176)))) (-3589 (((-111) $ $) NIL)) (-2530 (($ $) NIL (|has| (-683) (-1176)))) (-2382 (($ $) NIL (|has| (-683) (-1176)))) (-3863 (($ $) NIL (|has| (-683) (-1176)))) (-2433 (($ $) NIL (|has| (-683) (-1176)))) (-1350 (((-683) $) NIL (|has| (-683) (-1176)))) (-3013 (($ $) NIL (|has| (-683) (-1176)))) (-2444 (($ $) NIL (|has| (-683) (-1176)))) (-3853 (($ $) NIL (|has| (-683) (-1176)))) (-2420 (($ $) NIL (|has| (-683) (-1176)))) (-2543 (($ $) NIL (|has| (-683) (-1176)))) (-2395 (($ $) NIL (|has| (-683) (-1176)))) (-1578 (($ $) NIL (|has| (-683) (-1039)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1 (-683) (-683))) NIL) (($ $ (-1 (-683) (-683)) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-1154)) NIL (|has| (-683) (-881 (-1154)))) (($ $ (-756)) NIL (|has| (-683) (-228))) (($ $) NIL (|has| (-683) (-228)))) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL (|has| (-683) (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ $) NIL (|has| (-683) (-1176))) (($ $ (-401 (-552))) NIL (-12 (|has| (-683) (-983)) (|has| (-683) (-1176)))) (($ $ (-552)) NIL (|has| (-683) (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-683) $) NIL) (($ $ (-683)) NIL) (($ (-401 (-552)) $) NIL (|has| (-683) (-357))) (($ $ (-401 (-552))) NIL (|has| (-683) (-357))))) +(((-678) (-13 (-381) (-163 (-683)) (-10 -8 (-15 -3213 ($ (-166 (-373)))) (-15 -3213 ($ (-166 (-552)))) (-15 -3213 ($ (-166 (-683)))) (-15 -3213 ($ (-166 (-685)))) (-15 -3213 ((-166 (-373)) $))))) (T -678)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-678)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-678)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-678)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-166 (-685))) (-5 *1 (-678)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-678))))) +(-13 (-381) (-163 (-683)) (-10 -8 (-15 -3213 ($ (-166 (-373)))) (-15 -3213 ($ (-166 (-552)))) (-15 -3213 ($ (-166 (-683)))) (-15 -3213 ($ (-166 (-685)))) (-15 -3213 ((-166 (-373)) $)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2232 (($ $) 62)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40) (($ |#1| $ (-756)) 63)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3441 (((-629 (-2 (|:| -3360 |#1|) (|:| -2885 (-756)))) $) 61)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-679 |#1|) (-137) (-1078)) (T -679)) +((-1580 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-679 *2)) (-4 *2 (-1078)))) (-2232 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1078)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1078)) (-5 *2 (-629 (-2 (|:| -3360 *3) (|:| -2885 (-756)))))))) +(-13 (-230 |t#1|) (-10 -8 (-15 -1580 ($ |t#1| $ (-756))) (-15 -2232 ($ $)) (-15 -3441 ((-629 (-2 (|:| -3360 |t#1|) (|:| -2885 (-756)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3666 (((-629 |#1|) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) (-552)) 47)) (-1385 ((|#1| |#1| (-552)) 46)) (-2594 ((|#1| |#1| |#1| (-552)) 36)) (-3479 (((-629 |#1|) |#1| (-552)) 39)) (-2199 ((|#1| |#1| (-552) |#1| (-552)) 32)) (-3030 (((-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) |#1| (-552)) 45))) +(((-680 |#1|) (-10 -7 (-15 -2594 (|#1| |#1| |#1| (-552))) (-15 -1385 (|#1| |#1| (-552))) (-15 -3479 ((-629 |#1|) |#1| (-552))) (-15 -3030 ((-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) |#1| (-552))) (-15 -3666 ((-629 |#1|) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) (-552))) (-15 -2199 (|#1| |#1| (-552) |#1| (-552)))) (-1213 (-552))) (T -680)) +((-2199 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-2 (|:| -3479 *5) (|:| -3299 (-552))))) (-5 *4 (-552)) (-4 *5 (-1213 *4)) (-5 *2 (-629 *5)) (-5 *1 (-680 *5)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-629 (-2 (|:| -3479 *3) (|:| -3299 *4)))) (-5 *1 (-680 *3)) (-4 *3 (-1213 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-629 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1213 *4)))) (-1385 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3)))) (-2594 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3))))) +(-10 -7 (-15 -2594 (|#1| |#1| |#1| (-552))) (-15 -1385 (|#1| |#1| (-552))) (-15 -3479 ((-629 |#1|) |#1| (-552))) (-15 -3030 ((-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) |#1| (-552))) (-15 -3666 ((-629 |#1|) (-629 (-2 (|:| -3479 |#1|) (|:| -3299 (-552)))) (-552))) (-15 -2199 (|#1| |#1| (-552) |#1| (-552)))) +((-4338 (((-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 17)) (-2638 (((-1111 (-220)) (-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257))) 40) (((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257))) 42) (((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257))) 44)) (-2668 (((-1111 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-629 (-257))) NIL)) (-2705 (((-1111 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257))) 45))) +(((-681) (-10 -7 (-15 -2638 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2638 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2638 ((-1111 (-220)) (-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2705 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2668 ((-1111 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -4338 ((-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -681)) +((-4338 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1 (-220) (-220) (-220) (-220))) (-5 *2 (-1 (-924 (-220)) (-220) (-220))) (-5 *1 (-681)))) (-2668 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-681)))) (-2705 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-681)))) (-2638 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-220))) (-5 *5 (-629 (-257))) (-5 *1 (-681)))) (-2638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-220))) (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-681)))) (-2638 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-681))))) +(-10 -7 (-15 -2638 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2638 ((-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2638 ((-1111 (-220)) (-1111 (-220)) (-1 (-924 (-220)) (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2705 ((-1111 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1072 (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -2668 ((-1111 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1072 (-220)) (-629 (-257)))) (-15 -4338 ((-1 (-924 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) +((-3479 (((-412 (-1150 |#4|)) (-1150 |#4|)) 73) (((-412 |#4|) |#4|) 221))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4|)) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|)))) (-832) (-778) (-343) (-930 |#3| |#2| |#1|)) (T -682)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-343)) (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-930 *6 *5 *4))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4|)) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 84)) (-3603 (((-552) $) 30)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4157 (($ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL)) (-2130 (($) NIL T CONST)) (-4183 (($ $) NIL)) (-1393 (((-3 (-552) "failed") $) 73) (((-3 (-401 (-552)) "failed") $) 26) (((-3 (-373) "failed") $) 70)) (-2832 (((-552) $) 75) (((-401 (-552)) $) 67) (((-373) $) 68)) (-4006 (($ $ $) 96)) (-1293 (((-3 $ "failed") $) 87)) (-3987 (($ $ $) 95)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-2180 (((-902)) 77) (((-902) (-902)) 76)) (-1338 (((-111) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL)) (-4241 (((-552) $) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL)) (-4346 (($ $) NIL)) (-3127 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3101 (((-552) (-552)) 81) (((-552)) 82)) (-1772 (($ $ $) NIL) (($) NIL (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-2329 (((-552) (-552)) 79) (((-552)) 80)) (-2011 (($ $ $) NIL) (($) NIL (-12 (-4107 (|has| $ (-6 -4351))) (-4107 (|has| $ (-6 -4359)))))) (-1833 (((-552) $) 16)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 91)) (-1676 (((-902) (-552)) NIL (|has| $ (-6 -4359)))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL)) (-3410 (($ $) NIL)) (-3396 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-902)) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) 92)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1406 (((-552) $) 22)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 94)) (-2950 (((-902)) NIL) (((-902) (-902)) NIL (|has| $ (-6 -4359)))) (-2474 (((-902) (-552)) NIL (|has| $ (-6 -4359)))) (-1522 (((-373) $) NIL) (((-220) $) NIL) (((-873 (-373)) $) NIL)) (-3213 (((-844) $) 52) (($ (-552)) 63) (($ $) NIL) (($ (-401 (-552))) 66) (($ (-552)) 63) (($ (-401 (-552))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-685)) 55)) (-2014 (((-756)) 103)) (-2368 (($ (-552) (-552) (-902)) 44)) (-3763 (($ $) NIL)) (-2122 (((-902)) NIL) (((-902) (-902)) NIL (|has| $ (-6 -4359)))) (-4174 (((-902)) 35) (((-902) (-902)) 78)) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL)) (-3297 (($) 32 T CONST)) (-3309 (($) 17 T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 83)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 101)) (-1720 (($ $ $) 65)) (-1709 (($ $) 99) (($ $ $) 100)) (-1698 (($ $ $) 98)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 90)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 97) (($ $ $) 88) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-683) (-13 (-398) (-381) (-357) (-1019 (-373)) (-1019 (-401 (-552))) (-144) (-10 -8 (-15 -2180 ((-902) (-902))) (-15 -2180 ((-902))) (-15 -4174 ((-902) (-902))) (-15 -2329 ((-552) (-552))) (-15 -2329 ((-552))) (-15 -3101 ((-552) (-552))) (-15 -3101 ((-552))) (-15 -3213 ((-373) $)) (-15 -3213 ($ (-685))) (-15 -1833 ((-552) $)) (-15 -1406 ((-552) $)) (-15 -2368 ($ (-552) (-552) (-902)))))) (T -683)) +((-1406 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-2180 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683)))) (-4174 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-2329 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-3101 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-683)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-685)) (-5 *1 (-683)))) (-2368 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-902)) (-5 *1 (-683))))) +(-13 (-398) (-381) (-357) (-1019 (-373)) (-1019 (-401 (-552))) (-144) (-10 -8 (-15 -2180 ((-902) (-902))) (-15 -2180 ((-902))) (-15 -4174 ((-902) (-902))) (-15 -2329 ((-552) (-552))) (-15 -2329 ((-552))) (-15 -3101 ((-552) (-552))) (-15 -3101 ((-552))) (-15 -3213 ((-373) $)) (-15 -3213 ($ (-685))) (-15 -1833 ((-552) $)) (-15 -1406 ((-552) $)) (-15 -2368 ($ (-552) (-552) (-902))))) +((-2008 (((-673 |#1|) (-673 |#1|) |#1| |#1|) 65)) (-2810 (((-673 |#1|) (-673 |#1|) |#1|) 48)) (-2261 (((-673 |#1|) (-673 |#1|) |#1|) 66)) (-3705 (((-673 |#1|) (-673 |#1|)) 49)) (-2768 (((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|) 64))) +(((-684 |#1|) (-10 -7 (-15 -3705 ((-673 |#1|) (-673 |#1|))) (-15 -2810 ((-673 |#1|) (-673 |#1|) |#1|)) (-15 -2261 ((-673 |#1|) (-673 |#1|) |#1|)) (-15 -2008 ((-673 |#1|) (-673 |#1|) |#1| |#1|)) (-15 -2768 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|))) (-301)) (T -684)) +((-2768 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-684 *3)) (-4 *3 (-301)))) (-2008 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3)))) (-2261 (*1 *2 *2 *3) (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3)))) (-2810 (*1 *2 *2 *3) (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3))))) +(-10 -7 (-15 -3705 ((-673 |#1|) (-673 |#1|))) (-15 -2810 ((-673 |#1|) (-673 |#1|) |#1|)) (-15 -2261 ((-673 |#1|) (-673 |#1|) |#1|)) (-15 -2008 ((-673 |#1|) (-673 |#1|) |#1| |#1|)) (-15 -2768 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4025 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2704 (($ $ $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL)) (-1603 (($ $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) 27)) (-2832 (((-552) $) 25)) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL)) (-2443 (((-111) $) NIL)) (-3777 (((-401 (-552)) $) NIL)) (-1332 (($ $) NIL) (($) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1299 (($ $ $ $) NIL)) (-2990 (($ $ $) NIL)) (-1338 (((-111) $) NIL)) (-2048 (($ $ $) NIL)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL)) (-4065 (((-111) $) NIL)) (-3302 (((-111) $) NIL)) (-2032 (((-3 $ "failed") $) NIL)) (-3127 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1760 (($ $ $ $) NIL)) (-1772 (($ $ $) NIL)) (-3012 (((-902) (-902)) 10) (((-902)) 9)) (-2011 (($ $ $) NIL)) (-3922 (($ $) NIL)) (-2556 (($ $) NIL)) (-2552 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3198 (($ $ $) NIL)) (-1977 (($) NIL T CONST)) (-3864 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2006 (($ $) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL) (($ $ (-756)) NIL)) (-2045 (($ $) NIL)) (-1487 (($ $) NIL)) (-1522 (((-220) $) NIL) (((-373) $) NIL) (((-873 (-552)) $) NIL) (((-528) $) NIL) (((-552) $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) 24) (($ $) NIL) (($ (-552)) 24) (((-310 $) (-310 (-552))) 18)) (-2014 (((-756)) NIL)) (-3246 (((-111) $ $) NIL)) (-2075 (($ $ $) NIL)) (-4174 (($) NIL)) (-3589 (((-111) $ $) NIL)) (-3182 (($ $ $ $) NIL)) (-1578 (($ $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL) (($ $ (-756)) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-685) (-13 (-381) (-537) (-10 -8 (-15 -3012 ((-902) (-902))) (-15 -3012 ((-902))) (-15 -3213 ((-310 $) (-310 (-552))))))) (T -685)) +((-3012 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-685)))) (-3012 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-685)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-685))) (-5 *1 (-685))))) +(-13 (-381) (-537) (-10 -8 (-15 -3012 ((-902) (-902))) (-15 -3012 ((-902))) (-15 -3213 ((-310 $) (-310 (-552)))))) +((-3242 (((-1 |#4| |#2| |#3|) |#1| (-1154) (-1154)) 19)) (-1363 (((-1 |#4| |#2| |#3|) (-1154)) 12))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1363 ((-1 |#4| |#2| |#3|) (-1154))) (-15 -3242 ((-1 |#4| |#2| |#3|) |#1| (-1154) (-1154)))) (-600 (-528)) (-1191) (-1191) (-1191)) (T -686)) +((-3242 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1154)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-686 *3 *5 *6 *7)) (-4 *3 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191)) (-4 *7 (-1191)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-686 *4 *5 *6 *7)) (-4 *4 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191)) (-4 *7 (-1191))))) +(-10 -7 (-15 -1363 ((-1 |#4| |#2| |#3|) (-1154))) (-15 -3242 ((-1 |#4| |#2| |#3|) |#1| (-1154) (-1154)))) +((-3202 (((-111) $ $) NIL)) (-4105 (((-1242) $ (-756)) 14)) (-1456 (((-756) $) 12)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 25)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 24))) +(((-687 |#1|) (-13 (-130) (-599 |#1|) (-10 -8 (-15 -3213 ($ |#1|)))) (-1078)) (T -687)) +((-3213 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1078))))) +(-13 (-130) (-599 |#1|) (-10 -8 (-15 -3213 ($ |#1|)))) +((-1641 (((-1 (-220) (-220) (-220)) |#1| (-1154) (-1154)) 34) (((-1 (-220) (-220)) |#1| (-1154)) 39))) +(((-688 |#1|) (-10 -7 (-15 -1641 ((-1 (-220) (-220)) |#1| (-1154))) (-15 -1641 ((-1 (-220) (-220) (-220)) |#1| (-1154) (-1154)))) (-600 (-528))) (T -688)) +((-1641 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1154)) (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-688 *3)) (-4 *3 (-600 (-528))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-688 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -1641 ((-1 (-220) (-220)) |#1| (-1154))) (-15 -1641 ((-1 (-220) (-220) (-220)) |#1| (-1154) (-1154)))) +((-2403 (((-1154) |#1| (-1154) (-629 (-1154))) 9) (((-1154) |#1| (-1154) (-1154) (-1154)) 12) (((-1154) |#1| (-1154) (-1154)) 11) (((-1154) |#1| (-1154)) 10))) +(((-689 |#1|) (-10 -7 (-15 -2403 ((-1154) |#1| (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-1154) (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-629 (-1154))))) (-600 (-528))) (T -689)) +((-2403 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-629 (-1154))) (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) (-2403 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) (-2403 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) (-2403 (*1 *2 *3 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -2403 ((-1154) |#1| (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-1154) (-1154))) (-15 -2403 ((-1154) |#1| (-1154) (-629 (-1154))))) +((-4009 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-690 |#1| |#2|) (-10 -7 (-15 -4009 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1191) (-1191)) (T -690)) +((-4009 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-690 *3 *4)) (-4 *3 (-1191)) (-4 *4 (-1191))))) +(-10 -7 (-15 -4009 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3038 (((-1 |#3| |#2|) (-1154)) 11)) (-3242 (((-1 |#3| |#2|) |#1| (-1154)) 21))) +(((-691 |#1| |#2| |#3|) (-10 -7 (-15 -3038 ((-1 |#3| |#2|) (-1154))) (-15 -3242 ((-1 |#3| |#2|) |#1| (-1154)))) (-600 (-528)) (-1191) (-1191)) (T -691)) +((-3242 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-691 *3 *5 *6)) (-4 *3 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-691 *4 *5 *6)) (-4 *4 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191))))) +(-10 -7 (-15 -3038 ((-1 |#3| |#2|) (-1154))) (-15 -3242 ((-1 |#3| |#2|) |#1| (-1154)))) +((-2624 (((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#4|)) (-629 |#3|) (-629 |#4|) (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#4|)))) (-629 (-756)) (-1237 (-629 (-1150 |#3|))) |#3|) 62)) (-3842 (((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#3|)) (-629 |#3|) (-629 |#4|) (-629 (-756)) |#3|) 75)) (-3210 (((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 |#3|) (-629 (-756)) (-629 (-1150 |#4|)) (-1237 (-629 (-1150 |#3|))) |#3|) 34))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3210 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 |#3|) (-629 (-756)) (-629 (-1150 |#4|)) (-1237 (-629 (-1150 |#3|))) |#3|)) (-15 -3842 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#3|)) (-629 |#3|) (-629 |#4|) (-629 (-756)) |#3|)) (-15 -2624 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#4|)) (-629 |#3|) (-629 |#4|) (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#4|)))) (-629 (-756)) (-1237 (-629 (-1150 |#3|))) |#3|))) (-778) (-832) (-301) (-930 |#3| |#1| |#2|)) (T -692)) +((-2624 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-629 (-1150 *13))) (-5 *3 (-1150 *13)) (-5 *4 (-629 *12)) (-5 *5 (-629 *10)) (-5 *6 (-629 *13)) (-5 *7 (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| *13))))) (-5 *8 (-629 (-756))) (-5 *9 (-1237 (-629 (-1150 *10)))) (-4 *12 (-832)) (-4 *10 (-301)) (-4 *13 (-930 *10 *11 *12)) (-4 *11 (-778)) (-5 *1 (-692 *11 *12 *10 *13)))) (-3842 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-629 *11)) (-5 *5 (-629 (-1150 *9))) (-5 *6 (-629 *9)) (-5 *7 (-629 *12)) (-5 *8 (-629 (-756))) (-4 *11 (-832)) (-4 *9 (-301)) (-4 *12 (-930 *9 *10 *11)) (-4 *10 (-778)) (-5 *2 (-629 (-1150 *12))) (-5 *1 (-692 *10 *11 *9 *12)) (-5 *3 (-1150 *12)))) (-3210 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-629 (-1150 *11))) (-5 *3 (-1150 *11)) (-5 *4 (-629 *10)) (-5 *5 (-629 *8)) (-5 *6 (-629 (-756))) (-5 *7 (-1237 (-629 (-1150 *8)))) (-4 *10 (-832)) (-4 *8 (-301)) (-4 *11 (-930 *8 *9 *10)) (-4 *9 (-778)) (-5 *1 (-692 *9 *10 *8 *11))))) +(-10 -7 (-15 -3210 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 |#3|) (-629 (-756)) (-629 (-1150 |#4|)) (-1237 (-629 (-1150 |#3|))) |#3|)) (-15 -3842 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#3|)) (-629 |#3|) (-629 |#4|) (-629 (-756)) |#3|)) (-15 -2624 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-629 |#2|) (-629 (-1150 |#4|)) (-629 |#3|) (-629 |#4|) (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#4|)))) (-629 (-756)) (-1237 (-629 (-1150 |#3|))) |#3|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3766 (($ $) 39)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-3590 (($ |#1| (-756)) 37)) (-3544 (((-756) $) 41)) (-3743 ((|#1| $) 40)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3299 (((-756) $) 42)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-2266 ((|#1| $ (-756)) 38)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-693 |#1|) (-137) (-1030)) (T -693)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1030)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1030)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-693 *2)) (-4 *2 (-1030)))) (-3590 (*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-693 *2)) (-4 *2 (-1030))))) +(-13 (-1030) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3299 ((-756) $)) (-15 -3544 ((-756) $)) (-15 -3743 (|t#1| $)) (-15 -3766 ($ $)) (-15 -2266 (|t#1| $ (-756))) (-15 -3590 ($ |t#1| (-756))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) |has| |#1| (-169)) ((-711) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1477 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-694 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1477 (|#6| (-1 |#4| |#1|) |#3|))) (-544) (-1213 |#1|) (-1213 (-401 |#2|)) (-544) (-1213 |#4|) (-1213 (-401 |#5|))) (T -694)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) (-4 *6 (-1213 *5)) (-4 *2 (-1213 (-401 *8))) (-5 *1 (-694 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1213 (-401 *6))) (-4 *8 (-1213 *7))))) +(-10 -7 (-15 -1477 (|#6| (-1 |#4| |#1|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-1783 (((-1136) (-844)) 31)) (-2595 (((-1242) (-1136)) 28)) (-2150 (((-1136) (-844)) 24)) (-2094 (((-1136) (-844)) 25)) (-3213 (((-844) $) NIL) (((-1136) (-844)) 23)) (-1613 (((-111) $ $) NIL))) +(((-695) (-13 (-1078) (-10 -7 (-15 -3213 ((-1136) (-844))) (-15 -2150 ((-1136) (-844))) (-15 -2094 ((-1136) (-844))) (-15 -1783 ((-1136) (-844))) (-15 -2595 ((-1242) (-1136)))))) (T -695)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-695))))) +(-13 (-1078) (-10 -7 (-15 -3213 ((-1136) (-844))) (-15 -2150 ((-1136) (-844))) (-15 -2094 ((-1136) (-844))) (-15 -1783 ((-1136) (-844))) (-15 -2595 ((-1242) (-1136))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL)) (-3884 (($ |#1| |#2|) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3714 ((|#2| $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1859 (((-3 $ "failed") $ $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) ((|#1| $) NIL)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-696 |#1| |#2| |#3| |#4| |#5|) (-13 (-357) (-10 -8 (-15 -3714 (|#2| $)) (-15 -3213 (|#1| $)) (-15 -3884 ($ |#1| |#2|)) (-15 -1859 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -696)) +((-3714 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3213 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1859 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-357) (-10 -8 (-15 -3714 (|#2| $)) (-15 -3213 (|#1| $)) (-15 -3884 ($ |#1| |#2|)) (-15 -1859 ((-3 $ "failed") $ $)))) +((-3202 (((-111) $ $) 78)) (-3643 (((-111) $) 30)) (-2961 (((-1237 |#1|) $ (-756)) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-4218 (($ (-1150 |#1|)) NIL)) (-3449 (((-1150 $) $ (-1060)) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1060))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ $) NIL (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2663 (((-756)) 47 (|has| |#1| (-362)))) (-1496 (($ $ (-756)) NIL)) (-3366 (($ $ (-756)) NIL)) (-4303 ((|#2| |#2|) 44)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-1060) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-1060) $) NIL)) (-3301 (($ $ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) 34)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-3884 (($ |#2|) 42)) (-1293 (((-3 $ "failed") $) 86)) (-1332 (($) 51 (|has| |#1| (-362)))) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3547 (($ $ $) NIL)) (-1589 (($ $ $) NIL (|has| |#1| (-544)))) (-2997 (((-2 (|:| -4158 |#1|) (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-2277 (((-939 $)) 80)) (-3423 (($ $ |#1| (-756) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1060) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1060) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ $) NIL (|has| |#1| (-544)))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-3602 (($ (-1150 |#1|) (-1060)) NIL) (($ (-1150 $) (-1060)) NIL)) (-1524 (($ $ (-756)) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) 77) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1060)) NIL) (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3714 ((|#2|) 45)) (-3544 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-756) (-756)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2434 (((-1150 |#1|) $) NIL)) (-3506 (((-3 (-1060) "failed") $) NIL)) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-3874 ((|#2| $) 41)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) 28)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1060)) (|:| -1406 (-756))) "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) NIL (|has| |#1| (-1129)) CONST)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3022 (($ $) 79 (|has| |#1| (-343)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1060) |#1|) NIL) (($ $ (-629 (-1060)) (-629 |#1|)) NIL) (($ $ (-1060) $) NIL) (($ $ (-629 (-1060)) (-629 $)) NIL)) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-4212 (((-3 $ "failed") $ (-756)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 87 (|has| |#1| (-357)))) (-1721 (($ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3096 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3299 (((-756) $) 32) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1060) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-1631 (((-939 $)) 36)) (-2911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-3213 (((-844) $) 61) (($ (-552)) NIL) (($ |#1|) 58) (($ (-1060)) NIL) (($ |#2|) 68) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) 63) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 20 T CONST)) (-3585 (((-1237 |#1|) $) 75)) (-3019 (($ (-1237 |#1|)) 50)) (-3309 (($) 8 T CONST)) (-1765 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2822 (((-1237 |#1|) $) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 69)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) 72) (($ $ $) NIL)) (-1698 (($ $ $) 33)) (** (($ $ (-902)) NIL) (($ $ (-756)) 81)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 57) (($ $ $) 74) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-697 |#1| |#2|) (-13 (-1213 |#1|) (-10 -8 (-15 -4303 (|#2| |#2|)) (-15 -3714 (|#2|)) (-15 -3884 ($ |#2|)) (-15 -3874 (|#2| $)) (-15 -3213 ($ |#2|)) (-15 -3585 ((-1237 |#1|) $)) (-15 -3019 ($ (-1237 |#1|))) (-15 -2822 ((-1237 |#1|) $)) (-15 -2277 ((-939 $))) (-15 -1631 ((-939 $))) (IF (|has| |#1| (-343)) (-15 -3022 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) (-1030) (-1213 |#1|)) (T -697)) +((-4303 (*1 *2 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3)))) (-3714 (*1 *2) (-12 (-4 *2 (-1213 *3)) (-5 *1 (-697 *3 *2)) (-4 *3 (-1030)))) (-3884 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3)))) (-3874 (*1 *2 *1) (-12 (-4 *2 (-1213 *3)) (-5 *1 (-697 *3 *2)) (-4 *3 (-1030)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3)))) (-3585 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-5 *2 (-1237 *3)) (-5 *1 (-697 *3 *4)) (-4 *4 (-1213 *3)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1030)) (-5 *1 (-697 *3 *4)) (-4 *4 (-1213 *3)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-5 *2 (-1237 *3)) (-5 *1 (-697 *3 *4)) (-4 *4 (-1213 *3)))) (-2277 (*1 *2) (-12 (-4 *3 (-1030)) (-5 *2 (-939 (-697 *3 *4))) (-5 *1 (-697 *3 *4)) (-4 *4 (-1213 *3)))) (-1631 (*1 *2) (-12 (-4 *3 (-1030)) (-5 *2 (-939 (-697 *3 *4))) (-5 *1 (-697 *3 *4)) (-4 *4 (-1213 *3)))) (-3022 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1030)) (-5 *1 (-697 *2 *3)) (-4 *3 (-1213 *2))))) +(-13 (-1213 |#1|) (-10 -8 (-15 -4303 (|#2| |#2|)) (-15 -3714 (|#2|)) (-15 -3884 ($ |#2|)) (-15 -3874 (|#2| $)) (-15 -3213 ($ |#2|)) (-15 -3585 ((-1237 |#1|) $)) (-15 -3019 ($ (-1237 |#1|))) (-15 -2822 ((-1237 |#1|) $)) (-15 -2277 ((-939 $))) (-15 -1631 ((-939 $))) (IF (|has| |#1| (-343)) (-15 -3022 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2840 ((|#1| $) 13)) (-2876 (((-1098) $) NIL)) (-1406 ((|#2| $) 12)) (-3226 (($ |#1| |#2|) 16)) (-3213 (((-844) $) NIL) (($ (-2 (|:| -2840 |#1|) (|:| -1406 |#2|))) 15) (((-2 (|:| -2840 |#1|) (|:| -1406 |#2|)) $) 14)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 11))) +(((-698 |#1| |#2| |#3|) (-13 (-832) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2840 (|#1| $)) (-15 -3213 ($ (-2 (|:| -2840 |#1|) (|:| -1406 |#2|)))) (-15 -3213 ((-2 (|:| -2840 |#1|) (|:| -1406 |#2|)) $)) (-15 -3226 ($ |#1| |#2|)))) (-832) (-1078) (-1 (-111) (-2 (|:| -2840 |#1|) (|:| -1406 |#2|)) (-2 (|:| -2840 |#1|) (|:| -1406 |#2|)))) (T -698)) +((-1406 (*1 *2 *1) (-12 (-4 *2 (-1078)) (-5 *1 (-698 *3 *2 *4)) (-4 *3 (-832)) (-14 *4 (-1 (-111) (-2 (|:| -2840 *3) (|:| -1406 *2)) (-2 (|:| -2840 *3) (|:| -1406 *2)))))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-832)) (-5 *1 (-698 *2 *3 *4)) (-4 *3 (-1078)) (-14 *4 (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *3)) (-2 (|:| -2840 *2) (|:| -1406 *3)))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2840 *3) (|:| -1406 *4))) (-4 *3 (-832)) (-4 *4 (-1078)) (-5 *1 (-698 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2840 *3) (|:| -1406 *4))) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-1078)) (-14 *5 (-1 (-111) *2 *2)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-698 *2 *3 *4)) (-4 *2 (-832)) (-4 *3 (-1078)) (-14 *4 (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *3)) (-2 (|:| -2840 *2) (|:| -1406 *3))))))) +(-13 (-832) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2840 (|#1| $)) (-15 -3213 ($ (-2 (|:| -2840 |#1|) (|:| -1406 |#2|)))) (-15 -3213 ((-2 (|:| -2840 |#1|) (|:| -1406 |#2|)) $)) (-15 -3226 ($ |#1| |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 59)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-2832 ((|#1| $) NIL) (((-113) $) 39)) (-1293 (((-3 $ "failed") $) 90)) (-1942 ((|#2| (-113) |#2|) 82)) (-4065 (((-111) $) NIL)) (-1683 (($ |#1| (-355 (-113))) 14)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4114 (($ $ (-1 |#2| |#2|)) 58)) (-2263 (($ $ (-1 |#2| |#2|)) 44)) (-2060 ((|#2| $ |#2|) 33)) (-2864 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3213 (((-844) $) 66) (($ (-552)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) 37)) (-1768 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-3297 (($) 21 T CONST)) (-3309 (($) 9 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) 48) (($ $ $) NIL)) (-1698 (($ $ $) 73)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) 57)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) +(((-699 |#1| |#2|) (-13 (-1030) (-1019 |#1|) (-1019 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1768 ($ $)) (-15 -1768 ($ $ $)) (-15 -2864 (|#1| |#1|))) |%noBranch|) (-15 -2263 ($ $ (-1 |#2| |#2|))) (-15 -4114 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -1942 (|#2| (-113) |#2|)) (-15 -1683 ($ |#1| (-355 (-113)))))) (-1030) (-632 |#1|)) (T -699)) +((-1768 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) (-4 *3 (-632 *2)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) (-4 *3 (-632 *2)))) (-2864 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) (-4 *3 (-632 *2)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-632 *3)) (-4 *3 (-1030)) (-5 *1 (-699 *3 *4)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-632 *3)) (-4 *3 (-1030)) (-5 *1 (-699 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1030)) (-5 *1 (-699 *4 *5)) (-4 *5 (-632 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *3 (-1030)) (-5 *1 (-699 *3 *4)) (-4 *4 (-632 *3)))) (-1942 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1030)) (-5 *1 (-699 *4 *2)) (-4 *2 (-632 *4)))) (-1683 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1030)) (-5 *1 (-699 *2 *4)) (-4 *4 (-632 *2))))) +(-13 (-1030) (-1019 |#1|) (-1019 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1768 ($ $)) (-15 -1768 ($ $ $)) (-15 -2864 (|#1| |#1|))) |%noBranch|) (-15 -2263 ($ $ (-1 |#2| |#2|))) (-15 -4114 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -1942 (|#2| (-113) |#2|)) (-15 -1683 ($ |#1| (-355 (-113)))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 33)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3884 (($ |#1| |#2|) 25)) (-1293 (((-3 $ "failed") $) 48)) (-4065 (((-111) $) 35)) (-3714 ((|#2| $) 12)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 49)) (-2876 (((-1098) $) NIL)) (-1859 (((-3 $ "failed") $ $) 47)) (-3213 (((-844) $) 24) (($ (-552)) 19) ((|#1| $) 13)) (-2014 (((-756)) 28)) (-3297 (($) 16 T CONST)) (-3309 (($) 30 T CONST)) (-1613 (((-111) $ $) 38)) (-1709 (($ $) 43) (($ $ $) 37)) (-1698 (($ $ $) 40)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 21) (($ $ $) 20))) +(((-700 |#1| |#2| |#3| |#4| |#5|) (-13 (-1030) (-10 -8 (-15 -3714 (|#2| $)) (-15 -3213 (|#1| $)) (-15 -3884 ($ |#1| |#2|)) (-15 -1859 ((-3 $ "failed") $ $)) (-15 -1293 ((-3 $ "failed") $)) (-15 -3701 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -700)) +((-1293 (*1 *1 *1) (|partial| -12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-700 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3213 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1859 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3701 (*1 *1 *1) (-12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1030) (-10 -8 (-15 -3714 (|#2| $)) (-15 -3213 (|#1| $)) (-15 -3884 ($ |#1| |#2|)) (-15 -1859 ((-3 $ "failed") $ $)) (-15 -1293 ((-3 $ "failed") $)) (-15 -3701 ($ $)))) +((* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-701 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) (-702 |#2|) (-169)) (T -701)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-702 |#1|) (-137) (-169)) (T -702)) NIL (-13 (-110 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-1452 (($ |#1|) 17) (($ $ |#1|) 20)) (-2442 (($ |#1|) 18) (($ $ |#1|) 21)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2624 (((-111) $) NIL)) (-3253 (($ |#1| |#1| |#1| |#1|) 8)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 16)) (-1498 (((-1096) $) NIL)) (-3321 ((|#1| $ |#1|) 24) (((-816 |#1|) $ (-816 |#1|)) 32)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 39)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) 44)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 14))) -(((-701 |#1|) (-13 (-466) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1452 ($ |#1|)) (-15 -2442 ($ |#1|)) (-15 -2040 ($)) (-15 -1452 ($ $ |#1|)) (-15 -2442 ($ $ |#1|)) (-15 -2040 ($ $)) (-15 -3321 (|#1| $ |#1|)) (-15 -3321 ((-816 |#1|) $ (-816 |#1|))))) (-357)) (T -701)) -((-3253 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-1452 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2442 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2040 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2040 (*1 *1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-3321 (*1 *2 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-3321 (*1 *2 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-357)) (-5 *1 (-701 *3))))) -(-13 (-466) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1452 ($ |#1|)) (-15 -2442 ($ |#1|)) (-15 -2040 ($)) (-15 -1452 ($ $ |#1|)) (-15 -2442 ($ $ |#1|)) (-15 -2040 ($ $)) (-15 -3321 (|#1| $ |#1|)) (-15 -3321 ((-816 |#1|) $ (-816 |#1|))))) -((-1407 (($ $ (-900)) 12)) (-2896 (($ $ (-900)) 13)) (** (($ $ (-900)) 10))) -(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) (-703)) (T -702)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-1407 (($ $ (-900)) 15)) (-2896 (($ $ (-900)) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13)) (* (($ $ $) 16))) -(((-703) (-137)) (T -703)) -((* (*1 *1 *1 *1) (-4 *1 (-703))) (-1407 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900))))) -(-13 (-1076) (-10 -8 (-15 * ($ $ $)) (-15 -1407 ($ $ (-900))) (-15 -2896 ($ $ (-900))) (-15 ** ($ $ (-900))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1407 (($ $ (-900)) NIL) (($ $ (-754)) 17)) (-2624 (((-111) $) 10)) (-2896 (($ $ (-900)) NIL) (($ $ (-754)) 18)) (** (($ $ (-900)) NIL) (($ $ (-754)) 15))) -(((-704 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-754))) (-15 -2896 (|#1| |#1| (-754))) (-15 -1407 (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) (-705)) (T -704)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-754))) (-15 -2896 (|#1| |#1| (-754))) (-15 -1407 (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-1592 (((-3 $ "failed") $) 17)) (-1407 (($ $ (-900)) 15) (($ $ (-754)) 22)) (-2040 (((-3 $ "failed") $) 19)) (-2624 (((-111) $) 23)) (-4336 (((-3 $ "failed") $) 18)) (-2896 (($ $ (-900)) 14) (($ $ (-754)) 21)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13) (($ $ (-754)) 20)) (* (($ $ $) 16))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-1603 (($ |#1|) 17) (($ $ |#1|) 20)) (-2881 (($ |#1|) 18) (($ $ |#1|) 21)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4065 (((-111) $) NIL)) (-2079 (($ |#1| |#1| |#1| |#1|) 8)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 16)) (-2876 (((-1098) $) NIL)) (-2432 ((|#1| $ |#1|) 24) (((-818 |#1|) $ (-818 |#1|)) 32)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-3213 (((-844) $) 39)) (-3309 (($) 9 T CONST)) (-1613 (((-111) $ $) 44)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 14))) +(((-703 |#1|) (-13 (-466) (-10 -8 (-15 -2079 ($ |#1| |#1| |#1| |#1|)) (-15 -1603 ($ |#1|)) (-15 -2881 ($ |#1|)) (-15 -1293 ($)) (-15 -1603 ($ $ |#1|)) (-15 -2881 ($ $ |#1|)) (-15 -1293 ($ $)) (-15 -2432 (|#1| $ |#1|)) (-15 -2432 ((-818 |#1|) $ (-818 |#1|))))) (-357)) (T -703)) +((-2079 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-1603 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-2881 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-1293 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-2881 (*1 *1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-1293 (*1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-2432 (*1 *2 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) (-2432 (*1 *2 *1 *2) (-12 (-5 *2 (-818 *3)) (-4 *3 (-357)) (-5 *1 (-703 *3))))) +(-13 (-466) (-10 -8 (-15 -2079 ($ |#1| |#1| |#1| |#1|)) (-15 -1603 ($ |#1|)) (-15 -2881 ($ |#1|)) (-15 -1293 ($)) (-15 -1603 ($ $ |#1|)) (-15 -2881 ($ $ |#1|)) (-15 -1293 ($ $)) (-15 -2432 (|#1| $ |#1|)) (-15 -2432 ((-818 |#1|) $ (-818 |#1|))))) +((-3422 (($ $ (-902)) 12)) (-1736 (($ $ (-902)) 13)) (** (($ $ (-902)) 10))) +(((-704 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-902))) (-15 -1736 (|#1| |#1| (-902))) (-15 -3422 (|#1| |#1| (-902)))) (-705)) (T -704)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-902))) (-15 -1736 (|#1| |#1| (-902))) (-15 -3422 (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-3422 (($ $ (-902)) 15)) (-1736 (($ $ (-902)) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6)) (** (($ $ (-902)) 13)) (* (($ $ $) 16))) (((-705) (-137)) (T -705)) -((-1933 (*1 *1) (-4 *1 (-705))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-111)))) (-1407 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (-2040 (*1 *1 *1) (|partial| -4 *1 (-705))) (-4336 (*1 *1 *1) (|partial| -4 *1 (-705))) (-1592 (*1 *1 *1) (|partial| -4 *1 (-705)))) -(-13 (-703) (-10 -8 (-15 (-1933) ($) -3488) (-15 -2624 ((-111) $)) (-15 -1407 ($ $ (-754))) (-15 -2896 ($ $ (-754))) (-15 ** ($ $ (-754))) (-15 -2040 ((-3 $ "failed") $)) (-15 -4336 ((-3 $ "failed") $)) (-15 -1592 ((-3 $ "failed") $)))) -(((-101) . T) ((-599 (-842)) . T) ((-703) . T) ((-1076) . T)) -((-3307 (((-754)) 34)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 22)) (-2091 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) 44)) (-2040 (((-3 $ "failed") $) 64)) (-1279 (($) 38)) (-2349 ((|#2| $) 20)) (-2220 (($) 17)) (-2942 (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-4070 (((-671 |#2|) (-1235 $) (-1 |#2| |#2|)) 59)) (-3562 (((-1235 |#2|) $) NIL) (($ (-1235 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2410 ((|#3| $) 32)) (-2957 (((-1235 $)) 29))) -(((-706 |#1| |#2| |#3|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1279 (|#1|)) (-15 -3307 ((-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4070 ((-671 |#2|) (-1235 |#1|) (-1 |#2| |#2|))) (-15 -2091 ((-3 |#1| "failed") (-401 |#3|))) (-15 -3562 (|#1| |#3|)) (-15 -2091 (|#1| |#3|)) (-15 -2220 (|#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 (|#3| |#1|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2957 ((-1235 |#1|))) (-15 -2410 (|#3| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) (-707 |#2| |#3|) (-169) (-1211 |#2|)) (T -706)) -((-3307 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-754)) (-5 *1 (-706 *3 *4 *5)) (-4 *3 (-707 *4 *5))))) -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1279 (|#1|)) (-15 -3307 ((-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4070 ((-671 |#2|) (-1235 |#1|) (-1 |#2| |#2|))) (-15 -2091 ((-3 |#1| "failed") (-401 |#3|))) (-15 -3562 (|#1| |#3|)) (-15 -2091 (|#1| |#3|)) (-15 -2220 (|#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 (|#3| |#1|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2957 ((-1235 |#1|))) (-15 -2410 (|#3| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (|has| |#1| (-357)))) (-3245 (($ $) 92 (|has| |#1| (-357)))) (-4058 (((-111) $) 94 (|has| |#1| (-357)))) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 111 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 112 (|has| |#1| (-357)))) (-4224 (((-111) $ $) 102 (|has| |#1| (-357)))) (-3307 (((-754)) 85 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-1703 (((-552) $) 167 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 162)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2813 (($ $ $) 106 (|has| |#1| (-357)))) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 159) (((-671 |#1|) (-671 $)) 158)) (-2091 (($ |#2|) 155) (((-3 $ "failed") (-401 |#2|)) 152 (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| |#1| (-362)))) (-2789 (($ $ $) 105 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| |#1| (-357)))) (-2740 (($) 146 (|has| |#1| (-343)))) (-1415 (((-111) $) 147 (|has| |#1| (-343)))) (-4294 (($ $ (-754)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1633 (((-111) $) 113 (|has| |#1| (-357)))) (-2641 (((-900) $) 149 (|has| |#1| (-343))) (((-816 (-900)) $) 135 (|has| |#1| (-343)))) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4317 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| |#1| (-357)))) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-2886 (((-900) $) 87 (|has| |#1| (-362)))) (-2079 ((|#2| $) 153)) (-1276 (($ (-627 $)) 98 (|has| |#1| (-357))) (($ $ $) 97 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 114 (|has| |#1| (-357)))) (-3002 (($) 140 (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| |#1| (-362)))) (-1498 (((-1096) $) 10)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 96 (|has| |#1| (-357))) (($ $ $) 95 (|has| |#1| (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| |#1| (-343)))) (-1727 (((-412 $) $) 110 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) 90 (|has| |#1| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| |#1| (-357)))) (-2718 (((-754) $) 103 (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| |#1| (-357)))) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-4018 (((-754) $) 148 (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) 136 (|has| |#1| (-343)))) (-2942 (($ $) 134 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) 132 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) 130 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152))) 129 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1152) (-754)) 128 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-754))) 127 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-754)) 120 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-357)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-1376 ((|#2|) 156)) (-3439 (($) 145 (|has| |#1| (-343)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (|has| |#1| (-343)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-357))) (($ (-401 (-552))) 84 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-3778 (((-111) $ $) 93 (|has| |#1| (-357)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 133 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) 131 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) 126 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152))) 125 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1152) (-754)) 124 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-754))) 123 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-754)) 122 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-357)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 118 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) -(((-707 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -707)) -((-2220 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-707 *2 *3)) (-4 *3 (-1211 *2)))) (-1376 (*1 *2) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-2091 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) (-3562 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-2091 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-357)) (-4 *3 (-169)) (-4 *1 (-707 *3 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-4 *1 (-707 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *5))))) -(-13 (-403 |t#1| |t#2|) (-169) (-600 |t#2|) (-405 |t#1|) (-371 |t#1|) (-10 -8 (-15 -2220 ($)) (-15 -1376 (|t#2|)) (-15 -2091 ($ |t#2|)) (-15 -3562 ($ |t#2|)) (-15 -2079 (|t#2| $)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-357)) (-6 (-226 |t#1|)) (-15 -2091 ((-3 $ "failed") (-401 |t#2|))) (-15 -4070 ((-671 |t#1|) (-1235 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-101) . T) ((-110 #0# #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 |#2|) . T) ((-226 |#1|) |has| |#1| (-357)) ((-228) -1559 (|has| |#1| (-343)) (-12 (|has| |#1| (-228)) (|has| |#1| (-357)))) ((-238) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-284) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-301) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-357) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -1559 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-544) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-700 |#1|) . T) ((-700 $) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152)))) ((-899) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-343)) ((-1193) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)))) -((-3887 (($) 11)) (-2040 (((-3 $ "failed") $) 13)) (-2624 (((-111) $) 10)) (** (($ $ (-900)) NIL) (($ $ (-754)) 18))) -(((-708 |#1|) (-10 -8 (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 ** (|#1| |#1| (-900)))) (-709)) (T -708)) -NIL -(-10 -8 (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 ** (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2624 (((-111) $) 17)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13) (($ $ (-754)) 16)) (* (($ $ $) 14))) -(((-709) (-137)) (T -709)) -((-1933 (*1 *1) (-4 *1 (-709))) (-3887 (*1 *1) (-4 *1 (-709))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-754)))) (-2040 (*1 *1 *1) (|partial| -4 *1 (-709)))) -(-13 (-1088) (-10 -8 (-15 (-1933) ($) -3488) (-15 -3887 ($) -3488) (-15 -2624 ((-111) $)) (-15 ** ($ $ (-754))) (-15 -2040 ((-3 $ "failed") $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1088) . T) ((-1076) . T)) -((-4193 (((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2843 (((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2530 ((|#2| (-401 |#2|) (-1 |#2| |#2|)) 13)) (-4004 (((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)) 47))) -(((-710 |#1| |#2|) (-10 -7 (-15 -2843 ((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4193 ((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -4004 ((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -710)) -((-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1317 (-401 *6)) (|:| |special| (-401 *6)))) (-5 *1 (-710 *5 *6)) (-5 *3 (-401 *6)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-710 *5 *2)) (-4 *5 (-357)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1317 (-412 *3)) (|:| |special| (-412 *3)))) (-5 *1 (-710 *5 *3)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1317 *3) (|:| |special| *3))) (-5 *1 (-710 *5 *3))))) -(-10 -7 (-15 -2843 ((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4193 ((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -4004 ((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) -((-3974 ((|#7| (-627 |#5|) |#6|) NIL)) (-3516 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-711 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3516 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3974 (|#7| (-627 |#5|) |#6|))) (-830) (-776) (-776) (-1028) (-1028) (-928 |#4| |#2| |#1|) (-928 |#5| |#3| |#1|)) (T -711)) -((-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *9)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *8 (-1028)) (-4 *2 (-928 *9 *7 *5)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) (-4 *4 (-928 *8 *6 *5)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1028)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *2 (-928 *9 *7 *5)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) (-4 *4 (-928 *8 *6 *5))))) -(-10 -7 (-15 -3516 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3974 (|#7| (-627 |#5|) |#6|))) -((-3516 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-712 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3516 (|#7| (-1 |#2| |#1|) |#6|))) (-830) (-830) (-776) (-776) (-1028) (-928 |#5| |#3| |#1|) (-928 |#5| |#4| |#2|)) (T -712)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-4 *7 (-776)) (-4 *9 (-1028)) (-4 *2 (-928 *9 *8 *6)) (-5 *1 (-712 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-776)) (-4 *4 (-928 *9 *7 *5))))) -(-10 -7 (-15 -3516 (|#7| (-1 |#2| |#1|) |#6|))) -((-1727 (((-412 |#4|) |#4|) 41))) -(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-301) (-928 (-931 |#3|) |#1| |#2|)) (T -713)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-928 (-931 *6) *4 *5))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-523 (-844 |#1|)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-523 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-523 (-844 |#1|)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-523 (-844 |#1|)) (-523 (-844 |#1|))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-523 (-844 |#1|)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ $) NIL (|has| |#2| (-544))) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552))))))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-523 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-714 |#1| |#2|) (-928 |#2| (-523 (-844 |#1|)) (-844 |#1|)) (-627 (-1152)) (-1028)) (T -714)) -NIL -(-928 |#2| (-523 (-844 |#1|)) (-844 |#1|)) -((-4211 (((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|) 14)) (-4007 ((|#4| |#4| |#2|) 33)) (-1917 ((|#4| (-401 (-931 |#3|)) |#2|) 64)) (-2251 ((|#4| (-1148 (-931 |#3|)) |#2|) 77)) (-3904 ((|#4| (-1148 |#4|) |#2|) 51)) (-4158 ((|#4| |#4| |#2|) 54)) (-1727 (((-412 |#4|) |#4|) 40))) -(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4211 ((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|)) (-15 -4158 (|#4| |#4| |#2|)) (-15 -3904 (|#4| (-1148 |#4|) |#2|)) (-15 -4007 (|#4| |#4| |#2|)) (-15 -2251 (|#4| (-1148 (-931 |#3|)) |#2|)) (-15 -1917 (|#4| (-401 (-931 |#3|)) |#2|)) (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))) (-544) (-928 (-401 (-931 |#3|)) |#1| |#2|)) (T -715)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5)))) (-1917 (*1 *2 *3 *4) (-12 (-4 *6 (-544)) (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-5 *3 (-401 (-931 *6))) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-931 *6))) (-4 *6 (-544)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))))) (-4007 (*1 *2 *2 *3) (-12 (-4 *4 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)))) (-4158 (*1 *2 *2 *3) (-12 (-4 *4 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) (-5 *2 (-2 (|:| -2796 (-931 *6)) (|:| -4191 (-931 *6)))) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5))))) -(-10 -7 (-15 -4211 ((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|)) (-15 -4158 (|#4| |#4| |#2|)) (-15 -3904 (|#4| (-1148 |#4|) |#2|)) (-15 -4007 (|#4| |#4| |#2|)) (-15 -2251 (|#4| (-1148 (-931 |#3|)) |#2|)) (-15 -1917 (|#4| (-401 (-931 |#3|)) |#2|)) (-15 -1727 ((-412 |#4|) |#4|))) -((-1727 (((-412 |#4|) |#4|) 52))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-830) (-13 (-301) (-144)) (-928 (-401 |#3|) |#1| |#2|)) (T -716)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-928 (-401 *6) *4 *5))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) -((-3516 (((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)) 18))) -(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)))) (-1028) (-1028) (-709)) (T -717)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5 *7)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *7 (-709)) (-5 *2 (-718 *6 *7)) (-5 *1 (-717 *5 *6 *7))))) -(-10 -7 (-15 -3516 ((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 28)) (-4245 (((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $) 29)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) 20 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1703 ((|#2| $) NIL) ((|#1| $) NIL)) (-2014 (($ $) 79 (|has| |#2| (-830)))) (-2040 (((-3 $ "failed") $) 65)) (-1279 (($) 35 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 55)) (-3056 (((-627 $) $) 39)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| |#2|) 16)) (-3516 (($ (-1 |#1| |#1|) $) 54)) (-2886 (((-900) $) 32 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-1981 ((|#2| $) 78 (|has| |#2| (-830)))) (-1993 ((|#1| $) 77 (|has| |#2| (-830)))) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 27 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 76) (($ (-552)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|)))) 11)) (-1493 (((-627 |#1|) $) 41)) (-1889 ((|#1| $ |#2|) 88)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1922 (($) 12 T CONST)) (-1933 (($) 33 T CONST)) (-2292 (((-111) $ $) 80)) (-2396 (($ $) 47) (($ $ $) NIL)) (-2384 (($ $ $) 26)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-718 |#1| |#2|) (-13 (-1028) (-1017 |#2|) (-1017 |#1|) (-10 -8 (-15 -1832 ($ |#1| |#2|)) (-15 -1889 (|#1| $ |#2|)) (-15 -1477 ($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))))) (-15 -4245 ((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -3267 ((-111) $)) (-15 -1493 ((-627 |#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-830)) (PROGN (-15 -1981 (|#2| $)) (-15 -1993 (|#1| $)) (-15 -2014 ($ $))) |%noBranch|))) (-1028) (-709)) (T -718)) -((-1832 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-709)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-709)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) (-4 *3 (-1028)) (-4 *4 (-709)) (-5 *1 (-718 *3 *4)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-718 *3 *4)) (-4 *4 (-709)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-627 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-1981 (*1 *2 *1) (-12 (-4 *2 (-709)) (-4 *2 (-830)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1028)))) (-1993 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *3 (-709)))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1028)) (-4 *3 (-709))))) -(-13 (-1028) (-1017 |#2|) (-1017 |#1|) (-10 -8 (-15 -1832 ($ |#1| |#2|)) (-15 -1889 (|#1| $ |#2|)) (-15 -1477 ($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))))) (-15 -4245 ((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -3267 ((-111) $)) (-15 -1493 ((-627 |#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-830)) (PROGN (-15 -1981 (|#2| $)) (-15 -1993 (|#1| $)) (-15 -2014 ($ $))) |%noBranch|))) -((-1465 (((-111) $ $) 19)) (-3416 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) 8)) (-1342 (($ (-627 |#1|)) 68) (($) 67)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 64)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 69)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-2613 (($ $ |#1|) 71) (($ $ $) 70)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18)) (-4243 (($ (-627 |#1|)) 66) (($) 65)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-719 |#1|) (-137) (-1076)) (T -719)) -NIL -(-13 (-677 |t#1|) (-1074 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-677 |#1|) . T) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3416 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3694 (($ $ $) 79)) (-3632 (((-111) $ $) 83)) (-4031 (((-111) $ (-754)) NIL)) (-1342 (($ (-627 |#1|)) 24) (($) 16)) (-4289 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2820 (($ $) 71)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 61 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4366))) (($ |#1| $ (-552)) 62) (($ (-1 (-111) |#1|) $ (-552)) 65)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $ (-552)) 67) (($ (-1 (-111) |#1|) $ (-552)) 68)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 32 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 82)) (-2689 (($) 14) (($ |#1|) 26) (($ (-627 |#1|)) 21)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) 38)) (-3082 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 75)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 77)) (-4165 ((|#1| $) 55)) (-3954 (($ |#1| $) 56) (($ |#1| $ (-754)) 72)) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-4133 ((|#1| $) 54)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 50)) (-2373 (($) 13)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 48)) (-2613 (($ $ |#1|) NIL) (($ $ $) 78)) (-3028 (($) 15) (($ (-627 |#1|)) 23)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) 60 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 66)) (-3562 (((-528) $) 36 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 20)) (-1477 (((-842) $) 44)) (-4243 (($ (-627 |#1|)) 25) (($) 17)) (-2577 (($ (-627 |#1|)) 22)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 81)) (-1383 (((-754) $) 59 (|has| $ (-6 -4366))))) -(((-720 |#1|) (-13 (-719 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2689 ($)) (-15 -2689 ($ |#1|)) (-15 -2689 ($ (-627 |#1|))) (-15 -3114 ((-627 |#1|) $)) (-15 -4342 ($ |#1| $ (-552))) (-15 -4342 ($ (-1 (-111) |#1|) $ (-552))) (-15 -2265 ($ |#1| $ (-552))) (-15 -2265 ($ (-1 (-111) |#1|) $ (-552))))) (-1076)) (T -720)) -((-2689 (*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2689 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-720 *3)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-720 *3)) (-4 *3 (-1076)))) (-4342 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-4342 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) (-5 *1 (-720 *4)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) (-5 *1 (-720 *4))))) -(-13 (-719 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2689 ($)) (-15 -2689 ($ |#1|)) (-15 -2689 ($ (-627 |#1|))) (-15 -3114 ((-627 |#1|) $)) (-15 -4342 ($ |#1| $ (-552))) (-15 -4342 ($ (-1 (-111) |#1|) $ (-552))) (-15 -2265 ($ |#1| $ (-552))) (-15 -2265 ($ (-1 (-111) |#1|) $ (-552))))) -((-1271 (((-1240) (-1134)) 8))) -(((-721) (-10 -7 (-15 -1271 ((-1240) (-1134))))) (T -721)) -((-1271 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-721))))) -(-10 -7 (-15 -1271 ((-1240) (-1134)))) -((-1741 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 10))) -(((-722 |#1|) (-10 -7 (-15 -1741 ((-627 |#1|) (-627 |#1|) (-627 |#1|)))) (-830)) (T -722)) -((-1741 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-722 *3))))) -(-10 -7 (-15 -1741 ((-627 |#1|) (-627 |#1|) (-627 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#2|) $) 134)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 127 (|has| |#1| (-544)))) (-3245 (($ $) 126 (|has| |#1| (-544)))) (-4058 (((-111) $) 124 (|has| |#1| (-544)))) (-1607 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 66 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 65 (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 82 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 67 (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 68 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2014 (($ $) 118)) (-2040 (((-3 $ "failed") $) 32)) (-2212 (((-931 |#1|) $ (-754)) 96) (((-931 |#1|) $ (-754) (-754)) 95)) (-2391 (((-111) $) 135)) (-2951 (($) 93 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ |#2|) 98) (((-754) $ |#2| (-754)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 64 (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) 116)) (-1832 (($ $ (-627 |#2|) (-627 (-523 |#2|))) 133) (($ $ |#2| (-523 |#2|)) 132) (($ |#1| (-523 |#2|)) 117) (($ $ |#2| (-754)) 100) (($ $ (-627 |#2|) (-627 (-754))) 99)) (-3516 (($ (-1 |#1| |#1|) $) 115)) (-4135 (($ $) 90 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 113)) (-1993 ((|#1| $) 112)) (-1595 (((-1134) $) 9)) (-2747 (($ $ |#2|) 94 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) 10)) (-4168 (($ $ (-754)) 101)) (-2761 (((-3 $ "failed") $ $) 128 (|has| |#1| (-544)))) (-3154 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ |#2| $) 109) (($ $ (-627 |#2|) (-627 $)) 108) (($ $ (-627 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-627 $) (-627 $)) 104)) (-2942 (($ $ |#2|) 40) (($ $ (-627 |#2|)) 39) (($ $ |#2| (-754)) 38) (($ $ (-627 |#2|) (-627 (-754))) 37)) (-3567 (((-523 |#2|) $) 114)) (-1640 (($ $) 80 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 69 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 70 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 78 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 71 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 136)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-544))) (($ (-401 (-552))) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1889 ((|#1| $ (-523 |#2|)) 119) (($ $ |#2| (-754)) 103) (($ $ (-627 |#2|) (-627 (-754))) 102)) (-3050 (((-3 $ "failed") $) 130 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-1673 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 77 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 125 (|has| |#1| (-544)))) (-1652 (($ $) 88 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 76 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 75 (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) 86 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 74 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 84 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#2|) 36) (($ $ (-627 |#2|)) 35) (($ $ |#2| (-754)) 34) (($ $ (-627 |#2|) (-627 (-754))) 33)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 120 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ $) 92 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 63 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 123 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 122 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-723 |#1| |#2|) (-137) (-1028) (-830)) (T -723)) -((-1889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) (-4 *2 (-830)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-723 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *2 (-754)))) (-2641 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-754)) (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)) (-5 *2 (-931 *4)))) (-2212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)) (-5 *2 (-931 *4)))) (-2747 (*1 *1 *1 *2) (-12 (-4 *1 (-723 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)) (-4 *3 (-38 (-401 (-552))))))) -(-13 (-879 |t#2|) (-952 |t#1| (-523 |t#2|) |t#2|) (-506 |t#2| $) (-303 $) (-10 -8 (-15 -1889 ($ $ |t#2| (-754))) (-15 -1889 ($ $ (-627 |t#2|) (-627 (-754)))) (-15 -4168 ($ $ (-754))) (-15 -1832 ($ $ |t#2| (-754))) (-15 -1832 ($ $ (-627 |t#2|) (-627 (-754)))) (-15 -2641 ((-754) $ |t#2|)) (-15 -2641 ((-754) $ |t#2| (-754))) (-15 -2212 ((-931 |t#1|) $ (-754))) (-15 -2212 ((-931 |t#1|) $ (-754) (-754))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |t#2|)) (-6 (-981)) (-6 (-1174))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-523 |#2|)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-284) |has| |#1| (-544)) ((-303 $) . T) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 |#2| $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 |#2|) . T) ((-952 |#1| #0# |#2|) . T) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552))))) -((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|)) 30) (((-412 |#4|) |#4|) 26))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) (-830) (-776) (-13 (-301) (-144)) (-928 |#3| |#2| |#1|)) (T -724)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) -(-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) -((-2904 (((-412 |#4|) |#4| |#2|) 120)) (-1529 (((-412 |#4|) |#4|) NIL)) (-2487 (((-412 (-1148 |#4|)) (-1148 |#4|)) 111) (((-412 |#4|) |#4|) 41)) (-2144 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|))) 69)) (-2817 (((-1148 |#3|) (-1148 |#3|) (-552)) 139)) (-2880 (((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754)) 61)) (-2079 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|)) 65)) (-2663 (((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|))) 26)) (-2455 (((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552)) 57)) (-3220 (((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) 136)) (-4183 ((|#4| (-552) (-412 |#4|)) 58)) (-3184 (((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) NIL))) -(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 ((-412 |#4|) |#4|)) (-15 -2487 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1529 ((-412 |#4|) |#4|)) (-15 -3220 ((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2904 ((-412 |#4|) |#4| |#2|)) (-15 -2455 ((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552))) (-15 -2144 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -2663 ((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -4183 (|#4| (-552) (-412 |#4|))) (-15 -3184 ((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2079 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|))) (-15 -2880 ((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754))) (-15 -2817 ((-1148 |#3|) (-1148 |#3|) (-552)))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -725)) -((-2817 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-2880 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-4 *7 (-830)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-4 *8 (-301)) (-5 *2 (-627 (-754))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *5 (-754)))) (-2079 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1148 *11)) (-5 *6 (-627 *10)) (-5 *7 (-627 (-754))) (-5 *8 (-627 *11)) (-4 *10 (-830)) (-4 *11 (-301)) (-4 *9 (-776)) (-4 *5 (-928 *11 *9 *10)) (-5 *2 (-627 (-1148 *5))) (-5 *1 (-725 *9 *10 *11 *5)) (-5 *3 (-1148 *5)))) (-3184 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-928 *7 *5 *6)) (-5 *1 (-725 *5 *6 *7 *2)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-301)))) (-2663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-5 *2 (-2 (|:| |upol| (-1148 *8)) (|:| |Lval| (-627 *8)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 *8)) (|:| -4067 (-552))))) (|:| |ctpol| *8))) (-5 *1 (-725 *6 *7 *8 *9)))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *6 (-776)) (-4 *9 (-928 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 *9)) (|:| -4067 (-552))))))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)))) (-2455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-552)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-5 *2 (-2 (|:| -3144 (-1148 *9)) (|:| |polval| (-1148 *8)))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)) (-5 *4 (-1148 *8)))) (-2904 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1529 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-725 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5))))) -(-10 -7 (-15 -2487 ((-412 |#4|) |#4|)) (-15 -2487 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1529 ((-412 |#4|) |#4|)) (-15 -3220 ((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2904 ((-412 |#4|) |#4| |#2|)) (-15 -2455 ((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552))) (-15 -2144 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -2663 ((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -4183 (|#4| (-552) (-412 |#4|))) (-15 -3184 ((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2079 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|))) (-15 -2880 ((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754))) (-15 -2817 ((-1148 |#3|) (-1148 |#3|) (-552)))) -((-1410 (($ $ (-900)) 12))) -(((-726 |#1| |#2|) (-10 -8 (-15 -1410 (|#1| |#1| (-900)))) (-727 |#2|) (-169)) (T -726)) -NIL -(-10 -8 (-15 -1410 (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1407 (($ $ (-900)) 28)) (-1410 (($ $ (-900)) 33)) (-2896 (($ $ (-900)) 29)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-727 |#1|) (-137) (-169)) (T -727)) -((-1410 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-727 *3)) (-4 *3 (-169))))) -(-13 (-744) (-700 |t#1|) (-10 -8 (-15 -1410 ($ $ (-900))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1986 (((-1014) (-671 (-220)) (-552) (-111) (-552)) 25)) (-3183 (((-1014) (-671 (-220)) (-552) (-111) (-552)) 24))) -(((-728) (-10 -7 (-15 -3183 ((-1014) (-671 (-220)) (-552) (-111) (-552))) (-15 -1986 ((-1014) (-671 (-220)) (-552) (-111) (-552))))) (T -728)) -((-1986 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-728)))) (-3183 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-728))))) -(-10 -7 (-15 -3183 ((-1014) (-671 (-220)) (-552) (-111) (-552))) (-15 -1986 ((-1014) (-671 (-220)) (-552) (-111) (-552)))) -((-1778 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) 43)) (-3315 (((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) 39)) (-3643 (((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 32))) -(((-729) (-10 -7 (-15 -3643 ((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -3315 ((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -1778 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN))))))) (T -729)) -((-1778 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1014)) (-5 *1 (-729)))) (-3315 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1014)) (-5 *1 (-729)))) (-3643 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-729))))) -(-10 -7 (-15 -3643 ((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -3315 ((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -1778 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))))) -((-2994 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 34)) (-1475 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 33)) (-1748 (((-1014) (-552) (-671 (-220)) (-552)) 32)) (-3316 (((-1014) (-552) (-671 (-220)) (-552)) 31)) (-2491 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 30)) (-2827 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-1653 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-2913 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552)) 27)) (-3087 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 24)) (-1580 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 23)) (-3037 (((-1014) (-552) (-671 (-220)) (-552)) 22)) (-1431 (((-1014) (-552) (-671 (-220)) (-552)) 21))) -(((-730) (-10 -7 (-15 -1431 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -3037 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1580 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3087 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2913 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1653 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2827 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2491 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3316 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1748 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1475 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2994 ((-1014) (-552) (-552) (-671 (-220)) (-552))))) (T -730)) -((-2994 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1475 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1748 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3316 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2491 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2827 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1653 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2913 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3087 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1580 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3037 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1431 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730))))) -(-10 -7 (-15 -1431 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -3037 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1580 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3087 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2913 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1653 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2827 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2491 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3316 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1748 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1475 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2994 ((-1014) (-552) (-552) (-671 (-220)) (-552)))) -((-3152 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3538 (((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552)) 51)) (-1950 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2434 (((-1014) (-220) (-220) (-552) (-552) (-552) (-552)) 46)) (-1782 (((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 45)) (-1397 (((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 44)) (-2208 (((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 43)) (-2634 (((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 42)) (-2979 (((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 38)) (-1601 (((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 37)) (-4150 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 33)) (-2653 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 32))) -(((-731) (-10 -7 (-15 -2653 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -4150 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -1601 ((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2979 ((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2634 ((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2208 ((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1397 ((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1782 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2434 ((-1014) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1950 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3538 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552))) (-15 -3152 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))))) (T -731)) -((-3152 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-3538 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1950 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2434 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1782 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1397 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2208 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2634 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2979 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1601 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-4150 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2653 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731))))) -(-10 -7 (-15 -2653 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -4150 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -1601 ((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2979 ((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2634 ((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2208 ((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1397 ((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1782 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2434 ((-1014) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1950 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3538 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552))) (-15 -3152 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))))) -((-3603 (((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2067 (((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382)) 69) (((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2399 (((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) 57)) (-2840 (((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 50)) (-3169 (((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 49)) (-3843 (((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 45)) (-4127 (((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 42)) (-2739 (((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-732) (-10 -7 (-15 -2739 ((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -4127 ((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3843 ((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3169 ((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2840 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2399 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3603 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -732)) -((-3603 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2067 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-382)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2067 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2399 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2840 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1014)) (-5 *1 (-732)))) (-3169 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-3843 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-4127 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2739 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(-10 -7 (-15 -2739 ((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -4127 ((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3843 ((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3169 ((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2840 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2399 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3603 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-2562 (((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552)) 45)) (-3858 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) 41)) (-3227 (((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 23))) -(((-733) (-10 -7 (-15 -3227 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3858 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -2562 ((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552))))) (T -733)) -((-2562 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-657 (-220))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-733)))) (-3858 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1014)) (-5 *1 (-733)))) (-3227 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-733))))) -(-10 -7 (-15 -3227 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3858 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -2562 ((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552)))) -((-4045 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552)) 35)) (-2468 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552)) 34)) (-3908 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552)) 33)) (-4225 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-2704 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-3060 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552)) 27)) (-1384 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552)) 24)) (-2787 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552)) 23)) (-2995 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 22)) (-4260 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 21))) -(((-734) (-10 -7 (-15 -4260 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2995 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2787 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1384 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3060 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2704 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4225 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3908 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2468 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4045 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552))))) (T -734)) -((-4045 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2468 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-3908 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-4225 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2704 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-3060 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-1384 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2787 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2995 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-4260 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734))))) -(-10 -7 (-15 -4260 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2995 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2787 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1384 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3060 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2704 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4225 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3908 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2468 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4045 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552)))) -((-2229 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 45)) (-2603 (((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552)) 44)) (-2253 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 43)) (-3034 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 42)) (-1999 (((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552)) 41)) (-3459 (((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552)) 40)) (-3586 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552)) 39)) (-1864 (((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552))) 38)) (-3870 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 35)) (-2768 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552)) 34)) (-1586 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552)) 33)) (-1888 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 32)) (-4252 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552)) 31)) (-1515 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552)) 30)) (-4188 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552)) 29)) (-2625 (((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552)) 28)) (-4296 (((-1014) (-552) (-671 (-220)) (-220) (-552)) 24)) (-2720 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 21))) -(((-735) (-10 -7 (-15 -2720 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4296 ((-1014) (-552) (-671 (-220)) (-220) (-552))) (-15 -2625 ((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552))) (-15 -4188 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -1515 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -4252 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552))) (-15 -1888 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1586 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552))) (-15 -2768 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552))) (-15 -3870 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1864 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)))) (-15 -3586 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552))) (-15 -3459 ((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -1999 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3034 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2253 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2603 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2229 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))))) (T -735)) -((-2229 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2603 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2253 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3034 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1999 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3459 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3586 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1864 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3870 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2768 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1586 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1888 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4252 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1515 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4188 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2625 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4296 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2720 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735))))) -(-10 -7 (-15 -2720 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4296 ((-1014) (-552) (-671 (-220)) (-220) (-552))) (-15 -2625 ((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552))) (-15 -4188 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -1515 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -4252 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552))) (-15 -1888 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1586 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552))) (-15 -2768 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552))) (-15 -3870 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1864 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)))) (-15 -3586 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552))) (-15 -3459 ((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -1999 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3034 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2253 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2603 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2229 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)))) -((-4041 (((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552)) 63)) (-3176 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2097 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) 58)) (-2438 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552)) 51)) (-2980 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) 50)) (-1567 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1581 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) 42)) (-1883 (((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-736) (-10 -7 (-15 -1883 ((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -1581 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1567 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2980 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2438 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552))) (-15 -2097 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3176 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4041 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552))))) (T -736)) -((-4041 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-3176 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2097 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-671 (-220))) (-5 *6 (-111)) (-5 *7 (-671 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2438 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2980 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1567 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1581 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1883 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) -(-10 -7 (-15 -1883 ((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -1581 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1567 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2980 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2438 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552))) (-15 -2097 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3176 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4041 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552)))) -((-3507 (((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)) 47)) (-3789 (((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552)) 46)) (-1428 (((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552)) 45)) (-2878 (((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 40)) (-3378 (((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552)) 39)) (-3774 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-552)) 36)) (-2195 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552)) 35)) (-3481 (((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552)) 34)) (-1945 (((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552)) 33)) (-2387 (((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552)) 32))) -(((-737) (-10 -7 (-15 -2387 ((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552))) (-15 -1945 ((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552))) (-15 -3481 ((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552))) (-15 -2195 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552))) (-15 -3774 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -3378 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552))) (-15 -2878 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1428 ((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3789 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3507 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552))))) (T -737)) -((-3507 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3789 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-1428 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2878 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3378 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3774 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2195 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3481 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-627 (-111))) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-1945 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-671 (-552))) (-5 *5 (-111)) (-5 *7 (-671 (-220))) (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2387 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-627 (-111))) (-5 *7 (-671 (-220))) (-5 *8 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-737))))) -(-10 -7 (-15 -2387 ((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552))) (-15 -1945 ((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552))) (-15 -3481 ((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552))) (-15 -2195 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552))) (-15 -3774 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -3378 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552))) (-15 -2878 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1428 ((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3789 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3507 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)))) -((-3047 (((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)) 65)) (-1443 (((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552)) 60)) (-1788 (((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382)) 56) (((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) 55)) (-3225 (((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552)) 37)) (-3470 (((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552)) 33)) (-1754 (((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552)) 30)) (-3194 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-1420 (((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-2828 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 27)) (-3011 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552)) 26)) (-1337 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 25)) (-3924 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 24)) (-4285 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 23)) (-2810 (((-1014) (-671 (-220)) (-552) (-552) (-552) (-552)) 22)) (-3111 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 21))) -(((-738) (-10 -7 (-15 -3111 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2810 ((-1014) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -4285 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3924 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1337 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -3011 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -2828 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1420 ((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3194 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1754 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3470 ((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552))) (-15 -3225 ((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -1443 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3047 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552))))) (T -738)) -((-3047 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1443 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3225 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3470 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1754 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3194 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1420 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-2828 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1337 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3924 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-4285 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-2810 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3111 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738))))) -(-10 -7 (-15 -3111 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2810 ((-1014) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -4285 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3924 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1337 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -3011 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -2828 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1420 ((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3194 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1754 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3470 ((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552))) (-15 -3225 ((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -1443 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3047 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)))) -((-2677 (((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) 61)) (-3104 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552)) 57)) (-3502 (((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1876 (((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552)) 37)) (-2243 (((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552)) 36)) (-1504 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 33)) (-3705 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220))) 32)) (-3641 (((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552)) 28)) (-1802 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552)) 27)) (-3000 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552)) 26)) (-2675 (((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552)) 22))) -(((-739) (-10 -7 (-15 -2675 ((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3000 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1802 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3641 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552))) (-15 -3705 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)))) (-15 -1504 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2243 ((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1876 ((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -3502 ((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3104 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -2677 ((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD))))))) (T -739)) -((-2677 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3104 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3502 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1876 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-2243 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1504 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3705 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3641 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1802 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3000 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-2675 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-739))))) -(-10 -7 (-15 -2675 ((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3000 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1802 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3641 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552))) (-15 -3705 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)))) (-15 -1504 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2243 ((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1876 ((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -3502 ((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3104 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -2677 ((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))))) -((-2672 (((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220))) 29)) (-2990 (((-1014) (-1134) (-552) (-552) (-671 (-220))) 28)) (-3734 (((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220))) 27)) (-4087 (((-1014) (-552) (-552) (-552) (-671 (-220))) 21))) -(((-740) (-10 -7 (-15 -4087 ((-1014) (-552) (-552) (-552) (-671 (-220)))) (-15 -3734 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220)))) (-15 -2990 ((-1014) (-1134) (-552) (-552) (-671 (-220)))) (-15 -2672 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)))))) (T -740)) -((-2672 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740)))) (-2990 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740)))) (-3734 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-740)))) (-4087 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740))))) -(-10 -7 (-15 -4087 ((-1014) (-552) (-552) (-552) (-671 (-220)))) (-15 -3734 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220)))) (-15 -2990 ((-1014) (-1134) (-552) (-552) (-671 (-220)))) (-15 -2672 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220))))) -((-1735 (((-1014) (-220) (-220) (-220) (-220) (-552)) 62)) (-2068 (((-1014) (-220) (-220) (-220) (-552)) 61)) (-2159 (((-1014) (-220) (-220) (-220) (-552)) 60)) (-2821 (((-1014) (-220) (-220) (-552)) 59)) (-4123 (((-1014) (-220) (-552)) 58)) (-2528 (((-1014) (-220) (-552)) 57)) (-1988 (((-1014) (-220) (-552)) 56)) (-3386 (((-1014) (-220) (-552)) 55)) (-3695 (((-1014) (-220) (-552)) 54)) (-1961 (((-1014) (-220) (-552)) 53)) (-2241 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 52)) (-3710 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 51)) (-1939 (((-1014) (-220) (-552)) 50)) (-3272 (((-1014) (-220) (-552)) 49)) (-1388 (((-1014) (-220) (-552)) 48)) (-2645 (((-1014) (-220) (-552)) 47)) (-2965 (((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552)) 46)) (-1292 (((-1014) (-1134) (-166 (-220)) (-1134) (-552)) 45)) (-3823 (((-1014) (-1134) (-166 (-220)) (-1134) (-552)) 44)) (-3600 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 43)) (-1855 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 42)) (-3237 (((-1014) (-220) (-552)) 39)) (-1804 (((-1014) (-220) (-552)) 38)) (-3377 (((-1014) (-220) (-552)) 37)) (-3683 (((-1014) (-220) (-552)) 36)) (-3979 (((-1014) (-220) (-552)) 35)) (-2550 (((-1014) (-220) (-552)) 34)) (-2826 (((-1014) (-220) (-552)) 33)) (-4096 (((-1014) (-220) (-552)) 32)) (-2471 (((-1014) (-220) (-552)) 31)) (-3747 (((-1014) (-220) (-552)) 30)) (-1908 (((-1014) (-220) (-220) (-220) (-552)) 29)) (-3380 (((-1014) (-220) (-552)) 28)) (-3605 (((-1014) (-220) (-552)) 27)) (-3074 (((-1014) (-220) (-552)) 26)) (-3482 (((-1014) (-220) (-552)) 25)) (-1925 (((-1014) (-220) (-552)) 24)) (-2226 (((-1014) (-166 (-220)) (-552)) 21))) -(((-741) (-10 -7 (-15 -2226 ((-1014) (-166 (-220)) (-552))) (-15 -1925 ((-1014) (-220) (-552))) (-15 -3482 ((-1014) (-220) (-552))) (-15 -3074 ((-1014) (-220) (-552))) (-15 -3605 ((-1014) (-220) (-552))) (-15 -3380 ((-1014) (-220) (-552))) (-15 -1908 ((-1014) (-220) (-220) (-220) (-552))) (-15 -3747 ((-1014) (-220) (-552))) (-15 -2471 ((-1014) (-220) (-552))) (-15 -4096 ((-1014) (-220) (-552))) (-15 -2826 ((-1014) (-220) (-552))) (-15 -2550 ((-1014) (-220) (-552))) (-15 -3979 ((-1014) (-220) (-552))) (-15 -3683 ((-1014) (-220) (-552))) (-15 -3377 ((-1014) (-220) (-552))) (-15 -1804 ((-1014) (-220) (-552))) (-15 -3237 ((-1014) (-220) (-552))) (-15 -1855 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3600 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3823 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -1292 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -2965 ((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2645 ((-1014) (-220) (-552))) (-15 -1388 ((-1014) (-220) (-552))) (-15 -3272 ((-1014) (-220) (-552))) (-15 -1939 ((-1014) (-220) (-552))) (-15 -3710 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2241 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -1961 ((-1014) (-220) (-552))) (-15 -3695 ((-1014) (-220) (-552))) (-15 -3386 ((-1014) (-220) (-552))) (-15 -1988 ((-1014) (-220) (-552))) (-15 -2528 ((-1014) (-220) (-552))) (-15 -4123 ((-1014) (-220) (-552))) (-15 -2821 ((-1014) (-220) (-220) (-552))) (-15 -2159 ((-1014) (-220) (-220) (-220) (-552))) (-15 -2068 ((-1014) (-220) (-220) (-220) (-552))) (-15 -1735 ((-1014) (-220) (-220) (-220) (-220) (-552))))) (T -741)) -((-1735 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2068 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2159 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2821 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1988 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2241 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3710 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2965 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1134)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1292 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3823 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1855 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1908 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(-10 -7 (-15 -2226 ((-1014) (-166 (-220)) (-552))) (-15 -1925 ((-1014) (-220) (-552))) (-15 -3482 ((-1014) (-220) (-552))) (-15 -3074 ((-1014) (-220) (-552))) (-15 -3605 ((-1014) (-220) (-552))) (-15 -3380 ((-1014) (-220) (-552))) (-15 -1908 ((-1014) (-220) (-220) (-220) (-552))) (-15 -3747 ((-1014) (-220) (-552))) (-15 -2471 ((-1014) (-220) (-552))) (-15 -4096 ((-1014) (-220) (-552))) (-15 -2826 ((-1014) (-220) (-552))) (-15 -2550 ((-1014) (-220) (-552))) (-15 -3979 ((-1014) (-220) (-552))) (-15 -3683 ((-1014) (-220) (-552))) (-15 -3377 ((-1014) (-220) (-552))) (-15 -1804 ((-1014) (-220) (-552))) (-15 -3237 ((-1014) (-220) (-552))) (-15 -1855 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3600 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3823 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -1292 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -2965 ((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2645 ((-1014) (-220) (-552))) (-15 -1388 ((-1014) (-220) (-552))) (-15 -3272 ((-1014) (-220) (-552))) (-15 -1939 ((-1014) (-220) (-552))) (-15 -3710 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2241 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -1961 ((-1014) (-220) (-552))) (-15 -3695 ((-1014) (-220) (-552))) (-15 -3386 ((-1014) (-220) (-552))) (-15 -1988 ((-1014) (-220) (-552))) (-15 -2528 ((-1014) (-220) (-552))) (-15 -4123 ((-1014) (-220) (-552))) (-15 -2821 ((-1014) (-220) (-220) (-552))) (-15 -2159 ((-1014) (-220) (-220) (-220) (-552))) (-15 -2068 ((-1014) (-220) (-220) (-220) (-552))) (-15 -1735 ((-1014) (-220) (-220) (-220) (-220) (-552)))) -((-2958 (((-1240)) 18)) (-3312 (((-1134)) 22)) (-3548 (((-1134)) 21)) (-1623 (((-1080) (-1152) (-671 (-552))) 37) (((-1080) (-1152) (-671 (-220))) 32)) (-3533 (((-111)) 16)) (-1860 (((-1134) (-1134)) 25))) -(((-742) (-10 -7 (-15 -3548 ((-1134))) (-15 -3312 ((-1134))) (-15 -1860 ((-1134) (-1134))) (-15 -1623 ((-1080) (-1152) (-671 (-220)))) (-15 -1623 ((-1080) (-1152) (-671 (-552)))) (-15 -3533 ((-111))) (-15 -2958 ((-1240))))) (T -742)) -((-2958 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-742)))) (-3533 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-742)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-552))) (-5 *2 (-1080)) (-5 *1 (-742)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-220))) (-5 *2 (-1080)) (-5 *1 (-742)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742)))) (-3312 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742)))) (-3548 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) -(-10 -7 (-15 -3548 ((-1134))) (-15 -3312 ((-1134))) (-15 -1860 ((-1134) (-1134))) (-15 -1623 ((-1080) (-1152) (-671 (-220)))) (-15 -1623 ((-1080) (-1152) (-671 (-552)))) (-15 -3533 ((-111))) (-15 -2958 ((-1240)))) -((-2493 (($ $ $) 10)) (-4297 (($ $ $ $) 9)) (-2743 (($ $ $) 12))) -(((-743 |#1|) (-10 -8 (-15 -2743 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -4297 (|#1| |#1| |#1| |#1|))) (-744)) (T -743)) -NIL -(-10 -8 (-15 -2743 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -4297 (|#1| |#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1407 (($ $ (-900)) 28)) (-2896 (($ $ (-900)) 29)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27))) -(((-744) (-137)) (T -744)) -((-4297 (*1 *1 *1 *1 *1) (-4 *1 (-744))) (-2493 (*1 *1 *1 *1) (-4 *1 (-744))) (-2743 (*1 *1 *1 *1) (-4 *1 (-744)))) -(-13 (-21) (-703) (-10 -8 (-15 -4297 ($ $ $ $)) (-15 -2493 ($ $ $)) (-15 -2743 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-703) . T) ((-1076) . T)) -((-1477 (((-842) $) NIL) (($ (-552)) 10))) -(((-745 |#1|) (-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-746)) (T -745)) -NIL -(-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1592 (((-3 $ "failed") $) 40)) (-1407 (($ $ (-900)) 28) (($ $ (-754)) 35)) (-2040 (((-3 $ "failed") $) 38)) (-2624 (((-111) $) 34)) (-4336 (((-3 $ "failed") $) 39)) (-2896 (($ $ (-900)) 29) (($ $ (-754)) 36)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11) (($ (-552)) 31)) (-3995 (((-754)) 32)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-1933 (($) 33 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30) (($ $ (-754)) 37)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27))) +((* (*1 *1 *1 *1) (-4 *1 (-705))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902)))) (-1736 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902))))) +(-13 (-1078) (-10 -8 (-15 * ($ $ $)) (-15 -3422 ($ $ (-902))) (-15 -1736 ($ $ (-902))) (-15 ** ($ $ (-902))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3422 (($ $ (-902)) NIL) (($ $ (-756)) 17)) (-4065 (((-111) $) 10)) (-1736 (($ $ (-902)) NIL) (($ $ (-756)) 18)) (** (($ $ (-902)) NIL) (($ $ (-756)) 15))) +(((-706 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-756))) (-15 -1736 (|#1| |#1| (-756))) (-15 -3422 (|#1| |#1| (-756))) (-15 -4065 ((-111) |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 -1736 (|#1| |#1| (-902))) (-15 -3422 (|#1| |#1| (-902)))) (-707)) (T -706)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-756))) (-15 -1736 (|#1| |#1| (-756))) (-15 -3422 (|#1| |#1| (-756))) (-15 -4065 ((-111) |#1|)) (-15 ** (|#1| |#1| (-902))) (-15 -1736 (|#1| |#1| (-902))) (-15 -3422 (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-2583 (((-3 $ "failed") $) 17)) (-3422 (($ $ (-902)) 15) (($ $ (-756)) 22)) (-1293 (((-3 $ "failed") $) 19)) (-4065 (((-111) $) 23)) (-4152 (((-3 $ "failed") $) 18)) (-1736 (($ $ (-902)) 14) (($ $ (-756)) 21)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3309 (($) 24 T CONST)) (-1613 (((-111) $ $) 6)) (** (($ $ (-902)) 13) (($ $ (-756)) 20)) (* (($ $ $) 16))) +(((-707) (-137)) (T -707)) +((-3309 (*1 *1) (-4 *1 (-707))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-111)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756)))) (-1736 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756)))) (-1293 (*1 *1 *1) (|partial| -4 *1 (-707))) (-4152 (*1 *1 *1) (|partial| -4 *1 (-707))) (-2583 (*1 *1 *1) (|partial| -4 *1 (-707)))) +(-13 (-705) (-10 -8 (-15 (-3309) ($) -3930) (-15 -4065 ((-111) $)) (-15 -3422 ($ $ (-756))) (-15 -1736 ($ $ (-756))) (-15 ** ($ $ (-756))) (-15 -1293 ((-3 $ "failed") $)) (-15 -4152 ((-3 $ "failed") $)) (-15 -2583 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-844)) . T) ((-705) . T) ((-1078) . T)) +((-2663 (((-756)) 34)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 22)) (-3884 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) 44)) (-1293 (((-3 $ "failed") $) 64)) (-1332 (($) 38)) (-4346 ((|#2| $) 20)) (-4126 (($) 17)) (-3096 (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL)) (-1433 (((-673 |#2|) (-1237 $) (-1 |#2| |#2|)) 59)) (-1522 (((-1237 |#2|) $) NIL) (($ (-1237 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3767 ((|#3| $) 32)) (-4199 (((-1237 $)) 29))) +(((-708 |#1| |#2| |#3|) (-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1332 (|#1|)) (-15 -2663 ((-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -1433 ((-673 |#2|) (-1237 |#1|) (-1 |#2| |#2|))) (-15 -3884 ((-3 |#1| "failed") (-401 |#3|))) (-15 -1522 (|#1| |#3|)) (-15 -3884 (|#1| |#3|)) (-15 -4126 (|#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 (|#3| |#1|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4199 ((-1237 |#1|))) (-15 -3767 (|#3| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|))) (-709 |#2| |#3|) (-169) (-1213 |#2|)) (T -708)) +((-2663 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-756)) (-5 *1 (-708 *3 *4 *5)) (-4 *3 (-709 *4 *5))))) +(-10 -8 (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -1332 (|#1|)) (-15 -2663 ((-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -1433 ((-673 |#2|) (-1237 |#1|) (-1 |#2| |#2|))) (-15 -3884 ((-3 |#1| "failed") (-401 |#3|))) (-15 -1522 (|#1| |#3|)) (-15 -3884 (|#1| |#3|)) (-15 -4126 (|#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1522 (|#3| |#1|)) (-15 -1522 (|#1| (-1237 |#2|))) (-15 -1522 ((-1237 |#2|) |#1|)) (-15 -4199 ((-1237 |#1|))) (-15 -3767 (|#3| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -1293 ((-3 |#1| "failed") |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 91 (|has| |#1| (-357)))) (-3303 (($ $) 92 (|has| |#1| (-357)))) (-1334 (((-111) $) 94 (|has| |#1| (-357)))) (-2977 (((-673 |#1|) (-1237 $)) 44) (((-673 |#1|)) 59)) (-1549 ((|#1| $) 50)) (-1271 (((-1164 (-902) (-756)) (-552)) 144 (|has| |#1| (-343)))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 111 (|has| |#1| (-357)))) (-3343 (((-412 $) $) 112 (|has| |#1| (-357)))) (-2393 (((-111) $ $) 102 (|has| |#1| (-357)))) (-2663 (((-756)) 85 (|has| |#1| (-362)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-2832 (((-552) $) 167 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 162)) (-4278 (($ (-1237 |#1|) (-1237 $)) 46) (($ (-1237 |#1|)) 62)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-4006 (($ $ $) 106 (|has| |#1| (-357)))) (-3584 (((-673 |#1|) $ (-1237 $)) 51) (((-673 |#1|) $) 57)) (-2714 (((-673 (-552)) (-673 $)) 161 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 160 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 159) (((-673 |#1|) (-673 $)) 158)) (-3884 (($ |#2|) 155) (((-3 $ "failed") (-401 |#2|)) 152 (|has| |#1| (-357)))) (-1293 (((-3 $ "failed") $) 32)) (-2128 (((-902)) 52)) (-1332 (($) 88 (|has| |#1| (-362)))) (-3987 (($ $ $) 105 (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 100 (|has| |#1| (-357)))) (-4000 (($) 146 (|has| |#1| (-343)))) (-3504 (((-111) $) 147 (|has| |#1| (-343)))) (-1788 (($ $ (-756)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1677 (((-111) $) 113 (|has| |#1| (-357)))) (-4241 (((-902) $) 149 (|has| |#1| (-343))) (((-818 (-902)) $) 135 (|has| |#1| (-343)))) (-4065 (((-111) $) 30)) (-4346 ((|#1| $) 49)) (-2032 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 109 (|has| |#1| (-357)))) (-2169 ((|#2| $) 42 (|has| |#1| (-357)))) (-1637 (((-902) $) 87 (|has| |#1| (-362)))) (-3874 ((|#2| $) 153)) (-2552 (($ (-629 $)) 98 (|has| |#1| (-357))) (($ $ $) 97 (|has| |#1| (-357)))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 114 (|has| |#1| (-357)))) (-1977 (($) 140 (|has| |#1| (-343)) CONST)) (-2840 (($ (-902)) 86 (|has| |#1| (-362)))) (-2876 (((-1098) $) 10)) (-4126 (($) 157)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 99 (|has| |#1| (-357)))) (-2594 (($ (-629 $)) 96 (|has| |#1| (-357))) (($ $ $) 95 (|has| |#1| (-357)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) 143 (|has| |#1| (-343)))) (-3479 (((-412 $) $) 110 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 107 (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ $) 90 (|has| |#1| (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 101 (|has| |#1| (-357)))) (-3795 (((-756) $) 103 (|has| |#1| (-357)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 104 (|has| |#1| (-357)))) (-1721 ((|#1| (-1237 $)) 45) ((|#1|) 58)) (-4147 (((-756) $) 148 (|has| |#1| (-343))) (((-3 (-756) "failed") $ $) 136 (|has| |#1| (-343)))) (-3096 (($ $) 134 (-4029 (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-756)) 132 (-4029 (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1154)) 130 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-629 (-1154))) 129 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-1154) (-756)) 128 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 (-756))) 127 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-756)) 120 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-357)))) (-1433 (((-673 |#1|) (-1237 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-3521 ((|#2|) 156)) (-1368 (($) 145 (|has| |#1| (-343)))) (-3464 (((-1237 |#1|) $ (-1237 $)) 48) (((-673 |#1|) (-1237 $) (-1237 $)) 47) (((-1237 |#1|) $) 64) (((-673 |#1|) (-1237 $)) 63)) (-1522 (((-1237 |#1|) $) 61) (($ (-1237 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 142 (|has| |#1| (-343)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-357))) (($ (-401 (-552))) 84 (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552))))))) (-3878 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-3767 ((|#2| $) 43)) (-2014 (((-756)) 28)) (-4199 (((-1237 $)) 65)) (-3589 (((-111) $ $) 93 (|has| |#1| (-357)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $) 133 (-4029 (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-756)) 131 (-4029 (-3792 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1154)) 126 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-629 (-1154))) 125 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-1154) (-756)) 124 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 (-756))) 123 (-3792 (|has| |#1| (-881 (-1154))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-756)) 122 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-357)))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 118 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) +(((-709 |#1| |#2|) (-137) (-169) (-1213 |t#1|)) (T -709)) +((-4126 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-709 *2 *3)) (-4 *3 (-1213 *2)))) (-3521 (*1 *2) (-12 (-4 *1 (-709 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) (-3884 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-709 *3 *2)) (-4 *2 (-1213 *3)))) (-1522 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-709 *3 *2)) (-4 *2 (-1213 *3)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) (-3884 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-357)) (-4 *3 (-169)) (-4 *1 (-709 *3 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1237 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-4 *1 (-709 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1213 *5)) (-5 *2 (-673 *5))))) +(-13 (-403 |t#1| |t#2|) (-169) (-600 |t#2|) (-405 |t#1|) (-371 |t#1|) (-10 -8 (-15 -4126 ($)) (-15 -3521 (|t#2|)) (-15 -3884 ($ |t#2|)) (-15 -1522 ($ |t#2|)) (-15 -3874 (|t#2| $)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-357)) (-6 (-226 |t#1|)) (-15 -3884 ((-3 $ "failed") (-401 |t#2|))) (-15 -1433 ((-673 |t#1|) (-1237 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-101) . T) ((-110 #0# #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -4029 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-600 |#2|) . T) ((-226 |#1|) |has| |#1| (-357)) ((-228) -4029 (|has| |#1| (-343)) (-12 (|has| |#1| (-228)) (|has| |#1| (-357)))) ((-238) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-284) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-301) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-357) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -4029 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-544) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-632 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-702 |#1|) . T) ((-702 $) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154)))) ((-901) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 #0#) -4029 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1036 |#1|) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| |#1| (-343)) ((-1195) -4029 (|has| |#1| (-343)) (|has| |#1| (-357)))) +((-2130 (($) 11)) (-1293 (((-3 $ "failed") $) 13)) (-4065 (((-111) $) 10)) (** (($ $ (-902)) NIL) (($ $ (-756)) 18))) +(((-710 |#1|) (-10 -8 (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 -4065 ((-111) |#1|)) (-15 -2130 (|#1|)) (-15 ** (|#1| |#1| (-902)))) (-711)) (T -710)) +NIL +(-10 -8 (-15 -1293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-756))) (-15 -4065 ((-111) |#1|)) (-15 -2130 (|#1|)) (-15 ** (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-2130 (($) 18 T CONST)) (-1293 (((-3 $ "failed") $) 15)) (-4065 (((-111) $) 17)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3309 (($) 19 T CONST)) (-1613 (((-111) $ $) 6)) (** (($ $ (-902)) 13) (($ $ (-756)) 16)) (* (($ $ $) 14))) +(((-711) (-137)) (T -711)) +((-3309 (*1 *1) (-4 *1 (-711))) (-2130 (*1 *1) (-4 *1 (-711))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-711)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-756)))) (-1293 (*1 *1 *1) (|partial| -4 *1 (-711)))) +(-13 (-1090) (-10 -8 (-15 (-3309) ($) -3930) (-15 -2130 ($) -3930) (-15 -4065 ((-111) $)) (-15 ** ($ $ (-756))) (-15 -1293 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1090) . T) ((-1078) . T)) +((-3365 (((-2 (|:| -1681 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2483 (((-2 (|:| -1681 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2463 ((|#2| (-401 |#2|) (-1 |#2| |#2|)) 13)) (-2089 (((-2 (|:| |poly| |#2|) (|:| -1681 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)) 47))) +(((-712 |#1| |#2|) (-10 -7 (-15 -2483 ((-2 (|:| -1681 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3365 ((-2 (|:| -1681 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2463 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -2089 ((-2 (|:| |poly| |#2|) (|:| -1681 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1213 |#1|)) (T -712)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1681 (-401 *6)) (|:| |special| (-401 *6)))) (-5 *1 (-712 *5 *6)) (-5 *3 (-401 *6)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1213 *5)) (-5 *1 (-712 *5 *2)) (-4 *5 (-357)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1681 (-412 *3)) (|:| |special| (-412 *3)))) (-5 *1 (-712 *5 *3)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1681 *3) (|:| |special| *3))) (-5 *1 (-712 *5 *3))))) +(-10 -7 (-15 -2483 ((-2 (|:| -1681 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3365 ((-2 (|:| -1681 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2463 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -2089 ((-2 (|:| |poly| |#2|) (|:| -1681 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) +((-2617 ((|#7| (-629 |#5|) |#6|) NIL)) (-1477 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-713 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1477 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2617 (|#7| (-629 |#5|) |#6|))) (-832) (-778) (-778) (-1030) (-1030) (-930 |#4| |#2| |#1|) (-930 |#5| |#3| |#1|)) (T -713)) +((-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *9)) (-4 *9 (-1030)) (-4 *5 (-832)) (-4 *6 (-778)) (-4 *8 (-1030)) (-4 *2 (-930 *9 *7 *5)) (-5 *1 (-713 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-778)) (-4 *4 (-930 *8 *6 *5)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1030)) (-4 *9 (-1030)) (-4 *5 (-832)) (-4 *6 (-778)) (-4 *2 (-930 *9 *7 *5)) (-5 *1 (-713 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-778)) (-4 *4 (-930 *8 *6 *5))))) +(-10 -7 (-15 -1477 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2617 (|#7| (-629 |#5|) |#6|))) +((-1477 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-714 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1477 (|#7| (-1 |#2| |#1|) |#6|))) (-832) (-832) (-778) (-778) (-1030) (-930 |#5| |#3| |#1|) (-930 |#5| |#4| |#2|)) (T -714)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-832)) (-4 *6 (-832)) (-4 *7 (-778)) (-4 *9 (-1030)) (-4 *2 (-930 *9 *8 *6)) (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-778)) (-4 *4 (-930 *9 *7 *5))))) +(-10 -7 (-15 -1477 (|#7| (-1 |#2| |#1|) |#6|))) +((-3479 (((-412 |#4|) |#4|) 41))) +(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4|))) (-778) (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154))))) (-301) (-930 (-933 |#3|) |#1| |#2|)) (T -715)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-930 (-933 *6) *4 *5))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-846 |#1|)) $) NIL)) (-3449 (((-1150 $) $ (-846 |#1|)) NIL) (((-1150 |#2|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3303 (($ $) NIL (|has| |#2| (-544)))) (-1334 (((-111) $) NIL (|has| |#2| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-846 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL (|has| |#2| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-846 |#1|) "failed") $) NIL)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-846 |#1|) $) NIL)) (-3301 (($ $ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#2| (-890)))) (-3423 (($ $ |#2| (-523 (-846 |#1|)) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-846 |#1|) (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#2|) (-846 |#1|)) NIL) (($ (-1150 $) (-846 |#1|)) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#2| (-523 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-846 |#1|)) NIL)) (-3544 (((-523 (-846 |#1|)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-3891 (($ (-1 (-523 (-846 |#1|)) (-523 (-846 |#1|))) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-3506 (((-3 (-846 |#1|) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#2| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-846 |#1|)) (|:| -1406 (-756))) "failed") $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#2| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-890)))) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-846 |#1|) |#2|) NIL) (($ $ (-629 (-846 |#1|)) (-629 |#2|)) NIL) (($ $ (-846 |#1|) $) NIL) (($ $ (-629 (-846 |#1|)) (-629 $)) NIL)) (-1721 (($ $ (-846 |#1|)) NIL (|has| |#2| (-169)))) (-3096 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3299 (((-523 (-846 |#1|)) $) NIL) (((-756) $ (-846 |#1|)) NIL) (((-629 (-756)) $ (-629 (-846 |#1|))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-846 |#1|) (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-846 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-846 |#1|)) NIL (|has| |#2| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-846 |#1|)) NIL) (($ $) NIL (|has| |#2| (-544))) (($ (-401 (-552))) NIL (-4029 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1019 (-401 (-552))))))) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-523 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#2| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#2| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-846 |#1|)) NIL) (($ $ (-629 (-846 |#1|))) NIL) (($ $ (-846 |#1|) (-756)) NIL) (($ $ (-629 (-846 |#1|)) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-716 |#1| |#2|) (-930 |#2| (-523 (-846 |#1|)) (-846 |#1|)) (-629 (-1154)) (-1030)) (T -716)) +NIL +(-930 |#2| (-523 (-846 |#1|)) (-846 |#1|)) +((-2248 (((-2 (|:| -3305 (-933 |#3|)) (|:| -3341 (-933 |#3|))) |#4|) 14)) (-4052 ((|#4| |#4| |#2|) 33)) (-2578 ((|#4| (-401 (-933 |#3|)) |#2|) 64)) (-1515 ((|#4| (-1150 (-933 |#3|)) |#2|) 77)) (-2323 ((|#4| (-1150 |#4|) |#2|) 51)) (-3027 ((|#4| |#4| |#2|) 54)) (-3479 (((-412 |#4|) |#4|) 40))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2248 ((-2 (|:| -3305 (-933 |#3|)) (|:| -3341 (-933 |#3|))) |#4|)) (-15 -3027 (|#4| |#4| |#2|)) (-15 -2323 (|#4| (-1150 |#4|) |#2|)) (-15 -4052 (|#4| |#4| |#2|)) (-15 -1515 (|#4| (-1150 (-933 |#3|)) |#2|)) (-15 -2578 (|#4| (-401 (-933 |#3|)) |#2|)) (-15 -3479 ((-412 |#4|) |#4|))) (-778) (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)))) (-544) (-930 (-401 (-933 |#3|)) |#1| |#2|)) (T -717)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *6 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-930 (-401 (-933 *6)) *4 *5)))) (-2578 (*1 *2 *3 *4) (-12 (-4 *6 (-544)) (-4 *2 (-930 *3 *5 *4)) (-5 *1 (-717 *5 *4 *6 *2)) (-5 *3 (-401 (-933 *6))) (-4 *5 (-778)) (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 (-933 *6))) (-4 *6 (-544)) (-4 *2 (-930 (-401 (-933 *6)) *5 *4)) (-5 *1 (-717 *5 *4 *6 *2)) (-4 *5 (-778)) (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))))) (-4052 (*1 *2 *2 *3) (-12 (-4 *4 (-778)) (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *5 (-544)) (-5 *1 (-717 *4 *3 *5 *2)) (-4 *2 (-930 (-401 (-933 *5)) *4 *3)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-930 (-401 (-933 *6)) *5 *4)) (-5 *1 (-717 *5 *4 *6 *2)) (-4 *5 (-778)) (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *6 (-544)))) (-3027 (*1 *2 *2 *3) (-12 (-4 *4 (-778)) (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *5 (-544)) (-5 *1 (-717 *4 *3 *5 *2)) (-4 *2 (-930 (-401 (-933 *5)) *4 *3)))) (-2248 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *6 (-544)) (-5 *2 (-2 (|:| -3305 (-933 *6)) (|:| -3341 (-933 *6)))) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-930 (-401 (-933 *6)) *4 *5))))) +(-10 -7 (-15 -2248 ((-2 (|:| -3305 (-933 |#3|)) (|:| -3341 (-933 |#3|))) |#4|)) (-15 -3027 (|#4| |#4| |#2|)) (-15 -2323 (|#4| (-1150 |#4|) |#2|)) (-15 -4052 (|#4| |#4| |#2|)) (-15 -1515 (|#4| (-1150 (-933 |#3|)) |#2|)) (-15 -2578 (|#4| (-401 (-933 |#3|)) |#2|)) (-15 -3479 ((-412 |#4|) |#4|))) +((-3479 (((-412 |#4|) |#4|) 52))) +(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4|))) (-778) (-832) (-13 (-301) (-144)) (-930 (-401 |#3|) |#1| |#2|)) (T -718)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-930 (-401 *6) *4 *5))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4|))) +((-1477 (((-720 |#2| |#3|) (-1 |#2| |#1|) (-720 |#1| |#3|)) 18))) +(((-719 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-720 |#2| |#3|) (-1 |#2| |#1|) (-720 |#1| |#3|)))) (-1030) (-1030) (-711)) (T -719)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-720 *5 *7)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-711)) (-5 *2 (-720 *6 *7)) (-5 *1 (-719 *5 *6 *7))))) +(-10 -7 (-15 -1477 ((-720 |#2| |#3|) (-1 |#2| |#1|) (-720 |#1| |#3|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 28)) (-2622 (((-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|))) $) 29)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756)) 20 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2832 ((|#2| $) NIL) ((|#1| $) NIL)) (-3766 (($ $) 79 (|has| |#2| (-832)))) (-1293 (((-3 $ "failed") $) 65)) (-1332 (($) 35 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) 55)) (-3939 (((-629 $) $) 39)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| |#2|) 16)) (-1477 (($ (-1 |#1| |#1|) $) 54)) (-1637 (((-902) $) 32 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-3733 ((|#2| $) 78 (|has| |#2| (-832)))) (-3743 ((|#1| $) 77 (|has| |#2| (-832)))) (-2623 (((-1136) $) NIL)) (-2840 (($ (-902)) 27 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 76) (($ (-552)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|)))) 11)) (-2984 (((-629 |#1|) $) 41)) (-2266 ((|#1| $ |#2|) 88)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-3297 (($) 12 T CONST)) (-3309 (($) 33 T CONST)) (-1613 (((-111) $ $) 80)) (-1709 (($ $) 47) (($ $ $) NIL)) (-1698 (($ $ $) 26)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-720 |#1| |#2|) (-13 (-1030) (-1019 |#2|) (-1019 |#1|) (-10 -8 (-15 -3590 ($ |#1| |#2|)) (-15 -2266 (|#1| $ |#2|)) (-15 -3213 ($ (-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|))))) (-15 -2622 ((-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|))) $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (-15 -2231 ((-111) $)) (-15 -2984 ((-629 |#1|) $)) (-15 -3939 ((-629 $) $)) (-15 -2856 ((-756) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-832)) (PROGN (-15 -3733 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -3766 ($ $))) |%noBranch|))) (-1030) (-711)) (T -720)) +((-3590 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-711)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *2 (-1030)) (-5 *1 (-720 *2 *3)) (-4 *3 (-711)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -4158 *3) (|:| -1727 *4)))) (-4 *3 (-1030)) (-4 *4 (-711)) (-5 *1 (-720 *3 *4)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| -4158 *3) (|:| -1727 *4)))) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-720 *3 *4)) (-4 *4 (-711)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-629 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) (-3733 (*1 *2 *1) (-12 (-4 *2 (-711)) (-4 *2 (-832)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1030)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-720 *2 *3)) (-4 *3 (-832)) (-4 *3 (-711)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3)) (-4 *3 (-832)) (-4 *2 (-1030)) (-4 *3 (-711))))) +(-13 (-1030) (-1019 |#2|) (-1019 |#1|) (-10 -8 (-15 -3590 ($ |#1| |#2|)) (-15 -2266 (|#1| $ |#2|)) (-15 -3213 ($ (-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|))))) (-15 -2622 ((-629 (-2 (|:| -4158 |#1|) (|:| -1727 |#2|))) $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (-15 -2231 ((-111) $)) (-15 -2984 ((-629 |#1|) $)) (-15 -3939 ((-629 $) $)) (-15 -2856 ((-756) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-832)) (PROGN (-15 -3733 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -3766 ($ $))) |%noBranch|))) +((-3202 (((-111) $ $) 19)) (-1501 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2041 (($ $ $) 72)) (-2691 (((-111) $ $) 73)) (-4238 (((-111) $ (-756)) 8)) (-1439 (($ (-629 |#1|)) 68) (($) 67)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2232 (($ $) 62)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) 64)) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22)) (-4011 (($ $ $) 69)) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40) (($ |#1| $ (-756)) 63)) (-2876 (((-1098) $) 21)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3441 (((-629 (-2 (|:| -3360 |#1|) (|:| -2885 (-756)))) $) 61)) (-2042 (($ $ |#1|) 71) (($ $ $) 70)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-3213 (((-844) $) 18)) (-3541 (($ (-629 |#1|)) 66) (($) 65)) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20)) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-721 |#1|) (-137) (-1078)) (T -721)) +NIL +(-13 (-679 |t#1|) (-1076 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-679 |#1|) . T) ((-1076 |#1|) . T) ((-1078) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-1501 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2041 (($ $ $) 79)) (-2691 (((-111) $ $) 83)) (-4238 (((-111) $ (-756)) NIL)) (-1439 (($ (-629 |#1|)) 24) (($) 16)) (-1740 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2232 (($ $) 71)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) 61 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4368))) (($ |#1| $ (-552)) 62) (($ (-1 (-111) |#1|) $ (-552)) 65)) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (($ |#1| $ (-552)) 67) (($ (-1 (-111) |#1|) $ (-552)) 68)) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 32 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) 82)) (-3549 (($) 14) (($ |#1|) 26) (($ (-629 |#1|)) 21)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) 38)) (-2973 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 75)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-4011 (($ $ $) 77)) (-3105 ((|#1| $) 55)) (-1580 (($ |#1| $) 56) (($ |#1| $ (-756)) 72)) (-2876 (((-1098) $) NIL)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3995 ((|#1| $) 54)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 50)) (-3430 (($) 13)) (-3441 (((-629 (-2 (|:| -3360 |#1|) (|:| -2885 (-756)))) $) 48)) (-2042 (($ $ |#1|) NIL) (($ $ $) 78)) (-3680 (($) 15) (($ (-629 |#1|)) 23)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) 60 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 66)) (-1522 (((-528) $) 36 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 20)) (-3213 (((-844) $) 44)) (-3541 (($ (-629 |#1|)) 25) (($) 17)) (-1663 (($ (-629 |#1|)) 22)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 81)) (-2657 (((-756) $) 59 (|has| $ (-6 -4368))))) +(((-722 |#1|) (-13 (-721 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3549 ($)) (-15 -3549 ($ |#1|)) (-15 -3549 ($ (-629 |#1|))) (-15 -3278 ((-629 |#1|) $)) (-15 -2655 ($ |#1| $ (-552))) (-15 -2655 ($ (-1 (-111) |#1|) $ (-552))) (-15 -1625 ($ |#1| $ (-552))) (-15 -1625 ($ (-1 (-111) |#1|) $ (-552))))) (-1078)) (T -722)) +((-3549 (*1 *1) (-12 (-5 *1 (-722 *2)) (-4 *2 (-1078)))) (-3549 (*1 *1 *2) (-12 (-5 *1 (-722 *2)) (-4 *2 (-1078)))) (-3549 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-722 *3)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-722 *3)) (-4 *3 (-1078)))) (-2655 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-722 *2)) (-4 *2 (-1078)))) (-2655 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1078)) (-5 *1 (-722 *4)))) (-1625 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-722 *2)) (-4 *2 (-1078)))) (-1625 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1078)) (-5 *1 (-722 *4))))) +(-13 (-721 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3549 ($)) (-15 -3549 ($ |#1|)) (-15 -3549 ($ (-629 |#1|))) (-15 -3278 ((-629 |#1|) $)) (-15 -2655 ($ |#1| $ (-552))) (-15 -2655 ($ (-1 (-111) |#1|) $ (-552))) (-15 -1625 ($ |#1| $ (-552))) (-15 -1625 ($ (-1 (-111) |#1|) $ (-552))))) +((-1646 (((-1242) (-1136)) 8))) +(((-723) (-10 -7 (-15 -1646 ((-1242) (-1136))))) (T -723)) +((-1646 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-723))))) +(-10 -7 (-15 -1646 ((-1242) (-1136)))) +((-3393 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 10))) +(((-724 |#1|) (-10 -7 (-15 -3393 ((-629 |#1|) (-629 |#1|) (-629 |#1|)))) (-832)) (T -724)) +((-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-724 *3))))) +(-10 -7 (-15 -3393 ((-629 |#1|) (-629 |#1|) (-629 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 |#2|) $) 134)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 127 (|has| |#1| (-544)))) (-3303 (($ $) 126 (|has| |#1| (-544)))) (-1334 (((-111) $) 124 (|has| |#1| (-544)))) (-2478 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 66 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-3489 (($ $) 65 (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) 82 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 67 (|has| |#1| (-38 (-401 (-552)))))) (-2506 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 68 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-3766 (($ $) 118)) (-1293 (((-3 $ "failed") $) 32)) (-2211 (((-933 |#1|) $ (-756)) 96) (((-933 |#1|) $ (-756) (-756)) 95)) (-3593 (((-111) $) 135)) (-4043 (($) 93 (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $ |#2|) 98) (((-756) $ |#2| (-756)) 97)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 64 (|has| |#1| (-38 (-401 (-552)))))) (-2231 (((-111) $) 116)) (-3590 (($ $ (-629 |#2|) (-629 (-523 |#2|))) 133) (($ $ |#2| (-523 |#2|)) 132) (($ |#1| (-523 |#2|)) 117) (($ $ |#2| (-756)) 100) (($ $ (-629 |#2|) (-629 (-756))) 99)) (-1477 (($ (-1 |#1| |#1|) $) 115)) (-2430 (($ $) 90 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 113)) (-3743 ((|#1| $) 112)) (-2623 (((-1136) $) 9)) (-2889 (($ $ |#2|) 94 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) 10)) (-3136 (($ $ (-756)) 101)) (-3969 (((-3 $ "failed") $ $) 128 (|has| |#1| (-544)))) (-2855 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (($ $ |#2| $) 109) (($ $ (-629 |#2|) (-629 $)) 108) (($ $ (-629 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-629 $) (-629 $)) 104)) (-3096 (($ $ |#2|) 40) (($ $ (-629 |#2|)) 39) (($ $ |#2| (-756)) 38) (($ $ (-629 |#2|) (-629 (-756))) 37)) (-3299 (((-523 |#2|) $) 114)) (-2518 (($ $) 80 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 69 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 70 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 78 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 71 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 136)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-544))) (($ (-401 (-552))) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2266 ((|#1| $ (-523 |#2|)) 119) (($ $ |#2| (-756)) 103) (($ $ (-629 |#2|) (-629 (-756))) 102)) (-3878 (((-3 $ "failed") $) 130 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-3843 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 77 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 125 (|has| |#1| (-544)))) (-2530 (($ $) 88 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 76 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 75 (|has| |#1| (-38 (-401 (-552)))))) (-3013 (($ $) 86 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 74 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 84 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ |#2|) 36) (($ $ (-629 |#2|)) 35) (($ $ |#2| (-756)) 34) (($ $ (-629 |#2|) (-629 (-756))) 33)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 120 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ $) 92 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 63 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 123 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 122 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-725 |#1| |#2|) (-137) (-1030) (-832)) (T -725)) +((-2266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *2)) (-4 *4 (-1030)) (-4 *2 (-832)))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *5)) (-5 *3 (-629 (-756))) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-832)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-725 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-832)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *2)) (-4 *4 (-1030)) (-4 *2 (-832)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *5)) (-5 *3 (-629 (-756))) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-832)))) (-4241 (*1 *2 *1 *3) (-12 (-4 *1 (-725 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-832)) (-5 *2 (-756)))) (-4241 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-756)) (-4 *1 (-725 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-832)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-832)) (-5 *2 (-933 *4)))) (-2211 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-832)) (-5 *2 (-933 *4)))) (-2889 (*1 *1 *1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-832)) (-4 *3 (-38 (-401 (-552))))))) +(-13 (-881 |t#2|) (-954 |t#1| (-523 |t#2|) |t#2|) (-506 |t#2| $) (-303 $) (-10 -8 (-15 -2266 ($ $ |t#2| (-756))) (-15 -2266 ($ $ (-629 |t#2|) (-629 (-756)))) (-15 -3136 ($ $ (-756))) (-15 -3590 ($ $ |t#2| (-756))) (-15 -3590 ($ $ (-629 |t#2|) (-629 (-756)))) (-15 -4241 ((-756) $ |t#2|)) (-15 -4241 ((-756) $ |t#2| (-756))) (-15 -2211 ((-933 |t#1|) $ (-756))) (-15 -2211 ((-933 |t#1|) $ (-756) (-756))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $ |t#2|)) (-6 (-983)) (-6 (-1176))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-523 |#2|)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-284) |has| |#1| (-544)) ((-303 $) . T) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 |#2| $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-632 #1#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #1#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-881 |#2|) . T) ((-954 |#1| #0# |#2|) . T) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1036 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552))))) +((-3479 (((-412 (-1150 |#4|)) (-1150 |#4|)) 30) (((-412 |#4|) |#4|) 26))) +(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 |#4|) |#4|)) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|)))) (-832) (-778) (-13 (-301) (-144)) (-930 |#3| |#2| |#1|)) (T -726)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-726 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-930 *6 *5 *4))))) +(-10 -7 (-15 -3479 ((-412 |#4|) |#4|)) (-15 -3479 ((-412 (-1150 |#4|)) (-1150 |#4|)))) +((-1820 (((-412 |#4|) |#4| |#2|) 120)) (-2009 (((-412 |#4|) |#4|) NIL)) (-3343 (((-412 (-1150 |#4|)) (-1150 |#4|)) 111) (((-412 |#4|) |#4|) 41)) (-2953 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-629 (-2 (|:| -3479 (-1150 |#4|)) (|:| -1406 (-552)))))) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|))) 69)) (-2191 (((-1150 |#3|) (-1150 |#3|) (-552)) 139)) (-1588 (((-629 (-756)) (-1150 |#4|) (-629 |#2|) (-756)) 61)) (-3874 (((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-1150 |#3|) (-1150 |#3|) |#4| (-629 |#2|) (-629 (-756)) (-629 |#3|)) 65)) (-1341 (((-2 (|:| |upol| (-1150 |#3|)) (|:| |Lval| (-629 |#3|)) (|:| |Lfact| (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552))))) (|:| |ctpol| |#3|)) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|))) 26)) (-3026 (((-2 (|:| -2291 (-1150 |#4|)) (|:| |polval| (-1150 |#3|))) (-1150 |#4|) (-1150 |#3|) (-552)) 57)) (-3031 (((-552) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552))))) 136)) (-3279 ((|#4| (-552) (-412 |#4|)) 58)) (-2753 (((-111) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552))))) NIL))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3343 ((-412 |#4|) |#4|)) (-15 -3343 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -2009 ((-412 |#4|) |#4|)) (-15 -3031 ((-552) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))))) (-15 -1820 ((-412 |#4|) |#4| |#2|)) (-15 -3026 ((-2 (|:| -2291 (-1150 |#4|)) (|:| |polval| (-1150 |#3|))) (-1150 |#4|) (-1150 |#3|) (-552))) (-15 -2953 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-629 (-2 (|:| -3479 (-1150 |#4|)) (|:| -1406 (-552)))))) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|)))) (-15 -1341 ((-2 (|:| |upol| (-1150 |#3|)) (|:| |Lval| (-629 |#3|)) (|:| |Lfact| (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552))))) (|:| |ctpol| |#3|)) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|)))) (-15 -3279 (|#4| (-552) (-412 |#4|))) (-15 -2753 ((-111) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))))) (-15 -3874 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-1150 |#3|) (-1150 |#3|) |#4| (-629 |#2|) (-629 (-756)) (-629 |#3|))) (-15 -1588 ((-629 (-756)) (-1150 |#4|) (-629 |#2|) (-756))) (-15 -2191 ((-1150 |#3|) (-1150 |#3|) (-552)))) (-778) (-832) (-301) (-930 |#3| |#1| |#2|)) (T -727)) +((-2191 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) (-1588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-4 *7 (-832)) (-4 *9 (-930 *8 *6 *7)) (-4 *6 (-778)) (-4 *8 (-301)) (-5 *2 (-629 (-756))) (-5 *1 (-727 *6 *7 *8 *9)) (-5 *5 (-756)))) (-3874 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1150 *11)) (-5 *6 (-629 *10)) (-5 *7 (-629 (-756))) (-5 *8 (-629 *11)) (-4 *10 (-832)) (-4 *11 (-301)) (-4 *9 (-778)) (-4 *5 (-930 *11 *9 *10)) (-5 *2 (-629 (-1150 *5))) (-5 *1 (-727 *9 *10 *11 *5)) (-5 *3 (-1150 *5)))) (-2753 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-2 (|:| -3479 (-1150 *6)) (|:| -1406 (-552))))) (-4 *6 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-930 *7 *5 *6)) (-5 *1 (-727 *5 *6 *7 *2)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-301)))) (-1341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-5 *5 (-629 (-629 *8))) (-4 *7 (-832)) (-4 *8 (-301)) (-4 *9 (-930 *8 *6 *7)) (-4 *6 (-778)) (-5 *2 (-2 (|:| |upol| (-1150 *8)) (|:| |Lval| (-629 *8)) (|:| |Lfact| (-629 (-2 (|:| -3479 (-1150 *8)) (|:| -1406 (-552))))) (|:| |ctpol| *8))) (-5 *1 (-727 *6 *7 *8 *9)))) (-2953 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-629 *7)) (-5 *5 (-629 (-629 *8))) (-4 *7 (-832)) (-4 *8 (-301)) (-4 *6 (-778)) (-4 *9 (-930 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-629 (-2 (|:| -3479 (-1150 *9)) (|:| -1406 (-552))))))) (-5 *1 (-727 *6 *7 *8 *9)) (-5 *3 (-1150 *9)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-552)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-301)) (-4 *9 (-930 *8 *6 *7)) (-5 *2 (-2 (|:| -2291 (-1150 *9)) (|:| |polval| (-1150 *8)))) (-5 *1 (-727 *6 *7 *8 *9)) (-5 *3 (-1150 *9)) (-5 *4 (-1150 *8)))) (-1820 (*1 *2 *3 *4) (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-727 *5 *4 *6 *3)) (-4 *3 (-930 *6 *5 *4)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -3479 (-1150 *6)) (|:| -1406 (-552))))) (-4 *6 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-552)) (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) (-2009 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-930 *6 *4 *5)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-727 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-930 *6 *4 *5))))) +(-10 -7 (-15 -3343 ((-412 |#4|) |#4|)) (-15 -3343 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -2009 ((-412 |#4|) |#4|)) (-15 -3031 ((-552) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))))) (-15 -1820 ((-412 |#4|) |#4| |#2|)) (-15 -3026 ((-2 (|:| -2291 (-1150 |#4|)) (|:| |polval| (-1150 |#3|))) (-1150 |#4|) (-1150 |#3|) (-552))) (-15 -2953 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-629 (-2 (|:| -3479 (-1150 |#4|)) (|:| -1406 (-552)))))) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|)))) (-15 -1341 ((-2 (|:| |upol| (-1150 |#3|)) (|:| |Lval| (-629 |#3|)) (|:| |Lfact| (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552))))) (|:| |ctpol| |#3|)) (-1150 |#4|) (-629 |#2|) (-629 (-629 |#3|)))) (-15 -3279 (|#4| (-552) (-412 |#4|))) (-15 -2753 ((-111) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))) (-629 (-2 (|:| -3479 (-1150 |#3|)) (|:| -1406 (-552)))))) (-15 -3874 ((-3 (-629 (-1150 |#4|)) "failed") (-1150 |#4|) (-1150 |#3|) (-1150 |#3|) |#4| (-629 |#2|) (-629 (-756)) (-629 |#3|))) (-15 -1588 ((-629 (-756)) (-1150 |#4|) (-629 |#2|) (-756))) (-15 -2191 ((-1150 |#3|) (-1150 |#3|) (-552)))) +((-3454 (($ $ (-902)) 12))) +(((-728 |#1| |#2|) (-10 -8 (-15 -3454 (|#1| |#1| (-902)))) (-729 |#2|) (-169)) (T -728)) +NIL +(-10 -8 (-15 -3454 (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3422 (($ $ (-902)) 28)) (-3454 (($ $ (-902)) 33)) (-1736 (($ $ (-902)) 29)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2104 (($ $ $) 25)) (-3213 (((-844) $) 11)) (-1826 (($ $ $ $) 26)) (-2845 (($ $ $) 24)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 30)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-729 |#1|) (-137) (-169)) (T -729)) +((-3454 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-729 *3)) (-4 *3 (-169))))) +(-13 (-746) (-702 |t#1|) (-10 -8 (-15 -3454 ($ $ (-902))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-702 |#1|) . T) ((-705) . T) ((-746) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-1928 (((-1016) (-673 (-220)) (-552) (-111) (-552)) 25)) (-2742 (((-1016) (-673 (-220)) (-552) (-111) (-552)) 24))) +(((-730) (-10 -7 (-15 -2742 ((-1016) (-673 (-220)) (-552) (-111) (-552))) (-15 -1928 ((-1016) (-673 (-220)) (-552) (-111) (-552))))) (T -730)) +((-1928 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1016)) (-5 *1 (-730)))) (-2742 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1016)) (-5 *1 (-730))))) +(-10 -7 (-15 -2742 ((-1016) (-673 (-220)) (-552) (-111) (-552))) (-15 -1928 ((-1016) (-673 (-220)) (-552) (-111) (-552)))) +((-3712 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) 43)) (-1471 (((-1016) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) 39)) (-1519 (((-1016) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) 32))) +(((-731) (-10 -7 (-15 -1519 ((-1016) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1471 ((-1016) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -3712 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN))))))) (T -731)) +((-3712 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1016)) (-5 *1 (-731)))) (-1471 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1016)) (-5 *1 (-731)))) (-1519 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *2 (-1016)) (-5 *1 (-731))))) +(-10 -7 (-15 -1519 ((-1016) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1471 ((-1016) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -3712 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))))) +((-1422 (((-1016) (-552) (-552) (-673 (-220)) (-552)) 34)) (-2841 (((-1016) (-552) (-552) (-673 (-220)) (-552)) 33)) (-3459 (((-1016) (-552) (-673 (-220)) (-552)) 32)) (-1478 (((-1016) (-552) (-673 (-220)) (-552)) 31)) (-3384 (((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 30)) (-2311 (((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 29)) (-1861 (((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552)) 28)) (-1903 (((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552)) 27)) (-3015 (((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 24)) (-2456 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552)) 23)) (-3770 (((-1016) (-552) (-673 (-220)) (-552)) 22)) (-3644 (((-1016) (-552) (-673 (-220)) (-552)) 21))) +(((-732) (-10 -7 (-15 -3644 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -3770 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -2456 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3015 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1903 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1861 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2311 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3384 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1478 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -3459 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -2841 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -1422 ((-1016) (-552) (-552) (-673 (-220)) (-552))))) (T -732)) +((-1422 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-2841 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-3459 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-1478 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-3384 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-2311 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-1861 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-1903 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-3015 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-2456 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-3770 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732)))) (-3644 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-732))))) +(-10 -7 (-15 -3644 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -3770 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -2456 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3015 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1903 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1861 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2311 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3384 ((-1016) (-552) (-552) (-1136) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1478 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -3459 ((-1016) (-552) (-673 (-220)) (-552))) (-15 -2841 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -1422 ((-1016) (-552) (-552) (-673 (-220)) (-552)))) +((-2394 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3002 (((-1016) (-673 (-220)) (-673 (-220)) (-552) (-552)) 51)) (-1590 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2815 (((-1016) (-220) (-220) (-552) (-552) (-552) (-552)) 46)) (-3753 (((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 45)) (-3323 (((-1016) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 44)) (-2348 (((-1016) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 43)) (-4172 (((-1016) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 42)) (-1302 (((-1016) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) 38)) (-1410 (((-1016) (-220) (-220) (-552) (-673 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) 37)) (-2972 (((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) 33)) (-4332 (((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) 32))) +(((-733) (-10 -7 (-15 -4332 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -2972 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1410 ((-1016) (-220) (-220) (-552) (-673 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1302 ((-1016) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -4172 ((-1016) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2348 ((-1016) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3323 ((-1016) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3753 ((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2815 ((-1016) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1590 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3002 ((-1016) (-673 (-220)) (-673 (-220)) (-552) (-552))) (-15 -2394 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))))) (T -733)) +((-2394 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-3002 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-733)))) (-1590 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-2815 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-733)))) (-3753 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-3323 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-2348 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-4172 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-1302 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-1410 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-733)))) (-2972 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *2 (-1016)) (-5 *1 (-733)))) (-4332 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *2 (-1016)) (-5 *1 (-733))))) +(-10 -7 (-15 -4332 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -2972 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1410 ((-1016) (-220) (-220) (-552) (-673 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -1302 ((-1016) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220))))) (-15 -4172 ((-1016) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2348 ((-1016) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3323 ((-1016) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3753 ((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2815 ((-1016) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1590 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3002 ((-1016) (-673 (-220)) (-673 (-220)) (-552) (-552))) (-15 -2394 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-220) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))))) +((-2367 (((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3485 (((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382)) 69) (((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) 68)) (-3659 (((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) 57)) (-2448 (((-1016) (-673 (-220)) (-673 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 50)) (-2581 (((-1016) (-220) (-552) (-552) (-1136) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2999 (((-1016) (-220) (-552) (-552) (-220) (-1136) (-220) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3938 (((-1016) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 42)) (-3989 (((-1016) (-220) (-552) (-552) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-734) (-10 -7 (-15 -3989 ((-1016) (-220) (-552) (-552) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3938 ((-1016) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2999 ((-1016) (-220) (-552) (-552) (-220) (-1136) (-220) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2581 ((-1016) (-220) (-552) (-552) (-1136) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2448 ((-1016) (-673 (-220)) (-673 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3659 ((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -3485 ((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -3485 ((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -2367 ((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -734)) +((-2367 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-3485 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-382)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-3485 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1016)) (-5 *1 (-734)))) (-3659 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-2448 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1016)) (-5 *1 (-734)))) (-2581 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-552)) (-5 *5 (-1136)) (-5 *6 (-673 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-2999 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-552)) (-5 *5 (-1136)) (-5 *6 (-673 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-3938 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734)))) (-3989 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734))))) +(-10 -7 (-15 -3989 ((-1016) (-220) (-552) (-552) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3938 ((-1016) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2999 ((-1016) (-220) (-552) (-552) (-220) (-1136) (-220) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2581 ((-1016) (-220) (-552) (-552) (-1136) (-552) (-220) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2448 ((-1016) (-673 (-220)) (-673 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3659 ((-1016) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -3485 ((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -3485 ((-1016) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -2367 ((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-1520 (((-1016) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-659 (-220)) (-552)) 45)) (-3142 (((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1136) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) 41)) (-3108 (((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 23))) +(((-735) (-10 -7 (-15 -3108 ((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3142 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1136) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -1520 ((-1016) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-659 (-220)) (-552))))) (T -735)) +((-1520 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-659 (-220))) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-735)))) (-3142 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1136)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1016)) (-5 *1 (-735)))) (-3108 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-735))))) +(-10 -7 (-15 -3108 ((-1016) (-552) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3142 ((-1016) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1136) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -1520 ((-1016) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-659 (-220)) (-552)))) +((-4328 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-673 (-220)) (-220) (-220) (-552)) 35)) (-3144 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-220) (-220) (-552)) 34)) (-2363 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-673 (-220)) (-220) (-220) (-552)) 33)) (-2406 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 29)) (-3679 (((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 28)) (-3976 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552)) 27)) (-4084 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552)) 24)) (-3229 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552)) 23)) (-1434 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552)) 22)) (-2786 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552)) 21))) +(((-736) (-10 -7 (-15 -2786 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552))) (-15 -1434 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3229 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -4084 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -3976 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552))) (-15 -3679 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2406 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2363 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-673 (-220)) (-220) (-220) (-552))) (-15 -3144 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4328 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-673 (-220)) (-220) (-220) (-552))))) (T -736)) +((-4328 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-736)))) (-3144 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-736)))) (-2363 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-736)))) (-2406 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736)))) (-3679 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736)))) (-3976 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-736)))) (-4084 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736)))) (-3229 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736)))) (-1434 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736)))) (-2786 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-736))))) +(-10 -7 (-15 -2786 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552))) (-15 -1434 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3229 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -4084 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -3976 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-220) (-552))) (-15 -3679 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2406 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2363 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-673 (-220)) (-220) (-220) (-552))) (-15 -3144 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4328 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-673 (-220)) (-220) (-220) (-552)))) +((-2585 (((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552)) 45)) (-1951 (((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-552)) 44)) (-1533 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552)) 43)) (-3737 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 42)) (-3997 (((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552)) 41)) (-3491 (((-1016) (-1136) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552)) 40)) (-2197 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552) (-552) (-552) (-220) (-673 (-220)) (-552)) 39)) (-3308 (((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552))) 38)) (-3271 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552)) 35)) (-3088 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552)) 34)) (-2519 (((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552)) 33)) (-2255 (((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 32)) (-2690 (((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552)) 31)) (-3181 (((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-552)) 30)) (-3333 (((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-552) (-552) (-552)) 29)) (-4075 (((-1016) (-552) (-552) (-552) (-220) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-552)) (-552) (-552) (-552)) 28)) (-1815 (((-1016) (-552) (-673 (-220)) (-220) (-552)) 24)) (-3814 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 21))) +(((-737) (-10 -7 (-15 -3814 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1815 ((-1016) (-552) (-673 (-220)) (-220) (-552))) (-15 -4075 ((-1016) (-552) (-552) (-552) (-220) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-552)) (-552) (-552) (-552))) (-15 -3333 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3181 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -2690 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552))) (-15 -2255 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2519 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552))) (-15 -3088 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552))) (-15 -3271 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3308 ((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552)))) (-15 -2197 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552) (-552) (-552) (-220) (-673 (-220)) (-552))) (-15 -3491 ((-1016) (-1136) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552))) (-15 -3997 ((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3737 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1533 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552))) (-15 -1951 ((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2585 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552))))) (T -737)) +((-2585 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737)))) (-1951 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-1533 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3737 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3997 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3491 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-220)) (-5 *7 (-673 (-552))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-2197 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3308 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-220)) (-5 *7 (-673 (-552))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3271 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3088 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-2519 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-2255 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737)))) (-2690 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3181 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3333 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-4075 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-673 (-220))) (-5 *6 (-673 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-1815 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) (-5 *2 (-1016)) (-5 *1 (-737)))) (-3814 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-737))))) +(-10 -7 (-15 -3814 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1815 ((-1016) (-552) (-673 (-220)) (-220) (-552))) (-15 -4075 ((-1016) (-552) (-552) (-552) (-220) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-552)) (-552) (-552) (-552))) (-15 -3333 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3181 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -2690 ((-1016) (-552) (-220) (-220) (-673 (-220)) (-552) (-552) (-220) (-552))) (-15 -2255 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2519 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552))) (-15 -3088 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552))) (-15 -3271 ((-1016) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3308 ((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552)))) (-15 -2197 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552) (-552) (-552) (-220) (-673 (-220)) (-552))) (-15 -3491 ((-1016) (-1136) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552))) (-15 -3997 ((-1016) (-1136) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3737 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -1533 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552))) (-15 -1951 ((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2585 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552) (-673 (-220)) (-673 (-220)) (-552) (-552) (-552)))) +((-4299 (((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-552) (-673 (-220)) (-552)) 63)) (-2656 (((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 62)) (-3750 (((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-111) (-111) (-552) (-552) (-673 (-220)) (-673 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) 58)) (-2848 (((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-552) (-552) (-673 (-220)) (-552)) 51)) (-1311 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2360 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2468 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2195 (((-1016) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-738) (-10 -7 (-15 -2195 ((-1016) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -2468 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -2360 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -1311 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2848 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-552) (-552) (-673 (-220)) (-552))) (-15 -3750 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-111) (-111) (-552) (-552) (-673 (-220)) (-673 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -2656 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4299 ((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-552) (-673 (-220)) (-552))))) (T -738)) +((-4299 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-738)))) (-2656 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-673 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-738)))) (-3750 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-673 (-220))) (-5 *6 (-111)) (-5 *7 (-673 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-738)))) (-2848 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-111)) (-5 *2 (-1016)) (-5 *1 (-738)))) (-1311 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1016)) (-5 *1 (-738)))) (-2360 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1016)) (-5 *1 (-738)))) (-2468 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1016)) (-5 *1 (-738)))) (-2195 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-673 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-738))))) +(-10 -7 (-15 -2195 ((-1016) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -2468 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -2360 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -1311 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2848 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-552) (-552) (-673 (-220)) (-552))) (-15 -3750 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-111) (-111) (-111) (-552) (-552) (-673 (-220)) (-673 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -2656 ((-1016) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4299 ((-1016) (-552) (-552) (-552) (-220) (-673 (-220)) (-552) (-673 (-220)) (-552)))) +((-3927 (((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552)) 47)) (-3689 (((-1016) (-1136) (-1136) (-552) (-552) (-673 (-166 (-220))) (-552) (-673 (-166 (-220))) (-552) (-552) (-673 (-166 (-220))) (-552)) 46)) (-3626 (((-1016) (-552) (-552) (-552) (-673 (-166 (-220))) (-552)) 45)) (-1570 (((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 40)) (-2023 (((-1016) (-1136) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-673 (-220)) (-552)) 39)) (-3550 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-552)) 36)) (-2188 (((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552)) 35)) (-3683 (((-1016) (-552) (-552) (-552) (-552) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-220) (-220) (-552)) 34)) (-1544 (((-1016) (-552) (-552) (-552) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-111) (-220) (-111) (-673 (-552)) (-673 (-220)) (-552)) 33)) (-3564 (((-1016) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-552)) 32))) +(((-739) (-10 -7 (-15 -3564 ((-1016) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-552))) (-15 -1544 ((-1016) (-552) (-552) (-552) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-111) (-220) (-111) (-673 (-552)) (-673 (-220)) (-552))) (-15 -3683 ((-1016) (-552) (-552) (-552) (-552) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-220) (-220) (-552))) (-15 -2188 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552))) (-15 -3550 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-552))) (-15 -2023 ((-1016) (-1136) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-673 (-220)) (-552))) (-15 -1570 ((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3626 ((-1016) (-552) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -3689 ((-1016) (-1136) (-1136) (-552) (-552) (-673 (-166 (-220))) (-552) (-673 (-166 (-220))) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -3927 ((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552))))) (T -739)) +((-3927 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-3689 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-3626 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-1570 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-2023 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-3550 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-739)))) (-2188 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-739)))) (-3683 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-629 (-111))) (-5 *5 (-673 (-220))) (-5 *6 (-673 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-739)))) (-1544 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-673 (-552))) (-5 *5 (-111)) (-5 *7 (-673 (-220))) (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1016)) (-5 *1 (-739)))) (-3564 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-629 (-111))) (-5 *7 (-673 (-220))) (-5 *8 (-673 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) (-5 *2 (-1016)) (-5 *1 (-739))))) +(-10 -7 (-15 -3564 ((-1016) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-552))) (-15 -1544 ((-1016) (-552) (-552) (-552) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-673 (-552)) (-111) (-220) (-111) (-673 (-552)) (-673 (-220)) (-552))) (-15 -3683 ((-1016) (-552) (-552) (-552) (-552) (-629 (-111)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-220) (-220) (-552))) (-15 -2188 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552))) (-15 -3550 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-552))) (-15 -2023 ((-1016) (-1136) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-673 (-220)) (-552))) (-15 -1570 ((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3626 ((-1016) (-552) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -3689 ((-1016) (-1136) (-1136) (-552) (-552) (-673 (-166 (-220))) (-552) (-673 (-166 (-220))) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -3927 ((-1016) (-1136) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552)))) +((-3847 (((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552)) 65)) (-3760 (((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552)) 60)) (-3815 (((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382)) 56) (((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) 55)) (-3087 (((-1016) (-552) (-552) (-552) (-220) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552)) 37)) (-3592 (((-1016) (-552) (-552) (-220) (-220) (-552) (-552) (-673 (-220)) (-552)) 33)) (-3508 (((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552) (-552)) 30)) (-2756 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 29)) (-3558 (((-1016) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 28)) (-2324 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 27)) (-3513 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552)) 26)) (-2102 (((-1016) (-552) (-552) (-673 (-220)) (-552)) 25)) (-2535 (((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 24)) (-1707 (((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552)) 23)) (-2129 (((-1016) (-673 (-220)) (-552) (-552) (-552) (-552)) 22)) (-3256 (((-1016) (-552) (-552) (-673 (-220)) (-552)) 21))) +(((-740) (-10 -7 (-15 -3256 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -2129 ((-1016) (-673 (-220)) (-552) (-552) (-552) (-552))) (-15 -1707 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2535 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2102 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -3513 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552))) (-15 -2324 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3558 ((-1016) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2756 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3508 ((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3592 ((-1016) (-552) (-552) (-220) (-220) (-552) (-552) (-673 (-220)) (-552))) (-15 -3087 ((-1016) (-552) (-552) (-552) (-220) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3815 ((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -3815 ((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -3760 ((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3847 ((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552))))) (T -740)) +((-3847 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3760 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3815 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3815 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3087 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3592 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3508 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-2756 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3558 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-2324 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3513 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-2102 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-2535 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-1707 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740)))) (-2129 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-740)))) (-3256 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-740))))) +(-10 -7 (-15 -3256 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -2129 ((-1016) (-673 (-220)) (-552) (-552) (-552) (-552))) (-15 -1707 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2535 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2102 ((-1016) (-552) (-552) (-673 (-220)) (-552))) (-15 -3513 ((-1016) (-552) (-552) (-552) (-552) (-673 (-220)) (-552))) (-15 -2324 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3558 ((-1016) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2756 ((-1016) (-552) (-552) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3508 ((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3592 ((-1016) (-552) (-552) (-220) (-220) (-552) (-552) (-673 (-220)) (-552))) (-15 -3087 ((-1016) (-552) (-552) (-552) (-220) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3815 ((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -3815 ((-1016) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -3760 ((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -3847 ((-1016) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-673 (-166 (-220))) (-673 (-166 (-220))) (-552)))) +((-1457 (((-1016) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) 61)) (-3179 (((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552)) 57)) (-3876 (((-1016) (-552) (-673 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2121 (((-1016) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552)) 37)) (-2724 (((-1016) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-552)) 36)) (-3085 (((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552)) 33)) (-4076 (((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220))) 32)) (-1503 (((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552)) 28)) (-2729 (((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552)) 27)) (-1465 (((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552)) 26)) (-1436 (((-1016) (-552) (-673 (-166 (-220))) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-552)) 22))) +(((-741) (-10 -7 (-15 -1436 ((-1016) (-552) (-673 (-166 (-220))) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -1465 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -2729 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -1503 ((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552))) (-15 -4076 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220)))) (-15 -3085 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2724 ((-1016) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2121 ((-1016) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552))) (-15 -3876 ((-1016) (-552) (-673 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3179 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552))) (-15 -1457 ((-1016) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD))))))) (T -741)) +((-1457 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-3179 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-3876 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1016)) (-5 *1 (-741)))) (-2121 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-2724 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-3085 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-741)))) (-4076 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-1503 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-741)))) (-2729 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-741)))) (-1465 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-741)))) (-1436 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-741))))) +(-10 -7 (-15 -1436 ((-1016) (-552) (-673 (-166 (-220))) (-552) (-552) (-552) (-552) (-673 (-166 (-220))) (-552))) (-15 -1465 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -2729 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-552))) (-15 -1503 ((-1016) (-673 (-220)) (-552) (-673 (-220)) (-552) (-552) (-552))) (-15 -4076 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-552)) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220)))) (-15 -3085 ((-1016) (-552) (-552) (-673 (-220)) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2724 ((-1016) (-552) (-552) (-552) (-220) (-552) (-673 (-220)) (-673 (-220)) (-552))) (-15 -2121 ((-1016) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-552)) (-673 (-220)) (-673 (-552)) (-673 (-552)) (-673 (-220)) (-673 (-220)) (-673 (-552)) (-552))) (-15 -3876 ((-1016) (-552) (-673 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3179 ((-1016) (-552) (-673 (-220)) (-552) (-673 (-220)) (-673 (-552)) (-552) (-673 (-220)) (-552) (-552) (-552) (-552))) (-15 -1457 ((-1016) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-673 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))))) +((-1408 (((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-552) (-673 (-220))) 29)) (-1397 (((-1016) (-1136) (-552) (-552) (-673 (-220))) 28)) (-4333 (((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-220))) 27)) (-3575 (((-1016) (-552) (-552) (-552) (-673 (-220))) 21))) +(((-742) (-10 -7 (-15 -3575 ((-1016) (-552) (-552) (-552) (-673 (-220)))) (-15 -4333 ((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-220)))) (-15 -1397 ((-1016) (-1136) (-552) (-552) (-673 (-220)))) (-15 -1408 ((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-552) (-673 (-220)))))) (T -742)) +((-1408 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-742)))) (-1397 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-742)))) (-4333 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-673 (-552))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-742)))) (-3575 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) (-5 *1 (-742))))) +(-10 -7 (-15 -3575 ((-1016) (-552) (-552) (-552) (-673 (-220)))) (-15 -4333 ((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-673 (-552)) (-552) (-673 (-220)))) (-15 -1397 ((-1016) (-1136) (-552) (-552) (-673 (-220)))) (-15 -1408 ((-1016) (-1136) (-552) (-552) (-673 (-220)) (-552) (-552) (-673 (-220))))) +((-3339 (((-1016) (-220) (-220) (-220) (-220) (-552)) 62)) (-3495 (((-1016) (-220) (-220) (-220) (-552)) 61)) (-3118 (((-1016) (-220) (-220) (-220) (-552)) 60)) (-2243 (((-1016) (-220) (-220) (-552)) 59)) (-3898 (((-1016) (-220) (-552)) 58)) (-2440 (((-1016) (-220) (-552)) 57)) (-1952 (((-1016) (-220) (-552)) 56)) (-4031 (((-1016) (-220) (-552)) 55)) (-2050 (((-1016) (-220) (-552)) 54)) (-1672 (((-1016) (-220) (-552)) 53)) (-2711 (((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552)) 52)) (-4129 (((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552)) 51)) (-1492 (((-1016) (-220) (-552)) 50)) (-2273 (((-1016) (-220) (-552)) 49)) (-1923 (((-1016) (-220) (-552)) 48)) (-4258 (((-1016) (-220) (-552)) 47)) (-4262 (((-1016) (-552) (-220) (-166 (-220)) (-552) (-1136) (-552)) 46)) (-3991 (((-1016) (-1136) (-166 (-220)) (-1136) (-552)) 45)) (-3990 (((-1016) (-1136) (-166 (-220)) (-1136) (-552)) 44)) (-2342 (((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552)) 43)) (-3219 (((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552)) 42)) (-3214 (((-1016) (-220) (-552)) 39)) (-2749 (((-1016) (-220) (-552)) 38)) (-2013 (((-1016) (-220) (-552)) 37)) (-1930 (((-1016) (-220) (-552)) 36)) (-1831 (((-1016) (-220) (-552)) 35)) (-2676 (((-1016) (-220) (-552)) 34)) (-2297 (((-1016) (-220) (-552)) 33)) (-3651 (((-1016) (-220) (-552)) 32)) (-3176 (((-1016) (-220) (-552)) 31)) (-1358 (((-1016) (-220) (-552)) 30)) (-2486 (((-1016) (-220) (-220) (-220) (-552)) 29)) (-3982 (((-1016) (-220) (-552)) 28)) (-2391 (((-1016) (-220) (-552)) 27)) (-2895 (((-1016) (-220) (-552)) 26)) (-3694 (((-1016) (-220) (-552)) 25)) (-2653 (((-1016) (-220) (-552)) 24)) (-2547 (((-1016) (-166 (-220)) (-552)) 21))) +(((-743) (-10 -7 (-15 -2547 ((-1016) (-166 (-220)) (-552))) (-15 -2653 ((-1016) (-220) (-552))) (-15 -3694 ((-1016) (-220) (-552))) (-15 -2895 ((-1016) (-220) (-552))) (-15 -2391 ((-1016) (-220) (-552))) (-15 -3982 ((-1016) (-220) (-552))) (-15 -2486 ((-1016) (-220) (-220) (-220) (-552))) (-15 -1358 ((-1016) (-220) (-552))) (-15 -3176 ((-1016) (-220) (-552))) (-15 -3651 ((-1016) (-220) (-552))) (-15 -2297 ((-1016) (-220) (-552))) (-15 -2676 ((-1016) (-220) (-552))) (-15 -1831 ((-1016) (-220) (-552))) (-15 -1930 ((-1016) (-220) (-552))) (-15 -2013 ((-1016) (-220) (-552))) (-15 -2749 ((-1016) (-220) (-552))) (-15 -3214 ((-1016) (-220) (-552))) (-15 -3219 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -2342 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -3990 ((-1016) (-1136) (-166 (-220)) (-1136) (-552))) (-15 -3991 ((-1016) (-1136) (-166 (-220)) (-1136) (-552))) (-15 -4262 ((-1016) (-552) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -4258 ((-1016) (-220) (-552))) (-15 -1923 ((-1016) (-220) (-552))) (-15 -2273 ((-1016) (-220) (-552))) (-15 -1492 ((-1016) (-220) (-552))) (-15 -4129 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -2711 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -1672 ((-1016) (-220) (-552))) (-15 -2050 ((-1016) (-220) (-552))) (-15 -4031 ((-1016) (-220) (-552))) (-15 -1952 ((-1016) (-220) (-552))) (-15 -2440 ((-1016) (-220) (-552))) (-15 -3898 ((-1016) (-220) (-552))) (-15 -2243 ((-1016) (-220) (-220) (-552))) (-15 -3118 ((-1016) (-220) (-220) (-220) (-552))) (-15 -3495 ((-1016) (-220) (-220) (-220) (-552))) (-15 -3339 ((-1016) (-220) (-220) (-220) (-220) (-552))))) (T -743)) +((-3339 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3495 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3118 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2243 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2711 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-4129 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-4262 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1136)) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3991 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1136)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3990 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1136)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2342 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3219 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2486 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743)))) (-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(-10 -7 (-15 -2547 ((-1016) (-166 (-220)) (-552))) (-15 -2653 ((-1016) (-220) (-552))) (-15 -3694 ((-1016) (-220) (-552))) (-15 -2895 ((-1016) (-220) (-552))) (-15 -2391 ((-1016) (-220) (-552))) (-15 -3982 ((-1016) (-220) (-552))) (-15 -2486 ((-1016) (-220) (-220) (-220) (-552))) (-15 -1358 ((-1016) (-220) (-552))) (-15 -3176 ((-1016) (-220) (-552))) (-15 -3651 ((-1016) (-220) (-552))) (-15 -2297 ((-1016) (-220) (-552))) (-15 -2676 ((-1016) (-220) (-552))) (-15 -1831 ((-1016) (-220) (-552))) (-15 -1930 ((-1016) (-220) (-552))) (-15 -2013 ((-1016) (-220) (-552))) (-15 -2749 ((-1016) (-220) (-552))) (-15 -3214 ((-1016) (-220) (-552))) (-15 -3219 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -2342 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -3990 ((-1016) (-1136) (-166 (-220)) (-1136) (-552))) (-15 -3991 ((-1016) (-1136) (-166 (-220)) (-1136) (-552))) (-15 -4262 ((-1016) (-552) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -4258 ((-1016) (-220) (-552))) (-15 -1923 ((-1016) (-220) (-552))) (-15 -2273 ((-1016) (-220) (-552))) (-15 -1492 ((-1016) (-220) (-552))) (-15 -4129 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -2711 ((-1016) (-220) (-166 (-220)) (-552) (-1136) (-552))) (-15 -1672 ((-1016) (-220) (-552))) (-15 -2050 ((-1016) (-220) (-552))) (-15 -4031 ((-1016) (-220) (-552))) (-15 -1952 ((-1016) (-220) (-552))) (-15 -2440 ((-1016) (-220) (-552))) (-15 -3898 ((-1016) (-220) (-552))) (-15 -2243 ((-1016) (-220) (-220) (-552))) (-15 -3118 ((-1016) (-220) (-220) (-220) (-552))) (-15 -3495 ((-1016) (-220) (-220) (-220) (-552))) (-15 -3339 ((-1016) (-220) (-220) (-220) (-220) (-552)))) +((-4207 (((-1242)) 18)) (-1449 (((-1136)) 22)) (-3114 (((-1136)) 21)) (-1585 (((-1082) (-1154) (-673 (-552))) 37) (((-1082) (-1154) (-673 (-220))) 32)) (-1954 (((-111)) 16)) (-3275 (((-1136) (-1136)) 25))) +(((-744) (-10 -7 (-15 -3114 ((-1136))) (-15 -1449 ((-1136))) (-15 -3275 ((-1136) (-1136))) (-15 -1585 ((-1082) (-1154) (-673 (-220)))) (-15 -1585 ((-1082) (-1154) (-673 (-552)))) (-15 -1954 ((-111))) (-15 -4207 ((-1242))))) (T -744)) +((-4207 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-744)))) (-1954 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-744)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-673 (-552))) (-5 *2 (-1082)) (-5 *1 (-744)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-673 (-220))) (-5 *2 (-1082)) (-5 *1 (-744)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744)))) (-1449 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744)))) (-3114 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744))))) +(-10 -7 (-15 -3114 ((-1136))) (-15 -1449 ((-1136))) (-15 -3275 ((-1136) (-1136))) (-15 -1585 ((-1082) (-1154) (-673 (-220)))) (-15 -1585 ((-1082) (-1154) (-673 (-552)))) (-15 -1954 ((-111))) (-15 -4207 ((-1242)))) +((-2104 (($ $ $) 10)) (-1826 (($ $ $ $) 9)) (-2845 (($ $ $) 12))) +(((-745 |#1|) (-10 -8 (-15 -2845 (|#1| |#1| |#1|)) (-15 -2104 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1| |#1|))) (-746)) (T -745)) +NIL +(-10 -8 (-15 -2845 (|#1| |#1| |#1|)) (-15 -2104 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3422 (($ $ (-902)) 28)) (-1736 (($ $ (-902)) 29)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2104 (($ $ $) 25)) (-3213 (((-844) $) 11)) (-1826 (($ $ $ $) 26)) (-2845 (($ $ $) 24)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 30)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 27))) (((-746) (-137)) (T -746)) -((-3995 (*1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-746))))) -(-13 (-744) (-705) (-10 -8 (-15 -3995 ((-754))) (-15 -1477 ($ (-552))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-703) . T) ((-705) . T) ((-744) . T) ((-1076) . T)) -((-3625 (((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|) 33)) (-2966 (((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|) 23)) (-2410 (((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152)) 20) (((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552))))) 19))) -(((-747 |#1|) (-10 -7 (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))))) (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152))) (-15 -2966 ((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|)) (-15 -3625 ((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|))) (-13 (-357) (-828))) (T -747)) -((-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 *4))))))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828))))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *4 (-1152)) (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *5)) (-4 *5 (-13 (-357) (-828))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) -(-10 -7 (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))))) (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152))) (-15 -2966 ((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|)) (-15 -3625 ((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|))) -((-2771 (((-171 (-552)) |#1|) 25))) -(((-748 |#1|) (-10 -7 (-15 -2771 ((-171 (-552)) |#1|))) (-398)) (T -748)) -((-2771 (*1 *2 *3) (-12 (-5 *2 (-171 (-552))) (-5 *1 (-748 *3)) (-4 *3 (-398))))) -(-10 -7 (-15 -2771 ((-171 (-552)) |#1|))) -((-2753 ((|#1| |#1| |#1|) 24)) (-4009 ((|#1| |#1| |#1|) 23)) (-2016 ((|#1| |#1| |#1|) 32)) (-2812 ((|#1| |#1| |#1|) 28)) (-4266 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4273 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 22))) -(((-749 |#1| |#2|) (-10 -7 (-15 -4273 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2016 (|#1| |#1| |#1|))) (-691 |#2|) (-357)) (T -749)) -((-2016 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-2812 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4266 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-2753 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4009 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4273 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-749 *3 *4)) (-4 *3 (-691 *4))))) -(-10 -7 (-15 -4273 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2016 (|#1| |#1| |#1|))) -((-1525 (((-1096) $ (-127)) 12)) (-3928 (((-1096) $ (-128)) 11)) (-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-3664 (((-111) $) 14)) (-2424 (((-3 $ "failed") |#1| (-933)) 15)) (-2219 (($ $) 6))) -(((-750 |#1|) (-137) (-1076)) (T -750)) -((-2424 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-933)) (-4 *1 (-750 *2)) (-4 *2 (-1076)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-750 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(-13 (-564) (-10 -8 (-15 -2424 ((-3 $ "failed") |t#1| (-933))) (-15 -3664 ((-111) $)))) -(((-170) . T) ((-519) . T) ((-564) . T) ((-840) . T)) -((-2993 (((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)) 59)) (-3402 (((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552))))) 57)) (-1637 (((-552)) 71))) -(((-751 |#1| |#2|) (-10 -7 (-15 -1637 ((-552))) (-15 -3402 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))))) (-15 -2993 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)))) (-1211 (-552)) (-403 (-552) |#1|)) (T -751)) -((-2993 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-751 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3402 (*1 *2) (-12 (-4 *3 (-1211 (-552))) (-5 *2 (-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552))))) (-5 *1 (-751 *3 *4)) (-4 *4 (-403 (-552) *3)))) (-1637 (*1 *2) (-12 (-4 *3 (-1211 *2)) (-5 *2 (-552)) (-5 *1 (-751 *3 *4)) (-4 *4 (-403 *2 *3))))) -(-10 -7 (-15 -1637 ((-552))) (-15 -3402 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))))) (-15 -2993 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)))) -((-1465 (((-111) $ $) NIL)) (-1703 (((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) 18)) (-2292 (((-111) $ $) NIL))) -(((-752) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $))))) (T -752)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-752)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-752))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $)))) -((-1662 (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))) 18) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152))) 17)) (-1696 (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))) 20) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152))) 19))) -(((-753 |#1|) (-10 -7 (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))))) (-544)) (T -753)) -((-1696 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5))))) -(-10 -7 (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) 6)) (-4136 (((-3 $ "failed") $ $) 9)) (-1452 (($ $ (-552)) 7)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1323 (($ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ $ $) NIL))) -(((-754) (-13 (-776) (-709) (-10 -8 (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1452 ($ $ (-552))) (-15 -1279 ($ $)) (-6 (-4368 "*"))))) (T -754)) -((-2789 (*1 *1 *1 *1) (-5 *1 (-754))) (-2813 (*1 *1 *1 *1) (-5 *1 (-754))) (-1323 (*1 *1 *1 *1) (-5 *1 (-754))) (-3963 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2404 (-754)) (|:| -3401 (-754)))) (-5 *1 (-754)))) (-2761 (*1 *1 *1 *1) (|partial| -5 *1 (-754))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-754)))) (-1279 (*1 *1 *1) (-5 *1 (-754)))) -(-13 (-776) (-709) (-10 -8 (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1452 ($ $ (-552))) (-15 -1279 ($ $)) (-6 (-4368 "*")))) -((-1696 (((-3 |#2| "failed") |#2| |#2| (-113) (-1152)) 35))) -(((-755 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 |#2| "failed") |#2| |#2| (-113) (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -755)) -((-1696 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-755 *5 *2)) (-4 *2 (-13 (-29 *5) (-1174) (-938)))))) -(-10 -7 (-15 -1696 ((-3 |#2| "failed") |#2| |#2| (-113) (-1152)))) -((-1477 (((-757) |#1|) 8))) -(((-756 |#1|) (-10 -7 (-15 -1477 ((-757) |#1|))) (-1189)) (T -756)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-756 *3)) (-4 *3 (-1189))))) -(-10 -7 (-15 -1477 ((-757) |#1|))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 9))) -(((-757) (-1076)) (T -757)) -NIL -(-1076) -((-2349 ((|#2| |#4|) 35))) -(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2349 (|#2| |#4|))) (-445) (-1211 |#1|) (-707 |#1| |#2|) (-1211 |#3|)) (T -758)) -((-2349 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-707 *4 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-758 *4 *2 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -2349 (|#2| |#4|))) -((-2040 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3334 (((-1240) (-1134) (-1134) |#4| |#5|) 33)) (-2436 ((|#4| |#4| |#5|) 73)) (-1319 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 77)) (-2092 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 16))) -(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2040 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2436 (|#4| |#4| |#5|)) (-15 -1319 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3334 ((-1240) (-1134) (-1134) |#4| |#5|)) (-15 -2092 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -759)) -((-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3334 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1134)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *4 (-1042 *6 *7 *8)) (-5 *2 (-1240)) (-5 *1 (-759 *6 *7 *8 *4 *5)) (-4 *5 (-1048 *6 *7 *8 *4)))) (-1319 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2436 (*1 *2 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *2 (-1042 *4 *5 *6)) (-5 *1 (-759 *4 *5 *6 *2 *3)) (-4 *3 (-1048 *4 *5 *6 *2)))) (-2040 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(-10 -7 (-15 -2040 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2436 (|#4| |#4| |#5|)) (-15 -1319 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3334 ((-1240) (-1134) (-1134) |#4| |#5|)) (-15 -2092 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|))) -((-4039 (((-3 (-1148 (-1148 |#1|)) "failed") |#4|) 43)) (-2239 (((-627 |#4|) |#4|) 15)) (-3406 ((|#4| |#4|) 11))) -(((-760 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2239 ((-627 |#4|) |#4|)) (-15 -4039 ((-3 (-1148 (-1148 |#1|)) "failed") |#4|)) (-15 -3406 (|#4| |#4|))) (-343) (-323 |#1|) (-1211 |#2|) (-1211 |#3|) (-900)) (T -760)) -((-3406 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1211 *4)) (-5 *1 (-760 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-900)))) (-4039 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-900)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-627 *3)) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-900))))) -(-10 -7 (-15 -2239 ((-627 |#4|) |#4|)) (-15 -4039 ((-3 (-1148 (-1148 |#1|)) "failed") |#4|)) (-15 -3406 (|#4| |#4|))) -((-3916 (((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|)) 54)) (-2647 (((-627 (-754)) |#1|) 13))) -(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3916 ((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|))) (-15 -2647 ((-627 (-754)) |#1|))) (-1211 |#4|) (-776) (-830) (-301) (-928 |#4| |#2| |#3|)) (T -761)) -((-2647 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-627 (-754))) (-5 *1 (-761 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *6)) (-4 *7 (-928 *6 *4 *5)))) (-3916 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1211 *9)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-301)) (-4 *10 (-928 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-627 (-1148 *10))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *10))))) (|:| |nfacts| (-627 *6)) (|:| |nlead| (-627 *10)))) (-5 *1 (-761 *6 *7 *8 *9 *10)) (-5 *3 (-1148 *10)) (-5 *4 (-627 *6)) (-5 *5 (-627 *10))))) -(-10 -7 (-15 -3916 ((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|))) (-15 -2647 ((-627 (-754)) |#1|))) -((-1774 (((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|) 31)) (-4113 (((-627 |#1|) (-671 (-401 (-552))) |#1|) 21)) (-2410 (((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152)) 18) (((-931 (-401 (-552))) (-671 (-401 (-552)))) 17))) -(((-762 |#1|) (-10 -7 (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))))) (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152))) (-15 -4113 ((-627 |#1|) (-671 (-401 (-552))) |#1|)) (-15 -1774 ((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|))) (-13 (-357) (-828))) (T -762)) -((-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 (-2 (|:| |outval| *4) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 *4)))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *4 (-1152)) (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *5)) (-4 *5 (-13 (-357) (-828))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828)))))) -(-10 -7 (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))))) (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152))) (-15 -4113 ((-627 |#1|) (-671 (-401 (-552))) |#1|)) (-15 -1774 ((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 34)) (-1853 (((-627 |#2|) $) NIL)) (-1694 (((-1148 $) $ |#2|) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#2|)) NIL)) (-1700 (($ $) 28)) (-4292 (((-111) $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) 93 (|has| |#1| (-544)))) (-4311 (((-627 $) $ $) 106 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (((-3 $ "failed") (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (((-3 $ "failed") (-931 |#1|)) NIL (-1559 (-12 (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-971 (-552))))))) (((-3 (-1101 |#1| |#2|) "failed") $) 18)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#2| $) NIL) (($ (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (($ (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (($ (-931 |#1|)) NIL (-1559 (-12 (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-971 (-552))))))) (((-1101 |#1| |#2|) $) NIL)) (-3116 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-544)))) (-2014 (($ $) NIL) (($ $ |#2|) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-4104 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2870 (((-111) $) NIL)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 70)) (-2914 (($ $) 119 (|has| |#1| (-445)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-1483 (($ $) NIL (|has| |#1| (-544)))) (-3145 (($ $) NIL (|has| |#1| (-544)))) (-2612 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4284 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2061 (($ $ |#1| (-523 |#2|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3850 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-2469 (($ $ $ $ $) 90 (|has| |#1| (-544)))) (-4147 ((|#2| $) 19)) (-1842 (($ (-1148 |#1|) |#2|) NIL) (($ (-1148 $) |#2|) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-754)) 36) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-1355 (($ $ $) 60)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-1283 (((-111) $) NIL)) (-3465 (((-523 |#2|) $) NIL) (((-754) $ |#2|) NIL) (((-627 (-754)) $ (-627 |#2|)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1526 (((-754) $) 20)) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2685 (((-3 |#2| "failed") $) NIL)) (-4313 (($ $) NIL (|has| |#1| (-445)))) (-3535 (($ $) NIL (|has| |#1| (-445)))) (-2314 (((-627 $) $) NIL)) (-3346 (($ $) 37)) (-3228 (($ $) NIL (|has| |#1| (-445)))) (-2075 (((-627 $) $) 41)) (-3674 (($ $) 39)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 82)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 67) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) NIL) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#2|) NIL)) (-2709 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3015 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1595 (((-1134) $) NIL)) (-4318 (($ $ $) 108 (|has| |#1| (-544)))) (-1639 (((-627 $) $) 30)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-754))) "failed") $) NIL)) (-2481 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-3921 (($ $ $) NIL)) (-3002 (($ $) 21)) (-2654 (((-111) $ $) NIL)) (-2163 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-4116 (($ $ $) NIL)) (-3134 (($ $) 23)) (-1498 (((-1096) $) NIL)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-544)))) (-1960 (((-111) $) 52)) (-1970 ((|#1| $) 55)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 ((|#1| |#1| $) 116 (|has| |#1| (-445))) (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3094 (($ $ |#1|) 112 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2899 (($ $ |#1|) 111 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-627 |#2|) (-627 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-627 |#2|) (-627 $)) NIL)) (-1637 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) NIL) (((-754) $ |#2|) 43) (((-627 (-754)) $ (-627 |#2|)) NIL)) (-1478 (($ $) NIL)) (-3667 (($ $) 33)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) (($ (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (($ (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (($ (-931 |#1|)) NIL (|has| |#2| (-600 (-1152)))) (((-1134) $) NIL (-12 (|has| |#1| (-1017 (-552))) (|has| |#2| (-600 (-1152))))) (((-931 |#1|) $) NIL (|has| |#2| (-600 (-1152))))) (-3495 ((|#1| $) 115 (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-931 |#1|) $) NIL (|has| |#2| (-600 (-1152)))) (((-1101 |#1| |#2|) $) 15) (($ (-1101 |#1| |#2|)) 16) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-754)) 44) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 13 T CONST)) (-1598 (((-3 (-111) "failed") $ $) NIL)) (-1933 (($) 35 T CONST)) (-4085 (($ $ $ $ (-754)) 88 (|has| |#1| (-544)))) (-3867 (($ $ $ (-754)) 87 (|has| |#1| (-544)))) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 54)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 64)) (-2384 (($ $ $) 74)) (** (($ $ (-900)) NIL) (($ $ (-754)) 61)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 59) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-763 |#1| |#2|) (-13 (-1042 |#1| (-523 |#2|) |#2|) (-599 (-1101 |#1| |#2|)) (-1017 (-1101 |#1| |#2|))) (-1028) (-830)) (T -763)) -NIL -(-13 (-1042 |#1| (-523 |#2|) |#2|) (-599 (-1101 |#1| |#2|)) (-1017 (-1101 |#1| |#2|))) -((-3516 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13))) -(((-764 |#1| |#2|) (-10 -7 (-15 -3516 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)))) (-1028) (-1028)) (T -764)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))) -(-10 -7 (-15 -3516 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 12)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3039 (((-627 $) $ $) 39 (|has| |#1| (-544)))) (-1340 (($ $ $) 35 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL) (((-3 (-1148 |#1|) "failed") $) 10)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL) (((-1148 |#1|) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) 71 (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) 70 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1355 (($ $ $) 20)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $) 26)) (-3513 (($ $ $) 29)) (-1713 (($ $ $) 32)) (-2961 (((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 31)) (-1595 (((-1134) $) NIL)) (-4318 (($ $ $) 41 (|has| |#1| (-544)))) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-544)))) (-3490 (((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-544)))) (-2244 (((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-544)))) (-1960 (((-111) $) 13)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1839 (($ $ (-754) |#1| $) 19)) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-544)))) (-4179 (((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1058)) NIL) (((-1148 |#1|) $) 7) (($ (-1148 |#1|)) 8) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 21 T CONST)) (-1933 (($) 24 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 28) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-765 |#1|) (-13 (-1211 |#1|) (-599 (-1148 |#1|)) (-1017 (-1148 |#1|)) (-10 -8 (-15 -1839 ($ $ (-754) |#1| $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $)) (-15 -3513 ($ $ $)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1713 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3039 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -4179 ((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2244 ((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $)) (-15 -3490 ((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1028)) (T -765)) -((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-765 *3)) (|:| |polden| *3) (|:| -3229 (-754)))) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-3513 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-2961 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3069 *3) (|:| |gap| (-754)) (|:| -2404 (-765 *3)) (|:| -3401 (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-1713 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-3039 (*1 *2 *1 *1) (-12 (-5 *2 (-627 (-765 *3))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-4318 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-544)) (-4 *2 (-1028)))) (-1303 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2692 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2902 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-4179 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-3490 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) -(-13 (-1211 |#1|) (-599 (-1148 |#1|)) (-1017 (-1148 |#1|)) (-10 -8 (-15 -1839 ($ $ (-754) |#1| $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $)) (-15 -3513 ($ $ $)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1713 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3039 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -4179 ((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2244 ((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $)) (-15 -3490 ((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1705 ((|#1| (-754) |#1|) 32 (|has| |#1| (-38 (-401 (-552)))))) (-3224 ((|#1| (-754) |#1|) 22)) (-3186 ((|#1| (-754) |#1|) 34 (|has| |#1| (-38 (-401 (-552))))))) -(((-766 |#1|) (-10 -7 (-15 -3224 (|#1| (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -3186 (|#1| (-754) |#1|)) (-15 -1705 (|#1| (-754) |#1|))) |%noBranch|)) (-169)) (T -766)) -((-1705 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3186 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3224 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -3224 (|#1| (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -3186 (|#1| (-754) |#1|)) (-15 -1705 (|#1| (-754) |#1|))) |%noBranch|)) -((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-767 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -767)) -NIL -(-13 (-1048 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) -((-1489 (((-3 (-373) "failed") (-310 |#1|) (-900)) 62 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-373) "failed") (-310 |#1|)) 54 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-373) "failed") (-401 (-931 |#1|)) (-900)) 41 (|has| |#1| (-544))) (((-3 (-373) "failed") (-401 (-931 |#1|))) 40 (|has| |#1| (-544))) (((-3 (-373) "failed") (-931 |#1|) (-900)) 31 (|has| |#1| (-1028))) (((-3 (-373) "failed") (-931 |#1|)) 30 (|has| |#1| (-1028)))) (-3735 (((-373) (-310 |#1|) (-900)) 99 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-373) (-310 |#1|)) 94 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-373) (-401 (-931 |#1|)) (-900)) 91 (|has| |#1| (-544))) (((-373) (-401 (-931 |#1|))) 90 (|has| |#1| (-544))) (((-373) (-931 |#1|) (-900)) 86 (|has| |#1| (-1028))) (((-373) (-931 |#1|)) 85 (|has| |#1| (-1028))) (((-373) |#1| (-900)) 76) (((-373) |#1|) 22)) (-3366 (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)) 71 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|))) 70 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 |#1|) (-900)) 63 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 |#1|)) 61 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900)) 46 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|)))) 45 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900)) 39 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 |#1|))) 38 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)) 28 (|has| |#1| (-1028))) (((-3 (-166 (-373)) "failed") (-931 |#1|)) 26 (|has| |#1| (-1028))) (((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)) 18 (|has| |#1| (-169))) (((-3 (-166 (-373)) "failed") (-931 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-1659 (((-166 (-373)) (-310 (-166 |#1|)) (-900)) 102 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 (-166 |#1|))) 101 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 |#1|) (-900)) 100 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 |#1|)) 98 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900)) 93 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 (-166 |#1|)))) 92 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 |#1|)) (-900)) 89 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 |#1|))) 88 (|has| |#1| (-544))) (((-166 (-373)) (-931 |#1|) (-900)) 84 (|has| |#1| (-1028))) (((-166 (-373)) (-931 |#1|)) 83 (|has| |#1| (-1028))) (((-166 (-373)) (-931 (-166 |#1|)) (-900)) 78 (|has| |#1| (-169))) (((-166 (-373)) (-931 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|) (-900)) 80 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-373)) |#1| (-900)) 27) (((-166 (-373)) |#1|) 25))) -(((-768 |#1|) (-10 -7 (-15 -3735 ((-373) |#1|)) (-15 -3735 ((-373) |#1| (-900))) (-15 -1659 ((-166 (-373)) |#1|)) (-15 -1659 ((-166 (-373)) |#1| (-900))) (IF (|has| |#1| (-169)) (PROGN (-15 -1659 ((-166 (-373)) (-166 |#1|))) (-15 -1659 ((-166 (-373)) (-166 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -3735 ((-373) (-931 |#1|))) (-15 -3735 ((-373) (-931 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 |#1|))) (-15 -1659 ((-166 (-373)) (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3735 ((-373) (-401 (-931 |#1|)))) (-15 -3735 ((-373) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -3735 ((-373) (-310 |#1|))) (-15 -3735 ((-373) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 |#1|))) (-15 -1659 ((-166 (-373)) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-931 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-931 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)))) (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-310 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|)) (-600 (-373))) (T -768)) -((-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) (-1659 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2))))) -(-10 -7 (-15 -3735 ((-373) |#1|)) (-15 -3735 ((-373) |#1| (-900))) (-15 -1659 ((-166 (-373)) |#1|)) (-15 -1659 ((-166 (-373)) |#1| (-900))) (IF (|has| |#1| (-169)) (PROGN (-15 -1659 ((-166 (-373)) (-166 |#1|))) (-15 -1659 ((-166 (-373)) (-166 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -3735 ((-373) (-931 |#1|))) (-15 -3735 ((-373) (-931 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 |#1|))) (-15 -1659 ((-166 (-373)) (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3735 ((-373) (-401 (-931 |#1|)))) (-15 -3735 ((-373) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -3735 ((-373) (-310 |#1|))) (-15 -3735 ((-373) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 |#1|))) (-15 -1659 ((-166 (-373)) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-931 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-931 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)))) (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-310 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|)) -((-1603 (((-900) (-1134)) 65)) (-2341 (((-3 (-373) "failed") (-1134)) 33)) (-1625 (((-373) (-1134)) 31)) (-3423 (((-900) (-1134)) 54)) (-2044 (((-1134) (-900)) 55)) (-3681 (((-1134) (-900)) 53))) -(((-769) (-10 -7 (-15 -3681 ((-1134) (-900))) (-15 -3423 ((-900) (-1134))) (-15 -2044 ((-1134) (-900))) (-15 -1603 ((-900) (-1134))) (-15 -1625 ((-373) (-1134))) (-15 -2341 ((-3 (-373) "failed") (-1134))))) (T -769)) -((-2341 (*1 *2 *3) (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) -(-10 -7 (-15 -3681 ((-1134) (-900))) (-15 -3423 ((-900) (-1134))) (-15 -2044 ((-1134) (-900))) (-15 -1603 ((-900) (-1134))) (-15 -1625 ((-373) (-1134))) (-15 -2341 ((-3 (-373) "failed") (-1134)))) -((-1465 (((-111) $ $) 7)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 15) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 13)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-770) (-137)) (T -770)) -((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-770)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014)))))) (-3198 (*1 *2 *3 *2) (-12 (-4 *1 (-770)) (-5 *2 (-1014)) (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-770)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014)))))) (-3198 (*1 *2 *3 *2) (-12 (-4 *1 (-770)) (-5 *2 (-1014)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) -(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3198 ((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3198 ((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3379 (((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373))) 44) (((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 43)) (-1807 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 50)) (-3503 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 41)) (-1769 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373))) 52) (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 51))) -(((-771) (-10 -7 (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -3503 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -1807 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))))) (T -771)) -((-1807 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3379 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3379 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3503 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-1769 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-1769 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771))))) -(-10 -7 (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -3503 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -1807 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))))) -((-1358 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 53)) (-2737 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 31)) (-2864 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 52)) (-3102 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 29)) (-3139 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 51)) (-1399 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 19)) (-1604 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 32)) (-3196 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 30)) (-3524 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 28))) -(((-772) (-10 -7 (-15 -3524 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3196 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1604 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1399 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3102 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2737 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3139 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2864 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -1358 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))))) (T -772)) -((-1358 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3139 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-2737 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3102 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-1399 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-1604 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3196 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3524 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552))))) -(-10 -7 (-15 -3524 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3196 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1604 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1399 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3102 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2737 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3139 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2864 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -1358 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)))) -((-2366 (((-1184 |#1|) |#1| (-220) (-552)) 46))) -(((-773 |#1|) (-10 -7 (-15 -2366 ((-1184 |#1|) |#1| (-220) (-552)))) (-953)) (T -773)) -((-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1184 *3)) (-5 *1 (-773 *3)) (-4 *3 (-953))))) -(-10 -7 (-15 -2366 ((-1184 |#1|) |#1| (-220) (-552)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2396 (($ $ $) 28) (($ $) 27)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25) (($ (-552) $) 29))) -(((-774) (-137)) (T -774)) -NIL -(-13 (-778) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) -(((-775) (-137)) (T -775)) -NIL -(-13 (-777) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-777) . T) ((-830) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-2796 (($ $ $) 27)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) +((-1826 (*1 *1 *1 *1 *1) (-4 *1 (-746))) (-2104 (*1 *1 *1 *1) (-4 *1 (-746))) (-2845 (*1 *1 *1 *1) (-4 *1 (-746)))) +(-13 (-21) (-705) (-10 -8 (-15 -1826 ($ $ $ $)) (-15 -2104 ($ $ $)) (-15 -2845 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-705) . T) ((-1078) . T)) +((-3213 (((-844) $) NIL) (($ (-552)) 10))) +(((-747 |#1|) (-10 -8 (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-748)) (T -747)) +NIL +(-10 -8 (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2583 (((-3 $ "failed") $) 40)) (-3422 (($ $ (-902)) 28) (($ $ (-756)) 35)) (-1293 (((-3 $ "failed") $) 38)) (-4065 (((-111) $) 34)) (-4152 (((-3 $ "failed") $) 39)) (-1736 (($ $ (-902)) 29) (($ $ (-756)) 36)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2104 (($ $ $) 25)) (-3213 (((-844) $) 11) (($ (-552)) 31)) (-2014 (((-756)) 32)) (-1826 (($ $ $ $) 26)) (-2845 (($ $ $) 24)) (-3297 (($) 18 T CONST)) (-3309 (($) 33 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 30) (($ $ (-756)) 37)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 27))) +(((-748) (-137)) (T -748)) +((-2014 (*1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-756)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-748))))) +(-13 (-746) (-707) (-10 -8 (-15 -2014 ((-756))) (-15 -3213 ($ (-552))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-705) . T) ((-707) . T) ((-746) . T) ((-1078) . T)) +((-2620 (((-629 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 (-166 |#1|)))))) (-673 (-166 (-401 (-552)))) |#1|) 33)) (-4271 (((-629 (-166 |#1|)) (-673 (-166 (-401 (-552)))) |#1|) 23)) (-3767 (((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552)))) (-1154)) 20) (((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552))))) 19))) +(((-749 |#1|) (-10 -7 (-15 -3767 ((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552)))))) (-15 -3767 ((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552)))) (-1154))) (-15 -4271 ((-629 (-166 |#1|)) (-673 (-166 (-401 (-552)))) |#1|)) (-15 -2620 ((-629 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 (-166 |#1|)))))) (-673 (-166 (-401 (-552)))) |#1|))) (-13 (-357) (-830))) (T -749)) +((-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *2 (-629 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 (-166 *4))))))) (-5 *1 (-749 *4)) (-4 *4 (-13 (-357) (-830))))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *2 (-629 (-166 *4))) (-5 *1 (-749 *4)) (-4 *4 (-13 (-357) (-830))))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *4 (-1154)) (-5 *2 (-933 (-166 (-401 (-552))))) (-5 *1 (-749 *5)) (-4 *5 (-13 (-357) (-830))))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *2 (-933 (-166 (-401 (-552))))) (-5 *1 (-749 *4)) (-4 *4 (-13 (-357) (-830)))))) +(-10 -7 (-15 -3767 ((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552)))))) (-15 -3767 ((-933 (-166 (-401 (-552)))) (-673 (-166 (-401 (-552)))) (-1154))) (-15 -4271 ((-629 (-166 |#1|)) (-673 (-166 (-401 (-552)))) |#1|)) (-15 -2620 ((-629 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 (-166 |#1|)))))) (-673 (-166 (-401 (-552)))) |#1|))) +((-3110 (((-171 (-552)) |#1|) 25))) +(((-750 |#1|) (-10 -7 (-15 -3110 ((-171 (-552)) |#1|))) (-398)) (T -750)) +((-3110 (*1 *2 *3) (-12 (-5 *2 (-171 (-552))) (-5 *1 (-750 *3)) (-4 *3 (-398))))) +(-10 -7 (-15 -3110 ((-171 (-552)) |#1|))) +((-2945 ((|#1| |#1| |#1|) 24)) (-4072 ((|#1| |#1| |#1|) 23)) (-4149 ((|#1| |#1| |#1|) 32)) (-2153 ((|#1| |#1| |#1|) 28)) (-1547 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1602 (((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|) 22))) +(((-751 |#1| |#2|) (-10 -7 (-15 -1602 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1547 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|))) (-693 |#2|) (-357)) (T -751)) +((-4149 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) (-2153 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) (-1547 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) (-4072 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) (-1602 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-751 *3 *4)) (-4 *3 (-693 *4))))) +(-10 -7 (-15 -1602 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1547 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|))) +((-3268 (((-1098) $ (-127)) 12)) (-2586 (((-1098) $ (-128)) 11)) (-2537 (((-1098) $ (-127)) 7)) (-3042 (((-1098) $) 8)) (-1729 (((-111) $) 14)) (-3904 (((-3 $ "failed") |#1| (-935)) 15)) (-2469 (($ $) 6))) +(((-752 |#1|) (-137) (-1078)) (T -752)) +((-3904 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-935)) (-4 *1 (-752 *2)) (-4 *2 (-1078)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-752 *3)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(-13 (-564) (-10 -8 (-15 -3904 ((-3 $ "failed") |t#1| (-935))) (-15 -1729 ((-111) $)))) +(((-170) . T) ((-519) . T) ((-564) . T) ((-842) . T)) +((-1414 (((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552)))) (-552)) 59)) (-4197 (((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552))))) 57)) (-1721 (((-552)) 71))) +(((-753 |#1| |#2|) (-10 -7 (-15 -1721 ((-552))) (-15 -4197 ((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552)))))) (-15 -1414 ((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552)))) (-552)))) (-1213 (-552)) (-403 (-552) |#1|)) (T -753)) +((-1414 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1213 *3)) (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-5 *1 (-753 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4197 (*1 *2) (-12 (-4 *3 (-1213 (-552))) (-5 *2 (-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552))))) (-5 *1 (-753 *3 *4)) (-4 *4 (-403 (-552) *3)))) (-1721 (*1 *2) (-12 (-4 *3 (-1213 *2)) (-5 *2 (-552)) (-5 *1 (-753 *3 *4)) (-4 *4 (-403 *2 *3))))) +(-10 -7 (-15 -1721 ((-552))) (-15 -4197 ((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552)))))) (-15 -1414 ((-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-673 (-552)))) (-552)))) +((-3202 (((-111) $ $) NIL)) (-2832 (((-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $) 21)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20) (($ (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) 18)) (-1613 (((-111) $ $) NIL))) +(((-754) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $))))) (T -754)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-754)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-754)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-754)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-754)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-754))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-3 (|:| |nia| (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $)))) +((-1946 (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|))) 18) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154))) 17)) (-4153 (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|))) 20) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154))) 19))) +(((-755 |#1|) (-10 -7 (-15 -1946 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -1946 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|))))) (-544)) (T -755)) +((-4153 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-755 *4)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-755 *5)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-755 *4)))) (-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-755 *5))))) +(-10 -7 (-15 -1946 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -1946 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-933 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3305 (($ $ $) 6)) (-4012 (((-3 $ "failed") $ $) 9)) (-1603 (($ $ (-552)) 7)) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($ $) NIL)) (-3987 (($ $ $) NIL)) (-4065 (((-111) $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2594 (($ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3213 (((-844) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ $ $) NIL))) +(((-756) (-13 (-778) (-711) (-10 -8 (-15 -3987 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -2594 ($ $ $)) (-15 -1670 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -3969 ((-3 $ "failed") $ $)) (-15 -1603 ($ $ (-552))) (-15 -1332 ($ $)) (-6 (-4370 "*"))))) (T -756)) +((-3987 (*1 *1 *1 *1) (-5 *1 (-756))) (-4006 (*1 *1 *1 *1) (-5 *1 (-756))) (-2594 (*1 *1 *1 *1) (-5 *1 (-756))) (-1670 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3713 (-756)) (|:| -4186 (-756)))) (-5 *1 (-756)))) (-3969 (*1 *1 *1 *1) (|partial| -5 *1 (-756))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-756)))) (-1332 (*1 *1 *1) (-5 *1 (-756)))) +(-13 (-778) (-711) (-10 -8 (-15 -3987 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -2594 ($ $ $)) (-15 -1670 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -3969 ((-3 $ "failed") $ $)) (-15 -1603 ($ $ (-552))) (-15 -1332 ($ $)) (-6 (-4370 "*")))) +((-4153 (((-3 |#2| "failed") |#2| |#2| (-113) (-1154)) 35))) +(((-757 |#1| |#2|) (-10 -7 (-15 -4153 ((-3 |#2| "failed") |#2| |#2| (-113) (-1154)))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144)) (-13 (-29 |#1|) (-1176) (-940))) (T -757)) +((-4153 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1154)) (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *1 (-757 *5 *2)) (-4 *2 (-13 (-29 *5) (-1176) (-940)))))) +(-10 -7 (-15 -4153 ((-3 |#2| "failed") |#2| |#2| (-113) (-1154)))) +((-3213 (((-759) |#1|) 8))) +(((-758 |#1|) (-10 -7 (-15 -3213 ((-759) |#1|))) (-1191)) (T -758)) +((-3213 (*1 *2 *3) (-12 (-5 *2 (-759)) (-5 *1 (-758 *3)) (-4 *3 (-1191))))) +(-10 -7 (-15 -3213 ((-759) |#1|))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 7)) (-1613 (((-111) $ $) 9))) +(((-759) (-1078)) (T -759)) +NIL +(-1078) +((-4346 ((|#2| |#4|) 35))) +(((-760 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4346 (|#2| |#4|))) (-445) (-1213 |#1|) (-709 |#1| |#2|) (-1213 |#3|)) (T -760)) +((-4346 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-709 *4 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-760 *4 *2 *5 *3)) (-4 *3 (-1213 *5))))) +(-10 -7 (-15 -4346 (|#2| |#4|))) +((-1293 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1624 (((-1242) (-1136) (-1136) |#4| |#5|) 33)) (-2837 ((|#4| |#4| |#5|) 73)) (-1940 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|) 77)) (-3698 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|) 16))) +(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1293 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2837 (|#4| |#4| |#5|)) (-15 -1940 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1624 ((-1242) (-1136) (-1136) |#4| |#5|)) (-15 -3698 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -761)) +((-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1624 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1136)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *4 (-1044 *6 *7 *8)) (-5 *2 (-1242)) (-5 *1 (-761 *6 *7 *8 *4 *5)) (-4 *5 (-1050 *6 *7 *8 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2837 (*1 *2 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *2 (-1044 *4 *5 *6)) (-5 *1 (-761 *4 *5 *6 *2 *3)) (-4 *3 (-1050 *4 *5 *6 *2)))) (-1293 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(-10 -7 (-15 -1293 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2837 (|#4| |#4| |#5|)) (-15 -1940 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1624 ((-1242) (-1136) (-1136) |#4| |#5|)) (-15 -3698 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|))) +((-1393 (((-3 (-1150 (-1150 |#1|)) "failed") |#4|) 43)) (-2698 (((-629 |#4|) |#4|) 15)) (-4237 ((|#4| |#4|) 11))) +(((-762 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2698 ((-629 |#4|) |#4|)) (-15 -1393 ((-3 (-1150 (-1150 |#1|)) "failed") |#4|)) (-15 -4237 (|#4| |#4|))) (-343) (-323 |#1|) (-1213 |#2|) (-1213 |#3|) (-902)) (T -762)) +((-4237 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1213 *4)) (-5 *1 (-762 *3 *4 *5 *2 *6)) (-4 *2 (-1213 *5)) (-14 *6 (-902)))) (-1393 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1213 *5)) (-5 *2 (-1150 (-1150 *4))) (-5 *1 (-762 *4 *5 *6 *3 *7)) (-4 *3 (-1213 *6)) (-14 *7 (-902)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1213 *5)) (-5 *2 (-629 *3)) (-5 *1 (-762 *4 *5 *6 *3 *7)) (-4 *3 (-1213 *6)) (-14 *7 (-902))))) +(-10 -7 (-15 -2698 ((-629 |#4|) |#4|)) (-15 -1393 ((-3 (-1150 (-1150 |#1|)) "failed") |#4|)) (-15 -4237 (|#4| |#4|))) +((-2437 (((-2 (|:| |deter| (-629 (-1150 |#5|))) (|:| |dterm| (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-629 |#1|)) (|:| |nlead| (-629 |#5|))) (-1150 |#5|) (-629 |#1|) (-629 |#5|)) 54)) (-4275 (((-629 (-756)) |#1|) 13))) +(((-763 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2437 ((-2 (|:| |deter| (-629 (-1150 |#5|))) (|:| |dterm| (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-629 |#1|)) (|:| |nlead| (-629 |#5|))) (-1150 |#5|) (-629 |#1|) (-629 |#5|))) (-15 -4275 ((-629 (-756)) |#1|))) (-1213 |#4|) (-778) (-832) (-301) (-930 |#4| |#2| |#3|)) (T -763)) +((-4275 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-629 (-756))) (-5 *1 (-763 *3 *4 *5 *6 *7)) (-4 *3 (-1213 *6)) (-4 *7 (-930 *6 *4 *5)))) (-2437 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1213 *9)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-301)) (-4 *10 (-930 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-629 (-1150 *10))) (|:| |dterm| (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| *10))))) (|:| |nfacts| (-629 *6)) (|:| |nlead| (-629 *10)))) (-5 *1 (-763 *6 *7 *8 *9 *10)) (-5 *3 (-1150 *10)) (-5 *4 (-629 *6)) (-5 *5 (-629 *10))))) +(-10 -7 (-15 -2437 ((-2 (|:| |deter| (-629 (-1150 |#5|))) (|:| |dterm| (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-629 |#1|)) (|:| |nlead| (-629 |#5|))) (-1150 |#5|) (-629 |#1|) (-629 |#5|))) (-15 -4275 ((-629 (-756)) |#1|))) +((-3681 (((-629 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#1|))))) (-673 (-401 (-552))) |#1|) 31)) (-3819 (((-629 |#1|) (-673 (-401 (-552))) |#1|) 21)) (-3767 (((-933 (-401 (-552))) (-673 (-401 (-552))) (-1154)) 18) (((-933 (-401 (-552))) (-673 (-401 (-552)))) 17))) +(((-764 |#1|) (-10 -7 (-15 -3767 ((-933 (-401 (-552))) (-673 (-401 (-552))))) (-15 -3767 ((-933 (-401 (-552))) (-673 (-401 (-552))) (-1154))) (-15 -3819 ((-629 |#1|) (-673 (-401 (-552))) |#1|)) (-15 -3681 ((-629 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#1|))))) (-673 (-401 (-552))) |#1|))) (-13 (-357) (-830))) (T -764)) +((-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *2 (-629 (-2 (|:| |outval| *4) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 *4)))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-357) (-830))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *2 (-629 *4)) (-5 *1 (-764 *4)) (-4 *4 (-13 (-357) (-830))))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *4 (-1154)) (-5 *2 (-933 (-401 (-552)))) (-5 *1 (-764 *5)) (-4 *5 (-13 (-357) (-830))))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *2 (-933 (-401 (-552)))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-357) (-830)))))) +(-10 -7 (-15 -3767 ((-933 (-401 (-552))) (-673 (-401 (-552))))) (-15 -3767 ((-933 (-401 (-552))) (-673 (-401 (-552))) (-1154))) (-15 -3819 ((-629 |#1|) (-673 (-401 (-552))) |#1|)) (-15 -3681 ((-629 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-629 (-673 |#1|))))) (-673 (-401 (-552))) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 34)) (-3611 (((-629 |#2|) $) NIL)) (-3449 (((-1150 $) $ |#2|) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 |#2|)) NIL)) (-1785 (($ $) 28)) (-1764 (((-111) $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ $) 93 (|has| |#1| (-544)))) (-1966 (((-629 $) $ $) 106 (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-933 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154))))) (((-3 $ "failed") (-933 (-552))) NIL (-4029 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154)))))) (((-3 $ "failed") (-933 |#1|)) NIL (-4029 (-12 (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-973 (-552))))))) (((-3 (-1103 |#1| |#2|) "failed") $) 18)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) ((|#2| $) NIL) (($ (-933 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154))))) (($ (-933 (-552))) NIL (-4029 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154)))))) (($ (-933 |#1|)) NIL (-4029 (-12 (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-973 (-552))))))) (((-1103 |#1| |#2|) $) NIL)) (-3301 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-544)))) (-3766 (($ $) NIL) (($ $ |#2|) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-3738 (((-111) $ $) NIL) (((-111) $ (-629 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2792 (((-111) $) NIL)) (-2997 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 70)) (-1913 (($ $) 119 (|has| |#1| (-445)))) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-2896 (($ $) NIL (|has| |#1| (-544)))) (-2304 (($ $) NIL (|has| |#1| (-544)))) (-2030 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1697 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3423 (($ $ |#1| (-523 |#2|) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| |#1| (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| |#1| (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3065 (((-111) $ $) NIL) (((-111) $ (-629 $)) NIL)) (-3154 (($ $ $ $ $) 90 (|has| |#1| (-544)))) (-2940 ((|#2| $) 19)) (-3602 (($ (-1150 |#1|) |#2|) NIL) (($ (-1150 $) |#2|) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-756)) 36) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1885 (($ $ $) 60)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#2|) NIL)) (-2706 (((-111) $) NIL)) (-3544 (((-523 |#2|) $) NIL) (((-756) $ |#2|) NIL) (((-629 (-756)) $ (-629 |#2|)) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1979 (((-756) $) 20)) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3506 (((-3 |#2| "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-445)))) (-2971 (($ $) NIL (|has| |#1| (-445)))) (-4050 (((-629 $) $) NIL)) (-1723 (($ $) 37)) (-3119 (($ $) NIL (|has| |#1| (-445)))) (-3559 (((-629 $) $) 41)) (-1823 (($ $) 39)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-4048 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3129 (-756))) $ $) 82)) (-4239 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $) 67) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $ |#2|) NIL)) (-1574 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $) NIL) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $ |#2|) NIL)) (-3710 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3557 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2623 (((-1136) $) NIL)) (-2043 (($ $ $) 108 (|has| |#1| (-544)))) (-1741 (((-629 $) $) 30)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -1406 (-756))) "failed") $) NIL)) (-3287 (((-111) $ $) NIL) (((-111) $ (-629 $)) NIL)) (-2498 (($ $ $) NIL)) (-1977 (($ $) 21)) (-4343 (((-111) $ $) NIL)) (-3150 (((-111) $ $) NIL) (((-111) $ (-629 $)) NIL)) (-3848 (($ $ $) NIL)) (-2170 (($ $) 23)) (-2876 (((-1098) $) NIL)) (-1808 (((-2 (|:| -2594 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-544)))) (-3571 (((-2 (|:| -2594 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-544)))) (-3711 (((-111) $) 52)) (-3722 ((|#1| $) 55)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 ((|#1| |#1| $) 116 (|has| |#1| (-445))) (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-1810 (((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-544)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3069 (($ $ |#1|) 112 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-1771 (($ $ |#1|) 111 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-629 |#2|) (-629 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-629 |#2|) (-629 $)) NIL)) (-1721 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3096 (($ $ |#2|) NIL) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-3299 (((-523 |#2|) $) NIL) (((-756) $ |#2|) 43) (((-629 (-756)) $ (-629 |#2|)) NIL)) (-2861 (($ $) NIL)) (-1763 (($ $) 33)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) (($ (-933 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154))))) (($ (-933 (-552))) NIL (-4029 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1154))) (-4107 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1154)))))) (($ (-933 |#1|)) NIL (|has| |#2| (-600 (-1154)))) (((-1136) $) NIL (-12 (|has| |#1| (-1019 (-552))) (|has| |#2| (-600 (-1154))))) (((-933 |#1|) $) NIL (|has| |#2| (-600 (-1154))))) (-3807 ((|#1| $) 115 (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-933 |#1|) $) NIL (|has| |#2| (-600 (-1154)))) (((-1103 |#1| |#2|) $) 15) (($ (-1103 |#1| |#2|)) 16) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-756)) 44) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 13 T CONST)) (-1383 (((-3 (-111) "failed") $ $) NIL)) (-3309 (($) 35 T CONST)) (-3556 (($ $ $ $ (-756)) 88 (|has| |#1| (-544)))) (-3239 (($ $ $ (-756)) 87 (|has| |#1| (-544)))) (-1765 (($ $ |#2|) NIL) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 54)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) 64)) (-1698 (($ $ $) 74)) (** (($ $ (-902)) NIL) (($ $ (-756)) 61)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 59) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-765 |#1| |#2|) (-13 (-1044 |#1| (-523 |#2|) |#2|) (-599 (-1103 |#1| |#2|)) (-1019 (-1103 |#1| |#2|))) (-1030) (-832)) (T -765)) +NIL +(-13 (-1044 |#1| (-523 |#2|) |#2|) (-599 (-1103 |#1| |#2|)) (-1019 (-1103 |#1| |#2|))) +((-1477 (((-767 |#2|) (-1 |#2| |#1|) (-767 |#1|)) 13))) +(((-766 |#1| |#2|) (-10 -7 (-15 -1477 ((-767 |#2|) (-1 |#2| |#1|) (-767 |#1|)))) (-1030) (-1030)) (T -766)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-767 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-767 *6)) (-5 *1 (-766 *5 *6))))) +(-10 -7 (-15 -1477 ((-767 |#2|) (-1 |#2| |#1|) (-767 |#1|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 12)) (-2961 (((-1237 |#1|) $ (-756)) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-4218 (($ (-1150 |#1|)) NIL)) (-3449 (((-1150 $) $ (-1060)) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1060))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3791 (((-629 $) $ $) 39 (|has| |#1| (-544)))) (-2134 (($ $ $) 35 (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1496 (($ $ (-756)) NIL)) (-3366 (($ $ (-756)) NIL)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-1060) "failed") $) NIL) (((-3 (-1150 |#1|) "failed") $) 10)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-1060) $) NIL) (((-1150 |#1|) $) NIL)) (-3301 (($ $ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3547 (($ $ $) NIL)) (-1589 (($ $ $) 71 (|has| |#1| (-544)))) (-2997 (((-2 (|:| -4158 |#1|) (|:| -3713 $) (|:| -4186 $)) $ $) 70 (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-756) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1060) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1060) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ $) NIL (|has| |#1| (-544)))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-3602 (($ (-1150 |#1|) (-1060)) NIL) (($ (-1150 $) (-1060)) NIL)) (-1524 (($ $ (-756)) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1885 (($ $ $) 20)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1060)) NIL) (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3544 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-756) (-756)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2434 (((-1150 |#1|) $) NIL)) (-3506 (((-3 (-1060) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-4048 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3129 (-756))) $ $) 26)) (-2784 (($ $ $) 29)) (-4287 (($ $ $) 32)) (-4239 (((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $) 31)) (-2623 (((-1136) $) NIL)) (-2043 (($ $ $) 41 (|has| |#1| (-544)))) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1060)) (|:| -1406 (-756))) "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) NIL (|has| |#1| (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-1808 (((-2 (|:| -2594 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-544)))) (-3571 (((-2 (|:| -2594 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-544)))) (-3768 (((-2 (|:| -3301 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-544)))) (-1451 (((-2 (|:| -3301 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-544)))) (-3711 (((-111) $) 13)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3079 (($ $ (-756) |#1| $) 19)) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-1810 (((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-544)))) (-3234 (((-2 (|:| -3301 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-544)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1060) |#1|) NIL) (($ $ (-629 (-1060)) (-629 |#1|)) NIL) (($ $ (-1060) $) NIL) (($ $ (-629 (-1060)) (-629 $)) NIL)) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-4212 (((-3 $ "failed") $ (-756)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-1721 (($ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3096 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3299 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1060) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-2911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1060)) NIL) (((-1150 |#1|) $) 7) (($ (-1150 |#1|)) 8) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 21 T CONST)) (-3309 (($) 24 T CONST)) (-1765 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) 28) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-767 |#1|) (-13 (-1213 |#1|) (-599 (-1150 |#1|)) (-1019 (-1150 |#1|)) (-10 -8 (-15 -3079 ($ $ (-756) |#1| $)) (-15 -1885 ($ $ $)) (-15 -4048 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3129 (-756))) $ $)) (-15 -2784 ($ $ $)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -4287 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3791 ((-629 $) $ $)) (-15 -2043 ($ $ $)) (-15 -1810 ((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3571 ((-2 (|:| -2594 $) (|:| |coef1| $)) $ $)) (-15 -1808 ((-2 (|:| -2594 $) (|:| |coef2| $)) $ $)) (-15 -3234 ((-2 (|:| -3301 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1451 ((-2 (|:| -3301 |#1|) (|:| |coef1| $)) $ $)) (-15 -3768 ((-2 (|:| -3301 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1030)) (T -767)) +((-3079 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-756)) (-5 *1 (-767 *3)) (-4 *3 (-1030)))) (-1885 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030)))) (-4048 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-767 *3)) (|:| |polden| *3) (|:| -3129 (-756)))) (-5 *1 (-767 *3)) (-4 *3 (-1030)))) (-2784 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030)))) (-4239 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4158 *3) (|:| |gap| (-756)) (|:| -3713 (-767 *3)) (|:| -4186 (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-1030)))) (-4287 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030)))) (-3791 (*1 *2 *1 *1) (-12 (-5 *2 (-629 (-767 *3))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-2043 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-544)) (-4 *2 (-1030)))) (-1810 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2594 (-767 *3)) (|:| |coef1| (-767 *3)) (|:| |coef2| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2594 (-767 *3)) (|:| |coef1| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-1808 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2594 (-767 *3)) (|:| |coef2| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-3234 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3301 *3) (|:| |coef1| (-767 *3)) (|:| |coef2| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-1451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3301 *3) (|:| |coef1| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) (-3768 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3301 *3) (|:| |coef2| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030))))) +(-13 (-1213 |#1|) (-599 (-1150 |#1|)) (-1019 (-1150 |#1|)) (-10 -8 (-15 -3079 ($ $ (-756) |#1| $)) (-15 -1885 ($ $ $)) (-15 -4048 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3129 (-756))) $ $)) (-15 -2784 ($ $ $)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -4287 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3791 ((-629 $) $ $)) (-15 -2043 ($ $ $)) (-15 -1810 ((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3571 ((-2 (|:| -2594 $) (|:| |coef1| $)) $ $)) (-15 -1808 ((-2 (|:| -2594 $) (|:| |coef2| $)) $ $)) (-15 -3234 ((-2 (|:| -3301 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1451 ((-2 (|:| -3301 |#1|) (|:| |coef1| $)) $ $)) (-15 -3768 ((-2 (|:| -3301 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4214 ((|#1| (-756) |#1|) 32 (|has| |#1| (-38 (-401 (-552)))))) (-3074 ((|#1| (-756) |#1|) 22)) (-2773 ((|#1| (-756) |#1|) 34 (|has| |#1| (-38 (-401 (-552))))))) +(((-768 |#1|) (-10 -7 (-15 -3074 (|#1| (-756) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2773 (|#1| (-756) |#1|)) (-15 -4214 (|#1| (-756) |#1|))) |%noBranch|)) (-169)) (T -768)) +((-4214 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3074 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -3074 (|#1| (-756) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2773 (|#1| (-756) |#1|)) (-15 -4214 (|#1| (-756) |#1|))) |%noBranch|)) +((-3202 (((-111) $ $) 7)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) 85)) (-1830 (((-629 $) (-629 |#4|)) 86) (((-629 $) (-629 |#4|) (-111)) 111)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) 101) (((-111) $) 97)) (-2240 ((|#4| |#4| $) 92)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 126)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 79)) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2715 (((-3 $ "failed") $) 82)) (-3126 ((|#4| |#4| $) 89)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2081 ((|#4| |#4| $) 87)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) 105)) (-2851 (((-111) |#4| $) 136)) (-4035 (((-111) |#4| $) 133)) (-3250 (((-111) |#4| $) 137) (((-111) $) 134)) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) 104) (((-111) $) 103)) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) 128)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 127)) (-2680 (((-3 |#4| "failed") $) 83)) (-1999 (((-629 $) |#4| $) 129)) (-4253 (((-3 (-111) (-629 $)) |#4| $) 132)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-4011 (((-629 $) |#4| $) 125) (((-629 $) (-629 |#4|) $) 124) (((-629 $) (-629 |#4|) (-629 $)) 123) (((-629 $) |#4| (-629 $)) 122)) (-2300 (($ |#4| $) 117) (($ (-629 |#4|) $) 116)) (-3887 (((-629 |#4|) $) 107)) (-3287 (((-111) |#4| $) 99) (((-111) $) 95)) (-2498 ((|#4| |#4| $) 90)) (-4343 (((-111) $ $) 110)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) 100) (((-111) $) 96)) (-3848 ((|#4| |#4| $) 91)) (-2876 (((-1098) $) 10)) (-2702 (((-3 |#4| "failed") $) 84)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-1800 (((-3 $ "failed") $ |#4|) 78)) (-3136 (($ $ |#4|) 77) (((-629 $) |#4| $) 115) (((-629 $) |#4| (-629 $)) 114) (((-629 $) (-629 |#4|) $) 113) (((-629 $) (-629 |#4|) (-629 $)) 112)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-3299 (((-756) $) 106)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-3081 (($ $) 88)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-1753 (((-756) $) 76 (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) 98)) (-3933 (((-629 $) |#4| $) 121) (((-629 $) |#4| (-629 $)) 120) (((-629 $) (-629 |#4|) $) 119) (((-629 $) (-629 |#4|) (-629 $)) 118)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) 81)) (-2452 (((-111) |#4| $) 135)) (-2904 (((-111) |#3| $) 80)) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-769 |#1| |#2| |#3| |#4|) (-137) (-445) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -769)) +NIL +(-13 (-1050 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-957 |#1| |#2| |#3| |#4|) . T) ((-1050 |#1| |#2| |#3| |#4|) . T) ((-1078) . T) ((-1184 |#1| |#2| |#3| |#4|) . T) ((-1191) . T)) +((-2964 (((-3 (-373) "failed") (-310 |#1|) (-902)) 62 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-373) "failed") (-310 |#1|)) 54 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-373) "failed") (-401 (-933 |#1|)) (-902)) 41 (|has| |#1| (-544))) (((-3 (-373) "failed") (-401 (-933 |#1|))) 40 (|has| |#1| (-544))) (((-3 (-373) "failed") (-933 |#1|) (-902)) 31 (|has| |#1| (-1030))) (((-3 (-373) "failed") (-933 |#1|)) 30 (|has| |#1| (-1030)))) (-3718 (((-373) (-310 |#1|) (-902)) 99 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-373) (-310 |#1|)) 94 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-373) (-401 (-933 |#1|)) (-902)) 91 (|has| |#1| (-544))) (((-373) (-401 (-933 |#1|))) 90 (|has| |#1| (-544))) (((-373) (-933 |#1|) (-902)) 86 (|has| |#1| (-1030))) (((-373) (-933 |#1|)) 85 (|has| |#1| (-1030))) (((-373) |#1| (-902)) 76) (((-373) |#1|) 22)) (-1900 (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-902)) 71 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|))) 70 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-166 (-373)) "failed") (-310 |#1|) (-902)) 63 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-166 (-373)) "failed") (-310 |#1|)) 61 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|))) (-902)) 46 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|)))) 45 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-933 |#1|)) (-902)) 39 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-933 |#1|))) 38 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-933 |#1|) (-902)) 28 (|has| |#1| (-1030))) (((-3 (-166 (-373)) "failed") (-933 |#1|)) 26 (|has| |#1| (-1030))) (((-3 (-166 (-373)) "failed") (-933 (-166 |#1|)) (-902)) 18 (|has| |#1| (-169))) (((-3 (-166 (-373)) "failed") (-933 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-3414 (((-166 (-373)) (-310 (-166 |#1|)) (-902)) 102 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-166 (-373)) (-310 (-166 |#1|))) 101 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-166 (-373)) (-310 |#1|) (-902)) 100 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-166 (-373)) (-310 |#1|)) 98 (-12 (|has| |#1| (-544)) (|has| |#1| (-832)))) (((-166 (-373)) (-401 (-933 (-166 |#1|))) (-902)) 93 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-933 (-166 |#1|)))) 92 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-933 |#1|)) (-902)) 89 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-933 |#1|))) 88 (|has| |#1| (-544))) (((-166 (-373)) (-933 |#1|) (-902)) 84 (|has| |#1| (-1030))) (((-166 (-373)) (-933 |#1|)) 83 (|has| |#1| (-1030))) (((-166 (-373)) (-933 (-166 |#1|)) (-902)) 78 (|has| |#1| (-169))) (((-166 (-373)) (-933 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|) (-902)) 80 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-373)) |#1| (-902)) 27) (((-166 (-373)) |#1|) 25))) +(((-770 |#1|) (-10 -7 (-15 -3718 ((-373) |#1|)) (-15 -3718 ((-373) |#1| (-902))) (-15 -3414 ((-166 (-373)) |#1|)) (-15 -3414 ((-166 (-373)) |#1| (-902))) (IF (|has| |#1| (-169)) (PROGN (-15 -3414 ((-166 (-373)) (-166 |#1|))) (-15 -3414 ((-166 (-373)) (-166 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-933 (-166 |#1|)))) (-15 -3414 ((-166 (-373)) (-933 (-166 |#1|)) (-902)))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-15 -3718 ((-373) (-933 |#1|))) (-15 -3718 ((-373) (-933 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-933 |#1|))) (-15 -3414 ((-166 (-373)) (-933 |#1|) (-902)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3718 ((-373) (-401 (-933 |#1|)))) (-15 -3718 ((-373) (-401 (-933 |#1|)) (-902))) (-15 -3414 ((-166 (-373)) (-401 (-933 |#1|)))) (-15 -3414 ((-166 (-373)) (-401 (-933 |#1|)) (-902))) (-15 -3414 ((-166 (-373)) (-401 (-933 (-166 |#1|))))) (-15 -3414 ((-166 (-373)) (-401 (-933 (-166 |#1|))) (-902))) (IF (|has| |#1| (-832)) (PROGN (-15 -3718 ((-373) (-310 |#1|))) (-15 -3718 ((-373) (-310 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-310 |#1|))) (-15 -3414 ((-166 (-373)) (-310 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -3414 ((-166 (-373)) (-310 (-166 |#1|)) (-902)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 (-166 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 (-166 |#1|)) (-902)))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-933 |#1|))) (-15 -2964 ((-3 (-373) "failed") (-933 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 |#1|))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 |#1|) (-902)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-401 (-933 |#1|)))) (-15 -2964 ((-3 (-373) "failed") (-401 (-933 |#1|)) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 |#1|)) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|))))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|))) (-902))) (IF (|has| |#1| (-832)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-310 |#1|))) (-15 -2964 ((-3 (-373) "failed") (-310 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-902)))) |%noBranch|)) |%noBranch|)) (-600 (-373))) (T -770)) +((-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-2964 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-2964 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-933 (-166 *5)))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-933 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-2964 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-2964 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-2964 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-2964 (*1 *2 *3) (|partial| -12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-933 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-933 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 (-166 *5)))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-933 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-933 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-902)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-5 *2 (-166 (-373))) (-5 *1 (-770 *3)) (-4 *3 (-600 (-373))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-770 *3)) (-4 *3 (-600 (-373))))) (-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-5 *2 (-373)) (-5 *1 (-770 *3)) (-4 *3 (-600 *2)))) (-3718 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-770 *3)) (-4 *3 (-600 *2))))) +(-10 -7 (-15 -3718 ((-373) |#1|)) (-15 -3718 ((-373) |#1| (-902))) (-15 -3414 ((-166 (-373)) |#1|)) (-15 -3414 ((-166 (-373)) |#1| (-902))) (IF (|has| |#1| (-169)) (PROGN (-15 -3414 ((-166 (-373)) (-166 |#1|))) (-15 -3414 ((-166 (-373)) (-166 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-933 (-166 |#1|)))) (-15 -3414 ((-166 (-373)) (-933 (-166 |#1|)) (-902)))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-15 -3718 ((-373) (-933 |#1|))) (-15 -3718 ((-373) (-933 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-933 |#1|))) (-15 -3414 ((-166 (-373)) (-933 |#1|) (-902)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3718 ((-373) (-401 (-933 |#1|)))) (-15 -3718 ((-373) (-401 (-933 |#1|)) (-902))) (-15 -3414 ((-166 (-373)) (-401 (-933 |#1|)))) (-15 -3414 ((-166 (-373)) (-401 (-933 |#1|)) (-902))) (-15 -3414 ((-166 (-373)) (-401 (-933 (-166 |#1|))))) (-15 -3414 ((-166 (-373)) (-401 (-933 (-166 |#1|))) (-902))) (IF (|has| |#1| (-832)) (PROGN (-15 -3718 ((-373) (-310 |#1|))) (-15 -3718 ((-373) (-310 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-310 |#1|))) (-15 -3414 ((-166 (-373)) (-310 |#1|) (-902))) (-15 -3414 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -3414 ((-166 (-373)) (-310 (-166 |#1|)) (-902)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 (-166 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 (-166 |#1|)) (-902)))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-933 |#1|))) (-15 -2964 ((-3 (-373) "failed") (-933 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 |#1|))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-933 |#1|) (-902)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-401 (-933 |#1|)))) (-15 -2964 ((-3 (-373) "failed") (-401 (-933 |#1|)) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 |#1|)) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|))))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-401 (-933 (-166 |#1|))) (-902))) (IF (|has| |#1| (-832)) (PROGN (-15 -2964 ((-3 (-373) "failed") (-310 |#1|))) (-15 -2964 ((-3 (-373) "failed") (-310 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-902))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -1900 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-902)))) |%noBranch|)) |%noBranch|)) +((-1428 (((-902) (-1136)) 65)) (-4269 (((-3 (-373) "failed") (-1136)) 33)) (-1604 (((-373) (-1136)) 31)) (-4345 (((-902) (-1136)) 54)) (-1328 (((-1136) (-902)) 55)) (-1906 (((-1136) (-902)) 53))) +(((-771) (-10 -7 (-15 -1906 ((-1136) (-902))) (-15 -4345 ((-902) (-1136))) (-15 -1328 ((-1136) (-902))) (-15 -1428 ((-902) (-1136))) (-15 -1604 ((-373) (-1136))) (-15 -4269 ((-3 (-373) "failed") (-1136))))) (T -771)) +((-4269 (*1 *2 *3) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-771)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-771)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-902)) (-5 *1 (-771)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1136)) (-5 *1 (-771)))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-902)) (-5 *1 (-771)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1136)) (-5 *1 (-771))))) +(-10 -7 (-15 -1906 ((-1136) (-902))) (-15 -4345 ((-902) (-1136))) (-15 -1328 ((-1136) (-902))) (-15 -1428 ((-902) (-1136))) (-15 -1604 ((-373) (-1136))) (-15 -4269 ((-3 (-373) "failed") (-1136)))) +((-3202 (((-111) $ $) 7)) (-2802 (((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 15) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016)) 13)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-772) (-137)) (T -772)) +((-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016)))))) (-2802 (*1 *2 *3 *2) (-12 (-4 *1 (-772)) (-5 *2 (-1016)) (-5 *3 (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016)))))) (-2802 (*1 *2 *3 *2) (-12 (-4 *1 (-772)) (-5 *2 (-1016)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) +(-13 (-1078) (-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2802 ((-1016) (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) (|:| |extra| (-1016))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2802 ((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1016))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2034 (((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373))) 44) (((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373))) 43)) (-2782 (((-1242) (-1237 (-373)) (-552) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373))) 50)) (-3885 (((-1242) (-1237 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373))) 41)) (-3630 (((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373))) 52) (((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373))) 51))) +(((-773) (-10 -7 (-15 -3630 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -3630 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)))) (-15 -3885 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -2034 ((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -2034 ((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)))) (-15 -2782 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))))) (T -773)) +((-2782 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773)))) (-2034 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373)))) (-5 *7 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773)))) (-2034 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373)))) (-5 *7 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773)))) (-3885 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773)))) (-3630 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773)))) (-3630 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) (-5 *1 (-773))))) +(-10 -7 (-15 -3630 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -3630 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)))) (-15 -3885 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -2034 ((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)))) (-15 -2034 ((-1242) (-1237 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373))) (-373) (-1237 (-373)) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)) (-1237 (-373)))) (-15 -2782 ((-1242) (-1237 (-373)) (-552) (-373) (-373) (-552) (-1 (-1242) (-1237 (-373)) (-1237 (-373)) (-373))))) +((-3056 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 53)) (-3972 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 31)) (-2736 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 52)) (-3157 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 29)) (-2239 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 51)) (-3334 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 19)) (-1438 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 32)) (-2776 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 30)) (-2880 (((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 28))) +(((-774) (-10 -7 (-15 -2880 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -2776 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1438 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3334 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3157 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3972 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2239 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2736 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3056 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))))) (T -774)) +((-3056 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-2736 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-2239 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-3972 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-3157 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-3334 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-1438 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552)))) (-2880 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-774)) (-5 *5 (-552))))) +(-10 -7 (-15 -2880 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -2776 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1438 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3334 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3157 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3972 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2239 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2736 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3056 ((-2 (|:| -2925 (-373)) (|:| -1825 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)))) +((-1396 (((-1186 |#1|) |#1| (-220) (-552)) 46))) +(((-775 |#1|) (-10 -7 (-15 -1396 ((-1186 |#1|) |#1| (-220) (-552)))) (-955)) (T -775)) +((-1396 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1186 *3)) (-5 *1 (-775 *3)) (-4 *3 (-955))))) +(-10 -7 (-15 -1396 ((-1186 |#1|) |#1| (-220) (-552)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 24)) (-4012 (((-3 $ "failed") $ $) 26)) (-2130 (($) 23 T CONST)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 22 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1709 (($ $ $) 28) (($ $) 27)) (-1698 (($ $ $) 20)) (* (($ (-902) $) 21) (($ (-756) $) 25) (($ (-552) $) 29))) (((-776) (-137)) (T -776)) -((-2796 (*1 *1 *1 *1) (-4 *1 (-776)))) -(-13 (-778) (-10 -8 (-15 -2796 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21))) +NIL +(-13 (-780) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-832) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 24)) (-2130 (($) 23 T CONST)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 22 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1698 (($ $ $) 20)) (* (($ (-902) $) 21) (($ (-756) $) 25))) (((-777) (-137)) (T -777)) NIL -(-13 (-830) (-25)) -(((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) +(-13 (-779) (-23)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-779) . T) ((-832) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 24)) (-3305 (($ $ $) 27)) (-4012 (((-3 $ "failed") $ $) 26)) (-2130 (($) 23 T CONST)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 22 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1698 (($ $ $) 20)) (* (($ (-902) $) 21) (($ (-756) $) 25))) (((-778) (-137)) (T -778)) -NIL -(-13 (-775) (-129)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-830) . T) ((-1076) . T)) -((-3024 (((-111) $) 41)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 42)) (-2859 (((-3 (-401 (-552)) "failed") $) 78)) (-4229 (((-111) $) 72)) (-2411 (((-401 (-552)) $) 76)) (-2349 ((|#2| $) 26)) (-3516 (($ (-1 |#2| |#2|) $) 23)) (-1951 (($ $) 61)) (-3562 (((-528) $) 67)) (-2616 (($ $) 21)) (-1477 (((-842) $) 56) (($ (-552)) 39) (($ |#2|) 37) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 10)) (-3329 ((|#2| $) 71)) (-2292 (((-111) $ $) 29)) (-2316 (((-111) $ $) 69)) (-2396 (($ $) 31) (($ $ $) NIL)) (-2384 (($ $ $) 30)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-779 |#1| |#2|) (-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-780 |#2|) (-169)) (T -779)) -((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-779 *3 *4)) (-4 *3 (-780 *4))))) -(-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3307 (((-754)) 51 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 92 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 90 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 88)) (-1703 (((-552) $) 93 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 91 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 87)) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 77)) (-2859 (((-3 (-401 (-552)) "failed") $) 64 (|has| |#1| (-537)))) (-4229 (((-111) $) 66 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 65 (|has| |#1| (-537)))) (-1279 (($) 54 (|has| |#1| (-362)))) (-2624 (((-111) $) 30)) (-3783 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2349 ((|#1| $) 69)) (-1816 (($ $ $) 60 (|has| |#1| (-830)))) (-4093 (($ $ $) 59 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 79)) (-2886 (((-900) $) 53 (|has| |#1| (-362)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 63 (|has| |#1| (-357)))) (-4153 (($ (-900)) 52 (|has| |#1| (-362)))) (-1654 ((|#1| $) 74)) (-2348 ((|#1| $) 75)) (-2108 ((|#1| $) 76)) (-1715 ((|#1| $) 70)) (-1421 ((|#1| $) 71)) (-2963 ((|#1| $) 72)) (-4324 ((|#1| $) 73)) (-1498 (((-1096) $) 10)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 85 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 81 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 80 (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) 86 (|has| |#1| (-280 |#1| |#1|)))) (-3562 (((-528) $) 61 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 78)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 89 (|has| |#1| (-1017 (-401 (-552)))))) (-3050 (((-3 $ "failed") $) 62 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3329 ((|#1| $) 67 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 57 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 56 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 58 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 55 (|has| |#1| (-830)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-780 |#1|) (-137) (-169)) (T -780)) -((-2616 (*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-3783 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-1951 (*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-332 |t#1|) (-10 -8 (-15 -2616 ($ $)) (-15 -1749 (|t#1| $)) (-15 -2108 (|t#1| $)) (-15 -2348 (|t#1| $)) (-15 -1654 (|t#1| $)) (-15 -4324 (|t#1| $)) (-15 -2963 (|t#1| $)) (-15 -1421 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -3783 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -1951 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-362) |has| |#1| (-362)) ((-332 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-780 |#2|) (-169) (-780 |#4|) (-169)) (T -781)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-780 *6)) (-5 *1 (-781 *4 *5 *2 *6)) (-4 *4 (-780 *5))))) -(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-978 |#1|) "failed") $) 35) (((-3 (-552) "failed") $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 ((|#1| $) NIL) (((-978 |#1|) $) 33) (((-552) $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552))))) (((-401 (-552)) $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 16)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-1279 (($) NIL (|has| |#1| (-362)))) (-2624 (((-111) $) NIL)) (-3783 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-978 |#1|) (-978 |#1|)) 29)) (-2349 ((|#1| $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1654 ((|#1| $) 22)) (-2348 ((|#1| $) 20)) (-2108 ((|#1| $) 18)) (-1715 ((|#1| $) 26)) (-1421 ((|#1| $) 25)) (-2963 ((|#1| $) 24)) (-4324 ((|#1| $) 23)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-978 |#1|)) 30) (($ (-401 (-552))) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3329 ((|#1| $) NIL (|has| |#1| (-1037)))) (-1922 (($) 8 T CONST)) (-1933 (($) 12 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-782 |#1|) (-13 (-780 |#1|) (-405 (-978 |#1|)) (-10 -8 (-15 -3783 ($ (-978 |#1|) (-978 |#1|))))) (-169)) (T -782)) -((-3783 (*1 *1 *2 *2) (-12 (-5 *2 (-978 *3)) (-4 *3 (-169)) (-5 *1 (-782 *3))))) -(-13 (-780 |#1|) (-405 (-978 |#1|)) (-10 -8 (-15 -3783 ($ (-978 |#1|) (-978 |#1|))))) -((-1465 (((-111) $ $) 7)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13)) (-2292 (((-111) $ $) 6))) -(((-783) (-137)) (T -783)) -((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-2308 (*1 *2 *3) (-12 (-4 *1 (-783)) (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1014))))) -(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2308 ((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-2114 (((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)) 19))) -(((-784 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938)) (-638 |#2|)) (T -784)) -((-2114 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1174) (-938))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) (-5 *1 (-784 *6 *4 *3)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -2114 ((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)))) -((-1696 (((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)) 28) (((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152)) 18) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152)) 24) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152)) 26) (((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152)) 37) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152)) 35))) -(((-785 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152))) (-15 -1696 ((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152))) (-15 -1696 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1696 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -785)) -((-1696 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-785 *6 *2)))) (-1696 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-5 *1 (-785 *6 *2)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2957 (-627 *3))) *3 "failed")) (-5 *1 (-785 *6 *3)) (-4 *3 (-13 (-29 *6) (-1174) (-938))))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2957 (-627 *7))) *7 "failed")) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1152)) (-4 *6 (-13 (-29 *5) (-1174) (-938))) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-1235 *6))) (-5 *1 (-785 *5 *6)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)) (-5 *4 (-1235 *7))))) -(-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152))) (-15 -1696 ((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152))) (-15 -1696 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1696 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)))) -((-4332 (($) 9)) (-3300 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 31)) (-1296 (((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 28)) (-3954 (($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-2476 (($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-3968 (((-1240)) 12))) -(((-786) (-10 -8 (-15 -4332 ($)) (-15 -3968 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -2476 ($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3300 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -786)) -((-3300 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-786)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-786)))) (-2476 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-786)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-786)))) (-3968 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-786)))) (-4332 (*1 *1) (-5 *1 (-786)))) -(-10 -8 (-15 -4332 ($)) (-15 -3968 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -2476 ($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3300 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-3275 ((|#2| |#2| (-1152)) 16)) (-1763 ((|#2| |#2| (-1152)) 51)) (-1528 (((-1 |#2| |#2|) (-1152)) 11))) -(((-787 |#1| |#2|) (-10 -7 (-15 -3275 (|#2| |#2| (-1152))) (-15 -1763 (|#2| |#2| (-1152))) (-15 -1528 ((-1 |#2| |#2|) (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -787)) -((-1528 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-1 *5 *5)) (-5 *1 (-787 *4 *5)) (-4 *5 (-13 (-29 *4) (-1174) (-938))))) (-1763 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938))))) (-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938)))))) -(-10 -7 (-15 -3275 (|#2| |#2| (-1152))) (-15 -1763 (|#2| |#2| (-1152))) (-15 -1528 ((-1 |#2| |#2|) (-1152)))) -((-1696 (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373)) 116) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373)) 117) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373)) 119) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373)) 120) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373)) 121) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373))) 122) (((-1014) (-791) (-1040)) 108) (((-1014) (-791)) 109)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040)) 75) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791)) 77))) -(((-788) (-10 -7 (-15 -1696 ((-1014) (-791))) (-15 -1696 ((-1014) (-791) (-1040))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040))))) (T -788)) -((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-788)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1014)) (-5 *1 (-788))))) -(-10 -7 (-15 -1696 ((-1014) (-791))) (-15 -1696 ((-1014) (-791) (-1040))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040)))) -((-2102 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|) 35))) -(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|))) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -789)) -((-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-336 *5 *6 *7)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-789 *5 *6 *7 *4))))) -(-10 -7 (-15 -2102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|))) -((-1971 (((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))) 52)) (-3411 (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|) 60) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|) 59) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|) 20) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|) 21)) (-2055 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3551 ((|#2| |#3| (-627 (-401 |#2|))) 93) (((-3 |#2| "failed") |#3| (-401 |#2|)) 90))) -(((-790 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3551 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3551 (|#2| |#3| (-627 (-401 |#2|)))) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|)) (-15 -2055 (|#2| |#3| |#1|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|)) (-15 -2055 (|#2| |#4| |#1|)) (-15 -1971 ((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-401 (-552)))) (-1211 |#1|) (-638 |#2|) (-638 (-401 |#2|))) (T -790)) -((-1971 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -1651 *7) (|:| |rh| (-627 (-401 *6))))) (-5 *1 (-790 *5 *6 *7 *3)) (-5 *4 (-627 (-401 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-401 *6))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *5 *3)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-401 *2))))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) (-5 *1 (-790 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-401 *4))))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) (-5 *1 (-790 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-401 *5))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-401 *2))))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) (-5 *1 (-790 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-401 *4))))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) (-5 *1 (-790 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-401 *5))))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-401 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-790 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-401 *2))))) (-3551 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-790 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4))))) -(-10 -7 (-15 -3551 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3551 (|#2| |#3| (-627 (-401 |#2|)))) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|)) (-15 -2055 (|#2| |#3| |#1|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|)) (-15 -2055 (|#2| |#4| |#1|)) (-15 -1971 ((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))))) -((-1465 (((-111) $ $) NIL)) (-1703 (((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 15) (($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 12)) (-2292 (((-111) $ $) NIL))) -(((-791) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $))))) (T -791)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-791)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-791)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-791))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $)))) -((-3403 (((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|)) 118)) (-1836 (((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|)) 46)) (-2400 (((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|) 95)) (-3775 ((|#2| |#3|) 37)) (-2190 (((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|)) 82)) (-3822 ((|#3| |#3| (-401 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3775 (|#2| |#3|)) (-15 -2400 ((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|)) (-15 -2190 ((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3822 (|#3| |#3| |#2|)) (-15 -3822 (|#3| |#3| (-401 |#2|)))) (-13 (-357) (-144) (-1017 (-401 (-552)))) (-1211 |#1|) (-638 |#2|) (-638 (-401 |#2|))) (T -792)) -((-3822 (*1 *2 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3)))) (-3822 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-1211 *4)) (-5 *1 (-792 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-401 *3))))) (-3403 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-627 *7) *7 (-1148 *7))) (-5 *5 (-1 (-412 *7) *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |frac| (-401 *7)) (|:| -1651 *3)))) (-5 *1 (-792 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-401 *7))))) (-1836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 *3)))) (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-401 *6))))) (-2190 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3488 *5) (|:| -1651 *3)))) (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-401 *6))))) (-2400 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1651 *5)))) (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-401 *5))))) (-3775 (*1 *2 *3) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-792 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-401 *2)))))) -(-10 -7 (-15 -3775 (|#2| |#3|)) (-15 -2400 ((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|)) (-15 -2190 ((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3822 (|#3| |#3| |#2|)) (-15 -3822 (|#3| |#3| (-401 |#2|)))) -((-2270 (((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|))) 121) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|)) 120) (((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|))) 115) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|)) 113)) (-4006 ((|#2| (-636 |#2| (-401 |#2|))) 80) ((|#2| (-635 (-401 |#2|))) 83))) -(((-793 |#1| |#2|) (-10 -7 (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -4006 (|#2| (-635 (-401 |#2|)))) (-15 -4006 (|#2| (-636 |#2| (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -793)) -((-4006 (*1 *2 *3) (-12 (-5 *3 (-636 *2 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-635 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-793 *5 *6)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -4006 (|#2| (-635 (-401 |#2|)))) (-15 -4006 (|#2| (-636 |#2| (-401 |#2|))))) -((-3629 (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|) 48))) -(((-794 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3629 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|))) (-357) (-638 |#1|) (-1211 |#1|) (-707 |#1| |#3|) (-638 |#4|)) (T -794)) -((-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *7 (-1211 *5)) (-4 *4 (-707 *5 *7)) (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) (-5 *1 (-794 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -3629 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|))) -((-3403 (((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 47)) (-3483 (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|))) 138 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-635 (-401 |#2|))) 140 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 38) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 39) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 36) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 37)) (-1836 (((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 83))) -(((-795 |#1| |#2|) (-10 -7 (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -795)) -((-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-636 *5 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-635 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 (-636 *6 (-401 *6)))))) (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6))))) (-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |frac| (-401 *6)) (|:| -1651 (-636 *6 (-401 *6)))))) (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6))))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6))))) -(-10 -7 (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) -((-2024 (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|)) 85) (((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|)) 15)) (-1662 (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)) 92)) (-1696 (((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|)) 43))) -(((-796 |#1| |#2|) (-10 -7 (-15 -2024 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|))) (-15 -2024 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|))) (-15 -1662 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)))) (-357) (-638 |#1|)) (T -796)) -((-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2957 (-627 *6))) *7 *6)) (-4 *6 (-357)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *6) "failed")) (|:| -2957 (-627 (-1235 *6))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1235 *6)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2957 (-627 *6))) "failed") *7 *6)) (-4 *6 (-357)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1235 *6)) (|:| -2957 (-671 *6)))) (-5 *1 (-796 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *6)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *5)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| A (-671 *5)) (|:| |eqs| (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5)) (|:| -1651 *6) (|:| |rh| *5)))))) (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *6 (-638 *5))))) -(-10 -7 (-15 -2024 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|))) (-15 -2024 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|))) (-15 -1662 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)))) -((-3943 (((-671 |#1|) (-627 |#1|) (-754)) 13) (((-671 |#1|) (-627 |#1|)) 14)) (-2408 (((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|)) 34)) (-3313 (((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)) 42))) -(((-797 |#1| |#2|) (-10 -7 (-15 -3943 ((-671 |#1|) (-627 |#1|))) (-15 -3943 ((-671 |#1|) (-627 |#1|) (-754))) (-15 -2408 ((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|))) (-15 -3313 ((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)))) (-357) (-638 |#1|)) (T -797)) -((-3313 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-627 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) (-5 *1 (-797 *2 *3)) (-4 *3 (-638 *2)))) (-2408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-1235 *4)) (-5 *1 (-797 *4 *3)) (-4 *3 (-638 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-357)) (-5 *2 (-671 *5)) (-5 *1 (-797 *5 *6)) (-4 *6 (-638 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)) (-5 *1 (-797 *4 *5)) (-4 *5 (-638 *4))))) -(-10 -7 (-15 -3943 ((-671 |#1|) (-627 |#1|))) (-15 -3943 ((-671 |#1|) (-627 |#1|) (-754))) (-15 -2408 ((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|))) (-15 -3313 ((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) NIL (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) NIL (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) NIL)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) NIL (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) NIL (|has| |#2| (-129)) CONST)) (-1933 (($) NIL (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 11 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) NIL (|has| |#2| (-709))) (($ $ |#2|) NIL (|has| |#2| (-709))) (($ |#2| $) NIL (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-798 |#1| |#2| |#3|) (-233 |#1| |#2|) (-754) (-776) (-1 (-111) (-1235 |#2|) (-1235 |#2|))) (T -798)) +((-3305 (*1 *1 *1 *1) (-4 *1 (-778)))) +(-13 (-780) (-10 -8 (-15 -3305 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-832) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1698 (($ $ $) 20)) (* (($ (-902) $) 21))) +(((-779) (-137)) (T -779)) +NIL +(-13 (-832) (-25)) +(((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-832) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 24)) (-4012 (((-3 $ "failed") $ $) 26)) (-2130 (($) 23 T CONST)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 22 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1698 (($ $ $) 20)) (* (($ (-902) $) 21) (($ (-756) $) 25))) +(((-780) (-137)) (T -780)) +NIL +(-13 (-777) (-129)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-777) . T) ((-779) . T) ((-832) . T) ((-1078) . T)) +((-3643 (((-111) $) 41)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 42)) (-2674 (((-3 (-401 (-552)) "failed") $) 78)) (-2443 (((-111) $) 72)) (-3777 (((-401 (-552)) $) 76)) (-4346 ((|#2| $) 26)) (-1477 (($ (-1 |#2| |#2|) $) 23)) (-3701 (($ $) 61)) (-1522 (((-528) $) 67)) (-2074 (($ $) 21)) (-3213 (((-844) $) 56) (($ (-552)) 39) (($ |#2|) 37) (($ (-401 (-552))) NIL)) (-2014 (((-756)) 10)) (-1578 ((|#2| $) 71)) (-1613 (((-111) $ $) 29)) (-1632 (((-111) $ $) 69)) (-1709 (($ $) 31) (($ $ $) NIL)) (-1698 (($ $ $) 30)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-781 |#1| |#2|) (-10 -8 (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -3701 (|#1| |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -1578 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-782 |#2|) (-169)) (T -781)) +((-2014 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-781 *3 *4)) (-4 *3 (-782 *4))))) +(-10 -8 (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -3701 (|#1| |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -1578 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2663 (((-756)) 51 (|has| |#1| (-362)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 92 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 90 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 88)) (-2832 (((-552) $) 93 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 91 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 87)) (-1293 (((-3 $ "failed") $) 32)) (-3499 ((|#1| $) 77)) (-2674 (((-3 (-401 (-552)) "failed") $) 64 (|has| |#1| (-537)))) (-2443 (((-111) $) 66 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 65 (|has| |#1| (-537)))) (-1332 (($) 54 (|has| |#1| (-362)))) (-4065 (((-111) $) 30)) (-3629 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-4346 ((|#1| $) 69)) (-1772 (($ $ $) 60 (|has| |#1| (-832)))) (-2011 (($ $ $) 59 (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) 79)) (-1637 (((-902) $) 53 (|has| |#1| (-362)))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 63 (|has| |#1| (-357)))) (-2840 (($ (-902)) 52 (|has| |#1| (-362)))) (-1874 ((|#1| $) 74)) (-4337 ((|#1| $) 75)) (-3831 ((|#1| $) 76)) (-4305 ((|#1| $) 70)) (-3568 ((|#1| $) 71)) (-4247 ((|#1| $) 72)) (-2106 ((|#1| $) 73)) (-2876 (((-1098) $) 10)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) 85 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 81 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) 80 (|has| |#1| (-506 (-1154) |#1|)))) (-2060 (($ $ |#1|) 86 (|has| |#1| (-280 |#1| |#1|)))) (-1522 (((-528) $) 61 (|has| |#1| (-600 (-528))))) (-2074 (($ $) 78)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 89 (|has| |#1| (-1019 (-401 (-552)))))) (-3878 (((-3 $ "failed") $) 62 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-1578 ((|#1| $) 67 (|has| |#1| (-1039)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 57 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 56 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 58 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 55 (|has| |#1| (-832)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-782 |#1|) (-137) (-169)) (T -782)) +((-2074 (*1 *1 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-3629 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2674 (*1 *2 *1) (|partial| -12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-3701 (*1 *1 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-332 |t#1|) (-10 -8 (-15 -2074 ($ $)) (-15 -3499 (|t#1| $)) (-15 -3831 (|t#1| $)) (-15 -4337 (|t#1| $)) (-15 -1874 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -4247 (|t#1| $)) (-15 -3568 (|t#1| $)) (-15 -4305 (|t#1| $)) (-15 -4346 (|t#1| $)) (-15 -3629 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-15 -1578 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -3701 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-362) |has| |#1| (-362)) ((-332 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) . T) ((-711) . T) ((-832) |has| |#1| (-832)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1477 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) (-782 |#2|) (-169) (-782 |#4|) (-169)) (T -783)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-782 *6)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *4 (-782 *5))))) +(-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-980 |#1|) "failed") $) 35) (((-3 (-552) "failed") $) NIL (-4029 (|has| (-980 |#1|) (-1019 (-552))) (|has| |#1| (-1019 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL (-4029 (|has| (-980 |#1|) (-1019 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-2832 ((|#1| $) NIL) (((-980 |#1|) $) 33) (((-552) $) NIL (-4029 (|has| (-980 |#1|) (-1019 (-552))) (|has| |#1| (-1019 (-552))))) (((-401 (-552)) $) NIL (-4029 (|has| (-980 |#1|) (-1019 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-1293 (((-3 $ "failed") $) NIL)) (-3499 ((|#1| $) 16)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2443 (((-111) $) NIL (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-1332 (($) NIL (|has| |#1| (-362)))) (-4065 (((-111) $) NIL)) (-3629 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-980 |#1|) (-980 |#1|)) 29)) (-4346 ((|#1| $) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-1874 ((|#1| $) 22)) (-4337 ((|#1| $) 20)) (-3831 ((|#1| $) 18)) (-4305 ((|#1| $) 26)) (-3568 ((|#1| $) 25)) (-4247 ((|#1| $) 24)) (-2106 ((|#1| $) 23)) (-2876 (((-1098) $) NIL)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-506 (-1154) |#1|)))) (-2060 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2074 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-980 |#1|)) 30) (($ (-401 (-552))) NIL (-4029 (|has| (-980 |#1|) (-1019 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-1578 ((|#1| $) NIL (|has| |#1| (-1039)))) (-3297 (($) 8 T CONST)) (-3309 (($) 12 T CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-784 |#1|) (-13 (-782 |#1|) (-405 (-980 |#1|)) (-10 -8 (-15 -3629 ($ (-980 |#1|) (-980 |#1|))))) (-169)) (T -784)) +((-3629 (*1 *1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-169)) (-5 *1 (-784 *3))))) +(-13 (-782 |#1|) (-405 (-980 |#1|)) (-10 -8 (-15 -3629 ($ (-980 |#1|) (-980 |#1|))))) +((-3202 (((-111) $ $) 7)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-4010 (((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13)) (-1613 (((-111) $ $) 6))) +(((-785) (-137)) (T -785)) +((-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-785)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) (-4010 (*1 *2 *3) (-12 (-4 *1 (-785)) (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1016))))) +(-13 (-1078) (-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -4010 ((-1016) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3870 (((-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#3| |#2| (-1154)) 19))) +(((-786 |#1| |#2| |#3|) (-10 -7 (-15 -3870 ((-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#3| |#2| (-1154)))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144)) (-13 (-29 |#1|) (-1176) (-940)) (-640 |#2|)) (T -786)) +((-3870 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1154)) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1176) (-940))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4199 (-629 *4)))) (-5 *1 (-786 *6 *4 *3)) (-4 *3 (-640 *4))))) +(-10 -7 (-15 -3870 ((-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#3| |#2| (-1154)))) +((-4153 (((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-629 |#2|)) 28) (((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") |#2| (-113) (-1154)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1154)) 18) (((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 |#2|) (-629 (-113)) (-1154)) 24) (((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 (-288 |#2|)) (-629 (-113)) (-1154)) 26) (((-3 (-629 (-1237 |#2|)) "failed") (-673 |#2|) (-1154)) 37) (((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-673 |#2|) (-1237 |#2|) (-1154)) 35))) +(((-787 |#1| |#2|) (-10 -7 (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-673 |#2|) (-1237 |#2|) (-1154))) (-15 -4153 ((-3 (-629 (-1237 |#2|)) "failed") (-673 |#2|) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 (-288 |#2|)) (-629 (-113)) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 |#2|) (-629 (-113)) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") |#2| (-113) (-1154))) (-15 -4153 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|))) (-15 -4153 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-629 |#2|)))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144)) (-13 (-29 |#1|) (-1176) (-940))) (T -787)) +((-4153 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-629 *2)) (-4 *2 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *1 (-787 *6 *2)))) (-4153 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-629 *2)) (-4 *2 (-13 (-29 *6) (-1176) (-940))) (-5 *1 (-787 *6 *2)) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))))) (-4153 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1154)) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4199 (-629 *3))) *3 "failed")) (-5 *1 (-787 *6 *3)) (-4 *3 (-13 (-29 *6) (-1176) (-940))))) (-4153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4199 (-629 *7))) *7 "failed")) (-5 *1 (-787 *6 *7)))) (-4153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 *7)) (-5 *4 (-629 (-113))) (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) (-5 *1 (-787 *6 *7)))) (-4153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 (-288 *7))) (-5 *4 (-629 (-113))) (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) (-5 *1 (-787 *6 *7)))) (-4153 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-673 *6)) (-5 *4 (-1154)) (-4 *6 (-13 (-29 *5) (-1176) (-940))) (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-1237 *6))) (-5 *1 (-787 *5 *6)))) (-4153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-673 *7)) (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) (-5 *1 (-787 *6 *7)) (-5 *4 (-1237 *7))))) +(-10 -7 (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-673 |#2|) (-1237 |#2|) (-1154))) (-15 -4153 ((-3 (-629 (-1237 |#2|)) "failed") (-673 |#2|) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 (-288 |#2|)) (-629 (-113)) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#2|)) (|:| -4199 (-629 (-1237 |#2|)))) "failed") (-629 |#2|) (-629 (-113)) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1154))) (-15 -4153 ((-3 (-2 (|:| |particular| |#2|) (|:| -4199 (-629 |#2|))) |#2| "failed") |#2| (-113) (-1154))) (-15 -4153 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-629 |#2|))) (-15 -4153 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-629 |#2|)))) +((-4120 (($) 9)) (-2598 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 31)) (-1376 (((-629 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 28)) (-1580 (($ (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-3232 (($ (-629 (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-1715 (((-1242)) 12))) +(((-788) (-10 -8 (-15 -4120 ($)) (-15 -1715 ((-1242))) (-15 -1376 ((-629 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3232 ($ (-629 (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -1580 ($ (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2598 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -788)) +((-2598 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-788)))) (-1580 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-788)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-788)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-788)))) (-1715 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-788)))) (-4120 (*1 *1) (-5 *1 (-788)))) +(-10 -8 (-15 -4120 ($)) (-15 -1715 ((-1242))) (-15 -1376 ((-629 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3232 ($ (-629 (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -1580 ($ (-2 (|:| -2670 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3360 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2598 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-2308 ((|#2| |#2| (-1154)) 16)) (-3581 ((|#2| |#2| (-1154)) 51)) (-2000 (((-1 |#2| |#2|) (-1154)) 11))) +(((-789 |#1| |#2|) (-10 -7 (-15 -2308 (|#2| |#2| (-1154))) (-15 -3581 (|#2| |#2| (-1154))) (-15 -2000 ((-1 |#2| |#2|) (-1154)))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144)) (-13 (-29 |#1|) (-1176) (-940))) (T -789)) +((-2000 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-1 *5 *5)) (-5 *1 (-789 *4 *5)) (-4 *5 (-13 (-29 *4) (-1176) (-940))))) (-3581 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *1 (-789 *4 *2)) (-4 *2 (-13 (-29 *4) (-1176) (-940))))) (-2308 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *1 (-789 *4 *2)) (-4 *2 (-13 (-29 *4) (-1176) (-940)))))) +(-10 -7 (-15 -2308 (|#2| |#2| (-1154))) (-15 -3581 (|#2| |#2| (-1154))) (-15 -2000 ((-1 |#2| |#2|) (-1154)))) +((-4153 (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373) (-373)) 116) (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373)) 117) (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-629 (-373)) (-373)) 119) (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-373)) 120) (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-373)) 121) (((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373))) 122) (((-1016) (-793) (-1042)) 108) (((-1016) (-793)) 109)) (-3102 (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793) (-1042)) 75) (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793)) 77))) +(((-790) (-10 -7 (-15 -4153 ((-1016) (-793))) (-15 -4153 ((-1016) (-793) (-1042))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373) (-373))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793) (-1042))))) (T -790)) +((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1042)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-790)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-790)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1016)) (-5 *1 (-790))))) +(-10 -7 (-15 -4153 ((-1016) (-793))) (-15 -4153 ((-1016) (-793) (-1042))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373))) (-15 -4153 ((-1016) (-1237 (-310 (-373))) (-373) (-373) (-629 (-373)) (-310 (-373)) (-629 (-373)) (-373) (-373))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-793) (-1042)))) +((-3782 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4199 (-629 |#4|))) (-637 |#4|) |#4|) 35))) +(((-791 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3782 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4199 (-629 |#4|))) (-637 |#4|) |#4|))) (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552)))) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -791)) +((-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *4)) (-4 *4 (-336 *5 *6 *7)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-791 *5 *6 *7 *4))))) +(-10 -7 (-15 -3782 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4199 (-629 |#4|))) (-637 |#4|) |#4|))) +((-1774 (((-2 (|:| -2771 |#3|) (|:| |rh| (-629 (-401 |#2|)))) |#4| (-629 (-401 |#2|))) 52)) (-4270 (((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4| |#2|) 60) (((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4|) 59) (((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3| |#2|) 20) (((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3|) 21)) (-3368 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3145 ((|#2| |#3| (-629 (-401 |#2|))) 93) (((-3 |#2| "failed") |#3| (-401 |#2|)) 90))) +(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3145 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3145 (|#2| |#3| (-629 (-401 |#2|)))) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3| |#2|)) (-15 -3368 (|#2| |#3| |#1|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4| |#2|)) (-15 -3368 (|#2| |#4| |#1|)) (-15 -1774 ((-2 (|:| -2771 |#3|) (|:| |rh| (-629 (-401 |#2|)))) |#4| (-629 (-401 |#2|))))) (-13 (-357) (-144) (-1019 (-401 (-552)))) (-1213 |#1|) (-640 |#2|) (-640 (-401 |#2|))) (T -792)) +((-1774 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-2 (|:| -2771 *7) (|:| |rh| (-629 (-401 *6))))) (-5 *1 (-792 *5 *6 *7 *3)) (-5 *4 (-629 (-401 *6))) (-4 *7 (-640 *6)) (-4 *3 (-640 (-401 *6))))) (-3368 (*1 *2 *3 *4) (-12 (-4 *2 (-1213 *4)) (-5 *1 (-792 *4 *2 *5 *3)) (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-640 *2)) (-4 *3 (-640 (-401 *2))))) (-4270 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *4 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -4046 *4) (|:| -3369 *4)))) (-5 *1 (-792 *5 *4 *6 *3)) (-4 *6 (-640 *4)) (-4 *3 (-640 (-401 *4))))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-2 (|:| -4046 *5) (|:| -3369 *5)))) (-5 *1 (-792 *4 *5 *6 *3)) (-4 *6 (-640 *5)) (-4 *3 (-640 (-401 *5))))) (-3368 (*1 *2 *3 *4) (-12 (-4 *2 (-1213 *4)) (-5 *1 (-792 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) (-4 *5 (-640 (-401 *2))))) (-4270 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *4 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -4046 *4) (|:| -3369 *4)))) (-5 *1 (-792 *5 *4 *3 *6)) (-4 *3 (-640 *4)) (-4 *6 (-640 (-401 *4))))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-2 (|:| -4046 *5) (|:| -3369 *5)))) (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-640 *5)) (-4 *6 (-640 (-401 *5))))) (-3145 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-401 *2))) (-4 *2 (-1213 *5)) (-5 *1 (-792 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) (-4 *6 (-640 (-401 *2))))) (-3145 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1213 *5)) (-5 *1 (-792 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) (-4 *6 (-640 *4))))) +(-10 -7 (-15 -3145 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3145 (|#2| |#3| (-629 (-401 |#2|)))) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#3| |#2|)) (-15 -3368 (|#2| |#3| |#1|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4|)) (-15 -4270 ((-629 (-2 (|:| -4046 |#2|) (|:| -3369 |#2|))) |#4| |#2|)) (-15 -3368 (|#2| |#4| |#1|)) (-15 -1774 ((-2 (|:| -2771 |#3|) (|:| |rh| (-629 (-401 |#2|)))) |#4| (-629 (-401 |#2|))))) +((-3202 (((-111) $ $) NIL)) (-2832 (((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $) 13)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 15) (($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 12)) (-1613 (((-111) $ $) NIL))) +(((-793) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $))))) (T -793)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-793)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-793)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-793))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $)))) +((-4205 (((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 |#3|))) |#3| (-1 (-629 |#2|) |#2| (-1150 |#2|)) (-1 (-412 |#2|) |#2|)) 118)) (-3045 (((-629 (-2 (|:| |poly| |#2|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|)) 46)) (-3671 (((-629 (-2 (|:| |deg| (-756)) (|:| -2771 |#2|))) |#3|) 95)) (-3560 ((|#2| |#3|) 37)) (-2138 (((-629 (-2 (|:| -3930 |#1|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|)) 82)) (-3980 ((|#3| |#3| (-401 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 (|#2| |#3|)) (-15 -3671 ((-629 (-2 (|:| |deg| (-756)) (|:| -2771 |#2|))) |#3|)) (-15 -2138 ((-629 (-2 (|:| -3930 |#1|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|))) (-15 -3045 ((-629 (-2 (|:| |poly| |#2|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|))) (-15 -4205 ((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 |#3|))) |#3| (-1 (-629 |#2|) |#2| (-1150 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3980 (|#3| |#3| |#2|)) (-15 -3980 (|#3| |#3| (-401 |#2|)))) (-13 (-357) (-144) (-1019 (-401 (-552)))) (-1213 |#1|) (-640 |#2|) (-640 (-401 |#2|))) (T -794)) +((-3980 (*1 *2 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *2 (-640 *5)) (-4 *6 (-640 *3)))) (-3980 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-1213 *4)) (-5 *1 (-794 *4 *3 *2 *5)) (-4 *2 (-640 *3)) (-4 *5 (-640 (-401 *3))))) (-4205 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-629 *7) *7 (-1150 *7))) (-5 *5 (-1 (-412 *7) *7)) (-4 *7 (-1213 *6)) (-4 *6 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-5 *2 (-629 (-2 (|:| |frac| (-401 *7)) (|:| -2771 *3)))) (-5 *1 (-794 *6 *7 *3 *8)) (-4 *3 (-640 *7)) (-4 *8 (-640 (-401 *7))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-2 (|:| |poly| *6) (|:| -2771 *3)))) (-5 *1 (-794 *5 *6 *3 *7)) (-4 *3 (-640 *6)) (-4 *7 (-640 (-401 *6))))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -3930 *5) (|:| -2771 *3)))) (-5 *1 (-794 *5 *6 *3 *7)) (-4 *3 (-640 *6)) (-4 *7 (-640 (-401 *6))))) (-3671 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-2 (|:| |deg| (-756)) (|:| -2771 *5)))) (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-640 *5)) (-4 *6 (-640 (-401 *5))))) (-3560 (*1 *2 *3) (-12 (-4 *2 (-1213 *4)) (-5 *1 (-794 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) (-4 *5 (-640 (-401 *2)))))) +(-10 -7 (-15 -3560 (|#2| |#3|)) (-15 -3671 ((-629 (-2 (|:| |deg| (-756)) (|:| -2771 |#2|))) |#3|)) (-15 -2138 ((-629 (-2 (|:| -3930 |#1|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|))) (-15 -3045 ((-629 (-2 (|:| |poly| |#2|) (|:| -2771 |#3|))) |#3| (-1 (-629 |#1|) |#2|))) (-15 -4205 ((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 |#3|))) |#3| (-1 (-629 |#2|) |#2| (-1150 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3980 (|#3| |#3| |#2|)) (-15 -3980 (|#3| |#3| (-401 |#2|)))) +((-1668 (((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-638 |#2| (-401 |#2|)) (-629 (-401 |#2|))) 121) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-638 |#2| (-401 |#2|)) (-401 |#2|)) 120) (((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-637 (-401 |#2|)) (-629 (-401 |#2|))) 115) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-637 (-401 |#2|)) (-401 |#2|)) 113)) (-2110 ((|#2| (-638 |#2| (-401 |#2|))) 80) ((|#2| (-637 (-401 |#2|))) 83))) +(((-795 |#1| |#2|) (-10 -7 (-15 -1668 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-637 (-401 |#2|)) (-401 |#2|))) (-15 -1668 ((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-637 (-401 |#2|)) (-629 (-401 |#2|)))) (-15 -1668 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-638 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -1668 ((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-638 |#2| (-401 |#2|)) (-629 (-401 |#2|)))) (-15 -2110 (|#2| (-637 (-401 |#2|)))) (-15 -2110 (|#2| (-638 |#2| (-401 |#2|))))) (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552)))) (-1213 |#1|)) (T -795)) +((-2110 (*1 *2 *3) (-12 (-5 *3 (-638 *2 (-401 *2))) (-4 *2 (-1213 *4)) (-5 *1 (-795 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-637 (-401 *2))) (-4 *2 (-1213 *4)) (-5 *1 (-795 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6 (-401 *6))) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-2 (|:| -4199 (-629 (-401 *6))) (|:| -2325 (-673 *5)))) (-5 *1 (-795 *5 *6)) (-5 *4 (-629 (-401 *6))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-795 *5 *6)))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-401 *6))) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-2 (|:| -4199 (-629 (-401 *6))) (|:| -2325 (-673 *5)))) (-5 *1 (-795 *5 *6)) (-5 *4 (-629 (-401 *6))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-795 *5 *6))))) +(-10 -7 (-15 -1668 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-637 (-401 |#2|)) (-401 |#2|))) (-15 -1668 ((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-637 (-401 |#2|)) (-629 (-401 |#2|)))) (-15 -1668 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4199 (-629 (-401 |#2|)))) (-638 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -1668 ((-2 (|:| -4199 (-629 (-401 |#2|))) (|:| -2325 (-673 |#1|))) (-638 |#2| (-401 |#2|)) (-629 (-401 |#2|)))) (-15 -2110 (|#2| (-637 (-401 |#2|)))) (-15 -2110 (|#2| (-638 |#2| (-401 |#2|))))) +((-2654 (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) |#5| |#4|) 48))) +(((-796 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2654 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) |#5| |#4|))) (-357) (-640 |#1|) (-1213 |#1|) (-709 |#1| |#3|) (-640 |#4|)) (T -796)) +((-2654 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *7 (-1213 *5)) (-4 *4 (-709 *5 *7)) (-5 *2 (-2 (|:| -2325 (-673 *6)) (|:| |vec| (-1237 *5)))) (-5 *1 (-796 *5 *6 *7 *4 *3)) (-4 *6 (-640 *5)) (-4 *3 (-640 *4))))) +(-10 -7 (-15 -2654 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) |#5| |#4|))) +((-4205 (((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 47)) (-3703 (((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|))) 138 (|has| |#1| (-27))) (((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-629 (-401 |#2|)) (-637 (-401 |#2|))) 140 (|has| |#1| (-27))) (((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 38) (((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|)) 39) (((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 36) (((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|)) 37)) (-3045 (((-629 (-2 (|:| |poly| |#2|) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|)) 83))) +(((-797 |#1| |#2|) (-10 -7 (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -4205 ((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3045 ((-629 (-2 (|:| |poly| |#2|) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)))) (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552)))) (-1213 |#1|)) (T -797)) +((-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-638 *5 (-401 *5))) (-4 *5 (-1213 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-629 (-401 *5))) (-5 *1 (-797 *4 *5)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-637 (-401 *5))) (-4 *5 (-1213 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-629 (-401 *5))) (-5 *1 (-797 *4 *5)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-2 (|:| |poly| *6) (|:| -2771 (-638 *6 (-401 *6)))))) (-5 *1 (-797 *5 *6)) (-5 *3 (-638 *6 (-401 *6))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-5 *2 (-629 (-2 (|:| |frac| (-401 *6)) (|:| -2771 (-638 *6 (-401 *6)))))) (-5 *1 (-797 *5 *6)) (-5 *3 (-638 *6 (-401 *6))))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *7 (-401 *7))) (-5 *4 (-1 (-629 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *7 (-1213 *6)) (-5 *2 (-629 (-401 *7))) (-5 *1 (-797 *6 *7)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) (-3703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 (-401 *7))) (-5 *4 (-1 (-629 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *7 (-1213 *6)) (-5 *2 (-629 (-401 *7))) (-5 *1 (-797 *6 *7)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-1 (-629 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6))))) +(-10 -7 (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -4205 ((-629 (-2 (|:| |frac| (-401 |#2|)) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3045 ((-629 (-2 (|:| |poly| |#2|) (|:| -2771 (-638 |#2| (-401 |#2|))))) (-638 |#2| (-401 |#2|)) (-1 (-629 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)))) (-15 -3703 ((-629 (-401 |#2|)) (-637 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)))) (-15 -3703 ((-629 (-401 |#2|)) (-638 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) +((-4231 (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) (-673 |#2|) (-1237 |#1|)) 85) (((-2 (|:| A (-673 |#1|)) (|:| |eqs| (-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)) (|:| -2771 |#2|) (|:| |rh| |#1|))))) (-673 |#1|) (-1237 |#1|)) 15)) (-1946 (((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#2|) (-1237 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4199 (-629 |#1|))) |#2| |#1|)) 92)) (-4153 (((-3 (-2 (|:| |particular| (-1237 |#1|)) (|:| -4199 (-673 |#1|))) "failed") (-673 |#1|) (-1237 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed") |#2| |#1|)) 43))) +(((-798 |#1| |#2|) (-10 -7 (-15 -4231 ((-2 (|:| A (-673 |#1|)) (|:| |eqs| (-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)) (|:| -2771 |#2|) (|:| |rh| |#1|))))) (-673 |#1|) (-1237 |#1|))) (-15 -4231 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) (-673 |#2|) (-1237 |#1|))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#1|)) (|:| -4199 (-673 |#1|))) "failed") (-673 |#1|) (-1237 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed") |#2| |#1|))) (-15 -1946 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#2|) (-1237 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4199 (-629 |#1|))) |#2| |#1|)))) (-357) (-640 |#1|)) (T -798)) +((-1946 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4199 (-629 *6))) *7 *6)) (-4 *6 (-357)) (-4 *7 (-640 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1237 *6) "failed")) (|:| -4199 (-629 (-1237 *6))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1237 *6)))) (-4153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4199 (-629 *6))) "failed") *7 *6)) (-4 *6 (-357)) (-4 *7 (-640 *6)) (-5 *2 (-2 (|:| |particular| (-1237 *6)) (|:| -4199 (-673 *6)))) (-5 *1 (-798 *6 *7)) (-5 *3 (-673 *6)) (-5 *4 (-1237 *6)))) (-4231 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-640 *5)) (-5 *2 (-2 (|:| -2325 (-673 *6)) (|:| |vec| (-1237 *5)))) (-5 *1 (-798 *5 *6)) (-5 *3 (-673 *6)) (-5 *4 (-1237 *5)))) (-4231 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| A (-673 *5)) (|:| |eqs| (-629 (-2 (|:| C (-673 *5)) (|:| |g| (-1237 *5)) (|:| -2771 *6) (|:| |rh| *5)))))) (-5 *1 (-798 *5 *6)) (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) (-4 *6 (-640 *5))))) +(-10 -7 (-15 -4231 ((-2 (|:| A (-673 |#1|)) (|:| |eqs| (-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)) (|:| -2771 |#2|) (|:| |rh| |#1|))))) (-673 |#1|) (-1237 |#1|))) (-15 -4231 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#1|))) (-673 |#2|) (-1237 |#1|))) (-15 -4153 ((-3 (-2 (|:| |particular| (-1237 |#1|)) (|:| -4199 (-673 |#1|))) "failed") (-673 |#1|) (-1237 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4199 (-629 |#1|))) "failed") |#2| |#1|))) (-15 -1946 ((-2 (|:| |particular| (-3 (-1237 |#1|) "failed")) (|:| -4199 (-629 (-1237 |#1|)))) (-673 |#2|) (-1237 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4199 (-629 |#1|))) |#2| |#1|)))) +((-2769 (((-673 |#1|) (-629 |#1|) (-756)) 13) (((-673 |#1|) (-629 |#1|)) 14)) (-3745 (((-3 (-1237 |#1|) "failed") |#2| |#1| (-629 |#1|)) 34)) (-1461 (((-3 |#1| "failed") |#2| |#1| (-629 |#1|) (-1 |#1| |#1|)) 42))) +(((-799 |#1| |#2|) (-10 -7 (-15 -2769 ((-673 |#1|) (-629 |#1|))) (-15 -2769 ((-673 |#1|) (-629 |#1|) (-756))) (-15 -3745 ((-3 (-1237 |#1|) "failed") |#2| |#1| (-629 |#1|))) (-15 -1461 ((-3 |#1| "failed") |#2| |#1| (-629 |#1|) (-1 |#1| |#1|)))) (-357) (-640 |#1|)) (T -799)) +((-1461 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-629 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) (-5 *1 (-799 *2 *3)) (-4 *3 (-640 *2)))) (-3745 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-629 *4)) (-4 *4 (-357)) (-5 *2 (-1237 *4)) (-5 *1 (-799 *4 *3)) (-4 *3 (-640 *4)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-756)) (-4 *5 (-357)) (-5 *2 (-673 *5)) (-5 *1 (-799 *5 *6)) (-4 *6 (-640 *5)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-357)) (-5 *2 (-673 *4)) (-5 *1 (-799 *4 *5)) (-4 *5 (-640 *4))))) +(-10 -7 (-15 -2769 ((-673 |#1|) (-629 |#1|))) (-15 -2769 ((-673 |#1|) (-629 |#1|) (-756))) (-15 -3745 ((-3 (-1237 |#1|) "failed") |#2| |#1| (-629 |#1|))) (-15 -1461 ((-3 |#1| "failed") |#2| |#1| (-629 |#1|) (-1 |#1| |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#2| (-1078)))) (-3643 (((-111) $) NIL (|has| |#2| (-129)))) (-1725 (($ (-902)) NIL (|has| |#2| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) NIL (|has| |#2| (-778)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#2| (-362)))) (-3886 (((-552) $) NIL (|has| |#2| (-830)))) (-1470 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1078)))) (-2832 (((-552) $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) ((|#2| $) NIL (|has| |#2| (-1078)))) (-2714 (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#2| (-1030)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL (|has| |#2| (-1030))) (((-673 |#2|) (-673 $)) NIL (|has| |#2| (-1030)))) (-1293 (((-3 $ "failed") $) NIL (|has| |#2| (-711)))) (-1332 (($) NIL (|has| |#2| (-362)))) (-2957 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ (-552)) NIL)) (-1338 (((-111) $) NIL (|has| |#2| (-830)))) (-3138 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (|has| |#2| (-711)))) (-3127 (((-111) $) NIL (|has| |#2| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-3278 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-2947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#2| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#2| (-1078)))) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#2| (-362)))) (-2876 (((-1098) $) NIL (|has| |#2| (-1078)))) (-2702 ((|#2| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-3632 ((|#2| $ $) NIL (|has| |#2| (-1030)))) (-3519 (($ (-1237 |#2|)) NIL)) (-3725 (((-132)) NIL (|has| |#2| (-357)))) (-3096 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-2885 (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#2|) $) NIL) (($ (-552)) NIL (-4029 (-12 (|has| |#2| (-1019 (-552))) (|has| |#2| (-1078))) (|has| |#2| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1019 (-401 (-552)))) (|has| |#2| (-1078)))) (($ |#2|) NIL (|has| |#2| (-1078))) (((-844) $) NIL (|has| |#2| (-599 (-844))))) (-2014 (((-756)) NIL (|has| |#2| (-1030)))) (-2584 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#2| (-830)))) (-3297 (($) NIL (|has| |#2| (-129)) CONST)) (-3309 (($) NIL (|has| |#2| (-711)) CONST)) (-1765 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#2| (-881 (-1154))) (|has| |#2| (-1030)))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#2| (-1030))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1030)))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1613 (((-111) $ $) NIL (|has| |#2| (-1078)))) (-1655 (((-111) $ $) NIL (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1632 (((-111) $ $) 11 (-4029 (|has| |#2| (-778)) (|has| |#2| (-830))))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $ $) NIL (|has| |#2| (-1030))) (($ $) NIL (|has| |#2| (-1030)))) (-1698 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-756)) NIL (|has| |#2| (-711))) (($ $ (-902)) NIL (|has| |#2| (-711)))) (* (($ (-552) $) NIL (|has| |#2| (-1030))) (($ $ $) NIL (|has| |#2| (-711))) (($ $ |#2|) NIL (|has| |#2| (-711))) (($ |#2| $) NIL (|has| |#2| (-711))) (($ (-756) $) NIL (|has| |#2| (-129))) (($ (-902) $) NIL (|has| |#2| (-25)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-800 |#1| |#2| |#3|) (-233 |#1| |#2|) (-756) (-778) (-1 (-111) (-1237 |#2|) (-1237 |#2|))) (T -800)) NIL (-233 |#1| |#2|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ (-1152)) NIL)) (-2671 (((-754) $) NIL) (((-754) $ (-1152)) NIL)) (-1853 (((-627 (-801 (-1152))) $) NIL)) (-1694 (((-1148 $) $ (-801 (-1152))) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-801 (-1152)))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-801 (-1152)) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL) (((-3 (-1101 |#1| (-1152)) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-801 (-1152)) $) NIL) (((-1152) $) NIL) (((-1101 |#1| (-1152)) $) NIL)) (-3116 (($ $ $ (-801 (-1152))) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-801 (-1152))) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-801 (-1152))) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-801 (-1152)) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-801 (-1152)) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-801 (-1152))) NIL) (($ (-1148 $) (-801 (-1152))) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-801 (-1152))) NIL)) (-3465 (((-523 (-801 (-1152))) $) NIL) (((-754) $ (-801 (-1152))) NIL) (((-627 (-754)) $ (-627 (-801 (-1152)))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-801 (-1152))) (-523 (-801 (-1152)))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) (-1152)) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 (-801 (-1152)) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 (((-801 (-1152)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-801 (-1152))) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-801 (-1152)) |#1|) NIL) (($ $ (-627 (-801 (-1152))) (-627 |#1|)) NIL) (($ $ (-801 (-1152)) $) NIL) (($ $ (-627 (-801 (-1152))) (-627 $)) NIL) (($ $ (-1152) $) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 $)) NIL (|has| |#1| (-228))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ (-801 (-1152))) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-801 (-1152))) NIL) (($ $ (-627 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 (-1152)) $) NIL)) (-3567 (((-523 (-801 (-1152))) $) NIL) (((-754) $ (-801 (-1152))) NIL) (((-627 (-754)) $ (-627 (-801 (-1152)))) NIL) (((-754) $ (-1152)) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-801 (-1152))) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-801 (-1152))) NIL) (($ (-1152)) NIL) (($ (-1101 |#1| (-1152))) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-801 (-1152))) NIL) (($ $ (-627 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-799 |#1|) (-13 (-247 |#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) (-1017 (-1101 |#1| (-1152)))) (-1028)) (T -799)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2025 (((-629 (-756)) $) NIL) (((-629 (-756)) $ (-1154)) NIL)) (-1400 (((-756) $) NIL) (((-756) $ (-1154)) NIL)) (-3611 (((-629 (-803 (-1154))) $) NIL)) (-3449 (((-1150 $) $ (-803 (-1154))) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-803 (-1154)))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1523 (($ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-803 (-1154)) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL) (((-3 (-1103 |#1| (-1154)) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-803 (-1154)) $) NIL) (((-1154) $) NIL) (((-1103 |#1| (-1154)) $) NIL)) (-3301 (($ $ $ (-803 (-1154))) NIL (|has| |#1| (-169)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ (-803 (-1154))) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-523 (-803 (-1154))) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-803 (-1154)) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-803 (-1154)) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ (-1154)) NIL) (((-756) $) NIL)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#1|) (-803 (-1154))) NIL) (($ (-1150 $) (-803 (-1154))) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-523 (-803 (-1154)))) NIL) (($ $ (-803 (-1154)) (-756)) NIL) (($ $ (-629 (-803 (-1154))) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-803 (-1154))) NIL)) (-3544 (((-523 (-803 (-1154))) $) NIL) (((-756) $ (-803 (-1154))) NIL) (((-629 (-756)) $ (-629 (-803 (-1154)))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 (-803 (-1154))) (-523 (-803 (-1154)))) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2681 (((-1 $ (-756)) (-1154)) NIL) (((-1 $ (-756)) $) NIL (|has| |#1| (-228)))) (-3506 (((-3 (-803 (-1154)) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2507 (((-803 (-1154)) $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1836 (((-111) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-803 (-1154))) (|:| -1406 (-756))) "failed") $) NIL)) (-3017 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-803 (-1154)) |#1|) NIL) (($ $ (-629 (-803 (-1154))) (-629 |#1|)) NIL) (($ $ (-803 (-1154)) $) NIL) (($ $ (-629 (-803 (-1154))) (-629 $)) NIL) (($ $ (-1154) $) NIL (|has| |#1| (-228))) (($ $ (-629 (-1154)) (-629 $)) NIL (|has| |#1| (-228))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-228))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-228)))) (-1721 (($ $ (-803 (-1154))) NIL (|has| |#1| (-169)))) (-3096 (($ $ (-803 (-1154))) NIL) (($ $ (-629 (-803 (-1154)))) NIL) (($ $ (-803 (-1154)) (-756)) NIL) (($ $ (-629 (-803 (-1154))) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2619 (((-629 (-1154)) $) NIL)) (-3299 (((-523 (-803 (-1154))) $) NIL) (((-756) $ (-803 (-1154))) NIL) (((-629 (-756)) $ (-629 (-803 (-1154)))) NIL) (((-756) $ (-1154)) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-803 (-1154)) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-803 (-1154)) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-803 (-1154)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-803 (-1154))) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-803 (-1154))) NIL) (($ (-1154)) NIL) (($ (-1103 |#1| (-1154))) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-523 (-803 (-1154)))) NIL) (($ $ (-803 (-1154)) (-756)) NIL) (($ $ (-629 (-803 (-1154))) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-803 (-1154))) NIL) (($ $ (-629 (-803 (-1154)))) NIL) (($ $ (-803 (-1154)) (-756)) NIL) (($ $ (-629 (-803 (-1154))) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-801 |#1|) (-13 (-247 |#1| (-1154) (-803 (-1154)) (-523 (-803 (-1154)))) (-1019 (-1103 |#1| (-1154)))) (-1030)) (T -801)) NIL -(-13 (-247 |#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) (-1017 (-1101 |#1| (-1152)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-357)))) (-3245 (($ $) NIL (|has| |#2| (-357)))) (-4058 (((-111) $) NIL (|has| |#2| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#2| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-357)))) (-4224 (((-111) $ $) NIL (|has| |#2| (-357)))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#2| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#2| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#2| (-357)))) (-1633 (((-111) $) NIL (|has| |#2| (-357)))) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-1276 (($ (-627 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 20 (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-2718 (((-754) $) NIL (|has| |#2| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-2942 (($ $ (-754)) NIL) (($ $) 13)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-401 (-552))) NIL (|has| |#2| (-357))) (($ $) NIL (|has| |#2| (-357)))) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) 15 (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL) (($ $ (-552)) 18 (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) NIL (|has| |#2| (-357))) (($ $ (-401 (-552))) NIL (|has| |#2| (-357))))) -(((-800 |#1| |#2| |#3|) (-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -1477 ($ |#2|)) (-15 -1477 (|#2| $)))) (-1076) (-879 |#1|) |#1|) (T -800)) -((-1477 (*1 *1 *2) (-12 (-4 *3 (-1076)) (-14 *4 *3) (-5 *1 (-800 *3 *2 *4)) (-4 *2 (-879 *3)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-879 *3)) (-5 *1 (-800 *3 *2 *4)) (-4 *3 (-1076)) (-14 *4 *3)))) -(-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -1477 ($ |#2|)) (-15 -1477 (|#2| $)))) -((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) NIL)) (-4344 ((|#1| $) 10)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2641 (((-754) $) 11)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4250 (($ |#1| (-754)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL))) -(((-801 |#1|) (-260 |#1|) (-830)) (T -801)) +(-13 (-247 |#1| (-1154) (-803 (-1154)) (-523 (-803 (-1154)))) (-1019 (-1103 |#1| (-1154)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-357)))) (-3303 (($ $) NIL (|has| |#2| (-357)))) (-1334 (((-111) $) NIL (|has| |#2| (-357)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#2| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-357)))) (-2393 (((-111) $ $) NIL (|has| |#2| (-357)))) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#2| (-357)))) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#2| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#2| (-357)))) (-1677 (((-111) $) NIL (|has| |#2| (-357)))) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#2| (-357)))) (-2552 (($ (-629 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 20 (|has| |#2| (-357)))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#2| (-357)))) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#2| (-357)))) (-3795 (((-756) $) NIL (|has| |#2| (-357)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-357)))) (-3096 (($ $ (-756)) NIL) (($ $) 13)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-401 (-552))) NIL (|has| |#2| (-357))) (($ $) NIL (|has| |#2| (-357)))) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL (|has| |#2| (-357)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) 15 (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL) (($ $ (-552)) 18 (|has| |#2| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) NIL (|has| |#2| (-357))) (($ $ (-401 (-552))) NIL (|has| |#2| (-357))))) +(((-802 |#1| |#2| |#3|) (-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -3213 ($ |#2|)) (-15 -3213 (|#2| $)))) (-1078) (-881 |#1|) |#1|) (T -802)) +((-3213 (*1 *1 *2) (-12 (-4 *3 (-1078)) (-14 *4 *3) (-5 *1 (-802 *3 *2 *4)) (-4 *2 (-881 *3)))) (-3213 (*1 *2 *1) (-12 (-4 *2 (-881 *3)) (-5 *1 (-802 *3 *2 *4)) (-4 *3 (-1078)) (-14 *4 *3)))) +(-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -3213 ($ |#2|)) (-15 -3213 (|#2| $)))) +((-3202 (((-111) $ $) NIL)) (-1400 (((-756) $) NIL)) (-1485 ((|#1| $) 10)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-4241 (((-756) $) 11)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2681 (($ |#1| (-756)) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3096 (($ $) NIL) (($ $ (-756)) NIL)) (-3213 (((-844) $) NIL) (($ |#1|) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL))) +(((-803 |#1|) (-260 |#1|) (-832)) (T -803)) NIL (-260 |#1|) -((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 29)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-1899 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-3351 (($ $) 31)) (-2040 (((-3 $ "failed") $) NIL)) (-2930 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2624 (((-111) $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-754) $ (-552)) NIL)) (-3627 (($ $) 36)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1543 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3637 (((-111) $ $) 34)) (-3593 (((-754) $) 25)) (-1595 (((-1134) $) NIL)) (-2345 (($ $ $) NIL)) (-2093 (($ $ $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) 30)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) NIL)) (-2773 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1933 (($) 15 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ |#1| (-754)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-802 |#1|) (-13 (-826) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -3340 (|#1| $)) (-15 -3351 ($ $)) (-15 -3627 ($ $)) (-15 -3637 ((-111) $ $)) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1543 ((-3 $ "failed") $ |#1|)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -2773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -3593 ((-754) $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -802)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-2093 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2345 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1543 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1543 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1899 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2773 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |rm| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-2930 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |mm| (-802 *3)) (|:| |rm| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-802 *4)) (-4 *4 (-830)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-802 *3)) (-4 *3 (-830))))) -(-13 (-826) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -3340 (|#1| $)) (-15 -3351 ($ $)) (-15 -3627 ($ $)) (-15 -3637 ((-111) $ $)) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1543 ((-3 $ "failed") $ |#1|)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -2773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -3593 ((-754) $)) (-15 -1671 ((-627 |#1|) $)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2422 (((-552) $) 51)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2983 (((-111) $) 49)) (-2624 (((-111) $) 30)) (-1508 (((-111) $) 50)) (-1816 (($ $ $) 48)) (-4093 (($ $ $) 47)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 52)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 45)) (-2329 (((-111) $ $) 44)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 46)) (-2316 (((-111) $ $) 43)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-803) (-137)) (T -803)) -NIL -(-13 (-544) (-828)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3003 (($ (-1096)) 7)) (-1955 (((-111) $ (-1134) (-1096)) 15)) (-1732 (((-805) $) 12)) (-3259 (((-805) $) 11)) (-2439 (((-1240) $) 9)) (-3408 (((-111) $ (-1096)) 16))) -(((-804) (-10 -8 (-15 -3003 ($ (-1096))) (-15 -2439 ((-1240) $)) (-15 -3259 ((-805) $)) (-15 -1732 ((-805) $)) (-15 -1955 ((-111) $ (-1134) (-1096))) (-15 -3408 ((-111) $ (-1096))))) (T -804)) -((-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-111)) (-5 *1 (-804)))) (-1955 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-1096)) (-5 *2 (-111)) (-5 *1 (-804)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-804)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-804))))) -(-10 -8 (-15 -3003 ($ (-1096))) (-15 -2439 ((-1240) $)) (-15 -3259 ((-805) $)) (-15 -1732 ((-805) $)) (-15 -1955 ((-111) $ (-1134) (-1096))) (-15 -3408 ((-111) $ (-1096)))) -((-3753 (((-1240) $ (-806)) 12)) (-3387 (((-1240) $ (-1152)) 32)) (-1506 (((-1240) $ (-1134) (-1134)) 34)) (-1837 (((-1240) $ (-1134)) 33)) (-3665 (((-1240) $) 19)) (-4051 (((-1240) $ (-552)) 28)) (-2576 (((-1240) $ (-220)) 30)) (-1636 (((-1240) $) 18)) (-4312 (((-1240) $) 26)) (-2010 (((-1240) $) 25)) (-3980 (((-1240) $) 23)) (-2377 (((-1240) $) 24)) (-1273 (((-1240) $) 22)) (-2850 (((-1240) $) 21)) (-3264 (((-1240) $) 20)) (-2056 (((-1240) $) 16)) (-3687 (((-1240) $) 17)) (-3500 (((-1240) $) 15)) (-3824 (((-1240) $) 14)) (-4197 (((-1240) $) 13)) (-2497 (($ (-1134) (-806)) 9)) (-2976 (($ (-1134) (-1134) (-806)) 8)) (-1429 (((-1152) $) 51)) (-4180 (((-1152) $) 55)) (-2573 (((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $) 54)) (-2988 (((-1134) $) 52)) (-1392 (((-1240) $) 41)) (-4145 (((-552) $) 49)) (-2722 (((-220) $) 50)) (-2630 (((-1240) $) 40)) (-2450 (((-1240) $) 48)) (-3950 (((-1240) $) 47)) (-3878 (((-1240) $) 45)) (-2343 (((-1240) $) 46)) (-4201 (((-1240) $) 44)) (-2679 (((-1240) $) 43)) (-3041 (((-1240) $) 42)) (-4100 (((-1240) $) 38)) (-3962 (((-1240) $) 39)) (-2393 (((-1240) $) 37)) (-3741 (((-1240) $) 36)) (-2090 (((-1240) $) 35)) (-4042 (((-1240) $) 11))) -(((-805) (-10 -8 (-15 -2976 ($ (-1134) (-1134) (-806))) (-15 -2497 ($ (-1134) (-806))) (-15 -4042 ((-1240) $)) (-15 -3753 ((-1240) $ (-806))) (-15 -4197 ((-1240) $)) (-15 -3824 ((-1240) $)) (-15 -3500 ((-1240) $)) (-15 -2056 ((-1240) $)) (-15 -3687 ((-1240) $)) (-15 -1636 ((-1240) $)) (-15 -3665 ((-1240) $)) (-15 -3264 ((-1240) $)) (-15 -2850 ((-1240) $)) (-15 -1273 ((-1240) $)) (-15 -3980 ((-1240) $)) (-15 -2377 ((-1240) $)) (-15 -2010 ((-1240) $)) (-15 -4312 ((-1240) $)) (-15 -4051 ((-1240) $ (-552))) (-15 -2576 ((-1240) $ (-220))) (-15 -3387 ((-1240) $ (-1152))) (-15 -1837 ((-1240) $ (-1134))) (-15 -1506 ((-1240) $ (-1134) (-1134))) (-15 -2090 ((-1240) $)) (-15 -3741 ((-1240) $)) (-15 -2393 ((-1240) $)) (-15 -4100 ((-1240) $)) (-15 -3962 ((-1240) $)) (-15 -2630 ((-1240) $)) (-15 -1392 ((-1240) $)) (-15 -3041 ((-1240) $)) (-15 -2679 ((-1240) $)) (-15 -4201 ((-1240) $)) (-15 -3878 ((-1240) $)) (-15 -2343 ((-1240) $)) (-15 -3950 ((-1240) $)) (-15 -2450 ((-1240) $)) (-15 -4145 ((-552) $)) (-15 -2722 ((-220) $)) (-15 -1429 ((-1152) $)) (-15 -2988 ((-1134) $)) (-15 -2573 ((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $)) (-15 -4180 ((-1152) $)))) (T -805)) -((-4180 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1134)) (|:| -3112 (-1134)))) (-5 *1 (-805)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-805)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-805)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-805)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1506 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-2576 (*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2497 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805)))) (-2976 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) -(-10 -8 (-15 -2976 ($ (-1134) (-1134) (-806))) (-15 -2497 ($ (-1134) (-806))) (-15 -4042 ((-1240) $)) (-15 -3753 ((-1240) $ (-806))) (-15 -4197 ((-1240) $)) (-15 -3824 ((-1240) $)) (-15 -3500 ((-1240) $)) (-15 -2056 ((-1240) $)) (-15 -3687 ((-1240) $)) (-15 -1636 ((-1240) $)) (-15 -3665 ((-1240) $)) (-15 -3264 ((-1240) $)) (-15 -2850 ((-1240) $)) (-15 -1273 ((-1240) $)) (-15 -3980 ((-1240) $)) (-15 -2377 ((-1240) $)) (-15 -2010 ((-1240) $)) (-15 -4312 ((-1240) $)) (-15 -4051 ((-1240) $ (-552))) (-15 -2576 ((-1240) $ (-220))) (-15 -3387 ((-1240) $ (-1152))) (-15 -1837 ((-1240) $ (-1134))) (-15 -1506 ((-1240) $ (-1134) (-1134))) (-15 -2090 ((-1240) $)) (-15 -3741 ((-1240) $)) (-15 -2393 ((-1240) $)) (-15 -4100 ((-1240) $)) (-15 -3962 ((-1240) $)) (-15 -2630 ((-1240) $)) (-15 -1392 ((-1240) $)) (-15 -3041 ((-1240) $)) (-15 -2679 ((-1240) $)) (-15 -4201 ((-1240) $)) (-15 -3878 ((-1240) $)) (-15 -2343 ((-1240) $)) (-15 -3950 ((-1240) $)) (-15 -2450 ((-1240) $)) (-15 -4145 ((-552) $)) (-15 -2722 ((-220) $)) (-15 -1429 ((-1152) $)) (-15 -2988 ((-1134) $)) (-15 -2573 ((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $)) (-15 -4180 ((-1152) $))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 12)) (-1979 (($) 15)) (-4277 (($) 13)) (-3486 (($) 16)) (-3879 (($) 14)) (-2292 (((-111) $ $) 8))) -(((-806) (-13 (-1076) (-10 -8 (-15 -4277 ($)) (-15 -1979 ($)) (-15 -3486 ($)) (-15 -3879 ($))))) (T -806)) -((-4277 (*1 *1) (-5 *1 (-806))) (-1979 (*1 *1) (-5 *1 (-806))) (-3486 (*1 *1) (-5 *1 (-806))) (-3879 (*1 *1) (-5 *1 (-806)))) -(-13 (-1076) (-10 -8 (-15 -4277 ($)) (-15 -1979 ($)) (-15 -3486 ($)) (-15 -3879 ($)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (($ (-1152)) 17)) (-4125 (((-111) $) 10)) (-1679 (((-111) $) 9)) (-1600 (((-111) $) 11)) (-1485 (((-111) $) 8)) (-2292 (((-111) $ $) 19))) -(((-807) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -1485 ((-111) $)) (-15 -1679 ((-111) $)) (-15 -4125 ((-111) $)) (-15 -1600 ((-111) $))))) (T -807)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-807)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -1485 ((-111) $)) (-15 -1679 ((-111) $)) (-15 -4125 ((-111) $)) (-15 -1600 ((-111) $)))) -((-1465 (((-111) $ $) NIL)) (-3825 (($ (-807) (-627 (-1152))) 24)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3142 (((-807) $) 25)) (-2326 (((-627 (-1152)) $) 26)) (-1477 (((-842) $) 23)) (-2292 (((-111) $ $) NIL))) -(((-808) (-13 (-1076) (-10 -8 (-15 -3142 ((-807) $)) (-15 -2326 ((-627 (-1152)) $)) (-15 -3825 ($ (-807) (-627 (-1152))))))) (T -808)) -((-3142 (*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-808)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-808)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-807)) (-5 *3 (-627 (-1152))) (-5 *1 (-808))))) -(-13 (-1076) (-10 -8 (-15 -3142 ((-807) $)) (-15 -2326 ((-627 (-1152)) $)) (-15 -3825 ($ (-807) (-627 (-1152)))))) -((-4157 (((-1240) (-805) (-310 |#1|) (-111)) 23) (((-1240) (-805) (-310 |#1|)) 79) (((-1134) (-310 |#1|) (-111)) 78) (((-1134) (-310 |#1|)) 77))) -(((-809 |#1|) (-10 -7 (-15 -4157 ((-1134) (-310 |#1|))) (-15 -4157 ((-1134) (-310 |#1|) (-111))) (-15 -4157 ((-1240) (-805) (-310 |#1|))) (-15 -4157 ((-1240) (-805) (-310 |#1|) (-111)))) (-13 (-811) (-830) (-1028))) (T -809)) -((-4157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805)) (-5 *4 (-310 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) (-5 *1 (-809 *6)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) (-5 *1 (-809 *5)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) (-5 *1 (-809 *5)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) (-5 *1 (-809 *4))))) -(-10 -7 (-15 -4157 ((-1134) (-310 |#1|))) (-15 -4157 ((-1134) (-310 |#1|) (-111))) (-15 -4157 ((-1240) (-805) (-310 |#1|))) (-15 -4157 ((-1240) (-805) (-310 |#1|) (-111)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3863 ((|#1| $) 10)) (-3354 (($ |#1|) 9)) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) NIL)) (-3465 (((-754) $) NIL)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-3567 (((-754) $) NIL)) (-1477 (((-842) $) 17) (($ (-552)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-1889 ((|#2| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-810 |#1| |#2|) (-13 (-691 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -3354 ($ |#1|)) (-15 -3863 (|#1| $)))) (-691 |#2|) (-1028)) (T -810)) -((-3354 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-810 *2 *3)) (-4 *2 (-691 *3)))) (-3863 (*1 *2 *1) (-12 (-4 *2 (-691 *3)) (-5 *1 (-810 *2 *3)) (-4 *3 (-1028))))) -(-13 (-691 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -3354 ($ |#1|)) (-15 -3863 (|#1| $)))) -((-4157 (((-1240) (-805) $ (-111)) 9) (((-1240) (-805) $) 8) (((-1134) $ (-111)) 7) (((-1134) $) 6))) -(((-811) (-137)) (T -811)) -((-4157 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *4 (-111)) (-5 *2 (-1240)))) (-4157 (*1 *2 *3 *1) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *2 (-1240)))) (-4157 (*1 *2 *1 *3) (-12 (-4 *1 (-811)) (-5 *3 (-111)) (-5 *2 (-1134)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-1134))))) -(-13 (-10 -8 (-15 -4157 ((-1134) $)) (-15 -4157 ((-1134) $ (-111))) (-15 -4157 ((-1240) (-805) $)) (-15 -4157 ((-1240) (-805) $ (-111))))) -((-1338 (((-306) (-1134) (-1134)) 12)) (-1689 (((-111) (-1134) (-1134)) 34)) (-3212 (((-111) (-1134)) 33)) (-1634 (((-52) (-1134)) 25)) (-1947 (((-52) (-1134)) 23)) (-2321 (((-52) (-805)) 17)) (-2383 (((-627 (-1134)) (-1134)) 28)) (-3895 (((-627 (-1134))) 27))) -(((-812) (-10 -7 (-15 -2321 ((-52) (-805))) (-15 -1947 ((-52) (-1134))) (-15 -1634 ((-52) (-1134))) (-15 -3895 ((-627 (-1134)))) (-15 -2383 ((-627 (-1134)) (-1134))) (-15 -3212 ((-111) (-1134))) (-15 -1689 ((-111) (-1134) (-1134))) (-15 -1338 ((-306) (-1134) (-1134))))) (T -812)) -((-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-812)))) (-1689 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812)))) (-2383 (*1 *2 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)) (-5 *3 (-1134)))) (-3895 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-52)) (-5 *1 (-812))))) -(-10 -7 (-15 -2321 ((-52) (-805))) (-15 -1947 ((-52) (-1134))) (-15 -1634 ((-52) (-1134))) (-15 -3895 ((-627 (-1134)))) (-15 -2383 ((-627 (-1134)) (-1134))) (-15 -3212 ((-111) (-1134))) (-15 -1689 ((-111) (-1134) (-1134))) (-15 -1338 ((-306) (-1134) (-1134)))) -((-1465 (((-111) $ $) 19)) (-3416 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) 8)) (-1342 (($ (-627 |#1|)) 68) (($) 67)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 64)) (-1602 (((-111) $ (-754)) 9)) (-1816 ((|#1| $) 78)) (-1438 (($ $ $) 81)) (-3759 (($ $ $) 80)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 79)) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 69)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-2613 (($ $ |#1|) 71) (($ $ $) 70)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18)) (-4243 (($ (-627 |#1|)) 66) (($) 65)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-813 |#1|) (-137) (-830)) (T -813)) -((-1816 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-830))))) -(-13 (-719 |t#1|) (-947 |t#1|) (-10 -8 (-15 -1816 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-677 |#1|) . T) ((-719 |#1|) . T) ((-947 |#1|) . T) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) -((-3236 (((-1240) (-1096) (-1096)) 47)) (-1460 (((-1240) (-804) (-52)) 44)) (-3992 (((-52) (-804)) 16))) -(((-814) (-10 -7 (-15 -3992 ((-52) (-804))) (-15 -1460 ((-1240) (-804) (-52))) (-15 -3236 ((-1240) (-1096) (-1096))))) (T -814)) -((-3236 (*1 *2 *3 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-1240)) (-5 *1 (-814)))) (-1460 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-52)) (-5 *2 (-1240)) (-5 *1 (-814)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-52)) (-5 *1 (-814))))) -(-10 -7 (-15 -3992 ((-52) (-804))) (-15 -1460 ((-1240) (-804) (-52))) (-15 -3236 ((-1240) (-1096) (-1096)))) -((-3516 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)) 12) (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 13))) -(((-815 |#1| |#2|) (-10 -7 (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)))) (-1076) (-1076)) (T -815)) -((-3516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-815 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))) -(-10 -7 (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL (|has| |#1| (-21)) CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 15)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 9)) (-2040 (((-3 $ "failed") $) 40 (|has| |#1| (-828)))) (-2859 (((-3 (-401 (-552)) "failed") $) 49 (|has| |#1| (-537)))) (-4229 (((-111) $) 43 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 46 (|has| |#1| (-537)))) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-2624 (((-111) $) NIL (|has| |#1| (-828)))) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-2962 (($) 13)) (-3493 (((-111) $) 12)) (-1498 (((-1096) $) NIL)) (-1932 (((-111) $) 11)) (-1477 (((-842) $) 18) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1559 (|has| |#1| (-828)) (|has| |#1| (-1017 (-552)))))) (-3995 (((-754)) 34 (|has| |#1| (-828)))) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) 22 (|has| |#1| (-21)) CONST)) (-1933 (($) 31 (|has| |#1| (-828)) CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) 42 (|has| |#1| (-828)))) (-2396 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2384 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-900)) NIL (|has| |#1| (-828))) (($ $ (-754)) NIL (|has| |#1| (-828)))) (* (($ $ $) 37 (|has| |#1| (-828))) (($ (-552) $) 25 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-21))))) -(((-816 |#1|) (-13 (-1076) (-405 |#1|) (-10 -8 (-15 -2962 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1076)) (T -816)) -((-2962 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1076)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076))))) -(-13 (-1076) (-405 |#1|) (-10 -8 (-15 -2962 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-113) $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3684 ((|#1| (-113) |#1|) NIL)) (-2624 (((-111) $) NIL)) (-1962 (($ |#1| (-355 (-113))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2322 (($ $ (-1 |#1| |#1|)) NIL)) (-2201 (($ $ (-1 |#1| |#1|)) NIL)) (-1985 ((|#1| $ |#1|) NIL)) (-3830 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-2279 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-817 |#1|) (-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#1| |#1|))) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#1| (-113) |#1|)) (-15 -1962 ($ |#1| (-355 (-113)))))) (-1028)) (T -817)) -((-2279 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-3830 (*1 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-817 *4)) (-4 *4 (-1028)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-817 *3)) (-4 *3 (-1028)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-817 *2)) (-4 *2 (-1028)))) (-1962 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) -(-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#1| |#1|))) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#1| (-113) |#1|)) (-15 -1962 ($ |#1| (-355 (-113)))))) -((-1918 (((-209 (-494)) (-1134)) 9))) -(((-818) (-10 -7 (-15 -1918 ((-209 (-494)) (-1134))))) (T -818)) -((-1918 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-209 (-494))) (-5 *1 (-818))))) -(-10 -7 (-15 -1918 ((-209 (-494)) (-1134)))) -((-1465 (((-111) $ $) 7)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 14) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 13)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 16) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 15)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-819) (-137)) (T -819)) -((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-3466 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-1014)))) (-3466 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *2 (-1014))))) -(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -3466 ((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -3466 ((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1834 (((-1014) (-627 (-310 (-373))) (-627 (-373))) 147) (((-1014) (-310 (-373)) (-627 (-373))) 145) (((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373)))) 144) (((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373)))) 143) (((-1014) (-821)) 117) (((-1014) (-821) (-1040)) 116)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040)) 82) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821)) 84)) (-3248 (((-1014) (-627 (-310 (-373))) (-627 (-373))) 148) (((-1014) (-821)) 133))) -(((-820) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040))) (-15 -1834 ((-1014) (-821) (-1040))) (-15 -1834 ((-1014) (-821))) (-15 -3248 ((-1014) (-821))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)))) (-15 -1834 ((-1014) (-627 (-310 (-373))) (-627 (-373)))) (-15 -3248 ((-1014) (-627 (-310 (-373))) (-627 (-373)))))) (T -820)) -((-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) (-5 *6 (-627 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-820)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-820))))) -(-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040))) (-15 -1834 ((-1014) (-821) (-1040))) (-15 -1834 ((-1014) (-821))) (-15 -3248 ((-1014) (-821))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)))) (-15 -1834 ((-1014) (-627 (-310 (-373))) (-627 (-373)))) (-15 -3248 ((-1014) (-627 (-310 (-373))) (-627 (-373))))) -((-1465 (((-111) $ $) NIL)) (-1703 (((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 14) (($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) 18)) (-2292 (((-111) $ $) NIL))) -(((-821) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1477 ($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1477 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $))))) (T -821)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *1 (-821)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *1 (-821))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1477 ($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1477 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $)))) -((-3516 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)) 13) (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14))) -(((-822 |#1| |#2|) (-10 -7 (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))) (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)))) (-1076) (-1076)) (T -822)) -((-3516 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-823 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-822 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))) (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-1753 (((-1096) $) 24)) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL (|has| |#1| (-21)) CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 16)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 9)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-828)))) (-2859 (((-3 (-401 (-552)) "failed") $) 54 (|has| |#1| (-537)))) (-4229 (((-111) $) 49 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 52 (|has| |#1| (-537)))) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-3596 (($) 13)) (-2624 (((-111) $) NIL (|has| |#1| (-828)))) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-3610 (($) 14)) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-3493 (((-111) $) 12)) (-1498 (((-1096) $) NIL)) (-1932 (((-111) $) 11)) (-1477 (((-842) $) 22) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1559 (|has| |#1| (-828)) (|has| |#1| (-1017 (-552)))))) (-3995 (((-754)) 41 (|has| |#1| (-828)))) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) 29 (|has| |#1| (-21)) CONST)) (-1933 (($) 38 (|has| |#1| (-828)) CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) 27)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) 48 (|has| |#1| (-828)))) (-2396 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2384 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-900)) NIL (|has| |#1| (-828))) (($ $ (-754)) NIL (|has| |#1| (-828)))) (* (($ $ $) 44 (|has| |#1| (-828))) (($ (-552) $) 32 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-21))))) -(((-823 |#1|) (-13 (-1076) (-405 |#1|) (-10 -8 (-15 -3596 ($)) (-15 -3610 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (-15 -1753 ((-1096) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1076)) (T -823)) -((-3596 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076)))) (-3610 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076))))) -(-13 (-1076) (-405 |#1|) (-10 -8 (-15 -3596 ($)) (-15 -3610 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (-15 -1753 ((-1096) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) -((-1465 (((-111) $ $) 7)) (-3307 (((-754)) 20)) (-1279 (($) 23)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-2886 (((-900) $) 22)) (-1595 (((-1134) $) 9)) (-4153 (($ (-900)) 21)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) -(((-824) (-137)) (T -824)) -NIL -(-13 (-830) (-362)) -(((-101) . T) ((-599 (-842)) . T) ((-362) . T) ((-830) . T) ((-1076) . T)) -((-3953 (((-111) (-1235 |#2|) (-1235 |#2|)) 17)) (-2304 (((-111) (-1235 |#2|) (-1235 |#2|)) 18)) (-3662 (((-111) (-1235 |#2|) (-1235 |#2|)) 14))) -(((-825 |#1| |#2|) (-10 -7 (-15 -3662 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -3953 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -2304 ((-111) (-1235 |#2|) (-1235 |#2|)))) (-754) (-775)) (T -825)) -((-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754)))) (-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754)))) (-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) -(-10 -7 (-15 -3662 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -3953 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -2304 ((-111) (-1235 |#2|) (-1235 |#2|)))) -((-1465 (((-111) $ $) 7)) (-3887 (($) 23 T CONST)) (-2040 (((-3 $ "failed") $) 26)) (-2624 (((-111) $) 24)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (** (($ $ (-900)) 21) (($ $ (-754)) 25)) (* (($ $ $) 20))) +((-3202 (((-111) $ $) NIL)) (-2814 (((-629 |#1|) $) 29)) (-2663 (((-756) $) NIL)) (-2130 (($) NIL T CONST)) (-2390 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-2715 (($ $) 31)) (-1293 (((-3 $ "failed") $) NIL)) (-2058 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4065 (((-111) $) NIL)) (-3261 ((|#1| $ (-552)) NIL)) (-1935 (((-756) $ (-552)) NIL)) (-2643 (($ $) 36)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2137 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2752 (((-111) $ $) 34)) (-2556 (((-756) $) 25)) (-2623 (((-1136) $) NIL)) (-4307 (($ $ $) NIL)) (-3708 (($ $ $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 ((|#1| $) 30)) (-3772 (((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $) NIL)) (-3977 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3213 (((-844) $) NIL) (($ |#1|) NIL)) (-3309 (($) 15 T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 35)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ |#1| (-756)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-804 |#1|) (-13 (-828) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-756))) (-15 -2702 (|#1| $)) (-15 -2715 ($ $)) (-15 -2643 ($ $)) (-15 -2752 ((-111) $ $)) (-15 -3708 ($ $ $)) (-15 -4307 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2390 ((-3 $ "failed") $ $)) (-15 -2137 ((-3 $ "failed") $ |#1|)) (-15 -2390 ((-3 $ "failed") $ |#1|)) (-15 -3977 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2058 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2663 ((-756) $)) (-15 -1935 ((-756) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $)) (-15 -2556 ((-756) $)) (-15 -2814 ((-629 |#1|) $)))) (-832)) (T -804)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2702 (*1 *2 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-3708 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-4307 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2137 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2390 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2137 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-2390 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-3977 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-804 *3)) (|:| |rm| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-2058 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-804 *3)) (|:| |mm| (-804 *3)) (|:| |rm| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-756)) (-5 *1 (-804 *4)) (-4 *4 (-832)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-804 *2)) (-4 *2 (-832)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-756))))) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-804 *3)) (-4 *3 (-832))))) +(-13 (-828) (-1019 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-756))) (-15 -2702 (|#1| $)) (-15 -2715 ($ $)) (-15 -2643 ($ $)) (-15 -2752 ((-111) $ $)) (-15 -3708 ($ $ $)) (-15 -4307 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2390 ((-3 $ "failed") $ $)) (-15 -2137 ((-3 $ "failed") $ |#1|)) (-15 -2390 ((-3 $ "failed") $ |#1|)) (-15 -3977 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2058 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2663 ((-756) $)) (-15 -1935 ((-756) $ (-552))) (-15 -3261 (|#1| $ (-552))) (-15 -3772 ((-629 (-2 (|:| |gen| |#1|) (|:| -2855 (-756)))) $)) (-15 -2556 ((-756) $)) (-15 -2814 ((-629 |#1|) $)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-3886 (((-552) $) 51)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-1338 (((-111) $) 49)) (-4065 (((-111) $) 30)) (-3127 (((-111) $) 50)) (-1772 (($ $ $) 48)) (-2011 (($ $ $) 47)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ $) 40)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-1578 (($ $) 52)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 45)) (-1644 (((-111) $ $) 44)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 46)) (-1632 (((-111) $ $) 43)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-805) (-137)) (T -805)) +NIL +(-13 (-544) (-830)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-830) . T) ((-832) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1480 (($ (-1098)) 7)) (-1619 (((-111) $ (-1136) (-1098)) 15)) (-1359 (((-807) $) 12)) (-2139 (((-807) $) 11)) (-2857 (((-1242) $) 9)) (-4244 (((-111) $ (-1098)) 16))) +(((-806) (-10 -8 (-15 -1480 ($ (-1098))) (-15 -2857 ((-1242) $)) (-15 -2139 ((-807) $)) (-15 -1359 ((-807) $)) (-15 -1619 ((-111) $ (-1136) (-1098))) (-15 -4244 ((-111) $ (-1098))))) (T -806)) +((-4244 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-111)) (-5 *1 (-806)))) (-1619 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-1098)) (-5 *2 (-111)) (-5 *1 (-806)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-806)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-806)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-806)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-806))))) +(-10 -8 (-15 -1480 ($ (-1098))) (-15 -2857 ((-1242) $)) (-15 -2139 ((-807) $)) (-15 -1359 ((-807) $)) (-15 -1619 ((-111) $ (-1136) (-1098))) (-15 -4244 ((-111) $ (-1098)))) +((-1409 (((-1242) $ (-808)) 12)) (-4040 (((-1242) $ (-1154)) 32)) (-3107 (((-1242) $ (-1136) (-1136)) 34)) (-3055 (((-1242) $ (-1136)) 33)) (-1739 (((-1242) $) 19)) (-1278 (((-1242) $ (-552)) 28)) (-1652 (((-1242) $ (-220)) 30)) (-1711 (((-1242) $) 18)) (-1978 (((-1242) $) 26)) (-4097 (((-1242) $) 25)) (-1845 (((-1242) $) 23)) (-3472 (((-1242) $) 24)) (-3412 (((-1242) $) 22)) (-2561 (((-1242) $) 21)) (-2189 (((-1242) $) 20)) (-3379 (((-1242) $) 16)) (-1975 (((-1242) $) 17)) (-3856 (((-1242) $) 15)) (-3998 (((-1242) $) 14)) (-3407 (((-1242) $) 13)) (-2133 (($ (-1136) (-808)) 9)) (-4348 (($ (-1136) (-1136) (-808)) 8)) (-3635 (((-1154) $) 51)) (-3244 (((-1154) $) 55)) (-1621 (((-2 (|:| |cd| (-1136)) (|:| -4290 (-1136))) $) 54)) (-1378 (((-1136) $) 52)) (-2499 (((-1242) $) 41)) (-2917 (((-552) $) 49)) (-3833 (((-220) $) 50)) (-4130 (((-1242) $) 40)) (-2970 (((-1242) $) 48)) (-1543 (((-1242) $) 47)) (-3358 (((-1242) $) 45)) (-4289 (((-1242) $) 46)) (-3442 (((-1242) $) 44)) (-3445 (((-1242) $) 43)) (-3801 (((-1242) $) 42)) (-3696 (((-1242) $) 38)) (-1660 (((-1242) $) 39)) (-3613 (((-1242) $) 37)) (-1313 (((-1242) $) 36)) (-3688 (((-1242) $) 35)) (-4309 (((-1242) $) 11))) +(((-807) (-10 -8 (-15 -4348 ($ (-1136) (-1136) (-808))) (-15 -2133 ($ (-1136) (-808))) (-15 -4309 ((-1242) $)) (-15 -1409 ((-1242) $ (-808))) (-15 -3407 ((-1242) $)) (-15 -3998 ((-1242) $)) (-15 -3856 ((-1242) $)) (-15 -3379 ((-1242) $)) (-15 -1975 ((-1242) $)) (-15 -1711 ((-1242) $)) (-15 -1739 ((-1242) $)) (-15 -2189 ((-1242) $)) (-15 -2561 ((-1242) $)) (-15 -3412 ((-1242) $)) (-15 -1845 ((-1242) $)) (-15 -3472 ((-1242) $)) (-15 -4097 ((-1242) $)) (-15 -1978 ((-1242) $)) (-15 -1278 ((-1242) $ (-552))) (-15 -1652 ((-1242) $ (-220))) (-15 -4040 ((-1242) $ (-1154))) (-15 -3055 ((-1242) $ (-1136))) (-15 -3107 ((-1242) $ (-1136) (-1136))) (-15 -3688 ((-1242) $)) (-15 -1313 ((-1242) $)) (-15 -3613 ((-1242) $)) (-15 -3696 ((-1242) $)) (-15 -1660 ((-1242) $)) (-15 -4130 ((-1242) $)) (-15 -2499 ((-1242) $)) (-15 -3801 ((-1242) $)) (-15 -3445 ((-1242) $)) (-15 -3442 ((-1242) $)) (-15 -3358 ((-1242) $)) (-15 -4289 ((-1242) $)) (-15 -1543 ((-1242) $)) (-15 -2970 ((-1242) $)) (-15 -2917 ((-552) $)) (-15 -3833 ((-220) $)) (-15 -3635 ((-1154) $)) (-15 -1378 ((-1136) $)) (-15 -1621 ((-2 (|:| |cd| (-1136)) (|:| -4290 (-1136))) $)) (-15 -3244 ((-1154) $)))) (T -807)) +((-3244 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-807)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1136)) (|:| -4290 (-1136)))) (-5 *1 (-807)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-807)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-807)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-807)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-807)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3107 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-3055 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-1652 (*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-1278 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-1409 (*1 *2 *1 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1242)) (-5 *1 (-807)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807)))) (-2133 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-808)) (-5 *1 (-807)))) (-4348 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-808)) (-5 *1 (-807))))) +(-10 -8 (-15 -4348 ($ (-1136) (-1136) (-808))) (-15 -2133 ($ (-1136) (-808))) (-15 -4309 ((-1242) $)) (-15 -1409 ((-1242) $ (-808))) (-15 -3407 ((-1242) $)) (-15 -3998 ((-1242) $)) (-15 -3856 ((-1242) $)) (-15 -3379 ((-1242) $)) (-15 -1975 ((-1242) $)) (-15 -1711 ((-1242) $)) (-15 -1739 ((-1242) $)) (-15 -2189 ((-1242) $)) (-15 -2561 ((-1242) $)) (-15 -3412 ((-1242) $)) (-15 -1845 ((-1242) $)) (-15 -3472 ((-1242) $)) (-15 -4097 ((-1242) $)) (-15 -1978 ((-1242) $)) (-15 -1278 ((-1242) $ (-552))) (-15 -1652 ((-1242) $ (-220))) (-15 -4040 ((-1242) $ (-1154))) (-15 -3055 ((-1242) $ (-1136))) (-15 -3107 ((-1242) $ (-1136) (-1136))) (-15 -3688 ((-1242) $)) (-15 -1313 ((-1242) $)) (-15 -3613 ((-1242) $)) (-15 -3696 ((-1242) $)) (-15 -1660 ((-1242) $)) (-15 -4130 ((-1242) $)) (-15 -2499 ((-1242) $)) (-15 -3801 ((-1242) $)) (-15 -3445 ((-1242) $)) (-15 -3442 ((-1242) $)) (-15 -3358 ((-1242) $)) (-15 -4289 ((-1242) $)) (-15 -1543 ((-1242) $)) (-15 -2970 ((-1242) $)) (-15 -2917 ((-552) $)) (-15 -3833 ((-220) $)) (-15 -3635 ((-1154) $)) (-15 -1378 ((-1136) $)) (-15 -1621 ((-2 (|:| |cd| (-1136)) (|:| -4290 (-1136))) $)) (-15 -3244 ((-1154) $))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 12)) (-1868 (($) 15)) (-1642 (($) 13)) (-3736 (($) 16)) (-3370 (($) 14)) (-1613 (((-111) $ $) 8))) +(((-808) (-13 (-1078) (-10 -8 (-15 -1642 ($)) (-15 -1868 ($)) (-15 -3736 ($)) (-15 -3370 ($))))) (T -808)) +((-1642 (*1 *1) (-5 *1 (-808))) (-1868 (*1 *1) (-5 *1 (-808))) (-3736 (*1 *1) (-5 *1 (-808))) (-3370 (*1 *1) (-5 *1 (-808)))) +(-13 (-1078) (-10 -8 (-15 -1642 ($)) (-15 -1868 ($)) (-15 -3736 ($)) (-15 -3370 ($)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21) (($ (-1154)) 17)) (-3917 (((-111) $) 10)) (-4019 (((-111) $) 9)) (-1403 (((-111) $) 11)) (-2918 (((-111) $) 8)) (-1613 (((-111) $ $) 19))) +(((-809) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-1154))) (-15 -2918 ((-111) $)) (-15 -4019 ((-111) $)) (-15 -3917 ((-111) $)) (-15 -1403 ((-111) $))))) (T -809)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-809)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-1154))) (-15 -2918 ((-111) $)) (-15 -4019 ((-111) $)) (-15 -3917 ((-111) $)) (-15 -1403 ((-111) $)))) +((-3202 (((-111) $ $) NIL)) (-2823 (($ (-809) (-629 (-1154))) 24)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2270 (((-809) $) 25)) (-4145 (((-629 (-1154)) $) 26)) (-3213 (((-844) $) 23)) (-1613 (((-111) $ $) NIL))) +(((-810) (-13 (-1078) (-10 -8 (-15 -2270 ((-809) $)) (-15 -4145 ((-629 (-1154)) $)) (-15 -2823 ($ (-809) (-629 (-1154))))))) (T -810)) +((-2270 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-810)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-810)))) (-2823 (*1 *1 *2 *3) (-12 (-5 *2 (-809)) (-5 *3 (-629 (-1154))) (-5 *1 (-810))))) +(-13 (-1078) (-10 -8 (-15 -2270 ((-809) $)) (-15 -4145 ((-629 (-1154)) $)) (-15 -2823 ($ (-809) (-629 (-1154)))))) +((-3016 (((-1242) (-807) (-310 |#1|) (-111)) 23) (((-1242) (-807) (-310 |#1|)) 79) (((-1136) (-310 |#1|) (-111)) 78) (((-1136) (-310 |#1|)) 77))) +(((-811 |#1|) (-10 -7 (-15 -3016 ((-1136) (-310 |#1|))) (-15 -3016 ((-1136) (-310 |#1|) (-111))) (-15 -3016 ((-1242) (-807) (-310 |#1|))) (-15 -3016 ((-1242) (-807) (-310 |#1|) (-111)))) (-13 (-813) (-832) (-1030))) (T -811)) +((-3016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807)) (-5 *4 (-310 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-813) (-832) (-1030))) (-5 *2 (-1242)) (-5 *1 (-811 *6)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *3 (-807)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-813) (-832) (-1030))) (-5 *2 (-1242)) (-5 *1 (-811 *5)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-813) (-832) (-1030))) (-5 *2 (-1136)) (-5 *1 (-811 *5)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-813) (-832) (-1030))) (-5 *2 (-1136)) (-5 *1 (-811 *4))))) +(-10 -7 (-15 -3016 ((-1136) (-310 |#1|))) (-15 -3016 ((-1136) (-310 |#1|) (-111))) (-15 -3016 ((-1242) (-807) (-310 |#1|))) (-15 -3016 ((-1242) (-807) (-310 |#1|) (-111)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3195 ((|#1| $) 10)) (-1443 (($ |#1|) 9)) (-4065 (((-111) $) NIL)) (-3590 (($ |#2| (-756)) NIL)) (-3544 (((-756) $) NIL)) (-3743 ((|#2| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3096 (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-3299 (((-756) $) NIL)) (-3213 (((-844) $) 17) (($ (-552)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-2266 ((|#2| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-812 |#1| |#2|) (-13 (-693 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -1443 ($ |#1|)) (-15 -3195 (|#1| $)))) (-693 |#2|) (-1030)) (T -812)) +((-1443 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-812 *2 *3)) (-4 *2 (-693 *3)))) (-3195 (*1 *2 *1) (-12 (-4 *2 (-693 *3)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1030))))) +(-13 (-693 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -1443 ($ |#1|)) (-15 -3195 (|#1| $)))) +((-3016 (((-1242) (-807) $ (-111)) 9) (((-1242) (-807) $) 8) (((-1136) $ (-111)) 7) (((-1136) $) 6))) +(((-813) (-137)) (T -813)) +((-3016 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-813)) (-5 *3 (-807)) (-5 *4 (-111)) (-5 *2 (-1242)))) (-3016 (*1 *2 *3 *1) (-12 (-4 *1 (-813)) (-5 *3 (-807)) (-5 *2 (-1242)))) (-3016 (*1 *2 *1 *3) (-12 (-4 *1 (-813)) (-5 *3 (-111)) (-5 *2 (-1136)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-813)) (-5 *2 (-1136))))) +(-13 (-10 -8 (-15 -3016 ((-1136) $)) (-15 -3016 ((-1136) $ (-111))) (-15 -3016 ((-1242) (-807) $)) (-15 -3016 ((-1242) (-807) $ (-111))))) +((-2115 (((-306) (-1136) (-1136)) 12)) (-4091 (((-111) (-1136) (-1136)) 34)) (-2954 (((-111) (-1136)) 33)) (-1687 (((-52) (-1136)) 25)) (-1563 (((-52) (-1136)) 23)) (-4103 (((-52) (-807)) 17)) (-3533 (((-629 (-1136)) (-1136)) 28)) (-2233 (((-629 (-1136))) 27))) +(((-814) (-10 -7 (-15 -4103 ((-52) (-807))) (-15 -1563 ((-52) (-1136))) (-15 -1687 ((-52) (-1136))) (-15 -2233 ((-629 (-1136)))) (-15 -3533 ((-629 (-1136)) (-1136))) (-15 -2954 ((-111) (-1136))) (-15 -4091 ((-111) (-1136) (-1136))) (-15 -2115 ((-306) (-1136) (-1136))))) (T -814)) +((-2115 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-814)))) (-4091 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-814)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-814)))) (-3533 (*1 *2 *3) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-814)) (-5 *3 (-1136)))) (-2233 (*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-814)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-814)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-814)))) (-4103 (*1 *2 *3) (-12 (-5 *3 (-807)) (-5 *2 (-52)) (-5 *1 (-814))))) +(-10 -7 (-15 -4103 ((-52) (-807))) (-15 -1563 ((-52) (-1136))) (-15 -1687 ((-52) (-1136))) (-15 -2233 ((-629 (-1136)))) (-15 -3533 ((-629 (-1136)) (-1136))) (-15 -2954 ((-111) (-1136))) (-15 -4091 ((-111) (-1136) (-1136))) (-15 -2115 ((-306) (-1136) (-1136)))) +((-3202 (((-111) $ $) 19)) (-1501 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2041 (($ $ $) 72)) (-2691 (((-111) $ $) 73)) (-4238 (((-111) $ (-756)) 8)) (-1439 (($ (-629 |#1|)) 68) (($) 67)) (-1740 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2232 (($ $) 62)) (-2738 (($ $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ |#1| $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) 64)) (-1418 (((-111) $ (-756)) 9)) (-1772 ((|#1| $) 78)) (-3707 (($ $ $) 81)) (-1446 (($ $ $) 80)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2011 ((|#1| $) 79)) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22)) (-4011 (($ $ $) 69)) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40) (($ |#1| $ (-756)) 63)) (-2876 (((-1098) $) 21)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3441 (((-629 (-2 (|:| -3360 |#1|) (|:| -2885 (-756)))) $) 61)) (-2042 (($ $ |#1|) 71) (($ $ $) 70)) (-3680 (($) 49) (($ (-629 |#1|)) 48)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 50)) (-3213 (((-844) $) 18)) (-3541 (($ (-629 |#1|)) 66) (($) 65)) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20)) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-815 |#1|) (-137) (-832)) (T -815)) +((-1772 (*1 *2 *1) (-12 (-4 *1 (-815 *2)) (-4 *2 (-832))))) +(-13 (-721 |t#1|) (-949 |t#1|) (-10 -8 (-15 -1772 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-679 |#1|) . T) ((-721 |#1|) . T) ((-949 |#1|) . T) ((-1076 |#1|) . T) ((-1078) . T) ((-1191) . T)) +((-3203 (((-1242) (-1098) (-1098)) 47)) (-2695 (((-1242) (-806) (-52)) 44)) (-1984 (((-52) (-806)) 16))) +(((-816) (-10 -7 (-15 -1984 ((-52) (-806))) (-15 -2695 ((-1242) (-806) (-52))) (-15 -3203 ((-1242) (-1098) (-1098))))) (T -816)) +((-3203 (*1 *2 *3 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1242)) (-5 *1 (-816)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-806)) (-5 *4 (-52)) (-5 *2 (-1242)) (-5 *1 (-816)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-52)) (-5 *1 (-816))))) +(-10 -7 (-15 -1984 ((-52) (-806))) (-15 -2695 ((-1242) (-806) (-52))) (-15 -3203 ((-1242) (-1098) (-1098)))) +((-1477 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|)) 12) (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 13))) +(((-817 |#1| |#2|) (-10 -7 (-15 -1477 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -1477 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|)))) (-1078) (-1078)) (T -817)) +((-1477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *1 (-817 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))) +(-10 -7 (-15 -1477 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))) (-15 -1477 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|) (-818 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL (|has| |#1| (-21)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3886 (((-552) $) NIL (|has| |#1| (-830)))) (-2130 (($) NIL (|has| |#1| (-21)) CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 15)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 9)) (-1293 (((-3 $ "failed") $) 40 (|has| |#1| (-830)))) (-2674 (((-3 (-401 (-552)) "failed") $) 49 (|has| |#1| (-537)))) (-2443 (((-111) $) 43 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 46 (|has| |#1| (-537)))) (-1338 (((-111) $) NIL (|has| |#1| (-830)))) (-4065 (((-111) $) NIL (|has| |#1| (-830)))) (-3127 (((-111) $) NIL (|has| |#1| (-830)))) (-1772 (($ $ $) NIL (|has| |#1| (-830)))) (-2011 (($ $ $) NIL (|has| |#1| (-830)))) (-2623 (((-1136) $) NIL)) (-4053 (($) 13)) (-3798 (((-111) $) 12)) (-2876 (((-1098) $) NIL)) (-1445 (((-111) $) 11)) (-3213 (((-844) $) 18) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-4029 (|has| |#1| (-830)) (|has| |#1| (-1019 (-552)))))) (-2014 (((-756)) 34 (|has| |#1| (-830)))) (-1578 (($ $) NIL (|has| |#1| (-830)))) (-3297 (($) 22 (|has| |#1| (-21)) CONST)) (-3309 (($) 31 (|has| |#1| (-830)) CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1613 (((-111) $ $) 20)) (-1655 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1632 (((-111) $ $) 42 (|has| |#1| (-830)))) (-1709 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1698 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-902)) NIL (|has| |#1| (-830))) (($ $ (-756)) NIL (|has| |#1| (-830)))) (* (($ $ $) 37 (|has| |#1| (-830))) (($ (-552) $) 25 (|has| |#1| (-21))) (($ (-756) $) NIL (|has| |#1| (-21))) (($ (-902) $) NIL (|has| |#1| (-21))))) +(((-818 |#1|) (-13 (-1078) (-405 |#1|) (-10 -8 (-15 -4053 ($)) (-15 -1445 ((-111) $)) (-15 -3798 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1078)) (T -818)) +((-4053 (*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1078)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-1078)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-1078)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-818 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) (-2674 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-818 *3)) (-4 *3 (-537)) (-4 *3 (-1078))))) +(-13 (-1078) (-405 |#1|) (-10 -8 (-15 -4053 ($)) (-15 -1445 ((-111) $)) (-15 -3798 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-113) $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1942 ((|#1| (-113) |#1|) NIL)) (-4065 (((-111) $) NIL)) (-1683 (($ |#1| (-355 (-113))) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4114 (($ $ (-1 |#1| |#1|)) NIL)) (-2263 (($ $ (-1 |#1| |#1|)) NIL)) (-2060 ((|#1| $ |#1|) NIL)) (-2864 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-1768 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-819 |#1|) (-13 (-1030) (-1019 |#1|) (-1019 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1768 ($ $)) (-15 -1768 ($ $ $)) (-15 -2864 (|#1| |#1|))) |%noBranch|) (-15 -2263 ($ $ (-1 |#1| |#1|))) (-15 -4114 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -1942 (|#1| (-113) |#1|)) (-15 -1683 ($ |#1| (-355 (-113)))))) (-1030)) (T -819)) +((-1768 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030)))) (-1768 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030)))) (-2864 (*1 *2 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-819 *3)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-819 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-819 *4)) (-4 *4 (-1030)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-819 *3)) (-4 *3 (-1030)))) (-1942 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-819 *2)) (-4 *2 (-1030)))) (-1683 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-5 *1 (-819 *2)) (-4 *2 (-1030))))) +(-13 (-1030) (-1019 |#1|) (-1019 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1768 ($ $)) (-15 -1768 ($ $ $)) (-15 -2864 (|#1| |#1|))) |%noBranch|) (-15 -2263 ($ $ (-1 |#1| |#1|))) (-15 -4114 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -1942 (|#1| (-113) |#1|)) (-15 -1683 ($ |#1| (-355 (-113)))))) +((-2590 (((-209 (-494)) (-1136)) 9))) +(((-820) (-10 -7 (-15 -2590 ((-209 (-494)) (-1136))))) (T -820)) +((-2590 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-209 (-494))) (-5 *1 (-820))))) +(-10 -7 (-15 -2590 ((-209 (-494)) (-1136)))) +((-3202 (((-111) $ $) 7)) (-3555 (((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 14) (((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 13)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 16) (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 15)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-821) (-137)) (T -821)) +((-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-821)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) (-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-821)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) (-3555 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) (-5 *2 (-1016)))) (-3555 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (-5 *2 (-1016))))) +(-13 (-1078) (-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -3555 ((-1016) (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -3555 ((-1016) (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2860 (((-1016) (-629 (-310 (-373))) (-629 (-373))) 147) (((-1016) (-310 (-373)) (-629 (-373))) 145) (((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-825 (-373)))) 144) (((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-310 (-373))) (-629 (-825 (-373)))) 143) (((-1016) (-823)) 117) (((-1016) (-823) (-1042)) 116)) (-3102 (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823) (-1042)) 82) (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823)) 84)) (-3336 (((-1016) (-629 (-310 (-373))) (-629 (-373))) 148) (((-1016) (-823)) 133))) +(((-822) (-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823) (-1042))) (-15 -2860 ((-1016) (-823) (-1042))) (-15 -2860 ((-1016) (-823))) (-15 -3336 ((-1016) (-823))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-310 (-373))) (-629 (-825 (-373))))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-825 (-373))))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)))) (-15 -2860 ((-1016) (-629 (-310 (-373))) (-629 (-373)))) (-15 -3336 ((-1016) (-629 (-310 (-373))) (-629 (-373)))))) (T -822)) +((-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-310 (-373)))) (-5 *4 (-629 (-373))) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-310 (-373)))) (-5 *4 (-629 (-373))) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-373))) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-373))) (-5 *5 (-629 (-825 (-373)))) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-629 (-373))) (-5 *5 (-629 (-825 (-373)))) (-5 *6 (-629 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1016)) (-5 *1 (-822)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1016)) (-5 *1 (-822)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-822)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1042)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-822)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-822))))) +(-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-823) (-1042))) (-15 -2860 ((-1016) (-823) (-1042))) (-15 -2860 ((-1016) (-823))) (-15 -3336 ((-1016) (-823))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-310 (-373))) (-629 (-825 (-373))))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)) (-629 (-825 (-373))) (-629 (-825 (-373))))) (-15 -2860 ((-1016) (-310 (-373)) (-629 (-373)))) (-15 -2860 ((-1016) (-629 (-310 (-373))) (-629 (-373)))) (-15 -3336 ((-1016) (-629 (-310 (-373))) (-629 (-373))))) +((-3202 (((-111) $ $) NIL)) (-2832 (((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) $) 21)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) 14) (($ (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))) 18)) (-1613 (((-111) $ $) NIL))) +(((-823) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))) (-15 -3213 ($ (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -3213 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) $))))) (T -823)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-823)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (-5 *1 (-823)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) (-5 *1 (-823)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))) (-5 *1 (-823)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))))) (-5 *1 (-823))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220))))))) (-15 -3213 ($ (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) (-15 -3213 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) (|:| |ub| (-629 (-825 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220)))))) $)))) +((-1477 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|) (-825 |#2|) (-825 |#2|)) 13) (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 14))) +(((-824 |#1| |#2|) (-10 -7 (-15 -1477 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|))) (-15 -1477 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|) (-825 |#2|) (-825 |#2|)))) (-1078) (-1078)) (T -824)) +((-1477 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-825 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *1 (-824 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6))))) +(-10 -7 (-15 -1477 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|))) (-15 -1477 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|) (-825 |#2|) (-825 |#2|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL (|has| |#1| (-21)))) (-3498 (((-1098) $) 24)) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3886 (((-552) $) NIL (|has| |#1| (-830)))) (-2130 (($) NIL (|has| |#1| (-21)) CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 16)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 9)) (-1293 (((-3 $ "failed") $) 47 (|has| |#1| (-830)))) (-2674 (((-3 (-401 (-552)) "failed") $) 54 (|has| |#1| (-537)))) (-2443 (((-111) $) 49 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 52 (|has| |#1| (-537)))) (-1338 (((-111) $) NIL (|has| |#1| (-830)))) (-1638 (($) 13)) (-4065 (((-111) $) NIL (|has| |#1| (-830)))) (-3127 (((-111) $) NIL (|has| |#1| (-830)))) (-1648 (($) 14)) (-1772 (($ $ $) NIL (|has| |#1| (-830)))) (-2011 (($ $ $) NIL (|has| |#1| (-830)))) (-2623 (((-1136) $) NIL)) (-3798 (((-111) $) 12)) (-2876 (((-1098) $) NIL)) (-1445 (((-111) $) 11)) (-3213 (((-844) $) 22) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-4029 (|has| |#1| (-830)) (|has| |#1| (-1019 (-552)))))) (-2014 (((-756)) 41 (|has| |#1| (-830)))) (-1578 (($ $) NIL (|has| |#1| (-830)))) (-3297 (($) 29 (|has| |#1| (-21)) CONST)) (-3309 (($) 38 (|has| |#1| (-830)) CONST)) (-1666 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1613 (((-111) $ $) 27)) (-1655 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1632 (((-111) $ $) 48 (|has| |#1| (-830)))) (-1709 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1698 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-902)) NIL (|has| |#1| (-830))) (($ $ (-756)) NIL (|has| |#1| (-830)))) (* (($ $ $) 44 (|has| |#1| (-830))) (($ (-552) $) 32 (|has| |#1| (-21))) (($ (-756) $) NIL (|has| |#1| (-21))) (($ (-902) $) NIL (|has| |#1| (-21))))) +(((-825 |#1|) (-13 (-1078) (-405 |#1|) (-10 -8 (-15 -1638 ($)) (-15 -1648 ($)) (-15 -1445 ((-111) $)) (-15 -3798 ((-111) $)) (-15 -3498 ((-1098) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1078)) (T -825)) +((-1638 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1078)))) (-1648 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1078)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-1078)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-1078)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-825 *3)) (-4 *3 (-1078)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-825 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) (-2674 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-825 *3)) (-4 *3 (-537)) (-4 *3 (-1078))))) +(-13 (-1078) (-405 |#1|) (-10 -8 (-15 -1638 ($)) (-15 -1648 ($)) (-15 -1445 ((-111) $)) (-15 -3798 ((-111) $)) (-15 -3498 ((-1098) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +((-3202 (((-111) $ $) 7)) (-2663 (((-756)) 20)) (-1332 (($) 23)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-1637 (((-902) $) 22)) (-2623 (((-1136) $) 9)) (-2840 (($ (-902)) 21)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18))) (((-826) (-137)) (T -826)) NIL -(-13 (-837) (-709)) -(((-101) . T) ((-599 (-842)) . T) ((-709) . T) ((-837) . T) ((-830) . T) ((-1088) . T) ((-1076) . T)) -((-2422 (((-552) $) 17)) (-2983 (((-111) $) 10)) (-1508 (((-111) $) 11)) (-3329 (($ $) 19))) -(((-827 |#1|) (-10 -8 (-15 -3329 (|#1| |#1|)) (-15 -2422 ((-552) |#1|)) (-15 -1508 ((-111) |#1|)) (-15 -2983 ((-111) |#1|))) (-828)) (T -827)) -NIL -(-10 -8 (-15 -3329 (|#1| |#1|)) (-15 -2422 ((-552) |#1|)) (-15 -1508 ((-111) |#1|)) (-15 -2983 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-2422 (((-552) $) 33)) (-3887 (($) 23 T CONST)) (-2040 (((-3 $ "failed") $) 38)) (-2983 (((-111) $) 35)) (-2624 (((-111) $) 40)) (-1508 (((-111) $) 34)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 43)) (-3995 (((-754)) 42)) (-3329 (($ $) 32)) (-1922 (($) 22 T CONST)) (-1933 (($) 41 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2396 (($ $ $) 28) (($ $) 27)) (-2384 (($ $ $) 20)) (** (($ $ (-754)) 39) (($ $ (-900)) 36)) (* (($ (-900) $) 21) (($ (-754) $) 25) (($ (-552) $) 29) (($ $ $) 37))) +(-13 (-832) (-362)) +(((-101) . T) ((-599 (-844)) . T) ((-362) . T) ((-832) . T) ((-1078) . T)) +((-1571 (((-111) (-1237 |#2|) (-1237 |#2|)) 17)) (-2035 (((-111) (-1237 |#2|) (-1237 |#2|)) 18)) (-1706 (((-111) (-1237 |#2|) (-1237 |#2|)) 14))) +(((-827 |#1| |#2|) (-10 -7 (-15 -1706 ((-111) (-1237 |#2|) (-1237 |#2|))) (-15 -1571 ((-111) (-1237 |#2|) (-1237 |#2|))) (-15 -2035 ((-111) (-1237 |#2|) (-1237 |#2|)))) (-756) (-777)) (T -827)) +((-2035 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) (-5 *1 (-827 *4 *5)) (-14 *4 (-756)))) (-1571 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) (-5 *1 (-827 *4 *5)) (-14 *4 (-756)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) (-5 *1 (-827 *4 *5)) (-14 *4 (-756))))) +(-10 -7 (-15 -1706 ((-111) (-1237 |#2|) (-1237 |#2|))) (-15 -1571 ((-111) (-1237 |#2|) (-1237 |#2|))) (-15 -2035 ((-111) (-1237 |#2|) (-1237 |#2|)))) +((-3202 (((-111) $ $) 7)) (-2130 (($) 23 T CONST)) (-1293 (((-3 $ "failed") $) 26)) (-4065 (((-111) $) 24)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3309 (($) 22 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (** (($ $ (-902)) 21) (($ $ (-756)) 25)) (* (($ $ $) 20))) (((-828) (-137)) (T -828)) -((-2983 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-552)))) (-3329 (*1 *1 *1) (-4 *1 (-828)))) -(-13 (-774) (-1028) (-709) (-10 -8 (-15 -2983 ((-111) $)) (-15 -1508 ((-111) $)) (-15 -2422 ((-552) $)) (-15 -3329 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1816 (($ $ $) 10)) (-4093 (($ $ $) 9)) (-2351 (((-111) $ $) 13)) (-2329 (((-111) $ $) 11)) (-2340 (((-111) $ $) 14))) -(((-829 |#1|) (-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2340 ((-111) |#1| |#1|)) (-15 -2351 ((-111) |#1| |#1|)) (-15 -2329 ((-111) |#1| |#1|))) (-830)) (T -829)) -NIL -(-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2340 ((-111) |#1| |#1|)) (-15 -2351 ((-111) |#1| |#1|)) (-15 -2329 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +NIL +(-13 (-839) (-711)) +(((-101) . T) ((-599 (-844)) . T) ((-711) . T) ((-839) . T) ((-832) . T) ((-1090) . T) ((-1078) . T)) +((-3886 (((-552) $) 17)) (-1338 (((-111) $) 10)) (-3127 (((-111) $) 11)) (-1578 (($ $) 19))) +(((-829 |#1|) (-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -3886 ((-552) |#1|)) (-15 -3127 ((-111) |#1|)) (-15 -1338 ((-111) |#1|))) (-830)) (T -829)) +NIL +(-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -3886 ((-552) |#1|)) (-15 -3127 ((-111) |#1|)) (-15 -1338 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 24)) (-4012 (((-3 $ "failed") $ $) 26)) (-3886 (((-552) $) 33)) (-2130 (($) 23 T CONST)) (-1293 (((-3 $ "failed") $) 38)) (-1338 (((-111) $) 35)) (-4065 (((-111) $) 40)) (-3127 (((-111) $) 34)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 43)) (-2014 (((-756)) 42)) (-1578 (($ $) 32)) (-3297 (($) 22 T CONST)) (-3309 (($) 41 T CONST)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (-1709 (($ $ $) 28) (($ $) 27)) (-1698 (($ $ $) 20)) (** (($ $ (-756)) 39) (($ $ (-902)) 36)) (* (($ (-902) $) 21) (($ (-756) $) 25) (($ (-552) $) 29) (($ $ $) 37))) (((-830) (-137)) (T -830)) -((-2316 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2329 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2351 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2340 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-4093 (*1 *1 *1 *1) (-4 *1 (-830))) (-1816 (*1 *1 *1 *1) (-4 *1 (-830)))) -(-13 (-1076) (-10 -8 (-15 -2316 ((-111) $ $)) (-15 -2329 ((-111) $ $)) (-15 -2351 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -4093 ($ $ $)) (-15 -1816 ($ $ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1768 (($ $ $) 45)) (-2585 (($ $ $) 44)) (-4281 (($ $ $) 42)) (-4214 (($ $ $) 51)) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 46)) (-4021 (((-3 $ "failed") $ $) 49)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1375 (($ $) 35)) (-2753 (($ $ $) 39)) (-4009 (($ $ $) 38)) (-2016 (($ $ $) 47)) (-2812 (($ $ $) 53)) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 41)) (-4266 (((-3 $ "failed") $ $) 48)) (-2761 (((-3 $ "failed") $ |#2|) 28)) (-3495 ((|#2| $) 32)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#2|) 12)) (-1493 (((-627 |#2|) $) 18)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-831 |#1| |#2|) (-10 -8 (-15 -2016 (|#1| |#1| |#1|)) (-15 -3571 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4021 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1| |#1|)) (-15 -4281 (|#1| |#1| |#1|)) (-15 -3008 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -1477 ((-842) |#1|))) (-832 |#2|) (-1028)) (T -831)) -NIL -(-10 -8 (-15 -2016 (|#1| |#1| |#1|)) (-15 -3571 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4021 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1| |#1|)) (-15 -4281 (|#1| |#1| |#1|)) (-15 -3008 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1768 (($ $ $) 43 (|has| |#1| (-357)))) (-2585 (($ $ $) 44 (|has| |#1| (-357)))) (-4281 (($ $ $) 46 (|has| |#1| (-357)))) (-4214 (($ $ $) 41 (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 40 (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 45 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-1703 (((-552) $) 73 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 66)) (-2014 (($ $) 62)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 53 (|has| |#1| (-445)))) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 60)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 56 (|has| |#1| (-544)))) (-3465 (((-754) $) 64)) (-2753 (($ $ $) 50 (|has| |#1| (-357)))) (-4009 (($ $ $) 51 (|has| |#1| (-357)))) (-2016 (($ $ $) 39 (|has| |#1| (-357)))) (-2812 (($ $ $) 48 (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 47 (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 52 (|has| |#1| (-357)))) (-1993 ((|#1| $) 63)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-3567 (((-754) $) 65)) (-3495 ((|#1| $) 54 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 68)) (-1493 (((-627 |#1|) $) 59)) (-1889 ((|#1| $ (-754)) 61)) (-3995 (((-754)) 28)) (-3288 ((|#1| $ |#1| |#1|) 58)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-832 |#1|) (-137) (-1028)) (T -832)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-627 *3)))) (-3288 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-1378 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-3107 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-4273 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-4009 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2753 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4266 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2812 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3008 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-832 *3)))) (-4281 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3557 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-2585 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4021 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4214 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-832 *3)))) (-2016 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(-13 (-1028) (-110 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -3567 ((-754) $)) (-15 -3465 ((-754) $)) (-15 -1993 (|t#1| $)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ (-754))) (-15 -1832 ($ |t#1| (-754))) (-15 -1493 ((-627 |t#1|) $)) (-15 -3288 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2761 ((-3 $ "failed") $ |t#1|)) (-15 -1378 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -3107 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3495 (|t#1| $)) (-15 -1375 ($ $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -4009 ($ $ $)) (-15 -2753 ($ $ $)) (-15 -4266 ((-3 $ "failed") $ $)) (-15 -2812 ($ $ $)) (-15 -3008 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -4281 ($ $ $)) (-15 -3557 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2585 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -4021 ((-3 $ "failed") $ $)) (-15 -4214 ($ $ $)) (-15 -3571 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -2016 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-405 |#1|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1844 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3557 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-357)))) (-3107 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-544)))) (-4273 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-357)))) (-3288 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-833 |#1| |#2|) (-10 -7 (-15 -1844 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3288 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1378 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3107 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3557 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1028) (-832 |#1|)) (T -833)) -((-3557 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-4273 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-3107 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-1378 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-3288 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1028)) (-5 *1 (-833 *2 *3)) (-4 *3 (-832 *2)))) (-1844 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1028)) (-5 *1 (-833 *5 *2)) (-4 *2 (-832 *5))))) -(-10 -7 (-15 -1844 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3288 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1378 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3107 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3557 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 32 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2267 (((-842) $ (-842)) NIL)) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 28 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 26 (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 30 (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) 15)) (-1922 (($) NIL T CONST)) (-1933 (($) 20 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 19) (($ $ (-754)) 22)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-834 |#1| |#2| |#3|) (-13 (-832 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))))) (-1028) (-98 |#1|) (-1 |#1| |#1|)) (T -834)) -((-2267 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-834 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-832 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#2| (-357)))) (-2585 (($ $ $) NIL (|has| |#2| (-357)))) (-4281 (($ $ $) NIL (|has| |#2| (-357)))) (-4214 (($ $ $) NIL (|has| |#2| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) 16)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#2| (-357)))) (-4009 (($ $ $) NIL (|has| |#2| (-357)))) (-2016 (($ $ $) NIL (|has| |#2| (-357)))) (-2812 (($ $ $) NIL (|has| |#2| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3567 (((-754) $) NIL)) (-3495 ((|#2| $) NIL (|has| |#2| (-445)))) (-1477 (((-842) $) 23) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (($ (-1231 |#1|)) 18)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#2| $ |#2| |#2|) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) 13 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-835 |#1| |#2| |#3| |#4|) (-13 (-832 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))))) (-1152) (-1028) (-98 |#2|) (-1 |#2| |#2|)) (T -835)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-832 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))))) -((-1771 ((|#1| (-754) |#1|) 35 (|has| |#1| (-38 (-401 (-552)))))) (-3456 ((|#1| (-754) (-754) |#1|) 27) ((|#1| (-754) |#1|) 20)) (-3861 ((|#1| (-754) |#1|) 31)) (-4271 ((|#1| (-754) |#1|) 29)) (-2313 ((|#1| (-754) |#1|) 28))) -(((-836 |#1|) (-10 -7 (-15 -2313 (|#1| (-754) |#1|)) (-15 -4271 (|#1| (-754) |#1|)) (-15 -3861 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -1771 (|#1| (-754) |#1|)) |%noBranch|)) (-169)) (T -836)) -((-1771 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3456 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-3861 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-4271 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-2313 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -2313 (|#1| (-754) |#1|)) (-15 -4271 (|#1| (-754) |#1|)) (-15 -3861 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -1771 (|#1| (-754) |#1|)) |%noBranch|)) -((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (** (($ $ (-900)) 21)) (* (($ $ $) 20))) -(((-837) (-137)) (T -837)) -NIL -(-13 (-830) (-1088)) -(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-4288 (((-552) $) 12)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) (($ (-552)) 11)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 8)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 9))) -(((-838) (-13 (-830) (-10 -8 (-15 -1477 ($ (-552))) (-15 -4288 ((-552) $))))) (T -838)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-838))))) -(-13 (-830) (-10 -8 (-15 -1477 ($ (-552))) (-15 -4288 ((-552) $)))) -((-1525 (((-1096) $ (-127)) 17))) -(((-839 |#1|) (-10 -8 (-15 -1525 ((-1096) |#1| (-127)))) (-840)) (T -839)) -NIL -(-10 -8 (-15 -1525 ((-1096) |#1| (-127)))) -((-1525 (((-1096) $ (-127)) 7)) (-3928 (((-1096) $ (-128)) 8)) (-2219 (($ $) 6))) -(((-840) (-137)) (T -840)) -((-3928 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-128)) (-5 *2 (-1096)))) (-1525 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-127)) (-5 *2 (-1096))))) -(-13 (-170) (-10 -8 (-15 -3928 ((-1096) $ (-128))) (-15 -1525 ((-1096) $ (-127))))) +((-1338 (*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-552)))) (-1578 (*1 *1 *1) (-4 *1 (-830)))) +(-13 (-776) (-1030) (-711) (-10 -8 (-15 -1338 ((-111) $)) (-15 -3127 ((-111) $)) (-15 -3886 ((-552) $)) (-15 -1578 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-832) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1772 (($ $ $) 10)) (-2011 (($ $ $) 9)) (-1666 (((-111) $ $) 13)) (-1644 (((-111) $ $) 11)) (-1655 (((-111) $ $) 14))) +(((-831 |#1|) (-10 -8 (-15 -1772 (|#1| |#1| |#1|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -1655 ((-111) |#1| |#1|)) (-15 -1666 ((-111) |#1| |#1|)) (-15 -1644 ((-111) |#1| |#1|))) (-832)) (T -831)) +NIL +(-10 -8 (-15 -1772 (|#1| |#1| |#1|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -1655 ((-111) |#1| |#1|)) (-15 -1666 ((-111) |#1| |#1|)) (-15 -1644 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18))) +(((-832) (-137)) (T -832)) +((-1632 (*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) (-1644 (*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) (-1666 (*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) (-1655 (*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) (-2011 (*1 *1 *1 *1) (-4 *1 (-832))) (-1772 (*1 *1 *1 *1) (-4 *1 (-832)))) +(-13 (-1078) (-10 -8 (-15 -1632 ((-111) $ $)) (-15 -1644 ((-111) $ $)) (-15 -1666 ((-111) $ $)) (-15 -1655 ((-111) $ $)) (-15 -2011 ($ $ $)) (-15 -1772 ($ $ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3621 (($ $ $) 45)) (-1748 (($ $ $) 44)) (-1675 (($ $ $) 42)) (-2280 (($ $ $) 51)) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 46)) (-4179 (((-3 $ "failed") $ $) 49)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3471 (($ $) 35)) (-2945 (($ $ $) 39)) (-4072 (($ $ $) 38)) (-4149 (($ $ $) 47)) (-2153 (($ $ $) 53)) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 41)) (-1547 (((-3 $ "failed") $ $) 48)) (-3969 (((-3 $ "failed") $ |#2|) 28)) (-3807 ((|#2| $) 32)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#2|) 12)) (-2984 (((-629 |#2|) $) 18)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-833 |#1| |#2|) (-10 -8 (-15 -4149 (|#1| |#1| |#1|)) (-15 -3342 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -2280 (|#1| |#1| |#1|)) (-15 -4179 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3621 (|#1| |#1| |#1|)) (-15 -1748 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -3482 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -1547 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2984 ((-629 |#2|) |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -3213 ((-844) |#1|))) (-834 |#2|) (-1030)) (T -833)) +NIL +(-10 -8 (-15 -4149 (|#1| |#1| |#1|)) (-15 -3342 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -2280 (|#1| |#1| |#1|)) (-15 -4179 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3621 (|#1| |#1| |#1|)) (-15 -1748 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -3482 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4126 |#1|)) |#1| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -1547 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2984 ((-629 |#2|) |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3621 (($ $ $) 43 (|has| |#1| (-357)))) (-1748 (($ $ $) 44 (|has| |#1| (-357)))) (-1675 (($ $ $) 46 (|has| |#1| (-357)))) (-2280 (($ $ $) 41 (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 40 (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 45 (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-2832 (((-552) $) 73 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 66)) (-3766 (($ $) 62)) (-1293 (((-3 $ "failed") $) 32)) (-3471 (($ $) 53 (|has| |#1| (-445)))) (-4065 (((-111) $) 30)) (-3590 (($ |#1| (-756)) 60)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55 (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 56 (|has| |#1| (-544)))) (-3544 (((-756) $) 64)) (-2945 (($ $ $) 50 (|has| |#1| (-357)))) (-4072 (($ $ $) 51 (|has| |#1| (-357)))) (-4149 (($ $ $) 39 (|has| |#1| (-357)))) (-2153 (($ $ $) 48 (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 47 (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 52 (|has| |#1| (-357)))) (-3743 ((|#1| $) 63)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-3299 (((-756) $) 65)) (-3807 ((|#1| $) 54 (|has| |#1| (-445)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) 68)) (-2984 (((-629 |#1|) $) 59)) (-2266 ((|#1| $ (-756)) 61)) (-2014 (((-756)) 28)) (-2639 ((|#1| $ |#1| |#1|) 58)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-834 |#1|) (-137) (-1030)) (T -834)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-834 *2)) (-4 *2 (-1030)))) (-3590 (*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-834 *2)) (-4 *2 (-1030)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-629 *3)))) (-2639 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) (-3969 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-544)))) (-1274 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) (-3211 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-445)))) (-3471 (*1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-445)))) (-1602 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-2945 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-1547 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-2153 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-3482 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) (-4 *1 (-834 *3)))) (-1675 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-3209 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) (-1748 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-3621 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-4179 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-2280 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-3342 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) (-4 *1 (-834 *3)))) (-4149 (*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(-13 (-1030) (-110 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -3299 ((-756) $)) (-15 -3544 ((-756) $)) (-15 -3743 (|t#1| $)) (-15 -3766 ($ $)) (-15 -2266 (|t#1| $ (-756))) (-15 -3590 ($ |t#1| (-756))) (-15 -2984 ((-629 |t#1|) $)) (-15 -2639 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3969 ((-3 $ "failed") $ |t#1|)) (-15 -1274 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -3211 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3807 (|t#1| $)) (-15 -3471 ($ $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -1602 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -4072 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -1547 ((-3 $ "failed") $ $)) (-15 -2153 ($ $ $)) (-15 -3482 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $)) (-15 -1675 ($ $ $)) (-15 -3209 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -1748 ($ $ $)) (-15 -3621 ($ $ $)) (-15 -4179 ((-3 $ "failed") $ $)) (-15 -2280 ($ $ $)) (-15 -3342 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $)) (-15 -4149 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-405 |#1|) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) |has| |#1| (-169)) ((-711) . T) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1682 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3209 (((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-357)))) (-3211 (((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-544)))) (-1602 (((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-357)))) (-2639 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-835 |#1| |#2|) (-10 -7 (-15 -1682 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2639 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1274 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3211 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -1602 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3209 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1030) (-834 |#1|)) (T -835)) +((-3209 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) (-4 *3 (-834 *5)))) (-1602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) (-4 *3 (-834 *5)))) (-3211 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1030)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) (-4 *3 (-834 *5)))) (-1274 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1030)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) (-4 *3 (-834 *5)))) (-2639 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-835 *2 *3)) (-4 *3 (-834 *2)))) (-1682 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1030)) (-5 *1 (-835 *5 *2)) (-4 *2 (-834 *5))))) +(-10 -7 (-15 -1682 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2639 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1274 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3211 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -1602 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3209 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3621 (($ $ $) NIL (|has| |#1| (-357)))) (-1748 (($ $ $) NIL (|has| |#1| (-357)))) (-1675 (($ $ $) NIL (|has| |#1| (-357)))) (-2280 (($ $ $) NIL (|has| |#1| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-4179 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 32 (|has| |#1| (-357)))) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-1647 (((-844) $ (-844)) NIL)) (-4065 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) NIL)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 28 (|has| |#1| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 26 (|has| |#1| (-544)))) (-3544 (((-756) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-357)))) (-4072 (($ $ $) NIL (|has| |#1| (-357)))) (-4149 (($ $ $) NIL (|has| |#1| (-357)))) (-2153 (($ $ $) NIL (|has| |#1| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-1547 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 30 (|has| |#1| (-357)))) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3299 (((-756) $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1019 (-401 (-552))))) (($ |#1|) NIL)) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-2639 ((|#1| $ |#1| |#1|) 15)) (-3297 (($) NIL T CONST)) (-3309 (($) 20 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) 19) (($ $ (-756)) 22)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-836 |#1| |#2| |#3|) (-13 (-834 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-844))))) (-1030) (-98 |#1|) (-1 |#1| |#1|)) (T -836)) +((-1647 (*1 *2 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-836 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-834 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-844))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3621 (($ $ $) NIL (|has| |#2| (-357)))) (-1748 (($ $ $) NIL (|has| |#2| (-357)))) (-1675 (($ $ $) NIL (|has| |#2| (-357)))) (-2280 (($ $ $) NIL (|has| |#2| (-357)))) (-3342 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#2| (-357)))) (-4179 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-3209 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-357)))) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) ((|#2| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#2| (-445)))) (-4065 (((-111) $) NIL)) (-3590 (($ |#2| (-756)) 16)) (-3211 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-544)))) (-1274 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-544)))) (-3544 (((-756) $) NIL)) (-2945 (($ $ $) NIL (|has| |#2| (-357)))) (-4072 (($ $ $) NIL (|has| |#2| (-357)))) (-4149 (($ $ $) NIL (|has| |#2| (-357)))) (-2153 (($ $ $) NIL (|has| |#2| (-357)))) (-3482 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#2| (-357)))) (-1547 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-1602 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-357)))) (-3743 ((|#2| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3299 (((-756) $) NIL)) (-3807 ((|#2| $) NIL (|has| |#2| (-445)))) (-3213 (((-844) $) 23) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1019 (-401 (-552))))) (($ |#2|) NIL) (($ (-1233 |#1|)) 18)) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-756)) NIL)) (-2014 (((-756)) NIL)) (-2639 ((|#2| $ |#2| |#2|) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) 13 T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-837 |#1| |#2| |#3| |#4|) (-13 (-834 |#2|) (-10 -8 (-15 -3213 ($ (-1233 |#1|))))) (-1154) (-1030) (-98 |#2|) (-1 |#2| |#2|)) (T -837)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *3)) (-14 *3 (-1154)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *4 (-1030)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-834 |#2|) (-10 -8 (-15 -3213 ($ (-1233 |#1|))))) +((-3648 ((|#1| (-756) |#1|) 35 (|has| |#1| (-38 (-401 (-552)))))) (-3473 ((|#1| (-756) (-756) |#1|) 27) ((|#1| (-756) |#1|) 20)) (-3174 ((|#1| (-756) |#1|) 31)) (-1584 ((|#1| (-756) |#1|) 29)) (-4041 ((|#1| (-756) |#1|) 28))) +(((-838 |#1|) (-10 -7 (-15 -4041 (|#1| (-756) |#1|)) (-15 -1584 (|#1| (-756) |#1|)) (-15 -3174 (|#1| (-756) |#1|)) (-15 -3473 (|#1| (-756) |#1|)) (-15 -3473 (|#1| (-756) (-756) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -3648 (|#1| (-756) |#1|)) |%noBranch|)) (-169)) (T -838)) +((-3648 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3473 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) (-3473 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) (-3174 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) (-1584 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) (-4041 (*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -4041 (|#1| (-756) |#1|)) (-15 -1584 (|#1| (-756) |#1|)) (-15 -3174 (|#1| (-756) |#1|)) (-15 -3473 (|#1| (-756) |#1|)) (-15 -3473 (|#1| (-756) (-756) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -3648 (|#1| (-756) |#1|)) |%noBranch|)) +((-3202 (((-111) $ $) 7)) (-1772 (($ $ $) 13)) (-2011 (($ $ $) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1666 (((-111) $ $) 16)) (-1644 (((-111) $ $) 17)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 15)) (-1632 (((-111) $ $) 18)) (** (($ $ (-902)) 21)) (* (($ $ $) 20))) +(((-839) (-137)) (T -839)) +NIL +(-13 (-832) (-1090)) +(((-101) . T) ((-599 (-844)) . T) ((-832) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2925 (((-552) $) 12)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 18) (($ (-552)) 11)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 8)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 9))) +(((-840) (-13 (-832) (-10 -8 (-15 -3213 ($ (-552))) (-15 -2925 ((-552) $))))) (T -840)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-840)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-840))))) +(-13 (-832) (-10 -8 (-15 -3213 ($ (-552))) (-15 -2925 ((-552) $)))) +((-3268 (((-1098) $ (-127)) 17))) +(((-841 |#1|) (-10 -8 (-15 -3268 ((-1098) |#1| (-127)))) (-842)) (T -841)) +NIL +(-10 -8 (-15 -3268 ((-1098) |#1| (-127)))) +((-3268 (((-1098) $ (-127)) 7)) (-2586 (((-1098) $ (-128)) 8)) (-2469 (($ $) 6))) +(((-842) (-137)) (T -842)) +((-2586 (*1 *2 *1 *3) (-12 (-4 *1 (-842)) (-5 *3 (-128)) (-5 *2 (-1098)))) (-3268 (*1 *2 *1 *3) (-12 (-4 *1 (-842)) (-5 *3 (-127)) (-5 *2 (-1098))))) +(-13 (-170) (-10 -8 (-15 -2586 ((-1098) $ (-128))) (-15 -3268 ((-1098) $ (-127))))) (((-170) . T)) -((-1525 (((-1096) $ (-127)) NIL)) (-3928 (((-1096) $ (-128)) 22)) (-1664 (($ (-382)) 12) (($ (-1134)) 14)) (-1300 (((-111) $) 19)) (-1477 (((-842) $) 26)) (-2219 (($ $) 23))) -(((-841) (-13 (-840) (-599 (-842)) (-10 -8 (-15 -1664 ($ (-382))) (-15 -1664 ($ (-1134))) (-15 -1300 ((-111) $))))) (T -841)) -((-1664 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-841)))) (-1664 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-841)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-841))))) -(-13 (-840) (-599 (-842)) (-10 -8 (-15 -1664 ($ (-382))) (-15 -1664 ($ (-1134))) (-15 -1300 ((-111) $)))) -((-1465 (((-111) $ $) NIL) (($ $ $) 77)) (-2572 (($ $ $) 114)) (-2359 (((-552) $) 31) (((-552)) 36)) (-4272 (($ (-552)) 45)) (-2255 (($ $ $) 46) (($ (-627 $)) 76)) (-3591 (($ $ (-627 $)) 74)) (-2197 (((-552) $) 34)) (-2281 (($ $ $) 65)) (-2707 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1996 (((-552) $) 33)) (-2167 (($ $ $) 64)) (-2258 (($ $) 104)) (-1293 (($ $ $) 118)) (-3957 (($ (-627 $)) 53)) (-3606 (($ $ (-627 $)) 71)) (-2464 (($ (-552) (-552)) 47)) (-1905 (($ $) 115) (($ $ $) 116)) (-2791 (($ $ (-552)) 41) (($ $) 44)) (-2813 (($ $ $) 89)) (-3871 (($ $ $) 121)) (-2049 (($ $) 105)) (-2789 (($ $ $) 90)) (-1451 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1277 (((-1240) $) 10)) (-2376 (($ $) 108) (($ $ (-754)) 111)) (-4020 (($ $ $) 67)) (-3750 (($ $ $) 66)) (-4047 (($ $ (-627 $)) 100)) (-4099 (($ $ $) 103)) (-4056 (($ (-627 $)) 51)) (-3820 (($ $) 62) (($ (-627 $)) 63)) (-3140 (($ $ $) 112)) (-2830 (($ $) 106)) (-2954 (($ $ $) 117)) (-2267 (($ (-552)) 21) (($ (-1152)) 23) (($ (-1134)) 30) (($ (-220)) 25)) (-1881 (($ $ $) 93)) (-1681 (($ $) 94)) (-4204 (((-1240) (-1134)) 15)) (-3799 (($ (-1134)) 14)) (-4176 (($ (-627 (-627 $))) 50)) (-2776 (($ $ (-552)) 40) (($ $) 43)) (-1595 (((-1134) $) NIL)) (-3527 (($ $ $) 120)) (-3275 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-4107 (((-111) $) 98)) (-3800 (($ $ (-627 $)) 101) (($ $ $ $) 102)) (-2874 (($ (-552)) 37)) (-3476 (((-552) $) 32) (((-552)) 35)) (-3876 (($ $ $) 38) (($ (-627 $)) 75)) (-1498 (((-1096) $) NIL)) (-2761 (($ $ $) 91)) (-2373 (($) 13)) (-1985 (($ $ (-627 $)) 99)) (-2693 (((-1134) (-1134)) 8)) (-2395 (($ $) 107) (($ $ (-754)) 110)) (-2773 (($ $ $) 88)) (-2942 (($ $ (-754)) 126)) (-2337 (($ (-627 $)) 52)) (-1477 (((-842) $) 19)) (-3174 (($ $ (-552)) 39) (($ $) 42)) (-2182 (($ $) 60) (($ (-627 $)) 61)) (-4243 (($ $) 58) (($ (-627 $)) 59)) (-3092 (($ $) 113)) (-4331 (($ (-627 $)) 57)) (-3697 (($ $ $) 97)) (-2522 (($ $ $) 119)) (-2520 (($ $ $) 92)) (-2591 (($ $ $) 95) (($ $) 96)) (-2351 (($ $ $) 81)) (-2329 (($ $ $) 79)) (-2292 (((-111) $ $) 16) (($ $ $) 17)) (-2340 (($ $ $) 80)) (-2316 (($ $ $) 78)) (-2407 (($ $ $) 86)) (-2396 (($ $ $) 83) (($ $) 84)) (-2384 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-842) (-13 (-1076) (-10 -8 (-15 -1277 ((-1240) $)) (-15 -3799 ($ (-1134))) (-15 -4204 ((-1240) (-1134))) (-15 -2267 ($ (-552))) (-15 -2267 ($ (-1152))) (-15 -2267 ($ (-1134))) (-15 -2267 ($ (-220))) (-15 -2373 ($)) (-15 -2693 ((-1134) (-1134))) (-15 -2359 ((-552) $)) (-15 -3476 ((-552) $)) (-15 -2359 ((-552))) (-15 -3476 ((-552))) (-15 -1996 ((-552) $)) (-15 -2197 ((-552) $)) (-15 -2874 ($ (-552))) (-15 -4272 ($ (-552))) (-15 -2464 ($ (-552) (-552))) (-15 -2776 ($ $ (-552))) (-15 -2791 ($ $ (-552))) (-15 -3174 ($ $ (-552))) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3174 ($ $)) (-15 -3876 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3876 ($ (-627 $))) (-15 -2255 ($ (-627 $))) (-15 -4047 ($ $ (-627 $))) (-15 -3800 ($ $ (-627 $))) (-15 -3800 ($ $ $ $)) (-15 -4099 ($ $ $)) (-15 -4107 ((-111) $)) (-15 -1985 ($ $ (-627 $))) (-15 -2258 ($ $)) (-15 -3527 ($ $ $)) (-15 -3092 ($ $)) (-15 -4176 ($ (-627 (-627 $)))) (-15 -2572 ($ $ $)) (-15 -1905 ($ $)) (-15 -1905 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -1293 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -2942 ($ $ (-754))) (-15 -3697 ($ $ $)) (-15 -2167 ($ $ $)) (-15 -2281 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -3606 ($ $ (-627 $))) (-15 -3591 ($ $ (-627 $))) (-15 -2049 ($ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ (-754))) (-15 -2376 ($ $)) (-15 -2376 ($ $ (-754))) (-15 -2830 ($ $)) (-15 -3140 ($ $ $)) (-15 -2707 ($ $)) (-15 -2707 ($ $ $)) (-15 -2707 ($ $ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1451 ($ $ $ $)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -3275 ($ $ $ $)) (-15 -4243 ($ $)) (-15 -4243 ($ (-627 $))) (-15 -2182 ($ $)) (-15 -2182 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -4056 ($ (-627 $))) (-15 -2337 ($ (-627 $))) (-15 -3957 ($ (-627 $))) (-15 -4331 ($ (-627 $))) (-15 -2292 ($ $ $)) (-15 -1465 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ $)) (-15 -2773 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -1681 ($ $)) (-15 -2591 ($ $ $)) (-15 -2591 ($ $))))) (T -842)) -((-1277 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-842)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-842)))) (-2373 (*1 *1) (-5 *1 (-842))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2359 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3476 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2464 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2776 (*1 *1 *1) (-5 *1 (-842))) (-2791 (*1 *1 *1) (-5 *1 (-842))) (-3174 (*1 *1 *1) (-5 *1 (-842))) (-3876 (*1 *1 *1 *1) (-5 *1 (-842))) (-2255 (*1 *1 *1 *1) (-5 *1 (-842))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3800 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-4099 (*1 *1 *1 *1) (-5 *1 (-842))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2258 (*1 *1 *1) (-5 *1 (-842))) (-3527 (*1 *1 *1 *1) (-5 *1 (-842))) (-3092 (*1 *1 *1) (-5 *1 (-842))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-842)))) (-2572 (*1 *1 *1 *1) (-5 *1 (-842))) (-1905 (*1 *1 *1) (-5 *1 (-842))) (-1905 (*1 *1 *1 *1) (-5 *1 (-842))) (-2954 (*1 *1 *1 *1) (-5 *1 (-842))) (-1293 (*1 *1 *1 *1) (-5 *1 (-842))) (-2522 (*1 *1 *1 *1) (-5 *1 (-842))) (-3871 (*1 *1 *1 *1) (-5 *1 (-842))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-3697 (*1 *1 *1 *1) (-5 *1 (-842))) (-2167 (*1 *1 *1 *1) (-5 *1 (-842))) (-2281 (*1 *1 *1 *1) (-5 *1 (-842))) (-3750 (*1 *1 *1 *1) (-5 *1 (-842))) (-4020 (*1 *1 *1 *1) (-5 *1 (-842))) (-3606 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2049 (*1 *1 *1) (-5 *1 (-842))) (-2395 (*1 *1 *1) (-5 *1 (-842))) (-2395 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-2376 (*1 *1 *1) (-5 *1 (-842))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-2830 (*1 *1 *1) (-5 *1 (-842))) (-3140 (*1 *1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-4243 (*1 *1 *1) (-5 *1 (-842))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2182 (*1 *1 *1) (-5 *1 (-842))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3820 (*1 *1 *1) (-5 *1 (-842))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2292 (*1 *1 *1 *1) (-5 *1 (-842))) (-1465 (*1 *1 *1 *1) (-5 *1 (-842))) (-2316 (*1 *1 *1 *1) (-5 *1 (-842))) (-2329 (*1 *1 *1 *1) (-5 *1 (-842))) (-2340 (*1 *1 *1 *1) (-5 *1 (-842))) (-2351 (*1 *1 *1 *1) (-5 *1 (-842))) (-2384 (*1 *1 *1 *1) (-5 *1 (-842))) (-2396 (*1 *1 *1 *1) (-5 *1 (-842))) (-2396 (*1 *1 *1) (-5 *1 (-842))) (* (*1 *1 *1 *1) (-5 *1 (-842))) (-2407 (*1 *1 *1 *1) (-5 *1 (-842))) (** (*1 *1 *1 *1) (-5 *1 (-842))) (-2773 (*1 *1 *1 *1) (-5 *1 (-842))) (-2813 (*1 *1 *1 *1) (-5 *1 (-842))) (-2789 (*1 *1 *1 *1) (-5 *1 (-842))) (-2761 (*1 *1 *1 *1) (-5 *1 (-842))) (-2520 (*1 *1 *1 *1) (-5 *1 (-842))) (-1881 (*1 *1 *1 *1) (-5 *1 (-842))) (-1681 (*1 *1 *1) (-5 *1 (-842))) (-2591 (*1 *1 *1 *1) (-5 *1 (-842))) (-2591 (*1 *1 *1) (-5 *1 (-842)))) -(-13 (-1076) (-10 -8 (-15 -1277 ((-1240) $)) (-15 -3799 ($ (-1134))) (-15 -4204 ((-1240) (-1134))) (-15 -2267 ($ (-552))) (-15 -2267 ($ (-1152))) (-15 -2267 ($ (-1134))) (-15 -2267 ($ (-220))) (-15 -2373 ($)) (-15 -2693 ((-1134) (-1134))) (-15 -2359 ((-552) $)) (-15 -3476 ((-552) $)) (-15 -2359 ((-552))) (-15 -3476 ((-552))) (-15 -1996 ((-552) $)) (-15 -2197 ((-552) $)) (-15 -2874 ($ (-552))) (-15 -4272 ($ (-552))) (-15 -2464 ($ (-552) (-552))) (-15 -2776 ($ $ (-552))) (-15 -2791 ($ $ (-552))) (-15 -3174 ($ $ (-552))) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3174 ($ $)) (-15 -3876 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3876 ($ (-627 $))) (-15 -2255 ($ (-627 $))) (-15 -4047 ($ $ (-627 $))) (-15 -3800 ($ $ (-627 $))) (-15 -3800 ($ $ $ $)) (-15 -4099 ($ $ $)) (-15 -4107 ((-111) $)) (-15 -1985 ($ $ (-627 $))) (-15 -2258 ($ $)) (-15 -3527 ($ $ $)) (-15 -3092 ($ $)) (-15 -4176 ($ (-627 (-627 $)))) (-15 -2572 ($ $ $)) (-15 -1905 ($ $)) (-15 -1905 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -1293 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -2942 ($ $ (-754))) (-15 -3697 ($ $ $)) (-15 -2167 ($ $ $)) (-15 -2281 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -3606 ($ $ (-627 $))) (-15 -3591 ($ $ (-627 $))) (-15 -2049 ($ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ (-754))) (-15 -2376 ($ $)) (-15 -2376 ($ $ (-754))) (-15 -2830 ($ $)) (-15 -3140 ($ $ $)) (-15 -2707 ($ $)) (-15 -2707 ($ $ $)) (-15 -2707 ($ $ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1451 ($ $ $ $)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -3275 ($ $ $ $)) (-15 -4243 ($ $)) (-15 -4243 ($ (-627 $))) (-15 -2182 ($ $)) (-15 -2182 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -4056 ($ (-627 $))) (-15 -2337 ($ (-627 $))) (-15 -3957 ($ (-627 $))) (-15 -4331 ($ (-627 $))) (-15 -2292 ($ $ $)) (-15 -1465 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ $)) (-15 -2773 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -1681 ($ $)) (-15 -2591 ($ $ $)) (-15 -2591 ($ $)))) -((-2868 (((-1240) (-627 (-52))) 24)) (-1395 (((-1240) (-1134) (-842)) 14) (((-1240) (-842)) 9) (((-1240) (-1134)) 11))) -(((-843) (-10 -7 (-15 -1395 ((-1240) (-1134))) (-15 -1395 ((-1240) (-842))) (-15 -1395 ((-1240) (-1134) (-842))) (-15 -2868 ((-1240) (-627 (-52)))))) (T -843)) -((-2868 (*1 *2 *3) (-12 (-5 *3 (-627 (-52))) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-843))))) -(-10 -7 (-15 -1395 ((-1240) (-1134))) (-15 -1395 ((-1240) (-842))) (-15 -1395 ((-1240) (-1134) (-842))) (-15 -2868 ((-1240) (-627 (-52))))) -((-1465 (((-111) $ $) NIL)) (-4344 (((-3 $ "failed") (-1152)) 33)) (-3307 (((-754)) 31)) (-1279 (($) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2886 (((-900) $) 29)) (-1595 (((-1134) $) 39)) (-4153 (($ (-900)) 28)) (-1498 (((-1096) $) NIL)) (-3562 (((-1152) $) 13) (((-528) $) 19) (((-871 (-373)) $) 26) (((-871 (-552)) $) 22)) (-1477 (((-842) $) 16)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 36)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35))) -(((-844 |#1|) (-13 (-824) (-600 (-1152)) (-600 (-528)) (-600 (-871 (-373))) (-600 (-871 (-552))) (-10 -8 (-15 -4344 ((-3 $ "failed") (-1152))))) (-627 (-1152))) (T -844)) -((-4344 (*1 *1 *2) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-844 *3)) (-14 *3 (-627 *2))))) -(-13 (-824) (-600 (-1152)) (-600 (-528)) (-600 (-871 (-373))) (-600 (-871 (-552))) (-10 -8 (-15 -4344 ((-3 $ "failed") (-1152))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (((-931 |#1|) $) NIL) (($ (-931 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-3995 (((-754)) NIL)) (-1620 (((-1240) (-754)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-845 |#1| |#2| |#3| |#4|) (-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 ((-931 |#1|) $)) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1620 ((-1240) (-754))))) (-1028) (-627 (-1152)) (-627 (-754)) (-754)) (T -845)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-845 *3 *4 *5 *6)) (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-754))) (-14 *5 (-754)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *4 (-1028)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 *3)) (-14 *7 *3)))) -(-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 ((-931 |#1|) $)) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1620 ((-1240) (-754))))) -((-3899 (((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|) 31)) (-2268 (((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|) 24))) -(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2268 ((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|)) (-15 -3899 ((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|))) (-357) (-1226 |#1|) (-1211 |#1|)) (T -846)) -((-3899 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-171 *6)) (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) (-2268 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-401 *6)) (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) -(-10 -7 (-15 -2268 ((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|)) (-15 -3899 ((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|))) -((-2268 (((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)) 28) (((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) 26))) -(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)))) (-357) (-1152) |#1|) (T -847)) -((-2268 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) (-5 *1 (-847 *5 *6 *7)))) (-2268 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) (-5 *1 (-847 *5 *6 *7))))) -(-10 -7 (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $ (-552)) 60)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1905 (($ (-1148 (-552)) (-552)) 59)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1497 (($ $) 62)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2641 (((-754) $) 67)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-3484 (((-552)) 64)) (-3752 (((-552) $) 63)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-4168 (($ $ (-552)) 66)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3080 (((-1132 (-552)) $) 68)) (-2890 (($ $) 65)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3030 (((-552) $ (-552)) 61)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-848 |#1|) (-137) (-552)) (T -848)) -((-3080 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-1132 (-552))))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-754)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-2890 (*1 *1 *1) (-4 *1 (-848 *2))) (-3484 (*1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1497 (*1 *1 *1) (-4 *1 (-848 *2))) (-3030 (*1 *2 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1737 (*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *3 (-552)) (-4 *1 (-848 *4))))) -(-13 (-301) (-144) (-10 -8 (-15 -3080 ((-1132 (-552)) $)) (-15 -2641 ((-754) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)) (-15 -3484 ((-552))) (-15 -3752 ((-552) $)) (-15 -1497 ($ $)) (-15 -3030 ((-552) $ (-552))) (-15 -1737 ($ $ (-552))) (-15 -1905 ($ (-1148 (-552)) (-552))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1497 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) NIL)) (-3752 (((-552) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-1132 (-552)) $) NIL)) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-849 |#1|) (-848 |#1|) (-552)) (T -849)) -NIL -(-848 |#1|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-849 |#1|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-849 |#1|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-552))))) (-1703 (((-849 |#1|) $) NIL) (((-1152) $) NIL (|has| (-849 |#1|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-849 |#1|) (-1017 (-552)))) (((-552) $) NIL (|has| (-849 |#1|) (-1017 (-552))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-849 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-849 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-849 |#1|))) (|:| |vec| (-1235 (-849 |#1|)))) (-671 $) (-1235 $)) NIL) (((-671 (-849 |#1|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-849 |#1|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-849 |#1|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-849 |#1|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-849 |#1|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-849 |#1|) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-849 |#1|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-849 |#1|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-849 |#1|) (-830)))) (-4093 (($ $ $) NIL (|has| (-849 |#1|) (-830)))) (-3516 (($ (-1 (-849 |#1|) (-849 |#1|)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-849 |#1|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-849 |#1|) (-301)))) (-2060 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-849 |#1|)) (-627 (-849 |#1|))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-849 |#1|) (-849 |#1|)) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-288 (-849 |#1|))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-627 (-288 (-849 |#1|)))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-627 (-1152)) (-627 (-849 |#1|))) NIL (|has| (-849 |#1|) (-506 (-1152) (-849 |#1|)))) (($ $ (-1152) (-849 |#1|)) NIL (|has| (-849 |#1|) (-506 (-1152) (-849 |#1|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-849 |#1|)) NIL (|has| (-849 |#1|) (-280 (-849 |#1|) (-849 |#1|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-849 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-849 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1 (-849 |#1|) (-849 |#1|)) (-754)) NIL) (($ $ (-1 (-849 |#1|) (-849 |#1|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-849 |#1|) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-849 |#1|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-849 |#1|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-849 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-849 |#1|) (-1001))) (((-220) $) NIL (|has| (-849 |#1|) (-1001)))) (-2771 (((-171 (-401 (-552))) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-849 |#1|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-849 |#1|)) NIL) (($ (-1152)) NIL (|has| (-849 |#1|) (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-849 |#1|) (-888))) (|has| (-849 |#1|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) NIL)) (-3329 (($ $) NIL (|has| (-849 |#1|) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-849 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-849 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1 (-849 |#1|) (-849 |#1|)) (-754)) NIL) (($ $ (-1 (-849 |#1|) (-849 |#1|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2407 (($ $ $) NIL) (($ (-849 |#1|) (-849 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-849 |#1|) $) NIL) (($ $ (-849 |#1|)) NIL))) -(((-850 |#1|) (-13 (-971 (-849 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552)) (T -850)) -((-3030 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-850 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-850 *3)) (-14 *3 (-552)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-850 *2)) (-14 *2 (-552)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850 *3)) (-14 *3 *2)))) -(-13 (-971 (-849 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#2| $) NIL (|has| |#2| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#2| (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| |#2| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552))))) (-1703 ((|#2| $) NIL) (((-1152) $) NIL (|has| |#2| (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-552)))) (((-552) $) NIL (|has| |#2| (-1017 (-552))))) (-1405 (($ $) 31) (($ (-552) $) 32)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 53)) (-1279 (($) NIL (|has| |#2| (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| |#2| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#2| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#2| (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 ((|#2| $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#2| (-1127)))) (-1508 (((-111) $) NIL (|has| |#2| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 49)) (-3002 (($) NIL (|has| |#2| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| |#2| (-301)))) (-2060 ((|#2| $) NIL (|has| |#2| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 |#2|) (-627 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-303 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ (-627 (-288 |#2|))) NIL (|has| |#2| (-303 |#2|))) (($ $ (-627 (-1152)) (-627 |#2|)) NIL (|has| |#2| (-506 (-1152) |#2|))) (($ $ (-1152) |#2|) NIL (|has| |#2| (-506 (-1152) |#2|)))) (-2718 (((-754) $) NIL)) (-1985 (($ $ |#2|) NIL (|has| |#2| (-280 |#2| |#2|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| |#2| (-228))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1583 (($ $) NIL)) (-2929 ((|#2| $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| |#2| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#2| (-600 (-871 (-373))))) (((-528) $) NIL (|has| |#2| (-600 (-528)))) (((-373) $) NIL (|has| |#2| (-1001))) (((-220) $) NIL (|has| |#2| (-1001)))) (-2771 (((-171 (-401 (-552))) $) 68)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) 87) (($ (-552)) 19) (($ $) NIL) (($ (-401 (-552))) 24) (($ |#2|) 18) (($ (-1152)) NIL (|has| |#2| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3796 ((|#2| $) NIL (|has| |#2| (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) 60)) (-3329 (($ $) NIL (|has| |#2| (-803)))) (-1922 (($) 14 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $) NIL (|has| |#2| (-228))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) 35)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2396 (($ $) 39) (($ $ $) 41)) (-2384 (($ $ $) 37)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 50)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 42) (($ $ $) 44) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-851 |#1| |#2|) (-13 (-971 |#2|) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552) (-848 |#1|)) (T -851)) -((-3030 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-851 *4 *5)) (-5 *3 (-552)) (-4 *5 (-848 *4)))) (-2771 (*1 *2 *1) (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3)))) (-1405 (*1 *1 *1) (-12 (-14 *2 (-552)) (-5 *1 (-851 *2 *3)) (-4 *3 (-848 *2)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3))))) -(-13 (-971 |#2|) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) -((-1465 (((-111) $ $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-4143 ((|#2| $) 12)) (-4189 (($ |#1| |#2|) 9)) (-1595 (((-1134) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-1498 (((-1096) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#1| $) 11)) (-1490 (($ |#1| |#2|) 10)) (-1477 (((-842) $) 18 (-1559 (-12 (|has| |#1| (-599 (-842))) (|has| |#2| (-599 (-842)))) (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076)))))) (-2292 (((-111) $ $) 22 (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076)))))) -(((-852 |#1| |#2|) (-13 (-1189) (-10 -8 (IF (|has| |#1| (-599 (-842))) (IF (|has| |#2| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1076)) (IF (|has| |#2| (-1076)) (-6 (-1076)) |%noBranch|) |%noBranch|) (-15 -4189 ($ |#1| |#2|)) (-15 -1490 ($ |#1| |#2|)) (-15 -3340 (|#1| $)) (-15 -4143 (|#2| $)))) (-1189) (-1189)) (T -852)) -((-4189 (*1 *1 *2 *3) (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) (-3340 (*1 *2 *1) (-12 (-4 *2 (-1189)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1189)))) (-4143 (*1 *2 *1) (-12 (-4 *2 (-1189)) (-5 *1 (-852 *3 *2)) (-4 *3 (-1189))))) -(-13 (-1189) (-10 -8 (IF (|has| |#1| (-599 (-842))) (IF (|has| |#2| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1076)) (IF (|has| |#2| (-1076)) (-6 (-1076)) |%noBranch|) |%noBranch|) (-15 -4189 ($ |#1| |#2|)) (-15 -1490 ($ |#1| |#2|)) (-15 -3340 (|#1| $)) (-15 -4143 (|#2| $)))) -((-1465 (((-111) $ $) NIL)) (-2291 (((-552) $) 15)) (-3883 (($ (-154)) 11)) (-4254 (($ (-154)) 12)) (-1595 (((-1134) $) NIL)) (-3808 (((-154) $) 13)) (-1498 (((-1096) $) NIL)) (-4030 (($ (-154)) 9)) (-1310 (($ (-154)) 8)) (-1477 (((-842) $) 23) (($ (-154)) 16)) (-3854 (($ (-154)) 10)) (-2292 (((-111) $ $) NIL))) -(((-853) (-13 (-1076) (-10 -8 (-15 -1310 ($ (-154))) (-15 -4030 ($ (-154))) (-15 -3854 ($ (-154))) (-15 -3883 ($ (-154))) (-15 -4254 ($ (-154))) (-15 -3808 ((-154) $)) (-15 -2291 ((-552) $)) (-15 -1477 ($ (-154)))))) (T -853)) -((-1310 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-4254 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-853)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) -(-13 (-1076) (-10 -8 (-15 -1310 ($ (-154))) (-15 -4030 ($ (-154))) (-15 -3854 ($ (-154))) (-15 -3883 ($ (-154))) (-15 -4254 ($ (-154))) (-15 -3808 ((-154) $)) (-15 -2291 ((-552) $)) (-15 -1477 ($ (-154))))) -((-1477 (((-310 (-552)) (-401 (-931 (-48)))) 23) (((-310 (-552)) (-931 (-48))) 18))) -(((-854) (-10 -7 (-15 -1477 ((-310 (-552)) (-931 (-48)))) (-15 -1477 ((-310 (-552)) (-401 (-931 (-48))))))) (T -854)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 (-48)))) (-5 *2 (-310 (-552))) (-5 *1 (-854)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-931 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-854))))) -(-10 -7 (-15 -1477 ((-310 (-552)) (-931 (-48)))) (-15 -1477 ((-310 (-552)) (-401 (-931 (-48)))))) -((-3516 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) -(((-855 |#1| |#2|) (-10 -7 (-15 -3516 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-1189) (-1189)) (T -855)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) -(-10 -7 (-15 -3516 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) -((-2139 (($ |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) -(((-856 |#1|) (-10 -8 (-15 -2139 ($ |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -856)) -((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-856 *2)) (-4 *2 (-1189)))) (-2139 (*1 *1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1189))))) -(-10 -8 (-15 -2139 ($ |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) -((-3516 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14))) -(((-857 |#1| |#2|) (-10 -7 (-15 -3516 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1189) (-1189)) (T -857)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))) -(-10 -7 (-15 -3516 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) -((-2139 (($ |#1| |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) -(((-858 |#1|) (-10 -8 (-15 -2139 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -858)) -((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-858 *2)) (-4 *2 (-1189)))) (-2139 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1189))))) -(-10 -8 (-15 -2139 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) -((-2977 (((-627 (-1157)) (-1134)) 9))) -(((-859) (-10 -7 (-15 -2977 ((-627 (-1157)) (-1134))))) (T -859)) -((-2977 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-859))))) -(-10 -7 (-15 -2977 ((-627 (-1157)) (-1134)))) -((-3516 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 14))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3516 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1189) (-1189)) (T -860)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) -(-10 -7 (-15 -3516 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) -((-2793 (($ |#1| |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) -(((-861 |#1|) (-10 -8 (-15 -2793 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -861)) -((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-861 *2)) (-4 *2 (-1189)))) (-2793 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1189))))) -(-10 -8 (-15 -2793 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) -((-3293 (((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552)))) 32)) (-3532 (((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552))) 28)) (-1874 (((-1132 (-627 (-552))) (-627 (-552))) 41) (((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552))) 40)) (-1409 (((-1132 (-627 (-552))) (-552)) 42)) (-3163 (((-1132 (-627 (-552))) (-552) (-552)) 22) (((-1132 (-627 (-552))) (-552)) 16) (((-1132 (-627 (-552))) (-552) (-552) (-552)) 12)) (-1734 (((-1132 (-627 (-552))) (-1132 (-627 (-552)))) 26)) (-2616 (((-627 (-552)) (-627 (-552))) 25))) -(((-862) (-10 -7 (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552))) (-15 -2616 ((-627 (-552)) (-627 (-552)))) (-15 -1734 ((-1132 (-627 (-552))) (-1132 (-627 (-552))))) (-15 -3532 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -3293 ((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552))))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)))) (-15 -1409 ((-1132 (-627 (-552))) (-552))))) (T -862)) -((-1409 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-1874 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-1874 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-3293 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *3 (-627 (-552))) (-5 *1 (-862)))) (-3532 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-862)))) (-3163 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-3163 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-3163 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) -(-10 -7 (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552))) (-15 -2616 ((-627 (-552)) (-627 (-552)))) (-15 -1734 ((-1132 (-627 (-552))) (-1132 (-627 (-552))))) (-15 -3532 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -3293 ((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552))))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)))) (-15 -1409 ((-1132 (-627 (-552))) (-552)))) -((-3562 (((-871 (-373)) $) 9 (|has| |#1| (-600 (-871 (-373))))) (((-871 (-552)) $) 8 (|has| |#1| (-600 (-871 (-552))))))) -(((-863 |#1|) (-137) (-1189)) (T -863)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-600 (-871 (-552)))) (-6 (-600 (-871 (-552)))) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-373)))) (-6 (-600 (-871 (-373)))) |%noBranch|))) -(((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552))))) -((-1465 (((-111) $ $) NIL)) (-2655 (($) 14)) (-2639 (($ (-868 |#1| |#2|) (-868 |#1| |#3|)) 27)) (-4226 (((-868 |#1| |#3|) $) 16)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4102 (((-111) $) 22)) (-2953 (($) 19)) (-1477 (((-842) $) 30)) (-2992 (((-868 |#1| |#2|) $) 15)) (-2292 (((-111) $ $) 25))) -(((-864 |#1| |#2| |#3|) (-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -2639 ($ (-868 |#1| |#2|) (-868 |#1| |#3|))) (-15 -2992 ((-868 |#1| |#2|) $)) (-15 -4226 ((-868 |#1| |#3|) $)))) (-1076) (-1076) (-648 |#2|)) (T -864)) -((-4102 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4)))) (-2953 (*1 *1) (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) (-4 *4 (-648 *3)))) (-2655 (*1 *1) (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) (-4 *4 (-648 *3)))) (-2639 (*1 *1 *2 *3) (-12 (-5 *2 (-868 *4 *5)) (-5 *3 (-868 *4 *6)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-648 *5)) (-5 *1 (-864 *4 *5 *6)))) (-2992 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *4)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *5)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4))))) -(-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -2639 ($ (-868 |#1| |#2|) (-868 |#1| |#3|))) (-15 -2992 ((-868 |#1| |#2|) $)) (-15 -4226 ((-868 |#1| |#3|) $)))) -((-1465 (((-111) $ $) 7)) (-4208 (((-868 |#1| $) $ (-871 |#1|) (-868 |#1| $)) 13)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-865 |#1|) (-137) (-1076)) (T -865)) -((-4208 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-868 *4 *1)) (-5 *3 (-871 *4)) (-4 *1 (-865 *4)) (-4 *4 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -4208 ((-868 |t#1| $) $ (-871 |t#1|) (-868 |t#1| $))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-2070 (((-111) (-627 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2648 (((-868 |#1| |#2|) |#2| |#3|) 43 (-12 (-1681 (|has| |#2| (-1017 (-1152)))) (-1681 (|has| |#2| (-1028))))) (((-627 (-288 (-931 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1028)) (-1681 (|has| |#2| (-1017 (-1152)))))) (((-627 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1017 (-1152)))) (((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|) 21))) -(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-111) |#2| |#3|)) (-15 -2070 ((-111) (-627 |#2|) |#3|)) (-15 -2648 ((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|)) (IF (|has| |#2| (-1017 (-1152))) (-15 -2648 ((-627 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1028)) (-15 -2648 ((-627 (-288 (-931 |#2|))) |#2| |#3|)) (-15 -2648 ((-868 |#1| |#2|) |#2| |#3|))))) (-1076) (-865 |#1|) (-600 (-871 |#1|))) (T -866)) -((-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-868 *5 *3)) (-5 *1 (-866 *5 *3 *4)) (-1681 (-4 *3 (-1017 (-1152)))) (-1681 (-4 *3 (-1028))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 (-931 *3)))) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1028)) (-1681 (-4 *3 (-1017 (-1152)))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 *3))) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1017 (-1152))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-5 *2 (-864 *5 *6 (-627 *6))) (-5 *1 (-866 *5 *6 *4)) (-5 *3 (-627 *6)) (-4 *4 (-600 (-871 *5))))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-4 *6 (-865 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *6 *4)) (-4 *4 (-600 (-871 *5))))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5)))))) -(-10 -7 (-15 -2070 ((-111) |#2| |#3|)) (-15 -2070 ((-111) (-627 |#2|) |#3|)) (-15 -2648 ((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|)) (IF (|has| |#2| (-1017 (-1152))) (-15 -2648 ((-627 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1028)) (-15 -2648 ((-627 (-288 (-931 |#2|))) |#2| |#3|)) (-15 -2648 ((-868 |#1| |#2|) |#2| |#3|))))) -((-3516 (((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)) 22))) -(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)))) (-1076) (-1076) (-1076)) (T -867)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-868 *5 *6)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-868 *5 *7)) (-5 *1 (-867 *5 *6 *7))))) -(-10 -7 (-15 -3516 ((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)))) -((-1465 (((-111) $ $) NIL)) (-3416 (($ $ $) 39)) (-4139 (((-3 (-111) "failed") $ (-871 |#1|)) 36)) (-2655 (($) 12)) (-1595 (((-1134) $) NIL)) (-2684 (($ (-871 |#1|) |#2| $) 20)) (-1498 (((-1096) $) NIL)) (-2567 (((-3 |#2| "failed") (-871 |#1|) $) 50)) (-4102 (((-111) $) 15)) (-2953 (($) 13)) (-1790 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $) 25)) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|)))) 23)) (-1477 (((-842) $) 44)) (-4339 (($ (-871 |#1|) |#2| $ |#2|) 48)) (-4015 (($ (-871 |#1|) |#2| $) 47)) (-2292 (((-111) $ $) 41))) -(((-868 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -3416 ($ $ $)) (-15 -2567 ((-3 |#2| "failed") (-871 |#1|) $)) (-15 -4015 ($ (-871 |#1|) |#2| $)) (-15 -2684 ($ (-871 |#1|) |#2| $)) (-15 -4339 ($ (-871 |#1|) |#2| $ |#2|)) (-15 -1790 ((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))))) (-15 -4139 ((-3 (-111) "failed") $ (-871 |#1|))))) (-1076) (-1076)) (T -868)) -((-4102 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2953 (*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2655 (*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3416 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-4 *2 (-1076)) (-5 *1 (-868 *4 *2)))) (-4015 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-2684 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-4339 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) (-4 *4 (-1076)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)))) (-4139 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-868 *4 *5)) (-4 *5 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -3416 ($ $ $)) (-15 -2567 ((-3 |#2| "failed") (-871 |#1|) $)) (-15 -4015 ($ (-871 |#1|) |#2| $)) (-15 -2684 ($ (-871 |#1|) |#2| $)) (-15 -4339 ($ (-871 |#1|) |#2| $ |#2|)) (-15 -1790 ((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))))) (-15 -4139 ((-3 (-111) "failed") $ (-871 |#1|))))) -((-1792 (((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|))) 32) (((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|))) 43) (((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|)) 35)) (-4139 (((-111) (-627 |#2|) (-871 |#1|)) 40) (((-111) |#2| (-871 |#1|)) 36)) (-2714 (((-1 (-111) |#2|) (-871 |#1|)) 16)) (-3517 (((-627 |#2|) (-871 |#1|)) 24)) (-3925 (((-871 |#1|) (-871 |#1|) |#2|) 20))) -(((-869 |#1| |#2|) (-10 -7 (-15 -1792 ((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|)))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|)))) (-15 -2714 ((-1 (-111) |#2|) (-871 |#1|))) (-15 -4139 ((-111) |#2| (-871 |#1|))) (-15 -4139 ((-111) (-627 |#2|) (-871 |#1|))) (-15 -3925 ((-871 |#1|) (-871 |#1|) |#2|)) (-15 -3517 ((-627 |#2|) (-871 |#1|)))) (-1076) (-1189)) (T -869)) -((-3517 (*1 *2 *3) (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-627 *5)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1189)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *2 (-111)) (-5 *1 (-869 *5 *6)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-869 *5 *3)) (-4 *3 (-1189)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) (-1792 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-871 *5)) (-5 *3 (-627 (-1152))) (-5 *4 (-1 (-111) (-627 *6))) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-869 *5 *6)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-5 *3 (-627 (-1 (-111) *5))) (-4 *4 (-1076)) (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1076)) (-4 *5 (-1189)) (-5 *1 (-869 *4 *5))))) -(-10 -7 (-15 -1792 ((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|)))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|)))) (-15 -2714 ((-1 (-111) |#2|) (-871 |#1|))) (-15 -4139 ((-111) |#2| (-871 |#1|))) (-15 -4139 ((-111) (-627 |#2|) (-871 |#1|))) (-15 -3925 ((-871 |#1|) (-871 |#1|) |#2|)) (-15 -3517 ((-627 |#2|) (-871 |#1|)))) -((-3516 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 19))) -(((-870 |#1| |#2|) (-10 -7 (-15 -3516 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-1076) (-1076)) (T -870)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-871 *6)) (-5 *1 (-870 *5 *6))))) -(-10 -7 (-15 -3516 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) -((-1465 (((-111) $ $) NIL)) (-2916 (($ $ (-627 (-52))) 64)) (-1853 (((-627 $) $) 118)) (-3021 (((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $) 24)) (-1891 (((-111) $) 30)) (-2763 (($ $ (-627 (-1152)) (-52)) 25)) (-2725 (($ $ (-627 (-52))) 63)) (-4039 (((-3 |#1| "failed") $) 61) (((-3 (-1152) "failed") $) 140)) (-1703 ((|#1| $) 58) (((-1152) $) NIL)) (-2604 (($ $) 108)) (-1370 (((-111) $) 47)) (-3160 (((-627 (-52)) $) 45)) (-1301 (($ (-1152) (-111) (-111) (-111)) 65)) (-2022 (((-3 (-627 $) "failed") (-627 $)) 72)) (-3613 (((-111) $) 50)) (-1866 (((-111) $) 49)) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) 36)) (-3425 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $) 83)) (-2746 (((-3 (-627 $) "failed") $) 33)) (-2534 (((-3 (-627 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $) 95)) (-3937 (((-3 (-627 $) "failed") $) 37)) (-3815 (((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $) 40)) (-2138 (((-111) $) 29)) (-1498 (((-1096) $) NIL)) (-4303 (((-111) $) 21)) (-1865 (((-111) $) 46)) (-3756 (((-627 (-52)) $) 111)) (-2578 (((-111) $) 48)) (-1985 (($ (-113) (-627 $)) 92)) (-4170 (((-754) $) 28)) (-2973 (($ $) 62)) (-3562 (($ (-627 $)) 59)) (-2020 (((-111) $) 26)) (-1477 (((-842) $) 53) (($ |#1|) 18) (($ (-1152)) 66)) (-3925 (($ $ (-52)) 110)) (-1922 (($) 91 T CONST)) (-1933 (($) 73 T CONST)) (-2292 (((-111) $ $) 79)) (-2407 (($ $ $) 100)) (-2384 (($ $ $) 104)) (** (($ $ (-754)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-871 |#1|) (-13 (-1076) (-1017 |#1|) (-1017 (-1152)) (-10 -8 (-15 0 ($) -3488) (-15 1 ($) -3488) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -2534 ((-3 (-627 $) "failed") $ (-113))) (-15 -2534 ((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $)) (-15 -3425 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3937 ((-3 (-627 $) "failed") $)) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ $)) (-15 -2407 ($ $ $)) (-15 -4170 ((-754) $)) (-15 -3562 ($ (-627 $))) (-15 -2973 ($ $)) (-15 -2138 ((-111) $)) (-15 -1370 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2020 ((-111) $)) (-15 -2578 ((-111) $)) (-15 -1866 ((-111) $)) (-15 -3613 ((-111) $)) (-15 -1865 ((-111) $)) (-15 -3160 ((-627 (-52)) $)) (-15 -2725 ($ $ (-627 (-52)))) (-15 -2916 ($ $ (-627 (-52)))) (-15 -1301 ($ (-1152) (-111) (-111) (-111))) (-15 -2763 ($ $ (-627 (-1152)) (-52))) (-15 -3021 ((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $)) (-15 -4303 ((-111) $)) (-15 -2604 ($ $)) (-15 -3925 ($ $ (-52))) (-15 -3756 ((-627 (-52)) $)) (-15 -1853 ((-627 $) $)) (-15 -2022 ((-3 (-627 $) "failed") (-627 $))))) (-1076)) (T -871)) -((-1922 (*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-1933 (*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2746 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-4035 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2534 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-871 *4))) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2534 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 (-871 *3))))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3815 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-754)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-871 *3)) (|:| |den| (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1382 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 (-871 *4))) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1301 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-111)) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2763 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-52)) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2604 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2022 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(-13 (-1076) (-1017 |#1|) (-1017 (-1152)) (-10 -8 (-15 (-1922) ($) -3488) (-15 (-1933) ($) -3488) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -2534 ((-3 (-627 $) "failed") $ (-113))) (-15 -2534 ((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $)) (-15 -3425 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3937 ((-3 (-627 $) "failed") $)) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ $)) (-15 -2407 ($ $ $)) (-15 -4170 ((-754) $)) (-15 -3562 ($ (-627 $))) (-15 -2973 ($ $)) (-15 -2138 ((-111) $)) (-15 -1370 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2020 ((-111) $)) (-15 -2578 ((-111) $)) (-15 -1866 ((-111) $)) (-15 -3613 ((-111) $)) (-15 -1865 ((-111) $)) (-15 -3160 ((-627 (-52)) $)) (-15 -2725 ($ $ (-627 (-52)))) (-15 -2916 ($ $ (-627 (-52)))) (-15 -1301 ($ (-1152) (-111) (-111) (-111))) (-15 -2763 ($ $ (-627 (-1152)) (-52))) (-15 -3021 ((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $)) (-15 -4303 ((-111) $)) (-15 -2604 ($ $)) (-15 -3925 ($ $ (-52))) (-15 -3756 ((-627 (-52)) $)) (-15 -1853 ((-627 $) $)) (-15 -2022 ((-3 (-627 $) "failed") (-627 $))))) -((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 16)) (-3221 (((-111) $) 38)) (-4039 (((-3 (-654 |#1|) "failed") $) 43)) (-1703 (((-654 |#1|) $) 41)) (-3351 (($ $) 18)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3593 (((-754) $) 46)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-654 |#1|) $) 17)) (-1477 (((-842) $) 37) (($ (-654 |#1|)) 21) (((-802 |#1|) $) 27) (($ |#1|) 20)) (-1933 (($) 8 T CONST)) (-1880 (((-627 (-654 |#1|)) $) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 11)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 49))) -(((-872 |#1|) (-13 (-830) (-1017 (-654 |#1|)) (-10 -8 (-15 1 ($) -3488) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ($ |#1|)) (-15 -3340 ((-654 |#1|) $)) (-15 -3593 ((-754) $)) (-15 -1880 ((-627 (-654 |#1|)) $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -872)) -((-1933 (*1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-627 (-654 *3))) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830))))) -(-13 (-830) (-1017 (-654 |#1|)) (-10 -8 (-15 (-1933) ($) -3488) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ($ |#1|)) (-15 -3340 ((-654 |#1|) $)) (-15 -3593 ((-754) $)) (-15 -1880 ((-627 (-654 |#1|)) $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -1671 ((-627 |#1|) $)))) -((-2047 ((|#1| |#1| |#1|) 19))) -(((-873 |#1| |#2|) (-10 -7 (-15 -2047 (|#1| |#1| |#1|))) (-1211 |#2|) (-1028)) (T -873)) -((-2047 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-873 *2 *3)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -2047 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 13)) (-2292 (((-111) $ $) 6))) -(((-874) (-137)) (T -874)) -((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-874)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-3615 (*1 *2 *3) (-12 (-4 *1 (-874)) (-5 *3 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-1014))))) -(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -3615 ((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3032 ((|#1| |#1| (-754)) 24)) (-3372 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4004 (((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754)) 27) (((-627 |#1|) |#1|) 29))) -(((-875 |#1| |#2|) (-10 -7 (-15 -4004 ((-627 |#1|) |#1|)) (-15 -4004 ((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754))) (-15 -3372 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| (-754)))) (-1211 |#2|) (-357)) (T -875)) -((-3032 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-5 *1 (-875 *2 *4)) (-4 *2 (-1211 *4)))) (-3372 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-875 *2 *3)) (-4 *2 (-1211 *3)))) (-4004 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-754)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-875 *3 *5)) (-4 *3 (-1211 *5)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-875 *3 *4)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -4004 ((-627 |#1|) |#1|)) (-15 -4004 ((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754))) (-15 -3372 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| (-754)))) -((-1696 (((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134)) 96) (((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220)) 91) (((-1014) (-877) (-1040)) 83) (((-1014) (-877)) 84)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040)) 59) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877)) 61))) -(((-876) (-10 -7 (-15 -1696 ((-1014) (-877))) (-15 -1696 ((-1014) (-877) (-1040))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040))))) (T -876)) -((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-876)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) (-5 *8 (-220)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1014)) (-5 *1 (-876))))) -(-10 -7 (-15 -1696 ((-1014) (-877))) (-15 -1696 ((-1014) (-877) (-1040))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040)))) -((-1465 (((-111) $ $) NIL)) (-1703 (((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $) 19)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 18)) (-2292 (((-111) $ $) NIL))) -(((-877) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $))))) (T -877)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-877)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *1 (-877)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *1 (-877))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $)))) -((-2942 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) 10) (($ $ |#2| (-754)) 12) (($ $ (-627 |#2|) (-627 (-754))) 15)) (-4251 (($ $ |#2|) 16) (($ $ (-627 |#2|)) 18) (($ $ |#2| (-754)) 19) (($ $ (-627 |#2|) (-627 (-754))) 21))) -(((-878 |#1| |#2|) (-10 -8 (-15 -4251 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -4251 (|#1| |#1| |#2| (-754))) (-15 -4251 (|#1| |#1| (-627 |#2|))) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#2| (-754))) (-15 -2942 (|#1| |#1| (-627 |#2|))) (-15 -2942 (|#1| |#1| |#2|))) (-879 |#2|) (-1076)) (T -878)) -NIL -(-10 -8 (-15 -4251 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -4251 (|#1| |#1| |#2| (-754))) (-15 -4251 (|#1| |#1| (-627 |#2|))) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#2| (-754))) (-15 -2942 (|#1| |#1| (-627 |#2|))) (-15 -2942 (|#1| |#1| |#2|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $ |#1|) 40) (($ $ (-627 |#1|)) 39) (($ $ |#1| (-754)) 38) (($ $ (-627 |#1|) (-627 (-754))) 37)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#1|) 36) (($ $ (-627 |#1|)) 35) (($ $ |#1| (-754)) 34) (($ $ (-627 |#1|) (-627 (-754))) 33)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-879 |#1|) (-137) (-1076)) (T -879)) -((-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) (-4 *4 (-1076)))) (-4251 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) (-4 *4 (-1076))))) -(-13 (-1028) (-10 -8 (-15 -2942 ($ $ |t#1|)) (-15 -2942 ($ $ (-627 |t#1|))) (-15 -2942 ($ $ |t#1| (-754))) (-15 -2942 ($ $ (-627 |t#1|) (-627 (-754)))) (-15 -4251 ($ $ |t#1|)) (-15 -4251 ($ $ (-627 |t#1|))) (-15 -4251 ($ $ |t#1| (-754))) (-15 -4251 ($ $ (-627 |t#1|) (-627 (-754)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 26)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-3433 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2076 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 25)) (-3670 (($ |#1|) 12) (($ $ $) 17)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 23)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 20)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1175 |#1|) $) 9) (((-842) $) 29 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 21 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-880 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -3670 ($ |#1|)) (-15 -3670 ($ $ $)) (-15 -1477 ((-1175 |#1|) $)))) (-1076)) (T -880)) -((-3670 (*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) (-3670 (*1 *1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1076))))) -(-13 (-118 |#1|) (-10 -8 (-15 -3670 ($ |#1|)) (-15 -3670 ($ $ $)) (-15 -1477 ((-1175 |#1|) $)))) -((-3966 ((|#2| (-1118 |#1| |#2|)) 40))) -(((-881 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| (-1118 |#1| |#2|)))) (-900) (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) (T -881)) -((-3966 (*1 *2 *3) (-12 (-5 *3 (-1118 *4 *2)) (-14 *4 (-900)) (-4 *2 (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) (-5 *1 (-881 *4 *2))))) -(-10 -7 (-15 -3966 (|#2| (-1118 |#1| |#2|)))) -((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2908 (((-1078 |#1|) $ |#1|) 32)) (-2624 (((-111) $) 17)) (-1816 (($ $ $) 30 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-4093 (($ $ $) 29 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 24)) (-1498 (((-1096) $) 10)) (-3321 ((|#1| $ |#1|) 34)) (-1985 ((|#1| $ |#1|) 33)) (-1650 (($ (-627 (-627 |#1|))) 35)) (-3611 (($ (-627 |#1|)) 36)) (-2616 (($ $ $) 21)) (-2493 (($ $ $) 20)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2351 (((-111) $ $) 27 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2329 (((-111) $ $) 26 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 28 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2316 (((-111) $ $) 31)) (-2407 (($ $ $) 23)) (** (($ $ (-900)) 13) (($ $ (-754)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) -(((-882 |#1|) (-137) (-1076)) (T -882)) -((-3611 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-882 *3)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-4 *1 (-882 *3)))) (-3321 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) (-1985 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-1078 *3)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(-13 (-466) (-10 -8 (-15 -3611 ($ (-627 |t#1|))) (-15 -1650 ($ (-627 (-627 |t#1|)))) (-15 -3321 (|t#1| $ |t#1|)) (-15 -1985 (|t#1| $ |t#1|)) (-15 -2908 ((-1078 |t#1|) $ |t#1|)) (-15 -2316 ((-111) $ $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-830)) |%noBranch|))) -(((-101) . T) ((-599 (-842)) . T) ((-466) . T) ((-709) . T) ((-830) -1559 (|has| |#1| (-830)) (|has| |#1| (-362))) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-2969 (((-627 (-627 (-754))) $) 108)) (-2403 (((-627 (-754)) (-884 |#1|) $) 130)) (-3931 (((-627 (-754)) (-884 |#1|) $) 131)) (-2744 (((-627 (-884 |#1|)) $) 98)) (-1279 (((-884 |#1|) $ (-552)) 103) (((-884 |#1|) $) 104)) (-2614 (($ (-627 (-884 |#1|))) 110)) (-2641 (((-754) $) 105)) (-4156 (((-1078 (-1078 |#1|)) $) 128)) (-2908 (((-1078 |#1|) $ |#1|) 121) (((-1078 (-1078 |#1|)) $ (-1078 |#1|)) 139) (((-1078 (-627 |#1|)) $ (-627 |#1|)) 142)) (-4134 (((-1078 |#1|) $) 101)) (-3082 (((-111) (-884 |#1|) $) 92)) (-1595 (((-1134) $) NIL)) (-2368 (((-1240) $) 95) (((-1240) $ (-552) (-552)) 143)) (-1498 (((-1096) $) NIL)) (-1379 (((-627 (-884 |#1|)) $) 96)) (-1985 (((-884 |#1|) $ (-754)) 99)) (-3567 (((-754) $) 106)) (-1477 (((-842) $) 119) (((-627 (-884 |#1|)) $) 23) (($ (-627 (-884 |#1|))) 109)) (-2705 (((-627 |#1|) $) 107)) (-2292 (((-111) $ $) 136)) (-2340 (((-111) $ $) 134)) (-2316 (((-111) $ $) 133))) -(((-883 |#1|) (-13 (-1076) (-10 -8 (-15 -1477 ((-627 (-884 |#1|)) $)) (-15 -1379 ((-627 (-884 |#1|)) $)) (-15 -1985 ((-884 |#1|) $ (-754))) (-15 -1279 ((-884 |#1|) $ (-552))) (-15 -1279 ((-884 |#1|) $)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $)) (-15 -2705 ((-627 |#1|) $)) (-15 -2744 ((-627 (-884 |#1|)) $)) (-15 -2969 ((-627 (-627 (-754))) $)) (-15 -1477 ($ (-627 (-884 |#1|)))) (-15 -2614 ($ (-627 (-884 |#1|)))) (-15 -2908 ((-1078 |#1|) $ |#1|)) (-15 -4156 ((-1078 (-1078 |#1|)) $)) (-15 -2908 ((-1078 (-1078 |#1|)) $ (-1078 |#1|))) (-15 -2908 ((-1078 (-627 |#1|)) $ (-627 |#1|))) (-15 -3082 ((-111) (-884 |#1|) $)) (-15 -2403 ((-627 (-754)) (-884 |#1|) $)) (-15 -3931 ((-627 (-754)) (-884 |#1|) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -2316 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -2368 ((-1240) $)) (-15 -2368 ((-1240) $ (-552) (-552))))) (-1076)) (T -883)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) (-4 *4 (-1076)))) (-1279 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) (-4 *4 (-1076)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-884 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-754)))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) (-2908 (*1 *2 *1 *3) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1078 (-1078 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-883 *4)) (-5 *3 (-1078 *4)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-627 *4))) (-5 *1 (-883 *4)) (-5 *3 (-627 *4)))) (-3082 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-883 *4)))) (-2403 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) (-5 *1 (-883 *4)))) (-3931 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) (-5 *1 (-883 *4)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2316 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-883 *4)) (-4 *4 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -1477 ((-627 (-884 |#1|)) $)) (-15 -1379 ((-627 (-884 |#1|)) $)) (-15 -1985 ((-884 |#1|) $ (-754))) (-15 -1279 ((-884 |#1|) $ (-552))) (-15 -1279 ((-884 |#1|) $)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $)) (-15 -2705 ((-627 |#1|) $)) (-15 -2744 ((-627 (-884 |#1|)) $)) (-15 -2969 ((-627 (-627 (-754))) $)) (-15 -1477 ($ (-627 (-884 |#1|)))) (-15 -2614 ($ (-627 (-884 |#1|)))) (-15 -2908 ((-1078 |#1|) $ |#1|)) (-15 -4156 ((-1078 (-1078 |#1|)) $)) (-15 -2908 ((-1078 (-1078 |#1|)) $ (-1078 |#1|))) (-15 -2908 ((-1078 (-627 |#1|)) $ (-627 |#1|))) (-15 -3082 ((-111) (-884 |#1|) $)) (-15 -2403 ((-627 (-754)) (-884 |#1|) $)) (-15 -3931 ((-627 (-754)) (-884 |#1|) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -2316 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -2368 ((-1240) $)) (-15 -2368 ((-1240) $ (-552) (-552))))) -((-1465 (((-111) $ $) NIL)) (-4298 (((-627 $) (-627 $)) 77)) (-2422 (((-552) $) 60)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2641 (((-754) $) 58)) (-2908 (((-1078 |#1|) $ |#1|) 49)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) 63)) (-3277 (((-754) $) 61)) (-4134 (((-1078 |#1|) $) 42)) (-1816 (($ $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-4093 (($ $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-4068 (((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $) 37)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 93)) (-1498 (((-1096) $) NIL)) (-2678 (((-1078 |#1|) $) 100 (|has| |#1| (-362)))) (-1507 (((-111) $) 59)) (-3321 ((|#1| $ |#1|) 47)) (-1985 ((|#1| $ |#1|) 94)) (-3567 (((-754) $) 44)) (-1650 (($ (-627 (-627 |#1|))) 85)) (-3048 (((-950) $) 53)) (-3611 (($ (-627 |#1|)) 21)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1565 (($ (-627 (-627 |#1|))) 39)) (-1702 (($ (-627 (-627 |#1|))) 88)) (-3792 (($ (-627 |#1|)) 96)) (-1477 (((-842) $) 84) (($ (-627 (-627 |#1|))) 66) (($ (-627 |#1|)) 67)) (-1933 (($) 16 T CONST)) (-2351 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2292 (((-111) $ $) 45)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2316 (((-111) $ $) 65)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 22))) -(((-884 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -4068 ((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $)) (-15 -1565 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 |#1|))) (-15 -1702 ($ (-627 (-627 |#1|)))) (-15 -3567 ((-754) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -3048 ((-950) $)) (-15 -2641 ((-754) $)) (-15 -3277 ((-754) $)) (-15 -2422 ((-552) $)) (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $)) (-15 -4298 ((-627 $) (-627 $))) (IF (|has| |#1| (-362)) (-15 -2678 ((-1078 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3792 ($ (-627 |#1|))) (IF (|has| |#1| (-362)) (-15 -3792 ($ (-627 |#1|))) |%noBranch|)))) (-1076)) (T -884)) -((-4068 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-627 *3)) (|:| |image| (-627 *3)))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-362)) (-4 *3 (-1076)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) -(-13 (-882 |#1|) (-10 -8 (-15 -4068 ((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $)) (-15 -1565 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 |#1|))) (-15 -1702 ($ (-627 (-627 |#1|)))) (-15 -3567 ((-754) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -3048 ((-950) $)) (-15 -2641 ((-754) $)) (-15 -3277 ((-754) $)) (-15 -2422 ((-552) $)) (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $)) (-15 -4298 ((-627 $) (-627 $))) (IF (|has| |#1| (-362)) (-15 -2678 ((-1078 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3792 ($ (-627 |#1|))) (IF (|has| |#1| (-362)) (-15 -3792 ($ (-627 |#1|))) |%noBranch|)))) -((-4335 (((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|)) 128)) (-1821 ((|#1|) 77)) (-2360 (((-412 (-1148 |#4|)) (-1148 |#4|)) 137)) (-1546 (((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)) 69)) (-1663 (((-412 (-1148 |#4|)) (-1148 |#4|)) 147)) (-2649 (((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|) 92))) -(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|))) (-15 -1663 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -2360 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1821 (|#1|)) (-15 -2649 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|)) (-15 -1546 ((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)))) (-888) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -885)) -((-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *7)) (-4 *7 (-830)) (-4 *5 (-888)) (-4 *6 (-776)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-412 (-1148 *8))) (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-1148 *8)))) (-2649 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) (-4 *7 (-928 *5 *6 *4)) (-4 *5 (-888)) (-4 *6 (-776)) (-4 *4 (-830)) (-5 *1 (-885 *5 *6 *4 *7)))) (-1821 (*1 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) (-5 *1 (-885 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-4335 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-885 *4 *5 *6 *7))))) -(-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|))) (-15 -1663 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -2360 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1821 (|#1|)) (-15 -2649 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|)) (-15 -1546 ((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)))) -((-4335 (((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)) 36)) (-1821 ((|#1|) 54)) (-2360 (((-412 (-1148 |#2|)) (-1148 |#2|)) 102)) (-1546 (((-412 (-1148 |#2|)) (-1148 |#2|)) 90)) (-1663 (((-412 (-1148 |#2|)) (-1148 |#2|)) 113))) -(((-886 |#1| |#2|) (-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|))) (-15 -1663 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -2360 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -1821 (|#1|)) (-15 -1546 ((-412 (-1148 |#2|)) (-1148 |#2|)))) (-888) (-1211 |#1|)) (T -886)) -((-1546 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-1821 (*1 *2) (-12 (-4 *2 (-888)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1211 *2)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-4335 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-888)) (-5 *1 (-886 *4 *5))))) -(-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|))) (-15 -1663 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -2360 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -1821 (|#1|)) (-15 -1546 ((-412 (-1148 |#2|)) (-1148 |#2|)))) -((-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 41)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 18)) (-3050 (((-3 $ "failed") $) 35))) -(((-887 |#1|) (-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) (-888)) (T -887)) -NIL -(-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 58)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 55)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-1633 (((-111) $) 51)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3676 (((-412 (-1148 $)) (-1148 $)) 56)) (-3644 (((-412 (-1148 $)) (-1148 $)) 57)) (-1727 (((-412 $) $) 48)) (-2761 (((-3 $ "failed") $ $) 40)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 54 (|has| $ (-142)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3050 (((-3 $ "failed") $) 53 (|has| $ (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-888) (-137)) (T -888)) -((-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-888)))) (-2246 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-3644 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-3676 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *1))) (-5 *3 (-1148 *1)) (-4 *1 (-888)))) (-3319 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-142)) (-4 *1 (-888)) (-5 *2 (-1235 *1)))) (-3050 (*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-888))))) -(-13 (-1193) (-10 -8 (-15 -2246 ((-412 (-1148 $)) (-1148 $))) (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -3676 ((-412 (-1148 $)) (-1148 $))) (-15 -3128 ((-1148 $) (-1148 $) (-1148 $))) (-15 -1964 ((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $))) (IF (|has| $ (-142)) (PROGN (-15 -3319 ((-3 (-1235 $) "failed") (-671 $))) (-15 -3050 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 $ "failed") $) NIL)) (-1703 (($ $) NIL)) (-2342 (($ (-1235 $)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL)) (-1415 (((-111) $) NIL)) (-4294 (($ $) NIL) (($ $ (-754)) NIL)) (-1633 (((-111) $) NIL)) (-2641 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| $ (-362)))) (-2492 (((-111) $) NIL (|has| $ (-362)))) (-2349 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 $) $ (-900)) NIL (|has| $ (-362))) (((-1148 $) $) NIL)) (-2886 (((-900) $) NIL)) (-1980 (((-1148 $) $) NIL (|has| $ (-362)))) (-2259 (((-3 (-1148 $) "failed") $ $) NIL (|has| $ (-362))) (((-1148 $) $) NIL (|has| $ (-362)))) (-3520 (($ $ (-1148 $)) NIL (|has| $ (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL T CONST)) (-4153 (($ (-900)) NIL)) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| $ (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL)) (-1727 (((-412 $) $) NIL)) (-3804 (((-900)) NIL) (((-816 (-900))) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL) (((-754) $) NIL)) (-2405 (((-132)) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-3567 (((-900) $) NIL) (((-816 (-900)) $) NIL)) (-1376 (((-1148 $)) NIL)) (-3439 (($) NIL)) (-3231 (($) NIL (|has| $ (-362)))) (-3133 (((-671 $) (-1235 $)) NIL) (((-1235 $) $) NIL)) (-3562 (((-552) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $) (-900)) NIL) (((-1235 $)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $ (-754)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-889 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-900)) (T -889)) +((-3268 (((-1098) $ (-127)) NIL)) (-2586 (((-1098) $ (-128)) 22)) (-3912 (($ (-382)) 12) (($ (-1136)) 14)) (-1773 (((-111) $) 19)) (-3213 (((-844) $) 26)) (-2469 (($ $) 23))) +(((-843) (-13 (-842) (-599 (-844)) (-10 -8 (-15 -3912 ($ (-382))) (-15 -3912 ($ (-1136))) (-15 -1773 ((-111) $))))) (T -843)) +((-3912 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-843)))) (-3912 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-843)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-843))))) +(-13 (-842) (-599 (-844)) (-10 -8 (-15 -3912 ($ (-382))) (-15 -3912 ($ (-1136))) (-15 -1773 ((-111) $)))) +((-3202 (((-111) $ $) NIL) (($ $ $) 77)) (-1610 (($ $ $) 114)) (-4054 (((-552) $) 31) (((-552)) 36)) (-1593 (($ (-552)) 45)) (-1550 (($ $ $) 46) (($ (-629 $)) 76)) (-2256 (($ $ (-629 $)) 74)) (-2218 (((-552) $) 34)) (-1792 (($ $ $) 65)) (-2994 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-3970 (((-552) $) 33)) (-3193 (($ $ $) 64)) (-3986 (($ $) 104)) (-3999 (($ $ $) 118)) (-1608 (($ (-629 $)) 53)) (-2569 (($ $ (-629 $)) 71)) (-3104 (($ (-552) (-552)) 47)) (-2450 (($ $) 115) (($ $ $) 116)) (-3428 (($ $ (-552)) 41) (($ $) 44)) (-4006 (($ $ $) 89)) (-3283 (($ $ $) 121)) (-1364 (($ $) 105)) (-3987 (($ $ $) 90)) (-3830 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1872 (((-1242) $) 10)) (-3461 (($ $) 108) (($ $ (-756)) 111)) (-4167 (($ $ $) 67)) (-1382 (($ $ $) 66)) (-2720 (($ $ (-629 $)) 100)) (-3685 (($ $ $) 103)) (-1319 (($ (-629 $)) 51)) (-3963 (($ $) 62) (($ (-629 $)) 63)) (-2249 (($ $ $) 112)) (-2350 (($ $) 106)) (-4168 (($ $ $) 117)) (-1647 (($ (-552)) 21) (($ (-1154)) 23) (($ (-1136)) 30) (($ (-220)) 25)) (-3167 (($ $ $) 93)) (-4107 (($ $) 94)) (-3463 (((-1242) (-1136)) 15)) (-2408 (($ (-1136)) 14)) (-3516 (($ (-629 (-629 $))) 50)) (-3416 (($ $ (-552)) 40) (($ $) 43)) (-2623 (((-1136) $) NIL)) (-2085 (($ $ $) 120)) (-2308 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3913 (((-111) $) 98)) (-3785 (($ $ (-629 $)) 101) (($ $ $ $) 102)) (-1534 (($ (-552)) 37)) (-2384 (((-552) $) 32) (((-552)) 35)) (-3338 (($ $ $) 38) (($ (-629 $)) 75)) (-2876 (((-1098) $) NIL)) (-3969 (($ $ $) 91)) (-3430 (($) 13)) (-2060 (($ $ (-629 $)) 99)) (-3580 (((-1136) (-1136)) 8)) (-3632 (($ $) 107) (($ $ (-756)) 110)) (-3977 (($ $ $) 88)) (-3096 (($ $ (-756)) 126)) (-4245 (($ (-629 $)) 52)) (-3213 (((-844) $) 19)) (-4046 (($ $ (-552)) 39) (($ $) 42)) (-2056 (($ $) 60) (($ (-629 $)) 61)) (-3541 (($ $) 58) (($ (-629 $)) 59)) (-3044 (($ $) 113)) (-4111 (($ (-629 $)) 57)) (-2075 (($ $ $) 97)) (-2392 (($ $ $) 119)) (-3792 (($ $ $) 92)) (-4268 (($ $ $) 95) (($ $) 96)) (-1666 (($ $ $) 81)) (-1644 (($ $ $) 79)) (-1613 (((-111) $ $) 16) (($ $ $) 17)) (-1655 (($ $ $) 80)) (-1632 (($ $ $) 78)) (-1720 (($ $ $) 86)) (-1709 (($ $ $) 83) (($ $) 84)) (-1698 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-844) (-13 (-1078) (-10 -8 (-15 -1872 ((-1242) $)) (-15 -2408 ($ (-1136))) (-15 -3463 ((-1242) (-1136))) (-15 -1647 ($ (-552))) (-15 -1647 ($ (-1154))) (-15 -1647 ($ (-1136))) (-15 -1647 ($ (-220))) (-15 -3430 ($)) (-15 -3580 ((-1136) (-1136))) (-15 -4054 ((-552) $)) (-15 -2384 ((-552) $)) (-15 -4054 ((-552))) (-15 -2384 ((-552))) (-15 -3970 ((-552) $)) (-15 -2218 ((-552) $)) (-15 -1534 ($ (-552))) (-15 -1593 ($ (-552))) (-15 -3104 ($ (-552) (-552))) (-15 -3416 ($ $ (-552))) (-15 -3428 ($ $ (-552))) (-15 -4046 ($ $ (-552))) (-15 -3416 ($ $)) (-15 -3428 ($ $)) (-15 -4046 ($ $)) (-15 -3338 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -3338 ($ (-629 $))) (-15 -1550 ($ (-629 $))) (-15 -2720 ($ $ (-629 $))) (-15 -3785 ($ $ (-629 $))) (-15 -3785 ($ $ $ $)) (-15 -3685 ($ $ $)) (-15 -3913 ((-111) $)) (-15 -2060 ($ $ (-629 $))) (-15 -3986 ($ $)) (-15 -2085 ($ $ $)) (-15 -3044 ($ $)) (-15 -3516 ($ (-629 (-629 $)))) (-15 -1610 ($ $ $)) (-15 -2450 ($ $)) (-15 -2450 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -2392 ($ $ $)) (-15 -3283 ($ $ $)) (-15 -3096 ($ $ (-756))) (-15 -2075 ($ $ $)) (-15 -3193 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -4167 ($ $ $)) (-15 -2569 ($ $ (-629 $))) (-15 -2256 ($ $ (-629 $))) (-15 -1364 ($ $)) (-15 -3632 ($ $)) (-15 -3632 ($ $ (-756))) (-15 -3461 ($ $)) (-15 -3461 ($ $ (-756))) (-15 -2350 ($ $)) (-15 -2249 ($ $ $)) (-15 -2994 ($ $)) (-15 -2994 ($ $ $)) (-15 -2994 ($ $ $ $)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -3830 ($ $ $ $)) (-15 -2308 ($ $)) (-15 -2308 ($ $ $)) (-15 -2308 ($ $ $ $)) (-15 -3541 ($ $)) (-15 -3541 ($ (-629 $))) (-15 -2056 ($ $)) (-15 -2056 ($ (-629 $))) (-15 -3963 ($ $)) (-15 -3963 ($ (-629 $))) (-15 -1319 ($ (-629 $))) (-15 -4245 ($ (-629 $))) (-15 -1608 ($ (-629 $))) (-15 -4111 ($ (-629 $))) (-15 -1613 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -1644 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -1709 ($ $)) (-15 * ($ $ $)) (-15 -1720 ($ $ $)) (-15 ** ($ $ $)) (-15 -3977 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3969 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -4107 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $))))) (T -844)) +((-1872 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-844)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-844)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-844)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-844)))) (-3430 (*1 *1) (-5 *1 (-844))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-4054 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-2384 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-3104 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) (-3416 (*1 *1 *1) (-5 *1 (-844))) (-3428 (*1 *1 *1) (-5 *1 (-844))) (-4046 (*1 *1 *1) (-5 *1 (-844))) (-3338 (*1 *1 *1 *1) (-5 *1 (-844))) (-1550 (*1 *1 *1 *1) (-5 *1 (-844))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-3785 (*1 *1 *1 *1 *1) (-5 *1 (-844))) (-3685 (*1 *1 *1 *1) (-5 *1 (-844))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-844)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-3986 (*1 *1 *1) (-5 *1 (-844))) (-2085 (*1 *1 *1 *1) (-5 *1 (-844))) (-3044 (*1 *1 *1) (-5 *1 (-844))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-844)))) (-5 *1 (-844)))) (-1610 (*1 *1 *1 *1) (-5 *1 (-844))) (-2450 (*1 *1 *1) (-5 *1 (-844))) (-2450 (*1 *1 *1 *1) (-5 *1 (-844))) (-4168 (*1 *1 *1 *1) (-5 *1 (-844))) (-3999 (*1 *1 *1 *1) (-5 *1 (-844))) (-2392 (*1 *1 *1 *1) (-5 *1 (-844))) (-3283 (*1 *1 *1 *1) (-5 *1 (-844))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) (-2075 (*1 *1 *1 *1) (-5 *1 (-844))) (-3193 (*1 *1 *1 *1) (-5 *1 (-844))) (-1792 (*1 *1 *1 *1) (-5 *1 (-844))) (-1382 (*1 *1 *1 *1) (-5 *1 (-844))) (-4167 (*1 *1 *1 *1) (-5 *1 (-844))) (-2569 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-1364 (*1 *1 *1) (-5 *1 (-844))) (-3632 (*1 *1 *1) (-5 *1 (-844))) (-3632 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) (-3461 (*1 *1 *1) (-5 *1 (-844))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) (-2350 (*1 *1 *1) (-5 *1 (-844))) (-2249 (*1 *1 *1 *1) (-5 *1 (-844))) (-2994 (*1 *1 *1) (-5 *1 (-844))) (-2994 (*1 *1 *1 *1) (-5 *1 (-844))) (-2994 (*1 *1 *1 *1 *1) (-5 *1 (-844))) (-3830 (*1 *1 *1) (-5 *1 (-844))) (-3830 (*1 *1 *1 *1) (-5 *1 (-844))) (-3830 (*1 *1 *1 *1 *1) (-5 *1 (-844))) (-2308 (*1 *1 *1) (-5 *1 (-844))) (-2308 (*1 *1 *1 *1) (-5 *1 (-844))) (-2308 (*1 *1 *1 *1 *1) (-5 *1 (-844))) (-3541 (*1 *1 *1) (-5 *1 (-844))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-2056 (*1 *1 *1) (-5 *1 (-844))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-3963 (*1 *1 *1) (-5 *1 (-844))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-4245 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-4111 (*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) (-1613 (*1 *1 *1 *1) (-5 *1 (-844))) (-3202 (*1 *1 *1 *1) (-5 *1 (-844))) (-1632 (*1 *1 *1 *1) (-5 *1 (-844))) (-1644 (*1 *1 *1 *1) (-5 *1 (-844))) (-1655 (*1 *1 *1 *1) (-5 *1 (-844))) (-1666 (*1 *1 *1 *1) (-5 *1 (-844))) (-1698 (*1 *1 *1 *1) (-5 *1 (-844))) (-1709 (*1 *1 *1 *1) (-5 *1 (-844))) (-1709 (*1 *1 *1) (-5 *1 (-844))) (* (*1 *1 *1 *1) (-5 *1 (-844))) (-1720 (*1 *1 *1 *1) (-5 *1 (-844))) (** (*1 *1 *1 *1) (-5 *1 (-844))) (-3977 (*1 *1 *1 *1) (-5 *1 (-844))) (-4006 (*1 *1 *1 *1) (-5 *1 (-844))) (-3987 (*1 *1 *1 *1) (-5 *1 (-844))) (-3969 (*1 *1 *1 *1) (-5 *1 (-844))) (-3792 (*1 *1 *1 *1) (-5 *1 (-844))) (-3167 (*1 *1 *1 *1) (-5 *1 (-844))) (-4107 (*1 *1 *1) (-5 *1 (-844))) (-4268 (*1 *1 *1 *1) (-5 *1 (-844))) (-4268 (*1 *1 *1) (-5 *1 (-844)))) +(-13 (-1078) (-10 -8 (-15 -1872 ((-1242) $)) (-15 -2408 ($ (-1136))) (-15 -3463 ((-1242) (-1136))) (-15 -1647 ($ (-552))) (-15 -1647 ($ (-1154))) (-15 -1647 ($ (-1136))) (-15 -1647 ($ (-220))) (-15 -3430 ($)) (-15 -3580 ((-1136) (-1136))) (-15 -4054 ((-552) $)) (-15 -2384 ((-552) $)) (-15 -4054 ((-552))) (-15 -2384 ((-552))) (-15 -3970 ((-552) $)) (-15 -2218 ((-552) $)) (-15 -1534 ($ (-552))) (-15 -1593 ($ (-552))) (-15 -3104 ($ (-552) (-552))) (-15 -3416 ($ $ (-552))) (-15 -3428 ($ $ (-552))) (-15 -4046 ($ $ (-552))) (-15 -3416 ($ $)) (-15 -3428 ($ $)) (-15 -4046 ($ $)) (-15 -3338 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -3338 ($ (-629 $))) (-15 -1550 ($ (-629 $))) (-15 -2720 ($ $ (-629 $))) (-15 -3785 ($ $ (-629 $))) (-15 -3785 ($ $ $ $)) (-15 -3685 ($ $ $)) (-15 -3913 ((-111) $)) (-15 -2060 ($ $ (-629 $))) (-15 -3986 ($ $)) (-15 -2085 ($ $ $)) (-15 -3044 ($ $)) (-15 -3516 ($ (-629 (-629 $)))) (-15 -1610 ($ $ $)) (-15 -2450 ($ $)) (-15 -2450 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -2392 ($ $ $)) (-15 -3283 ($ $ $)) (-15 -3096 ($ $ (-756))) (-15 -2075 ($ $ $)) (-15 -3193 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -4167 ($ $ $)) (-15 -2569 ($ $ (-629 $))) (-15 -2256 ($ $ (-629 $))) (-15 -1364 ($ $)) (-15 -3632 ($ $)) (-15 -3632 ($ $ (-756))) (-15 -3461 ($ $)) (-15 -3461 ($ $ (-756))) (-15 -2350 ($ $)) (-15 -2249 ($ $ $)) (-15 -2994 ($ $)) (-15 -2994 ($ $ $)) (-15 -2994 ($ $ $ $)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -3830 ($ $ $ $)) (-15 -2308 ($ $)) (-15 -2308 ($ $ $)) (-15 -2308 ($ $ $ $)) (-15 -3541 ($ $)) (-15 -3541 ($ (-629 $))) (-15 -2056 ($ $)) (-15 -2056 ($ (-629 $))) (-15 -3963 ($ $)) (-15 -3963 ($ (-629 $))) (-15 -1319 ($ (-629 $))) (-15 -4245 ($ (-629 $))) (-15 -1608 ($ (-629 $))) (-15 -4111 ($ (-629 $))) (-15 -1613 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -1632 ($ $ $)) (-15 -1644 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1698 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -1709 ($ $)) (-15 * ($ $ $)) (-15 -1720 ($ $ $)) (-15 ** ($ $ $)) (-15 -3977 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3969 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -4107 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $)))) +((-1799 (((-1242) (-629 (-52))) 24)) (-3783 (((-1242) (-1136) (-844)) 14) (((-1242) (-844)) 9) (((-1242) (-1136)) 11))) +(((-845) (-10 -7 (-15 -3783 ((-1242) (-1136))) (-15 -3783 ((-1242) (-844))) (-15 -3783 ((-1242) (-1136) (-844))) (-15 -1799 ((-1242) (-629 (-52)))))) (T -845)) +((-1799 (*1 *2 *3) (-12 (-5 *3 (-629 (-52))) (-5 *2 (-1242)) (-5 *1 (-845)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-844)) (-5 *2 (-1242)) (-5 *1 (-845)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-845)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-845))))) +(-10 -7 (-15 -3783 ((-1242) (-1136))) (-15 -3783 ((-1242) (-844))) (-15 -3783 ((-1242) (-1136) (-844))) (-15 -1799 ((-1242) (-629 (-52))))) +((-3202 (((-111) $ $) NIL)) (-1485 (((-3 $ "failed") (-1154)) 33)) (-2663 (((-756)) 31)) (-1332 (($) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-1637 (((-902) $) 29)) (-2623 (((-1136) $) 39)) (-2840 (($ (-902)) 28)) (-2876 (((-1098) $) NIL)) (-1522 (((-1154) $) 13) (((-528) $) 19) (((-873 (-373)) $) 26) (((-873 (-552)) $) 22)) (-3213 (((-844) $) 16)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 36)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 35))) +(((-846 |#1|) (-13 (-826) (-600 (-1154)) (-600 (-528)) (-600 (-873 (-373))) (-600 (-873 (-552))) (-10 -8 (-15 -1485 ((-3 $ "failed") (-1154))))) (-629 (-1154))) (T -846)) +((-1485 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-846 *3)) (-14 *3 (-629 *2))))) +(-13 (-826) (-600 (-1154)) (-600 (-528)) (-600 (-873 (-373))) (-600 (-873 (-552))) (-10 -8 (-15 -1485 ((-3 $ "failed") (-1154))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (((-933 |#1|) $) NIL) (($ (-933 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-2014 (((-756)) NIL)) (-1567 (((-1242) (-756)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-847 |#1| |#2| |#3| |#4|) (-13 (-1030) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3213 ((-933 |#1|) $)) (-15 -3213 ($ (-933 |#1|))) (IF (|has| |#1| (-357)) (-15 -1720 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1567 ((-1242) (-756))))) (-1030) (-629 (-1154)) (-629 (-756)) (-756)) (T -847)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-933 *3)) (-5 *1 (-847 *3 *4 *5 *6)) (-4 *3 (-1030)) (-14 *4 (-629 (-1154))) (-14 *5 (-629 (-756))) (-14 *6 (-756)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-5 *1 (-847 *3 *4 *5 *6)) (-14 *4 (-629 (-1154))) (-14 *5 (-629 (-756))) (-14 *6 (-756)))) (-1720 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-847 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *2 (-1030)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-756))) (-14 *5 (-756)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *4 (-1030)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 *3)) (-14 *7 *3)))) +(-13 (-1030) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3213 ((-933 |#1|) $)) (-15 -3213 ($ (-933 |#1|))) (IF (|has| |#1| (-357)) (-15 -1720 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1567 ((-1242) (-756))))) +((-2275 (((-3 (-171 |#3|) "failed") (-756) (-756) |#2| |#2|) 31)) (-1659 (((-3 (-401 |#3|) "failed") (-756) (-756) |#2| |#2|) 24))) +(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -1659 ((-3 (-401 |#3|) "failed") (-756) (-756) |#2| |#2|)) (-15 -2275 ((-3 (-171 |#3|) "failed") (-756) (-756) |#2| |#2|))) (-357) (-1228 |#1|) (-1213 |#1|)) (T -848)) +((-2275 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-756)) (-4 *5 (-357)) (-5 *2 (-171 *6)) (-5 *1 (-848 *5 *4 *6)) (-4 *4 (-1228 *5)) (-4 *6 (-1213 *5)))) (-1659 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-756)) (-4 *5 (-357)) (-5 *2 (-401 *6)) (-5 *1 (-848 *5 *4 *6)) (-4 *4 (-1228 *5)) (-4 *6 (-1213 *5))))) +(-10 -7 (-15 -1659 ((-3 (-401 |#3|) "failed") (-756) (-756) |#2| |#2|)) (-15 -2275 ((-3 (-171 |#3|) "failed") (-756) (-756) |#2| |#2|))) +((-1659 (((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|)) 28) (((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) 26))) +(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -1659 ((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) (-15 -1659 ((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|)))) (-357) (-1154) |#1|) (T -849)) +((-1659 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-756)) (-5 *4 (-1229 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1154)) (-14 *7 *5) (-5 *2 (-401 (-1210 *6 *5))) (-5 *1 (-849 *5 *6 *7)))) (-1659 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-756)) (-5 *4 (-1229 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1154)) (-14 *7 *5) (-5 *2 (-401 (-1210 *6 *5))) (-5 *1 (-849 *5 *6 *7))))) +(-10 -7 (-15 -1659 ((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) (-15 -1659 ((-3 (-401 (-1210 |#2| |#1|)) "failed") (-756) (-756) (-1229 |#1| |#2| |#3|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-3489 (($ $ (-552)) 60)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-2450 (($ (-1150 (-552)) (-552)) 59)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3029 (($ $) 62)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-4241 (((-756) $) 67)) (-4065 (((-111) $) 30)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-3714 (((-552)) 64)) (-1401 (((-552) $) 63)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3136 (($ $ (-552)) 66)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-2950 (((-1134 (-552)) $) 68)) (-1680 (($ $) 65)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-4311 (((-552) $ (-552)) 61)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-850 |#1|) (-137) (-552)) (T -850)) +((-2950 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-1134 (-552))))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-756)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) (-1680 (*1 *1 *1) (-4 *1 (-850 *2))) (-3714 (*1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) (-3029 (*1 *1 *1) (-4 *1 (-850 *2))) (-4311 (*1 *2 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) (-3489 (*1 *1 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) (-2450 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *3 (-552)) (-4 *1 (-850 *4))))) +(-13 (-301) (-144) (-10 -8 (-15 -2950 ((-1134 (-552)) $)) (-15 -4241 ((-756) $)) (-15 -3136 ($ $ (-552))) (-15 -1680 ($ $)) (-15 -3714 ((-552))) (-15 -1401 ((-552) $)) (-15 -3029 ($ $)) (-15 -4311 ((-552) $ (-552))) (-15 -3489 ($ $ (-552))) (-15 -2450 ($ (-1150 (-552)) (-552))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $ (-552)) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-2450 (($ (-1150 (-552)) (-552)) NIL)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3029 (($ $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4241 (((-756) $) NIL)) (-4065 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3714 (((-552)) NIL)) (-1401 (((-552) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3136 (($ $ (-552)) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-2950 (((-1134 (-552)) $) NIL)) (-1680 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-4311 (((-552) $ (-552)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-851 |#1|) (-850 |#1|) (-552)) (T -851)) +NIL +(-850 |#1|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-851 |#1|) $) NIL (|has| (-851 |#1|) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-851 |#1|) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-851 |#1|) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-851 |#1|) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-851 |#1|) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| (-851 |#1|) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-851 |#1|) (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-851 |#1|) (-1019 (-552))))) (-2832 (((-851 |#1|) $) NIL) (((-1154) $) NIL (|has| (-851 |#1|) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-851 |#1|) (-1019 (-552)))) (((-552) $) NIL (|has| (-851 |#1|) (-1019 (-552))))) (-3398 (($ $) NIL) (($ (-552) $) NIL)) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-851 |#1|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-851 |#1|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-851 |#1|))) (|:| |vec| (-1237 (-851 |#1|)))) (-673 $) (-1237 $)) NIL) (((-673 (-851 |#1|)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-851 |#1|) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| (-851 |#1|) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-851 |#1|) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-851 |#1|) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-851 |#1|) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-1129)))) (-3127 (((-111) $) NIL (|has| (-851 |#1|) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-851 |#1|) (-832)))) (-2011 (($ $ $) NIL (|has| (-851 |#1|) (-832)))) (-1477 (($ (-1 (-851 |#1|) (-851 |#1|)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-851 |#1|) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-851 |#1|) (-301)))) (-3410 (((-851 |#1|) $) NIL (|has| (-851 |#1|) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-851 |#1|) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-851 |#1|) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-851 |#1|)) (-629 (-851 |#1|))) NIL (|has| (-851 |#1|) (-303 (-851 |#1|)))) (($ $ (-851 |#1|) (-851 |#1|)) NIL (|has| (-851 |#1|) (-303 (-851 |#1|)))) (($ $ (-288 (-851 |#1|))) NIL (|has| (-851 |#1|) (-303 (-851 |#1|)))) (($ $ (-629 (-288 (-851 |#1|)))) NIL (|has| (-851 |#1|) (-303 (-851 |#1|)))) (($ $ (-629 (-1154)) (-629 (-851 |#1|))) NIL (|has| (-851 |#1|) (-506 (-1154) (-851 |#1|)))) (($ $ (-1154) (-851 |#1|)) NIL (|has| (-851 |#1|) (-506 (-1154) (-851 |#1|))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-851 |#1|)) NIL (|has| (-851 |#1|) (-280 (-851 |#1|) (-851 |#1|))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| (-851 |#1|) (-228))) (($ $ (-756)) NIL (|has| (-851 |#1|) (-228))) (($ $ (-1154)) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-1 (-851 |#1|) (-851 |#1|)) (-756)) NIL) (($ $ (-1 (-851 |#1|) (-851 |#1|))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-851 |#1|) $) NIL)) (-1522 (((-873 (-552)) $) NIL (|has| (-851 |#1|) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-851 |#1|) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-851 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-851 |#1|) (-1003))) (((-220) $) NIL (|has| (-851 |#1|) (-1003)))) (-3110 (((-171 (-401 (-552))) $) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-851 |#1|) (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-851 |#1|)) NIL) (($ (-1154)) NIL (|has| (-851 |#1|) (-1019 (-1154))))) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-851 |#1|) (-890))) (|has| (-851 |#1|) (-142))))) (-2014 (((-756)) NIL)) (-3763 (((-851 |#1|) $) NIL (|has| (-851 |#1|) (-537)))) (-3589 (((-111) $ $) NIL)) (-4311 (((-401 (-552)) $ (-552)) NIL)) (-1578 (($ $) NIL (|has| (-851 |#1|) (-805)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $) NIL (|has| (-851 |#1|) (-228))) (($ $ (-756)) NIL (|has| (-851 |#1|) (-228))) (($ $ (-1154)) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-851 |#1|) (-881 (-1154)))) (($ $ (-1 (-851 |#1|) (-851 |#1|)) (-756)) NIL) (($ $ (-1 (-851 |#1|) (-851 |#1|))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-851 |#1|) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-851 |#1|) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-851 |#1|) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-851 |#1|) (-832)))) (-1720 (($ $ $) NIL) (($ (-851 |#1|) (-851 |#1|)) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-851 |#1|) $) NIL) (($ $ (-851 |#1|)) NIL))) +(((-852 |#1|) (-13 (-973 (-851 |#1|)) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) (-552)) (T -852)) +((-4311 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-852 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-852 *3)) (-14 *3 (-552)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-14 *2 (-552)))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-852 *3)) (-14 *3 *2)))) +(-13 (-973 (-851 |#1|)) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 ((|#2| $) NIL (|has| |#2| (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| |#2| (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (|has| |#2| (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552))))) (-2832 ((|#2| $) NIL) (((-1154) $) NIL (|has| |#2| (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-552)))) (((-552) $) NIL (|has| |#2| (-1019 (-552))))) (-3398 (($ $) 31) (($ (-552) $) 32)) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) 53)) (-1332 (($) NIL (|has| |#2| (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) NIL (|has| |#2| (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| |#2| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| |#2| (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 ((|#2| $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#2| (-1129)))) (-3127 (((-111) $) NIL (|has| |#2| (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 49)) (-1977 (($) NIL (|has| |#2| (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| |#2| (-301)))) (-3410 ((|#2| $) NIL (|has| |#2| (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 |#2|) (-629 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-303 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ (-629 (-288 |#2|))) NIL (|has| |#2| (-303 |#2|))) (($ $ (-629 (-1154)) (-629 |#2|)) NIL (|has| |#2| (-506 (-1154) |#2|))) (($ $ (-1154) |#2|) NIL (|has| |#2| (-506 (-1154) |#2|)))) (-3795 (((-756) $) NIL)) (-2060 (($ $ |#2|) NIL (|has| |#2| (-280 |#2| |#2|)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) NIL (|has| |#2| (-228))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2493 (($ $) NIL)) (-4026 ((|#2| $) NIL)) (-1522 (((-873 (-552)) $) NIL (|has| |#2| (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| |#2| (-600 (-873 (-373))))) (((-528) $) NIL (|has| |#2| (-600 (-528)))) (((-373) $) NIL (|has| |#2| (-1003))) (((-220) $) NIL (|has| |#2| (-1003)))) (-3110 (((-171 (-401 (-552))) $) 68)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-3213 (((-844) $) 87) (($ (-552)) 19) (($ $) NIL) (($ (-401 (-552))) 24) (($ |#2|) 18) (($ (-1154)) NIL (|has| |#2| (-1019 (-1154))))) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-3763 ((|#2| $) NIL (|has| |#2| (-537)))) (-3589 (((-111) $ $) NIL)) (-4311 (((-401 (-552)) $ (-552)) 60)) (-1578 (($ $) NIL (|has| |#2| (-805)))) (-3297 (($) 14 T CONST)) (-3309 (($) 16 T CONST)) (-1765 (($ $) NIL (|has| |#2| (-228))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) 35)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1709 (($ $) 39) (($ $ $) 41)) (-1698 (($ $ $) 37)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) 50)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 42) (($ $ $) 44) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-853 |#1| |#2|) (-13 (-973 |#2|) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) (-552) (-850 |#1|)) (T -853)) +((-4311 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-853 *4 *5)) (-5 *3 (-552)) (-4 *5 (-850 *4)))) (-3110 (*1 *2 *1) (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-853 *3 *4)) (-4 *4 (-850 *3)))) (-3398 (*1 *1 *1) (-12 (-14 *2 (-552)) (-5 *1 (-853 *2 *3)) (-4 *3 (-850 *2)))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-853 *3 *4)) (-4 *4 (-850 *3))))) +(-13 (-973 |#2|) (-10 -8 (-15 -4311 ((-401 (-552)) $ (-552))) (-15 -3110 ((-171 (-401 (-552))) $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)))) +((-3202 (((-111) $ $) NIL (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))))) (-2196 ((|#2| $) 12)) (-2873 (($ |#1| |#2|) 9)) (-2623 (((-1136) $) NIL (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))))) (-2876 (((-1098) $) NIL (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#1| $) 11)) (-3226 (($ |#1| |#2|) 10)) (-3213 (((-844) $) 18 (-4029 (-12 (|has| |#1| (-599 (-844))) (|has| |#2| (-599 (-844)))) (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078)))))) (-1613 (((-111) $ $) 22 (-12 (|has| |#1| (-1078)) (|has| |#2| (-1078)))))) +(((-854 |#1| |#2|) (-13 (-1191) (-10 -8 (IF (|has| |#1| (-599 (-844))) (IF (|has| |#2| (-599 (-844))) (-6 (-599 (-844))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1078)) (IF (|has| |#2| (-1078)) (-6 (-1078)) |%noBranch|) |%noBranch|) (-15 -2873 ($ |#1| |#2|)) (-15 -3226 ($ |#1| |#2|)) (-15 -2702 (|#1| $)) (-15 -2196 (|#2| $)))) (-1191) (-1191)) (T -854)) +((-2873 (*1 *1 *2 *3) (-12 (-5 *1 (-854 *2 *3)) (-4 *2 (-1191)) (-4 *3 (-1191)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-854 *2 *3)) (-4 *2 (-1191)) (-4 *3 (-1191)))) (-2702 (*1 *2 *1) (-12 (-4 *2 (-1191)) (-5 *1 (-854 *2 *3)) (-4 *3 (-1191)))) (-2196 (*1 *2 *1) (-12 (-4 *2 (-1191)) (-5 *1 (-854 *3 *2)) (-4 *3 (-1191))))) +(-13 (-1191) (-10 -8 (IF (|has| |#1| (-599 (-844))) (IF (|has| |#2| (-599 (-844))) (-6 (-599 (-844))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1078)) (IF (|has| |#2| (-1078)) (-6 (-1078)) |%noBranch|) |%noBranch|) (-15 -2873 ($ |#1| |#2|)) (-15 -3226 ($ |#1| |#2|)) (-15 -2702 (|#1| $)) (-15 -2196 (|#2| $)))) +((-3202 (((-111) $ $) NIL)) (-1911 (((-552) $) 15)) (-3402 (($ (-154)) 11)) (-2721 (($ (-154)) 12)) (-2623 (((-1136) $) NIL)) (-3852 (((-154) $) 13)) (-2876 (((-1098) $) NIL)) (-2072 (($ (-154)) 9)) (-1867 (($ (-154)) 8)) (-3213 (((-844) $) 23) (($ (-154)) 16)) (-1936 (($ (-154)) 10)) (-1613 (((-111) $ $) NIL))) +(((-855) (-13 (-1078) (-10 -8 (-15 -1867 ($ (-154))) (-15 -2072 ($ (-154))) (-15 -1936 ($ (-154))) (-15 -3402 ($ (-154))) (-15 -2721 ($ (-154))) (-15 -3852 ((-154) $)) (-15 -1911 ((-552) $)) (-15 -3213 ($ (-154)))))) (T -855)) +((-1867 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-2072 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-855)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) +(-13 (-1078) (-10 -8 (-15 -1867 ($ (-154))) (-15 -2072 ($ (-154))) (-15 -1936 ($ (-154))) (-15 -3402 ($ (-154))) (-15 -2721 ($ (-154))) (-15 -3852 ((-154) $)) (-15 -1911 ((-552) $)) (-15 -3213 ($ (-154))))) +((-3213 (((-310 (-552)) (-401 (-933 (-48)))) 23) (((-310 (-552)) (-933 (-48))) 18))) +(((-856) (-10 -7 (-15 -3213 ((-310 (-552)) (-933 (-48)))) (-15 -3213 ((-310 (-552)) (-401 (-933 (-48))))))) (T -856)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 (-48)))) (-5 *2 (-310 (-552))) (-5 *1 (-856)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-933 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-856))))) +(-10 -7 (-15 -3213 ((-310 (-552)) (-933 (-48)))) (-15 -3213 ((-310 (-552)) (-401 (-933 (-48)))))) +((-1477 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14))) +(((-857 |#1| |#2|) (-10 -7 (-15 -1477 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1191) (-1191)) (T -857)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))) +(-10 -7 (-15 -1477 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) +((-2909 (($ |#1| |#1|) 8)) (-3346 ((|#1| $ (-756)) 10))) +(((-858 |#1|) (-10 -8 (-15 -2909 ($ |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) (-1191)) (T -858)) +((-3346 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-858 *2)) (-4 *2 (-1191)))) (-2909 (*1 *1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1191))))) +(-10 -8 (-15 -2909 ($ |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) +((-1477 (((-860 |#2|) (-1 |#2| |#1|) (-860 |#1|)) 14))) +(((-859 |#1| |#2|) (-10 -7 (-15 -1477 ((-860 |#2|) (-1 |#2| |#1|) (-860 |#1|)))) (-1191) (-1191)) (T -859)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-860 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-860 *6)) (-5 *1 (-859 *5 *6))))) +(-10 -7 (-15 -1477 ((-860 |#2|) (-1 |#2| |#1|) (-860 |#1|)))) +((-2909 (($ |#1| |#1| |#1|) 8)) (-3346 ((|#1| $ (-756)) 10))) +(((-860 |#1|) (-10 -8 (-15 -2909 ($ |#1| |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) (-1191)) (T -860)) +((-3346 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-860 *2)) (-4 *2 (-1191)))) (-2909 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1191))))) +(-10 -8 (-15 -2909 ($ |#1| |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) +((-1279 (((-629 (-1159)) (-1136)) 9))) +(((-861) (-10 -7 (-15 -1279 ((-629 (-1159)) (-1136))))) (T -861)) +((-1279 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-629 (-1159))) (-5 *1 (-861))))) +(-10 -7 (-15 -1279 ((-629 (-1159)) (-1136)))) +((-1477 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 14))) +(((-862 |#1| |#2|) (-10 -7 (-15 -1477 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-1191) (-1191)) (T -862)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6))))) +(-10 -7 (-15 -1477 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) +((-3272 (($ |#1| |#1| |#1|) 8)) (-3346 ((|#1| $ (-756)) 10))) +(((-863 |#1|) (-10 -8 (-15 -3272 ($ |#1| |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) (-1191)) (T -863)) +((-3346 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-863 *2)) (-4 *2 (-1191)))) (-3272 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1191))))) +(-10 -8 (-15 -3272 ($ |#1| |#1| |#1|)) (-15 -3346 (|#1| $ (-756)))) +((-2509 (((-1134 (-629 (-552))) (-629 (-552)) (-1134 (-629 (-552)))) 32)) (-2948 (((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552))) 28)) (-2103 (((-1134 (-629 (-552))) (-629 (-552))) 41) (((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552))) 40)) (-3443 (((-1134 (-629 (-552))) (-552)) 42)) (-2504 (((-1134 (-629 (-552))) (-552) (-552)) 22) (((-1134 (-629 (-552))) (-552)) 16) (((-1134 (-629 (-552))) (-552) (-552) (-552)) 12)) (-3328 (((-1134 (-629 (-552))) (-1134 (-629 (-552)))) 26)) (-2074 (((-629 (-552)) (-629 (-552))) 25))) +(((-864) (-10 -7 (-15 -2504 ((-1134 (-629 (-552))) (-552) (-552) (-552))) (-15 -2504 ((-1134 (-629 (-552))) (-552))) (-15 -2504 ((-1134 (-629 (-552))) (-552) (-552))) (-15 -2074 ((-629 (-552)) (-629 (-552)))) (-15 -3328 ((-1134 (-629 (-552))) (-1134 (-629 (-552))))) (-15 -2948 ((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552)))) (-15 -2509 ((-1134 (-629 (-552))) (-629 (-552)) (-1134 (-629 (-552))))) (-15 -2103 ((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552)))) (-15 -2103 ((-1134 (-629 (-552))) (-629 (-552)))) (-15 -3443 ((-1134 (-629 (-552))) (-552))))) (T -864)) +((-3443 (*1 *2 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552)))) (-2103 (*1 *2 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-629 (-552))))) (-2103 (*1 *2 *3 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-629 (-552))))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *3 (-629 (-552))) (-5 *1 (-864)))) (-2948 (*1 *2 *3 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-629 (-552))))) (-3328 (*1 *2 *2) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-864)))) (-2504 (*1 *2 *3 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552)))) (-2504 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552))))) +(-10 -7 (-15 -2504 ((-1134 (-629 (-552))) (-552) (-552) (-552))) (-15 -2504 ((-1134 (-629 (-552))) (-552))) (-15 -2504 ((-1134 (-629 (-552))) (-552) (-552))) (-15 -2074 ((-629 (-552)) (-629 (-552)))) (-15 -3328 ((-1134 (-629 (-552))) (-1134 (-629 (-552))))) (-15 -2948 ((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552)))) (-15 -2509 ((-1134 (-629 (-552))) (-629 (-552)) (-1134 (-629 (-552))))) (-15 -2103 ((-1134 (-629 (-552))) (-629 (-552)) (-629 (-552)))) (-15 -2103 ((-1134 (-629 (-552))) (-629 (-552)))) (-15 -3443 ((-1134 (-629 (-552))) (-552)))) +((-1522 (((-873 (-373)) $) 9 (|has| |#1| (-600 (-873 (-373))))) (((-873 (-552)) $) 8 (|has| |#1| (-600 (-873 (-552))))))) +(((-865 |#1|) (-137) (-1191)) (T -865)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-600 (-873 (-552)))) (-6 (-600 (-873 (-552)))) |%noBranch|) (IF (|has| |t#1| (-600 (-873 (-373)))) (-6 (-600 (-873 (-373)))) |%noBranch|))) +(((-600 (-873 (-373))) |has| |#1| (-600 (-873 (-373)))) ((-600 (-873 (-552))) |has| |#1| (-600 (-873 (-552))))) +((-3202 (((-111) $ $) NIL)) (-3307 (($) 14)) (-4222 (($ (-870 |#1| |#2|) (-870 |#1| |#3|)) 27)) (-2205 (((-870 |#1| |#3|) $) 16)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3715 (((-111) $) 22)) (-4169 (($) 19)) (-3213 (((-844) $) 30)) (-1407 (((-870 |#1| |#2|) $) 15)) (-1613 (((-111) $ $) 25))) +(((-866 |#1| |#2| |#3|) (-13 (-1078) (-10 -8 (-15 -3715 ((-111) $)) (-15 -4169 ($)) (-15 -3307 ($)) (-15 -4222 ($ (-870 |#1| |#2|) (-870 |#1| |#3|))) (-15 -1407 ((-870 |#1| |#2|) $)) (-15 -2205 ((-870 |#1| |#3|) $)))) (-1078) (-1078) (-650 |#2|)) (T -866)) +((-3715 (*1 *2 *1) (-12 (-4 *4 (-1078)) (-5 *2 (-111)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1078)) (-4 *5 (-650 *4)))) (-4169 (*1 *1) (-12 (-4 *3 (-1078)) (-5 *1 (-866 *2 *3 *4)) (-4 *2 (-1078)) (-4 *4 (-650 *3)))) (-3307 (*1 *1) (-12 (-4 *3 (-1078)) (-5 *1 (-866 *2 *3 *4)) (-4 *2 (-1078)) (-4 *4 (-650 *3)))) (-4222 (*1 *1 *2 *3) (-12 (-5 *2 (-870 *4 *5)) (-5 *3 (-870 *4 *6)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-650 *5)) (-5 *1 (-866 *4 *5 *6)))) (-1407 (*1 *2 *1) (-12 (-4 *4 (-1078)) (-5 *2 (-870 *3 *4)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1078)) (-4 *5 (-650 *4)))) (-2205 (*1 *2 *1) (-12 (-4 *4 (-1078)) (-5 *2 (-870 *3 *5)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1078)) (-4 *5 (-650 *4))))) +(-13 (-1078) (-10 -8 (-15 -3715 ((-111) $)) (-15 -4169 ($)) (-15 -3307 ($)) (-15 -4222 ($ (-870 |#1| |#2|) (-870 |#1| |#3|))) (-15 -1407 ((-870 |#1| |#2|) $)) (-15 -2205 ((-870 |#1| |#3|) $)))) +((-3202 (((-111) $ $) 7)) (-2214 (((-870 |#1| $) $ (-873 |#1|) (-870 |#1| $)) 13)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-867 |#1|) (-137) (-1078)) (T -867)) +((-2214 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-870 *4 *1)) (-5 *3 (-873 *4)) (-4 *1 (-867 *4)) (-4 *4 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -2214 ((-870 |t#1| $) $ (-873 |t#1|) (-870 |t#1| $))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3515 (((-111) (-629 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-4285 (((-870 |#1| |#2|) |#2| |#3|) 43 (-12 (-4107 (|has| |#2| (-1019 (-1154)))) (-4107 (|has| |#2| (-1030))))) (((-629 (-288 (-933 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1030)) (-4107 (|has| |#2| (-1019 (-1154)))))) (((-629 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1019 (-1154)))) (((-866 |#1| |#2| (-629 |#2|)) (-629 |#2|) |#3|) 21))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3515 ((-111) |#2| |#3|)) (-15 -3515 ((-111) (-629 |#2|) |#3|)) (-15 -4285 ((-866 |#1| |#2| (-629 |#2|)) (-629 |#2|) |#3|)) (IF (|has| |#2| (-1019 (-1154))) (-15 -4285 ((-629 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1030)) (-15 -4285 ((-629 (-288 (-933 |#2|))) |#2| |#3|)) (-15 -4285 ((-870 |#1| |#2|) |#2| |#3|))))) (-1078) (-867 |#1|) (-600 (-873 |#1|))) (T -868)) +((-4285 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-5 *2 (-870 *5 *3)) (-5 *1 (-868 *5 *3 *4)) (-4107 (-4 *3 (-1019 (-1154)))) (-4107 (-4 *3 (-1030))) (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5))))) (-4285 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-5 *2 (-629 (-288 (-933 *3)))) (-5 *1 (-868 *5 *3 *4)) (-4 *3 (-1030)) (-4107 (-4 *3 (-1019 (-1154)))) (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5))))) (-4285 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-5 *2 (-629 (-288 *3))) (-5 *1 (-868 *5 *3 *4)) (-4 *3 (-1019 (-1154))) (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5))))) (-4285 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-4 *6 (-867 *5)) (-5 *2 (-866 *5 *6 (-629 *6))) (-5 *1 (-868 *5 *6 *4)) (-5 *3 (-629 *6)) (-4 *4 (-600 (-873 *5))))) (-3515 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *6)) (-4 *6 (-867 *5)) (-4 *5 (-1078)) (-5 *2 (-111)) (-5 *1 (-868 *5 *6 *4)) (-4 *4 (-600 (-873 *5))))) (-3515 (*1 *2 *3 *4) (-12 (-4 *5 (-1078)) (-5 *2 (-111)) (-5 *1 (-868 *5 *3 *4)) (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5)))))) +(-10 -7 (-15 -3515 ((-111) |#2| |#3|)) (-15 -3515 ((-111) (-629 |#2|) |#3|)) (-15 -4285 ((-866 |#1| |#2| (-629 |#2|)) (-629 |#2|) |#3|)) (IF (|has| |#2| (-1019 (-1154))) (-15 -4285 ((-629 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1030)) (-15 -4285 ((-629 (-288 (-933 |#2|))) |#2| |#3|)) (-15 -4285 ((-870 |#1| |#2|) |#2| |#3|))))) +((-1477 (((-870 |#1| |#3|) (-1 |#3| |#2|) (-870 |#1| |#2|)) 22))) +(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-870 |#1| |#3|) (-1 |#3| |#2|) (-870 |#1| |#2|)))) (-1078) (-1078) (-1078)) (T -869)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-870 *5 *6)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-870 *5 *7)) (-5 *1 (-869 *5 *6 *7))))) +(-10 -7 (-15 -1477 ((-870 |#1| |#3|) (-1 |#3| |#2|) (-870 |#1| |#2|)))) +((-3202 (((-111) $ $) NIL)) (-1501 (($ $ $) 39)) (-2859 (((-3 (-111) "failed") $ (-873 |#1|)) 36)) (-3307 (($) 12)) (-2623 (((-1136) $) NIL)) (-3497 (($ (-873 |#1|) |#2| $) 20)) (-2876 (((-1098) $) NIL)) (-1564 (((-3 |#2| "failed") (-873 |#1|) $) 50)) (-3715 (((-111) $) 15)) (-4169 (($) 13)) (-3552 (((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|))) $) 25)) (-3226 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|)))) 23)) (-3213 (((-844) $) 44)) (-4184 (($ (-873 |#1|) |#2| $ |#2|) 48)) (-4125 (($ (-873 |#1|) |#2| $) 47)) (-1613 (((-111) $ $) 41))) +(((-870 |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -3715 ((-111) $)) (-15 -4169 ($)) (-15 -3307 ($)) (-15 -1501 ($ $ $)) (-15 -1564 ((-3 |#2| "failed") (-873 |#1|) $)) (-15 -4125 ($ (-873 |#1|) |#2| $)) (-15 -3497 ($ (-873 |#1|) |#2| $)) (-15 -4184 ($ (-873 |#1|) |#2| $ |#2|)) (-15 -3552 ((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|))) $)) (-15 -3226 ($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|))))) (-15 -2859 ((-3 (-111) "failed") $ (-873 |#1|))))) (-1078) (-1078)) (T -870)) +((-3715 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-4169 (*1 *1) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-3307 (*1 *1) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-1501 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-1564 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-4 *2 (-1078)) (-5 *1 (-870 *4 *2)))) (-4125 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) (-4 *3 (-1078)))) (-3497 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) (-4 *3 (-1078)))) (-4184 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) (-4 *3 (-1078)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 *4)))) (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 *4)))) (-4 *4 (-1078)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)))) (-2859 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-111)) (-5 *1 (-870 *4 *5)) (-4 *5 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -3715 ((-111) $)) (-15 -4169 ($)) (-15 -3307 ($)) (-15 -1501 ($ $ $)) (-15 -1564 ((-3 |#2| "failed") (-873 |#1|) $)) (-15 -4125 ($ (-873 |#1|) |#2| $)) (-15 -3497 ($ (-873 |#1|) |#2| $)) (-15 -4184 ($ (-873 |#1|) |#2| $ |#2|)) (-15 -3552 ((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|))) $)) (-15 -3226 ($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 |#2|))))) (-15 -2859 ((-3 (-111) "failed") $ (-873 |#1|))))) +((-3952 (((-873 |#1|) (-873 |#1|) (-629 (-1154)) (-1 (-111) (-629 |#2|))) 32) (((-873 |#1|) (-873 |#1|) (-629 (-1 (-111) |#2|))) 43) (((-873 |#1|) (-873 |#1|) (-1 (-111) |#2|)) 35)) (-2859 (((-111) (-629 |#2|) (-873 |#1|)) 40) (((-111) |#2| (-873 |#1|)) 36)) (-1968 (((-1 (-111) |#2|) (-873 |#1|)) 16)) (-2816 (((-629 |#2|) (-873 |#1|)) 24)) (-2549 (((-873 |#1|) (-873 |#1|) |#2|) 20))) +(((-871 |#1| |#2|) (-10 -7 (-15 -3952 ((-873 |#1|) (-873 |#1|) (-1 (-111) |#2|))) (-15 -3952 ((-873 |#1|) (-873 |#1|) (-629 (-1 (-111) |#2|)))) (-15 -3952 ((-873 |#1|) (-873 |#1|) (-629 (-1154)) (-1 (-111) (-629 |#2|)))) (-15 -1968 ((-1 (-111) |#2|) (-873 |#1|))) (-15 -2859 ((-111) |#2| (-873 |#1|))) (-15 -2859 ((-111) (-629 |#2|) (-873 |#1|))) (-15 -2549 ((-873 |#1|) (-873 |#1|) |#2|)) (-15 -2816 ((-629 |#2|) (-873 |#1|)))) (-1078) (-1191)) (T -871)) +((-2816 (*1 *2 *3) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-629 *5)) (-5 *1 (-871 *4 *5)) (-4 *5 (-1191)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-871 *4 *3)) (-4 *3 (-1191)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-4 *6 (-1191)) (-5 *2 (-111)) (-5 *1 (-871 *5 *6)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-5 *2 (-111)) (-5 *1 (-871 *5 *3)) (-4 *3 (-1191)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-871 *4 *5)) (-4 *5 (-1191)))) (-3952 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-873 *5)) (-5 *3 (-629 (-1154))) (-5 *4 (-1 (-111) (-629 *6))) (-4 *5 (-1078)) (-4 *6 (-1191)) (-5 *1 (-871 *5 *6)))) (-3952 (*1 *2 *2 *3) (-12 (-5 *2 (-873 *4)) (-5 *3 (-629 (-1 (-111) *5))) (-4 *4 (-1078)) (-4 *5 (-1191)) (-5 *1 (-871 *4 *5)))) (-3952 (*1 *2 *2 *3) (-12 (-5 *2 (-873 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1078)) (-4 *5 (-1191)) (-5 *1 (-871 *4 *5))))) +(-10 -7 (-15 -3952 ((-873 |#1|) (-873 |#1|) (-1 (-111) |#2|))) (-15 -3952 ((-873 |#1|) (-873 |#1|) (-629 (-1 (-111) |#2|)))) (-15 -3952 ((-873 |#1|) (-873 |#1|) (-629 (-1154)) (-1 (-111) (-629 |#2|)))) (-15 -1968 ((-1 (-111) |#2|) (-873 |#1|))) (-15 -2859 ((-111) |#2| (-873 |#1|))) (-15 -2859 ((-111) (-629 |#2|) (-873 |#1|))) (-15 -2549 ((-873 |#1|) (-873 |#1|) |#2|)) (-15 -2816 ((-629 |#2|) (-873 |#1|)))) +((-1477 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 19))) +(((-872 |#1| |#2|) (-10 -7 (-15 -1477 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1078) (-1078)) (T -872)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))) +(-10 -7 (-15 -1477 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) +((-3202 (((-111) $ $) NIL)) (-1937 (($ $ (-629 (-52))) 64)) (-3611 (((-629 $) $) 118)) (-3615 (((-2 (|:| |var| (-629 (-1154))) (|:| |pred| (-52))) $) 24)) (-2288 (((-111) $) 30)) (-3032 (($ $ (-629 (-1154)) (-52)) 25)) (-3851 (($ $ (-629 (-52))) 63)) (-1393 (((-3 |#1| "failed") $) 61) (((-3 (-1154) "failed") $) 140)) (-2832 ((|#1| $) 58) (((-1154) $) NIL)) (-1965 (($ $) 108)) (-2144 (((-111) $) 47)) (-2465 (((-629 (-52)) $) 45)) (-1784 (($ (-1154) (-111) (-111) (-111)) 65)) (-4210 (((-3 (-629 $) "failed") (-629 $)) 72)) (-2464 (((-111) $) 50)) (-2027 (((-111) $) 49)) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) 36)) (-3598 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-4073 (((-3 (-2 (|:| |val| $) (|:| -1406 $)) "failed") $) 83)) (-2878 (((-3 (-629 $) "failed") $) 33)) (-2515 (((-3 (-629 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -1443 (-113)) (|:| |arg| (-629 $))) "failed") $) 95)) (-2699 (((-3 (-629 $) "failed") $) 37)) (-3909 (((-3 (-2 (|:| |val| $) (|:| -1406 (-756))) "failed") $) 40)) (-2898 (((-111) $) 29)) (-2876 (((-1098) $) NIL)) (-1871 (((-111) $) 21)) (-2016 (((-111) $) 46)) (-1416 (((-629 (-52)) $) 111)) (-1674 (((-111) $) 48)) (-2060 (($ (-113) (-629 $)) 92)) (-3907 (((-756) $) 28)) (-1487 (($ $) 62)) (-1522 (($ (-629 $)) 59)) (-4190 (((-111) $) 26)) (-3213 (((-844) $) 53) (($ |#1|) 18) (($ (-1154)) 66)) (-2549 (($ $ (-52)) 110)) (-3297 (($) 91 T CONST)) (-3309 (($) 73 T CONST)) (-1613 (((-111) $ $) 79)) (-1720 (($ $ $) 100)) (-1698 (($ $ $) 104)) (** (($ $ (-756)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-873 |#1|) (-13 (-1078) (-1019 |#1|) (-1019 (-1154)) (-10 -8 (-15 0 ($) -3930) (-15 1 ($) -3930) (-15 -2878 ((-3 (-629 $) "failed") $)) (-15 -4263 ((-3 (-629 $) "failed") $)) (-15 -2515 ((-3 (-629 $) "failed") $ (-113))) (-15 -2515 ((-3 (-2 (|:| -1443 (-113)) (|:| |arg| (-629 $))) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |val| $) (|:| -1406 (-756))) "failed") $)) (-15 -3598 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2699 ((-3 (-629 $) "failed") $)) (-15 -4073 ((-3 (-2 (|:| |val| $) (|:| -1406 $)) "failed") $)) (-15 -2060 ($ (-113) (-629 $))) (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-756))) (-15 ** ($ $ $)) (-15 -1720 ($ $ $)) (-15 -3907 ((-756) $)) (-15 -1522 ($ (-629 $))) (-15 -1487 ($ $)) (-15 -2898 ((-111) $)) (-15 -2144 ((-111) $)) (-15 -2288 ((-111) $)) (-15 -4190 ((-111) $)) (-15 -1674 ((-111) $)) (-15 -2027 ((-111) $)) (-15 -2464 ((-111) $)) (-15 -2016 ((-111) $)) (-15 -2465 ((-629 (-52)) $)) (-15 -3851 ($ $ (-629 (-52)))) (-15 -1937 ($ $ (-629 (-52)))) (-15 -1784 ($ (-1154) (-111) (-111) (-111))) (-15 -3032 ($ $ (-629 (-1154)) (-52))) (-15 -3615 ((-2 (|:| |var| (-629 (-1154))) (|:| |pred| (-52))) $)) (-15 -1871 ((-111) $)) (-15 -1965 ($ $)) (-15 -2549 ($ $ (-52))) (-15 -1416 ((-629 (-52)) $)) (-15 -3611 ((-629 $) $)) (-15 -4210 ((-3 (-629 $) "failed") (-629 $))))) (-1078)) (T -873)) +((-3297 (*1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-3309 (*1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-2878 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-4263 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2515 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-629 (-873 *4))) (-5 *1 (-873 *4)) (-4 *4 (-1078)))) (-2515 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1443 (-113)) (|:| |arg| (-629 (-873 *3))))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-3909 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-873 *3)) (|:| -1406 (-756)))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-3598 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-873 *3)) (|:| |den| (-873 *3)))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2699 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-4073 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-873 *3)) (|:| -1406 (-873 *3)))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 (-873 *4))) (-5 *1 (-873 *4)) (-4 *4 (-1078)))) (-1698 (*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-1720 (*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1784 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-111)) (-5 *1 (-873 *4)) (-4 *4 (-1078)))) (-3032 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-52)) (-5 *1 (-873 *4)) (-4 *4 (-1078)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-629 (-1154))) (|:| |pred| (-52)))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1965 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) (-4210 (*1 *2 *2) (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(-13 (-1078) (-1019 |#1|) (-1019 (-1154)) (-10 -8 (-15 (-3297) ($) -3930) (-15 (-3309) ($) -3930) (-15 -2878 ((-3 (-629 $) "failed") $)) (-15 -4263 ((-3 (-629 $) "failed") $)) (-15 -2515 ((-3 (-629 $) "failed") $ (-113))) (-15 -2515 ((-3 (-2 (|:| -1443 (-113)) (|:| |arg| (-629 $))) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |val| $) (|:| -1406 (-756))) "failed") $)) (-15 -3598 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2699 ((-3 (-629 $) "failed") $)) (-15 -4073 ((-3 (-2 (|:| |val| $) (|:| -1406 $)) "failed") $)) (-15 -2060 ($ (-113) (-629 $))) (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-756))) (-15 ** ($ $ $)) (-15 -1720 ($ $ $)) (-15 -3907 ((-756) $)) (-15 -1522 ($ (-629 $))) (-15 -1487 ($ $)) (-15 -2898 ((-111) $)) (-15 -2144 ((-111) $)) (-15 -2288 ((-111) $)) (-15 -4190 ((-111) $)) (-15 -1674 ((-111) $)) (-15 -2027 ((-111) $)) (-15 -2464 ((-111) $)) (-15 -2016 ((-111) $)) (-15 -2465 ((-629 (-52)) $)) (-15 -3851 ($ $ (-629 (-52)))) (-15 -1937 ($ $ (-629 (-52)))) (-15 -1784 ($ (-1154) (-111) (-111) (-111))) (-15 -3032 ($ $ (-629 (-1154)) (-52))) (-15 -3615 ((-2 (|:| |var| (-629 (-1154))) (|:| |pred| (-52))) $)) (-15 -1871 ((-111) $)) (-15 -1965 ($ $)) (-15 -2549 ($ $ (-52))) (-15 -1416 ((-629 (-52)) $)) (-15 -3611 ((-629 $) $)) (-15 -4210 ((-3 (-629 $) "failed") (-629 $))))) +((-3202 (((-111) $ $) NIL)) (-2814 (((-629 |#1|) $) 16)) (-3040 (((-111) $) 38)) (-1393 (((-3 (-656 |#1|) "failed") $) 43)) (-2832 (((-656 |#1|) $) 41)) (-2715 (($ $) 18)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2556 (((-756) $) 46)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-656 |#1|) $) 17)) (-3213 (((-844) $) 37) (($ (-656 |#1|)) 21) (((-804 |#1|) $) 27) (($ |#1|) 20)) (-3309 (($) 8 T CONST)) (-2166 (((-629 (-656 |#1|)) $) 23)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 11)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 49))) +(((-874 |#1|) (-13 (-832) (-1019 (-656 |#1|)) (-10 -8 (-15 1 ($) -3930) (-15 -3213 ((-804 |#1|) $)) (-15 -3213 ($ |#1|)) (-15 -2702 ((-656 |#1|) $)) (-15 -2556 ((-756) $)) (-15 -2166 ((-629 (-656 |#1|)) $)) (-15 -2715 ($ $)) (-15 -3040 ((-111) $)) (-15 -2814 ((-629 |#1|) $)))) (-832)) (T -874)) +((-3309 (*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) (-3213 (*1 *1 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-629 (-656 *3))) (-5 *1 (-874 *3)) (-4 *3 (-832)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832))))) +(-13 (-832) (-1019 (-656 |#1|)) (-10 -8 (-15 (-3309) ($) -3930) (-15 -3213 ((-804 |#1|) $)) (-15 -3213 ($ |#1|)) (-15 -2702 ((-656 |#1|) $)) (-15 -2556 ((-756) $)) (-15 -2166 ((-629 (-656 |#1|)) $)) (-15 -2715 ($ $)) (-15 -3040 ((-111) $)) (-15 -2814 ((-629 |#1|) $)))) +((-1347 ((|#1| |#1| |#1|) 19))) +(((-875 |#1| |#2|) (-10 -7 (-15 -1347 (|#1| |#1| |#1|))) (-1213 |#2|) (-1030)) (T -875)) +((-1347 (*1 *2 *2 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-875 *2 *3)) (-4 *2 (-1213 *3))))) +(-10 -7 (-15 -1347 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3102 (((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 14)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-2487 (((-1016) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 13)) (-1613 (((-111) $ $) 6))) +(((-876) (-137)) (T -876)) +((-3102 (*1 *2 *3 *4) (-12 (-4 *1 (-876)) (-5 *3 (-1042)) (-5 *4 (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) (-2487 (*1 *2 *3) (-12 (-4 *1 (-876)) (-5 *3 (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) (-5 *2 (-1016))))) +(-13 (-1078) (-10 -7 (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| |explanations| (-1136))) (-1042) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))))) (-15 -2487 ((-1016) (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3716 ((|#1| |#1| (-756)) 24)) (-1959 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2089 (((-3 (-2 (|:| -3416 |#1|) (|:| -3428 |#1|)) "failed") |#1| (-756) (-756)) 27) (((-629 |#1|) |#1|) 29))) +(((-877 |#1| |#2|) (-10 -7 (-15 -2089 ((-629 |#1|) |#1|)) (-15 -2089 ((-3 (-2 (|:| -3416 |#1|) (|:| -3428 |#1|)) "failed") |#1| (-756) (-756))) (-15 -1959 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3716 (|#1| |#1| (-756)))) (-1213 |#2|) (-357)) (T -877)) +((-3716 (*1 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-357)) (-5 *1 (-877 *2 *4)) (-4 *2 (-1213 *4)))) (-1959 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-877 *2 *3)) (-4 *2 (-1213 *3)))) (-2089 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-756)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -3416 *3) (|:| -3428 *3))) (-5 *1 (-877 *3 *5)) (-4 *3 (-1213 *5)))) (-2089 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-877 *3 *4)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -2089 ((-629 |#1|) |#1|)) (-15 -2089 ((-3 (-2 (|:| -3416 |#1|) (|:| -3428 |#1|)) "failed") |#1| (-756) (-756))) (-15 -1959 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3716 (|#1| |#1| (-756)))) +((-4153 (((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136)) 96) (((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136) (-220)) 91) (((-1016) (-879) (-1042)) 83) (((-1016) (-879)) 84)) (-3102 (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879) (-1042)) 59) (((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879)) 61))) +(((-878) (-10 -7 (-15 -4153 ((-1016) (-879))) (-15 -4153 ((-1016) (-879) (-1042))) (-15 -4153 ((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136) (-220))) (-15 -4153 ((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879) (-1042))))) (T -878)) +((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-879)) (-5 *4 (-1042)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-878)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-879)) (-5 *2 (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136))))) (-5 *1 (-878)))) (-4153 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-756)) (-5 *6 (-629 (-629 (-310 *3)))) (-5 *7 (-1136)) (-5 *5 (-629 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1016)) (-5 *1 (-878)))) (-4153 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-756)) (-5 *6 (-629 (-629 (-310 *3)))) (-5 *7 (-1136)) (-5 *8 (-220)) (-5 *5 (-629 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1016)) (-5 *1 (-878)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-879)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-878)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-879)) (-5 *2 (-1016)) (-5 *1 (-878))))) +(-10 -7 (-15 -4153 ((-1016) (-879))) (-15 -4153 ((-1016) (-879) (-1042))) (-15 -4153 ((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136) (-220))) (-15 -4153 ((-1016) (-373) (-373) (-373) (-373) (-756) (-756) (-629 (-310 (-373))) (-629 (-629 (-310 (-373)))) (-1136))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879))) (-15 -3102 ((-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) (|:| |explanations| (-629 (-1136)))) (-879) (-1042)))) +((-3202 (((-111) $ $) NIL)) (-2832 (((-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))) $) 19)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 21) (($ (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) 18)) (-1613 (((-111) $ $) NIL))) +(((-879) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))) $))))) (T -879)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-879)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) (-5 *1 (-879)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220)))) (-5 *1 (-879))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))))) (-15 -3213 ((-844) $)) (-15 -2832 ((-2 (|:| |pde| (-629 (-310 (-220)))) (|:| |constraints| (-629 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-756)) (|:| |boundaryType| (-552)) (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) (|:| |tol| (-220))) $)))) +((-3096 (($ $ |#2|) NIL) (($ $ (-629 |#2|)) 10) (($ $ |#2| (-756)) 12) (($ $ (-629 |#2|) (-629 (-756))) 15)) (-1765 (($ $ |#2|) 16) (($ $ (-629 |#2|)) 18) (($ $ |#2| (-756)) 19) (($ $ (-629 |#2|) (-629 (-756))) 21))) +(((-880 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| |#1| (-629 |#2|) (-629 (-756)))) (-15 -1765 (|#1| |#1| |#2| (-756))) (-15 -1765 (|#1| |#1| (-629 |#2|))) (-15 -1765 (|#1| |#1| |#2|)) (-15 -3096 (|#1| |#1| (-629 |#2|) (-629 (-756)))) (-15 -3096 (|#1| |#1| |#2| (-756))) (-15 -3096 (|#1| |#1| (-629 |#2|))) (-15 -3096 (|#1| |#1| |#2|))) (-881 |#2|) (-1078)) (T -880)) +NIL +(-10 -8 (-15 -1765 (|#1| |#1| (-629 |#2|) (-629 (-756)))) (-15 -1765 (|#1| |#1| |#2| (-756))) (-15 -1765 (|#1| |#1| (-629 |#2|))) (-15 -1765 (|#1| |#1| |#2|)) (-15 -3096 (|#1| |#1| (-629 |#2|) (-629 (-756)))) (-15 -3096 (|#1| |#1| |#2| (-756))) (-15 -3096 (|#1| |#1| (-629 |#2|))) (-15 -3096 (|#1| |#1| |#2|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3096 (($ $ |#1|) 40) (($ $ (-629 |#1|)) 39) (($ $ |#1| (-756)) 38) (($ $ (-629 |#1|) (-629 (-756))) 37)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ |#1|) 36) (($ $ (-629 |#1|)) 35) (($ $ |#1| (-756)) 34) (($ $ (-629 |#1|) (-629 (-756))) 33)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-881 |#1|) (-137) (-1078)) (T -881)) +((-3096 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *2)) (-4 *2 (-1078)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *1 (-881 *3)) (-4 *3 (-1078)))) (-3096 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-881 *2)) (-4 *2 (-1078)))) (-3096 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 (-756))) (-4 *1 (-881 *4)) (-4 *4 (-1078)))) (-1765 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *2)) (-4 *2 (-1078)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *1 (-881 *3)) (-4 *3 (-1078)))) (-1765 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-881 *2)) (-4 *2 (-1078)))) (-1765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 (-756))) (-4 *1 (-881 *4)) (-4 *4 (-1078))))) +(-13 (-1030) (-10 -8 (-15 -3096 ($ $ |t#1|)) (-15 -3096 ($ $ (-629 |t#1|))) (-15 -3096 ($ $ |t#1| (-756))) (-15 -3096 ($ $ (-629 |t#1|) (-629 (-756)))) (-15 -1765 ($ $ |t#1|)) (-15 -1765 ($ $ (-629 |t#1|))) (-15 -1765 ($ $ |t#1| (-756))) (-15 -1765 ($ $ (-629 |t#1|) (-629 (-756)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) 26)) (-4238 (((-111) $ (-756)) NIL)) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-1324 (($ $ $) NIL (|has| $ (-6 -4369)))) (-3569 (($ $ $) NIL (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) (($ $ "left" $) NIL (|has| $ (-6 -4369))) (($ $ "right" $) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3428 (($ $) 25)) (-2194 (($ |#1|) 12) (($ $ $) 17)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-3416 (($ $) 23)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) 20)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1177 |#1|) $) 9) (((-844) $) 29 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 21 (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-882 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -2194 ($ |#1|)) (-15 -2194 ($ $ $)) (-15 -3213 ((-1177 |#1|) $)))) (-1078)) (T -882)) +((-2194 (*1 *1 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1078)))) (-2194 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1078)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-882 *3)) (-4 *3 (-1078))))) +(-13 (-118 |#1|) (-10 -8 (-15 -2194 ($ |#1|)) (-15 -2194 ($ $ $)) (-15 -3213 ((-1177 |#1|) $)))) +((-1690 ((|#2| (-1120 |#1| |#2|)) 40))) +(((-883 |#1| |#2|) (-10 -7 (-15 -1690 (|#2| (-1120 |#1| |#2|)))) (-902) (-13 (-1030) (-10 -7 (-6 (-4370 "*"))))) (T -883)) +((-1690 (*1 *2 *3) (-12 (-5 *3 (-1120 *4 *2)) (-14 *4 (-902)) (-4 *2 (-13 (-1030) (-10 -7 (-6 (-4370 "*"))))) (-5 *1 (-883 *4 *2))))) +(-10 -7 (-15 -1690 (|#2| (-1120 |#1| |#2|)))) +((-3202 (((-111) $ $) 7)) (-2130 (($) 18 T CONST)) (-1293 (((-3 $ "failed") $) 15)) (-1854 (((-1080 |#1|) $ |#1|) 32)) (-4065 (((-111) $) 17)) (-1772 (($ $ $) 30 (-4029 (|has| |#1| (-832)) (|has| |#1| (-362))))) (-2011 (($ $ $) 29 (-4029 (|has| |#1| (-832)) (|has| |#1| (-362))))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 24)) (-2876 (((-1098) $) 10)) (-2432 ((|#1| $ |#1|) 34)) (-2060 ((|#1| $ |#1|) 33)) (-1851 (($ (-629 (-629 |#1|))) 35)) (-2441 (($ (-629 |#1|)) 36)) (-2074 (($ $ $) 21)) (-2104 (($ $ $) 20)) (-3213 (((-844) $) 11)) (-3309 (($) 19 T CONST)) (-1666 (((-111) $ $) 27 (-4029 (|has| |#1| (-832)) (|has| |#1| (-362))))) (-1644 (((-111) $ $) 26 (-4029 (|has| |#1| (-832)) (|has| |#1| (-362))))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 28 (-4029 (|has| |#1| (-832)) (|has| |#1| (-362))))) (-1632 (((-111) $ $) 31)) (-1720 (($ $ $) 23)) (** (($ $ (-902)) 13) (($ $ (-756)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) +(((-884 |#1|) (-137) (-1078)) (T -884)) +((-2441 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-884 *3)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-4 *1 (-884 *3)))) (-2432 (*1 *2 *1 *2) (-12 (-4 *1 (-884 *2)) (-4 *2 (-1078)))) (-2060 (*1 *2 *1 *2) (-12 (-4 *1 (-884 *2)) (-4 *2 (-1078)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *3)) (-4 *3 (-1078)) (-5 *2 (-1080 *3)))) (-1632 (*1 *2 *1 *1) (-12 (-4 *1 (-884 *3)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(-13 (-466) (-10 -8 (-15 -2441 ($ (-629 |t#1|))) (-15 -1851 ($ (-629 (-629 |t#1|)))) (-15 -2432 (|t#1| $ |t#1|)) (-15 -2060 (|t#1| $ |t#1|)) (-15 -1854 ((-1080 |t#1|) $ |t#1|)) (-15 -1632 ((-111) $ $)) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-832)) |%noBranch|))) +(((-101) . T) ((-599 (-844)) . T) ((-466) . T) ((-711) . T) ((-832) -4029 (|has| |#1| (-832)) (|has| |#1| (-362))) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-4288 (((-629 (-629 (-756))) $) 108)) (-3704 (((-629 (-756)) (-886 |#1|) $) 130)) (-2627 (((-629 (-756)) (-886 |#1|) $) 131)) (-2852 (((-629 (-886 |#1|)) $) 98)) (-1332 (((-886 |#1|) $ (-552)) 103) (((-886 |#1|) $) 104)) (-2051 (($ (-629 (-886 |#1|))) 110)) (-4241 (((-756) $) 105)) (-3004 (((-1080 (-1080 |#1|)) $) 128)) (-1854 (((-1080 |#1|) $ |#1|) 121) (((-1080 (-1080 |#1|)) $ (-1080 |#1|)) 139) (((-1080 (-629 |#1|)) $ (-629 |#1|)) 142)) (-4005 (((-1080 |#1|) $) 101)) (-2973 (((-111) (-886 |#1|) $) 92)) (-2623 (((-1136) $) NIL)) (-1412 (((-1242) $) 95) (((-1242) $ (-552) (-552)) 143)) (-2876 (((-1098) $) NIL)) (-1284 (((-629 (-886 |#1|)) $) 96)) (-2060 (((-886 |#1|) $ (-756)) 99)) (-3299 (((-756) $) 106)) (-3213 (((-844) $) 119) (((-629 (-886 |#1|)) $) 23) (($ (-629 (-886 |#1|))) 109)) (-4174 (((-629 |#1|) $) 107)) (-1613 (((-111) $ $) 136)) (-1655 (((-111) $ $) 134)) (-1632 (((-111) $ $) 133))) +(((-885 |#1|) (-13 (-1078) (-10 -8 (-15 -3213 ((-629 (-886 |#1|)) $)) (-15 -1284 ((-629 (-886 |#1|)) $)) (-15 -2060 ((-886 |#1|) $ (-756))) (-15 -1332 ((-886 |#1|) $ (-552))) (-15 -1332 ((-886 |#1|) $)) (-15 -4241 ((-756) $)) (-15 -3299 ((-756) $)) (-15 -4174 ((-629 |#1|) $)) (-15 -2852 ((-629 (-886 |#1|)) $)) (-15 -4288 ((-629 (-629 (-756))) $)) (-15 -3213 ($ (-629 (-886 |#1|)))) (-15 -2051 ($ (-629 (-886 |#1|)))) (-15 -1854 ((-1080 |#1|) $ |#1|)) (-15 -3004 ((-1080 (-1080 |#1|)) $)) (-15 -1854 ((-1080 (-1080 |#1|)) $ (-1080 |#1|))) (-15 -1854 ((-1080 (-629 |#1|)) $ (-629 |#1|))) (-15 -2973 ((-111) (-886 |#1|) $)) (-15 -3704 ((-629 (-756)) (-886 |#1|) $)) (-15 -2627 ((-629 (-756)) (-886 |#1|) $)) (-15 -4005 ((-1080 |#1|) $)) (-15 -1632 ((-111) $ $)) (-15 -1655 ((-111) $ $)) (-15 -1412 ((-1242) $)) (-15 -1412 ((-1242) $ (-552) (-552))))) (-1078)) (T -885)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-886 *4)) (-5 *1 (-885 *4)) (-4 *4 (-1078)))) (-1332 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-886 *4)) (-5 *1 (-885 *4)) (-4 *4 (-1078)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-886 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-756)))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-886 *3))) (-4 *3 (-1078)) (-5 *1 (-885 *3)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-629 (-886 *3))) (-4 *3 (-1078)) (-5 *1 (-885 *3)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1080 (-1080 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *4 (-1078)) (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-885 *4)) (-5 *3 (-1080 *4)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *4 (-1078)) (-5 *2 (-1080 (-629 *4))) (-5 *1 (-885 *4)) (-5 *3 (-629 *4)))) (-2973 (*1 *2 *3 *1) (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-111)) (-5 *1 (-885 *4)))) (-3704 (*1 *2 *3 *1) (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-629 (-756))) (-5 *1 (-885 *4)))) (-2627 (*1 *2 *3 *1) (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-629 (-756))) (-5 *1 (-885 *4)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1632 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1655 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) (-1412 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-885 *4)) (-4 *4 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -3213 ((-629 (-886 |#1|)) $)) (-15 -1284 ((-629 (-886 |#1|)) $)) (-15 -2060 ((-886 |#1|) $ (-756))) (-15 -1332 ((-886 |#1|) $ (-552))) (-15 -1332 ((-886 |#1|) $)) (-15 -4241 ((-756) $)) (-15 -3299 ((-756) $)) (-15 -4174 ((-629 |#1|) $)) (-15 -2852 ((-629 (-886 |#1|)) $)) (-15 -4288 ((-629 (-629 (-756))) $)) (-15 -3213 ($ (-629 (-886 |#1|)))) (-15 -2051 ($ (-629 (-886 |#1|)))) (-15 -1854 ((-1080 |#1|) $ |#1|)) (-15 -3004 ((-1080 (-1080 |#1|)) $)) (-15 -1854 ((-1080 (-1080 |#1|)) $ (-1080 |#1|))) (-15 -1854 ((-1080 (-629 |#1|)) $ (-629 |#1|))) (-15 -2973 ((-111) (-886 |#1|) $)) (-15 -3704 ((-629 (-756)) (-886 |#1|) $)) (-15 -2627 ((-629 (-756)) (-886 |#1|) $)) (-15 -4005 ((-1080 |#1|) $)) (-15 -1632 ((-111) $ $)) (-15 -1655 ((-111) $ $)) (-15 -1412 ((-1242) $)) (-15 -1412 ((-1242) $ (-552) (-552))))) +((-3202 (((-111) $ $) NIL)) (-1296 (((-629 $) (-629 $)) 77)) (-3886 (((-552) $) 60)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4241 (((-756) $) 58)) (-1854 (((-1080 |#1|) $ |#1|) 49)) (-4065 (((-111) $) NIL)) (-3302 (((-111) $) 63)) (-2334 (((-756) $) 61)) (-4005 (((-1080 |#1|) $) 42)) (-1772 (($ $ $) NIL (-4029 (|has| |#1| (-362)) (|has| |#1| (-832))))) (-2011 (($ $ $) NIL (-4029 (|has| |#1| (-362)) (|has| |#1| (-832))))) (-1413 (((-2 (|:| |preimage| (-629 |#1|)) (|:| |image| (-629 |#1|))) $) 37)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 93)) (-2876 (((-1098) $) NIL)) (-1467 (((-1080 |#1|) $) 100 (|has| |#1| (-362)))) (-3117 (((-111) $) 59)) (-2432 ((|#1| $ |#1|) 47)) (-2060 ((|#1| $ |#1|) 94)) (-3299 (((-756) $) 44)) (-1851 (($ (-629 (-629 |#1|))) 85)) (-3858 (((-952) $) 53)) (-2441 (($ (-629 |#1|)) 21)) (-2074 (($ $ $) NIL)) (-2104 (($ $ $) NIL)) (-2333 (($ (-629 (-629 |#1|))) 39)) (-4195 (($ (-629 (-629 |#1|))) 88)) (-3721 (($ (-629 |#1|)) 96)) (-3213 (((-844) $) 84) (($ (-629 (-629 |#1|))) 66) (($ (-629 |#1|)) 67)) (-3309 (($) 16 T CONST)) (-1666 (((-111) $ $) NIL (-4029 (|has| |#1| (-362)) (|has| |#1| (-832))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#1| (-362)) (|has| |#1| (-832))))) (-1613 (((-111) $ $) 45)) (-1655 (((-111) $ $) NIL (-4029 (|has| |#1| (-362)) (|has| |#1| (-832))))) (-1632 (((-111) $ $) 65)) (-1720 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 22))) +(((-886 |#1|) (-13 (-884 |#1|) (-10 -8 (-15 -1413 ((-2 (|:| |preimage| (-629 |#1|)) (|:| |image| (-629 |#1|))) $)) (-15 -2333 ($ (-629 (-629 |#1|)))) (-15 -3213 ($ (-629 (-629 |#1|)))) (-15 -3213 ($ (-629 |#1|))) (-15 -4195 ($ (-629 (-629 |#1|)))) (-15 -3299 ((-756) $)) (-15 -4005 ((-1080 |#1|) $)) (-15 -3858 ((-952) $)) (-15 -4241 ((-756) $)) (-15 -2334 ((-756) $)) (-15 -3886 ((-552) $)) (-15 -3117 ((-111) $)) (-15 -3302 ((-111) $)) (-15 -1296 ((-629 $) (-629 $))) (IF (|has| |#1| (-362)) (-15 -1467 ((-1080 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3721 ($ (-629 |#1|))) (IF (|has| |#1| (-362)) (-15 -3721 ($ (-629 |#1|))) |%noBranch|)))) (-1078)) (T -886)) +((-1413 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-629 *3)) (|:| |image| (-629 *3)))) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-952)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-886 *3)) (-4 *3 (-362)) (-4 *3 (-1078)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-886 *3))))) +(-13 (-884 |#1|) (-10 -8 (-15 -1413 ((-2 (|:| |preimage| (-629 |#1|)) (|:| |image| (-629 |#1|))) $)) (-15 -2333 ($ (-629 (-629 |#1|)))) (-15 -3213 ($ (-629 (-629 |#1|)))) (-15 -3213 ($ (-629 |#1|))) (-15 -4195 ($ (-629 (-629 |#1|)))) (-15 -3299 ((-756) $)) (-15 -4005 ((-1080 |#1|) $)) (-15 -3858 ((-952) $)) (-15 -4241 ((-756) $)) (-15 -2334 ((-756) $)) (-15 -3886 ((-552) $)) (-15 -3117 ((-111) $)) (-15 -3302 ((-111) $)) (-15 -1296 ((-629 $) (-629 $))) (IF (|has| |#1| (-362)) (-15 -1467 ((-1080 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3721 ($ (-629 |#1|))) (IF (|has| |#1| (-362)) (-15 -3721 ($ (-629 |#1|))) |%noBranch|)))) +((-4142 (((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|)) 128)) (-2913 ((|#1|) 77)) (-1344 (((-412 (-1150 |#4|)) (-1150 |#4|)) 137)) (-2160 (((-412 (-1150 |#4|)) (-629 |#3|) (-1150 |#4|)) 69)) (-1957 (((-412 (-1150 |#4|)) (-1150 |#4|)) 147)) (-4294 (((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|) |#3|) 92))) +(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4142 ((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|))) (-15 -1957 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -1344 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -2913 (|#1|)) (-15 -4294 ((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|) |#3|)) (-15 -2160 ((-412 (-1150 |#4|)) (-629 |#3|) (-1150 |#4|)))) (-890) (-778) (-832) (-930 |#1| |#2| |#3|)) (T -887)) +((-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *7)) (-4 *7 (-832)) (-4 *5 (-890)) (-4 *6 (-778)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-412 (-1150 *8))) (-5 *1 (-887 *5 *6 *7 *8)) (-5 *4 (-1150 *8)))) (-4294 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-629 (-1150 *7))) (-5 *3 (-1150 *7)) (-4 *7 (-930 *5 *6 *4)) (-4 *5 (-890)) (-4 *6 (-778)) (-4 *4 (-832)) (-5 *1 (-887 *5 *6 *4 *7)))) (-2913 (*1 *2) (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-890)) (-5 *1 (-887 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-890)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-887 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-890)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-412 (-1150 *7))) (-5 *1 (-887 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 *7))) (-5 *3 (-1150 *7)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-890)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-887 *4 *5 *6 *7))))) +(-10 -7 (-15 -4142 ((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|))) (-15 -1957 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -1344 ((-412 (-1150 |#4|)) (-1150 |#4|))) (-15 -2913 (|#1|)) (-15 -4294 ((-3 (-629 (-1150 |#4|)) "failed") (-629 (-1150 |#4|)) (-1150 |#4|) |#3|)) (-15 -2160 ((-412 (-1150 |#4|)) (-629 |#3|) (-1150 |#4|)))) +((-4142 (((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|)) 36)) (-2913 ((|#1|) 54)) (-1344 (((-412 (-1150 |#2|)) (-1150 |#2|)) 102)) (-2160 (((-412 (-1150 |#2|)) (-1150 |#2|)) 90)) (-1957 (((-412 (-1150 |#2|)) (-1150 |#2|)) 113))) +(((-888 |#1| |#2|) (-10 -7 (-15 -4142 ((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|))) (-15 -1957 ((-412 (-1150 |#2|)) (-1150 |#2|))) (-15 -1344 ((-412 (-1150 |#2|)) (-1150 |#2|))) (-15 -2913 (|#1|)) (-15 -2160 ((-412 (-1150 |#2|)) (-1150 |#2|)))) (-890) (-1213 |#1|)) (T -888)) +((-2160 (*1 *2 *3) (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5)))) (-2913 (*1 *2) (-12 (-4 *2 (-890)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1213 *2)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 *5))) (-5 *3 (-1150 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-890)) (-5 *1 (-888 *4 *5))))) +(-10 -7 (-15 -4142 ((-3 (-629 (-1150 |#2|)) "failed") (-629 (-1150 |#2|)) (-1150 |#2|))) (-15 -1957 ((-412 (-1150 |#2|)) (-1150 |#2|))) (-15 -1344 ((-412 (-1150 |#2|)) (-1150 |#2|))) (-15 -2913 (|#1|)) (-15 -2160 ((-412 (-1150 |#2|)) (-1150 |#2|)))) +((-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 41)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 18)) (-3878 (((-3 $ "failed") $) 35))) +(((-889 |#1|) (-10 -8 (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)))) (-890)) (T -889)) +NIL +(-10 -8 (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 58)) (-4116 (($ $) 49)) (-3343 (((-412 $) $) 50)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 55)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-1677 (((-111) $) 51)) (-4065 (((-111) $) 30)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-1848 (((-412 (-1150 $)) (-1150 $)) 56)) (-1528 (((-412 (-1150 $)) (-1150 $)) 57)) (-3479 (((-412 $) $) 48)) (-3969 (((-3 $ "failed") $ $) 40)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 54 (|has| $ (-142)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-3878 (((-3 $ "failed") $) 53 (|has| $ (-142)))) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-890) (-137)) (T -890)) +((-3408 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-890)))) (-1472 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1)))) (-1528 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1)))) (-1848 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1)))) (-1704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 (-1150 *1))) (-5 *3 (-1150 *1)) (-4 *1 (-890)))) (-1507 (*1 *2 *3) (|partial| -12 (-5 *3 (-673 *1)) (-4 *1 (-142)) (-4 *1 (-890)) (-5 *2 (-1237 *1)))) (-3878 (*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-890))))) +(-13 (-1195) (-10 -8 (-15 -1472 ((-412 (-1150 $)) (-1150 $))) (-15 -1528 ((-412 (-1150 $)) (-1150 $))) (-15 -1848 ((-412 (-1150 $)) (-1150 $))) (-15 -3408 ((-1150 $) (-1150 $) (-1150 $))) (-15 -1704 ((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $))) (IF (|has| $ (-142)) (PROGN (-15 -1507 ((-3 (-1237 $) "failed") (-673 $))) (-15 -3878 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-1986 (((-111) $) NIL)) (-4082 (((-756)) NIL)) (-1549 (($ $ (-902)) NIL (|has| $ (-362))) (($ $) NIL)) (-1271 (((-1164 (-902) (-756)) (-552)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2663 (((-756)) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 $ "failed") $) NIL)) (-2832 (($ $) NIL)) (-4278 (($ (-1237 $)) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-4000 (($) NIL)) (-3504 (((-111) $) NIL)) (-1788 (($ $) NIL) (($ $ (-756)) NIL)) (-1677 (((-111) $) NIL)) (-4241 (((-818 (-902)) $) NIL) (((-902) $) NIL)) (-4065 (((-111) $) NIL)) (-2019 (($) NIL (|has| $ (-362)))) (-2092 (((-111) $) NIL (|has| $ (-362)))) (-4346 (($ $ (-902)) NIL (|has| $ (-362))) (($ $) NIL)) (-2032 (((-3 $ "failed") $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2169 (((-1150 $) $ (-902)) NIL (|has| $ (-362))) (((-1150 $) $) NIL)) (-1637 (((-902) $) NIL)) (-1879 (((-1150 $) $) NIL (|has| $ (-362)))) (-1577 (((-3 (-1150 $) "failed") $ $) NIL (|has| $ (-362))) (((-1150 $) $) NIL (|has| $ (-362)))) (-2836 (($ $ (-1150 $)) NIL (|has| $ (-362)))) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL T CONST)) (-2840 (($ (-902)) NIL)) (-1498 (((-111) $) NIL)) (-2876 (((-1098) $) NIL)) (-4126 (($) NIL (|has| $ (-362)))) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL)) (-3479 (((-412 $) $) NIL)) (-3823 (((-902)) NIL) (((-818 (-902))) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-4147 (((-3 (-756) "failed") $ $) NIL) (((-756) $) NIL)) (-3725 (((-132)) NIL)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-3299 (((-902) $) NIL) (((-818 (-902)) $) NIL)) (-3521 (((-1150 $)) NIL)) (-1368 (($) NIL)) (-3149 (($) NIL (|has| $ (-362)))) (-3464 (((-673 $) (-1237 $)) NIL) (((-1237 $) $) NIL)) (-1522 (((-552) $) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3878 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2014 (((-756)) NIL)) (-4199 (((-1237 $) (-902)) NIL) (((-1237 $)) NIL)) (-3589 (((-111) $ $) NIL)) (-2904 (((-111) $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-4237 (($ $ (-756)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-891 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-902)) (T -891)) NIL (-13 (-343) (-323 $) (-600 (-552))) -((-2118 (((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)) 79)) (-2646 (((-111) (-330 |#2| |#3| |#4| |#5|)) 17)) (-2641 (((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|)) 15))) -(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -2646 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) (-13 (-830) (-544) (-1017 (-552))) (-424 |#1|) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -890)) -((-2118 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *8))) (-5 *1 (-890 *4 *5 *6 *7 *8)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-111)) (-5 *1 (-890 *4 *5 *6 *7 *8)))) (-2641 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-754)) (-5 *1 (-890 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -2646 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) -((-2118 (((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 56)) (-2646 (((-111) (-330 (-401 (-552)) |#1| |#2| |#3|)) 16)) (-2641 (((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 14))) -(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2646 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) (-1211 (-401 (-552))) (-1211 (-401 |#1|)) (-336 (-401 (-552)) |#1| |#2|)) (T -891)) -((-2118 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *6))) (-5 *1 (-891 *4 *5 *6)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-891 *4 *5 *6)))) (-2641 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-754)) (-5 *1 (-891 *4 *5 *6))))) -(-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2646 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) -((-3704 ((|#2| |#2|) 26)) (-2814 (((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) 15)) (-3696 (((-900) (-552)) 35)) (-1311 (((-552) |#2|) 42)) (-3302 (((-552) |#2|) 21) (((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|) 20))) -(((-892 |#1| |#2|) (-10 -7 (-15 -3696 ((-900) (-552))) (-15 -3302 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -3302 ((-552) |#2|)) (-15 -2814 ((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1311 ((-552) |#2|)) (-15 -3704 (|#2| |#2|))) (-1211 (-401 (-552))) (-1211 (-401 |#1|))) (T -892)) -((-3704 (*1 *2 *2) (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *1 (-892 *3 *2)) (-4 *2 (-1211 (-401 *3))))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) (-5 *1 (-892 *3 *4)) (-4 *4 (-1211 (-401 *3))))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1211 (-401 *3))) (-5 *2 (-900)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4)))))) -(-10 -7 (-15 -3696 ((-900) (-552))) (-15 -3302 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -3302 ((-552) |#2|)) (-15 -2814 ((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1311 ((-552) |#2|)) (-15 -3704 (|#2| |#2|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#1| $) 81)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 75)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2680 (($ |#1| (-412 |#1|)) 73)) (-3016 (((-1148 |#1|) |#1| |#1|) 41)) (-3426 (($ $) 49)) (-2624 (((-111) $) NIL)) (-2700 (((-552) $) 78)) (-4174 (($ $ (-552)) 80)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3859 ((|#1| $) 77)) (-4300 (((-412 |#1|) $) 76)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 74)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2891 (($ $) 39)) (-1477 (((-842) $) 99) (($ (-552)) 54) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 31) (((-401 |#1|) $) 59) (($ (-401 (-412 |#1|))) 67)) (-3995 (((-754)) 52)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 23 T CONST)) (-1933 (($) 12 T CONST)) (-2292 (((-111) $ $) 68)) (-2407 (($ $ $) NIL)) (-2396 (($ $) 88) (($ $ $) NIL)) (-2384 (($ $ $) 38)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 90) (($ $ $) 37) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-893 |#1|) (-13 (-357) (-38 |#1|) (-10 -8 (-15 -1477 ((-401 |#1|) $)) (-15 -1477 ($ (-401 (-412 |#1|)))) (-15 -2891 ($ $)) (-15 -4300 ((-412 |#1|) $)) (-15 -3859 (|#1| $)) (-15 -4174 ($ $ (-552))) (-15 -2700 ((-552) $)) (-15 -3016 ((-1148 |#1|) |#1| |#1|)) (-15 -3426 ($ $)) (-15 -2680 ($ |#1| (-412 |#1|))) (-15 -3471 (|#1| $)))) (-301)) (T -893)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-893 *3)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3859 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3016 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3426 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-893 *2)))) (-3471 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) -(-13 (-357) (-38 |#1|) (-10 -8 (-15 -1477 ((-401 |#1|) $)) (-15 -1477 ($ (-401 (-412 |#1|)))) (-15 -2891 ($ $)) (-15 -4300 ((-412 |#1|) $)) (-15 -3859 (|#1| $)) (-15 -4174 ($ $ (-552))) (-15 -2700 ((-552) $)) (-15 -3016 ((-1148 |#1|) |#1| |#1|)) (-15 -3426 ($ $)) (-15 -2680 ($ |#1| (-412 |#1|))) (-15 -3471 (|#1| $)))) -((-2680 (((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)) 17) (((-52) (-401 (-931 |#1|)) (-1152)) 18))) -(((-894 |#1|) (-10 -7 (-15 -2680 ((-52) (-401 (-931 |#1|)) (-1152))) (-15 -2680 ((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)))) (-13 (-301) (-144))) (T -894)) -((-2680 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-412 (-931 *6))) (-5 *5 (-1152)) (-5 *3 (-931 *6)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *6)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *5))))) -(-10 -7 (-15 -2680 ((-52) (-401 (-931 |#1|)) (-1152))) (-15 -2680 ((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)))) -((-1288 ((|#4| (-627 |#4|)) 121) (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-1323 (((-1148 |#4|) (-627 (-1148 |#4|))) 114) (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 50) ((|#4| (-627 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1323 (|#4| |#4| |#4|)) (-15 -1323 (|#4| (-627 |#4|))) (-15 -1323 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1323 ((-1148 |#4|) (-627 (-1148 |#4|)))) (-15 -1288 (|#4| |#4| |#4|)) (-15 -1288 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1288 (|#4| (-627 |#4|)))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -895)) -((-1288 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)))) (-1288 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1288 (*1 *2 *2 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 (-1148 *7))) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-1148 *7)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1323 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)))) (-1323 (*1 *2 *2 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4))))) -(-10 -7 (-15 -1323 (|#4| |#4| |#4|)) (-15 -1323 (|#4| (-627 |#4|))) (-15 -1323 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1323 ((-1148 |#4|) (-627 (-1148 |#4|)))) (-15 -1288 (|#4| |#4| |#4|)) (-15 -1288 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1288 (|#4| (-627 |#4|)))) -((-2626 (((-883 (-552)) (-950)) 23) (((-883 (-552)) (-627 (-552))) 20)) (-3081 (((-883 (-552)) (-627 (-552))) 48) (((-883 (-552)) (-900)) 49)) (-2851 (((-883 (-552))) 24)) (-2936 (((-883 (-552))) 38) (((-883 (-552)) (-627 (-552))) 37)) (-3099 (((-883 (-552))) 36) (((-883 (-552)) (-627 (-552))) 35)) (-2557 (((-883 (-552))) 34) (((-883 (-552)) (-627 (-552))) 33)) (-2949 (((-883 (-552))) 32) (((-883 (-552)) (-627 (-552))) 31)) (-1344 (((-883 (-552))) 30) (((-883 (-552)) (-627 (-552))) 29)) (-1675 (((-883 (-552))) 40) (((-883 (-552)) (-627 (-552))) 39)) (-1670 (((-883 (-552)) (-627 (-552))) 52) (((-883 (-552)) (-900)) 53)) (-3326 (((-883 (-552)) (-627 (-552))) 50) (((-883 (-552)) (-900)) 51)) (-2888 (((-883 (-552)) (-627 (-552))) 46) (((-883 (-552)) (-900)) 47)) (-3558 (((-883 (-552)) (-627 (-900))) 43))) -(((-896) (-10 -7 (-15 -3081 ((-883 (-552)) (-900))) (-15 -3081 ((-883 (-552)) (-627 (-552)))) (-15 -2888 ((-883 (-552)) (-900))) (-15 -2888 ((-883 (-552)) (-627 (-552)))) (-15 -3558 ((-883 (-552)) (-627 (-900)))) (-15 -3326 ((-883 (-552)) (-900))) (-15 -3326 ((-883 (-552)) (-627 (-552)))) (-15 -1670 ((-883 (-552)) (-900))) (-15 -1670 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)))) (-15 -2949 ((-883 (-552)) (-627 (-552)))) (-15 -2949 ((-883 (-552)))) (-15 -2557 ((-883 (-552)) (-627 (-552)))) (-15 -2557 ((-883 (-552)))) (-15 -3099 ((-883 (-552)) (-627 (-552)))) (-15 -3099 ((-883 (-552)))) (-15 -2936 ((-883 (-552)) (-627 (-552)))) (-15 -2936 ((-883 (-552)))) (-15 -1675 ((-883 (-552)) (-627 (-552)))) (-15 -1675 ((-883 (-552)))) (-15 -2851 ((-883 (-552)))) (-15 -2626 ((-883 (-552)) (-627 (-552)))) (-15 -2626 ((-883 (-552)) (-950))))) (T -896)) -((-2626 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2851 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1675 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2936 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3099 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2557 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2949 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1344 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-627 (-900))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(-10 -7 (-15 -3081 ((-883 (-552)) (-900))) (-15 -3081 ((-883 (-552)) (-627 (-552)))) (-15 -2888 ((-883 (-552)) (-900))) (-15 -2888 ((-883 (-552)) (-627 (-552)))) (-15 -3558 ((-883 (-552)) (-627 (-900)))) (-15 -3326 ((-883 (-552)) (-900))) (-15 -3326 ((-883 (-552)) (-627 (-552)))) (-15 -1670 ((-883 (-552)) (-900))) (-15 -1670 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)))) (-15 -2949 ((-883 (-552)) (-627 (-552)))) (-15 -2949 ((-883 (-552)))) (-15 -2557 ((-883 (-552)) (-627 (-552)))) (-15 -2557 ((-883 (-552)))) (-15 -3099 ((-883 (-552)) (-627 (-552)))) (-15 -3099 ((-883 (-552)))) (-15 -2936 ((-883 (-552)) (-627 (-552)))) (-15 -2936 ((-883 (-552)))) (-15 -1675 ((-883 (-552)) (-627 (-552)))) (-15 -1675 ((-883 (-552)))) (-15 -2851 ((-883 (-552)))) (-15 -2626 ((-883 (-552)) (-627 (-552)))) (-15 -2626 ((-883 (-552)) (-950)))) -((-1770 (((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))) 12)) (-3400 (((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))) 11))) -(((-897 |#1|) (-10 -7 (-15 -3400 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1770 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))))) (-445)) (T -897)) -((-1770 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-897 *4)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-897 *4))))) -(-10 -7 (-15 -3400 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1770 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))))) -((-1477 (((-310 |#1|) (-470)) 16))) -(((-898 |#1|) (-10 -7 (-15 -1477 ((-310 |#1|) (-470)))) (-13 (-830) (-544))) (T -898)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-898 *4)) (-4 *4 (-13 (-830) (-544)))))) -(-10 -7 (-15 -1477 ((-310 |#1|) (-470)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-899) (-137)) (T -899)) -((-3009 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-2 (|:| -3069 (-627 *1)) (|:| -2220 *1))) (-5 *3 (-627 *1)))) (-1491 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-899))))) -(-13 (-445) (-10 -8 (-15 -3009 ((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $))) (-15 -1491 ((-3 (-627 $) "failed") (-627 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1323 (($ $ $) NIL)) (-1477 (((-842) $) NIL)) (-1933 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ $ $) NIL))) -(((-900) (-13 (-777) (-709) (-10 -8 (-15 -1323 ($ $ $)) (-6 (-4368 "*"))))) (T -900)) -((-1323 (*1 *1 *1 *1) (-5 *1 (-900)))) -(-13 (-777) (-709) (-10 -8 (-15 -1323 ($ $ $)) (-6 (-4368 "*")))) -((-2571 ((|#2| (-627 |#1|) (-627 |#1|)) 24))) -(((-901 |#1| |#2|) (-10 -7 (-15 -2571 (|#2| (-627 |#1|) (-627 |#1|)))) (-357) (-1211 |#1|)) (T -901)) -((-2571 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-4 *2 (-1211 *4)) (-5 *1 (-901 *4 *2))))) -(-10 -7 (-15 -2571 (|#2| (-627 |#1|) (-627 |#1|)))) -((-3179 (((-1148 |#2|) (-627 |#2|) (-627 |#2|)) 17) (((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|)) 13))) -(((-902 |#1| |#2|) (-10 -7 (-15 -3179 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|))) (-15 -3179 ((-1148 |#2|) (-627 |#2|) (-627 |#2|)))) (-1152) (-357)) (T -902)) -((-3179 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-357)) (-5 *2 (-1148 *5)) (-5 *1 (-902 *4 *5)) (-14 *4 (-1152)))) (-3179 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-627 *5)) (-14 *4 (-1152)) (-4 *5 (-357)) (-5 *1 (-902 *4 *5))))) -(-10 -7 (-15 -3179 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|))) (-15 -3179 ((-1148 |#2|) (-627 |#2|) (-627 |#2|)))) -((-3646 (((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134)) 139)) (-3161 ((|#4| |#4|) 155)) (-1815 (((-627 (-401 (-931 |#1|))) (-627 (-1152))) 118)) (-2312 (((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552)) 75)) (-3285 (((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|)) 59)) (-4026 (((-671 |#4|) (-671 |#4|) (-627 |#4|)) 55)) (-4013 (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134)) 151)) (-2164 (((-552) (-671 |#4|) (-900) (-1134)) 132) (((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134)) 131) (((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134)) 130) (((-552) (-671 |#4|) (-1134)) 127) (((-552) (-671 |#4|) (-627 (-1152)) (-1134)) 126) (((-552) (-671 |#4|) (-627 |#4|) (-1134)) 125) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900)) 124) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900)) 123) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900)) 122) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|)) 120) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152))) 119) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|)) 115)) (-1494 ((|#4| (-931 |#1|)) 68)) (-1989 (((-111) (-627 |#4|) (-627 (-627 |#4|))) 152)) (-2435 (((-627 (-627 (-552))) (-552) (-552)) 129)) (-3873 (((-627 (-627 |#4|)) (-627 (-627 |#4|))) 88)) (-2154 (((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|))))) 86)) (-2378 (((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|))))) 85)) (-1617 (((-111) (-627 (-931 |#1|))) 17) (((-111) (-627 |#4|)) 13)) (-3012 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|)) 71)) (-3639 (((-627 |#4|) |#4|) 49)) (-3355 (((-627 (-401 (-931 |#1|))) (-627 |#4|)) 114) (((-671 (-401 (-931 |#1|))) (-671 |#4|)) 56) (((-401 (-931 |#1|)) |#4|) 111)) (-2540 (((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552)) 93)) (-3514 (((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754)) 84)) (-3554 (((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754)) 101)) (-2033 (((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) 48))) -(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-900) (-1134))) (-15 -3646 ((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -4013 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -2540 ((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552))) (-15 -3355 ((-401 (-931 |#1|)) |#4|)) (-15 -3355 ((-671 (-401 (-931 |#1|))) (-671 |#4|))) (-15 -3355 ((-627 (-401 (-931 |#1|))) (-627 |#4|))) (-15 -1815 ((-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1494 (|#4| (-931 |#1|))) (-15 -3012 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|))) (-15 -3514 ((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754))) (-15 -3285 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|))) (-15 -2033 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-15 -3639 ((-627 |#4|) |#4|)) (-15 -2378 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -2154 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -3873 ((-627 (-627 |#4|)) (-627 (-627 |#4|)))) (-15 -2435 ((-627 (-627 (-552))) (-552) (-552))) (-15 -1989 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -3554 ((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754))) (-15 -4026 ((-671 |#4|) (-671 |#4|) (-627 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552))) (-15 -3161 (|#4| |#4|)) (-15 -1617 ((-111) (-627 |#4|))) (-15 -1617 ((-111) (-627 (-931 |#1|))))) (-13 (-301) (-144)) (-13 (-830) (-600 (-1152))) (-776) (-928 |#1| |#3| |#2|)) (T -903)) -((-1617 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *2 (-928 *3 *5 *4)))) (-2312 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-5 *4 (-671 *12)) (-5 *5 (-627 (-401 (-931 *9)))) (-5 *6 (-627 (-627 *12))) (-5 *7 (-754)) (-5 *8 (-552)) (-4 *9 (-13 (-301) (-144))) (-4 *12 (-928 *9 *11 *10)) (-4 *10 (-13 (-830) (-600 (-1152)))) (-4 *11 (-776)) (-5 *2 (-2 (|:| |eqzro| (-627 *12)) (|:| |neqzro| (-627 *12)) (|:| |wcond| (-627 (-931 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *9)))) (|:| -2957 (-627 (-1235 (-401 (-931 *9))))))))) (-5 *1 (-903 *9 *10 *11 *12)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *7)) (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-754)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2435 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *6 *5)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-627 (-627 *6))) (-4 *6 (-928 *3 *5 *4)) (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *7))))) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) (-5 *1 (-903 *4 *5 *6 *7)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *7))))) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-928 *4 *6 *5)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2515 (-671 (-401 (-931 *4)))) (|:| |vec| (-627 (-401 (-931 *4)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3285 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) (-5 *3 (-627 *7)) (-4 *4 (-13 (-301) (-144))) (-4 *7 (-928 *4 *6 *5)) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *8))))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-754)))) (-3012 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-4 *7 (-928 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-627 *7)) (|:| |n0| (-627 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-301) (-144))) (-4 *2 (-928 *4 *6 *5)) (-5 *1 (-903 *4 *5 *6 *2)) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-671 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-401 (-931 *4))) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-928 *4 *6 *5)))) (-2540 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-671 *11)) (-5 *4 (-627 (-401 (-931 *8)))) (-5 *5 (-754)) (-5 *6 (-1134)) (-4 *8 (-13 (-301) (-144))) (-4 *11 (-928 *8 *10 *9)) (-4 *9 (-13 (-830) (-600 (-1152)))) (-4 *10 (-776)) (-5 *2 (-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 *11)) (|:| |neqzro| (-627 *11)) (|:| |wcond| (-627 (-931 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *8)))) (|:| -2957 (-627 (-1235 (-401 (-931 *8)))))))))) (|:| |rgsz| (-552)))) (-5 *1 (-903 *8 *9 *10 *11)) (-5 *7 (-552)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) (|:| |wcond| (-627 (-931 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *4 (-1134)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-928 *5 *7 *6)) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-900)) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *7 *8 *9 *10)))) (-2164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 *10)) (-5 *5 (-900)) (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *7 *8 *9 *10)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-1134)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 *9)) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-900)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) (|:| |wcond| (-627 (-931 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) (|:| |wcond| (-627 (-931 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) (-5 *1 (-903 *6 *7 *8 *9)) (-5 *4 (-627 *9)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) (|:| |wcond| (-627 (-931 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) (-5 *1 (-903 *4 *5 *6 *7)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-627 (-1152))) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) -(-10 -7 (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-900) (-1134))) (-15 -3646 ((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -4013 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -2540 ((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552))) (-15 -3355 ((-401 (-931 |#1|)) |#4|)) (-15 -3355 ((-671 (-401 (-931 |#1|))) (-671 |#4|))) (-15 -3355 ((-627 (-401 (-931 |#1|))) (-627 |#4|))) (-15 -1815 ((-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1494 (|#4| (-931 |#1|))) (-15 -3012 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|))) (-15 -3514 ((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754))) (-15 -3285 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|))) (-15 -2033 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-15 -3639 ((-627 |#4|) |#4|)) (-15 -2378 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -2154 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -3873 ((-627 (-627 |#4|)) (-627 (-627 |#4|)))) (-15 -2435 ((-627 (-627 (-552))) (-552) (-552))) (-15 -1989 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -3554 ((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754))) (-15 -4026 ((-671 |#4|) (-671 |#4|) (-627 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552))) (-15 -3161 (|#4| |#4|)) (-15 -1617 ((-111) (-627 |#4|))) (-15 -1617 ((-111) (-627 (-931 |#1|))))) -((-2063 (((-906) |#1| (-1152)) 17) (((-906) |#1| (-1152) (-1070 (-220))) 21)) (-1540 (((-906) |#1| |#1| (-1152) (-1070 (-220))) 19) (((-906) |#1| (-1152) (-1070 (-220))) 15))) -(((-904 |#1|) (-10 -7 (-15 -1540 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -1540 ((-906) |#1| |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152)))) (-600 (-528))) (T -904)) -((-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-2063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-1540 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528)))))) -(-10 -7 (-15 -1540 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -1540 ((-906) |#1| |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152)))) -((-1799 (($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 70)) (-3457 (((-1070 (-220)) $) 40)) (-3447 (((-1070 (-220)) $) 39)) (-3437 (((-1070 (-220)) $) 38)) (-3223 (((-627 (-627 (-220))) $) 43)) (-1776 (((-1070 (-220)) $) 41)) (-4228 (((-552) (-552)) 32)) (-1627 (((-552) (-552)) 28)) (-1408 (((-552) (-552)) 30)) (-1902 (((-111) (-111)) 35)) (-2696 (((-552)) 31)) (-3938 (($ $ (-1070 (-220))) 73) (($ $) 74)) (-3977 (($ (-1 (-922 (-220)) (-220)) (-1070 (-220))) 78) (($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 79)) (-1540 (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 82) (($ $ (-1070 (-220))) 76)) (-2227 (((-552)) 36)) (-1574 (((-552)) 27)) (-1975 (((-552)) 29)) (-2116 (((-627 (-627 (-922 (-220)))) $) 95)) (-3597 (((-111) (-111)) 37)) (-1477 (((-842) $) 94)) (-2416 (((-111)) 34))) -(((-905) (-13 (-953) (-10 -8 (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3223 ((-627 (-627 (-220))) $)) (-15 -1574 ((-552))) (-15 -1627 ((-552) (-552))) (-15 -1975 ((-552))) (-15 -1408 ((-552) (-552))) (-15 -2696 ((-552))) (-15 -4228 ((-552) (-552))) (-15 -2416 ((-111))) (-15 -1902 ((-111) (-111))) (-15 -2227 ((-552))) (-15 -3597 ((-111) (-111)))))) (T -905)) -((-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-3977 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-1799 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3938 (*1 *1 *1) (-5 *1 (-905))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-905)))) (-1574 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1627 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1975 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-2696 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-2416 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905)))) (-2227 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) -(-13 (-953) (-10 -8 (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3223 ((-627 (-627 (-220))) $)) (-15 -1574 ((-552))) (-15 -1627 ((-552) (-552))) (-15 -1975 ((-552))) (-15 -1408 ((-552) (-552))) (-15 -2696 ((-552))) (-15 -4228 ((-552) (-552))) (-15 -2416 ((-111))) (-15 -1902 ((-111) (-111))) (-15 -2227 ((-552))) (-15 -3597 ((-111) (-111))))) -((-1799 (($ $ (-1070 (-220))) 70) (($ $ (-1070 (-220)) (-1070 (-220))) 71)) (-3447 (((-1070 (-220)) $) 44)) (-3437 (((-1070 (-220)) $) 43)) (-1776 (((-1070 (-220)) $) 45)) (-3983 (((-552) (-552)) 37)) (-1828 (((-552) (-552)) 33)) (-4326 (((-552) (-552)) 35)) (-3894 (((-111) (-111)) 39)) (-2511 (((-552)) 36)) (-3938 (($ $ (-1070 (-220))) 74) (($ $) 75)) (-3977 (($ (-1 (-922 (-220)) (-220)) (-1070 (-220))) 84) (($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 85)) (-2063 (($ (-1 (-220) (-220)) (-1070 (-220))) 92) (($ (-1 (-220) (-220))) 95)) (-1540 (($ (-1 (-220) (-220)) (-1070 (-220))) 79) (($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220))) 80) (($ (-627 (-1 (-220) (-220))) (-1070 (-220))) 87) (($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220))) 88) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 82) (($ $ (-1070 (-220))) 76)) (-3381 (((-111) $) 40)) (-4343 (((-552)) 41)) (-3614 (((-552)) 32)) (-3173 (((-552)) 34)) (-2116 (((-627 (-627 (-922 (-220)))) $) 23)) (-4239 (((-111) (-111)) 42)) (-1477 (((-842) $) 106)) (-4264 (((-111)) 38))) -(((-906) (-13 (-934) (-10 -8 (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -3381 ((-111) $)) (-15 -1799 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3614 ((-552))) (-15 -1828 ((-552) (-552))) (-15 -3173 ((-552))) (-15 -4326 ((-552) (-552))) (-15 -2511 ((-552))) (-15 -3983 ((-552) (-552))) (-15 -4264 ((-111))) (-15 -3894 ((-111) (-111))) (-15 -4343 ((-552))) (-15 -4239 ((-111) (-111)))))) (T -906)) -((-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-3977 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-2063 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-1799 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3938 (*1 *1 *1) (-5 *1 (-906))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3614 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-3173 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-2511 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4264 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-4343 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) -(-13 (-934) (-10 -8 (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -3381 ((-111) $)) (-15 -1799 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3614 ((-552))) (-15 -1828 ((-552) (-552))) (-15 -3173 ((-552))) (-15 -4326 ((-552) (-552))) (-15 -2511 ((-552))) (-15 -3983 ((-552) (-552))) (-15 -4264 ((-111))) (-15 -3894 ((-111) (-111))) (-15 -4343 ((-552))) (-15 -4239 ((-111) (-111))))) -((-2852 (((-627 (-1070 (-220))) (-627 (-627 (-922 (-220))))) 24))) -(((-907) (-10 -7 (-15 -2852 ((-627 (-1070 (-220))) (-627 (-627 (-922 (-220)))))))) (T -907)) -((-2852 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-1070 (-220)))) (-5 *1 (-907))))) -(-10 -7 (-15 -2852 ((-627 (-1070 (-220))) (-627 (-627 (-922 (-220))))))) -((-2437 ((|#2| |#2|) 26)) (-1718 ((|#2| |#2|) 27)) (-3488 ((|#2| |#2|) 25)) (-3732 ((|#2| |#2| (-1134)) 24))) -(((-908 |#1| |#2|) (-10 -7 (-15 -3732 (|#2| |#2| (-1134))) (-15 -3488 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -1718 (|#2| |#2|))) (-830) (-424 |#1|)) (T -908)) -((-1718 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-830)) (-5 *1 (-908 *4 *2)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -3732 (|#2| |#2| (-1134))) (-15 -3488 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -1718 (|#2| |#2|))) -((-2437 (((-310 (-552)) (-1152)) 16)) (-1718 (((-310 (-552)) (-1152)) 14)) (-3488 (((-310 (-552)) (-1152)) 12)) (-3732 (((-310 (-552)) (-1152) (-1134)) 19))) -(((-909) (-10 -7 (-15 -3732 ((-310 (-552)) (-1152) (-1134))) (-15 -3488 ((-310 (-552)) (-1152))) (-15 -2437 ((-310 (-552)) (-1152))) (-15 -1718 ((-310 (-552)) (-1152))))) (T -909)) -((-1718 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1134)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) -(-10 -7 (-15 -3732 ((-310 (-552)) (-1152) (-1134))) (-15 -3488 ((-310 (-552)) (-1152))) (-15 -2437 ((-310 (-552)) (-1152))) (-15 -1718 ((-310 (-552)) (-1152)))) -((-4208 (((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)) 25)) (-2615 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) -(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4208 ((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-865 |#1|) (-13 (-1076) (-1017 |#2|))) (T -910)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-13 (-1076) (-1017 *3))) (-4 *3 (-865 *5)) (-5 *1 (-910 *5 *3 *6)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1076) (-1017 *5))) (-4 *5 (-865 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-910 *4 *5 *6))))) -(-10 -7 (-15 -2615 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4208 ((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)))) -((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 30))) -(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-13 (-544) (-830) (-865 |#1|)) (-13 (-424 |#2|) (-600 (-871 |#1|)) (-865 |#1|) (-1017 (-598 $)))) (T -911)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-13 (-424 *6) (-600 *4) (-865 *5) (-1017 (-598 $)))) (-5 *4 (-871 *5)) (-4 *6 (-13 (-544) (-830) (-865 *5))) (-5 *1 (-911 *5 *6 *3))))) -(-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) -((-4208 (((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)) 13))) -(((-912 |#1|) (-10 -7 (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)))) (-537)) (T -912)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 (-552) *3)) (-5 *4 (-871 (-552))) (-4 *3 (-537)) (-5 *1 (-912 *3))))) -(-10 -7 (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)))) -((-4208 (((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)) 54))) -(((-913 |#1| |#2|) (-10 -7 (-15 -4208 ((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)))) (-1076) (-13 (-830) (-1017 (-598 $)) (-600 (-871 |#1|)) (-865 |#1|))) (T -913)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1076)) (-4 *6 (-13 (-830) (-1017 (-598 $)) (-600 *4) (-865 *5))) (-5 *4 (-871 *5)) (-5 *1 (-913 *5 *6))))) -(-10 -7 (-15 -4208 ((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)))) -((-4208 (((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)) 15))) -(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)))) (-1076) (-865 |#1|) (-648 |#2|)) (T -914)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-4 *3 (-648 *6)) (-5 *1 (-914 *5 *6 *3))))) -(-10 -7 (-15 -4208 ((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)))) -((-4208 (((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|)) 17 (|has| |#3| (-865 |#1|))) (((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|))) 16))) -(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|)))) (IF (|has| |#3| (-865 |#1|)) (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|))) |%noBranch|)) (-1076) (-776) (-830) (-13 (-1028) (-830) (-865 |#1|)) (-13 (-928 |#4| |#2| |#3|) (-600 (-871 |#1|)))) (T -915)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-13 (-928 *8 *6 *7) (-600 *4))) (-5 *4 (-871 *5)) (-4 *7 (-865 *5)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-13 (-1028) (-830) (-865 *5))) (-5 *1 (-915 *5 *6 *7 *8 *3)))) (-4208 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-868 *6 *3) *8 (-871 *6) (-868 *6 *3))) (-4 *8 (-830)) (-5 *2 (-868 *6 *3)) (-5 *4 (-871 *6)) (-4 *6 (-1076)) (-4 *3 (-13 (-928 *9 *7 *8) (-600 *4))) (-4 *7 (-776)) (-4 *9 (-13 (-1028) (-830) (-865 *6))) (-5 *1 (-915 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|)))) (IF (|has| |#3| (-865 |#1|)) (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|))) |%noBranch|)) -((-1792 ((|#2| |#2| (-627 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) -(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -1792 (|#2| |#2| (-1 (-111) |#3|))) (-15 -1792 (|#2| |#2| (-627 (-1 (-111) |#3|))))) (-830) (-424 |#1|) (-1189)) (T -916)) -((-1792 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-4 *4 (-830)) (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1189)) (-4 *4 (-830)) (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -1792 (|#2| |#2| (-1 (-111) |#3|))) (-15 -1792 (|#2| |#2| (-627 (-1 (-111) |#3|))))) -((-1792 (((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))) 18) (((-310 (-552)) (-1152) (-1 (-111) |#1|)) 15))) -(((-917 |#1|) (-10 -7 (-15 -1792 ((-310 (-552)) (-1152) (-1 (-111) |#1|))) (-15 -1792 ((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))))) (-1189)) (T -917)) -((-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1189)) (-5 *2 (-310 (-552))) (-5 *1 (-917 *5))))) -(-10 -7 (-15 -1792 ((-310 (-552)) (-1152) (-1 (-111) |#1|))) (-15 -1792 ((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))))) -((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 25))) -(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-13 (-544) (-865 |#1|) (-600 (-871 |#1|))) (-971 |#2|)) (T -918)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-971 *6)) (-4 *6 (-13 (-544) (-865 *5) (-600 *4))) (-5 *4 (-871 *5)) (-5 *1 (-918 *5 *6 *3))))) -(-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) -((-4208 (((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))) 17))) -(((-919 |#1|) (-10 -7 (-15 -4208 ((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))))) (-1076)) (T -919)) -((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 (-1152))) (-5 *3 (-1152)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *1 (-919 *5))))) -(-10 -7 (-15 -4208 ((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))))) -((-2892 (((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) 33)) (-4208 (((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) 32))) -(((-920 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-15 -2892 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))))) (-1076) (-13 (-1028) (-830)) (-13 (-1028) (-600 (-871 |#1|)) (-1017 |#2|))) (T -920)) -((-2892 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-871 *6))) (-5 *5 (-1 (-868 *6 *8) *8 (-871 *6) (-868 *6 *8))) (-4 *6 (-1076)) (-4 *8 (-13 (-1028) (-600 (-871 *6)) (-1017 *7))) (-5 *2 (-868 *6 *8)) (-4 *7 (-13 (-1028) (-830))) (-5 *1 (-920 *6 *7 *8)))) (-4208 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-627 (-871 *7))) (-5 *5 (-1 *9 (-627 *9))) (-5 *6 (-1 (-868 *7 *9) *9 (-871 *7) (-868 *7 *9))) (-4 *7 (-1076)) (-4 *9 (-13 (-1028) (-600 (-871 *7)) (-1017 *8))) (-5 *2 (-868 *7 *9)) (-5 *3 (-627 *9)) (-4 *8 (-13 (-1028) (-830))) (-5 *1 (-920 *7 *8 *9))))) -(-10 -7 (-15 -4208 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-15 -2892 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))))) -((-2529 (((-1148 (-401 (-552))) (-552)) 63)) (-3831 (((-1148 (-552)) (-552)) 66)) (-1324 (((-1148 (-552)) (-552)) 60)) (-2136 (((-552) (-1148 (-552))) 55)) (-1990 (((-1148 (-401 (-552))) (-552)) 49)) (-3224 (((-1148 (-552)) (-552)) 38)) (-4271 (((-1148 (-552)) (-552)) 68)) (-2313 (((-1148 (-552)) (-552)) 67)) (-3559 (((-1148 (-401 (-552))) (-552)) 51))) -(((-921) (-10 -7 (-15 -3559 ((-1148 (-401 (-552))) (-552))) (-15 -2313 ((-1148 (-552)) (-552))) (-15 -4271 ((-1148 (-552)) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -1990 ((-1148 (-401 (-552))) (-552))) (-15 -2136 ((-552) (-1148 (-552)))) (-15 -1324 ((-1148 (-552)) (-552))) (-15 -3831 ((-1148 (-552)) (-552))) (-15 -2529 ((-1148 (-401 (-552))) (-552))))) (T -921)) -((-2529 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3831 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-1324 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-552)) (-5 *1 (-921)))) (-1990 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-4271 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) -(-10 -7 (-15 -3559 ((-1148 (-401 (-552))) (-552))) (-15 -2313 ((-1148 (-552)) (-552))) (-15 -4271 ((-1148 (-552)) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -1990 ((-1148 (-401 (-552))) (-552))) (-15 -2136 ((-552) (-1148 (-552)))) (-15 -1324 ((-1148 (-552)) (-552))) (-15 -3831 ((-1148 (-552)) (-552))) (-15 -2529 ((-1148 (-401 (-552))) (-552)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-1745 (($ (-627 |#1|)) 13)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 8)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 10 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4168 (($ $ (-627 |#1|)) 26)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 20) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-2405 (((-900) $) 16)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) 24)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528)))) (($ (-627 |#1|)) 17)) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) 14 (|has| $ (-6 -4366))))) -(((-922 |#1|) (-959 |#1|) (-1028)) (T -922)) -NIL -(-959 |#1|) -((-1690 (((-474 |#1| |#2|) (-931 |#2|)) 20)) (-4065 (((-242 |#1| |#2|) (-931 |#2|)) 33)) (-1495 (((-931 |#2|) (-474 |#1| |#2|)) 25)) (-4022 (((-242 |#1| |#2|) (-474 |#1| |#2|)) 55)) (-3373 (((-931 |#2|) (-242 |#1| |#2|)) 30)) (-2295 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 46))) -(((-923 |#1| |#2|) (-10 -7 (-15 -2295 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4022 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -1690 ((-474 |#1| |#2|) (-931 |#2|))) (-15 -1495 ((-931 |#2|) (-474 |#1| |#2|))) (-15 -3373 ((-931 |#2|) (-242 |#1| |#2|))) (-15 -4065 ((-242 |#1| |#2|) (-931 |#2|)))) (-627 (-1152)) (-1028)) (T -923)) -((-4065 (*1 *2 *3) (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152))))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152))))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5)))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5))))) -(-10 -7 (-15 -2295 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4022 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -1690 ((-474 |#1| |#2|) (-931 |#2|))) (-15 -1495 ((-931 |#2|) (-474 |#1| |#2|))) (-15 -3373 ((-931 |#2|) (-242 |#1| |#2|))) (-15 -4065 ((-242 |#1| |#2|) (-931 |#2|)))) -((-4032 (((-627 |#2|) |#2| |#2|) 10)) (-3263 (((-754) (-627 |#1|)) 37 (|has| |#1| (-828)))) (-2858 (((-627 |#2|) |#2|) 11)) (-1614 (((-754) (-627 |#1|) (-552) (-552)) 39 (|has| |#1| (-828)))) (-3420 ((|#1| |#2|) 32 (|has| |#1| (-828))))) -(((-924 |#1| |#2|) (-10 -7 (-15 -4032 ((-627 |#2|) |#2| |#2|)) (-15 -2858 ((-627 |#2|) |#2|)) (IF (|has| |#1| (-828)) (PROGN (-15 -3420 (|#1| |#2|)) (-15 -3263 ((-754) (-627 |#1|))) (-15 -1614 ((-754) (-627 |#1|) (-552) (-552)))) |%noBranch|)) (-357) (-1211 |#1|)) (T -924)) -((-1614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-552)) (-4 *5 (-828)) (-4 *5 (-357)) (-5 *2 (-754)) (-5 *1 (-924 *5 *6)) (-4 *6 (-1211 *5)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-828)) (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1211 *4)))) (-3420 (*1 *2 *3) (-12 (-4 *2 (-357)) (-4 *2 (-828)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1211 *2)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1211 *4)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -4032 ((-627 |#2|) |#2| |#2|)) (-15 -2858 ((-627 |#2|) |#2|)) (IF (|has| |#1| (-828)) (PROGN (-15 -3420 (|#1| |#2|)) (-15 -3263 ((-754) (-627 |#1|))) (-15 -1614 ((-754) (-627 |#1|) (-552) (-552)))) |%noBranch|)) -((-3516 (((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)) 19))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3516 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) (-1028) (-1028)) (T -925)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-931 *6)) (-5 *1 (-925 *5 *6))))) -(-10 -7 (-15 -3516 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) -((-1694 (((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)) 18))) -(((-926 |#1| |#2|) (-10 -7 (-15 -1694 ((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)))) (-1152) (-1028)) (T -926)) -((-1694 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 *5)) (-14 *5 (-1152)) (-4 *6 (-1028)) (-5 *2 (-1208 *5 (-931 *6))) (-5 *1 (-926 *5 *6)) (-5 *3 (-931 *6))))) -(-10 -7 (-15 -1694 ((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)))) -((-3278 (((-754) $) 71) (((-754) $ (-627 |#4|)) 74)) (-4014 (($ $) 173)) (-2487 (((-412 $) $) 165)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 116)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) 59)) (-3116 (($ $ $ |#4|) 76)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 106) (((-671 |#2|) (-671 $)) 99)) (-1375 (($ $) 180) (($ $ |#4|) 183)) (-2003 (((-627 $) $) 63)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 199) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 192)) (-3056 (((-627 $) $) 28)) (-1832 (($ |#2| |#3|) NIL) (($ $ |#4| (-754)) NIL) (($ $ (-627 |#4|) (-627 (-754))) 57)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#4|) 162)) (-4035 (((-3 (-627 $) "failed") $) 42)) (-2746 (((-3 (-627 $) "failed") $) 31)) (-3815 (((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") $) 47)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 109)) (-3676 (((-412 (-1148 $)) (-1148 $)) 122)) (-3644 (((-412 (-1148 $)) (-1148 $)) 120)) (-1727 (((-412 $) $) 140)) (-3321 (($ $ (-627 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-627 |#4|) (-627 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-627 |#4|) (-627 $)) NIL)) (-1637 (($ $ |#4|) 78)) (-3562 (((-871 (-373)) $) 213) (((-871 (-552)) $) 206) (((-528) $) 221)) (-3495 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 154)) (-1889 ((|#2| $ |#3|) NIL) (($ $ |#4| (-754)) 52) (($ $ (-627 |#4|) (-627 (-754))) 55)) (-3050 (((-3 $ "failed") $) 156)) (-2316 (((-111) $ $) 186))) -(((-927 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -1375 (|#1| |#1| |#4|)) (-15 -3495 (|#1| |#1| |#4|)) (-15 -1637 (|#1| |#1| |#4|)) (-15 -3116 (|#1| |#1| |#1| |#4|)) (-15 -2003 ((-627 |#1|) |#1|)) (-15 -3278 ((-754) |#1| (-627 |#4|))) (-15 -3278 ((-754) |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -1832 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1832 (|#1| |#1| |#4| (-754))) (-15 -1984 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -3056 ((-627 |#1|) |#1|)) (-15 -1889 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1889 (|#1| |#1| |#4| (-754))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -1832 (|#1| |#2| |#3|)) (-15 -1889 (|#2| |#1| |#3|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -1375 (|#1| |#1|))) (-928 |#2| |#3| |#4|) (-1028) (-776) (-830)) (T -927)) -NIL -(-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -1375 (|#1| |#1| |#4|)) (-15 -3495 (|#1| |#1| |#4|)) (-15 -1637 (|#1| |#1| |#4|)) (-15 -3116 (|#1| |#1| |#1| |#4|)) (-15 -2003 ((-627 |#1|) |#1|)) (-15 -3278 ((-754) |#1| (-627 |#4|))) (-15 -3278 ((-754) |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -1832 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1832 (|#1| |#1| |#4| (-754))) (-15 -1984 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -3056 ((-627 |#1|) |#1|)) (-15 -1889 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1889 (|#1| |#1| |#4| (-754))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -1832 (|#1| |#2| |#3|)) (-15 -1889 (|#2| |#1| |#3|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -1375 (|#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133)) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| |#2| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#2|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-3465 ((|#2| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#2| |#2|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-2685 (((-3 |#3| "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136)) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37)) (-3567 ((|#2| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-544))) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#2|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-928 |#1| |#2| |#3|) (-137) (-1028) (-776) (-830)) (T -928)) -((-1375 (*1 *1 *1) (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-754)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *2 (-830)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) (-3056 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-1694 (*1 *2 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-1148 *3)))) (-2685 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-3465 (*1 *2 *1 *3) (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-754)))) (-3465 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) (-1984 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-928 *4 *5 *3)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1028)) (-4 *1 (-928 *4 *5 *3)) (-4 *5 (-776)) (-4 *3 (-830)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)))) (-2746 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-4035 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-3815 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-754)))))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-754)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *5)))) (-2003 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-3116 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-169)))) (-3495 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-445)))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-445)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-2487 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-412 *1)) (-4 *1 (-928 *3 *4 *5))))) -(-13 (-879 |t#3|) (-320 |t#1| |t#2|) (-303 $) (-506 |t#3| |t#1|) (-506 |t#3| $) (-1017 |t#3|) (-371 |t#1|) (-10 -8 (-15 -3567 ((-754) $ |t#3|)) (-15 -3567 ((-627 (-754)) $ (-627 |t#3|))) (-15 -1889 ($ $ |t#3| (-754))) (-15 -1889 ($ $ (-627 |t#3|) (-627 (-754)))) (-15 -3056 ((-627 $) $)) (-15 -1694 ((-1148 $) $ |t#3|)) (-15 -1694 ((-1148 |t#1|) $)) (-15 -2685 ((-3 |t#3| "failed") $)) (-15 -3465 ((-754) $ |t#3|)) (-15 -3465 ((-627 (-754)) $ (-627 |t#3|))) (-15 -1984 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |t#3|)) (-15 -1832 ($ $ |t#3| (-754))) (-15 -1832 ($ $ (-627 |t#3|) (-627 (-754)))) (-15 -1842 ($ (-1148 |t#1|) |t#3|)) (-15 -1842 ($ (-1148 $) |t#3|)) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |var| |t#3|) (|:| -4067 (-754))) "failed") $)) (-15 -3278 ((-754) $)) (-15 -3278 ((-754) $ (-627 |t#3|))) (-15 -1853 ((-627 |t#3|) $)) (-15 -2003 ((-627 $) $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (IF (|has| |t#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-552)))) (IF (|has| |t#3| (-600 (-871 (-552)))) (-6 (-600 (-871 (-552)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-373)))) (IF (|has| |t#3| (-600 (-871 (-373)))) (-6 (-600 (-871 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865 (-552))) (IF (|has| |t#3| (-865 (-552))) (-6 (-865 (-552))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865 (-373))) (IF (|has| |t#3| (-865 (-373))) (-6 (-865 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3116 ($ $ $ |t#3|)) (-15 -1637 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-6 (-445)) (-15 -3495 ($ $ |t#3|)) (-15 -1375 ($ $)) (-15 -1375 ($ $ |t#3|)) (-15 -2487 ((-412 $) $)) (-15 -4014 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4364)) (-6 -4364) |%noBranch|) (IF (|has| |t#1| (-888)) (-6 (-888)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) -((-1853 (((-627 |#2|) |#5|) 36)) (-1694 (((-1148 |#5|) |#5| |#2| (-1148 |#5|)) 23) (((-401 (-1148 |#5|)) |#5| |#2|) 16)) (-1842 ((|#5| (-401 (-1148 |#5|)) |#2|) 30)) (-2685 (((-3 |#2| "failed") |#5|) 65)) (-4035 (((-3 (-627 |#5|) "failed") |#5|) 59)) (-1382 (((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|) 47)) (-2746 (((-3 (-627 |#5|) "failed") |#5|) 61)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|) 51))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1853 ((-627 |#2|) |#5|)) (-15 -2685 ((-3 |#2| "failed") |#5|)) (-15 -1694 ((-401 (-1148 |#5|)) |#5| |#2|)) (-15 -1842 (|#5| (-401 (-1148 |#5|)) |#2|)) (-15 -1694 ((-1148 |#5|) |#5| |#2| (-1148 |#5|))) (-15 -2746 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -4035 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -3815 ((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|)) (-15 -1382 ((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -1477 ($ |#4|)) (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $))))) (T -929)) -((-1382 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4067 (-552)))) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-3815 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-552)))) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-4035 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-2746 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-1694 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) (-4 *7 (-928 *6 *5 *4)) (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-5 *1 (-929 *5 *4 *6 *7 *3)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1148 *2))) (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-4 *2 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) (-5 *1 (-929 *5 *4 *6 *7 *2)) (-4 *7 (-928 *6 *5 *4)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-401 (-1148 *3))) (-5 *1 (-929 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-2685 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-1028)) (-4 *6 (-928 *5 *4 *2)) (-4 *2 (-830)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *6)) (-15 -2918 (*6 $)) (-15 -2929 (*6 $))))))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *5)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $)))))))) -(-10 -7 (-15 -1853 ((-627 |#2|) |#5|)) (-15 -2685 ((-3 |#2| "failed") |#5|)) (-15 -1694 ((-401 (-1148 |#5|)) |#5| |#2|)) (-15 -1842 (|#5| (-401 (-1148 |#5|)) |#2|)) (-15 -1694 ((-1148 |#5|) |#5| |#2| (-1148 |#5|))) (-15 -2746 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -4035 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -3815 ((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|)) (-15 -1382 ((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|))) -((-3516 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3516 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) (T -930)) -((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *6 (-776)) (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) (-5 *1 (-930 *6 *7 *8 *5 *2)) (-4 *5 (-928 *8 *6 *7))))) -(-10 -7 (-15 -3516 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) 16)) (-1694 (((-1148 $) $ (-1152)) 21) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1152))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 8) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1152) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1152) $) NIL)) (-3116 (($ $ $ (-1152)) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1152)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-1152)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1152) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1152) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-1152)) NIL) (($ (-1148 $) (-1152)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1152)) NIL)) (-3465 (((-523 (-1152)) $) NIL) (((-754) $ (-1152)) NIL) (((-627 (-754)) $ (-627 (-1152))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-1152)) (-523 (-1152))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2685 (((-3 (-1152) "failed") $) 19)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1152)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $ (-1152)) 29 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1152) |#1|) NIL) (($ $ (-627 (-1152)) (-627 |#1|)) NIL) (($ $ (-1152) $) NIL) (($ $ (-627 (-1152)) (-627 $)) NIL)) (-1637 (($ $ (-1152)) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3567 (((-523 (-1152)) $) NIL) (((-754) $ (-1152)) NIL) (((-627 (-754)) $ (-627 (-1152))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1152) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1152) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1152) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1152)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 25) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1152)) 27) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-931 |#1|) (-13 (-928 |#1| (-523 (-1152)) (-1152)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1152))) |%noBranch|))) (-1028)) (T -931)) -((-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-931 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028))))) -(-13 (-928 |#1| (-523 (-1152)) (-1152)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1152))) |%noBranch|))) -((-3265 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754)) 38)) (-1660 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754)) 34)) (-3261 (((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)) 54)) (-1499 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754)) 64 (|has| |#3| (-445))))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3265 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754))) (-15 -1660 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754))) (IF (|has| |#3| (-445)) (-15 -1499 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754))) |%noBranch|) (-15 -3261 ((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $)) (-15 -1477 ($ |#4|))))) (T -932)) -((-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *3 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| (-627 *3)))) (-5 *1 (-932 *5 *6 *7 *3 *8)) (-5 *4 (-754)) (-4 *8 (-13 (-357) (-10 -8 (-15 -2918 (*3 $)) (-15 -2929 (*3 $)) (-15 -1477 ($ *3))))))) (-1499 (*1 *2 *3 *4) (-12 (-4 *7 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *3))) (-5 *1 (-932 *5 *6 *7 *8 *3)) (-5 *4 (-754)) (-4 *3 (-13 (-357) (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8))))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *9) (|:| |radicand| *9))) (-5 *1 (-932 *5 *6 *7 *8 *9)) (-5 *4 (-754)) (-4 *9 (-13 (-357) (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8))))))) (-3265 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-544)) (-4 *7 (-928 *3 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *8) (|:| |radicand| *8))) (-5 *1 (-932 *5 *6 *3 *7 *8)) (-5 *4 (-754)) (-4 *8 (-13 (-357) (-10 -8 (-15 -2918 (*7 $)) (-15 -2929 (*7 $)) (-15 -1477 ($ *7)))))))) -(-10 -7 (-15 -3265 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754))) (-15 -1660 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754))) (IF (|has| |#3| (-445)) (-15 -1499 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754))) |%noBranch|) (-15 -3261 ((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)))) -((-1465 (((-111) $ $) NIL)) (-1722 (($ (-1096)) 8)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14) (((-1096) $) 11)) (-2292 (((-111) $ $) 10))) -(((-933) (-13 (-1076) (-599 (-1096)) (-10 -8 (-15 -1722 ($ (-1096)))))) (T -933)) -((-1722 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-933))))) -(-13 (-1076) (-599 (-1096)) (-10 -8 (-15 -1722 ($ (-1096))))) -((-3447 (((-1070 (-220)) $) 8)) (-3437 (((-1070 (-220)) $) 9)) (-2116 (((-627 (-627 (-922 (-220)))) $) 10)) (-1477 (((-842) $) 6))) -(((-934) (-137)) (T -934)) -((-2116 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-627 (-627 (-922 (-220))))))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220)))))) -(-13 (-599 (-842)) (-10 -8 (-15 -2116 ((-627 (-627 (-922 (-220)))) $)) (-15 -3437 ((-1070 (-220)) $)) (-15 -3447 ((-1070 (-220)) $)))) -(((-599 (-842)) . T)) -((-3432 (((-3 (-671 |#1|) "failed") |#2| (-900)) 15))) -(((-935 |#1| |#2|) (-10 -7 (-15 -3432 ((-3 (-671 |#1|) "failed") |#2| (-900)))) (-544) (-638 |#1|)) (T -935)) -((-3432 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-900)) (-4 *5 (-544)) (-5 *2 (-671 *5)) (-5 *1 (-935 *5 *3)) (-4 *3 (-638 *5))))) -(-10 -7 (-15 -3432 ((-3 (-671 |#1|) "failed") |#2| (-900)))) -((-2169 (((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|) 18)) (-3516 (((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)) 13))) -(((-936 |#1| |#2|) (-10 -7 (-15 -2169 ((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -3516 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) (-1189) (-1189)) (T -936)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-937 *6)) (-5 *1 (-936 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-936 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-937 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-937 *5)) (-5 *1 (-936 *6 *5))))) -(-10 -7 (-15 -2169 ((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -3516 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 16 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 15 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 13)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 12)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 10 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 17 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 11)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 14) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 8 (|has| $ (-6 -4366))))) -(((-937 |#1|) (-19 |#1|) (-1189)) (T -937)) +((-3908 (((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)) 79)) (-4265 (((-111) (-330 |#2| |#3| |#4| |#5|)) 17)) (-4241 (((-3 (-756) "failed") (-330 |#2| |#3| |#4| |#5|)) 15))) +(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4241 ((-3 (-756) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -4265 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -3908 ((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) (-13 (-832) (-544) (-1019 (-552))) (-424 |#1|) (-1213 |#2|) (-1213 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -892)) +((-3908 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-2 (|:| -4241 (-756)) (|:| -2403 *8))) (-5 *1 (-892 *4 *5 *6 *7 *8)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-111)) (-5 *1 (-892 *4 *5 *6 *7 *8)))) (-4241 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-756)) (-5 *1 (-892 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4241 ((-3 (-756) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -4265 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -3908 ((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) +((-3908 (((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 56)) (-4265 (((-111) (-330 (-401 (-552)) |#1| |#2| |#3|)) 16)) (-4241 (((-3 (-756) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 14))) +(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -4241 ((-3 (-756) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -4265 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -3908 ((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) (-1213 (-401 (-552))) (-1213 (-401 |#1|)) (-336 (-401 (-552)) |#1| |#2|)) (T -893)) +((-3908 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-2 (|:| -4241 (-756)) (|:| -2403 *6))) (-5 *1 (-893 *4 *5 *6)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-893 *4 *5 *6)))) (-4241 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-756)) (-5 *1 (-893 *4 *5 *6))))) +(-10 -7 (-15 -4241 ((-3 (-756) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -4265 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -3908 ((-3 (-2 (|:| -4241 (-756)) (|:| -2403 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) +((-4066 ((|#2| |#2|) 26)) (-2164 (((-552) (-629 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) 15)) (-2062 (((-902) (-552)) 35)) (-1880 (((-552) |#2|) 42)) (-2625 (((-552) |#2|) 21) (((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|) 20))) +(((-894 |#1| |#2|) (-10 -7 (-15 -2062 ((-902) (-552))) (-15 -2625 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -2625 ((-552) |#2|)) (-15 -2164 ((-552) (-629 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1880 ((-552) |#2|)) (-15 -4066 (|#2| |#2|))) (-1213 (-401 (-552))) (-1213 (-401 |#1|))) (T -894)) +((-4066 (*1 *2 *2) (-12 (-4 *3 (-1213 (-401 (-552)))) (-5 *1 (-894 *3 *2)) (-4 *2 (-1213 (-401 *3))))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1213 (-401 *4))))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1213 (-401 *4))))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1213 (-401 *4))))) (-2625 (*1 *2 *3) (-12 (-4 *3 (-1213 (-401 (-552)))) (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) (-5 *1 (-894 *3 *4)) (-4 *4 (-1213 (-401 *3))))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1213 (-401 *3))) (-5 *2 (-902)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1213 (-401 *4)))))) +(-10 -7 (-15 -2062 ((-902) (-552))) (-15 -2625 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -2625 ((-552) |#2|)) (-15 -2164 ((-552) (-629 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1880 ((-552) |#2|)) (-15 -4066 (|#2| |#2|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 ((|#1| $) 81)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-4006 (($ $ $) NIL)) (-1293 (((-3 $ "failed") $) 75)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-3456 (($ |#1| (-412 |#1|)) 73)) (-3567 (((-1150 |#1|) |#1| |#1|) 41)) (-1287 (($ $) 49)) (-4065 (((-111) $) NIL)) (-3637 (((-552) $) 78)) (-3189 (($ $ (-552)) 80)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-3151 ((|#1| $) 77)) (-1850 (((-412 |#1|) $) 76)) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) 74)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-1691 (($ $) 39)) (-3213 (((-844) $) 99) (($ (-552)) 54) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 31) (((-401 |#1|) $) 59) (($ (-401 (-412 |#1|))) 67)) (-2014 (((-756)) 52)) (-3589 (((-111) $ $) NIL)) (-3297 (($) 23 T CONST)) (-3309 (($) 12 T CONST)) (-1613 (((-111) $ $) 68)) (-1720 (($ $ $) NIL)) (-1709 (($ $) 88) (($ $ $) NIL)) (-1698 (($ $ $) 38)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 90) (($ $ $) 37) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-895 |#1|) (-13 (-357) (-38 |#1|) (-10 -8 (-15 -3213 ((-401 |#1|) $)) (-15 -3213 ($ (-401 (-412 |#1|)))) (-15 -1691 ($ $)) (-15 -1850 ((-412 |#1|) $)) (-15 -3151 (|#1| $)) (-15 -3189 ($ $ (-552))) (-15 -3637 ((-552) $)) (-15 -3567 ((-1150 |#1|) |#1| |#1|)) (-15 -1287 ($ $)) (-15 -3456 ($ |#1| (-412 |#1|))) (-15 -3603 (|#1| $)))) (-301)) (T -895)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-895 *3)))) (-1691 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) (-3151 (*1 *2 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301)))) (-3189 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) (-3567 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) (-1287 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-895 *2)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301))))) +(-13 (-357) (-38 |#1|) (-10 -8 (-15 -3213 ((-401 |#1|) $)) (-15 -3213 ($ (-401 (-412 |#1|)))) (-15 -1691 ($ $)) (-15 -1850 ((-412 |#1|) $)) (-15 -3151 (|#1| $)) (-15 -3189 ($ $ (-552))) (-15 -3637 ((-552) $)) (-15 -3567 ((-1150 |#1|) |#1| |#1|)) (-15 -1287 ($ $)) (-15 -3456 ($ |#1| (-412 |#1|))) (-15 -3603 (|#1| $)))) +((-3456 (((-52) (-933 |#1|) (-412 (-933 |#1|)) (-1154)) 17) (((-52) (-401 (-933 |#1|)) (-1154)) 18))) +(((-896 |#1|) (-10 -7 (-15 -3456 ((-52) (-401 (-933 |#1|)) (-1154))) (-15 -3456 ((-52) (-933 |#1|) (-412 (-933 |#1|)) (-1154)))) (-13 (-301) (-144))) (T -896)) +((-3456 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-412 (-933 *6))) (-5 *5 (-1154)) (-5 *3 (-933 *6)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-896 *6)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-896 *5))))) +(-10 -7 (-15 -3456 ((-52) (-401 (-933 |#1|)) (-1154))) (-15 -3456 ((-52) (-933 |#1|) (-412 (-933 |#1|)) (-1154)))) +((-3958 ((|#4| (-629 |#4|)) 121) (((-1150 |#4|) (-1150 |#4|) (-1150 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2594 (((-1150 |#4|) (-629 (-1150 |#4|))) 114) (((-1150 |#4|) (-1150 |#4|) (-1150 |#4|)) 50) ((|#4| (-629 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2594 (|#4| |#4| |#4|)) (-15 -2594 (|#4| (-629 |#4|))) (-15 -2594 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -2594 ((-1150 |#4|) (-629 (-1150 |#4|)))) (-15 -3958 (|#4| |#4| |#4|)) (-15 -3958 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -3958 (|#4| (-629 |#4|)))) (-778) (-832) (-301) (-930 |#3| |#1| |#2|)) (T -897)) +((-3958 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *6 *4 *5)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3958 (*1 *2 *2 *2) (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-930 *5 *3 *4)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-629 (-1150 *7))) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-1150 *7)) (-5 *1 (-897 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) (-2594 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *6 *4 *5)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)))) (-2594 (*1 *2 *2 *2) (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-930 *5 *3 *4))))) +(-10 -7 (-15 -2594 (|#4| |#4| |#4|)) (-15 -2594 (|#4| (-629 |#4|))) (-15 -2594 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -2594 ((-1150 |#4|) (-629 (-1150 |#4|)))) (-15 -3958 (|#4| |#4| |#4|)) (-15 -3958 ((-1150 |#4|) (-1150 |#4|) (-1150 |#4|))) (-15 -3958 (|#4| (-629 |#4|)))) +((-4088 (((-885 (-552)) (-952)) 23) (((-885 (-552)) (-629 (-552))) 20)) (-2962 (((-885 (-552)) (-629 (-552))) 48) (((-885 (-552)) (-902)) 49)) (-2575 (((-885 (-552))) 24)) (-2101 (((-885 (-552))) 38) (((-885 (-552)) (-629 (-552))) 37)) (-3125 (((-885 (-552))) 36) (((-885 (-552)) (-629 (-552))) 35)) (-2761 (((-885 (-552))) 34) (((-885 (-552)) (-629 (-552))) 33)) (-4148 (((-885 (-552))) 32) (((-885 (-552)) (-629 (-552))) 31)) (-2158 (((-885 (-552))) 30) (((-885 (-552)) (-629 (-552))) 29)) (-3981 (((-885 (-552))) 40) (((-885 (-552)) (-629 (-552))) 39)) (-3974 (((-885 (-552)) (-629 (-552))) 52) (((-885 (-552)) (-902)) 53)) (-1551 (((-885 (-552)) (-629 (-552))) 50) (((-885 (-552)) (-902)) 51)) (-1661 (((-885 (-552)) (-629 (-552))) 46) (((-885 (-552)) (-902)) 47)) (-3221 (((-885 (-552)) (-629 (-902))) 43))) +(((-898) (-10 -7 (-15 -2962 ((-885 (-552)) (-902))) (-15 -2962 ((-885 (-552)) (-629 (-552)))) (-15 -1661 ((-885 (-552)) (-902))) (-15 -1661 ((-885 (-552)) (-629 (-552)))) (-15 -3221 ((-885 (-552)) (-629 (-902)))) (-15 -1551 ((-885 (-552)) (-902))) (-15 -1551 ((-885 (-552)) (-629 (-552)))) (-15 -3974 ((-885 (-552)) (-902))) (-15 -3974 ((-885 (-552)) (-629 (-552)))) (-15 -2158 ((-885 (-552)) (-629 (-552)))) (-15 -2158 ((-885 (-552)))) (-15 -4148 ((-885 (-552)) (-629 (-552)))) (-15 -4148 ((-885 (-552)))) (-15 -2761 ((-885 (-552)) (-629 (-552)))) (-15 -2761 ((-885 (-552)))) (-15 -3125 ((-885 (-552)) (-629 (-552)))) (-15 -3125 ((-885 (-552)))) (-15 -2101 ((-885 (-552)) (-629 (-552)))) (-15 -2101 ((-885 (-552)))) (-15 -3981 ((-885 (-552)) (-629 (-552)))) (-15 -3981 ((-885 (-552)))) (-15 -2575 ((-885 (-552)))) (-15 -4088 ((-885 (-552)) (-629 (-552)))) (-15 -4088 ((-885 (-552)) (-952))))) (T -898)) +((-4088 (*1 *2 *3) (-12 (-5 *3 (-952)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2575 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3981 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2101 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3125 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2761 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-4148 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2158 (*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-629 (-902))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(-10 -7 (-15 -2962 ((-885 (-552)) (-902))) (-15 -2962 ((-885 (-552)) (-629 (-552)))) (-15 -1661 ((-885 (-552)) (-902))) (-15 -1661 ((-885 (-552)) (-629 (-552)))) (-15 -3221 ((-885 (-552)) (-629 (-902)))) (-15 -1551 ((-885 (-552)) (-902))) (-15 -1551 ((-885 (-552)) (-629 (-552)))) (-15 -3974 ((-885 (-552)) (-902))) (-15 -3974 ((-885 (-552)) (-629 (-552)))) (-15 -2158 ((-885 (-552)) (-629 (-552)))) (-15 -2158 ((-885 (-552)))) (-15 -4148 ((-885 (-552)) (-629 (-552)))) (-15 -4148 ((-885 (-552)))) (-15 -2761 ((-885 (-552)) (-629 (-552)))) (-15 -2761 ((-885 (-552)))) (-15 -3125 ((-885 (-552)) (-629 (-552)))) (-15 -3125 ((-885 (-552)))) (-15 -2101 ((-885 (-552)) (-629 (-552)))) (-15 -2101 ((-885 (-552)))) (-15 -3981 ((-885 (-552)) (-629 (-552)))) (-15 -3981 ((-885 (-552)))) (-15 -2575 ((-885 (-552)))) (-15 -4088 ((-885 (-552)) (-629 (-552)))) (-15 -4088 ((-885 (-552)) (-952)))) +((-3639 (((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154))) 12)) (-4176 (((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154))) 11))) +(((-899 |#1|) (-10 -7 (-15 -4176 ((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -3639 ((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154))))) (-445)) (T -899)) +((-3639 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-933 *4))) (-5 *3 (-629 (-1154))) (-4 *4 (-445)) (-5 *1 (-899 *4)))) (-4176 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-933 *4))) (-5 *3 (-629 (-1154))) (-4 *4 (-445)) (-5 *1 (-899 *4))))) +(-10 -7 (-15 -4176 ((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -3639 ((-629 (-933 |#1|)) (-629 (-933 |#1|)) (-629 (-1154))))) +((-3213 (((-310 |#1|) (-470)) 16))) +(((-900 |#1|) (-10 -7 (-15 -3213 ((-310 |#1|) (-470)))) (-13 (-832) (-544))) (T -900)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-900 *4)) (-4 *4 (-13 (-832) (-544)))))) +(-10 -7 (-15 -3213 ((-310 |#1|) (-470)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-4065 (((-111) $) 30)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-901) (-137)) (T -901)) +((-3493 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *2 (-2 (|:| -4158 (-629 *1)) (|:| -4126 *1))) (-5 *3 (-629 *1)))) (-2974 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-629 *1)) (-4 *1 (-901))))) +(-13 (-445) (-10 -8 (-15 -3493 ((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $))) (-15 -2974 ((-3 (-629 $) "failed") (-629 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2594 (($ $ $) NIL)) (-3213 (((-844) $) NIL)) (-3309 (($) NIL T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ $ $) NIL))) +(((-902) (-13 (-779) (-711) (-10 -8 (-15 -2594 ($ $ $)) (-6 (-4370 "*"))))) (T -902)) +((-2594 (*1 *1 *1 *1) (-5 *1 (-902)))) +(-13 (-779) (-711) (-10 -8 (-15 -2594 ($ $ $)) (-6 (-4370 "*")))) +((-1601 ((|#2| (-629 |#1|) (-629 |#1|)) 24))) +(((-903 |#1| |#2|) (-10 -7 (-15 -1601 (|#2| (-629 |#1|) (-629 |#1|)))) (-357) (-1213 |#1|)) (T -903)) +((-1601 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-357)) (-4 *2 (-1213 *4)) (-5 *1 (-903 *4 *2))))) +(-10 -7 (-15 -1601 (|#2| (-629 |#1|) (-629 |#1|)))) +((-2693 (((-1150 |#2|) (-629 |#2|) (-629 |#2|)) 17) (((-1210 |#1| |#2|) (-1210 |#1| |#2|) (-629 |#2|) (-629 |#2|)) 13))) +(((-904 |#1| |#2|) (-10 -7 (-15 -2693 ((-1210 |#1| |#2|) (-1210 |#1| |#2|) (-629 |#2|) (-629 |#2|))) (-15 -2693 ((-1150 |#2|) (-629 |#2|) (-629 |#2|)))) (-1154) (-357)) (T -904)) +((-2693 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-357)) (-5 *2 (-1150 *5)) (-5 *1 (-904 *4 *5)) (-14 *4 (-1154)))) (-2693 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1210 *4 *5)) (-5 *3 (-629 *5)) (-14 *4 (-1154)) (-4 *5 (-357)) (-5 *1 (-904 *4 *5))))) +(-10 -7 (-15 -2693 ((-1210 |#1| |#2|) (-1210 |#1| |#2|) (-629 |#2|) (-629 |#2|))) (-15 -2693 ((-1150 |#2|) (-629 |#2|) (-629 |#2|)))) +((-1545 (((-552) (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136)) 139)) (-2477 ((|#4| |#4|) 155)) (-2866 (((-629 (-401 (-933 |#1|))) (-629 (-1154))) 118)) (-4032 (((-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-629 (-629 |#4|)) (-756) (-756) (-552)) 75)) (-2423 (((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-629 |#4|)) 59)) (-4208 (((-673 |#4|) (-673 |#4|) (-629 |#4|)) 55)) (-4106 (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136)) 151)) (-3160 (((-552) (-673 |#4|) (-902) (-1136)) 132) (((-552) (-673 |#4|) (-629 (-1154)) (-902) (-1136)) 131) (((-552) (-673 |#4|) (-629 |#4|) (-902) (-1136)) 130) (((-552) (-673 |#4|) (-1136)) 127) (((-552) (-673 |#4|) (-629 (-1154)) (-1136)) 126) (((-552) (-673 |#4|) (-629 |#4|) (-1136)) 125) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-902)) 124) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154)) (-902)) 123) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|) (-902)) 122) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|)) 120) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154))) 119) (((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|)) 115)) (-2995 ((|#4| (-933 |#1|)) 68)) (-1963 (((-111) (-629 |#4|) (-629 (-629 |#4|))) 152)) (-2825 (((-629 (-629 (-552))) (-552) (-552)) 129)) (-3306 (((-629 (-629 |#4|)) (-629 (-629 |#4|))) 88)) (-3062 (((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|))))) 86)) (-3480 (((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|))))) 85)) (-1539 (((-111) (-629 (-933 |#1|))) 17) (((-111) (-629 |#4|)) 13)) (-3525 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-629 |#4|)) (|:| |n0| (-629 |#4|))) (-629 |#4|) (-629 |#4|)) 71)) (-1483 (((-629 |#4|) |#4|) 49)) (-1804 (((-629 (-401 (-933 |#1|))) (-629 |#4|)) 114) (((-673 (-401 (-933 |#1|))) (-673 |#4|)) 56) (((-401 (-933 |#1|)) |#4|) 111)) (-2580 (((-2 (|:| |rgl| (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))))) (|:| |rgsz| (-552))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-756) (-1136) (-552)) 93)) (-2796 (((-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))) (-673 |#4|) (-756)) 84)) (-3177 (((-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) (-673 |#4|) (-756)) 101)) (-4301 (((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| -2325 (-673 (-401 (-933 |#1|)))) (|:| |vec| (-629 (-401 (-933 |#1|)))) (|:| -2128 (-756)) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) 48))) +(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154)))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|) (-902))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154)) (-902))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-902))) (-15 -3160 ((-552) (-673 |#4|) (-629 |#4|) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 (-1154)) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 |#4|) (-902) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 (-1154)) (-902) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-902) (-1136))) (-15 -1545 ((-552) (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136))) (-15 -4106 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136))) (-15 -2580 ((-2 (|:| |rgl| (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))))) (|:| |rgsz| (-552))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-756) (-1136) (-552))) (-15 -1804 ((-401 (-933 |#1|)) |#4|)) (-15 -1804 ((-673 (-401 (-933 |#1|))) (-673 |#4|))) (-15 -1804 ((-629 (-401 (-933 |#1|))) (-629 |#4|))) (-15 -2866 ((-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -2995 (|#4| (-933 |#1|))) (-15 -3525 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-629 |#4|)) (|:| |n0| (-629 |#4|))) (-629 |#4|) (-629 |#4|))) (-15 -2796 ((-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))) (-673 |#4|) (-756))) (-15 -2423 ((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-629 |#4|))) (-15 -4301 ((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| -2325 (-673 (-401 (-933 |#1|)))) (|:| |vec| (-629 (-401 (-933 |#1|)))) (|:| -2128 (-756)) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (-15 -1483 ((-629 |#4|) |#4|)) (-15 -3480 ((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))))) (-15 -3062 ((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))))) (-15 -3306 ((-629 (-629 |#4|)) (-629 (-629 |#4|)))) (-15 -2825 ((-629 (-629 (-552))) (-552) (-552))) (-15 -1963 ((-111) (-629 |#4|) (-629 (-629 |#4|)))) (-15 -3177 ((-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) (-673 |#4|) (-756))) (-15 -4208 ((-673 |#4|) (-673 |#4|) (-629 |#4|))) (-15 -4032 ((-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-629 (-629 |#4|)) (-756) (-756) (-552))) (-15 -2477 (|#4| |#4|)) (-15 -1539 ((-111) (-629 |#4|))) (-15 -1539 ((-111) (-629 (-933 |#1|))))) (-13 (-301) (-144)) (-13 (-832) (-600 (-1154))) (-778) (-930 |#1| |#3| |#2|)) (T -905)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-111)) (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-111)) (-5 *1 (-905 *4 *5 *6 *7)))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-832) (-600 (-1154)))) (-4 *5 (-778)) (-5 *1 (-905 *3 *4 *5 *2)) (-4 *2 (-930 *3 *5 *4)))) (-4032 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) (-5 *4 (-673 *12)) (-5 *5 (-629 (-401 (-933 *9)))) (-5 *6 (-629 (-629 *12))) (-5 *7 (-756)) (-5 *8 (-552)) (-4 *9 (-13 (-301) (-144))) (-4 *12 (-930 *9 *11 *10)) (-4 *10 (-13 (-832) (-600 (-1154)))) (-4 *11 (-778)) (-5 *2 (-2 (|:| |eqzro| (-629 *12)) (|:| |neqzro| (-629 *12)) (|:| |wcond| (-629 (-933 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *9)))) (|:| -4199 (-629 (-1237 (-401 (-933 *9))))))))) (-5 *1 (-905 *9 *10 *11 *12)))) (-4208 (*1 *2 *2 *3) (-12 (-5 *2 (-673 *7)) (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *1 (-905 *4 *5 *6 *7)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-5 *4 (-756)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-629 (-2 (|:| |det| *8) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (-5 *1 (-905 *5 *6 *7 *8)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-629 *8))) (-5 *3 (-629 *8)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-111)) (-5 *1 (-905 *5 *6 *7 *8)))) (-2825 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 (-629 (-552)))) (-5 *1 (-905 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-930 *4 *6 *5)))) (-3306 (*1 *2 *2) (-12 (-5 *2 (-629 (-629 *6))) (-4 *6 (-930 *3 *5 *4)) (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-832) (-600 (-1154)))) (-4 *5 (-778)) (-5 *1 (-905 *3 *4 *5 *6)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| *7) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 *7))))) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-756)) (-5 *1 (-905 *4 *5 *6 *7)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| *7) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 *7))))) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-756)) (-5 *1 (-905 *4 *5 *6 *7)))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 *3)) (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-930 *4 *6 *5)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2325 (-673 (-401 (-933 *4)))) (|:| |vec| (-629 (-401 (-933 *4)))) (|:| -2128 (-756)) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) (|:| -4199 (-629 (-1237 (-401 (-933 *4))))))) (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) (|:| -4199 (-629 (-1237 (-401 (-933 *4))))))) (-5 *3 (-629 *7)) (-4 *4 (-13 (-301) (-144))) (-4 *7 (-930 *4 *6 *5)) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *1 (-905 *4 *5 *6 *7)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| *8) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 *8))))) (-5 *1 (-905 *5 *6 *7 *8)) (-5 *4 (-756)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-4 *7 (-930 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-629 *7)) (|:| |n0| (-629 *7)))) (-5 *1 (-905 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-933 *4)) (-4 *4 (-13 (-301) (-144))) (-4 *2 (-930 *4 *6 *5)) (-5 *1 (-905 *4 *5 *6 *2)) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 (-401 (-933 *4)))) (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 (-401 (-933 *4)))) (-5 *1 (-905 *4 *5 *6 *7)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-673 *7)) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-673 (-401 (-933 *4)))) (-5 *1 (-905 *4 *5 *6 *7)))) (-1804 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-401 (-933 *4))) (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-930 *4 *6 *5)))) (-2580 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-673 *11)) (-5 *4 (-629 (-401 (-933 *8)))) (-5 *5 (-756)) (-5 *6 (-1136)) (-4 *8 (-13 (-301) (-144))) (-4 *11 (-930 *8 *10 *9)) (-4 *9 (-13 (-832) (-600 (-1154)))) (-4 *10 (-778)) (-5 *2 (-2 (|:| |rgl| (-629 (-2 (|:| |eqzro| (-629 *11)) (|:| |neqzro| (-629 *11)) (|:| |wcond| (-629 (-933 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *8)))) (|:| -4199 (-629 (-1237 (-401 (-933 *8)))))))))) (|:| |rgsz| (-552)))) (-5 *1 (-905 *8 *9 *10 *11)) (-5 *7 (-552)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *7)) (|:| |neqzro| (-629 *7)) (|:| |wcond| (-629 (-933 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) (|:| -4199 (-629 (-1237 (-401 (-933 *4)))))))))) (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) (|:| |wcond| (-629 (-933 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) (-5 *4 (-1136)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-930 *5 *7 *6)) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *9)) (-5 *4 (-902)) (-5 *5 (-1136)) (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *6 *7 *8 *9)))) (-3160 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-673 *10)) (-5 *4 (-629 (-1154))) (-5 *5 (-902)) (-5 *6 (-1136)) (-4 *10 (-930 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-832) (-600 (-1154)))) (-4 *9 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *7 *8 *9 *10)))) (-3160 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-673 *10)) (-5 *4 (-629 *10)) (-5 *5 (-902)) (-5 *6 (-1136)) (-4 *10 (-930 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-832) (-600 (-1154)))) (-4 *9 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *7 *8 *9 *10)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-5 *4 (-1136)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 (-1154))) (-5 *5 (-1136)) (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *6 *7 *8 *9)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 *9)) (-5 *5 (-1136)) (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *6 *7 *8 *9)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-5 *4 (-902)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) (|:| |wcond| (-629 (-933 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) (-5 *1 (-905 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 (-1154))) (-5 *5 (-902)) (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *9)) (|:| |neqzro| (-629 *9)) (|:| |wcond| (-629 (-933 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *6)))) (|:| -4199 (-629 (-1237 (-401 (-933 *6)))))))))) (-5 *1 (-905 *6 *7 *8 *9)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-673 *9)) (-5 *5 (-902)) (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *9)) (|:| |neqzro| (-629 *9)) (|:| |wcond| (-629 (-933 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *6)))) (|:| -4199 (-629 (-1237 (-401 (-933 *6)))))))))) (-5 *1 (-905 *6 *7 *8 *9)) (-5 *4 (-629 *9)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-673 *7)) (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *7)) (|:| |neqzro| (-629 *7)) (|:| |wcond| (-629 (-933 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) (|:| -4199 (-629 (-1237 (-401 (-933 *4)))))))))) (-5 *1 (-905 *4 *5 *6 *7)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-5 *4 (-629 (-1154))) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) (|:| |wcond| (-629 (-933 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) (-5 *1 (-905 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-673 *8)) (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-629 (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) (|:| |wcond| (-629 (-933 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) (-5 *1 (-905 *5 *6 *7 *8)) (-5 *4 (-629 *8))))) +(-10 -7 (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154)))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 |#4|) (-902))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-629 (-1154)) (-902))) (-15 -3160 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-673 |#4|) (-902))) (-15 -3160 ((-552) (-673 |#4|) (-629 |#4|) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 (-1154)) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 |#4|) (-902) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-629 (-1154)) (-902) (-1136))) (-15 -3160 ((-552) (-673 |#4|) (-902) (-1136))) (-15 -1545 ((-552) (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136))) (-15 -4106 ((-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|))))))))) (-1136))) (-15 -2580 ((-2 (|:| |rgl| (-629 (-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))))) (|:| |rgsz| (-552))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-756) (-1136) (-552))) (-15 -1804 ((-401 (-933 |#1|)) |#4|)) (-15 -1804 ((-673 (-401 (-933 |#1|))) (-673 |#4|))) (-15 -1804 ((-629 (-401 (-933 |#1|))) (-629 |#4|))) (-15 -2866 ((-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -2995 (|#4| (-933 |#1|))) (-15 -3525 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-629 |#4|)) (|:| |n0| (-629 |#4|))) (-629 |#4|) (-629 |#4|))) (-15 -2796 ((-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))) (-673 |#4|) (-756))) (-15 -2423 ((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-629 |#4|))) (-15 -4301 ((-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))) (-2 (|:| -2325 (-673 (-401 (-933 |#1|)))) (|:| |vec| (-629 (-401 (-933 |#1|)))) (|:| -2128 (-756)) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (-15 -1483 ((-629 |#4|) |#4|)) (-15 -3480 ((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))))) (-15 -3062 ((-756) (-629 (-2 (|:| -2128 (-756)) (|:| |eqns| (-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))))) (|:| |fgb| (-629 |#4|)))))) (-15 -3306 ((-629 (-629 |#4|)) (-629 (-629 |#4|)))) (-15 -2825 ((-629 (-629 (-552))) (-552) (-552))) (-15 -1963 ((-111) (-629 |#4|) (-629 (-629 |#4|)))) (-15 -3177 ((-629 (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) (-673 |#4|) (-756))) (-15 -4208 ((-673 |#4|) (-673 |#4|) (-629 |#4|))) (-15 -4032 ((-2 (|:| |eqzro| (-629 |#4|)) (|:| |neqzro| (-629 |#4|)) (|:| |wcond| (-629 (-933 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1237 (-401 (-933 |#1|)))) (|:| -4199 (-629 (-1237 (-401 (-933 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552)))) (-673 |#4|) (-629 (-401 (-933 |#1|))) (-629 (-629 |#4|)) (-756) (-756) (-552))) (-15 -2477 (|#4| |#4|)) (-15 -1539 ((-111) (-629 |#4|))) (-15 -1539 ((-111) (-629 (-933 |#1|))))) +((-3444 (((-908) |#1| (-1154)) 17) (((-908) |#1| (-1154) (-1072 (-220))) 21)) (-2117 (((-908) |#1| |#1| (-1154) (-1072 (-220))) 19) (((-908) |#1| (-1154) (-1072 (-220))) 15))) +(((-906 |#1|) (-10 -7 (-15 -2117 ((-908) |#1| (-1154) (-1072 (-220)))) (-15 -2117 ((-908) |#1| |#1| (-1154) (-1072 (-220)))) (-15 -3444 ((-908) |#1| (-1154) (-1072 (-220)))) (-15 -3444 ((-908) |#1| (-1154)))) (-600 (-528))) (T -906)) +((-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-5 *2 (-908)) (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) (-3444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) (-2117 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) (-2117 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) (-5 *1 (-906 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -2117 ((-908) |#1| (-1154) (-1072 (-220)))) (-15 -2117 ((-908) |#1| |#1| (-1154) (-1072 (-220)))) (-15 -3444 ((-908) |#1| (-1154) (-1072 (-220)))) (-15 -3444 ((-908) |#1| (-1154)))) +((-2701 (($ $ (-1072 (-220)) (-1072 (-220)) (-1072 (-220))) 70)) (-2938 (((-1072 (-220)) $) 40)) (-2926 (((-1072 (-220)) $) 39)) (-2915 (((-1072 (-220)) $) 38)) (-3063 (((-629 (-629 (-220))) $) 43)) (-3702 (((-1072 (-220)) $) 41)) (-2431 (((-552) (-552)) 32)) (-1623 (((-552) (-552)) 28)) (-3433 (((-552) (-552)) 30)) (-2415 (((-111) (-111)) 35)) (-3610 (((-552)) 31)) (-2712 (($ $ (-1072 (-220))) 73) (($ $) 74)) (-1807 (($ (-1 (-924 (-220)) (-220)) (-1072 (-220))) 78) (($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220))) 79)) (-2117 (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220))) 82) (($ $ (-1072 (-220))) 76)) (-2559 (((-552)) 36)) (-2410 (((-552)) 27)) (-1822 (((-552)) 29)) (-3890 (((-629 (-629 (-924 (-220)))) $) 95)) (-2301 (((-111) (-111)) 37)) (-3213 (((-844) $) 94)) (-3827 (((-111)) 34))) +(((-907) (-13 (-955) (-10 -8 (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ $ (-1072 (-220)))) (-15 -2701 ($ $ (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2712 ($ $ (-1072 (-220)))) (-15 -2712 ($ $)) (-15 -3702 ((-1072 (-220)) $)) (-15 -3063 ((-629 (-629 (-220))) $)) (-15 -2410 ((-552))) (-15 -1623 ((-552) (-552))) (-15 -1822 ((-552))) (-15 -3433 ((-552) (-552))) (-15 -3610 ((-552))) (-15 -2431 ((-552) (-552))) (-15 -3827 ((-111))) (-15 -2415 ((-111) (-111))) (-15 -2559 ((-552))) (-15 -2301 ((-111) (-111)))))) (T -907)) +((-1807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-907)))) (-1807 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-907)))) (-2117 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-907)))) (-2117 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-907)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) (-2701 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) (-2712 (*1 *1 *1) (-5 *1 (-907))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-220)))) (-5 *1 (-907)))) (-2410 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-1623 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-1822 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-3610 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-3827 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907)))) (-2559 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907))))) +(-13 (-955) (-10 -8 (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ $ (-1072 (-220)))) (-15 -2701 ($ $ (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2712 ($ $ (-1072 (-220)))) (-15 -2712 ($ $)) (-15 -3702 ((-1072 (-220)) $)) (-15 -3063 ((-629 (-629 (-220))) $)) (-15 -2410 ((-552))) (-15 -1623 ((-552) (-552))) (-15 -1822 ((-552))) (-15 -3433 ((-552) (-552))) (-15 -3610 ((-552))) (-15 -2431 ((-552) (-552))) (-15 -3827 ((-111))) (-15 -2415 ((-111) (-111))) (-15 -2559 ((-552))) (-15 -2301 ((-111) (-111))))) +((-2701 (($ $ (-1072 (-220))) 70) (($ $ (-1072 (-220)) (-1072 (-220))) 71)) (-2926 (((-1072 (-220)) $) 44)) (-2915 (((-1072 (-220)) $) 43)) (-3702 (((-1072 (-220)) $) 45)) (-1878 (((-552) (-552)) 37)) (-2979 (((-552) (-552)) 33)) (-2124 (((-552) (-552)) 35)) (-2220 (((-111) (-111)) 39)) (-2278 (((-552)) 36)) (-2712 (($ $ (-1072 (-220))) 74) (($ $) 75)) (-1807 (($ (-1 (-924 (-220)) (-220)) (-1072 (-220))) 84) (($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220))) 85)) (-3444 (($ (-1 (-220) (-220)) (-1072 (-220))) 92) (($ (-1 (-220) (-220))) 95)) (-2117 (($ (-1 (-220) (-220)) (-1072 (-220))) 79) (($ (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220))) 80) (($ (-629 (-1 (-220) (-220))) (-1072 (-220))) 87) (($ (-629 (-1 (-220) (-220))) (-1072 (-220)) (-1072 (-220))) 88) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220))) 82) (($ $ (-1072 (-220))) 76)) (-3993 (((-111) $) 40)) (-4213 (((-552)) 41)) (-2475 (((-552)) 32)) (-2633 (((-552)) 34)) (-3890 (((-629 (-629 (-924 (-220)))) $) 23)) (-1751 (((-111) (-111)) 42)) (-3213 (((-844) $) 106)) (-2827 (((-111)) 38))) +(((-908) (-13 (-936) (-10 -8 (-15 -2117 ($ (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-629 (-1 (-220) (-220))) (-1072 (-220)))) (-15 -2117 ($ (-629 (-1 (-220) (-220))) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -3444 ($ (-1 (-220) (-220)) (-1072 (-220)))) (-15 -3444 ($ (-1 (-220) (-220)))) (-15 -2117 ($ $ (-1072 (-220)))) (-15 -3993 ((-111) $)) (-15 -2701 ($ $ (-1072 (-220)))) (-15 -2701 ($ $ (-1072 (-220)) (-1072 (-220)))) (-15 -2712 ($ $ (-1072 (-220)))) (-15 -2712 ($ $)) (-15 -3702 ((-1072 (-220)) $)) (-15 -2475 ((-552))) (-15 -2979 ((-552) (-552))) (-15 -2633 ((-552))) (-15 -2124 ((-552) (-552))) (-15 -2278 ((-552))) (-15 -1878 ((-552) (-552))) (-15 -2827 ((-111))) (-15 -2220 ((-111) (-111))) (-15 -4213 ((-552))) (-15 -1751 ((-111) (-111)))))) (T -908)) +((-2117 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *2 *3) (-12 (-5 *2 (-629 (-1 (-220) (-220)))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-629 (-1 (-220) (-220)))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-1807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-1807 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-3444 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) (-5 *1 (-908)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-908)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-908)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) (-2701 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) (-2712 (*1 *1 *1) (-5 *1 (-908))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) (-2475 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-2633 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-2278 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-2827 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908)))) (-4213 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) +(-13 (-936) (-10 -8 (-15 -2117 ($ (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-629 (-1 (-220) (-220))) (-1072 (-220)))) (-15 -2117 ($ (-629 (-1 (-220) (-220))) (-1072 (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)))) (-15 -2117 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)))) (-15 -1807 ($ (-1 (-924 (-220)) (-220)) (-1072 (-220)) (-1072 (-220)) (-1072 (-220)))) (-15 -3444 ($ (-1 (-220) (-220)) (-1072 (-220)))) (-15 -3444 ($ (-1 (-220) (-220)))) (-15 -2117 ($ $ (-1072 (-220)))) (-15 -3993 ((-111) $)) (-15 -2701 ($ $ (-1072 (-220)))) (-15 -2701 ($ $ (-1072 (-220)) (-1072 (-220)))) (-15 -2712 ($ $ (-1072 (-220)))) (-15 -2712 ($ $)) (-15 -3702 ((-1072 (-220)) $)) (-15 -2475 ((-552))) (-15 -2979 ((-552) (-552))) (-15 -2633 ((-552))) (-15 -2124 ((-552) (-552))) (-15 -2278 ((-552))) (-15 -1878 ((-552) (-552))) (-15 -2827 ((-111))) (-15 -2220 ((-111) (-111))) (-15 -4213 ((-552))) (-15 -1751 ((-111) (-111))))) +((-2587 (((-629 (-1072 (-220))) (-629 (-629 (-924 (-220))))) 24))) +(((-909) (-10 -7 (-15 -2587 ((-629 (-1072 (-220))) (-629 (-629 (-924 (-220)))))))) (T -909)) +((-2587 (*1 *2 *3) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *2 (-629 (-1072 (-220)))) (-5 *1 (-909))))) +(-10 -7 (-15 -2587 ((-629 (-1072 (-220))) (-629 (-629 (-924 (-220))))))) +((-4128 ((|#2| |#2|) 26)) (-3882 ((|#2| |#2|) 27)) (-3930 ((|#2| |#2|) 25)) (-1838 ((|#2| |#2| (-1136)) 24))) +(((-910 |#1| |#2|) (-10 -7 (-15 -1838 (|#2| |#2| (-1136))) (-15 -3930 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -3882 (|#2| |#2|))) (-832) (-424 |#1|)) (T -910)) +((-3882 (*1 *2 *2) (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) (-1838 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-832)) (-5 *1 (-910 *4 *2)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -1838 (|#2| |#2| (-1136))) (-15 -3930 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -3882 (|#2| |#2|))) +((-4128 (((-310 (-552)) (-1154)) 16)) (-3882 (((-310 (-552)) (-1154)) 14)) (-3930 (((-310 (-552)) (-1154)) 12)) (-1838 (((-310 (-552)) (-1154) (-1136)) 19))) +(((-911) (-10 -7 (-15 -1838 ((-310 (-552)) (-1154) (-1136))) (-15 -3930 ((-310 (-552)) (-1154))) (-15 -4128 ((-310 (-552)) (-1154))) (-15 -3882 ((-310 (-552)) (-1154))))) (T -911)) +((-3882 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911)))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-1136)) (-5 *2 (-310 (-552))) (-5 *1 (-911))))) +(-10 -7 (-15 -1838 ((-310 (-552)) (-1154) (-1136))) (-15 -3930 ((-310 (-552)) (-1154))) (-15 -4128 ((-310 (-552)) (-1154))) (-15 -3882 ((-310 (-552)) (-1154)))) +((-2214 (((-870 |#1| |#3|) |#2| (-873 |#1|) (-870 |#1| |#3|)) 25)) (-2063 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -2063 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -2214 ((-870 |#1| |#3|) |#2| (-873 |#1|) (-870 |#1| |#3|)))) (-1078) (-867 |#1|) (-13 (-1078) (-1019 |#2|))) (T -912)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *6)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-4 *6 (-13 (-1078) (-1019 *3))) (-4 *3 (-867 *5)) (-5 *1 (-912 *5 *3 *6)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1078) (-1019 *5))) (-4 *5 (-867 *4)) (-4 *4 (-1078)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-912 *4 *5 *6))))) +(-10 -7 (-15 -2063 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -2214 ((-870 |#1| |#3|) |#2| (-873 |#1|) (-870 |#1| |#3|)))) +((-2214 (((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)) 30))) +(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) (-1078) (-13 (-544) (-832) (-867 |#1|)) (-13 (-424 |#2|) (-600 (-873 |#1|)) (-867 |#1|) (-1019 (-598 $)))) (T -913)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) (-4 *3 (-13 (-424 *6) (-600 *4) (-867 *5) (-1019 (-598 $)))) (-5 *4 (-873 *5)) (-4 *6 (-13 (-544) (-832) (-867 *5))) (-5 *1 (-913 *5 *6 *3))))) +(-10 -7 (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) +((-2214 (((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|)) 13))) +(((-914 |#1|) (-10 -7 (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|)))) (-537)) (T -914)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 (-552) *3)) (-5 *4 (-873 (-552))) (-4 *3 (-537)) (-5 *1 (-914 *3))))) +(-10 -7 (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|)))) +((-2214 (((-870 |#1| |#2|) (-598 |#2|) (-873 |#1|) (-870 |#1| |#2|)) 54))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2214 ((-870 |#1| |#2|) (-598 |#2|) (-873 |#1|) (-870 |#1| |#2|)))) (-1078) (-13 (-832) (-1019 (-598 $)) (-600 (-873 |#1|)) (-867 |#1|))) (T -915)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1078)) (-4 *6 (-13 (-832) (-1019 (-598 $)) (-600 *4) (-867 *5))) (-5 *4 (-873 *5)) (-5 *1 (-915 *5 *6))))) +(-10 -7 (-15 -2214 ((-870 |#1| |#2|) (-598 |#2|) (-873 |#1|) (-870 |#1| |#2|)))) +((-2214 (((-866 |#1| |#2| |#3|) |#3| (-873 |#1|) (-866 |#1| |#2| |#3|)) 15))) +(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-866 |#1| |#2| |#3|) |#3| (-873 |#1|) (-866 |#1| |#2| |#3|)))) (-1078) (-867 |#1|) (-650 |#2|)) (T -916)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-866 *5 *6 *3)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-4 *6 (-867 *5)) (-4 *3 (-650 *6)) (-5 *1 (-916 *5 *6 *3))))) +(-10 -7 (-15 -2214 ((-866 |#1| |#2| |#3|) |#3| (-873 |#1|) (-866 |#1| |#2| |#3|)))) +((-2214 (((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|)) 17 (|has| |#3| (-867 |#1|))) (((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|) (-1 (-870 |#1| |#5|) |#3| (-873 |#1|) (-870 |#1| |#5|))) 16))) +(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2214 ((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|) (-1 (-870 |#1| |#5|) |#3| (-873 |#1|) (-870 |#1| |#5|)))) (IF (|has| |#3| (-867 |#1|)) (-15 -2214 ((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|))) |%noBranch|)) (-1078) (-778) (-832) (-13 (-1030) (-832) (-867 |#1|)) (-13 (-930 |#4| |#2| |#3|) (-600 (-873 |#1|)))) (T -917)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) (-4 *3 (-13 (-930 *8 *6 *7) (-600 *4))) (-5 *4 (-873 *5)) (-4 *7 (-867 *5)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-13 (-1030) (-832) (-867 *5))) (-5 *1 (-917 *5 *6 *7 *8 *3)))) (-2214 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-870 *6 *3) *8 (-873 *6) (-870 *6 *3))) (-4 *8 (-832)) (-5 *2 (-870 *6 *3)) (-5 *4 (-873 *6)) (-4 *6 (-1078)) (-4 *3 (-13 (-930 *9 *7 *8) (-600 *4))) (-4 *7 (-778)) (-4 *9 (-13 (-1030) (-832) (-867 *6))) (-5 *1 (-917 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2214 ((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|) (-1 (-870 |#1| |#5|) |#3| (-873 |#1|) (-870 |#1| |#5|)))) (IF (|has| |#3| (-867 |#1|)) (-15 -2214 ((-870 |#1| |#5|) |#5| (-873 |#1|) (-870 |#1| |#5|))) |%noBranch|)) +((-3952 ((|#2| |#2| (-629 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) +(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -3952 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3952 (|#2| |#2| (-629 (-1 (-111) |#3|))))) (-832) (-424 |#1|) (-1191)) (T -918)) +((-3952 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-1 (-111) *5))) (-4 *5 (-1191)) (-4 *4 (-832)) (-5 *1 (-918 *4 *2 *5)) (-4 *2 (-424 *4)))) (-3952 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1191)) (-4 *4 (-832)) (-5 *1 (-918 *4 *2 *5)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -3952 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3952 (|#2| |#2| (-629 (-1 (-111) |#3|))))) +((-3952 (((-310 (-552)) (-1154) (-629 (-1 (-111) |#1|))) 18) (((-310 (-552)) (-1154) (-1 (-111) |#1|)) 15))) +(((-919 |#1|) (-10 -7 (-15 -3952 ((-310 (-552)) (-1154) (-1 (-111) |#1|))) (-15 -3952 ((-310 (-552)) (-1154) (-629 (-1 (-111) |#1|))))) (-1191)) (T -919)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-629 (-1 (-111) *5))) (-4 *5 (-1191)) (-5 *2 (-310 (-552))) (-5 *1 (-919 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1191)) (-5 *2 (-310 (-552))) (-5 *1 (-919 *5))))) +(-10 -7 (-15 -3952 ((-310 (-552)) (-1154) (-1 (-111) |#1|))) (-15 -3952 ((-310 (-552)) (-1154) (-629 (-1 (-111) |#1|))))) +((-2214 (((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)) 25))) +(((-920 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) (-1078) (-13 (-544) (-867 |#1|) (-600 (-873 |#1|))) (-973 |#2|)) (T -920)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) (-4 *3 (-973 *6)) (-4 *6 (-13 (-544) (-867 *5) (-600 *4))) (-5 *4 (-873 *5)) (-5 *1 (-920 *5 *6 *3))))) +(-10 -7 (-15 -2214 ((-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) +((-2214 (((-870 |#1| (-1154)) (-1154) (-873 |#1|) (-870 |#1| (-1154))) 17))) +(((-921 |#1|) (-10 -7 (-15 -2214 ((-870 |#1| (-1154)) (-1154) (-873 |#1|) (-870 |#1| (-1154))))) (-1078)) (T -921)) +((-2214 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 (-1154))) (-5 *3 (-1154)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-5 *1 (-921 *5))))) +(-10 -7 (-15 -2214 ((-870 |#1| (-1154)) (-1154) (-873 |#1|) (-870 |#1| (-1154))))) +((-1702 (((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))) 33)) (-2214 (((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-1 |#3| (-629 |#3|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))) 32))) +(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-1 |#3| (-629 |#3|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) (-15 -1702 ((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))))) (-1078) (-13 (-1030) (-832)) (-13 (-1030) (-600 (-873 |#1|)) (-1019 |#2|))) (T -922)) +((-1702 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 (-873 *6))) (-5 *5 (-1 (-870 *6 *8) *8 (-873 *6) (-870 *6 *8))) (-4 *6 (-1078)) (-4 *8 (-13 (-1030) (-600 (-873 *6)) (-1019 *7))) (-5 *2 (-870 *6 *8)) (-4 *7 (-13 (-1030) (-832))) (-5 *1 (-922 *6 *7 *8)))) (-2214 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-629 (-873 *7))) (-5 *5 (-1 *9 (-629 *9))) (-5 *6 (-1 (-870 *7 *9) *9 (-873 *7) (-870 *7 *9))) (-4 *7 (-1078)) (-4 *9 (-13 (-1030) (-600 (-873 *7)) (-1019 *8))) (-5 *2 (-870 *7 *9)) (-5 *3 (-629 *9)) (-4 *8 (-13 (-1030) (-832))) (-5 *1 (-922 *7 *8 *9))))) +(-10 -7 (-15 -2214 ((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-1 |#3| (-629 |#3|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|)))) (-15 -1702 ((-870 |#1| |#3|) (-629 |#3|) (-629 (-873 |#1|)) (-870 |#1| |#3|) (-1 (-870 |#1| |#3|) |#3| (-873 |#1|) (-870 |#1| |#3|))))) +((-2451 (((-1150 (-401 (-552))) (-552)) 63)) (-2877 (((-1150 (-552)) (-552)) 66)) (-1985 (((-1150 (-552)) (-552)) 60)) (-2875 (((-552) (-1150 (-552))) 55)) (-1974 (((-1150 (-401 (-552))) (-552)) 49)) (-3074 (((-1150 (-552)) (-552)) 38)) (-1584 (((-1150 (-552)) (-552)) 68)) (-4041 (((-1150 (-552)) (-552)) 67)) (-3233 (((-1150 (-401 (-552))) (-552)) 51))) +(((-923) (-10 -7 (-15 -3233 ((-1150 (-401 (-552))) (-552))) (-15 -4041 ((-1150 (-552)) (-552))) (-15 -1584 ((-1150 (-552)) (-552))) (-15 -3074 ((-1150 (-552)) (-552))) (-15 -1974 ((-1150 (-401 (-552))) (-552))) (-15 -2875 ((-552) (-1150 (-552)))) (-15 -1985 ((-1150 (-552)) (-552))) (-15 -2877 ((-1150 (-552)) (-552))) (-15 -2451 ((-1150 (-401 (-552))) (-552))))) (T -923)) +((-2451 (*1 *2 *3) (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552)))) (-2877 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-1150 (-552))) (-5 *2 (-552)) (-5 *1 (-923)))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552)))) (-3074 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) (-1584 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) (-4041 (*1 *2 *3) (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) (-3233 (*1 *2 *3) (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552))))) +(-10 -7 (-15 -3233 ((-1150 (-401 (-552))) (-552))) (-15 -4041 ((-1150 (-552)) (-552))) (-15 -1584 ((-1150 (-552)) (-552))) (-15 -3074 ((-1150 (-552)) (-552))) (-15 -1974 ((-1150 (-401 (-552))) (-552))) (-15 -2875 ((-552) (-1150 (-552)))) (-15 -1985 ((-1150 (-552)) (-552))) (-15 -2877 ((-1150 (-552)) (-552))) (-15 -2451 ((-1150 (-401 (-552))) (-552)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756)) NIL (|has| |#1| (-23)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-1693 (($ (-629 |#1|)) 13)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1920 (((-673 |#1|) $ $) NIL (|has| |#1| (-1030)))) (-3307 (($ (-756) |#1|) 8)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 10 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3994 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-1745 (((-111) $ (-756)) NIL)) (-2556 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3136 (($ $ (-629 |#1|)) 26)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 20) (($ $ (-1204 (-552))) NIL)) (-3632 ((|#1| $ $) NIL (|has| |#1| (-1030)))) (-3725 (((-902) $) 16)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2449 (($ $ $) 24)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528)))) (($ (-629 |#1|)) 17)) (-3226 (($ (-629 |#1|)) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1709 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1698 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-711))) (($ $ |#1|) NIL (|has| |#1| (-711)))) (-2657 (((-756) $) 14 (|has| $ (-6 -4368))))) +(((-924 |#1|) (-961 |#1|) (-1030)) (T -924)) +NIL +(-961 |#1|) +((-4102 (((-474 |#1| |#2|) (-933 |#2|)) 20)) (-1387 (((-242 |#1| |#2|) (-933 |#2|)) 33)) (-3006 (((-933 |#2|) (-474 |#1| |#2|)) 25)) (-4188 (((-242 |#1| |#2|) (-474 |#1| |#2|)) 55)) (-1969 (((-933 |#2|) (-242 |#1| |#2|)) 30)) (-1947 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 46))) +(((-925 |#1| |#2|) (-10 -7 (-15 -1947 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4188 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -4102 ((-474 |#1| |#2|) (-933 |#2|))) (-15 -3006 ((-933 |#2|) (-474 |#1| |#2|))) (-15 -1969 ((-933 |#2|) (-242 |#1| |#2|))) (-15 -1387 ((-242 |#1| |#2|) (-933 |#2|)))) (-629 (-1154)) (-1030)) (T -925)) +((-1387 (*1 *2 *3) (-12 (-5 *3 (-933 *5)) (-4 *5 (-1030)) (-5 *2 (-242 *4 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-629 (-1154))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) (-5 *2 (-933 *5)) (-5 *1 (-925 *4 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) (-5 *2 (-933 *5)) (-5 *1 (-925 *4 *5)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-933 *5)) (-4 *5 (-1030)) (-5 *2 (-474 *4 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-629 (-1154))))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) (-5 *2 (-242 *4 *5)) (-5 *1 (-925 *4 *5)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) (-5 *2 (-474 *4 *5)) (-5 *1 (-925 *4 *5))))) +(-10 -7 (-15 -1947 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4188 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -4102 ((-474 |#1| |#2|) (-933 |#2|))) (-15 -3006 ((-933 |#2|) (-474 |#1| |#2|))) (-15 -1969 ((-933 |#2|) (-242 |#1| |#2|))) (-15 -1387 ((-242 |#1| |#2|) (-933 |#2|)))) +((-4246 (((-629 |#2|) |#2| |#2|) 10)) (-2174 (((-756) (-629 |#1|)) 37 (|has| |#1| (-830)))) (-2662 (((-629 |#2|) |#2|) 11)) (-1521 (((-756) (-629 |#1|) (-552) (-552)) 39 (|has| |#1| (-830)))) (-4327 ((|#1| |#2|) 32 (|has| |#1| (-830))))) +(((-926 |#1| |#2|) (-10 -7 (-15 -4246 ((-629 |#2|) |#2| |#2|)) (-15 -2662 ((-629 |#2|) |#2|)) (IF (|has| |#1| (-830)) (PROGN (-15 -4327 (|#1| |#2|)) (-15 -2174 ((-756) (-629 |#1|))) (-15 -1521 ((-756) (-629 |#1|) (-552) (-552)))) |%noBranch|)) (-357) (-1213 |#1|)) (T -926)) +((-1521 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-552)) (-4 *5 (-830)) (-4 *5 (-357)) (-5 *2 (-756)) (-5 *1 (-926 *5 *6)) (-4 *6 (-1213 *5)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-830)) (-4 *4 (-357)) (-5 *2 (-756)) (-5 *1 (-926 *4 *5)) (-4 *5 (-1213 *4)))) (-4327 (*1 *2 *3) (-12 (-4 *2 (-357)) (-4 *2 (-830)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1213 *2)))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1213 *4)))) (-4246 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -4246 ((-629 |#2|) |#2| |#2|)) (-15 -2662 ((-629 |#2|) |#2|)) (IF (|has| |#1| (-830)) (PROGN (-15 -4327 (|#1| |#2|)) (-15 -2174 ((-756) (-629 |#1|))) (-15 -1521 ((-756) (-629 |#1|) (-552) (-552)))) |%noBranch|)) +((-1477 (((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)) 19))) +(((-927 |#1| |#2|) (-10 -7 (-15 -1477 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)))) (-1030) (-1030)) (T -927)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-933 *6)) (-5 *1 (-927 *5 *6))))) +(-10 -7 (-15 -1477 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)))) +((-3449 (((-1210 |#1| (-933 |#2|)) (-933 |#2|) (-1233 |#1|)) 18))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3449 ((-1210 |#1| (-933 |#2|)) (-933 |#2|) (-1233 |#1|)))) (-1154) (-1030)) (T -928)) +((-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-1233 *5)) (-14 *5 (-1154)) (-4 *6 (-1030)) (-5 *2 (-1210 *5 (-933 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-933 *6))))) +(-10 -7 (-15 -3449 ((-1210 |#1| (-933 |#2|)) (-933 |#2|) (-1233 |#1|)))) +((-2349 (((-756) $) 71) (((-756) $ (-629 |#4|)) 74)) (-4116 (($ $) 173)) (-3343 (((-412 $) $) 165)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 116)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) 59)) (-3301 (($ $ $ |#4|) 76)) (-2714 (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 106) (((-673 |#2|) (-673 $)) 99)) (-3471 (($ $) 180) (($ $ |#4|) 183)) (-3754 (((-629 $) $) 63)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 199) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 192)) (-3939 (((-629 $) $) 28)) (-3590 (($ |#2| |#3|) NIL) (($ $ |#4| (-756)) NIL) (($ $ (-629 |#4|) (-629 (-756))) 57)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#4|) 162)) (-4263 (((-3 (-629 $) "failed") $) 42)) (-2878 (((-3 (-629 $) "failed") $) 31)) (-3909 (((-3 (-2 (|:| |var| |#4|) (|:| -1406 (-756))) "failed") $) 47)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 109)) (-1848 (((-412 (-1150 $)) (-1150 $)) 122)) (-1528 (((-412 (-1150 $)) (-1150 $)) 120)) (-3479 (((-412 $) $) 140)) (-2432 (($ $ (-629 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-629 |#4|) (-629 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-629 |#4|) (-629 $)) NIL)) (-1721 (($ $ |#4|) 78)) (-1522 (((-873 (-373)) $) 213) (((-873 (-552)) $) 206) (((-528) $) 221)) (-3807 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 154)) (-2266 ((|#2| $ |#3|) NIL) (($ $ |#4| (-756)) 52) (($ $ (-629 |#4|) (-629 (-756))) 55)) (-3878 (((-3 $ "failed") $) 156)) (-1632 (((-111) $ $) 186))) +(((-929 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -1507 ((-3 (-1237 |#1|) "failed") (-673 |#1|))) (-15 -3471 (|#1| |#1| |#4|)) (-15 -3807 (|#1| |#1| |#4|)) (-15 -1721 (|#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#1| |#4|)) (-15 -3754 ((-629 |#1|) |#1|)) (-15 -2349 ((-756) |#1| (-629 |#4|))) (-15 -2349 ((-756) |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| |#4|) (|:| -1406 (-756))) "failed") |#1|)) (-15 -4263 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -2878 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -3590 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -3590 (|#1| |#1| |#4| (-756))) (-15 -1916 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -3939 ((-629 |#1|) |#1|)) (-15 -2266 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -2266 (|#1| |#1| |#4| (-756))) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#4| |#1|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#4| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#4| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3590 (|#1| |#2| |#3|)) (-15 -2266 (|#2| |#1| |#3|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3471 (|#1| |#1|))) (-930 |#2| |#3| |#4|) (-1030) (-778) (-832)) (T -929)) +NIL +(-10 -8 (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3878 ((-3 |#1| "failed") |#1|)) (-15 -1632 ((-111) |#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -1507 ((-3 (-1237 |#1|) "failed") (-673 |#1|))) (-15 -3471 (|#1| |#1| |#4|)) (-15 -3807 (|#1| |#1| |#4|)) (-15 -1721 (|#1| |#1| |#4|)) (-15 -3301 (|#1| |#1| |#1| |#4|)) (-15 -3754 ((-629 |#1|) |#1|)) (-15 -2349 ((-756) |#1| (-629 |#4|))) (-15 -2349 ((-756) |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| |#4|) (|:| -1406 (-756))) "failed") |#1|)) (-15 -4263 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -2878 ((-3 (-629 |#1|) "failed") |#1|)) (-15 -3590 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -3590 (|#1| |#1| |#4| (-756))) (-15 -1916 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -3939 ((-629 |#1|) |#1|)) (-15 -2266 (|#1| |#1| (-629 |#4|) (-629 (-756)))) (-15 -2266 (|#1| |#1| |#4| (-756))) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#4| |#1|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#4| |#1|)) (-15 -2432 (|#1| |#1| (-629 |#4|) (-629 |#2|))) (-15 -2432 (|#1| |#1| |#4| |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3590 (|#1| |#2| |#3|)) (-15 -2266 (|#2| |#1| |#3|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3471 (|#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 |#3|) $) 108)) (-3449 (((-1150 $) $ |#3|) 123) (((-1150 |#1|) $) 122)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3303 (($ $) 86 (|has| |#1| (-544)))) (-1334 (((-111) $) 88 (|has| |#1| (-544)))) (-2349 (((-756) $) 110) (((-756) $ (-629 |#3|)) 109)) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 98 (|has| |#1| (-890)))) (-4116 (($ $) 96 (|has| |#1| (-445)))) (-3343 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 101 (|has| |#1| (-890)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1019 (-552)))) (((-3 |#3| "failed") $) 134)) (-2832 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1019 (-552)))) ((|#3| $) 133)) (-3301 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-3766 (($ $) 152)) (-2714 (((-673 (-552)) (-673 $)) 132 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 131 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 130) (((-673 |#1|) (-673 $)) 129)) (-1293 (((-3 $ "failed") $) 32)) (-3471 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-3754 (((-629 $) $) 107)) (-1677 (((-111) $) 94 (|has| |#1| (-890)))) (-3423 (($ $ |#1| |#2| $) 170)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 82 (-12 (|has| |#3| (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 81 (-12 (|has| |#3| (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4065 (((-111) $) 30)) (-2856 (((-756) $) 167)) (-3602 (($ (-1150 |#1|) |#3|) 115) (($ (-1150 $) |#3|) 114)) (-3939 (((-629 $) $) 124)) (-2231 (((-111) $) 150)) (-3590 (($ |#1| |#2|) 151) (($ $ |#3| (-756)) 117) (($ $ (-629 |#3|) (-629 (-756))) 116)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#3|) 118)) (-3544 ((|#2| $) 168) (((-756) $ |#3|) 120) (((-629 (-756)) $ (-629 |#3|)) 119)) (-1772 (($ $ $) 77 (|has| |#1| (-832)))) (-2011 (($ $ $) 76 (|has| |#1| (-832)))) (-3891 (($ (-1 |#2| |#2|) $) 169)) (-1477 (($ (-1 |#1| |#1|) $) 149)) (-3506 (((-3 |#3| "failed") $) 121)) (-3733 (($ $) 147)) (-3743 ((|#1| $) 146)) (-2552 (($ (-629 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2623 (((-1136) $) 9)) (-4263 (((-3 (-629 $) "failed") $) 112)) (-2878 (((-3 (-629 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -1406 (-756))) "failed") $) 111)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 164)) (-3722 ((|#1| $) 165)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 93 (|has| |#1| (-445)))) (-2594 (($ (-629 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 100 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 99 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 97 (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-629 $) (-629 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-629 |#3|) (-629 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-629 |#3|) (-629 $)) 136)) (-1721 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3096 (($ $ |#3|) 40) (($ $ (-629 |#3|)) 39) (($ $ |#3| (-756)) 38) (($ $ (-629 |#3|) (-629 (-756))) 37)) (-3299 ((|#2| $) 148) (((-756) $ |#3|) 128) (((-629 (-756)) $ (-629 |#3|)) 127)) (-1522 (((-873 (-373)) $) 80 (-12 (|has| |#3| (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) 79 (-12 (|has| |#3| (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 102 (-3792 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-544))) (($ (-401 (-552))) 70 (-4029 (|has| |#1| (-1019 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-2984 (((-629 |#1|) $) 166)) (-2266 ((|#1| $ |#2|) 153) (($ $ |#3| (-756)) 126) (($ $ (-629 |#3|) (-629 (-756))) 125)) (-3878 (((-3 $ "failed") $) 71 (-4029 (-3792 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 28)) (-4306 (($ $ $ (-756)) 171 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 87 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ |#3|) 36) (($ $ (-629 |#3|)) 35) (($ $ |#3| (-756)) 34) (($ $ (-629 |#3|) (-629 (-756))) 33)) (-1666 (((-111) $ $) 74 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 73 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 75 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 72 (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-930 |#1| |#2| |#3|) (-137) (-1030) (-778) (-832)) (T -930)) +((-3471 (*1 *1 *1) (-12 (-4 *1 (-930 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-3299 (*1 *2 *1 *3) (-12 (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-756)))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-756))))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-930 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *2 (-832)))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 (-756))) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)))) (-3939 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-1150 *1)) (-4 *1 (-930 *4 *5 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-1150 *3)))) (-3506 (*1 *2 *1) (|partial| -12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-3544 (*1 *2 *1 *3) (-12 (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-756)))) (-3544 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-756))))) (-1916 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-930 *4 *5 *3)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-930 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *2 (-832)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 (-756))) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)))) (-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-1030)) (-4 *1 (-930 *4 *5 *3)) (-4 *5 (-778)) (-4 *3 (-832)))) (-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)))) (-2878 (*1 *2 *1) (|partial| -12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) (-4263 (*1 *2 *1) (|partial| -12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| |var| *5) (|:| -1406 (-756)))))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-756)))) (-2349 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-756)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *5)))) (-3754 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *3 (-169)))) (-1721 (*1 *1 *1 *2) (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *3 (-169)))) (-3807 (*1 *1 *1 *2) (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *3 (-445)))) (-3471 (*1 *1 *1 *2) (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *3 (-445)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-930 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-3343 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-412 *1)) (-4 *1 (-930 *3 *4 *5))))) +(-13 (-881 |t#3|) (-320 |t#1| |t#2|) (-303 $) (-506 |t#3| |t#1|) (-506 |t#3| $) (-1019 |t#3|) (-371 |t#1|) (-10 -8 (-15 -3299 ((-756) $ |t#3|)) (-15 -3299 ((-629 (-756)) $ (-629 |t#3|))) (-15 -2266 ($ $ |t#3| (-756))) (-15 -2266 ($ $ (-629 |t#3|) (-629 (-756)))) (-15 -3939 ((-629 $) $)) (-15 -3449 ((-1150 $) $ |t#3|)) (-15 -3449 ((-1150 |t#1|) $)) (-15 -3506 ((-3 |t#3| "failed") $)) (-15 -3544 ((-756) $ |t#3|)) (-15 -3544 ((-629 (-756)) $ (-629 |t#3|))) (-15 -1916 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |t#3|)) (-15 -3590 ($ $ |t#3| (-756))) (-15 -3590 ($ $ (-629 |t#3|) (-629 (-756)))) (-15 -3602 ($ (-1150 |t#1|) |t#3|)) (-15 -3602 ($ (-1150 $) |t#3|)) (-15 -2878 ((-3 (-629 $) "failed") $)) (-15 -4263 ((-3 (-629 $) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |var| |t#3|) (|:| -1406 (-756))) "failed") $)) (-15 -2349 ((-756) $)) (-15 -2349 ((-756) $ (-629 |t#3|))) (-15 -3611 ((-629 |t#3|) $)) (-15 -3754 ((-629 $) $)) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (IF (|has| |t#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-873 (-552)))) (IF (|has| |t#3| (-600 (-873 (-552)))) (-6 (-600 (-873 (-552)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-873 (-373)))) (IF (|has| |t#3| (-600 (-873 (-373)))) (-6 (-600 (-873 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-867 (-552))) (IF (|has| |t#3| (-867 (-552))) (-6 (-867 (-552))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-867 (-373))) (IF (|has| |t#3| (-867 (-373))) (-6 (-867 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3301 ($ $ $ |t#3|)) (-15 -1721 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-6 (-445)) (-15 -3807 ($ $ |t#3|)) (-15 -3471 ($ $)) (-15 -3471 ($ $ |t#3|)) (-15 -3343 ((-412 $) $)) (-15 -4116 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |t#1| (-890)) (-6 (-890)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#3| (-600 (-873 (-373))))) ((-600 (-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#3| (-600 (-873 (-552))))) ((-284) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-890)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 |#3|) . T) ((-867 (-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#3| (-867 (-373)))) ((-867 (-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#3| (-867 (-552)))) ((-890) |has| |#1| (-890)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1019 |#3|) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) |has| |#1| (-890))) +((-3611 (((-629 |#2|) |#5|) 36)) (-3449 (((-1150 |#5|) |#5| |#2| (-1150 |#5|)) 23) (((-401 (-1150 |#5|)) |#5| |#2|) 16)) (-3602 ((|#5| (-401 (-1150 |#5|)) |#2|) 30)) (-3506 (((-3 |#2| "failed") |#5|) 65)) (-4263 (((-3 (-629 |#5|) "failed") |#5|) 59)) (-4073 (((-3 (-2 (|:| |val| |#5|) (|:| -1406 (-552))) "failed") |#5|) 47)) (-2878 (((-3 (-629 |#5|) "failed") |#5|) 61)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -1406 (-552))) "failed") |#5|) 51))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3611 ((-629 |#2|) |#5|)) (-15 -3506 ((-3 |#2| "failed") |#5|)) (-15 -3449 ((-401 (-1150 |#5|)) |#5| |#2|)) (-15 -3602 (|#5| (-401 (-1150 |#5|)) |#2|)) (-15 -3449 ((-1150 |#5|) |#5| |#2| (-1150 |#5|))) (-15 -2878 ((-3 (-629 |#5|) "failed") |#5|)) (-15 -4263 ((-3 (-629 |#5|) "failed") |#5|)) (-15 -3909 ((-3 (-2 (|:| |var| |#2|) (|:| -1406 (-552))) "failed") |#5|)) (-15 -4073 ((-3 (-2 (|:| |val| |#5|) (|:| -1406 (-552))) "failed") |#5|))) (-778) (-832) (-1030) (-930 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -3213 ($ |#4|)) (-15 -4015 (|#4| $)) (-15 -4026 (|#4| $))))) (T -931)) +((-4073 (*1 *2 *3) (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1406 (-552)))) (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) (-3909 (*1 *2 *3) (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1406 (-552)))) (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) (-4263 (*1 *2 *3) (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *3)) (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) (-2878 (*1 *2 *3) (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *3)) (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) (-3449 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))) (-4 *7 (-930 *6 *5 *4)) (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-1030)) (-5 *1 (-931 *5 *4 *6 *7 *3)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1150 *2))) (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-1030)) (-4 *2 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))) (-5 *1 (-931 *5 *4 *6 *7 *2)) (-4 *7 (-930 *6 *5 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-401 (-1150 *3))) (-5 *1 (-931 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) (-3506 (*1 *2 *3) (|partial| -12 (-4 *4 (-778)) (-4 *5 (-1030)) (-4 *6 (-930 *5 *4 *2)) (-4 *2 (-832)) (-5 *1 (-931 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *6)) (-15 -4015 (*6 $)) (-15 -4026 (*6 $))))))) (-3611 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *5)) (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $)))))))) +(-10 -7 (-15 -3611 ((-629 |#2|) |#5|)) (-15 -3506 ((-3 |#2| "failed") |#5|)) (-15 -3449 ((-401 (-1150 |#5|)) |#5| |#2|)) (-15 -3602 (|#5| (-401 (-1150 |#5|)) |#2|)) (-15 -3449 ((-1150 |#5|) |#5| |#2| (-1150 |#5|))) (-15 -2878 ((-3 (-629 |#5|) "failed") |#5|)) (-15 -4263 ((-3 (-629 |#5|) "failed") |#5|)) (-15 -3909 ((-3 (-2 (|:| |var| |#2|) (|:| -1406 (-552))) "failed") |#5|)) (-15 -4073 ((-3 (-2 (|:| |val| |#5|) (|:| -1406 (-552))) "failed") |#5|))) +((-1477 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1477 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-778) (-832) (-1030) (-930 |#3| |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-756)))))) (T -932)) +((-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-832)) (-4 *8 (-1030)) (-4 *6 (-778)) (-4 *2 (-13 (-1078) (-10 -8 (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-756)))))) (-5 *1 (-932 *6 *7 *8 *5 *2)) (-4 *5 (-930 *8 *6 *7))))) +(-10 -7 (-15 -1477 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1154)) $) 16)) (-3449 (((-1150 $) $ (-1154)) 21) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1154))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 8) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-1154) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-1154) $) NIL)) (-3301 (($ $ $ (-1154)) NIL (|has| |#1| (-169)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1154)) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-523 (-1154)) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1154) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1154) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#1|) (-1154)) NIL) (($ (-1150 $) (-1154)) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-523 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1154)) NIL)) (-3544 (((-523 (-1154)) $) NIL) (((-756) $ (-1154)) NIL) (((-629 (-756)) $ (-629 (-1154))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 (-1154)) (-523 (-1154))) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3506 (((-3 (-1154) "failed") $) 19)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1154)) (|:| -1406 (-756))) "failed") $) NIL)) (-2889 (($ $ (-1154)) 29 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1154) |#1|) NIL) (($ $ (-629 (-1154)) (-629 |#1|)) NIL) (($ $ (-1154) $) NIL) (($ $ (-629 (-1154)) (-629 $)) NIL)) (-1721 (($ $ (-1154)) NIL (|has| |#1| (-169)))) (-3096 (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-3299 (((-523 (-1154)) $) NIL) (((-756) $ (-1154)) NIL) (((-629 (-756)) $ (-629 (-1154))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1154) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1154) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1154) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1154)) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 25) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1154)) 27) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-523 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-933 |#1|) (-13 (-930 |#1| (-523 (-1154)) (-1154)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1154))) |%noBranch|))) (-1030)) (T -933)) +((-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-933 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030))))) +(-13 (-930 |#1| (-523 (-1154)) (-1154)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1154))) |%noBranch|))) +((-2203 (((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#3| (-756)) 38)) (-1934 (((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-756)) 34)) (-2161 (((-2 (|:| -1406 (-756)) (|:| -4158 |#4|) (|:| |radicand| (-629 |#4|))) |#4| (-756)) 54)) (-3039 (((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#5| (-756)) 64 (|has| |#3| (-445))))) +(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2203 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#3| (-756))) (-15 -1934 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-756))) (IF (|has| |#3| (-445)) (-15 -3039 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#5| (-756))) |%noBranch|) (-15 -2161 ((-2 (|:| -1406 (-756)) (|:| -4158 |#4|) (|:| |radicand| (-629 |#4|))) |#4| (-756)))) (-778) (-832) (-544) (-930 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -4015 (|#4| $)) (-15 -4026 (|#4| $)) (-15 -3213 ($ |#4|))))) (T -934)) +((-2161 (*1 *2 *3 *4) (-12 (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-544)) (-4 *3 (-930 *7 *5 *6)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| (-629 *3)))) (-5 *1 (-934 *5 *6 *7 *3 *8)) (-5 *4 (-756)) (-4 *8 (-13 (-357) (-10 -8 (-15 -4015 (*3 $)) (-15 -4026 (*3 $)) (-15 -3213 ($ *3))))))) (-3039 (*1 *2 *3 *4) (-12 (-4 *7 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-544)) (-4 *8 (-930 *7 *5 *6)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| *3))) (-5 *1 (-934 *5 *6 *7 *8 *3)) (-5 *4 (-756)) (-4 *3 (-13 (-357) (-10 -8 (-15 -4015 (*8 $)) (-15 -4026 (*8 $)) (-15 -3213 ($ *8))))))) (-1934 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-544)) (-4 *8 (-930 *7 *5 *6)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *9) (|:| |radicand| *9))) (-5 *1 (-934 *5 *6 *7 *8 *9)) (-5 *4 (-756)) (-4 *9 (-13 (-357) (-10 -8 (-15 -4015 (*8 $)) (-15 -4026 (*8 $)) (-15 -3213 ($ *8))))))) (-2203 (*1 *2 *3 *4) (-12 (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-544)) (-4 *7 (-930 *3 *5 *6)) (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *8) (|:| |radicand| *8))) (-5 *1 (-934 *5 *6 *3 *7 *8)) (-5 *4 (-756)) (-4 *8 (-13 (-357) (-10 -8 (-15 -4015 (*7 $)) (-15 -4026 (*7 $)) (-15 -3213 ($ *7)))))))) +(-10 -7 (-15 -2203 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#3| (-756))) (-15 -1934 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-756))) (IF (|has| |#3| (-445)) (-15 -3039 ((-2 (|:| -1406 (-756)) (|:| -4158 |#5|) (|:| |radicand| |#5|)) |#5| (-756))) |%noBranch|) (-15 -2161 ((-2 (|:| -1406 (-756)) (|:| -4158 |#4|) (|:| |radicand| (-629 |#4|))) |#4| (-756)))) +((-3202 (((-111) $ $) NIL)) (-1285 (($ (-1098)) 8)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 14) (((-1098) $) 11)) (-1613 (((-111) $ $) 10))) +(((-935) (-13 (-1078) (-599 (-1098)) (-10 -8 (-15 -1285 ($ (-1098)))))) (T -935)) +((-1285 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-935))))) +(-13 (-1078) (-599 (-1098)) (-10 -8 (-15 -1285 ($ (-1098))))) +((-2926 (((-1072 (-220)) $) 8)) (-2915 (((-1072 (-220)) $) 9)) (-3890 (((-629 (-629 (-924 (-220)))) $) 10)) (-3213 (((-844) $) 6))) +(((-936) (-137)) (T -936)) +((-3890 (*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-629 (-629 (-924 (-220))))))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-1072 (-220))))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-1072 (-220)))))) +(-13 (-599 (-844)) (-10 -8 (-15 -3890 ((-629 (-629 (-924 (-220)))) $)) (-15 -2915 ((-1072 (-220)) $)) (-15 -2926 ((-1072 (-220)) $)))) +(((-599 (-844)) . T)) +((-1317 (((-3 (-673 |#1|) "failed") |#2| (-902)) 15))) +(((-937 |#1| |#2|) (-10 -7 (-15 -1317 ((-3 (-673 |#1|) "failed") |#2| (-902)))) (-544) (-640 |#1|)) (T -937)) +((-1317 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-902)) (-4 *5 (-544)) (-5 *2 (-673 *5)) (-5 *1 (-937 *5 *3)) (-4 *3 (-640 *5))))) +(-10 -7 (-15 -1317 ((-3 (-673 |#1|) "failed") |#2| (-902)))) +((-3215 (((-939 |#2|) (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|) 16)) (-3884 ((|#2| (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|) 18)) (-1477 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 13))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3215 ((-939 |#2|) (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|)) (-15 -1477 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1191) (-1191)) (T -938)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-939 *6)) (-5 *1 (-938 *5 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-939 *5)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-938 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-939 *6)) (-4 *6 (-1191)) (-4 *5 (-1191)) (-5 *2 (-939 *5)) (-5 *1 (-938 *6 *5))))) +(-10 -7 (-15 -3215 ((-939 |#2|) (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-939 |#1|) |#2|)) (-15 -1477 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) 16 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 15 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 13)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) |#1|) 12)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) 10 (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) 17 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) 11)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 14) (($ $ (-1204 (-552))) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) NIL)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-2657 (((-756) $) 8 (|has| $ (-6 -4368))))) +(((-939 |#1|) (-19 |#1|) (-1191)) (T -939)) NIL (-19 |#1|) -((-3096 (($ $ (-1068 $)) 7) (($ $ (-1152)) 6))) -(((-938) (-137)) (T -938)) -((-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-938)))) (-3096 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-1152))))) -(-13 (-10 -8 (-15 -3096 ($ $ (-1152))) (-15 -3096 ($ $ (-1068 $))))) -((-2740 (((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)) 25) (((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152))) 26) (((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152)) 43))) -(((-939 |#1|) (-10 -7 (-15 -2740 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)))) (-13 (-357) (-144))) (T -939)) -((-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-5 *5 (-1152)) (-4 *6 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *6))) (|:| |prim| (-1148 *6)))) (-5 *1 (-939 *6)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *5))) (|:| |prim| (-1148 *5)))) (-5 *1 (-939 *5)))) (-2740 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-1152)) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 *5)))) (-5 *1 (-939 *5))))) -(-10 -7 (-15 -2740 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)))) -((-2628 (((-627 |#1|) |#1| |#1|) 42)) (-1633 (((-111) |#1|) 39)) (-3006 ((|#1| |#1|) 65)) (-1286 ((|#1| |#1|) 64))) -(((-940 |#1|) (-10 -7 (-15 -1633 ((-111) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -2628 ((-627 |#1|) |#1| |#1|))) (-537)) (T -940)) -((-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-5 *1 (-940 *3)) (-4 *3 (-537)))) (-3006 (*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537)))) (-1286 (*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537)))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-940 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -1633 ((-111) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -2628 ((-627 |#1|) |#1| |#1|))) -((-1277 (((-1240) (-842)) 9))) -(((-941) (-10 -7 (-15 -1277 ((-1240) (-842))))) (T -941)) -((-1277 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-941))))) -(-10 -7 (-15 -1277 ((-1240) (-842)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 61 (|has| |#1| (-544)))) (-3245 (($ $) 62 (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 28)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) 24)) (-2040 (((-3 $ "failed") $) 35)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2061 (($ $ |#1| |#2| $) 48)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 16)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3465 ((|#2| $) 19)) (-3813 (($ (-1 |#2| |#2|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1981 (($ $) 23)) (-1993 ((|#1| $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 40)) (-1970 ((|#1| $) NIL)) (-1839 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-544))))) (-2761 (((-3 $ "failed") $ $) 74 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-544)))) (-3567 ((|#2| $) 17)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) 39) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 34) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ |#2|) 31)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 15)) (-3417 (($ $ $ (-754)) 57 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 67 (|has| |#1| (-544)))) (-1922 (($) 22 T CONST)) (-1933 (($) 12 T CONST)) (-2292 (((-111) $ $) 66)) (-2407 (($ $ |#1|) 75 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 54) (($ $ (-754)) 52)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-942 |#1| |#2|) (-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -1839 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028) (-775)) (T -942)) -((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-942 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *2 (-775))))) -(-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -1839 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (-2796 (($ $ $) 63 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (-4136 (((-3 $ "failed") $ $) 50 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (-3307 (((-754)) 34 (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-3035 ((|#2| $) 21)) (-2754 ((|#1| $) 20)) (-3887 (($) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) CONST)) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (-1279 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (-1816 (($ $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-4308 (($ |#1| |#2|) 19)) (-2886 (((-900) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 37 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-4153 (($ (-900)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1498 (((-1096) $) NIL)) (-2616 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2493 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-1477 (((-842) $) 14)) (-1922 (($) 40 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) CONST)) (-1933 (($) 24 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) CONST)) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2292 (((-111) $ $) 18)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2316 (((-111) $ $) 66 (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2407 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2396 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2384 (($ $ $) 43 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (** (($ $ (-552)) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466)))) (($ $ (-754)) 31 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (* (($ (-552) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-754) $) 46 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (($ (-900) $) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (($ $ $) 27 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))))))) -(((-943 |#1| |#2|) (-13 (-1076) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-709)) (IF (|has| |#2| (-709)) (-6 (-709)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-776)) (IF (|has| |#2| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-830)) (IF (|has| |#2| (-830)) (-6 (-830)) |%noBranch|) |%noBranch|) (-15 -4308 ($ |#1| |#2|)) (-15 -2754 (|#1| $)) (-15 -3035 (|#2| $)))) (-1076) (-1076)) (T -943)) -((-4308 (*1 *1 *2 *3) (-12 (-5 *1 (-943 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2754 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1076)))) (-3035 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-943 *3 *2)) (-4 *3 (-1076))))) -(-13 (-1076) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-709)) (IF (|has| |#2| (-709)) (-6 (-709)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-776)) (IF (|has| |#2| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-830)) (IF (|has| |#2| (-830)) (-6 (-830)) |%noBranch|) |%noBranch|) (-15 -4308 ($ |#1| |#2|)) (-15 -2754 (|#1| $)) (-15 -3035 (|#2| $)))) -((-4288 (((-1080) $) 12)) (-1481 (($ (-1152) (-1080)) 13)) (-3112 (((-1152) $) 10)) (-1477 (((-842) $) 22))) -(((-944) (-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4288 ((-1080) $)) (-15 -1481 ($ (-1152) (-1080)))))) (T -944)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-944)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-944)))) (-1481 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-944))))) -(-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4288 ((-1080) $)) (-15 -1481 ($ (-1152) (-1080))))) -((-1465 (((-111) $ $) NIL)) (-1853 (((-1078 (-1152)) $) 19)) (-3868 (((-111) $) 26)) (-4344 (((-1152) $) 27)) (-3191 (((-111) $) 24)) (-2362 ((|#1| $) 25)) (-2023 (((-852 $ $) $) 34)) (-3707 (((-111) $) 33)) (-1881 (($ $ $) 12)) (-4221 (($ $) 29)) (-4029 (((-111) $) 28)) (-1681 (($ $) 10)) (-1595 (((-1134) $) NIL)) (-1536 (((-852 $ $) $) 36)) (-2260 (((-111) $) 35)) (-2516 (($ $ $) 13)) (-1498 (((-1096) $) NIL)) (-2673 (((-852 $ $) $) 38)) (-4223 (((-111) $) 37)) (-1655 (($ $ $) 14)) (-1477 (((-842) $) 40) (($ |#1|) 7) (($ (-1152)) 9)) (-3460 (((-852 $ $) $) 32)) (-2029 (((-111) $) 30)) (-2520 (($ $ $) 11)) (-2292 (((-111) $ $) NIL))) -(((-945 |#1|) (-13 (-946) (-10 -8 (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-1152))) (-15 -1853 ((-1078 (-1152)) $)) (-15 -3191 ((-111) $)) (-15 -2362 (|#1| $)) (-15 -3868 ((-111) $)) (-15 -4344 ((-1152) $)) (-15 -4029 ((-111) $)) (-15 -4221 ($ $)) (-15 -2029 ((-111) $)) (-15 -3460 ((-852 $ $) $)) (-15 -3707 ((-111) $)) (-15 -2023 ((-852 $ $) $)) (-15 -2260 ((-111) $)) (-15 -1536 ((-852 $ $) $)) (-15 -4223 ((-111) $)) (-15 -2673 ((-852 $ $) $)))) (-946)) (T -945)) -((-1477 (*1 *1 *2) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1078 (-1152))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2362 (*1 *2 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4221 (*1 *1 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(-13 (-946) (-10 -8 (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-1152))) (-15 -1853 ((-1078 (-1152)) $)) (-15 -3191 ((-111) $)) (-15 -2362 (|#1| $)) (-15 -3868 ((-111) $)) (-15 -4344 ((-1152) $)) (-15 -4029 ((-111) $)) (-15 -4221 ($ $)) (-15 -2029 ((-111) $)) (-15 -3460 ((-852 $ $) $)) (-15 -3707 ((-111) $)) (-15 -2023 ((-852 $ $) $)) (-15 -2260 ((-111) $)) (-15 -1536 ((-852 $ $) $)) (-15 -4223 ((-111) $)) (-15 -2673 ((-852 $ $) $)))) -((-1465 (((-111) $ $) 7)) (-1881 (($ $ $) 15)) (-1681 (($ $) 17)) (-1595 (((-1134) $) 9)) (-2516 (($ $ $) 14)) (-1498 (((-1096) $) 10)) (-1655 (($ $ $) 13)) (-1477 (((-842) $) 11)) (-2520 (($ $ $) 16)) (-2292 (((-111) $ $) 6))) -(((-946) (-137)) (T -946)) -((-1681 (*1 *1 *1) (-4 *1 (-946))) (-2520 (*1 *1 *1 *1) (-4 *1 (-946))) (-1881 (*1 *1 *1 *1) (-4 *1 (-946))) (-2516 (*1 *1 *1 *1) (-4 *1 (-946))) (-1655 (*1 *1 *1 *1) (-4 *1 (-946)))) -(-13 (-1076) (-10 -8 (-15 -1681 ($ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2516 ($ $ $)) (-15 -1655 ($ $ $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-1438 (($ $ $) 43)) (-3759 (($ $ $) 44)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 45)) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-947 |#1|) (-137) (-830)) (T -947)) -((-4093 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -4093 (|t#1| $)) (-15 -3759 ($ $ $)) (-15 -1438 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3332 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 85)) (-1340 ((|#2| |#2| |#2|) 83)) (-1742 (((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 87)) (-3382 (((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 89)) (-4316 (((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 107 (|has| |#1| (-445)))) (-3718 (((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 46)) (-3645 (((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 64)) (-3317 (((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 66)) (-3716 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2297 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 71)) (-1562 (((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|) 97)) (-2460 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 74)) (-2282 (((-627 (-754)) |#2| |#2|) 82)) (-3350 ((|#1| |#2| |#2|) 42)) (-2706 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 105 (|has| |#1| (-445)))) (-2006 ((|#1| |#2| |#2|) 103 (|has| |#1| (-445)))) (-1992 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 44)) (-2017 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 63)) (-3116 ((|#1| |#2| |#2|) 61)) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|) 35)) (-3875 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2094 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-4318 ((|#2| |#2| |#2|) 75)) (-3673 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 69)) (-1952 ((|#2| |#2| |#2| (-754)) 67)) (-1323 ((|#2| |#2| |#2|) 111 (|has| |#1| (-445)))) (-2761 (((-1235 |#2|) (-1235 |#2|) |#1|) 21)) (-3963 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|) 39)) (-1910 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|) 95)) (-1637 ((|#1| |#2|) 92)) (-3739 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 73)) (-2069 ((|#2| |#2| |#2| (-754)) 72)) (-3095 (((-627 |#2|) |#2| |#2|) 80)) (-4126 ((|#2| |#2| |#1| |#1| (-754)) 50)) (-1587 ((|#1| |#1| |#1| (-754)) 49)) (* (((-1235 |#2|) |#1| (-1235 |#2|)) 16))) -(((-948 |#1| |#2|) (-10 -7 (-15 -3116 (|#1| |#2| |#2|)) (-15 -2017 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2| (-754))) (-15 -3673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2297 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2069 (|#2| |#2| |#2| (-754))) (-15 -3739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2460 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -4318 (|#2| |#2| |#2|)) (-15 -2094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3716 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1637 (|#1| |#2|)) (-15 -1910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -1562 ((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -3095 ((-627 |#2|) |#2| |#2|)) (-15 -2282 ((-627 (-754)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -4316 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -1323 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1235 |#2|) |#1| (-1235 |#2|))) (-15 -2761 ((-1235 |#2|) (-1235 |#2|) |#1|)) (-15 -2148 ((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -3963 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -1587 (|#1| |#1| |#1| (-754))) (-15 -4126 (|#2| |#2| |#1| |#1| (-754))) (-15 -3875 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3350 (|#1| |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|))) (-544) (-1211 |#1|)) (T -948)) -((-3718 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1992 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-3875 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-4126 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-1587 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *2 (-544)) (-5 *1 (-948 *2 *4)) (-4 *4 (-1211 *2)))) (-3963 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2148 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3069 *4) (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2761 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) (-5 *1 (-948 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) (-5 *1 (-948 *3 *4)))) (-1323 (*1 *2 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-4316 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2706 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2006 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-2282 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-754))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1562 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1637 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1910 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1637 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1637 (*1 *2 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-3382 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1742 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3332 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1340 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-3716 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-4318 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-2460 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-3739 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-2069 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) (-4 *2 (-1211 *4)))) (-2297 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-3673 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-1952 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) (-4 *2 (-1211 *4)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2017 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3116 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2))))) -(-10 -7 (-15 -3116 (|#1| |#2| |#2|)) (-15 -2017 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2| (-754))) (-15 -3673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2297 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2069 (|#2| |#2| |#2| (-754))) (-15 -3739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2460 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -4318 (|#2| |#2| |#2|)) (-15 -2094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3716 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1637 (|#1| |#2|)) (-15 -1910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -1562 ((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -3095 ((-627 |#2|) |#2| |#2|)) (-15 -2282 ((-627 (-754)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -4316 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -1323 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1235 |#2|) |#1| (-1235 |#2|))) (-15 -2761 ((-1235 |#2|) (-1235 |#2|) |#1|)) (-15 -2148 ((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -3963 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -1587 (|#1| |#1| |#1| (-754))) (-15 -4126 (|#2| |#2| |#1| |#1| (-754))) (-15 -3875 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3350 (|#1| |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|))) -((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-949) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -949)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-949)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-949))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) 27)) (-3887 (($) NIL T CONST)) (-1846 (((-627 (-627 (-552))) (-627 (-552))) 29)) (-3467 (((-552) $) 45)) (-1424 (($ (-627 (-552))) 17)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3562 (((-627 (-552)) $) 12)) (-2616 (($ $) 32)) (-1477 (((-842) $) 43) (((-627 (-552)) $) 10)) (-1922 (($) 7 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 19)) (-2384 (($ $ $) 21)) (* (($ (-900) $) NIL) (($ (-754) $) 25))) -(((-950) (-13 (-778) (-600 (-627 (-552))) (-10 -8 (-15 -1424 ($ (-627 (-552)))) (-15 -1846 ((-627 (-627 (-552))) (-627 (-552)))) (-15 -3467 ((-552) $)) (-15 -2616 ($ $)) (-15 -1477 ((-627 (-552)) $))))) (T -950)) -((-1424 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950)))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-950)) (-5 *3 (-627 (-552))))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-950)))) (-2616 (*1 *1 *1) (-5 *1 (-950))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950))))) -(-13 (-778) (-600 (-627 (-552))) (-10 -8 (-15 -1424 ($ (-627 (-552)))) (-15 -1846 ((-627 (-627 (-552))) (-627 (-552)))) (-15 -3467 ((-552) $)) (-15 -2616 ($ $)) (-15 -1477 ((-627 (-552)) $)))) -((-2407 (($ $ |#2|) 30)) (-2396 (($ $) 22) (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-401 (-552)) $) 26) (($ $ (-401 (-552))) 28))) -(((-951 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2407 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-952 |#2| |#3| |#4|) (-1028) (-775) (-830)) (T -951)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2407 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 72)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2391 (((-111) $) 71)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-627 |#3|) (-627 |#2|)) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-952 |#1| |#2| |#3|) (-137) (-1028) (-775) (-830)) (T -952)) -((-1993 (*1 *2 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *3 (-775)) (-4 *4 (-830)) (-4 *2 (-1028)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *4 (-830)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *2 *4)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *2 (-775)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-952 *4 *3 *2)) (-4 *4 (-1028)) (-4 *3 (-775)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 *5)) (-4 *1 (-952 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-775)) (-4 *6 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *5 (-830)) (-5 *2 (-627 *5)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *4 (-830))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1832 ($ $ |t#3| |t#2|)) (-15 -1832 ($ $ (-627 |t#3|) (-627 |t#2|))) (-15 -1981 ($ $)) (-15 -1993 (|t#1| $)) (-15 -3567 (|t#2| $)) (-15 -1853 ((-627 |t#3|) $)) (-15 -2391 ((-111) $)) (-15 -2890 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3457 (((-1070 (-220)) $) 8)) (-3447 (((-1070 (-220)) $) 9)) (-3437 (((-1070 (-220)) $) 10)) (-2116 (((-627 (-627 (-922 (-220)))) $) 11)) (-1477 (((-842) $) 6))) -(((-953) (-137)) (T -953)) -((-2116 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-627 (-627 (-922 (-220))))))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220))))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) -(-13 (-599 (-842)) (-10 -8 (-15 -2116 ((-627 (-627 (-922 (-220)))) $)) (-15 -3437 ((-1070 (-220)) $)) (-15 -3447 ((-1070 (-220)) $)) (-15 -3457 ((-1070 (-220)) $)))) -(((-599 (-842)) . T)) -((-1853 (((-627 |#4|) $) 23)) (-2730 (((-111) $) 48)) (-3648 (((-111) $) 47)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#4|) 36)) (-3569 (((-111) $) 49)) (-2330 (((-111) $ $) 55)) (-2165 (((-111) $ $) 58)) (-3188 (((-111) $) 53)) (-4097 (((-627 |#5|) (-627 |#5|) $) 90)) (-3761 (((-627 |#5|) (-627 |#5|) $) 87)) (-3401 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4198 (((-627 |#4|) $) 27)) (-1927 (((-111) |#4| $) 30)) (-1943 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-4237 (($ $ |#4|) 33)) (-2286 (($ $ |#4|) 32)) (-3911 (($ $ |#4|) 34)) (-2292 (((-111) $ $) 40))) -(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3648 ((-111) |#1|)) (-15 -4097 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3761 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3401 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1943 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3569 ((-111) |#1|)) (-15 -2165 ((-111) |#1| |#1|)) (-15 -2330 ((-111) |#1| |#1|)) (-15 -3188 ((-111) |#1|)) (-15 -2730 ((-111) |#1|)) (-15 -4298 ((-2 (|:| |under| |#1|) (|:| -2060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -3911 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -1927 ((-111) |#4| |#1|)) (-15 -4198 ((-627 |#4|) |#1|)) (-15 -1853 ((-627 |#4|) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-955 |#2| |#3| |#4| |#5|) (-1028) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -954)) -NIL -(-10 -8 (-15 -3648 ((-111) |#1|)) (-15 -4097 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3761 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3401 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1943 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3569 ((-111) |#1|)) (-15 -2165 ((-111) |#1| |#1|)) (-15 -2330 ((-111) |#1| |#1|)) (-15 -3188 ((-111) |#1|)) (-15 -2730 ((-111) |#1|)) (-15 -4298 ((-2 (|:| |under| |#1|) (|:| -2060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -3911 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -1927 ((-111) |#4| |#1|)) (-15 -4198 ((-627 |#4|) |#1|)) (-15 -1853 ((-627 |#4|) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366)))) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366)))) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-1498 (((-1096) $) 10)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-955 |#1| |#2| |#3| |#4|) (-137) (-1028) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -955)) -((-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-1042 *3 *4 *2)) (-4 *2 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-1927 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *3 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) (-2286 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-3911 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-4237 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-4298 (*1 *2 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2060 *1) (|:| |upper| *1))) (-4 *1 (-955 *4 *5 *3 *6)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-1943 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3401 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3761 (*1 *2 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)))) (-4097 (*1 *2 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111))))) -(-13 (-1076) (-148 |t#4|) (-599 (-627 |t#4|)) (-10 -8 (-6 -4366) (-15 -4039 ((-3 $ "failed") (-627 |t#4|))) (-15 -1703 ($ (-627 |t#4|))) (-15 -4147 (|t#3| $)) (-15 -1853 ((-627 |t#3|) $)) (-15 -4198 ((-627 |t#3|) $)) (-15 -1927 ((-111) |t#3| $)) (-15 -2286 ($ $ |t#3|)) (-15 -3911 ($ $ |t#3|)) (-15 -4237 ($ $ |t#3|)) (-15 -4298 ((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |t#3|)) (-15 -2730 ((-111) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -3188 ((-111) $)) (-15 -2330 ((-111) $ $)) (-15 -2165 ((-111) $ $)) (-15 -3569 ((-111) $)) (-15 -1943 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3401 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3761 ((-627 |t#4|) (-627 |t#4|) $)) (-15 -4097 ((-627 |t#4|) (-627 |t#4|) $)) (-15 -3648 ((-111) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-1076) . T) ((-1189) . T)) -((-2451 (((-627 |#4|) |#4| |#4|) 118)) (-4074 (((-627 |#4|) (-627 |#4|) (-111)) 107 (|has| |#1| (-445))) (((-627 |#4|) (-627 |#4|)) 108 (|has| |#1| (-445)))) (-4341 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 35)) (-2508 (((-111) |#4|) 34)) (-2461 (((-627 |#4|) |#4|) 103 (|has| |#1| (-445)))) (-3635 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|)) 20)) (-2271 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|)) 22)) (-2157 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|)) 23)) (-2206 (((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|)) 73)) (-1329 (((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2900 (((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3951 (((-627 |#4|) (-627 |#4|)) 110)) (-2247 (((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111)) 48) (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 50)) (-3869 ((|#4| |#4| (-627 |#4|)) 49)) (-3812 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 114 (|has| |#1| (-445)))) (-1884 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 117 (|has| |#1| (-445)))) (-3405 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 116 (|has| |#1| (-445)))) (-3279 (((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|))) 87) (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 89) (((-627 |#4|) (-627 |#4|) |#4|) 121) (((-627 |#4|) |#4| |#4|) 119) (((-627 |#4|) (-627 |#4|)) 88)) (-4238 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 100 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-3864 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 41)) (-1998 (((-111) (-627 |#4|)) 62)) (-1426 (((-111) (-627 |#4|) (-627 (-627 |#4|))) 53)) (-2583 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 29)) (-2943 (((-111) |#4|) 28)) (-2541 (((-627 |#4|) (-627 |#4|)) 98 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-4151 (((-627 |#4|) (-627 |#4|)) 99 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2328 (((-627 |#4|) (-627 |#4|)) 66)) (-2588 (((-627 |#4|) (-627 |#4|)) 79)) (-1743 (((-111) (-627 |#4|) (-627 |#4|)) 51)) (-3790 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 39)) (-4089 (((-111) |#4|) 36))) -(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3279 ((-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) |#4| |#4|)) (-15 -3951 ((-627 |#4|) (-627 |#4|))) (-15 -2451 ((-627 |#4|) |#4| |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|)))) (-15 -1743 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -1426 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -1998 ((-111) (-627 |#4|))) (-15 -3635 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|))) (-15 -2271 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -2157 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -3864 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2508 ((-111) |#4|)) (-15 -4341 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2943 ((-111) |#4|)) (-15 -2583 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -4089 ((-111) |#4|)) (-15 -3790 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111))) (-15 -3869 (|#4| |#4| (-627 |#4|))) (-15 -2328 ((-627 |#4|) (-627 |#4|))) (-15 -2206 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|))) (-15 -2588 ((-627 |#4|) (-627 |#4|))) (-15 -1329 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2900 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2461 ((-627 |#4|) |#4|)) (-15 -4074 ((-627 |#4|) (-627 |#4|))) (-15 -4074 ((-627 |#4|) (-627 |#4|) (-111))) (-15 -3812 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3405 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -1884 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -4151 ((-627 |#4|) (-627 |#4|))) (-15 -2541 ((-627 |#4|) (-627 |#4|))) (-15 -4238 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) |%noBranch|)) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -956)) -((-4238 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-1884 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3405 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-4074 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-2900 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-956 *5 *6 *7 *8)))) (-1329 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-627 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *1 (-956 *6 *7 *8 *9)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2206 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -2240 (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *2)))) (-2247 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-2247 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3790 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-4089 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2943 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-4341 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *7)))) (-1426 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *5 *6 *7 *8)))) (-1743 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *7)))) (-3279 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-627 *7) (-627 *7))) (-5 *2 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-3279 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3279 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *3)))) (-2451 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) -(-10 -7 (-15 -3279 ((-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) |#4| |#4|)) (-15 -3951 ((-627 |#4|) (-627 |#4|))) (-15 -2451 ((-627 |#4|) |#4| |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|)))) (-15 -1743 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -1426 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -1998 ((-111) (-627 |#4|))) (-15 -3635 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|))) (-15 -2271 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -2157 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -3864 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2508 ((-111) |#4|)) (-15 -4341 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2943 ((-111) |#4|)) (-15 -2583 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -4089 ((-111) |#4|)) (-15 -3790 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111))) (-15 -3869 (|#4| |#4| (-627 |#4|))) (-15 -2328 ((-627 |#4|) (-627 |#4|))) (-15 -2206 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|))) (-15 -2588 ((-627 |#4|) (-627 |#4|))) (-15 -1329 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2900 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2461 ((-627 |#4|) |#4|)) (-15 -4074 ((-627 |#4|) (-627 |#4|))) (-15 -4074 ((-627 |#4|) (-627 |#4|) (-111))) (-15 -3812 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3405 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -1884 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -4151 ((-627 |#4|) (-627 |#4|))) (-15 -2541 ((-627 |#4|) (-627 |#4|))) (-15 -4238 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) |%noBranch|)) -((-2566 (((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2467 (((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)) 36)) (-4222 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-957 |#1|) (-10 -7 (-15 -2566 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4222 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2467 ((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)))) (-357)) (T -957)) -((-2467 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)))) (-4222 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-671 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-957 *5)))) (-2566 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) (-5 *1 (-957 *6)) (-5 *3 (-671 *6))))) -(-10 -7 (-15 -2566 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4222 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2467 ((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)))) -((-2487 (((-412 |#4|) |#4|) 48))) -(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 ((-412 |#4|) |#4|))) (-830) (-776) (-445) (-928 |#3| |#2| |#1|)) (T -958)) -((-2487 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-445)) (-5 *2 (-412 *3)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) -(-10 -7 (-15 -2487 ((-412 |#4|) |#4|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754)) 112 (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-1745 (($ (-627 |#1|)) 118)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) 105 (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2306 ((|#1| $) 102 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-3971 (((-111) $ (-754)) 10)) (-3593 ((|#1| $) 103 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-4168 (($ $ (-627 |#1|)) 115)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-2395 ((|#1| $ $) 106 (|has| |#1| (-1028)))) (-2405 (((-900) $) 117)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-3917 (($ $ $) 104)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528)))) (($ (-627 |#1|)) 116)) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-2396 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2384 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-709))) (($ $ |#1|) 107 (|has| |#1| (-709)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-959 |#1|) (-137) (-1028)) (T -959)) -((-1745 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-959 *3)) (-4 *3 (-1028)) (-5 *2 (-900)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1028)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-959 *3)) (-4 *3 (-1028))))) -(-13 (-1233 |t#1|) (-10 -8 (-15 -1745 ($ (-627 |t#1|))) (-15 -2405 ((-900) $)) (-15 -3562 ($ (-627 |t#1|))) (-15 -3917 ($ $ $)) (-15 -4168 ($ $ (-627 |t#1|))))) -(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-19 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T) ((-1233 |#1|) . T)) -((-3516 (((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)) 17))) -(((-960 |#1| |#2|) (-10 -7 (-15 -3516 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) (-1028) (-1028)) (T -960)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-922 *6)) (-5 *1 (-960 *5 *6))))) -(-10 -7 (-15 -3516 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) -((-4282 ((|#1| (-922 |#1|)) 13)) (-1638 ((|#1| (-922 |#1|)) 12)) (-3991 ((|#1| (-922 |#1|)) 11)) (-3478 ((|#1| (-922 |#1|)) 15)) (-2291 ((|#1| (-922 |#1|)) 21)) (-3946 ((|#1| (-922 |#1|)) 14)) (-1871 ((|#1| (-922 |#1|)) 16)) (-3808 ((|#1| (-922 |#1|)) 20)) (-1552 ((|#1| (-922 |#1|)) 19))) -(((-961 |#1|) (-10 -7 (-15 -3991 (|#1| (-922 |#1|))) (-15 -1638 (|#1| (-922 |#1|))) (-15 -4282 (|#1| (-922 |#1|))) (-15 -3946 (|#1| (-922 |#1|))) (-15 -3478 (|#1| (-922 |#1|))) (-15 -1871 (|#1| (-922 |#1|))) (-15 -1552 (|#1| (-922 |#1|))) (-15 -3808 (|#1| (-922 |#1|))) (-15 -2291 (|#1| (-922 |#1|)))) (-1028)) (T -961)) -((-2291 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(-10 -7 (-15 -3991 (|#1| (-922 |#1|))) (-15 -1638 (|#1| (-922 |#1|))) (-15 -4282 (|#1| (-922 |#1|))) (-15 -3946 (|#1| (-922 |#1|))) (-15 -3478 (|#1| (-922 |#1|))) (-15 -1871 (|#1| (-922 |#1|))) (-15 -1552 (|#1| (-922 |#1|))) (-15 -3808 (|#1| (-922 |#1|))) (-15 -2291 (|#1| (-922 |#1|)))) -((-2034 (((-3 |#1| "failed") |#1|) 18)) (-3118 (((-3 |#1| "failed") |#1|) 6)) (-1656 (((-3 |#1| "failed") |#1|) 16)) (-3940 (((-3 |#1| "failed") |#1|) 4)) (-3105 (((-3 |#1| "failed") |#1|) 20)) (-3578 (((-3 |#1| "failed") |#1|) 8)) (-3121 (((-3 |#1| "failed") |#1| (-754)) 1)) (-4310 (((-3 |#1| "failed") |#1|) 3)) (-1588 (((-3 |#1| "failed") |#1|) 2)) (-2207 (((-3 |#1| "failed") |#1|) 21)) (-3440 (((-3 |#1| "failed") |#1|) 9)) (-1687 (((-3 |#1| "failed") |#1|) 19)) (-1851 (((-3 |#1| "failed") |#1|) 7)) (-3392 (((-3 |#1| "failed") |#1|) 17)) (-2289 (((-3 |#1| "failed") |#1|) 5)) (-4101 (((-3 |#1| "failed") |#1|) 24)) (-2193 (((-3 |#1| "failed") |#1|) 12)) (-1944 (((-3 |#1| "failed") |#1|) 22)) (-2104 (((-3 |#1| "failed") |#1|) 10)) (-2818 (((-3 |#1| "failed") |#1|) 26)) (-3546 (((-3 |#1| "failed") |#1|) 14)) (-2448 (((-3 |#1| "failed") |#1|) 27)) (-3162 (((-3 |#1| "failed") |#1|) 15)) (-2088 (((-3 |#1| "failed") |#1|) 25)) (-2012 (((-3 |#1| "failed") |#1|) 13)) (-3489 (((-3 |#1| "failed") |#1|) 23)) (-3748 (((-3 |#1| "failed") |#1|) 11))) -(((-962 |#1|) (-137) (-1174)) (T -962)) -((-2448 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2818 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2088 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-4101 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3489 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1944 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2207 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3105 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1687 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2034 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1656 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3162 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3546 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2012 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2193 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3748 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2104 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3440 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3578 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1851 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3118 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2289 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3940 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-4310 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1588 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3121 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(-13 (-10 -7 (-15 -3121 ((-3 |t#1| "failed") |t#1| (-754))) (-15 -1588 ((-3 |t#1| "failed") |t#1|)) (-15 -4310 ((-3 |t#1| "failed") |t#1|)) (-15 -3940 ((-3 |t#1| "failed") |t#1|)) (-15 -2289 ((-3 |t#1| "failed") |t#1|)) (-15 -3118 ((-3 |t#1| "failed") |t#1|)) (-15 -1851 ((-3 |t#1| "failed") |t#1|)) (-15 -3578 ((-3 |t#1| "failed") |t#1|)) (-15 -3440 ((-3 |t#1| "failed") |t#1|)) (-15 -2104 ((-3 |t#1| "failed") |t#1|)) (-15 -3748 ((-3 |t#1| "failed") |t#1|)) (-15 -2193 ((-3 |t#1| "failed") |t#1|)) (-15 -2012 ((-3 |t#1| "failed") |t#1|)) (-15 -3546 ((-3 |t#1| "failed") |t#1|)) (-15 -3162 ((-3 |t#1| "failed") |t#1|)) (-15 -1656 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -2034 ((-3 |t#1| "failed") |t#1|)) (-15 -1687 ((-3 |t#1| "failed") |t#1|)) (-15 -3105 ((-3 |t#1| "failed") |t#1|)) (-15 -2207 ((-3 |t#1| "failed") |t#1|)) (-15 -1944 ((-3 |t#1| "failed") |t#1|)) (-15 -3489 ((-3 |t#1| "failed") |t#1|)) (-15 -4101 ((-3 |t#1| "failed") |t#1|)) (-15 -2088 ((-3 |t#1| "failed") |t#1|)) (-15 -2818 ((-3 |t#1| "failed") |t#1|)) (-15 -2448 ((-3 |t#1| "failed") |t#1|)))) -((-4007 ((|#4| |#4| (-627 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4158 ((|#4| |#4| (-627 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3516 ((|#4| (-1 |#4| (-931 |#1|)) |#4|) 30))) -(((-963 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 (|#4| |#4| |#3|)) (-15 -4158 (|#4| |#4| (-627 |#3|))) (-15 -4007 (|#4| |#4| |#3|)) (-15 -4007 (|#4| |#4| (-627 |#3|))) (-15 -3516 (|#4| (-1 |#4| (-931 |#1|)) |#4|))) (-1028) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-928 (-931 |#1|) |#2| |#3|)) (T -963)) -((-3516 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-931 *4))) (-4 *4 (-1028)) (-4 *2 (-928 (-931 *4) *5 *6)) (-4 *5 (-776)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *6 *2)))) (-4007 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) (-4 *2 (-928 (-931 *4) *5 *6)))) (-4007 (*1 *2 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) (-4158 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) (-4 *2 (-928 (-931 *4) *5 *6)))) (-4158 (*1 *2 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3))))) -(-10 -7 (-15 -4158 (|#4| |#4| |#3|)) (-15 -4158 (|#4| |#4| (-627 |#3|))) (-15 -4007 (|#4| |#4| |#3|)) (-15 -4007 (|#4| |#4| (-627 |#3|))) (-15 -3516 (|#4| (-1 |#4| (-931 |#1|)) |#4|))) -((-2702 ((|#2| |#3|) 35)) (-2993 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 73)) (-3402 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 89))) -(((-964 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2702 (|#2| |#3|))) (-343) (-1211 |#1|) (-1211 |#2|) (-707 |#2| |#3|)) (T -964)) -((-2702 (*1 *2 *3) (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-964 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-707 *2 *3)))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-964 *4 *3 *5 *6)) (-4 *6 (-707 *3 *5)))) (-3402 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-964 *3 *4 *5 *6)) (-4 *6 (-707 *4 *5))))) -(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2702 (|#2| |#3|))) -((-4160 (((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))) 69))) -(((-965 |#1| |#2|) (-10 -7 (-15 -4160 ((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))))) (-627 (-1152)) (-754)) (T -965)) -((-4160 (*1 *2 *2) (-12 (-5 *2 (-966 (-401 (-552)) (-844 *3) (-235 *4 (-754)) (-242 *3 (-401 (-552))))) (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-965 *3 *4))))) -(-10 -7 (-15 -4160 ((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))))) -((-1465 (((-111) $ $) NIL)) (-2523 (((-3 (-111) "failed") $) 69)) (-2380 (($ $) 36 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-4295 (($ $ (-3 (-111) "failed")) 70)) (-3033 (($ (-627 |#4|) |#4|) 25)) (-1595 (((-1134) $) NIL)) (-3817 (($ $) 67)) (-1498 (((-1096) $) NIL)) (-1275 (((-111) $) 68)) (-2373 (($) 30)) (-2609 ((|#4| $) 72)) (-2078 (((-627 |#4|) $) 71)) (-1477 (((-842) $) 66)) (-2292 (((-111) $ $) NIL))) -(((-966 |#1| |#2| |#3| |#4|) (-13 (-1076) (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3033 ($ (-627 |#4|) |#4|)) (-15 -2523 ((-3 (-111) "failed") $)) (-15 -4295 ($ $ (-3 (-111) "failed"))) (-15 -1275 ((-111) $)) (-15 -2078 ((-627 |#4|) $)) (-15 -2609 (|#4| $)) (-15 -3817 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -2380 ($ $)) |%noBranch|) |%noBranch|))) (-445) (-830) (-776) (-928 |#1| |#3| |#2|)) (T -966)) -((-2373 (*1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) (-3033 (*1 *1 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-928 *4 *6 *5)) (-4 *4 (-445)) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *1 (-966 *4 *5 *6 *3)))) (-2523 (*1 *2 *1) (|partial| -12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-1275 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-2078 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-627 *6)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-2609 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-966 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)))) (-3817 (*1 *1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) (-2380 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3))))) -(-13 (-1076) (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3033 ($ (-627 |#4|) |#4|)) (-15 -2523 ((-3 (-111) "failed") $)) (-15 -4295 ($ $ (-3 (-111) "failed"))) (-15 -1275 ((-111) $)) (-15 -2078 ((-627 |#4|) $)) (-15 -2609 (|#4| $)) (-15 -3817 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -2380 ($ $)) |%noBranch|) |%noBranch|))) -((-3257 (((-111) |#5| |#5|) 38)) (-2172 (((-111) |#5| |#5|) 52)) (-1331 (((-111) |#5| (-627 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-3701 (((-111) (-627 |#4|) (-627 |#4|)) 58)) (-1680 (((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 63)) (-3935 (((-1240)) 33)) (-4233 (((-1240) (-1134) (-1134) (-1134)) 29)) (-3115 (((-627 |#5|) (-627 |#5|)) 81)) (-1462 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) 79)) (-3155 (((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111)) 101)) (-2506 (((-111) |#5| |#5|) 47)) (-2719 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3306 (((-111) (-627 |#4|) (-627 |#4|)) 57)) (-3949 (((-111) (-627 |#4|) (-627 |#4|)) 59)) (-2654 (((-111) (-627 |#4|) (-627 |#4|)) 60)) (-1570 (((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2937 (((-627 |#5|) (-627 |#5|)) 43))) -(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -967)) -((-1570 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) (-5 *1 (-967 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) (-4 *4 (-1048 *6 *7 *8 *9)))) (-3155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) (-5 *1 (-967 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-967 *5 *6 *7 *8 *3)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3306 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-3935 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-967 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4233 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-4344 (((-1152) $) 15)) (-4288 (((-1134) $) 16)) (-3262 (($ (-1152) (-1134)) 14)) (-1477 (((-842) $) 13))) -(((-968) (-13 (-599 (-842)) (-10 -8 (-15 -3262 ($ (-1152) (-1134))) (-15 -4344 ((-1152) $)) (-15 -4288 ((-1134) $))))) (T -968)) -((-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-968)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-968)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-968))))) -(-13 (-599 (-842)) (-10 -8 (-15 -3262 ($ (-1152) (-1134))) (-15 -4344 ((-1152) $)) (-15 -4288 ((-1134) $)))) -((-3516 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) (-544) (-544) (-971 |#1|) (-971 |#2|)) (T -969)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-4 *2 (-971 *6)) (-5 *1 (-969 *5 *6 *4 *2)) (-4 *4 (-971 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) -((-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-1152) "failed") $) 65) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) 95)) (-1703 ((|#2| $) NIL) (((-1152) $) 60) (((-401 (-552)) $) NIL) (((-552) $) 92)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 112) (((-671 |#2|) (-671 $)) 28)) (-1279 (($) 98)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 75) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 84)) (-3798 (($ $) 10)) (-4317 (((-3 $ "failed") $) 20)) (-3516 (($ (-1 |#2| |#2|) $) 22)) (-3002 (($) 16)) (-4328 (($ $) 54)) (-2942 (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1583 (($ $) 12)) (-3562 (((-871 (-552)) $) 70) (((-871 (-373)) $) 79) (((-528) $) 40) (((-373) $) 44) (((-220) $) 47)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 90) (($ |#2|) NIL) (($ (-1152)) 57)) (-3995 (((-754)) 31)) (-2316 (((-111) $ $) 50))) -(((-970 |#1| |#2|) (-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -1279 (|#1|)) (-15 -4328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) (-971 |#2|) (-544)) (T -970)) -((-3995 (*1 *2) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-970 *3 *4)) (-4 *3 (-971 *4))))) -(-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -1279 (|#1|)) (-15 -4328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 ((|#1| $) 136 (|has| |#1| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 127 (|has| |#1| (-888)))) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 130 (|has| |#1| (-888)))) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 117 (|has| |#1| (-803)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 175) (((-3 (-1152) "failed") $) 125 (|has| |#1| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 109 (|has| |#1| (-1017 (-552)))) (((-3 (-552) "failed") $) 107 (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 174) (((-1152) $) 124 (|has| |#1| (-1017 (-1152)))) (((-401 (-552)) $) 108 (|has| |#1| (-1017 (-552)))) (((-552) $) 106 (|has| |#1| (-1017 (-552))))) (-2813 (($ $ $) 53)) (-1800 (((-671 (-552)) (-671 $)) 149 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 148 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 147) (((-671 |#1|) (-671 $)) 146)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 134 (|has| |#1| (-537)))) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2983 (((-111) $) 119 (|has| |#1| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 143 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 142 (|has| |#1| (-865 (-373))))) (-2624 (((-111) $) 30)) (-3798 (($ $) 138)) (-2918 ((|#1| $) 140)) (-4317 (((-3 $ "failed") $) 105 (|has| |#1| (-1127)))) (-1508 (((-111) $) 118 (|has| |#1| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 115 (|has| |#1| (-830)))) (-4093 (($ $ $) 114 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 166)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 104 (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 135 (|has| |#1| (-301)))) (-2060 ((|#1| $) 132 (|has| |#1| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 129 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 128 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 172 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 170 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 169 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 168 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 167 (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) 56)) (-1985 (($ $ |#1|) 173 (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-2942 (($ $) 165 (|has| |#1| (-228))) (($ $ (-754)) 163 (|has| |#1| (-228))) (($ $ (-1152)) 161 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 160 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 159 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 158 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1583 (($ $) 137)) (-2929 ((|#1| $) 139)) (-3562 (((-871 (-552)) $) 145 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 144 (|has| |#1| (-600 (-871 (-373))))) (((-528) $) 122 (|has| |#1| (-600 (-528)))) (((-373) $) 121 (|has| |#1| (-1001))) (((-220) $) 120 (|has| |#1| (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 131 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 178) (($ (-1152)) 126 (|has| |#1| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) 123 (-1559 (|has| |#1| (-142)) (-2520 (|has| $ (-142)) (|has| |#1| (-888)))))) (-3995 (((-754)) 28)) (-3796 ((|#1| $) 133 (|has| |#1| (-537)))) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 116 (|has| |#1| (-803)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 164 (|has| |#1| (-228))) (($ $ (-754)) 162 (|has| |#1| (-228))) (($ $ (-1152)) 157 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 156 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 155 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 154 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2351 (((-111) $ $) 112 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 111 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 113 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 110 (|has| |#1| (-830)))) (-2407 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-971 |#1|) (-137) (-544)) (T -971)) -((-2407 (*1 *1 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-1279 (*1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-537)) (-4 *2 (-544)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537))))) -(-13 (-357) (-38 |t#1|) (-1017 |t#1|) (-332 |t#1|) (-226 |t#1|) (-371 |t#1|) (-863 |t#1|) (-394 |t#1|) (-10 -8 (-15 -2407 ($ |t#1| |t#1|)) (-15 -2918 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -3798 ($ $)) (-15 -1583 ($ $)) (IF (|has| |t#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |t#1| (-1017 (-552))) (PROGN (-6 (-1017 (-552))) (-6 (-1017 (-401 (-552))))) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1017 (-1152))) (-6 (-1017 (-1152))) |%noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -3471 (|t#1| $)) (-15 -4328 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -1279 ($)) (-15 -3796 (|t#1| $)) (-15 -2060 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-888)) (-6 (-888)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) |has| |#1| (-1001)) ((-600 (-373)) |has| |#1| (-1001)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) . T) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) . T) ((-301) . T) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-445) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-774) |has| |#1| (-803)) ((-775) |has| |#1| (-803)) ((-777) |has| |#1| (-803)) ((-778) |has| |#1| (-803)) ((-803) |has| |#1| (-803)) ((-828) |has| |#1| (-803)) ((-830) -1559 (|has| |#1| (-830)) (|has| |#1| (-803))) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-888) |has| |#1| (-888)) ((-899) . T) ((-1001) |has| |#1| (-1001)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-552))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-1152)) |has| |#1| (-1017 (-1152))) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-1127)) ((-1189) . T) ((-1193) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3352 (($ (-1118 |#1| |#2|)) 11)) (-4176 (((-1118 |#1| |#2|) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#2| $ (-235 |#1| |#2|)) 16)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL))) -(((-972 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3352 ($ (-1118 |#1| |#2|))) (-15 -4176 ((-1118 |#1| |#2|) $)) (-15 -1985 (|#2| $ (-235 |#1| |#2|))))) (-900) (-357)) (T -972)) -((-3352 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)) (-5 *1 (-972 *3 *4)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-1118 *3 *4)) (-5 *1 (-972 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-900)) (-4 *2 (-357)) (-5 *1 (-972 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3352 ($ (-1118 |#1| |#2|))) (-15 -4176 ((-1118 |#1| |#2|) $)) (-15 -1985 (|#2| $ (-235 |#1| |#2|))))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-973) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $))))) (T -973)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-973))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3022 (($ $) 46)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-3593 (((-754) $) 45)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1412 ((|#1| $) 44)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1549 ((|#1| |#1| $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4234 ((|#1| $) 47)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-2905 ((|#1| $) 43)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-974 |#1|) (-137) (-1189)) (T -974)) -((-1549 (*1 *2 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -1549 (|t#1| |t#1| $)) (-15 -4234 (|t#1| $)) (-15 -3022 ($ $)) (-15 -3593 ((-754) $)) (-15 -1412 (|t#1| $)) (-15 -2905 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3024 (((-111) $) 42)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 43)) (-2859 (((-3 (-401 (-552)) "failed") $) 78)) (-4229 (((-111) $) 72)) (-2411 (((-401 (-552)) $) 76)) (-2624 (((-111) $) 41)) (-2349 ((|#2| $) 22)) (-3516 (($ (-1 |#2| |#2|) $) 19)) (-1951 (($ $) 61)) (-2942 (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3562 (((-528) $) 67)) (-2616 (($ $) 17)) (-1477 (((-842) $) 56) (($ (-552)) 38) (($ |#2|) 36) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 10)) (-3329 ((|#2| $) 71)) (-2292 (((-111) $ $) 25)) (-2316 (((-111) $ $) 69)) (-2396 (($ $) 29) (($ $ $) 28)) (-2384 (($ $ $) 26)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) -(((-975 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -1951 (|#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -2624 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-976 |#2|) (-169)) (T -975)) -((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-975 *3 *4)) (-4 *3 (-976 *4))))) -(-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -1951 (|#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -2624 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 116 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 114 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 113)) (-1703 (((-552) $) 117 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 115 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 112)) (-1800 (((-671 (-552)) (-671 $)) 87 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 86 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 85) (((-671 |#1|) (-671 $)) 84)) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 77)) (-2859 (((-3 (-401 (-552)) "failed") $) 73 (|has| |#1| (-537)))) (-4229 (((-111) $) 75 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 74 (|has| |#1| (-537)))) (-2272 (($ |#1| |#1| |#1| |#1|) 78)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 79)) (-1816 (($ $ $) 66 (|has| |#1| (-830)))) (-4093 (($ $ $) 65 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 88)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 70 (|has| |#1| (-357)))) (-1715 ((|#1| $) 80)) (-1421 ((|#1| $) 81)) (-2963 ((|#1| $) 82)) (-1498 (((-1096) $) 10)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 94 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 92 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 91 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 90 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 89 (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) 95 (|has| |#1| (-280 |#1| |#1|)))) (-2942 (($ $) 111 (|has| |#1| (-228))) (($ $ (-754)) 109 (|has| |#1| (-228))) (($ $ (-1152)) 107 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 106 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 105 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 104 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3562 (((-528) $) 71 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 83)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 60 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) 72 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3329 ((|#1| $) 76 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 110 (|has| |#1| (-228))) (($ $ (-754)) 108 (|has| |#1| (-228))) (($ $ (-1152)) 103 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 102 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 101 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 100 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2351 (((-111) $ $) 63 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 62 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 64 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 61 (|has| |#1| (-830)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 69 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-401 (-552))) 68 (|has| |#1| (-357))) (($ (-401 (-552)) $) 67 (|has| |#1| (-357))))) -(((-976 |#1|) (-137) (-169)) (T -976)) -((-2616 (*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2272 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-371 |t#1|) (-10 -8 (-15 -2616 ($ $)) (-15 -2963 (|t#1| $)) (-15 -1421 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -2272 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1749 (|t#1| $)) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-357)) ((-38 |#1|) . T) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-357)) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) |has| |#1| (-357)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-630 #0#) |has| |#1| (-357)) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-357)) ((-700 |#1|) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-357)) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-976 |#2|) (-169) (-976 |#4|) (-169)) (T -977)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-976 *6)) (-5 *1 (-977 *4 *5 *2 *6)) (-4 *4 (-976 *5))))) -(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 12)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-2272 (($ |#1| |#1| |#1| |#1|) 16)) (-2624 (((-111) $) NIL)) (-2349 ((|#1| $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-1715 ((|#1| $) 15)) (-1421 ((|#1| $) 14)) (-2963 ((|#1| $) 13)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3329 ((|#1| $) NIL (|has| |#1| (-1037)))) (-1922 (($) 8 T CONST)) (-1933 (($) 10 T CONST)) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))))) -(((-978 |#1|) (-976 |#1|) (-169)) (T -978)) -NIL -(-976 |#1|) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3022 (($ $) 20)) (-2126 (($ (-627 |#1|)) 29)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3593 (((-754) $) 22)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 24)) (-3954 (($ |#1| $) 15)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1412 ((|#1| $) 23)) (-4133 ((|#1| $) 19)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1549 ((|#1| |#1| $) 14)) (-1275 (((-111) $) 17)) (-2373 (($) NIL)) (-4234 ((|#1| $) 18)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-2905 ((|#1| $) 26)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-979 |#1|) (-13 (-974 |#1|) (-10 -8 (-15 -2126 ($ (-627 |#1|))))) (-1076)) (T -979)) -((-2126 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-979 *3))))) -(-13 (-974 |#1|) (-10 -8 (-15 -2126 ($ (-627 |#1|))))) -((-1737 (($ $) 12)) (-1352 (($ $ (-552)) 13))) -(((-980 |#1|) (-10 -8 (-15 -1737 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-552)))) (-981)) (T -980)) -NIL -(-10 -8 (-15 -1737 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-552)))) -((-1737 (($ $) 6)) (-1352 (($ $ (-552)) 7)) (** (($ $ (-401 (-552))) 8))) -(((-981) (-137)) (T -981)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-401 (-552))))) (-1352 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-552)))) (-1737 (*1 *1 *1) (-4 *1 (-981)))) -(-13 (-10 -8 (-15 -1737 ($ $)) (-15 -1352 ($ $ (-552))) (-15 ** ($ $ (-401 (-552)))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3245 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) NIL) (((-671 (-401 |#2|))) NIL)) (-3385 (((-401 |#2|) $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) NIL (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) NIL)) (-2145 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) NIL) (($ (-1235 (-401 |#2|))) 70) (($ (-1235 |#2|) |#2|) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) NIL) (((-671 (-401 |#2|)) (-671 $)) NIL)) (-1913 (((-1235 $) (-1235 $)) NIL)) (-2091 (($ |#3|) 65) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-3814 (((-627 (-627 |#1|))) NIL (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) NIL)) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) NIL)) (-3521 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-2789 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-401 |#2|) (-357)))) (-1375 (($ $) NIL)) (-2740 (($) NIL (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) NIL (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) NIL (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) NIL)) (-4080 (((-754)) NIL)) (-1380 (((-1235 $) (-1235 $)) NIL)) (-2349 (((-401 |#2|) $) NIL)) (-2370 (((-627 (-931 |#1|)) (-1152)) NIL (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) NIL (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) NIL)) (-1486 (((-671 (-401 |#2|))) 52)) (-2659 (((-671 (-401 |#2|))) 51)) (-1951 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 71)) (-3210 (((-671 (-401 |#2|))) 50)) (-2216 (((-671 (-401 |#2|))) 49)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 77)) (-1668 (((-1235 $)) 46)) (-3402 (((-1235 $)) 45)) (-3177 (((-111) $) NIL)) (-1505 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3002 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) 63)) (-1498 (((-1096) $) NIL)) (-2161 (((-754)) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) NIL (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) NIL)) (-1758 (((-3 |#2| "failed")) 62)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) NIL) (((-401 |#2|)) 42)) (-4018 (((-754) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 53)) (-3439 (($) NIL (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 |#2|)) $) 72) (((-671 (-401 |#2|)) (-1235 $)) NIL)) (-3562 (((-1235 (-401 |#2|)) $) NIL) (($ (-1235 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-401 |#2|) (-1017 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3050 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) NIL)) (-3995 (((-754)) NIL)) (-4073 (((-111)) 60)) (-2423 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2957 (((-1235 $)) 121)) (-3778 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2419 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-336 |#1| |#2| |#3|) (-1193) (-1211 |#1|) (-1211 (-401 |#2|)) (-401 |#2|) (-754)) (T -982)) +((-3094 (($ $ (-1070 $)) 7) (($ $ (-1154)) 6))) +(((-940) (-137)) (T -940)) +((-3094 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-940)))) (-3094 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-1154))))) +(-13 (-10 -8 (-15 -3094 ($ $ (-1154))) (-15 -3094 ($ $ (-1070 $))))) +((-4000 (((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154)) (-1154)) 25) (((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154))) 26) (((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1150 |#1|))) (-933 |#1|) (-1154) (-933 |#1|) (-1154)) 43))) +(((-941 |#1|) (-10 -7 (-15 -4000 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1150 |#1|))) (-933 |#1|) (-1154) (-933 |#1|) (-1154))) (-15 -4000 ((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -4000 ((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154)) (-1154)))) (-13 (-357) (-144))) (T -941)) +((-4000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) (-5 *5 (-1154)) (-4 *6 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 *6))) (|:| |prim| (-1150 *6)))) (-5 *1 (-941 *6)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 *5))) (|:| |prim| (-1150 *5)))) (-5 *1 (-941 *5)))) (-4000 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-933 *5)) (-5 *4 (-1154)) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1150 *5)))) (-5 *1 (-941 *5))))) +(-10 -7 (-15 -4000 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1150 |#1|))) (-933 |#1|) (-1154) (-933 |#1|) (-1154))) (-15 -4000 ((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154)))) (-15 -4000 ((-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 |#1|))) (|:| |prim| (-1150 |#1|))) (-629 (-933 |#1|)) (-629 (-1154)) (-1154)))) +((-4109 (((-629 |#1|) |#1| |#1|) 42)) (-1677 (((-111) |#1|) 39)) (-1500 ((|#1| |#1|) 65)) (-2734 ((|#1| |#1|) 64))) +(((-942 |#1|) (-10 -7 (-15 -1677 ((-111) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -4109 ((-629 |#1|) |#1| |#1|))) (-537)) (T -942)) +((-4109 (*1 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-5 *1 (-942 *3)) (-4 *3 (-537)))) (-1500 (*1 *2 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-537)))) (-2734 (*1 *2 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-537)))) (-1677 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-942 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -1677 ((-111) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -4109 ((-629 |#1|) |#1| |#1|))) +((-1872 (((-1242) (-844)) 9))) +(((-943) (-10 -7 (-15 -1872 ((-1242) (-844))))) (T -943)) +((-1872 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-943))))) +(-10 -7 (-15 -1872 ((-1242) (-844)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 61 (|has| |#1| (-544)))) (-3303 (($ $) 62 (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 28)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) 24)) (-1293 (((-3 $ "failed") $) 35)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-3423 (($ $ |#1| |#2| $) 48)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) 16)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| |#2|) NIL)) (-3544 ((|#2| $) 19)) (-3891 (($ (-1 |#2| |#2|) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3733 (($ $) 23)) (-3743 ((|#1| $) 21)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) 40)) (-3722 ((|#1| $) NIL)) (-3079 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-544))))) (-3969 (((-3 $ "failed") $ $) 74 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-544)))) (-3299 ((|#2| $) 17)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) 39) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 34) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ |#2|) 31)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) 15)) (-4306 (($ $ $ (-756)) 57 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 67 (|has| |#1| (-544)))) (-3297 (($) 22 T CONST)) (-3309 (($) 12 T CONST)) (-1613 (((-111) $ $) 66)) (-1720 (($ $ |#1|) 75 (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) 54) (($ $ (-756)) 52)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-944 |#1| |#2|) (-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -3079 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) (-1030) (-777)) (T -944)) +((-3079 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-944 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *2 (-777))))) +(-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -3079 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))))) (-3305 (($ $ $) 63 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))))) (-4012 (((-3 $ "failed") $ $) 50 (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))))) (-2663 (((-756)) 34 (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-3748 ((|#2| $) 21)) (-2956 ((|#1| $) 20)) (-2130 (($) NIL (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))) CONST)) (-1293 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))))) (-1332 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-4065 (((-111) $) NIL (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))))) (-1772 (($ $ $) NIL (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-2011 (($ $ $) NIL (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-1931 (($ |#1| |#2|) 19)) (-1637 (((-902) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 37 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2840 (($ (-902)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-2876 (((-1098) $) NIL)) (-2074 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2104 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-3213 (((-844) $) 14)) (-3297 (($) 40 (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))) CONST)) (-3309 (($) 24 (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) CONST)) (-1666 (((-111) $ $) NIL (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-1644 (((-111) $ $) NIL (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-1613 (((-111) $ $) 18)) (-1655 (((-111) $ $) NIL (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-1632 (((-111) $ $) 66 (-4029 (-12 (|has| |#1| (-778)) (|has| |#2| (-778))) (-12 (|has| |#1| (-832)) (|has| |#2| (-832)))))) (-1720 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-1709 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1698 (($ $ $) 43 (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778)))))) (** (($ $ (-552)) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466)))) (($ $ (-756)) 31 (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711))))) (($ $ (-902)) NIL (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))))) (* (($ (-552) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-756) $) 46 (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778))))) (($ (-902) $) NIL (-4029 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-778)) (|has| |#2| (-778))))) (($ $ $) 27 (-4029 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711))))))) +(((-945 |#1| |#2|) (-13 (-1078) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-711)) (IF (|has| |#2| (-711)) (-6 (-711)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-778)) (IF (|has| |#2| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-832)) (IF (|has| |#2| (-832)) (-6 (-832)) |%noBranch|) |%noBranch|) (-15 -1931 ($ |#1| |#2|)) (-15 -2956 (|#1| $)) (-15 -3748 (|#2| $)))) (-1078) (-1078)) (T -945)) +((-1931 (*1 *1 *2 *3) (-12 (-5 *1 (-945 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-2956 (*1 *2 *1) (-12 (-4 *2 (-1078)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1078)))) (-3748 (*1 *2 *1) (-12 (-4 *2 (-1078)) (-5 *1 (-945 *3 *2)) (-4 *3 (-1078))))) +(-13 (-1078) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-711)) (IF (|has| |#2| (-711)) (-6 (-711)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-778)) (IF (|has| |#2| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-832)) (IF (|has| |#2| (-832)) (-6 (-832)) |%noBranch|) |%noBranch|) (-15 -1931 ($ |#1| |#2|)) (-15 -2956 (|#1| $)) (-15 -3748 (|#2| $)))) +((-2925 (((-1082) $) 12)) (-2066 (($ (-1154) (-1082)) 13)) (-4290 (((-1154) $) 10)) (-3213 (((-844) $) 22))) +(((-946) (-13 (-599 (-844)) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -2925 ((-1082) $)) (-15 -2066 ($ (-1154) (-1082)))))) (T -946)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-946)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-946)))) (-2066 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1082)) (-5 *1 (-946))))) +(-13 (-599 (-844)) (-10 -8 (-15 -4290 ((-1154) $)) (-15 -2925 ((-1082) $)) (-15 -2066 ($ (-1154) (-1082))))) +((-3202 (((-111) $ $) NIL)) (-3611 (((-1080 (-1154)) $) 19)) (-3249 (((-111) $) 26)) (-1485 (((-1154) $) 27)) (-2828 (((-111) $) 24)) (-1361 ((|#1| $) 25)) (-4220 (((-854 $ $) $) 34)) (-4099 (((-111) $) 33)) (-3167 (($ $ $) 12)) (-2356 (($ $) 29)) (-2709 (((-111) $) 28)) (-4107 (($ $) 10)) (-2623 (((-1136) $) NIL)) (-2077 (((-854 $ $) $) 36)) (-1586 (((-111) $) 35)) (-2494 (($ $ $) 13)) (-2876 (((-1098) $) NIL)) (-1417 (((-854 $ $) $) 38)) (-2379 (((-111) $) 37)) (-1886 (($ $ $) 14)) (-3213 (((-844) $) 40) (($ |#1|) 7) (($ (-1154)) 9)) (-3500 (((-854 $ $) $) 32)) (-4273 (((-111) $) 30)) (-3792 (($ $ $) 11)) (-1613 (((-111) $ $) NIL))) +(((-947 |#1|) (-13 (-948) (-10 -8 (-15 -3213 ($ |#1|)) (-15 -3213 ($ (-1154))) (-15 -3611 ((-1080 (-1154)) $)) (-15 -2828 ((-111) $)) (-15 -1361 (|#1| $)) (-15 -3249 ((-111) $)) (-15 -1485 ((-1154) $)) (-15 -2709 ((-111) $)) (-15 -2356 ($ $)) (-15 -4273 ((-111) $)) (-15 -3500 ((-854 $ $) $)) (-15 -4099 ((-111) $)) (-15 -4220 ((-854 $ $) $)) (-15 -1586 ((-111) $)) (-15 -2077 ((-854 $ $) $)) (-15 -2379 ((-111) $)) (-15 -1417 ((-854 $ $) $)))) (-948)) (T -947)) +((-3213 (*1 *1 *2) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1080 (-1154))) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-1361 (*1 *2 *1) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(-13 (-948) (-10 -8 (-15 -3213 ($ |#1|)) (-15 -3213 ($ (-1154))) (-15 -3611 ((-1080 (-1154)) $)) (-15 -2828 ((-111) $)) (-15 -1361 (|#1| $)) (-15 -3249 ((-111) $)) (-15 -1485 ((-1154) $)) (-15 -2709 ((-111) $)) (-15 -2356 ($ $)) (-15 -4273 ((-111) $)) (-15 -3500 ((-854 $ $) $)) (-15 -4099 ((-111) $)) (-15 -4220 ((-854 $ $) $)) (-15 -1586 ((-111) $)) (-15 -2077 ((-854 $ $) $)) (-15 -2379 ((-111) $)) (-15 -1417 ((-854 $ $) $)))) +((-3202 (((-111) $ $) 7)) (-3167 (($ $ $) 15)) (-4107 (($ $) 17)) (-2623 (((-1136) $) 9)) (-2494 (($ $ $) 14)) (-2876 (((-1098) $) 10)) (-1886 (($ $ $) 13)) (-3213 (((-844) $) 11)) (-3792 (($ $ $) 16)) (-1613 (((-111) $ $) 6))) +(((-948) (-137)) (T -948)) +((-4107 (*1 *1 *1) (-4 *1 (-948))) (-3792 (*1 *1 *1 *1) (-4 *1 (-948))) (-3167 (*1 *1 *1 *1) (-4 *1 (-948))) (-2494 (*1 *1 *1 *1) (-4 *1 (-948))) (-1886 (*1 *1 *1 *1) (-4 *1 (-948)))) +(-13 (-1078) (-10 -8 (-15 -4107 ($ $)) (-15 -3792 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -2494 ($ $ $)) (-15 -1886 ($ $ $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3707 (($ $ $) 43)) (-1446 (($ $ $) 44)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2011 ((|#1| $) 45)) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-949 |#1|) (-137) (-832)) (T -949)) +((-2011 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832)))) (-1446 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832)))) (-3707 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4368) (-15 -2011 (|t#1| $)) (-15 -1446 ($ $ $)) (-15 -3707 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-1606 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|) 85)) (-2134 ((|#2| |#2| |#2|) 83)) (-3403 (((-2 (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|) 87)) (-4003 (((-2 (|:| |coef1| |#2|) (|:| -2594 |#2|)) |#2| |#2|) 89)) (-2020 (((-2 (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|) 107 (|has| |#1| (-445)))) (-4202 (((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|) 46)) (-1537 (((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|) 64)) (-1488 (((-2 (|:| |coef1| |#2|) (|:| -3301 |#1|)) |#2| |#2|) 66)) (-4182 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1970 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756)) 71)) (-2294 (((-2 (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|) 97)) (-3057 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756)) 74)) (-1805 (((-629 (-756)) |#2| |#2|) 82)) (-1769 ((|#1| |#2| |#2|) 42)) (-3690 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|) 105 (|has| |#1| (-445)))) (-4055 ((|#1| |#2| |#2|) 103 (|has| |#1| (-445)))) (-1996 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|) 44)) (-4159 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|) 63)) (-3301 ((|#1| |#2| |#2|) 61)) (-2997 (((-2 (|:| -4158 |#1|) (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|) 35)) (-3327 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3719 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2043 ((|#2| |#2| |#2|) 75)) (-1813 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756)) 69)) (-1599 ((|#2| |#2| |#2| (-756)) 67)) (-2594 ((|#2| |#2| |#2|) 111 (|has| |#1| (-445)))) (-3969 (((-1237 |#2|) (-1237 |#2|) |#1|) 21)) (-1670 (((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|) 39)) (-2501 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|) 95)) (-1721 ((|#1| |#2|) 92)) (-1294 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756)) 73)) (-3505 ((|#2| |#2| |#2| (-756)) 72)) (-3082 (((-629 |#2|) |#2| |#2|) 80)) (-3929 ((|#2| |#2| |#1| |#1| (-756)) 50)) (-2531 ((|#1| |#1| |#1| (-756)) 49)) (* (((-1237 |#2|) |#1| (-1237 |#2|)) 16))) +(((-950 |#1| |#2|) (-10 -7 (-15 -3301 (|#1| |#2| |#2|)) (-15 -4159 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1537 ((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1599 (|#2| |#2| |#2| (-756))) (-15 -1813 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -1970 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -3505 (|#2| |#2| |#2| (-756))) (-15 -1294 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -3057 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -2043 (|#2| |#2| |#2|)) (-15 -3719 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4182 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2134 (|#2| |#2| |#2|)) (-15 -1606 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -3403 ((-2 (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -4003 ((-2 (|:| |coef1| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -1721 (|#1| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|)) (-15 -2294 ((-2 (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|)) (-15 -3082 ((-629 |#2|) |#2| |#2|)) (-15 -1805 ((-629 (-756)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -4055 (|#1| |#2| |#2|)) (-15 -3690 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|)) (-15 -2020 ((-2 (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|)) (-15 -2594 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1237 |#2|) |#1| (-1237 |#2|))) (-15 -3969 ((-1237 |#2|) (-1237 |#2|) |#1|)) (-15 -2997 ((-2 (|:| -4158 |#1|) (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|)) (-15 -1670 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-756))) (-15 -3929 (|#2| |#2| |#1| |#1| (-756))) (-15 -3327 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1769 (|#1| |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -4202 ((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|))) (-544) (-1213 |#1|)) (T -950)) +((-4202 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3301 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3301 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-1769 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2)))) (-3327 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) (-3929 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-756)) (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) (-2531 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *2 (-544)) (-5 *1 (-950 *2 *4)) (-4 *4 (-1213 *2)))) (-1670 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-2997 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -4158 *4) (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3969 (*1 *2 *2 *3) (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-544)) (-5 *1 (-950 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-544)) (-5 *1 (-950 *3 *4)))) (-2594 (*1 *2 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) (-2020 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4055 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4055 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-4055 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2)))) (-1805 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 (-756))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3082 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1721 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1721 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-1721 (*1 *2 *3) (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2)))) (-4003 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2594 *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3403 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2594 *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2594 *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-2134 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) (-4182 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3719 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-2043 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) (-3057 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5)))) (-1294 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5)))) (-3505 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-544)) (-5 *1 (-950 *4 *2)) (-4 *2 (-1213 *4)))) (-1970 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5)))) (-1813 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5)))) (-1599 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-544)) (-5 *1 (-950 *4 *2)) (-4 *2 (-1213 *4)))) (-1488 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3301 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-1537 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3301 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-4159 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3301 *4))) (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) (-3301 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2))))) +(-10 -7 (-15 -3301 (|#1| |#2| |#2|)) (-15 -4159 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1537 ((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -1599 (|#2| |#2| |#2| (-756))) (-15 -1813 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -1970 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -3505 (|#2| |#2| |#2| (-756))) (-15 -1294 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -3057 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-756))) (-15 -2043 (|#2| |#2| |#2|)) (-15 -3719 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4182 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2134 (|#2| |#2| |#2|)) (-15 -1606 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -3403 ((-2 (|:| |coef2| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -4003 ((-2 (|:| |coef1| |#2|) (|:| -2594 |#2|)) |#2| |#2|)) (-15 -1721 (|#1| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|)) (-15 -2294 ((-2 (|:| |coef2| |#2|) (|:| -1721 |#1|)) |#2|)) (-15 -3082 ((-629 |#2|) |#2| |#2|)) (-15 -1805 ((-629 (-756)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -4055 (|#1| |#2| |#2|)) (-15 -3690 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|)) (-15 -2020 ((-2 (|:| |coef2| |#2|) (|:| -4055 |#1|)) |#2| |#2|)) (-15 -2594 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1237 |#2|) |#1| (-1237 |#2|))) (-15 -3969 ((-1237 |#2|) (-1237 |#2|) |#1|)) (-15 -2997 ((-2 (|:| -4158 |#1|) (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|)) (-15 -1670 ((-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) |#2| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-756))) (-15 -3929 (|#2| |#2| |#1| |#1| (-756))) (-15 -3327 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1769 (|#1| |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|)) (-15 -4202 ((-2 (|:| |coef2| |#2|) (|:| -3301 |#1|)) |#2| |#2|))) +((-3202 (((-111) $ $) NIL)) (-1355 (((-1190) $) 13)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 10)) (-3213 (((-844) $) 22) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-951) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $))))) (T -951)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-951)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-951))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) 27)) (-2130 (($) NIL T CONST)) (-3132 (((-629 (-629 (-552))) (-629 (-552))) 29)) (-3565 (((-552) $) 45)) (-3596 (($ (-629 (-552))) 17)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-1522 (((-629 (-552)) $) 12)) (-2074 (($ $) 32)) (-3213 (((-844) $) 43) (((-629 (-552)) $) 10)) (-3297 (($) 7 T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 20)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 19)) (-1698 (($ $ $) 21)) (* (($ (-902) $) NIL) (($ (-756) $) 25))) +(((-952) (-13 (-780) (-600 (-629 (-552))) (-10 -8 (-15 -3596 ($ (-629 (-552)))) (-15 -3132 ((-629 (-629 (-552))) (-629 (-552)))) (-15 -3565 ((-552) $)) (-15 -2074 ($ $)) (-15 -3213 ((-629 (-552)) $))))) (T -952)) +((-3596 (*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-952)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-629 (-629 (-552)))) (-5 *1 (-952)) (-5 *3 (-629 (-552))))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-952)))) (-2074 (*1 *1 *1) (-5 *1 (-952))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-952))))) +(-13 (-780) (-600 (-629 (-552))) (-10 -8 (-15 -3596 ($ (-629 (-552)))) (-15 -3132 ((-629 (-629 (-552))) (-629 (-552)))) (-15 -3565 ((-552) $)) (-15 -2074 ($ $)) (-15 -3213 ((-629 (-552)) $)))) +((-1720 (($ $ |#2|) 30)) (-1709 (($ $) 22) (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-401 (-552)) $) 26) (($ $ (-401 (-552))) 28))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1720 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) (-954 |#2| |#3| |#4|) (-1030) (-777) (-832)) (T -953)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1720 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 * (|#1| (-902) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 |#3|) $) 72)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3593 (((-111) $) 71)) (-4065 (((-111) $) 30)) (-2231 (((-111) $) 60)) (-3590 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-629 |#3|) (-629 |#2|)) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3299 ((|#2| $) 62)) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2266 ((|#1| $ |#2|) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-954 |#1| |#2| |#3|) (-137) (-1030) (-777) (-832)) (T -954)) +((-3743 (*1 *2 *1) (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *3 (-777)) (-4 *4 (-832)) (-4 *2 (-1030)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *4 (-832)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *2 *4)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *2 (-777)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-954 *4 *3 *2)) (-4 *4 (-1030)) (-4 *3 (-777)) (-4 *2 (-832)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 *5)) (-4 *1 (-954 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-777)) (-4 *6 (-832)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-777)) (-4 *5 (-832)) (-5 *2 (-629 *5)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-777)) (-4 *5 (-832)) (-5 *2 (-111)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *4 (-832))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3590 ($ $ |t#3| |t#2|)) (-15 -3590 ($ $ (-629 |t#3|) (-629 |t#2|))) (-15 -3733 ($ $)) (-15 -3743 (|t#1| $)) (-15 -3299 (|t#2| $)) (-15 -3611 ((-629 |t#3|) $)) (-15 -3593 ((-111) $)) (-15 -1680 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2938 (((-1072 (-220)) $) 8)) (-2926 (((-1072 (-220)) $) 9)) (-2915 (((-1072 (-220)) $) 10)) (-3890 (((-629 (-629 (-924 (-220)))) $) 11)) (-3213 (((-844) $) 6))) +(((-955) (-137)) (T -955)) +((-3890 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-629 (-629 (-924 (-220))))))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220))))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220))))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220)))))) +(-13 (-599 (-844)) (-10 -8 (-15 -3890 ((-629 (-629 (-924 (-220)))) $)) (-15 -2915 ((-1072 (-220)) $)) (-15 -2926 ((-1072 (-220)) $)) (-15 -2938 ((-1072 (-220)) $)))) +(((-599 (-844)) . T)) +((-3611 (((-629 |#4|) $) 23)) (-3902 (((-111) $) 48)) (-1565 (((-111) $) 47)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#4|) 36)) (-3320 (((-111) $) 49)) (-4177 (((-111) $ $) 55)) (-3170 (((-111) $ $) 58)) (-2797 (((-111) $) 53)) (-3662 (((-629 |#5|) (-629 |#5|) $) 90)) (-1468 (((-629 |#5|) (-629 |#5|) $) 87)) (-4186 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3420 (((-629 |#4|) $) 27)) (-2677 (((-111) |#4| $) 30)) (-1527 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2542 (($ $ |#4|) 33)) (-1853 (($ $ |#4|) 32)) (-2387 (($ $ |#4|) 34)) (-1613 (((-111) $ $) 40))) +(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1565 ((-111) |#1|)) (-15 -3662 ((-629 |#5|) (-629 |#5|) |#1|)) (-15 -1468 ((-629 |#5|) (-629 |#5|) |#1|)) (-15 -4186 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1527 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3320 ((-111) |#1|)) (-15 -3170 ((-111) |#1| |#1|)) (-15 -4177 ((-111) |#1| |#1|)) (-15 -2797 ((-111) |#1|)) (-15 -3902 ((-111) |#1|)) (-15 -1296 ((-2 (|:| |under| |#1|) (|:| -3410 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2542 (|#1| |#1| |#4|)) (-15 -2387 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -2677 ((-111) |#4| |#1|)) (-15 -3420 ((-629 |#4|) |#1|)) (-15 -3611 ((-629 |#4|) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-957 |#2| |#3| |#4| |#5|) (-1030) (-778) (-832) (-1044 |#2| |#3| |#4|)) (T -956)) +NIL +(-10 -8 (-15 -1565 ((-111) |#1|)) (-15 -3662 ((-629 |#5|) (-629 |#5|) |#1|)) (-15 -1468 ((-629 |#5|) (-629 |#5|) |#1|)) (-15 -4186 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1527 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3320 ((-111) |#1|)) (-15 -3170 ((-111) |#1| |#1|)) (-15 -4177 ((-111) |#1| |#1|)) (-15 -2797 ((-111) |#1|)) (-15 -3902 ((-111) |#1|)) (-15 -1296 ((-2 (|:| |under| |#1|) (|:| -3410 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2542 (|#1| |#1| |#4|)) (-15 -2387 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -2677 ((-111) |#4| |#1|)) (-15 -3420 ((-629 |#4|) |#1|)) (-15 -3611 ((-629 |#4|) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368)))) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368)))) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2876 (((-1098) $) 10)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-957 |#1| |#2| |#3| |#4|) (-137) (-1030) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -957)) +((-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *1 (-957 *3 *4 *5 *6)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *1 (-957 *3 *4 *5 *6)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-1044 *3 *4 *2)) (-4 *2 (-832)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5)))) (-2677 (*1 *2 *3 *1) (-12 (-4 *1 (-957 *4 *5 *3 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-4 *6 (-1044 *4 *5 *3)) (-5 *2 (-111)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2)))) (-2387 (*1 *1 *1 *2) (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2)))) (-2542 (*1 *1 *1 *2) (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2)))) (-1296 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-4 *6 (-1044 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3410 *1) (|:| |upper| *1))) (-4 *1 (-957 *4 *5 *3 *6)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-4177 (*1 *2 *1 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-3170 (*1 *2 *1 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-1527 (*1 *2 *3 *1) (-12 (-4 *1 (-957 *4 *5 *6 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4186 (*1 *2 *3 *1) (-12 (-4 *1 (-957 *4 *5 *6 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1468 (*1 *2 *2 *1) (-12 (-5 *2 (-629 *6)) (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)))) (-3662 (*1 *2 *2 *1) (-12 (-5 *2 (-629 *6)) (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111))))) +(-13 (-1078) (-148 |t#4|) (-599 (-629 |t#4|)) (-10 -8 (-6 -4368) (-15 -1393 ((-3 $ "failed") (-629 |t#4|))) (-15 -2832 ($ (-629 |t#4|))) (-15 -2940 (|t#3| $)) (-15 -3611 ((-629 |t#3|) $)) (-15 -3420 ((-629 |t#3|) $)) (-15 -2677 ((-111) |t#3| $)) (-15 -1853 ($ $ |t#3|)) (-15 -2387 ($ $ |t#3|)) (-15 -2542 ($ $ |t#3|)) (-15 -1296 ((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |t#3|)) (-15 -3902 ((-111) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -2797 ((-111) $)) (-15 -4177 ((-111) $ $)) (-15 -3170 ((-111) $ $)) (-15 -3320 ((-111) $)) (-15 -1527 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4186 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1468 ((-629 |t#4|) (-629 |t#4|) $)) (-15 -3662 ((-629 |t#4|) (-629 |t#4|) $)) (-15 -1565 ((-111) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-1078) . T) ((-1191) . T)) +((-2980 (((-629 |#4|) |#4| |#4|) 118)) (-1473 (((-629 |#4|) (-629 |#4|) (-111)) 107 (|has| |#1| (-445))) (((-629 |#4|) (-629 |#4|)) 108 (|has| |#1| (-445)))) (-4203 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|)) 35)) (-2257 (((-111) |#4|) 34)) (-3070 (((-629 |#4|) |#4|) 103 (|has| |#1| (-445)))) (-2731 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-1 (-111) |#4|) (-629 |#4|)) 20)) (-1678 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|)) 22)) (-3099 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|)) 23)) (-2322 (((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|)) 73)) (-2028 (((-629 |#4|) (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1781 (((-629 |#4|) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1552 (((-629 |#4|) (-629 |#4|)) 110)) (-1479 (((-629 |#4|) (-629 |#4|) (-629 |#4|) (-111)) 48) (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 50)) (-3262 ((|#4| |#4| (-629 |#4|)) 49)) (-3881 (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 114 (|has| |#1| (-445)))) (-2209 (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 117 (|has| |#1| (-445)))) (-4226 (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 116 (|has| |#1| (-445)))) (-2361 (((-629 |#4|) (-629 |#4|) (-629 |#4|) (-1 (-629 |#4|) (-629 |#4|))) 87) (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 89) (((-629 |#4|) (-629 |#4|) |#4|) 121) (((-629 |#4|) |#4| |#4|) 119) (((-629 |#4|) (-629 |#4|)) 88)) (-2554 (((-629 |#4|) (-629 |#4|) (-629 |#4|)) 100 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-3205 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|)) 41)) (-3988 (((-111) (-629 |#4|)) 62)) (-3617 (((-111) (-629 |#4|) (-629 (-629 |#4|))) 53)) (-1730 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|)) 29)) (-4094 (((-111) |#4|) 28)) (-2591 (((-629 |#4|) (-629 |#4|)) 98 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2983 (((-629 |#4|) (-629 |#4|)) 99 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-4166 (((-629 |#4|) (-629 |#4|)) 66)) (-1786 (((-629 |#4|) (-629 |#4|)) 79)) (-3415 (((-111) (-629 |#4|) (-629 |#4|)) 51)) (-3700 (((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|)) 39)) (-3594 (((-111) |#4|) 36))) +(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 ((-629 |#4|) (-629 |#4|))) (-15 -2361 ((-629 |#4|) |#4| |#4|)) (-15 -1552 ((-629 |#4|) (-629 |#4|))) (-15 -2980 ((-629 |#4|) |#4| |#4|)) (-15 -2361 ((-629 |#4|) (-629 |#4|) |#4|)) (-15 -2361 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -2361 ((-629 |#4|) (-629 |#4|) (-629 |#4|) (-1 (-629 |#4|) (-629 |#4|)))) (-15 -3415 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3617 ((-111) (-629 |#4|) (-629 (-629 |#4|)))) (-15 -3988 ((-111) (-629 |#4|))) (-15 -2731 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-1 (-111) |#4|) (-629 |#4|))) (-15 -1678 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|))) (-15 -3099 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|))) (-15 -3205 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -2257 ((-111) |#4|)) (-15 -4203 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -4094 ((-111) |#4|)) (-15 -1730 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -3594 ((-111) |#4|)) (-15 -3700 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -1479 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -1479 ((-629 |#4|) (-629 |#4|) (-629 |#4|) (-111))) (-15 -3262 (|#4| |#4| (-629 |#4|))) (-15 -4166 ((-629 |#4|) (-629 |#4|))) (-15 -2322 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|))) (-15 -1786 ((-629 |#4|) (-629 |#4|))) (-15 -2028 ((-629 |#4|) (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1781 ((-629 |#4|) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -3070 ((-629 |#4|) |#4|)) (-15 -1473 ((-629 |#4|) (-629 |#4|))) (-15 -1473 ((-629 |#4|) (-629 |#4|) (-111))) (-15 -3881 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -4226 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -2209 ((-629 |#4|) (-629 |#4|) (-629 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -2983 ((-629 |#4|) (-629 |#4|))) (-15 -2591 ((-629 |#4|) (-629 |#4|))) (-15 -2554 ((-629 |#4|) (-629 |#4|) (-629 |#4|)))) |%noBranch|) |%noBranch|)) (-544) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -958)) +((-2554 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2209 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-4226 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-3881 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-1473 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-111)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *7)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *3)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-1781 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-958 *5 *6 *7 *8)))) (-2028 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-629 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-778)) (-4 *8 (-832)) (-5 *1 (-958 *6 *7 *8 *9)))) (-1786 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2322 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -3447 (-629 *7)))) (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-3262 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *2)))) (-1479 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-111)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *7)))) (-1479 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-3594 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-1730 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-4203 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-2257 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-1 (-111) *8))) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-1 (-111) *8))) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *4 *5 *6 *7)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-629 *8))) (-5 *3 (-629 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *5 *6 *7 *8)))) (-3415 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *4 *5 *6 *7)))) (-2361 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-629 *7) (-629 *7))) (-5 *2 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *7)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2361 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *3)))) (-2980 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *3)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) (-2361 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *3)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6))))) +(-10 -7 (-15 -2361 ((-629 |#4|) (-629 |#4|))) (-15 -2361 ((-629 |#4|) |#4| |#4|)) (-15 -1552 ((-629 |#4|) (-629 |#4|))) (-15 -2980 ((-629 |#4|) |#4| |#4|)) (-15 -2361 ((-629 |#4|) (-629 |#4|) |#4|)) (-15 -2361 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -2361 ((-629 |#4|) (-629 |#4|) (-629 |#4|) (-1 (-629 |#4|) (-629 |#4|)))) (-15 -3415 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3617 ((-111) (-629 |#4|) (-629 (-629 |#4|)))) (-15 -3988 ((-111) (-629 |#4|))) (-15 -2731 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-1 (-111) |#4|) (-629 |#4|))) (-15 -1678 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|))) (-15 -3099 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 (-1 (-111) |#4|)) (-629 |#4|))) (-15 -3205 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -2257 ((-111) |#4|)) (-15 -4203 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -4094 ((-111) |#4|)) (-15 -1730 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -3594 ((-111) |#4|)) (-15 -3700 ((-2 (|:| |goodPols| (-629 |#4|)) (|:| |badPols| (-629 |#4|))) (-629 |#4|))) (-15 -1479 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -1479 ((-629 |#4|) (-629 |#4|) (-629 |#4|) (-111))) (-15 -3262 (|#4| |#4| (-629 |#4|))) (-15 -4166 ((-629 |#4|) (-629 |#4|))) (-15 -2322 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|))) (-15 -1786 ((-629 |#4|) (-629 |#4|))) (-15 -2028 ((-629 |#4|) (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1781 ((-629 |#4|) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -3070 ((-629 |#4|) |#4|)) (-15 -1473 ((-629 |#4|) (-629 |#4|))) (-15 -1473 ((-629 |#4|) (-629 |#4|) (-111))) (-15 -3881 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -4226 ((-629 |#4|) (-629 |#4|) (-629 |#4|))) (-15 -2209 ((-629 |#4|) (-629 |#4|) (-629 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -2983 ((-629 |#4|) (-629 |#4|))) (-15 -2591 ((-629 |#4|) (-629 |#4|))) (-15 -2554 ((-629 |#4|) (-629 |#4|) (-629 |#4|)))) |%noBranch|) |%noBranch|)) +((-1555 (((-2 (|:| R (-673 |#1|)) (|:| A (-673 |#1|)) (|:| |Ainv| (-673 |#1|))) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3134 (((-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|)) 36)) (-2368 (((-673 |#1|) (-673 |#1|) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-959 |#1|) (-10 -7 (-15 -1555 ((-2 (|:| R (-673 |#1|)) (|:| A (-673 |#1|)) (|:| |Ainv| (-673 |#1|))) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2368 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3134 ((-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|)))) (-357)) (T -959)) +((-3134 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-629 (-2 (|:| C (-673 *5)) (|:| |g| (-1237 *5))))) (-5 *1 (-959 *5)) (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)))) (-2368 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-673 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-959 *5)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| R (-673 *6)) (|:| A (-673 *6)) (|:| |Ainv| (-673 *6)))) (-5 *1 (-959 *6)) (-5 *3 (-673 *6))))) +(-10 -7 (-15 -1555 ((-2 (|:| R (-673 |#1|)) (|:| A (-673 |#1|)) (|:| |Ainv| (-673 |#1|))) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2368 ((-673 |#1|) (-673 |#1|) (-673 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3134 ((-629 (-2 (|:| C (-673 |#1|)) (|:| |g| (-1237 |#1|)))) (-673 |#1|) (-1237 |#1|)))) +((-3343 (((-412 |#4|) |#4|) 48))) +(((-960 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3343 ((-412 |#4|) |#4|))) (-832) (-778) (-445) (-930 |#3| |#2| |#1|)) (T -960)) +((-3343 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-445)) (-5 *2 (-412 *3)) (-5 *1 (-960 *4 *5 *6 *3)) (-4 *3 (-930 *6 *5 *4))))) +(-10 -7 (-15 -3343 ((-412 |#4|) |#4|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2306 (($ (-756)) 112 (|has| |#1| (-23)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| |#1| (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-1456 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1078)))) (-1693 (($ (-629 |#1|)) 118)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1920 (((-673 |#1|) $ $) 105 (|has| |#1| (-1030)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3994 ((|#1| $) 102 (-12 (|has| |#1| (-1030)) (|has| |#1| (-983))))) (-1745 (((-111) $ (-756)) 10)) (-2556 ((|#1| $) 103 (-12 (|has| |#1| (-1030)) (|has| |#1| (-983))))) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3136 (($ $ (-629 |#1|)) 115)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-3632 ((|#1| $ $) 106 (|has| |#1| (-1030)))) (-3725 (((-902) $) 117)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2449 (($ $ $) 104)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528)))) (($ (-629 |#1|)) 116)) (-3226 (($ (-629 |#1|)) 70)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 84 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 83 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) 85 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 82 (|has| |#1| (-832)))) (-1709 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1698 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-711))) (($ $ |#1|) 107 (|has| |#1| (-711)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-961 |#1|) (-137) (-1030)) (T -961)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-961 *3)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-961 *3)) (-4 *3 (-1030)) (-5 *2 (-902)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-961 *3)))) (-2449 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1030)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *1 (-961 *3)) (-4 *3 (-1030))))) +(-13 (-1235 |t#1|) (-10 -8 (-15 -1693 ($ (-629 |t#1|))) (-15 -3725 ((-902) $)) (-15 -1522 ($ (-629 |t#1|))) (-15 -2449 ($ $ $)) (-15 -3136 ($ $ (-629 |t#1|))))) +(((-34) . T) ((-101) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-19 |#1|) . T) ((-832) |has| |#1| (-832)) ((-1078) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-1191) . T) ((-1235 |#1|) . T)) +((-1477 (((-924 |#2|) (-1 |#2| |#1|) (-924 |#1|)) 17))) +(((-962 |#1| |#2|) (-10 -7 (-15 -1477 ((-924 |#2|) (-1 |#2| |#1|) (-924 |#1|)))) (-1030) (-1030)) (T -962)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-924 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-924 *6)) (-5 *1 (-962 *5 *6))))) +(-10 -7 (-15 -1477 ((-924 |#2|) (-1 |#2| |#1|) (-924 |#1|)))) +((-1686 ((|#1| (-924 |#1|)) 13)) (-1732 ((|#1| (-924 |#1|)) 12)) (-1971 ((|#1| (-924 |#1|)) 11)) (-3650 ((|#1| (-924 |#1|)) 15)) (-1911 ((|#1| (-924 |#1|)) 21)) (-2804 ((|#1| (-924 |#1|)) 14)) (-2082 ((|#1| (-924 |#1|)) 16)) (-3852 ((|#1| (-924 |#1|)) 20)) (-2229 ((|#1| (-924 |#1|)) 19))) +(((-963 |#1|) (-10 -7 (-15 -1971 (|#1| (-924 |#1|))) (-15 -1732 (|#1| (-924 |#1|))) (-15 -1686 (|#1| (-924 |#1|))) (-15 -2804 (|#1| (-924 |#1|))) (-15 -3650 (|#1| (-924 |#1|))) (-15 -2082 (|#1| (-924 |#1|))) (-15 -2229 (|#1| (-924 |#1|))) (-15 -3852 (|#1| (-924 |#1|))) (-15 -1911 (|#1| (-924 |#1|)))) (-1030)) (T -963)) +((-1911 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(-10 -7 (-15 -1971 (|#1| (-924 |#1|))) (-15 -1732 (|#1| (-924 |#1|))) (-15 -1686 (|#1| (-924 |#1|))) (-15 -2804 (|#1| (-924 |#1|))) (-15 -3650 (|#1| (-924 |#1|))) (-15 -2082 (|#1| (-924 |#1|))) (-15 -2229 (|#1| (-924 |#1|))) (-15 -3852 (|#1| (-924 |#1|))) (-15 -1911 (|#1| (-924 |#1|)))) +((-4310 (((-3 |#1| "failed") |#1|) 18)) (-3322 (((-3 |#1| "failed") |#1|) 6)) (-1898 (((-3 |#1| "failed") |#1|) 16)) (-2737 (((-3 |#1| "failed") |#1|) 4)) (-3190 (((-3 |#1| "failed") |#1|) 20)) (-2105 (((-3 |#1| "failed") |#1|) 8)) (-3354 (((-3 |#1| "failed") |#1| (-756)) 1)) (-1956 (((-3 |#1| "failed") |#1|) 3)) (-2545 (((-3 |#1| "failed") |#1|) 2)) (-2335 (((-3 |#1| "failed") |#1|) 21)) (-1377 (((-3 |#1| "failed") |#1|) 9)) (-4068 (((-3 |#1| "failed") |#1|) 19)) (-3186 (((-3 |#1| "failed") |#1|) 7)) (-4093 (((-3 |#1| "failed") |#1|) 17)) (-1888 (((-3 |#1| "failed") |#1|) 5)) (-3706 (((-3 |#1| "failed") |#1|) 24)) (-2162 (((-3 |#1| "failed") |#1|) 12)) (-1536 (((-3 |#1| "failed") |#1|) 22)) (-3794 (((-3 |#1| "failed") |#1|) 10)) (-2207 (((-3 |#1| "failed") |#1|) 26)) (-3093 (((-3 |#1| "failed") |#1|) 14)) (-2949 (((-3 |#1| "failed") |#1|) 27)) (-2489 (((-3 |#1| "failed") |#1|) 15)) (-3677 (((-3 |#1| "failed") |#1|) 25)) (-4117 (((-3 |#1| "failed") |#1|) 13)) (-3757 (((-3 |#1| "failed") |#1|) 23)) (-1366 (((-3 |#1| "failed") |#1|) 11))) +(((-964 |#1|) (-137) (-1176)) (T -964)) +((-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2207 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3677 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3706 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3757 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1536 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2335 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3190 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-4068 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-4310 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-4093 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1898 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2489 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3093 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-4117 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2162 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1366 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3794 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1377 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2105 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3186 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3322 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1888 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2737 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-1956 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-2545 (*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176)))) (-3354 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-756)) (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(-13 (-10 -7 (-15 -3354 ((-3 |t#1| "failed") |t#1| (-756))) (-15 -2545 ((-3 |t#1| "failed") |t#1|)) (-15 -1956 ((-3 |t#1| "failed") |t#1|)) (-15 -2737 ((-3 |t#1| "failed") |t#1|)) (-15 -1888 ((-3 |t#1| "failed") |t#1|)) (-15 -3322 ((-3 |t#1| "failed") |t#1|)) (-15 -3186 ((-3 |t#1| "failed") |t#1|)) (-15 -2105 ((-3 |t#1| "failed") |t#1|)) (-15 -1377 ((-3 |t#1| "failed") |t#1|)) (-15 -3794 ((-3 |t#1| "failed") |t#1|)) (-15 -1366 ((-3 |t#1| "failed") |t#1|)) (-15 -2162 ((-3 |t#1| "failed") |t#1|)) (-15 -4117 ((-3 |t#1| "failed") |t#1|)) (-15 -3093 ((-3 |t#1| "failed") |t#1|)) (-15 -2489 ((-3 |t#1| "failed") |t#1|)) (-15 -1898 ((-3 |t#1| "failed") |t#1|)) (-15 -4093 ((-3 |t#1| "failed") |t#1|)) (-15 -4310 ((-3 |t#1| "failed") |t#1|)) (-15 -4068 ((-3 |t#1| "failed") |t#1|)) (-15 -3190 ((-3 |t#1| "failed") |t#1|)) (-15 -2335 ((-3 |t#1| "failed") |t#1|)) (-15 -1536 ((-3 |t#1| "failed") |t#1|)) (-15 -3757 ((-3 |t#1| "failed") |t#1|)) (-15 -3706 ((-3 |t#1| "failed") |t#1|)) (-15 -3677 ((-3 |t#1| "failed") |t#1|)) (-15 -2207 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)))) +((-4052 ((|#4| |#4| (-629 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3027 ((|#4| |#4| (-629 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1477 ((|#4| (-1 |#4| (-933 |#1|)) |#4|) 30))) +(((-965 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3027 (|#4| |#4| |#3|)) (-15 -3027 (|#4| |#4| (-629 |#3|))) (-15 -4052 (|#4| |#4| |#3|)) (-15 -4052 (|#4| |#4| (-629 |#3|))) (-15 -1477 (|#4| (-1 |#4| (-933 |#1|)) |#4|))) (-1030) (-778) (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154))))) (-930 (-933 |#1|) |#2| |#3|)) (T -965)) +((-1477 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-933 *4))) (-4 *4 (-1030)) (-4 *2 (-930 (-933 *4) *5 *6)) (-4 *5 (-778)) (-4 *6 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-5 *1 (-965 *4 *5 *6 *2)))) (-4052 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-4 *4 (-1030)) (-4 *5 (-778)) (-5 *1 (-965 *4 *5 *6 *2)) (-4 *2 (-930 (-933 *4) *5 *6)))) (-4052 (*1 *2 *2 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-5 *1 (-965 *4 *5 *3 *2)) (-4 *2 (-930 (-933 *4) *5 *3)))) (-3027 (*1 *2 *2 *3) (-12 (-5 *3 (-629 *6)) (-4 *6 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-4 *4 (-1030)) (-4 *5 (-778)) (-5 *1 (-965 *4 *5 *6 *2)) (-4 *2 (-930 (-933 *4) *5 *6)))) (-3027 (*1 *2 *2 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)) (-15 -1485 ((-3 $ "failed") (-1154)))))) (-5 *1 (-965 *4 *5 *3 *2)) (-4 *2 (-930 (-933 *4) *5 *3))))) +(-10 -7 (-15 -3027 (|#4| |#4| |#3|)) (-15 -3027 (|#4| |#4| (-629 |#3|))) (-15 -4052 (|#4| |#4| |#3|)) (-15 -4052 (|#4| |#4| (-629 |#3|))) (-15 -1477 (|#4| (-1 |#4| (-933 |#1|)) |#4|))) +((-3656 ((|#2| |#3|) 35)) (-1414 (((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|) 73)) (-4197 (((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) 89))) +(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|)) (-15 -3656 (|#2| |#3|))) (-343) (-1213 |#1|) (-1213 |#2|) (-709 |#2| |#3|)) (T -966)) +((-3656 (*1 *2 *3) (-12 (-4 *3 (-1213 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-966 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-709 *2 *3)))) (-1414 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 *3)) (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-5 *1 (-966 *4 *3 *5 *6)) (-4 *6 (-709 *3 *5)))) (-4197 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| -4199 (-673 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-673 *4)))) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-709 *4 *5))))) +(-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|)) (-15 -3656 (|#2| |#3|))) +((-3048 (((-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552)))) (-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552))))) 69))) +(((-967 |#1| |#2|) (-10 -7 (-15 -3048 ((-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552)))) (-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552))))))) (-629 (-1154)) (-756)) (T -967)) +((-3048 (*1 *2 *2) (-12 (-5 *2 (-968 (-401 (-552)) (-846 *3) (-235 *4 (-756)) (-242 *3 (-401 (-552))))) (-14 *3 (-629 (-1154))) (-14 *4 (-756)) (-5 *1 (-967 *3 *4))))) +(-10 -7 (-15 -3048 ((-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552)))) (-968 (-401 (-552)) (-846 |#1|) (-235 |#2| (-756)) (-242 |#1| (-401 (-552))))))) +((-3202 (((-111) $ $) NIL)) (-4063 (((-3 (-111) "failed") $) 69)) (-3501 (($ $) 36 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-1801 (($ $ (-3 (-111) "failed")) 70)) (-3727 (($ (-629 |#4|) |#4|) 25)) (-2623 (((-1136) $) NIL)) (-3932 (($ $) 67)) (-2876 (((-1098) $) NIL)) (-3435 (((-111) $) 68)) (-3430 (($) 30)) (-1998 ((|#4| $) 72)) (-3587 (((-629 |#4|) $) 71)) (-3213 (((-844) $) 66)) (-1613 (((-111) $ $) NIL))) +(((-968 |#1| |#2| |#3| |#4|) (-13 (-1078) (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -3727 ($ (-629 |#4|) |#4|)) (-15 -4063 ((-3 (-111) "failed") $)) (-15 -1801 ($ $ (-3 (-111) "failed"))) (-15 -3435 ((-111) $)) (-15 -3587 ((-629 |#4|) $)) (-15 -1998 (|#4| $)) (-15 -3932 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -3501 ($ $)) |%noBranch|) |%noBranch|))) (-445) (-832) (-778) (-930 |#1| |#3| |#2|)) (T -968)) +((-3430 (*1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-832)) (-4 *4 (-778)) (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3)))) (-3727 (*1 *1 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-930 *4 *6 *5)) (-4 *4 (-445)) (-4 *5 (-832)) (-4 *6 (-778)) (-5 *1 (-968 *4 *5 *6 *3)))) (-4063 (*1 *2 *1) (|partial| -12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4)))) (-3435 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4)))) (-3587 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *2 (-629 *6)) (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4)))) (-1998 (*1 *2 *1) (-12 (-4 *2 (-930 *3 *5 *4)) (-5 *1 (-968 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)))) (-3932 (*1 *1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-832)) (-4 *4 (-778)) (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3)))) (-3501 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-832)) (-4 *4 (-778)) (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3))))) +(-13 (-1078) (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -3727 ($ (-629 |#4|) |#4|)) (-15 -4063 ((-3 (-111) "failed") $)) (-15 -1801 ($ $ (-3 (-111) "failed"))) (-15 -3435 ((-111) $)) (-15 -3587 ((-629 |#4|) $)) (-15 -1998 (|#4| $)) (-15 -3932 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -3501 ($ $)) |%noBranch|) |%noBranch|))) +((-2119 (((-111) |#5| |#5|) 38)) (-3248 (((-111) |#5| |#5|) 52)) (-2049 (((-111) |#5| (-629 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-4045 (((-111) (-629 |#4|) (-629 |#4|)) 58)) (-4030 (((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) 63)) (-2675 (((-1242)) 33)) (-2490 (((-1242) (-1136) (-1136) (-1136)) 29)) (-3288 (((-629 |#5|) (-629 |#5|)) 81)) (-2722 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) 79)) (-2418 (((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111)) 101)) (-2237 (((-111) |#5| |#5|) 47)) (-3804 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2672 (((-111) (-629 |#4|) (-629 |#4|)) 57)) (-1535 (((-111) (-629 |#4|) (-629 |#4|)) 59)) (-4343 (((-111) (-629 |#4|) (-629 |#4|)) 60)) (-2383 (((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2111 (((-629 |#5|) (-629 |#5|)) 43))) +(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2490 ((-1242) (-1136) (-1136) (-1136))) (-15 -2675 ((-1242))) (-15 -2119 ((-111) |#5| |#5|)) (-15 -2111 ((-629 |#5|) (-629 |#5|))) (-15 -2237 ((-111) |#5| |#5|)) (-15 -3248 ((-111) |#5| |#5|)) (-15 -4045 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -2672 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -1535 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -4343 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3804 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2049 ((-111) |#5| |#5|)) (-15 -2049 ((-111) |#5| (-629 |#5|))) (-15 -3288 ((-629 |#5|) (-629 |#5|))) (-15 -4030 ((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -2722 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-15 -2418 ((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2383 ((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -969)) +((-2383 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| -2771 (-629 *9)) (|:| -3361 *4) (|:| |ineq| (-629 *9)))) (-5 *1 (-969 *6 *7 *8 *9 *4)) (-5 *3 (-629 *9)) (-4 *4 (-1050 *6 *7 *8 *9)))) (-2418 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-629 *10)) (-5 *5 (-111)) (-4 *10 (-1050 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) (-5 *2 (-629 (-2 (|:| -2771 (-629 *9)) (|:| -3361 *10) (|:| |ineq| (-629 *9))))) (-5 *1 (-969 *6 *7 *8 *9 *10)) (-5 *3 (-629 *9)))) (-2722 (*1 *2 *2) (-12 (-5 *2 (-629 (-2 (|:| |val| (-629 *6)) (|:| -3361 *7)))) (-4 *6 (-1044 *3 *4 *5)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-969 *3 *4 *5 *6 *7)))) (-4030 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *8)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-969 *3 *4 *5 *6 *7)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-969 *5 *6 *7 *8 *3)))) (-2049 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-3804 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-4343 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-1535 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-2672 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-3248 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2237 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-969 *3 *4 *5 *6 *7)))) (-2119 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2675 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-969 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-2490 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(-10 -7 (-15 -2490 ((-1242) (-1136) (-1136) (-1136))) (-15 -2675 ((-1242))) (-15 -2119 ((-111) |#5| |#5|)) (-15 -2111 ((-629 |#5|) (-629 |#5|))) (-15 -2237 ((-111) |#5| |#5|)) (-15 -3248 ((-111) |#5| |#5|)) (-15 -4045 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -2672 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -1535 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -4343 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3804 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2049 ((-111) |#5| |#5|)) (-15 -2049 ((-111) |#5| (-629 |#5|))) (-15 -3288 ((-629 |#5|) (-629 |#5|))) (-15 -4030 ((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -2722 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-15 -2418 ((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2383 ((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-1485 (((-1154) $) 15)) (-2925 (((-1136) $) 16)) (-3369 (($ (-1154) (-1136)) 14)) (-3213 (((-844) $) 13))) +(((-970) (-13 (-599 (-844)) (-10 -8 (-15 -3369 ($ (-1154) (-1136))) (-15 -1485 ((-1154) $)) (-15 -2925 ((-1136) $))))) (T -970)) +((-3369 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1136)) (-5 *1 (-970)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-970)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-970))))) +(-13 (-599 (-844)) (-10 -8 (-15 -3369 ($ (-1154) (-1136))) (-15 -1485 ((-1154) $)) (-15 -2925 ((-1136) $)))) +((-1477 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-971 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#2| |#1|) |#3|))) (-544) (-544) (-973 |#1|) (-973 |#2|)) (T -971)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-4 *2 (-973 *6)) (-5 *1 (-971 *5 *6 *4 *2)) (-4 *4 (-973 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#2| |#1|) |#3|))) +((-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-1154) "failed") $) 65) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) 95)) (-2832 ((|#2| $) NIL) (((-1154) $) 60) (((-401 (-552)) $) NIL) (((-552) $) 92)) (-2714 (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 112) (((-673 |#2|) (-673 $)) 28)) (-1332 (($) 98)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 75) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 84)) (-3773 (($ $) 10)) (-2032 (((-3 $ "failed") $) 20)) (-1477 (($ (-1 |#2| |#2|) $) 22)) (-1977 (($) 16)) (-2147 (($ $) 54)) (-3096 (($ $) NIL) (($ $ (-756)) NIL) (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2493 (($ $) 12)) (-1522 (((-873 (-552)) $) 70) (((-873 (-373)) $) 79) (((-528) $) 40) (((-373) $) 44) (((-220) $) 47)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 90) (($ |#2|) NIL) (($ (-1154)) 57)) (-2014 (((-756)) 31)) (-1632 (((-111) $ $) 50))) +(((-972 |#1| |#2|) (-10 -8 (-15 -1632 ((-111) |#1| |#1|)) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -3213 (|#1| (-1154))) (-15 -1332 (|#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -3213 ((-844) |#1|))) (-973 |#2|) (-544)) (T -972)) +((-2014 (*1 *2) (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-972 *3 *4)) (-4 *3 (-973 *4))))) +(-10 -8 (-15 -1632 ((-111) |#1| |#1|)) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -3213 (|#1| (-1154))) (-15 -1332 (|#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -2214 ((-870 (-552) |#1|) |#1| (-873 (-552)) (-870 (-552) |#1|))) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -2714 ((-673 |#2|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3603 ((|#1| $) 136 (|has| |#1| (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 127 (|has| |#1| (-890)))) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 130 (|has| |#1| (-890)))) (-2393 (((-111) $ $) 57)) (-3886 (((-552) $) 117 (|has| |#1| (-805)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 175) (((-3 (-1154) "failed") $) 125 (|has| |#1| (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) 109 (|has| |#1| (-1019 (-552)))) (((-3 (-552) "failed") $) 107 (|has| |#1| (-1019 (-552))))) (-2832 ((|#1| $) 174) (((-1154) $) 124 (|has| |#1| (-1019 (-1154)))) (((-401 (-552)) $) 108 (|has| |#1| (-1019 (-552)))) (((-552) $) 106 (|has| |#1| (-1019 (-552))))) (-4006 (($ $ $) 53)) (-2714 (((-673 (-552)) (-673 $)) 149 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 148 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 147) (((-673 |#1|) (-673 $)) 146)) (-1293 (((-3 $ "failed") $) 32)) (-1332 (($) 134 (|has| |#1| (-537)))) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-1338 (((-111) $) 119 (|has| |#1| (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 143 (|has| |#1| (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 142 (|has| |#1| (-867 (-373))))) (-4065 (((-111) $) 30)) (-3773 (($ $) 138)) (-4015 ((|#1| $) 140)) (-2032 (((-3 $ "failed") $) 105 (|has| |#1| (-1129)))) (-3127 (((-111) $) 118 (|has| |#1| (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-1772 (($ $ $) 115 (|has| |#1| (-832)))) (-2011 (($ $ $) 114 (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) 166)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-1977 (($) 104 (|has| |#1| (-1129)) CONST)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-2147 (($ $) 135 (|has| |#1| (-301)))) (-3410 ((|#1| $) 132 (|has| |#1| (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 129 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 128 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) 172 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 170 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) 169 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 168 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) 167 (|has| |#1| (-506 (-1154) |#1|)))) (-3795 (((-756) $) 56)) (-2060 (($ $ |#1|) 173 (|has| |#1| (-280 |#1| |#1|)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-3096 (($ $) 165 (|has| |#1| (-228))) (($ $ (-756)) 163 (|has| |#1| (-228))) (($ $ (-1154)) 161 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 160 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 159 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 158 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2493 (($ $) 137)) (-4026 ((|#1| $) 139)) (-1522 (((-873 (-552)) $) 145 (|has| |#1| (-600 (-873 (-552))))) (((-873 (-373)) $) 144 (|has| |#1| (-600 (-873 (-373))))) (((-528) $) 122 (|has| |#1| (-600 (-528)))) (((-373) $) 121 (|has| |#1| (-1003))) (((-220) $) 120 (|has| |#1| (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 131 (-3792 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 178) (($ (-1154)) 126 (|has| |#1| (-1019 (-1154))))) (-3878 (((-3 $ "failed") $) 123 (-4029 (|has| |#1| (-142)) (-3792 (|has| $ (-142)) (|has| |#1| (-890)))))) (-2014 (((-756)) 28)) (-3763 ((|#1| $) 133 (|has| |#1| (-537)))) (-3589 (((-111) $ $) 37)) (-1578 (($ $) 116 (|has| |#1| (-805)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $) 164 (|has| |#1| (-228))) (($ $ (-756)) 162 (|has| |#1| (-228))) (($ $ (-1154)) 157 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 156 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 155 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 154 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-1666 (((-111) $ $) 112 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 111 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 113 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 110 (|has| |#1| (-832)))) (-1720 (($ $ $) 62) (($ |#1| |#1|) 141)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-973 |#1|) (-137) (-544)) (T -973)) +((-1720 (*1 *1 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-2147 (*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-1332 (*1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-537)) (-4 *2 (-544)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-537))))) +(-13 (-357) (-38 |t#1|) (-1019 |t#1|) (-332 |t#1|) (-226 |t#1|) (-371 |t#1|) (-865 |t#1|) (-394 |t#1|) (-10 -8 (-15 -1720 ($ |t#1| |t#1|)) (-15 -4015 (|t#1| $)) (-15 -4026 (|t#1| $)) (-15 -3773 ($ $)) (-15 -2493 ($ $)) (IF (|has| |t#1| (-1129)) (-6 (-1129)) |%noBranch|) (IF (|has| |t#1| (-1019 (-552))) (PROGN (-6 (-1019 (-552))) (-6 (-1019 (-401 (-552))))) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1019 (-1154))) (-6 (-1019 (-1154))) |%noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -3603 (|t#1| $)) (-15 -2147 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -1332 ($)) (-15 -3763 (|t#1| $)) (-15 -3410 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-890)) (-6 (-890)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-600 (-220)) |has| |#1| (-1003)) ((-600 (-373)) |has| |#1| (-1003)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-873 (-373))) |has| |#1| (-600 (-873 (-373)))) ((-600 (-873 (-552))) |has| |#1| (-600 (-873 (-552)))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) . T) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) . T) ((-301) . T) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-445) . T) ((-506 (-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) . T) ((-632 #0#) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) . T) ((-702 |#1|) . T) ((-702 $) . T) ((-711) . T) ((-776) |has| |#1| (-805)) ((-777) |has| |#1| (-805)) ((-779) |has| |#1| (-805)) ((-780) |has| |#1| (-805)) ((-805) |has| |#1| (-805)) ((-830) |has| |#1| (-805)) ((-832) -4029 (|has| |#1| (-832)) (|has| |#1| (-805))) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-867 (-373)) |has| |#1| (-867 (-373))) ((-867 (-552)) |has| |#1| (-867 (-552))) ((-865 |#1|) . T) ((-890) |has| |#1| (-890)) ((-901) . T) ((-1003) |has| |#1| (-1003)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-552))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 (-1154)) |has| |#1| (-1019 (-1154))) ((-1019 |#1|) . T) ((-1036 #0#) . T) ((-1036 |#1|) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| |#1| (-1129)) ((-1191) . T) ((-1195) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1780 (($ (-1120 |#1| |#2|)) 11)) (-3516 (((-1120 |#1| |#2|) $) 12)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2060 ((|#2| $ (-235 |#1| |#2|)) 16)) (-3213 (((-844) $) NIL)) (-3297 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL))) +(((-974 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1780 ($ (-1120 |#1| |#2|))) (-15 -3516 ((-1120 |#1| |#2|) $)) (-15 -2060 (|#2| $ (-235 |#1| |#2|))))) (-902) (-357)) (T -974)) +((-1780 (*1 *1 *2) (-12 (-5 *2 (-1120 *3 *4)) (-14 *3 (-902)) (-4 *4 (-357)) (-5 *1 (-974 *3 *4)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1120 *3 *4)) (-5 *1 (-974 *3 *4)) (-14 *3 (-902)) (-4 *4 (-357)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-902)) (-4 *2 (-357)) (-5 *1 (-974 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1780 ($ (-1120 |#1| |#2|))) (-15 -3516 ((-1120 |#1| |#2|) $)) (-15 -2060 (|#2| $ (-235 |#1| |#2|))))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 9)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-975) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $))))) (T -975)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-975))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3625 (($ $) 46)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2556 (((-756) $) 45)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3474 ((|#1| $) 44)) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-2187 ((|#1| |#1| $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2505 ((|#1| $) 47)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-1832 ((|#1| $) 43)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-976 |#1|) (-137) (-1191)) (T -976)) +((-2187 (*1 *2 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191)))) (-3625 (*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4368) (-15 -2187 (|t#1| |t#1| $)) (-15 -2505 (|t#1| $)) (-15 -3625 ($ $)) (-15 -2556 ((-756) $)) (-15 -3474 (|t#1| $)) (-15 -1832 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3643 (((-111) $) 42)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 43)) (-2674 (((-3 (-401 (-552)) "failed") $) 78)) (-2443 (((-111) $) 72)) (-3777 (((-401 (-552)) $) 76)) (-4065 (((-111) $) 41)) (-4346 ((|#2| $) 22)) (-1477 (($ (-1 |#2| |#2|) $) 19)) (-3701 (($ $) 61)) (-3096 (($ $) NIL) (($ $ (-756)) NIL) (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1522 (((-528) $) 67)) (-2074 (($ $) 17)) (-3213 (((-844) $) 56) (($ (-552)) 38) (($ |#2|) 36) (($ (-401 (-552))) NIL)) (-2014 (((-756)) 10)) (-1578 ((|#2| $) 71)) (-1613 (((-111) $ $) 25)) (-1632 (((-111) $ $) 69)) (-1709 (($ $) 29) (($ $ $) 28)) (-1698 (($ $ $) 26)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-977 |#1| |#2|) (-10 -8 (-15 -3213 (|#1| (-401 (-552)))) (-15 -1632 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -3701 (|#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -1578 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -4065 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-978 |#2|) (-169)) (T -977)) +((-2014 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-977 *3 *4)) (-4 *3 (-978 *4))))) +(-10 -8 (-15 -3213 (|#1| (-401 (-552)))) (-15 -1632 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -3701 (|#1| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -1578 (|#2| |#1|)) (-15 -4346 (|#2| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -1477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3213 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -4065 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 * (|#1| (-756) |#1|)) (-15 -3643 ((-111) |#1|)) (-15 * (|#1| (-902) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1393 (((-3 (-552) "failed") $) 116 (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 114 (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) 113)) (-2832 (((-552) $) 117 (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) 115 (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) 112)) (-2714 (((-673 (-552)) (-673 $)) 87 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 86 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 85) (((-673 |#1|) (-673 $)) 84)) (-1293 (((-3 $ "failed") $) 32)) (-3499 ((|#1| $) 77)) (-2674 (((-3 (-401 (-552)) "failed") $) 73 (|has| |#1| (-537)))) (-2443 (((-111) $) 75 (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) 74 (|has| |#1| (-537)))) (-1689 (($ |#1| |#1| |#1| |#1|) 78)) (-4065 (((-111) $) 30)) (-4346 ((|#1| $) 79)) (-1772 (($ $ $) 66 (|has| |#1| (-832)))) (-2011 (($ $ $) 65 (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) 88)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 70 (|has| |#1| (-357)))) (-4305 ((|#1| $) 80)) (-3568 ((|#1| $) 81)) (-4247 ((|#1| $) 82)) (-2876 (((-1098) $) 10)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) 94 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 92 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) 91 (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) 90 (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) 89 (|has| |#1| (-506 (-1154) |#1|)))) (-2060 (($ $ |#1|) 95 (|has| |#1| (-280 |#1| |#1|)))) (-3096 (($ $) 111 (|has| |#1| (-228))) (($ $ (-756)) 109 (|has| |#1| (-228))) (($ $ (-1154)) 107 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 106 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 105 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 104 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-1522 (((-528) $) 71 (|has| |#1| (-600 (-528))))) (-2074 (($ $) 83)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 60 (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552))))))) (-3878 (((-3 $ "failed") $) 72 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-1578 ((|#1| $) 76 (|has| |#1| (-1039)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $) 110 (|has| |#1| (-228))) (($ $ (-756)) 108 (|has| |#1| (-228))) (($ $ (-1154)) 103 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 102 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 101 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 100 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-1666 (((-111) $ $) 63 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 62 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 64 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 61 (|has| |#1| (-832)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 69 (|has| |#1| (-357)))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-401 (-552))) 68 (|has| |#1| (-357))) (($ (-401 (-552)) $) 67 (|has| |#1| (-357))))) +(((-978 |#1|) (-137) (-169)) (T -978)) +((-2074 (*1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-1689 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2674 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-371 |t#1|) (-10 -8 (-15 -2074 ($ $)) (-15 -4247 (|t#1| $)) (-15 -3568 (|t#1| $)) (-15 -4305 (|t#1| $)) (-15 -4346 (|t#1| $)) (-15 -1689 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3499 (|t#1| $)) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-15 -1578 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2443 ((-111) $)) (-15 -3777 ((-401 (-552)) $)) (-15 -2674 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-357)) ((-38 |#1|) . T) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-357)) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) |has| |#1| (-357)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -4029 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1154) |#1|) |has| |#1| (-506 (-1154) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-632 #0#) |has| |#1| (-357)) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) |has| |#1| (-357)) ((-702 |#1|) . T) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1036 #0#) |has| |#1| (-357)) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1477 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) (-978 |#2|) (-169) (-978 |#4|) (-169)) (T -979)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-978 *6)) (-5 *1 (-979 *4 *5 *2 *6)) (-4 *4 (-978 *5))))) +(-10 -7 (-15 -1477 (|#3| (-1 |#4| |#2|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3499 ((|#1| $) 12)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2443 (((-111) $) NIL (|has| |#1| (-537)))) (-3777 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-1689 (($ |#1| |#1| |#1| |#1|) 16)) (-4065 (((-111) $) NIL)) (-4346 ((|#1| $) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-4305 ((|#1| $) 15)) (-3568 ((|#1| $) 14)) (-4247 ((|#1| $) 13)) (-2876 (((-1098) $) NIL)) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-506 (-1154) |#1|))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-506 (-1154) |#1|)))) (-2060 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3096 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2074 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552))))))) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-1578 ((|#1| $) NIL (|has| |#1| (-1039)))) (-3297 (($) 8 T CONST)) (-3309 (($) 10 T CONST)) (-1765 (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))))) +(((-980 |#1|) (-978 |#1|) (-169)) (T -980)) +NIL +(-978 |#1|) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-3625 (($ $) 20)) (-2777 (($ (-629 |#1|)) 29)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2556 (((-756) $) 22)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) 24)) (-1580 (($ |#1| $) 15)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3474 ((|#1| $) 23)) (-3995 ((|#1| $) 19)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-2187 ((|#1| |#1| $) 14)) (-3435 (((-111) $) 17)) (-3430 (($) NIL)) (-2505 ((|#1| $) 18)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) NIL)) (-1832 ((|#1| $) 26)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-981 |#1|) (-13 (-976 |#1|) (-10 -8 (-15 -2777 ($ (-629 |#1|))))) (-1078)) (T -981)) +((-2777 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-981 *3))))) +(-13 (-976 |#1|) (-10 -8 (-15 -2777 ($ (-629 |#1|))))) +((-3489 (($ $) 12)) (-3755 (($ $ (-552)) 13))) +(((-982 |#1|) (-10 -8 (-15 -3489 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-552)))) (-983)) (T -982)) +NIL +(-10 -8 (-15 -3489 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-552)))) +((-3489 (($ $) 6)) (-3755 (($ $ (-552)) 7)) (** (($ $ (-401 (-552))) 8))) +(((-983) (-137)) (T -983)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-401 (-552))))) (-3755 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-552)))) (-3489 (*1 *1 *1) (-4 *1 (-983)))) +(-13 (-10 -8 (-15 -3489 ($ $)) (-15 -3755 ($ $ (-552))) (-15 ** ($ $ (-401 (-552)))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2684 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3303 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-1334 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2977 (((-673 (-401 |#2|)) (-1237 $)) NIL) (((-673 (-401 |#2|))) NIL)) (-1549 (((-401 |#2|) $) NIL)) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3343 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2393 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2663 (((-756)) NIL (|has| (-401 |#2|) (-362)))) (-3216 (((-111)) NIL)) (-2966 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| (-401 |#2|) (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1019 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-4278 (($ (-1237 (-401 |#2|)) (-1237 $)) NIL) (($ (-1237 (-401 |#2|))) 70) (($ (-1237 |#2|) |#2|) NIL)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-4006 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3584 (((-673 (-401 |#2|)) $ (-1237 $)) NIL) (((-673 (-401 |#2|)) $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-401 |#2|) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-401 |#2|))) (|:| |vec| (-1237 (-401 |#2|)))) (-673 $) (-1237 $)) NIL) (((-673 (-401 |#2|)) (-673 $)) NIL)) (-2525 (((-1237 $) (-1237 $)) NIL)) (-3884 (($ |#3|) 65) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-1293 (((-3 $ "failed") $) NIL)) (-3901 (((-629 (-629 |#1|))) NIL (|has| |#1| (-362)))) (-3184 (((-111) |#1| |#1|) NIL)) (-2128 (((-902)) NIL)) (-1332 (($) NIL (|has| (-401 |#2|) (-362)))) (-1568 (((-111)) NIL)) (-2847 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-3987 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| (-401 |#2|) (-357)))) (-3471 (($ $) NIL)) (-4000 (($) NIL (|has| (-401 |#2|) (-343)))) (-3504 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-1788 (($ $ (-756)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1677 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-4241 (((-902) $) NIL (|has| (-401 |#2|) (-343))) (((-818 (-902)) $) NIL (|has| (-401 |#2|) (-343)))) (-4065 (((-111) $) NIL)) (-3503 (((-756)) NIL)) (-2317 (((-1237 $) (-1237 $)) NIL)) (-4346 (((-401 |#2|) $) NIL)) (-1429 (((-629 (-933 |#1|)) (-1154)) NIL (|has| |#1| (-357)))) (-2032 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2169 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-902) $) NIL (|has| (-401 |#2|) (-362)))) (-3874 ((|#3| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2623 (((-1136) $) NIL)) (-2930 (((-673 (-401 |#2|))) 52)) (-1303 (((-673 (-401 |#2|))) 51)) (-3701 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3059 (($ (-1237 |#2|) |#2|) 71)) (-2931 (((-673 (-401 |#2|))) 50)) (-2435 (((-673 (-401 |#2|))) 49)) (-1459 (((-2 (|:| |num| (-673 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1493 (((-2 (|:| |num| (-1237 |#2|)) (|:| |den| |#2|)) $) 77)) (-3953 (((-1237 $)) 46)) (-4197 (((-1237 $)) 45)) (-2667 (((-111) $) NIL)) (-3097 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-1977 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-2840 (($ (-902)) NIL (|has| (-401 |#2|) (-362)))) (-2791 (((-3 |#2| "failed")) 63)) (-2876 (((-1098) $) NIL)) (-3140 (((-756)) NIL)) (-4126 (($) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| (-401 |#2|) (-357)))) (-2594 (($ (-629 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-3479 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3969 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3795 (((-756) $) NIL (|has| (-401 |#2|) (-357)))) (-2060 ((|#1| $ |#1| |#1|) NIL)) (-3551 (((-3 |#2| "failed")) 62)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1721 (((-401 |#2|) (-1237 $)) NIL) (((-401 |#2|)) 42)) (-4147 (((-756) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-756) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-3096 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1433 (((-673 (-401 |#2|)) (-1237 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-3521 ((|#3|) 53)) (-1368 (($) NIL (|has| (-401 |#2|) (-343)))) (-3464 (((-1237 (-401 |#2|)) $ (-1237 $)) NIL) (((-673 (-401 |#2|)) (-1237 $) (-1237 $)) NIL) (((-1237 (-401 |#2|)) $) 72) (((-673 (-401 |#2|)) (-1237 $)) NIL)) (-1522 (((-1237 (-401 |#2|)) $) NIL) (($ (-1237 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| (-401 |#2|) (-343)))) (-1889 (((-1237 $) (-1237 $)) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-4029 (|has| (-401 |#2|) (-1019 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3878 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-3767 ((|#3| $) NIL)) (-2014 (((-756)) NIL)) (-1464 (((-111)) 60)) (-3895 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-4199 (((-1237 $)) 121)) (-3589 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3606 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3855 (((-111)) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-756)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-881 (-1154))))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-4029 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-336 |#1| |#2| |#3|) (-1195) (-1213 |#1|) (-1213 (-401 |#2|)) (-401 |#2|) (-756)) (T -984)) NIL (-336 |#1| |#2| |#3|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2113 (((-627 (-552)) $) 54)) (-2721 (($ (-627 (-552))) 62)) (-3471 (((-552) $) 40 (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 49) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 47 (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) 49 (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-1967 (((-627 (-552)) $) 60)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) 37)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) 42)) (-3515 (((-1132 (-552)) $) 59)) (-3044 (($ (-627 (-552)) (-627 (-552))) 63)) (-2060 (((-552) $) 53 (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) 11 (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) 39)) (-2266 (((-627 (-552)) $) 61)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) 77) (($ (-552)) 43) (($ $) NIL) (($ (-401 (-552))) 20) (($ (-552)) 43) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) 18)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) 9)) (-3796 (((-552) $) 51 (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) 10 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) 14)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) 33 (|has| (-552) (-830)))) (-2407 (($ $ $) 29) (($ (-552) (-552)) 31)) (-2396 (($ $) 15) (($ $ $) 23)) (-2384 (($ $ $) 21)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 25) (($ $ $) 27) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) 25) (($ $ (-552)) NIL))) -(((-983 |#1|) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2113 ((-627 (-552)) $)) (-15 -3515 ((-1132 (-552)) $)) (-15 -1967 ((-627 (-552)) $)) (-15 -2266 ((-627 (-552)) $)) (-15 -2721 ($ (-627 (-552)))) (-15 -3044 ($ (-627 (-552)) (-627 (-552)))))) (-552)) (T -983)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-3044 (*1 *1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) -(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2113 ((-627 (-552)) $)) (-15 -3515 ((-1132 (-552)) $)) (-15 -1967 ((-627 (-552)) $)) (-15 -2266 ((-627 (-552)) $)) (-15 -2721 ($ (-627 (-552)))) (-15 -3044 ($ (-627 (-552)) (-627 (-552)))))) -((-3655 (((-52) (-401 (-552)) (-552)) 9))) -(((-984) (-10 -7 (-15 -3655 ((-52) (-401 (-552)) (-552))))) (T -984)) -((-3655 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) (-5 *1 (-984))))) -(-10 -7 (-15 -3655 ((-52) (-401 (-552)) (-552)))) -((-3307 (((-552)) 13)) (-3784 (((-552)) 16)) (-2065 (((-1240) (-552)) 15)) (-3424 (((-552) (-552)) 17) (((-552)) 12))) -(((-985) (-10 -7 (-15 -3424 ((-552))) (-15 -3307 ((-552))) (-15 -3424 ((-552) (-552))) (-15 -2065 ((-1240) (-552))) (-15 -3784 ((-552))))) (T -985)) -((-3784 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-985)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-3307 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-3424 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) -(-10 -7 (-15 -3424 ((-552))) (-15 -3307 ((-552))) (-15 -3424 ((-552) (-552))) (-15 -2065 ((-1240) (-552))) (-15 -3784 ((-552)))) -((-1685 (((-412 |#1|) |#1|) 41)) (-1727 (((-412 |#1|) |#1|) 40))) -(((-986 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|))) (-1211 (-401 (-552)))) (T -986)) -((-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1211 (-401 (-552)))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1211 (-401 (-552))))))) -(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|))) -((-2859 (((-3 (-401 (-552)) "failed") |#1|) 15)) (-4229 (((-111) |#1|) 14)) (-2411 (((-401 (-552)) |#1|) 10))) -(((-987 |#1|) (-10 -7 (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|))) (-1017 (-401 (-552)))) (T -987)) -((-2859 (*1 *2 *3) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2)))) (-4229 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-987 *3)) (-4 *3 (-1017 (-401 (-552)))))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2))))) -(-10 -7 (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|))) -((-2950 ((|#2| $ "value" |#2|) 12)) (-1985 ((|#2| $ "value") 10)) (-3415 (((-111) $ $) 18))) -(((-988 |#1| |#2|) (-10 -8 (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1985 (|#2| |#1| "value"))) (-989 |#2|) (-1189)) (T -988)) -NIL -(-10 -8 (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1985 (|#2| |#1| "value"))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-989 |#1|) (-137) (-1189)) (T -989)) -((-2535 (*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-1848 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-552)))) (-3415 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-3726 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *1)) (|has| *1 (-6 -4367)) (-4 *1 (-989 *3)) (-4 *3 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-2472 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189))))) -(-13 (-482 |t#1|) (-10 -8 (-15 -2535 ((-627 $) $)) (-15 -2336 ((-627 $) $)) (-15 -3810 ((-111) $)) (-15 -4288 (|t#1| $)) (-15 -1985 (|t#1| $ "value")) (-15 -2978 ((-111) $)) (-15 -1823 ((-627 |t#1|) $)) (-15 -1848 ((-552) $ $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -3415 ((-111) $ $)) (-15 -3726 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -4017 ($ $ (-627 $))) (-15 -2950 (|t#1| $ "value" |t#1|)) (-15 -2472 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-1737 (($ $) 9) (($ $ (-900)) 43) (($ (-401 (-552))) 13) (($ (-552)) 15)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) 23) (((-3 $ "failed") (-1148 $) (-900)) 28)) (-1352 (($ $ (-552)) 49)) (-3995 (((-754)) 17)) (-1714 (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 (-401 (-552)))) 54) (((-627 $) (-1148 (-552))) 59) (((-627 $) (-931 $)) 63) (((-627 $) (-931 (-401 (-552)))) 67) (((-627 $) (-931 (-552))) 71)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 47))) -(((-990 |#1|) (-10 -8 (-15 -1737 (|#1| (-552))) (-15 -1737 (|#1| (-401 (-552)))) (-15 -1737 (|#1| |#1| (-900))) (-15 -1714 ((-627 |#1|) (-931 (-552)))) (-15 -1714 ((-627 |#1|) (-931 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-931 |#1|))) (-15 -1714 ((-627 |#1|) (-1148 (-552)))) (-15 -1714 ((-627 |#1|) (-1148 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-1148 |#1|))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900) (-842))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1352 (|#1| |#1| (-552))) (-15 -1737 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) (-991)) (T -990)) -((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-990 *3)) (-4 *3 (-991))))) -(-10 -8 (-15 -1737 (|#1| (-552))) (-15 -1737 (|#1| (-401 (-552)))) (-15 -1737 (|#1| |#1| (-900))) (-15 -1714 ((-627 |#1|) (-931 (-552)))) (-15 -1714 ((-627 |#1|) (-931 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-931 |#1|))) (-15 -1714 ((-627 |#1|) (-1148 (-552)))) (-15 -1714 ((-627 |#1|) (-1148 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-1148 |#1|))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900) (-842))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1352 (|#1| |#1| (-552))) (-15 -1737 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 87)) (-3245 (($ $) 88)) (-4058 (((-111) $) 90)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 107)) (-2487 (((-412 $) $) 108)) (-1737 (($ $) 71) (($ $ (-900)) 57) (($ (-401 (-552))) 56) (($ (-552)) 55)) (-4224 (((-111) $ $) 98)) (-2422 (((-552) $) 124)) (-3887 (($) 17 T CONST)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) 65) (((-3 $ "failed") (-1148 $) (-900)) 64)) (-4039 (((-3 (-552) "failed") $) 83 (|has| (-401 (-552)) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 81 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) 79)) (-1703 (((-552) $) 84 (|has| (-401 (-552)) (-1017 (-552)))) (((-401 (-552)) $) 82 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-401 (-552)) $) 78)) (-2734 (($ $ (-842)) 54)) (-4169 (($ $ (-842)) 53)) (-2813 (($ $ $) 102)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 101)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 96)) (-1633 (((-111) $) 109)) (-2983 (((-111) $) 122)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 70)) (-1508 (((-111) $) 123)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 105)) (-1816 (($ $ $) 121)) (-4093 (($ $ $) 120)) (-1441 (((-3 (-1148 $) "failed") $) 66)) (-2597 (((-3 (-842) "failed") $) 68)) (-1934 (((-3 (-1148 $) "failed") $) 67)) (-1276 (($ (-627 $)) 94) (($ $ $) 93)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 110)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 95)) (-1323 (($ (-627 $)) 92) (($ $ $) 91)) (-1727 (((-412 $) $) 106)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 103)) (-2761 (((-3 $ "failed") $ $) 86)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 97)) (-2718 (((-754) $) 99)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 100)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 114) (($ $) 85) (($ (-401 (-552))) 80) (($ (-552)) 77) (($ (-401 (-552))) 74)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 89)) (-3030 (((-401 (-552)) $ $) 52)) (-1714 (((-627 $) (-1148 $)) 63) (((-627 $) (-1148 (-401 (-552)))) 62) (((-627 $) (-1148 (-552))) 61) (((-627 $) (-931 $)) 60) (((-627 $) (-931 (-401 (-552)))) 59) (((-627 $) (-931 (-552))) 58)) (-3329 (($ $) 125)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 118)) (-2329 (((-111) $ $) 117)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 119)) (-2316 (((-111) $ $) 116)) (-2407 (($ $ $) 115)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 111) (($ $ (-401 (-552))) 69)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 113) (($ $ (-401 (-552))) 112) (($ (-552) $) 76) (($ $ (-552)) 75) (($ (-401 (-552)) $) 73) (($ $ (-401 (-552))) 72))) -(((-991) (-137)) (T -991)) -((-1737 (*1 *1 *1) (-4 *1 (-991))) (-2597 (*1 *2 *1) (|partial| -12 (-4 *1 (-991)) (-5 *2 (-842)))) (-1934 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991)))) (-1441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991)))) (-3348 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-5 *4 (-842)) (-4 *1 (-991)))) (-3348 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1737 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-900)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-991)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-991)))) (-2734 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842)))) (-4169 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-991)) (-5 *2 (-401 (-552)))))) -(-13 (-144) (-828) (-169) (-357) (-405 (-401 (-552))) (-38 (-552)) (-38 (-401 (-552))) (-981) (-10 -8 (-15 -2597 ((-3 (-842) "failed") $)) (-15 -1934 ((-3 (-1148 $) "failed") $)) (-15 -1441 ((-3 (-1148 $) "failed") $)) (-15 -3348 ((-3 $ "failed") (-1148 $) (-900) (-842))) (-15 -3348 ((-3 $ "failed") (-1148 $) (-900))) (-15 -1714 ((-627 $) (-1148 $))) (-15 -1714 ((-627 $) (-1148 (-401 (-552))))) (-15 -1714 ((-627 $) (-1148 (-552)))) (-15 -1714 ((-627 $) (-931 $))) (-15 -1714 ((-627 $) (-931 (-401 (-552))))) (-15 -1714 ((-627 $) (-931 (-552)))) (-15 -1737 ($ $ (-900))) (-15 -1737 ($ $)) (-15 -1737 ($ (-401 (-552)))) (-15 -1737 ($ (-552))) (-15 -2734 ($ $ (-842))) (-15 -4169 ($ $ (-842))) (-15 -3030 ((-401 (-552)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 #1=(-552)) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-405 (-401 (-552))) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 #1#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 #1#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-899) . T) ((-981) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) |has| (-401 (-552)) (-1017 (-552))) ((-1034 #0#) . T) ((-1034 #1#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-4091 (((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-992 |#1| |#2|) (-10 -7 (-15 -4091 ((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-27) (-424 |#1|))) (T -992)) -((-4091 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1152)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-627 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1174) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) (-5 *3 (-552)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111)))) (-5 *1 (-992 *8 *4))))) -(-10 -7 (-15 -4091 ((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3829 (((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-993 |#1| |#2|) (-10 -7 (-15 -3829 ((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-27) (-424 |#1|))) (T -993)) -((-3829 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1152)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-627 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1174) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) (-5 *3 (-552)) (-5 *2 (-627 *4)) (-5 *1 (-993 *8 *4))))) -(-10 -7 (-15 -3829 ((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1385 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)) 30)) (-3418 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 58)) (-1814 (((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|)) 63))) -(((-994 |#1| |#2|) (-10 -7 (-15 -3418 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1814 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -1385 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -994)) -((-1385 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 *4))) (-5 *4 (-552)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-994 *6 *3)))) (-1814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) (-5 *1 (-994 *4 *5)) (-5 *3 (-401 *5)))) (-3418 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) (|:| -3268 *6))) (-5 *1 (-994 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -3418 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1814 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -1385 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) -((-3657 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 22)) (-3393 (((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 33))) -(((-995 |#1| |#2|) (-10 -7 (-15 -3657 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3393 ((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -995)) -((-3393 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-401 *5))) (-5 *1 (-995 *4 *5)) (-5 *3 (-401 *5)))) (-3657 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -3268 *6))) (-5 *1 (-995 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -3657 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3393 ((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) -((-2982 (((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552))))) 37)) (-1738 (((-1 |#1|) (-1078 |#1|)) 45)) (-2664 (((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)) 34))) -(((-996 |#1|) (-10 -7 (-15 -1738 ((-1 |#1|) (-1078 |#1|))) (-15 -2982 ((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552)))))) (-15 -2664 ((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)))) (-1076)) (T -996)) -((-2664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1235 *6)) (-5 *4 (-1235 (-552))) (-5 *5 (-552)) (-4 *6 (-1076)) (-5 *2 (-1 *6)) (-5 *1 (-996 *6)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4288 *4) (|:| -2671 (-552))))) (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4))))) -(-10 -7 (-15 -1738 ((-1 |#1|) (-1078 |#1|))) (-15 -2982 ((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552)))))) (-15 -2664 ((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)))) -((-2641 (((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-13 (-362) (-357))) (T -997)) -((-2641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) (-4 *9 (-13 (-362) (-357))) (-5 *2 (-754)) (-5 *1 (-997 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1465 (((-111) $ $) NIL)) (-4148 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 11)) (-2292 (((-111) $ $) NIL))) -(((-998) (-13 (-1059) (-10 -8 (-15 -4148 ((-1111) $)) (-15 -3122 ((-1111) $))))) (T -998)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998))))) -(-13 (-1059) (-10 -8 (-15 -4148 ((-1111) $)) (-15 -3122 ((-1111) $)))) -((-3938 (((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 31) (((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 28)) (-3993 (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 33) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552))) 29) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 32) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|) 27)) (-4275 (((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) 19)) (-3832 (((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 16))) -(((-999 |#1|) (-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3832 ((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -4275 ((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))))) (-1211 (-552))) (T -999)) -((-4275 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *2 (-627 (-401 (-552)))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552))))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *2 (-401 (-552))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552))))) (-3938 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) (-3938 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) (-3993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-401 (-552))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552)))))) -(-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3832 ((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -4275 ((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))))) -((-3938 (((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 35) (((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 32)) (-3993 (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 30) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552))) 26) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 28) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|) 24))) -(((-1000 |#1|) (-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-1211 (-401 (-552)))) (T -1000)) -((-3938 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) (-3938 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) (-3993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *4) (|:| -2791 *4)))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))) (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552))))))) -(-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) -((-3562 (((-220) $) 6) (((-373) $) 9))) -(((-1001) (-137)) (T -1001)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3860 (((-629 (-552)) $) 54)) (-3822 (($ (-629 (-552))) 62)) (-3603 (((-552) $) 40 (|has| (-552) (-301)))) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL (|has| (-552) (-805)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) 49) (((-3 (-1154) "failed") $) NIL (|has| (-552) (-1019 (-1154)))) (((-3 (-401 (-552)) "failed") $) 47 (|has| (-552) (-1019 (-552)))) (((-3 (-552) "failed") $) 49 (|has| (-552) (-1019 (-552))))) (-2832 (((-552) $) NIL) (((-1154) $) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) NIL (|has| (-552) (-1019 (-552)))) (((-552) $) NIL (|has| (-552) (-1019 (-552))))) (-4006 (($ $ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| (-552) (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-552) (-537)))) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1737 (((-629 (-552)) $) 60)) (-1338 (((-111) $) NIL (|has| (-552) (-805)))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (|has| (-552) (-867 (-552)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (|has| (-552) (-867 (-373))))) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL)) (-4015 (((-552) $) 37)) (-2032 (((-3 $ "failed") $) NIL (|has| (-552) (-1129)))) (-3127 (((-111) $) NIL (|has| (-552) (-805)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-552) (-832)))) (-1477 (($ (-1 (-552) (-552)) $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL)) (-1977 (($) NIL (|has| (-552) (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2147 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) 42)) (-2806 (((-1134 (-552)) $) 59)) (-3828 (($ (-629 (-552)) (-629 (-552))) 63)) (-3410 (((-552) $) 53 (|has| (-552) (-537)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| (-552) (-890)))) (-3479 (((-412 $) $) NIL)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-2432 (($ $ (-629 (-552)) (-629 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-629 (-1154)) (-629 (-552))) NIL (|has| (-552) (-506 (-1154) (-552)))) (($ $ (-1154) (-552)) NIL (|has| (-552) (-506 (-1154) (-552))))) (-3795 (((-756) $) NIL)) (-2060 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $) 11 (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2493 (($ $) NIL)) (-4026 (((-552) $) 39)) (-1636 (((-629 (-552)) $) 61)) (-1522 (((-873 (-552)) $) NIL (|has| (-552) (-600 (-873 (-552))))) (((-873 (-373)) $) NIL (|has| (-552) (-600 (-873 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1003))) (((-220) $) NIL (|has| (-552) (-1003)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-890))))) (-3213 (((-844) $) 77) (($ (-552)) 43) (($ $) NIL) (($ (-401 (-552))) 20) (($ (-552)) 43) (($ (-1154)) NIL (|has| (-552) (-1019 (-1154)))) (((-401 (-552)) $) 18)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-552) (-890))) (|has| (-552) (-142))))) (-2014 (((-756)) 9)) (-3763 (((-552) $) 51 (|has| (-552) (-537)))) (-3589 (((-111) $ $) NIL)) (-1578 (($ $) NIL (|has| (-552) (-805)))) (-3297 (($) 10 T CONST)) (-3309 (($) 12 T CONST)) (-1765 (($ $) NIL (|has| (-552) (-228))) (($ $ (-756)) NIL (|has| (-552) (-228))) (($ $ (-1154)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| (-552) (-881 (-1154)))) (($ $ (-1 (-552) (-552)) (-756)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1666 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1613 (((-111) $ $) 14)) (-1655 (((-111) $ $) NIL (|has| (-552) (-832)))) (-1632 (((-111) $ $) 33 (|has| (-552) (-832)))) (-1720 (($ $ $) 29) (($ (-552) (-552)) 31)) (-1709 (($ $) 15) (($ $ $) 23)) (-1698 (($ $ $) 21)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 25) (($ $ $) 27) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) 25) (($ $ (-552)) NIL))) +(((-985 |#1|) (-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3860 ((-629 (-552)) $)) (-15 -2806 ((-1134 (-552)) $)) (-15 -1737 ((-629 (-552)) $)) (-15 -1636 ((-629 (-552)) $)) (-15 -3822 ($ (-629 (-552)))) (-15 -3828 ($ (-629 (-552)) (-629 (-552)))))) (-552)) (T -985)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) (-3828 (*1 *1 *2 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) +(-13 (-973 (-552)) (-10 -8 (-15 -3213 ((-401 (-552)) $)) (-15 -2147 ((-401 (-552)) $)) (-15 -3860 ((-629 (-552)) $)) (-15 -2806 ((-1134 (-552)) $)) (-15 -1737 ((-629 (-552)) $)) (-15 -1636 ((-629 (-552)) $)) (-15 -3822 ($ (-629 (-552)))) (-15 -3828 ($ (-629 (-552)) (-629 (-552)))))) +((-1629 (((-52) (-401 (-552)) (-552)) 9))) +(((-986) (-10 -7 (-15 -1629 ((-52) (-401 (-552)) (-552))))) (T -986)) +((-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) (-5 *1 (-986))))) +(-10 -7 (-15 -1629 ((-52) (-401 (-552)) (-552)))) +((-2663 (((-552)) 13)) (-3638 (((-552)) 16)) (-3466 (((-1242) (-552)) 15)) (-1276 (((-552) (-552)) 17) (((-552)) 12))) +(((-987) (-10 -7 (-15 -1276 ((-552))) (-15 -2663 ((-552))) (-15 -1276 ((-552) (-552))) (-15 -3466 ((-1242) (-552))) (-15 -3638 ((-552))))) (T -987)) +((-3638 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-987)))) (-1276 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987)))) (-2663 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987)))) (-1276 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987))))) +(-10 -7 (-15 -1276 ((-552))) (-15 -2663 ((-552))) (-15 -1276 ((-552) (-552))) (-15 -3466 ((-1242) (-552))) (-15 -3638 ((-552)))) +((-4058 (((-412 |#1|) |#1|) 41)) (-3479 (((-412 |#1|) |#1|) 40))) +(((-988 |#1|) (-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1|))) (-1213 (-401 (-552)))) (T -988)) +((-4058 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-988 *3)) (-4 *3 (-1213 (-401 (-552)))))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-988 *3)) (-4 *3 (-1213 (-401 (-552))))))) +(-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1|))) +((-2674 (((-3 (-401 (-552)) "failed") |#1|) 15)) (-2443 (((-111) |#1|) 14)) (-3777 (((-401 (-552)) |#1|) 10))) +(((-989 |#1|) (-10 -7 (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|))) (-1019 (-401 (-552)))) (T -989)) +((-2674 (*1 *2 *3) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-989 *3)) (-4 *3 (-1019 *2)))) (-2443 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-989 *3)) (-4 *3 (-1019 (-401 (-552)))))) (-3777 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-989 *3)) (-4 *3 (-1019 *2))))) +(-10 -7 (-15 -3777 ((-401 (-552)) |#1|)) (-15 -2443 ((-111) |#1|)) (-15 -2674 ((-3 (-401 (-552)) "failed") |#1|))) +((-1470 ((|#2| $ "value" |#2|) 12)) (-2060 ((|#2| $ "value") 10)) (-4298 (((-111) $ $) 18))) +(((-990 |#1| |#2|) (-10 -8 (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4298 ((-111) |#1| |#1|)) (-15 -2060 (|#2| |#1| "value"))) (-991 |#2|) (-1191)) (T -990)) +NIL +(-10 -8 (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4298 ((-111) |#1| |#1|)) (-15 -2060 (|#2| |#1| "value"))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2130 (($) 7 T CONST)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47)) (-3153 (((-552) $ $) 44)) (-1289 (((-111) $) 46)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-991 |#1|) (-137) (-1191)) (T -991)) +((-2527 (*1 *2 *1) (-12 (-4 *3 (-1191)) (-5 *2 (-629 *1)) (-4 *1 (-991 *3)))) (-4236 (*1 *2 *1) (-12 (-4 *3 (-1191)) (-5 *2 (-629 *1)) (-4 *1 (-991 *3)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1191)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-991 *2)) (-4 *2 (-1191)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-629 *3)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-552)))) (-4298 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-111)))) (-4266 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-111)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *1)) (|has| *1 (-6 -4369)) (-4 *1 (-991 *3)) (-4 *3 (-1191)))) (-1470 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4369)) (-4 *1 (-991 *2)) (-4 *2 (-1191)))) (-3188 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-991 *2)) (-4 *2 (-1191))))) +(-13 (-482 |t#1|) (-10 -8 (-15 -2527 ((-629 $) $)) (-15 -4236 ((-629 $) $)) (-15 -3862 ((-111) $)) (-15 -2925 (|t#1| $)) (-15 -2060 (|t#1| $ "value")) (-15 -1289 ((-111) $)) (-15 -2604 ((-629 |t#1|) $)) (-15 -3153 ((-552) $ $)) (IF (|has| |t#1| (-1078)) (PROGN (-15 -4298 ((-111) $ $)) (-15 -4266 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4369)) (PROGN (-15 -4137 ($ $ (-629 $))) (-15 -1470 (|t#1| $ "value" |t#1|)) (-15 -3188 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-3489 (($ $) 9) (($ $ (-902)) 43) (($ (-401 (-552))) 13) (($ (-552)) 15)) (-1743 (((-3 $ "failed") (-1150 $) (-902) (-844)) 23) (((-3 $ "failed") (-1150 $) (-902)) 28)) (-3755 (($ $ (-552)) 49)) (-2014 (((-756)) 17)) (-4296 (((-629 $) (-1150 $)) NIL) (((-629 $) (-1150 (-401 (-552)))) 54) (((-629 $) (-1150 (-552))) 59) (((-629 $) (-933 $)) 63) (((-629 $) (-933 (-401 (-552)))) 67) (((-629 $) (-933 (-552))) 71)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 47))) +(((-992 |#1|) (-10 -8 (-15 -3489 (|#1| (-552))) (-15 -3489 (|#1| (-401 (-552)))) (-15 -3489 (|#1| |#1| (-902))) (-15 -4296 ((-629 |#1|) (-933 (-552)))) (-15 -4296 ((-629 |#1|) (-933 (-401 (-552))))) (-15 -4296 ((-629 |#1|) (-933 |#1|))) (-15 -4296 ((-629 |#1|) (-1150 (-552)))) (-15 -4296 ((-629 |#1|) (-1150 (-401 (-552))))) (-15 -4296 ((-629 |#1|) (-1150 |#1|))) (-15 -1743 ((-3 |#1| "failed") (-1150 |#1|) (-902))) (-15 -1743 ((-3 |#1| "failed") (-1150 |#1|) (-902) (-844))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3755 (|#1| |#1| (-552))) (-15 -3489 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2014 ((-756))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902)))) (-993)) (T -992)) +((-2014 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-992 *3)) (-4 *3 (-993))))) +(-10 -8 (-15 -3489 (|#1| (-552))) (-15 -3489 (|#1| (-401 (-552)))) (-15 -3489 (|#1| |#1| (-902))) (-15 -4296 ((-629 |#1|) (-933 (-552)))) (-15 -4296 ((-629 |#1|) (-933 (-401 (-552))))) (-15 -4296 ((-629 |#1|) (-933 |#1|))) (-15 -4296 ((-629 |#1|) (-1150 (-552)))) (-15 -4296 ((-629 |#1|) (-1150 (-401 (-552))))) (-15 -4296 ((-629 |#1|) (-1150 |#1|))) (-15 -1743 ((-3 |#1| "failed") (-1150 |#1|) (-902))) (-15 -1743 ((-3 |#1| "failed") (-1150 |#1|) (-902) (-844))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3755 (|#1| |#1| (-552))) (-15 -3489 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2014 ((-756))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 87)) (-3303 (($ $) 88)) (-1334 (((-111) $) 90)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 107)) (-3343 (((-412 $) $) 108)) (-3489 (($ $) 71) (($ $ (-902)) 57) (($ (-401 (-552))) 56) (($ (-552)) 55)) (-2393 (((-111) $ $) 98)) (-3886 (((-552) $) 124)) (-2130 (($) 17 T CONST)) (-1743 (((-3 $ "failed") (-1150 $) (-902) (-844)) 65) (((-3 $ "failed") (-1150 $) (-902)) 64)) (-1393 (((-3 (-552) "failed") $) 83 (|has| (-401 (-552)) (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 81 (|has| (-401 (-552)) (-1019 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) 79)) (-2832 (((-552) $) 84 (|has| (-401 (-552)) (-1019 (-552)))) (((-401 (-552)) $) 82 (|has| (-401 (-552)) (-1019 (-401 (-552))))) (((-401 (-552)) $) 78)) (-3941 (($ $ (-844)) 54)) (-3147 (($ $ (-844)) 53)) (-4006 (($ $ $) 102)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 101)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 96)) (-1677 (((-111) $) 109)) (-1338 (((-111) $) 122)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 70)) (-3127 (((-111) $) 123)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 105)) (-1772 (($ $ $) 121)) (-2011 (($ $ $) 120)) (-3739 (((-3 (-1150 $) "failed") $) 66)) (-1882 (((-3 (-844) "failed") $) 68)) (-1455 (((-3 (-1150 $) "failed") $) 67)) (-2552 (($ (-629 $)) 94) (($ $ $) 93)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 110)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 95)) (-2594 (($ (-629 $)) 92) (($ $ $) 91)) (-3479 (((-412 $) $) 106)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 103)) (-3969 (((-3 $ "failed") $ $) 86)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 97)) (-3795 (((-756) $) 99)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 100)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 114) (($ $) 85) (($ (-401 (-552))) 80) (($ (-552)) 77) (($ (-401 (-552))) 74)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 89)) (-4311 (((-401 (-552)) $ $) 52)) (-4296 (((-629 $) (-1150 $)) 63) (((-629 $) (-1150 (-401 (-552)))) 62) (((-629 $) (-1150 (-552))) 61) (((-629 $) (-933 $)) 60) (((-629 $) (-933 (-401 (-552)))) 59) (((-629 $) (-933 (-552))) 58)) (-1578 (($ $) 125)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 118)) (-1644 (((-111) $ $) 117)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 119)) (-1632 (((-111) $ $) 116)) (-1720 (($ $ $) 115)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 111) (($ $ (-401 (-552))) 69)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 113) (($ $ (-401 (-552))) 112) (($ (-552) $) 76) (($ $ (-552)) 75) (($ (-401 (-552)) $) 73) (($ $ (-401 (-552))) 72))) +(((-993) (-137)) (T -993)) +((-3489 (*1 *1 *1) (-4 *1 (-993))) (-1882 (*1 *2 *1) (|partial| -12 (-4 *1 (-993)) (-5 *2 (-844)))) (-1455 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150 *1)) (-4 *1 (-993)))) (-3739 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150 *1)) (-4 *1 (-993)))) (-1743 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1150 *1)) (-5 *3 (-902)) (-5 *4 (-844)) (-4 *1 (-993)))) (-1743 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1150 *1)) (-5 *3 (-902)) (-4 *1 (-993)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-993)) (-5 *2 (-629 *1)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-1150 (-401 (-552)))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-1150 (-552))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-993)) (-5 *2 (-629 *1)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-933 (-552))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) (-3489 (*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-902)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-993)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-993)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-844)))) (-3147 (*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-844)))) (-4311 (*1 *2 *1 *1) (-12 (-4 *1 (-993)) (-5 *2 (-401 (-552)))))) +(-13 (-144) (-830) (-169) (-357) (-405 (-401 (-552))) (-38 (-552)) (-38 (-401 (-552))) (-983) (-10 -8 (-15 -1882 ((-3 (-844) "failed") $)) (-15 -1455 ((-3 (-1150 $) "failed") $)) (-15 -3739 ((-3 (-1150 $) "failed") $)) (-15 -1743 ((-3 $ "failed") (-1150 $) (-902) (-844))) (-15 -1743 ((-3 $ "failed") (-1150 $) (-902))) (-15 -4296 ((-629 $) (-1150 $))) (-15 -4296 ((-629 $) (-1150 (-401 (-552))))) (-15 -4296 ((-629 $) (-1150 (-552)))) (-15 -4296 ((-629 $) (-933 $))) (-15 -4296 ((-629 $) (-933 (-401 (-552))))) (-15 -4296 ((-629 $) (-933 (-552)))) (-15 -3489 ($ $ (-902))) (-15 -3489 ($ $)) (-15 -3489 ($ (-401 (-552)))) (-15 -3489 ($ (-552))) (-15 -3941 ($ $ (-844))) (-15 -3147 ($ $ (-844))) (-15 -4311 ((-401 (-552)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 #1=(-552)) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-844)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-405 (-401 (-552))) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 #1#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 #1#) . T) ((-702 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-830) . T) ((-832) . T) ((-901) . T) ((-983) . T) ((-1019 (-401 (-552))) . T) ((-1019 (-552)) |has| (-401 (-552)) (-1019 (-552))) ((-1036 #0#) . T) ((-1036 #1#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-3616 (((-2 (|:| |ans| |#2|) (|:| -3428 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-994 |#1| |#2|) (-10 -7 (-15 -3616 ((-2 (|:| |ans| |#2|) (|:| -3428 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-27) (-424 |#1|))) (T -994)) +((-3616 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1154)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-629 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1176) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-832) (-144) (-1019 *3) (-625 *3))) (-5 *3 (-552)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3428 *4) (|:| |sol?| (-111)))) (-5 *1 (-994 *8 *4))))) +(-10 -7 (-15 -3616 ((-2 (|:| |ans| |#2|) (|:| -3428 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2853 (((-3 (-629 |#2|) "failed") (-552) |#2| |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-995 |#1| |#2|) (-10 -7 (-15 -2853 ((-3 (-629 |#2|) "failed") (-552) |#2| |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552))) (-13 (-1176) (-27) (-424 |#1|))) (T -995)) +((-2853 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1154)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-629 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1176) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-832) (-144) (-1019 *3) (-625 *3))) (-5 *3 (-552)) (-5 *2 (-629 *4)) (-5 *1 (-995 *8 *4))))) +(-10 -7 (-15 -2853 ((-3 (-629 |#2|) "failed") (-552) |#2| |#2| |#2| (-1154) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-629 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-629 |#2|)) (-1 (-3 (-2 (|:| -1411 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3003 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2771 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)) 30)) (-4316 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 58)) (-2854 (((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|)) 63))) +(((-996 |#1| |#2|) (-10 -7 (-15 -4316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2854 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -3003 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2771 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) (-13 (-357) (-144) (-1019 (-552))) (-1213 |#1|)) (T -996)) +((-3003 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1213 *6)) (-4 *6 (-13 (-357) (-144) (-1019 *4))) (-5 *4 (-552)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -2771 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-996 *6 *3)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) (-5 *1 (-996 *4 *5)) (-5 *3 (-401 *5)))) (-4316 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) (|:| -4329 *6))) (-5 *1 (-996 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -4316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2854 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -3003 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2771 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) +((-1653 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 22)) (-4104 (((-3 (-629 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 33))) +(((-997 |#1| |#2|) (-10 -7 (-15 -1653 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -4104 ((-3 (-629 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) (-13 (-357) (-144) (-1019 (-552))) (-1213 |#1|)) (T -997)) +((-4104 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) (-5 *2 (-629 (-401 *5))) (-5 *1 (-997 *4 *5)) (-5 *3 (-401 *5)))) (-1653 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -4329 *6))) (-5 *1 (-997 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -1653 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4329 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -4104 ((-3 (-629 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) +((-1327 (((-1 |#1|) (-629 (-2 (|:| -2925 |#1|) (|:| -1400 (-552))))) 37)) (-3362 (((-1 |#1|) (-1080 |#1|)) 45)) (-1349 (((-1 |#1|) (-1237 |#1|) (-1237 (-552)) (-552)) 34))) +(((-998 |#1|) (-10 -7 (-15 -3362 ((-1 |#1|) (-1080 |#1|))) (-15 -1327 ((-1 |#1|) (-629 (-2 (|:| -2925 |#1|) (|:| -1400 (-552)))))) (-15 -1349 ((-1 |#1|) (-1237 |#1|) (-1237 (-552)) (-552)))) (-1078)) (T -998)) +((-1349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1237 *6)) (-5 *4 (-1237 (-552))) (-5 *5 (-552)) (-4 *6 (-1078)) (-5 *2 (-1 *6)) (-5 *1 (-998 *6)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -2925 *4) (|:| -1400 (-552))))) (-4 *4 (-1078)) (-5 *2 (-1 *4)) (-5 *1 (-998 *4)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-1078)) (-5 *2 (-1 *4)) (-5 *1 (-998 *4))))) +(-10 -7 (-15 -3362 ((-1 |#1|) (-1080 |#1|))) (-15 -1327 ((-1 |#1|) (-629 (-2 (|:| -2925 |#1|) (|:| -1400 (-552)))))) (-15 -1349 ((-1 |#1|) (-1237 |#1|) (-1237 (-552)) (-552)))) +((-4241 (((-756) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-999 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4241 ((-756) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-357) (-1213 |#1|) (-1213 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-13 (-362) (-357))) (T -999)) +((-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-4 *4 (-1213 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) (-4 *9 (-13 (-362) (-357))) (-5 *2 (-756)) (-5 *1 (-999 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4241 ((-756) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3202 (((-111) $ $) NIL)) (-2951 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) NIL) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 11)) (-1613 (((-111) $ $) NIL))) +(((-1000) (-13 (-1061) (-10 -8 (-15 -2951 ((-1113) $)) (-15 -4300 ((-1113) $))))) (T -1000)) +((-2951 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1000)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1000))))) +(-13 (-1061) (-10 -8 (-15 -2951 ((-1113) $)) (-15 -4300 ((-1113) $)))) +((-2712 (((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) 31) (((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552))) 28)) (-1993 (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552))) 33) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552))) 29) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) 32) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|) 27)) (-1622 (((-629 (-401 (-552))) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) 19)) (-2888 (((-401 (-552)) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) 16))) +(((-1001 |#1|) (-10 -7 (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|)) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -2888 ((-401 (-552)) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1622 ((-629 (-401 (-552))) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))))) (-1213 (-552))) (T -1001)) +((-1622 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *2 (-629 (-401 (-552)))) (-5 *1 (-1001 *4)) (-4 *4 (-1213 (-552))))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) (-5 *2 (-401 (-552))) (-5 *1 (-1001 *4)) (-4 *4 (-1213 (-552))))) (-2712 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))))) (-2712 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-629 (-2 (|:| -3416 *5) (|:| -3428 *5)))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))) (-5 *4 (-2 (|:| -3416 *5) (|:| -3428 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *2 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))) (-5 *4 (-401 (-552))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *2 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))) (-5 *4 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) (-1993 (*1 *2 *3) (-12 (-5 *2 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552)))))) +(-10 -7 (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|)) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -2888 ((-401 (-552)) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1622 ((-629 (-401 (-552))) (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))))) +((-2712 (((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) 35) (((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552))) 32)) (-1993 (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552))) 30) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552))) 26) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) 28) (((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|) 24))) +(((-1002 |#1|) (-10 -7 (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|)) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) (-1213 (-401 (-552)))) (T -1002)) +((-2712 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552)))))) (-2712 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 *4)))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-629 (-2 (|:| -3416 *5) (|:| -3428 *5)))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 *5)) (-5 *4 (-2 (|:| -3416 *5) (|:| -3428 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-5 *2 (-629 (-2 (|:| -3416 *4) (|:| -3428 *4)))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *2 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552)))) (-5 *4 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) (-1993 (*1 *2 *3) (-12 (-5 *2 (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552))))))) +(-10 -7 (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1|)) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -1993 ((-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-401 (-552)))) (-15 -2712 ((-3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) "failed") |#1| (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))) (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) +((-1522 (((-220) $) 6) (((-373) $) 9))) +(((-1003) (-137)) (T -1003)) NIL (-13 (-600 (-220)) (-600 (-373))) (((-600 (-220)) . T) ((-600 (-373)) . T)) -((-1696 (((-627 (-373)) (-931 (-552)) (-373)) 28) (((-627 (-373)) (-931 (-401 (-552))) (-373)) 27)) (-4078 (((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373)) 37))) -(((-1002) (-10 -7 (-15 -1696 ((-627 (-373)) (-931 (-401 (-552))) (-373))) (-15 -1696 ((-627 (-373)) (-931 (-552)) (-373))) (-15 -4078 ((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373))))) (T -1002)) -((-4078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-373)))) (-5 *1 (-1002)) (-5 *5 (-373)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) (-5 *4 (-373)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) (-5 *4 (-373))))) -(-10 -7 (-15 -1696 ((-627 (-373)) (-931 (-401 (-552))) (-373))) (-15 -1696 ((-627 (-373)) (-931 (-552)) (-373))) (-15 -4078 ((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 70)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL) (($ $ (-900)) NIL) (($ (-401 (-552))) NIL) (($ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) 65)) (-3887 (($) NIL T CONST)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) NIL) (((-3 $ "failed") (-1148 $) (-900)) 50)) (-4039 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-552) "failed") $) NIL (-1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))))) (-1703 (((-401 (-552)) $) 15 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-401 (-552)) $) 15) ((|#1| $) 108) (((-552) $) NIL (-1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))))) (-2734 (($ $ (-842)) 42)) (-4169 (($ $ (-842)) 43)) (-2813 (($ $ $) NIL)) (-3758 (((-401 (-552)) $ $) 19)) (-2040 (((-3 $ "failed") $) 83)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) 61)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-1508 (((-111) $) 64)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1441 (((-3 (-1148 $) "failed") $) 78)) (-2597 (((-3 (-842) "failed") $) 77)) (-1934 (((-3 (-1148 $) "failed") $) 75)) (-2658 (((-3 (-1038 $ (-1148 $)) "failed") $) 73)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 84)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) 82) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) 58) (($ (-401 (-552))) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 110)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ $) 25)) (-1714 (((-627 $) (-1148 $)) 56) (((-627 $) (-1148 (-401 (-552)))) NIL) (((-627 $) (-1148 (-552))) NIL) (((-627 $) (-931 $)) NIL) (((-627 $) (-931 (-401 (-552)))) NIL) (((-627 $) (-931 (-552))) NIL)) (-4337 (($ (-1038 $ (-1148 $)) (-842)) 41)) (-3329 (($ $) 20)) (-1922 (($) 29 T CONST)) (-1933 (($) 35 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 71)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22)) (-2407 (($ $ $) 33)) (-2396 (($ $) 34) (($ $ $) 69)) (-2384 (($ $ $) 103)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 91) (($ $ $) 96) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ (-552) $) 91) (($ $ (-552)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-1003 |#1|) (-13 (-991) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4337 ($ (-1038 $ (-1148 $)) (-842))) (-15 -2658 ((-3 (-1038 $ (-1148 $)) "failed") $)) (-15 -3758 ((-401 (-552)) $ $)))) (-13 (-828) (-357) (-1001))) (T -1003)) -((-4337 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-1003 *4) (-1148 (-1003 *4)))) (-5 *3 (-842)) (-5 *1 (-1003 *4)) (-4 *4 (-13 (-828) (-357) (-1001))))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-1038 (-1003 *3) (-1148 (-1003 *3)))) (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001))))) (-3758 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001)))))) -(-13 (-991) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4337 ($ (-1038 $ (-1148 $)) (-842))) (-15 -2658 ((-3 (-1038 $ (-1148 $)) "failed") $)) (-15 -3758 ((-401 (-552)) $ $)))) -((-3059 (((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1004 |#1| |#2|) (-10 -7 (-15 -3059 (|#2| |#2| |#1|)) (-15 -3059 ((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)))) (-357) (-638 |#1|)) (T -1004)) -((-3059 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -1651 *3) (|:| -3354 (-627 *5)))) (-5 *1 (-1004 *5 *3)) (-5 *4 (-627 *5)) (-4 *3 (-638 *5)))) (-3059 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-1004 *3 *2)) (-4 *2 (-638 *3))))) -(-10 -7 (-15 -3059 (|#2| |#2| |#1|)) (-15 -3059 ((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2869 ((|#1| $ |#1|) 14)) (-2950 ((|#1| $ |#1|) 12)) (-3206 (($ |#1|) 10)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1985 ((|#1| $) 11)) (-3452 ((|#1| $) 13)) (-1477 (((-842) $) 21 (|has| |#1| (-1076)))) (-2292 (((-111) $ $) 9))) -(((-1005 |#1|) (-13 (-1189) (-10 -8 (-15 -3206 ($ |#1|)) (-15 -1985 (|#1| $)) (-15 -2950 (|#1| $ |#1|)) (-15 -3452 (|#1| $)) (-15 -2869 (|#1| $ |#1|)) (-15 -2292 ((-111) $ $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1005)) -((-3206 (*1 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-3452 (*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2869 (*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1005 *3)) (-4 *3 (-1189))))) -(-13 (-1189) (-10 -8 (-15 -3206 ($ |#1|)) (-15 -1985 (|#1| $)) (-15 -2950 (|#1| $ |#1|)) (-15 -3452 (|#1| $)) (-15 -2869 (|#1| $ |#1|)) (-15 -2292 ((-111) $ $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 105) (((-627 $) (-627 |#4|) (-111)) 106) (((-627 $) (-627 |#4|) (-111) (-111)) 104) (((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111)) 107)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 99)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 54)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) 57)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3203 (((-111) |#4| $) NIL)) (-2004 (((-111) |#4| $) NIL)) (-2790 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2533 (((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111)) 119)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) NIL)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 97)) (-1294 (((-3 |#4| "failed") $) 37)) (-4314 (((-627 $) |#4| $) 80)) (-2338 (((-3 (-111) (-627 $)) |#4| $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3383 (((-627 $) |#4| $) 102) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 103) (((-627 $) |#4| (-627 $)) NIL)) (-4219 (((-627 $) (-627 |#4|) (-111) (-111) (-111)) 114)) (-1892 (($ |#4| $) 70) (($ (-627 |#4|) $) 71) (((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 48)) (-4168 (($ $ |#4|) NIL) (((-627 $) |#4| $) 82) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 77)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-2733 (((-627 $) |#4| $) 79) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3612 (((-111) |#4| $) NIL)) (-3528 (((-111) |#3| $) 53)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1048 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1006)) -((-1892 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *3))) (-5 *1 (-1006 *5 *6 *7 *3)) (-4 *3 (-1042 *5 *6 *7)))) (-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-1361 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-4219 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-2533 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-627 *8)) (|:| |towers| (-627 (-1006 *5 *6 *7 *8))))) (-5 *1 (-1006 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) -(-13 (-1048 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) -((-3391 (((-627 (-671 |#1|)) (-627 (-671 |#1|))) 58) (((-671 |#1|) (-671 |#1|)) 57) (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|))) 56) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 53)) (-3616 (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900)) 52) (((-671 |#1|) (-671 |#1|) (-900)) 51)) (-1919 (((-627 (-671 (-552))) (-627 (-627 (-552)))) 68) (((-627 (-671 (-552))) (-627 (-884 (-552))) (-552)) 67) (((-671 (-552)) (-627 (-552))) 64) (((-671 (-552)) (-884 (-552)) (-552)) 63)) (-3085 (((-671 (-931 |#1|)) (-754)) 81)) (-3491 (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900)) 37 (|has| |#1| (-6 (-4368 "*")))) (((-671 |#1|) (-671 |#1|) (-900)) 35 (|has| |#1| (-6 (-4368 "*")))))) -(((-1007 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-671 |#1|) (-671 |#1|) (-900))) |%noBranch|) (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) |%noBranch|) (-15 -3085 ((-671 (-931 |#1|)) (-754))) (-15 -3616 ((-671 |#1|) (-671 |#1|) (-900))) (-15 -3616 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) (-15 -3391 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3391 ((-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -1919 ((-671 (-552)) (-884 (-552)) (-552))) (-15 -1919 ((-671 (-552)) (-627 (-552)))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-884 (-552))) (-552))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-627 (-552)))))) (-1028)) (T -1007)) -((-1919 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-552)))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-884 (-552)))) (-5 *4 (-552)) (-5 *2 (-627 (-671 *4))) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-552))) (-5 *4 (-552)) (-5 *2 (-671 *4)) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-671 (-931 *4))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-671 |#1|) (-671 |#1|) (-900))) |%noBranch|) (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) |%noBranch|) (-15 -3085 ((-671 (-931 |#1|)) (-754))) (-15 -3616 ((-671 |#1|) (-671 |#1|) (-900))) (-15 -3616 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) (-15 -3391 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3391 ((-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -1919 ((-671 (-552)) (-884 (-552)) (-552))) (-15 -1919 ((-671 (-552)) (-627 (-552)))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-884 (-552))) (-552))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-627 (-552)))))) -((-2901 (((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)) 50 (|has| |#1| (-301)))) (-2843 (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))) 76 (|has| |#1| (-357))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|)) 79 (|has| |#1| (-357)))) (-2652 (((-1235 |#1|) (-627 (-1235 |#1|)) (-552)) 93 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-3027 (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900)) 85 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111)) 83 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|))) 82 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552)) 81 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-4280 (((-111) (-627 (-671 |#1|))) 71 (|has| |#1| (-357))) (((-111) (-627 (-671 |#1|)) (-552)) 73 (|has| |#1| (-357)))) (-4175 (((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|)) 48 (|has| |#1| (-301)))) (-2495 (((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|)) 34)) (-3845 (((-671 |#1|) (-1235 (-1235 |#1|))) 31)) (-2644 (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552)) 65 (|has| |#1| (-357))) (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|))) 64 (|has| |#1| (-357))) (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552)) 69 (|has| |#1| (-357))))) -(((-1008 |#1|) (-10 -7 (-15 -3845 ((-671 |#1|) (-1235 (-1235 |#1|)))) (-15 -2495 ((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -4175 ((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2901 ((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900))) (-15 -2652 ((-1235 |#1|) (-627 (-1235 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) (-1028)) (T -1008)) -((-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1235 *5))) (-5 *4 (-552)) (-5 *2 (-1235 *5)) (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1028)) (-5 *2 (-627 (-627 (-671 *4)))) (-5 *1 (-1008 *4)) (-5 *3 (-627 (-671 *4))))) (-3027 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) (-4 *6 (-1028)) (-5 *2 (-627 (-627 (-671 *6)))) (-5 *1 (-1008 *6)) (-5 *3 (-627 (-671 *6))))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1235 (-1235 *5))) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *4)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *5)))) (-2644 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-1028)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4)) (-4 *4 (-357)) (-4 *4 (-1028)))) (-2644 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-627 (-671 *6))) (-5 *4 (-111)) (-5 *5 (-552)) (-5 *2 (-671 *6)) (-5 *1 (-1008 *6)) (-4 *6 (-357)) (-4 *6 (-1028)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-1235 *5)) (-4 *5 (-301)) (-4 *5 (-1028)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-4 *5 (-301)) (-4 *5 (-1028)) (-5 *2 (-1235 (-1235 *5))) (-5 *1 (-1008 *5)) (-5 *4 (-1235 *5)))) (-2495 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1008 *4)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1235 (-1235 *4))) (-4 *4 (-1028)) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4))))) -(-10 -7 (-15 -3845 ((-671 |#1|) (-1235 (-1235 |#1|)))) (-15 -2495 ((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -4175 ((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2901 ((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900))) (-15 -2652 ((-1235 |#1|) (-627 (-1235 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) -((-4054 ((|#1| (-900) |#1|) 9))) -(((-1009 |#1|) (-10 -7 (-15 -4054 (|#1| (-900) |#1|))) (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $))))) (T -1009)) -((-4054 (*1 *2 *3 *2) (-12 (-5 *3 (-900)) (-5 *1 (-1009 *2)) (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)))))))) -(-10 -7 (-15 -4054 (|#1| (-900) |#1|))) -((-1757 (((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552))))) 59)) (-1316 (((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552))))) 48)) (-2928 (((-627 (-310 (-552))) (-671 (-401 (-931 (-552))))) 41)) (-2124 (((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552))))) 68)) (-2894 (((-671 (-310 (-552))) (-671 (-310 (-552)))) 34)) (-2444 (((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552))))) 62)) (-2532 (((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552))))) 66))) -(((-1010) (-10 -7 (-15 -1757 ((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552)))))) (-15 -1316 ((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552)))))) (-15 -2928 ((-627 (-310 (-552))) (-671 (-401 (-931 (-552)))))) (-15 -2532 ((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552)))))) (-15 -2894 ((-671 (-310 (-552))) (-671 (-310 (-552))))) (-15 -2444 ((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552)))))) (-15 -2124 ((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552)))))))) (T -1010)) -((-2124 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010)))) (-2532 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-310 (-552)))) (-5 *1 (-1010)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)) (-5 *3 (-310 (-552))))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552)))))))) (-5 *1 (-1010))))) -(-10 -7 (-15 -1757 ((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552)))))) (-15 -1316 ((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552)))))) (-15 -2928 ((-627 (-310 (-552))) (-671 (-401 (-931 (-552)))))) (-15 -2532 ((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552)))))) (-15 -2894 ((-671 (-310 (-552))) (-671 (-310 (-552))))) (-15 -2444 ((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552)))))) (-15 -2124 ((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552))))))) -((-3247 ((|#1| |#1| (-900)) 9))) -(((-1011 |#1|) (-10 -7 (-15 -3247 (|#1| |#1| (-900)))) (-13 (-1076) (-10 -8 (-15 * ($ $ $))))) (T -1011)) -((-3247 (*1 *2 *2 *3) (-12 (-5 *3 (-900)) (-5 *1 (-1011 *2)) (-4 *2 (-13 (-1076) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3247 (|#1| |#1| (-900)))) -((-1477 ((|#1| (-306)) 11) (((-1240) |#1|) 9))) -(((-1012 |#1|) (-10 -7 (-15 -1477 ((-1240) |#1|)) (-15 -1477 (|#1| (-306)))) (-1189)) (T -1012)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1012 *2)) (-4 *2 (-1189)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1240)) (-5 *1 (-1012 *3)) (-4 *3 (-1189))))) -(-10 -7 (-15 -1477 ((-1240) |#1|)) (-15 -1477 (|#1| (-306)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ |#4|) 25)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2079 ((|#4| $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 46) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3995 (((-754)) 43)) (-1922 (($) 21 T CONST)) (-1933 (($) 23 T CONST)) (-2292 (((-111) $ $) 40)) (-2396 (($ $) 31) (($ $ $) NIL)) (-2384 (($ $ $) 29)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1013 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2091 ($ |#4|)) (-15 -1477 ($ |#4|)) (-15 -2079 (|#4| $)))) (-357) (-776) (-830) (-928 |#1| |#2| |#3|) (-627 |#4|)) (T -1013)) -((-2091 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) (-14 *6 (-627 *2)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) (-14 *6 (-627 *2)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-14 *6 (-627 *2))))) -(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2091 ($ |#4|)) (-15 -1477 ($ |#4|)) (-15 -2079 (|#4| $)))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1152) (-1152)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-1629 (((-111) (-111)) 39)) (-1761 (((-111) (-111)) 38)) (-2950 (((-52) $ (-1152) (-52)) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1152) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1152) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1152)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1152)) $) 34)) (-3619 (((-111) (-1152) $) NIL)) (-4165 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3892 (((-627 (-1152)) $) NIL)) (-2358 (((-111) (-1152) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-3340 (((-52) $) NIL (|has| (-1152) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1152)) 35) (((-52) $ (-1152) (-52)) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-1477 (((-842) $) 37 (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1014) (-13 (-1165 (-1152) (-52)) (-10 -7 (-15 -1629 ((-111) (-111))) (-15 -1761 ((-111) (-111))) (-6 -4366)))) (T -1014)) -((-1629 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) -(-13 (-1165 (-1152) (-52)) (-10 -7 (-15 -1629 ((-111) (-111))) (-15 -1761 ((-111) (-111))) (-6 -4366))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1015) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $))))) (T -1015)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1015))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)))) -((-1703 ((|#2| $) 10))) -(((-1016 |#1| |#2|) (-10 -8 (-15 -1703 (|#2| |#1|))) (-1017 |#2|) (-1189)) (T -1016)) -NIL -(-10 -8 (-15 -1703 (|#2| |#1|))) -((-4039 (((-3 |#1| "failed") $) 7)) (-1703 ((|#1| $) 8)) (-1477 (($ |#1|) 6))) -(((-1017 |#1|) (-137) (-1189)) (T -1017)) -((-1703 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) (-4039 (*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189))))) -(-13 (-10 -8 (-15 -1477 ($ |t#1|)) (-15 -4039 ((-3 |t#1| "failed") $)) (-15 -1703 (|t#1| $)))) -((-3541 (((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))) 38))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -3541 ((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))))) (-544) (-13 (-544) (-1017 |#1|))) (T -1018)) -((-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-13 (-544) (-1017 *5))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *6)))))) (-5 *1 (-1018 *5 *6))))) -(-10 -7 (-15 -3541 ((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))))) -((-4319 (((-373)) 15)) (-1738 (((-1 (-373)) (-373) (-373)) 20)) (-3268 (((-1 (-373)) (-754)) 43)) (-4066 (((-373)) 34)) (-1317 (((-1 (-373)) (-373) (-373)) 35)) (-3872 (((-373)) 26)) (-2210 (((-1 (-373)) (-373)) 27)) (-2412 (((-373) (-754)) 38)) (-3851 (((-1 (-373)) (-754)) 39)) (-1935 (((-1 (-373)) (-754) (-754)) 42)) (-1974 (((-1 (-373)) (-754) (-754)) 40))) -(((-1019) (-10 -7 (-15 -4319 ((-373))) (-15 -4066 ((-373))) (-15 -3872 ((-373))) (-15 -2412 ((-373) (-754))) (-15 -1738 ((-1 (-373)) (-373) (-373))) (-15 -1317 ((-1 (-373)) (-373) (-373))) (-15 -2210 ((-1 (-373)) (-373))) (-15 -3851 ((-1 (-373)) (-754))) (-15 -1974 ((-1 (-373)) (-754) (-754))) (-15 -1935 ((-1 (-373)) (-754) (-754))) (-15 -3268 ((-1 (-373)) (-754))))) (T -1019)) -((-3268 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-1935 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-1974 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-2210 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-1738 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-373)) (-5 *1 (-1019)))) (-3872 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019)))) (-4066 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019)))) (-4319 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) -(-10 -7 (-15 -4319 ((-373))) (-15 -4066 ((-373))) (-15 -3872 ((-373))) (-15 -2412 ((-373) (-754))) (-15 -1738 ((-1 (-373)) (-373) (-373))) (-15 -1317 ((-1 (-373)) (-373) (-373))) (-15 -2210 ((-1 (-373)) (-373))) (-15 -3851 ((-1 (-373)) (-754))) (-15 -1974 ((-1 (-373)) (-754) (-754))) (-15 -1935 ((-1 (-373)) (-754) (-754))) (-15 -3268 ((-1 (-373)) (-754)))) -((-1727 (((-412 |#1|) |#1|) 33))) -(((-1020 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|))) (-1211 (-401 (-931 (-552))))) (T -1020)) -((-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1211 (-401 (-931 (-552)))))))) -(-10 -7 (-15 -1727 ((-412 |#1|) |#1|))) -((-3448 (((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))) 14))) -(((-1021 |#1|) (-10 -7 (-15 -3448 ((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))))) (-301)) (T -1021)) -((-3448 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-301)) (-5 *2 (-401 (-412 (-931 *4)))) (-5 *1 (-1021 *4))))) -(-10 -7 (-15 -3448 ((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))))) -((-1853 (((-627 (-1152)) (-401 (-931 |#1|))) 17)) (-1694 (((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152)) 24)) (-1842 (((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152)) 26)) (-2685 (((-3 (-1152) "failed") (-401 (-931 |#1|))) 20)) (-3321 (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|))))) 32) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 33) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|)))) 28) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))) 29)) (-1477 (((-401 (-931 |#1|)) |#1|) 11))) -(((-1022 |#1|) (-10 -7 (-15 -1853 ((-627 (-1152)) (-401 (-931 |#1|)))) (-15 -2685 ((-3 (-1152) "failed") (-401 (-931 |#1|)))) (-15 -1694 ((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1842 ((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1477 ((-401 (-931 |#1|)) |#1|))) (-544)) (T -1022)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-1022 *3)) (-4 *3 (-544)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-5 *2 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-5 *2 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-3321 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-5 *4 (-627 (-401 (-931 *5)))) (-5 *2 (-401 (-931 *5))) (-4 *5 (-544)) (-5 *1 (-1022 *5)))) (-3321 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1148 (-401 (-931 *5))))) (-5 *4 (-1152)) (-5 *2 (-401 (-931 *5))) (-5 *1 (-1022 *5)) (-4 *5 (-544)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-401 (-1148 (-401 (-931 *5))))) (-5 *1 (-1022 *5)) (-5 *3 (-401 (-931 *5))))) (-2685 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-1152)) (-5 *1 (-1022 *4)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-1152))) (-5 *1 (-1022 *4))))) -(-10 -7 (-15 -1853 ((-627 (-1152)) (-401 (-931 |#1|)))) (-15 -2685 ((-3 (-1152) "failed") (-401 (-931 |#1|)))) (-15 -1694 ((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1842 ((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1477 ((-401 (-931 |#1|)) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3887 (($) 17 T CONST)) (-3295 ((|#1| $) 22)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3534 ((|#1| $) 21)) (-3132 ((|#1|) 19 T CONST)) (-1477 (((-842) $) 11)) (-1775 ((|#1| $) 20)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) -(((-1023 |#1|) (-137) (-23)) (T -1023)) -((-3295 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-3132 (*1 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3295 (|t#1| $)) (-15 -3534 (|t#1| $)) (-15 -1775 (|t#1| $)) (-15 -3132 (|t#1|) -3488))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2923 (($) 24 T CONST)) (-3887 (($) 17 T CONST)) (-3295 ((|#1| $) 22)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3534 ((|#1| $) 21)) (-3132 ((|#1|) 19 T CONST)) (-1477 (((-842) $) 11)) (-1775 ((|#1| $) 20)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) -(((-1024 |#1|) (-137) (-23)) (T -1024)) -((-2923 (*1 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-23))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -2923 ($) -3488))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1023 |#1|) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 (-763 |#1| (-844 |#2|)))))) (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-1361 (((-627 $) (-627 (-763 |#1| (-844 |#2|)))) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111)) NIL)) (-1853 (((-627 (-844 |#2|)) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-1553 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-4014 (((-627 (-2 (|:| |val| (-763 |#1| (-844 |#2|))) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ (-844 |#2|)) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 (-763 |#1| (-844 |#2|)) "failed") $ (-844 |#2|)) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-4097 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-1703 (($ (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-4167 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-4342 (($ (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-763 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-763 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-544)))) (-4104 (((-111) (-763 |#1| (-844 |#2|)) $ (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2934 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-2091 (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $ (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $ (-763 |#1| (-844 |#2|))) NIL (|has| $ (-6 -4366))) (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2415 (((-2 (|:| -4267 (-627 (-763 |#1| (-844 |#2|)))) (|:| -2849 (-627 (-763 |#1| (-844 |#2|))))) $) NIL)) (-3203 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-2004 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-2790 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-3215 (((-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3850 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-4147 (((-844 |#2|) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-3463 (($ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL)) (-4198 (((-627 (-844 |#2|)) $) NIL)) (-1927 (((-111) (-844 |#2|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 (-763 |#1| (-844 |#2|)) (-627 $)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-4318 (((-627 (-2 (|:| |val| (-763 |#1| (-844 |#2|))) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-1294 (((-3 (-763 |#1| (-844 |#2|)) "failed") $) NIL)) (-4314 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL)) (-2338 (((-3 (-111) (-627 $)) (-763 |#1| (-844 |#2|)) $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-3383 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL)) (-1892 (($ (-763 |#1| (-844 |#2|)) $) NIL) (($ (-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-4122 (((-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-2481 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-3921 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| (-763 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-763 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-544)))) (-2163 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-4116 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 (-763 |#1| (-844 |#2|)) "failed") $) NIL)) (-1503 (((-3 (-763 |#1| (-844 |#2|)) "failed") (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL)) (-3672 (((-3 $ "failed") $ (-763 |#1| (-844 |#2|))) NIL)) (-4168 (($ $ (-763 |#1| (-844 |#2|))) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL)) (-3509 (((-111) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|)))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-288 (-763 |#1| (-844 |#2|)))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-627 (-288 (-763 |#1| (-844 |#2|))))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-3567 (((-754) $) NIL)) (-1509 (((-754) (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (((-754) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-763 |#1| (-844 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-4237 (($ $ (-844 |#2|)) NIL)) (-2286 (($ $ (-844 |#2|)) NIL)) (-2462 (($ $) NIL)) (-3911 (($ $ (-844 |#2|)) NIL)) (-1477 (((-842) $) NIL) (((-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-1641 (((-754) $) NIL (|has| (-844 |#2|) (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 (-763 |#1| (-844 |#2|))))) "failed") (-627 (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 (-763 |#1| (-844 |#2|))))) "failed") (-627 (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2925 (((-111) $ (-1 (-111) (-763 |#1| (-844 |#2|)) (-627 (-763 |#1| (-844 |#2|))))) NIL)) (-2733 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 (-844 |#2|)) $) NIL)) (-3612 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-3528 (((-111) (-844 |#2|) $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1025 |#1| |#2|) (-13 (-1048 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) (-10 -8 (-15 -1361 ((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111))))) (-445) (-627 (-1152))) (T -1025)) -((-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1025 *5 *6))))) -(-13 (-1048 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) (-10 -8 (-15 -1361 ((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111))))) -((-1738 (((-1 (-552)) (-1070 (-552))) 33)) (-1417 (((-552) (-552) (-552) (-552) (-552)) 30)) (-2560 (((-1 (-552)) |RationalNumber|) NIL)) (-1282 (((-1 (-552)) |RationalNumber|) NIL)) (-3697 (((-1 (-552)) (-552) |RationalNumber|) NIL))) -(((-1026) (-10 -7 (-15 -1738 ((-1 (-552)) (-1070 (-552)))) (-15 -3697 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -2560 ((-1 (-552)) |RationalNumber|)) (-15 -1282 ((-1 (-552)) |RationalNumber|)) (-15 -1417 ((-552) (-552) (-552) (-552) (-552))))) (T -1026)) -((-1417 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1026)))) (-1282 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)))) (-2560 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)) (-5 *3 (-552)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1070 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) -(-10 -7 (-15 -1738 ((-1 (-552)) (-1070 (-552)))) (-15 -3697 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -2560 ((-1 (-552)) |RationalNumber|)) (-15 -1282 ((-1 (-552)) |RationalNumber|)) (-15 -1417 ((-552) (-552) (-552) (-552) (-552)))) -((-1477 (((-842) $) NIL) (($ (-552)) 10))) -(((-1027 |#1|) (-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1028)) (T -1027)) -NIL -(-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1028) (-137)) (T -1028)) -((-3995 (*1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1028))))) -(-13 (-1035) (-709) (-630 $) (-10 -8 (-15 -3995 ((-754))) (-15 -1477 ($ (-552))) (-6 -4363))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3179 (((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)) 45))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -3179 ((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)))) (-1152) (-357)) (T -1029)) -((-3179 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-754)) (-4 *6 (-357)) (-5 *2 (-401 (-931 *6))) (-5 *1 (-1029 *5 *6)) (-14 *5 (-1152))))) -(-10 -7 (-15 -3179 ((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)))) -((-2311 (((-111) $) 29)) (-3944 (((-111) $) 16)) (-3560 (((-754) $) 13)) (-3572 (((-754) $) 14)) (-4064 (((-111) $) 26)) (-3847 (((-111) $) 31))) -(((-1030 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3572 ((-754) |#1|)) (-15 -3560 ((-754) |#1|)) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|))) (-1031 |#2| |#3| |#4| |#5| |#6|) (-754) (-754) (-1028) (-233 |#3| |#4|) (-233 |#2| |#4|)) (T -1030)) -NIL -(-10 -8 (-15 -3572 ((-754) |#1|)) (-15 -3560 ((-754) |#1|)) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2311 (((-111) $) 51)) (-4136 (((-3 $ "failed") $ $) 19)) (-3944 (((-111) $) 53)) (-4031 (((-111) $ (-754)) 61)) (-3887 (($) 17 T CONST)) (-1472 (($ $) 34 (|has| |#3| (-301)))) (-3884 ((|#4| $ (-552)) 39)) (-4154 (((-754) $) 33 (|has| |#3| (-544)))) (-3413 ((|#3| $ (-552) (-552)) 41)) (-3215 (((-627 |#3|) $) 68 (|has| $ (-6 -4366)))) (-1610 (((-754) $) 32 (|has| |#3| (-544)))) (-2960 (((-627 |#5|) $) 31 (|has| |#3| (-544)))) (-3560 (((-754) $) 45)) (-3572 (((-754) $) 44)) (-1602 (((-111) $ (-754)) 60)) (-4083 (((-552) $) 49)) (-3511 (((-552) $) 47)) (-3114 (((-627 |#3|) $) 69 (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 48)) (-2780 (((-552) $) 46)) (-4176 (($ (-627 (-627 |#3|))) 54)) (-3463 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3127 (((-627 (-627 |#3|)) $) 43)) (-3971 (((-111) $ (-754)) 59)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-544)))) (-3509 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#3|) (-627 |#3|)) 75 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 (-288 |#3|))) 72 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) 55)) (-1275 (((-111) $) 58)) (-2373 (($) 57)) (-1985 ((|#3| $ (-552) (-552)) 42) ((|#3| $ (-552) (-552) |#3|) 40)) (-4064 (((-111) $) 52)) (-1509 (((-754) |#3| $) 70 (-12 (|has| |#3| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4366)))) (-2973 (($ $) 56)) (-2152 ((|#5| $ (-552)) 38)) (-1477 (((-842) $) 11)) (-3299 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 50)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#3|) 35 (|has| |#3| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1383 (((-754) $) 62 (|has| $ (-6 -4366))))) -(((-1031 |#1| |#2| |#3| |#4| |#5|) (-137) (-754) (-754) (-1028) (-233 |t#2| |t#3|) (-233 |t#1| |t#3|)) (T -1031)) -((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *5))) (-4 *5 (-1028)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-627 (-627 *5))))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) (-3413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) (-1985 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *2 (-1028)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *2 *7)) (-4 *6 (-1028)) (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *7 *2)) (-4 *6 (-1028)) (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-1031 *2 *3 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-754)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-754)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-627 *7))))) -(-13 (-110 |t#3| |t#3|) (-482 |t#3|) (-10 -8 (-6 -4366) (IF (|has| |t#3| (-169)) (-6 (-700 |t#3|)) |%noBranch|) (-15 -4176 ($ (-627 (-627 |t#3|)))) (-15 -3944 ((-111) $)) (-15 -4064 ((-111) $)) (-15 -2311 ((-111) $)) (-15 -3847 ((-111) $)) (-15 -4083 ((-552) $)) (-15 -3479 ((-552) $)) (-15 -3511 ((-552) $)) (-15 -2780 ((-552) $)) (-15 -3560 ((-754) $)) (-15 -3572 ((-754) $)) (-15 -3127 ((-627 (-627 |t#3|)) $)) (-15 -1985 (|t#3| $ (-552) (-552))) (-15 -3413 (|t#3| $ (-552) (-552))) (-15 -1985 (|t#3| $ (-552) (-552) |t#3|)) (-15 -3884 (|t#4| $ (-552))) (-15 -2152 (|t#5| $ (-552))) (-15 -3516 ($ (-1 |t#3| |t#3|) $)) (-15 -3516 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-357)) (-15 -2407 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-301)) (-15 -1472 ($ $)) |%noBranch|) (IF (|has| |t#3| (-544)) (PROGN (-15 -4154 ((-754) $)) (-15 -1610 ((-754) $)) (-15 -2960 ((-627 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-599 (-842)) . T) ((-303 |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))) ((-482 |#3|) . T) ((-506 |#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))) ((-630 |#3|) . T) ((-700 |#3|) |has| |#3| (-169)) ((-1034 |#3|) . T) ((-1076) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 43 (|has| |#3| (-301)))) (-3884 (((-235 |#2| |#3|) $ (-552)) 32)) (-2505 (($ (-671 |#3|)) 41)) (-4154 (((-754) $) 45 (|has| |#3| (-544)))) (-3413 ((|#3| $ (-552) (-552)) NIL)) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-1610 (((-754) $) 47 (|has| |#3| (-544)))) (-2960 (((-627 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-544)))) (-3560 (((-754) $) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#3|))) 27)) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3127 (((-627 (-627 |#3|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-544)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) (-552)) NIL) ((|#3| $ (-552) (-552) |#3|) NIL)) (-2405 (((-132)) 54 (|has| |#3| (-357)))) (-4064 (((-111) $) NIL)) (-1509 (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076)))) (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 63 (|has| |#3| (-600 (-528))))) (-2152 (((-235 |#1| |#3|) $ (-552)) 36)) (-1477 (((-842) $) 16) (((-671 |#3|) $) 38)) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-1922 (($) 13 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1032 |#1| |#2| |#3|) (-13 (-1031 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1242 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2505 ($ (-671 |#3|))) (-15 -1477 ((-671 |#3|) $)))) (-754) (-754) (-1028)) (T -1032)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-671 *5)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-1028)))) (-2505 (*1 *1 *2) (-12 (-5 *2 (-671 *5)) (-4 *5 (-1028)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754))))) -(-13 (-1031 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1242 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2505 ($ (-671 |#3|))) (-15 -1477 ((-671 |#3|) $)))) -((-2091 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3516 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1033 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3516 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2091 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-754) (-754) (-1028) (-233 |#2| |#3|) (-233 |#1| |#3|) (-1031 |#1| |#2| |#3| |#4| |#5|) (-1028) (-233 |#2| |#7|) (-233 |#1| |#7|) (-1031 |#1| |#2| |#7| |#8| |#9|)) (T -1033)) -((-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1028)) (-4 *2 (-1028)) (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *12 (-1031 *5 *6 *2 *10 *11)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1028)) (-4 *10 (-1028)) (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *2 (-1031 *5 *6 *10 *11 *12)) (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) (-4 *12 (-233 *5 *10))))) -(-10 -7 (-15 -3516 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2091 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ |#1|) 23))) -(((-1034 |#1|) (-137) (-1035)) (T -1034)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1035))))) +((-4153 (((-629 (-373)) (-933 (-552)) (-373)) 28) (((-629 (-373)) (-933 (-401 (-552))) (-373)) 27)) (-3483 (((-629 (-629 (-373))) (-629 (-933 (-552))) (-629 (-1154)) (-373)) 37))) +(((-1004) (-10 -7 (-15 -4153 ((-629 (-373)) (-933 (-401 (-552))) (-373))) (-15 -4153 ((-629 (-373)) (-933 (-552)) (-373))) (-15 -3483 ((-629 (-629 (-373))) (-629 (-933 (-552))) (-629 (-1154)) (-373))))) (T -1004)) +((-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-629 (-1154))) (-5 *2 (-629 (-629 (-373)))) (-5 *1 (-1004)) (-5 *5 (-373)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-933 (-552))) (-5 *2 (-629 (-373))) (-5 *1 (-1004)) (-5 *4 (-373)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *2 (-629 (-373))) (-5 *1 (-1004)) (-5 *4 (-373))))) +(-10 -7 (-15 -4153 ((-629 (-373)) (-933 (-401 (-552))) (-373))) (-15 -4153 ((-629 (-373)) (-933 (-552)) (-373))) (-15 -3483 ((-629 (-629 (-373))) (-629 (-933 (-552))) (-629 (-1154)) (-373)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 70)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-3489 (($ $) NIL) (($ $ (-902)) NIL) (($ (-401 (-552))) NIL) (($ (-552)) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) 65)) (-2130 (($) NIL T CONST)) (-1743 (((-3 $ "failed") (-1150 $) (-902) (-844)) NIL) (((-3 $ "failed") (-1150 $) (-902)) 50)) (-1393 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 (-552)) (-1019 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-552) "failed") $) NIL (-4029 (|has| (-401 (-552)) (-1019 (-552))) (|has| |#1| (-1019 (-552)))))) (-2832 (((-401 (-552)) $) 15 (|has| (-401 (-552)) (-1019 (-401 (-552))))) (((-401 (-552)) $) 15) ((|#1| $) 108) (((-552) $) NIL (-4029 (|has| (-401 (-552)) (-1019 (-552))) (|has| |#1| (-1019 (-552)))))) (-3941 (($ $ (-844)) 42)) (-3147 (($ $ (-844)) 43)) (-4006 (($ $ $) NIL)) (-1437 (((-401 (-552)) $ $) 19)) (-1293 (((-3 $ "failed") $) 83)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1338 (((-111) $) 61)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL)) (-3127 (((-111) $) 64)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-3739 (((-3 (-1150 $) "failed") $) 78)) (-1882 (((-3 (-844) "failed") $) 77)) (-1455 (((-3 (-1150 $) "failed") $) 75)) (-1295 (((-3 (-1040 $ (-1150 $)) "failed") $) 73)) (-2552 (($ (-629 $)) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 84)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ (-629 $)) NIL) (($ $ $) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3213 (((-844) $) 82) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) 58) (($ (-401 (-552))) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 110)) (-2014 (((-756)) NIL)) (-3589 (((-111) $ $) NIL)) (-4311 (((-401 (-552)) $ $) 25)) (-4296 (((-629 $) (-1150 $)) 56) (((-629 $) (-1150 (-401 (-552)))) NIL) (((-629 $) (-1150 (-552))) NIL) (((-629 $) (-933 $)) NIL) (((-629 $) (-933 (-401 (-552)))) NIL) (((-629 $) (-933 (-552))) NIL)) (-4162 (($ (-1040 $ (-1150 $)) (-844)) 41)) (-1578 (($ $) 20)) (-3297 (($) 29 T CONST)) (-3309 (($) 35 T CONST)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 71)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 22)) (-1720 (($ $ $) 33)) (-1709 (($ $) 34) (($ $ $) 69)) (-1698 (($ $ $) 103)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 91) (($ $ $) 96) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ (-552) $) 91) (($ $ (-552)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1005 |#1|) (-13 (-993) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4162 ($ (-1040 $ (-1150 $)) (-844))) (-15 -1295 ((-3 (-1040 $ (-1150 $)) "failed") $)) (-15 -1437 ((-401 (-552)) $ $)))) (-13 (-830) (-357) (-1003))) (T -1005)) +((-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1040 (-1005 *4) (-1150 (-1005 *4)))) (-5 *3 (-844)) (-5 *1 (-1005 *4)) (-4 *4 (-13 (-830) (-357) (-1003))))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-1040 (-1005 *3) (-1150 (-1005 *3)))) (-5 *1 (-1005 *3)) (-4 *3 (-13 (-830) (-357) (-1003))))) (-1437 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1005 *3)) (-4 *3 (-13 (-830) (-357) (-1003)))))) +(-13 (-993) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4162 ($ (-1040 $ (-1150 $)) (-844))) (-15 -1295 ((-3 (-1040 $ (-1150 $)) "failed") $)) (-15 -1437 ((-401 (-552)) $ $)))) +((-3967 (((-2 (|:| -2771 |#2|) (|:| -1443 (-629 |#1|))) |#2| (-629 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1006 |#1| |#2|) (-10 -7 (-15 -3967 (|#2| |#2| |#1|)) (-15 -3967 ((-2 (|:| -2771 |#2|) (|:| -1443 (-629 |#1|))) |#2| (-629 |#1|)))) (-357) (-640 |#1|)) (T -1006)) +((-3967 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -2771 *3) (|:| -1443 (-629 *5)))) (-5 *1 (-1006 *5 *3)) (-5 *4 (-629 *5)) (-4 *3 (-640 *5)))) (-3967 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-1006 *3 *2)) (-4 *2 (-640 *3))))) +(-10 -7 (-15 -3967 (|#2| |#2| |#1|)) (-15 -3967 ((-2 (|:| -2771 |#2|) (|:| -1443 (-629 |#1|))) |#2| (-629 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2778 ((|#1| $ |#1|) 14)) (-1470 ((|#1| $ |#1|) 12)) (-2886 (($ |#1|) 10)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2060 ((|#1| $) 11)) (-3429 ((|#1| $) 13)) (-3213 (((-844) $) 21 (|has| |#1| (-1078)))) (-1613 (((-111) $ $) 9))) +(((-1007 |#1|) (-13 (-1191) (-10 -8 (-15 -2886 ($ |#1|)) (-15 -2060 (|#1| $)) (-15 -1470 (|#1| $ |#1|)) (-15 -3429 (|#1| $)) (-15 -2778 (|#1| $ |#1|)) (-15 -1613 ((-111) $ $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) (-1191)) (T -1007)) +((-2886 (*1 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) (-2060 (*1 *2 *1) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) (-1470 (*1 *2 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) (-3429 (*1 *2 *1) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) (-2778 (*1 *2 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) (-1613 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1007 *3)) (-4 *3 (-1191))))) +(-13 (-1191) (-10 -8 (-15 -2886 ($ |#1|)) (-15 -2060 (|#1| $)) (-15 -1470 (|#1| $ |#1|)) (-15 -3429 (|#1| $)) (-15 -2778 (|#1| $ |#1|)) (-15 -1613 ((-111) $ $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) NIL)) (-1830 (((-629 $) (-629 |#4|)) 105) (((-629 $) (-629 |#4|) (-111)) 106) (((-629 $) (-629 |#4|) (-111) (-111)) 104) (((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3611 (((-629 |#3|) $) NIL)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2240 ((|#4| |#4| $) NIL)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 99)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 54)) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) 26 (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3662 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) NIL)) (-2832 (($ (-629 |#4|)) NIL)) (-2715 (((-3 $ "failed") $) 39)) (-3126 ((|#4| |#4| $) 57)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2655 (($ |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) NIL)) (-2851 (((-111) |#4| $) NIL)) (-4035 (((-111) |#4| $) NIL)) (-3250 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2503 (((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111)) 119)) (-3138 (((-629 |#4|) $) 16 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2940 ((|#3| $) 33)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#4|) $) 17 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 21)) (-3420 (((-629 |#3|) $) NIL)) (-2677 (((-111) |#3| $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) NIL)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 97)) (-2680 (((-3 |#4| "failed") $) 37)) (-1999 (((-629 $) |#4| $) 80)) (-4253 (((-3 (-111) (-629 $)) |#4| $) NIL)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-4011 (((-629 $) |#4| $) 102) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) 103) (((-629 $) |#4| (-629 $)) NIL)) (-2330 (((-629 $) (-629 |#4|) (-111) (-111) (-111)) 114)) (-2300 (($ |#4| $) 70) (($ (-629 |#4|) $) 71) (((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-3887 (((-629 |#4|) $) NIL)) (-3287 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2498 ((|#4| |#4| $) NIL)) (-4343 (((-111) $ $) NIL)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3848 ((|#4| |#4| $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-3 |#4| "failed") $) 35)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-1800 (((-3 $ "failed") $ |#4|) 48)) (-3136 (($ $ |#4|) NIL) (((-629 $) |#4| $) 82) (((-629 $) |#4| (-629 $)) NIL) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) 77)) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 15)) (-3430 (($) 13)) (-3299 (((-756) $) NIL)) (-2885 (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) 12)) (-1522 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 20)) (-2542 (($ $ |#3|) 42)) (-1853 (($ $ |#3|) 44)) (-3081 (($ $) NIL)) (-2387 (($ $ |#3|) NIL)) (-3213 (((-844) $) 31) (((-629 |#4|) $) 40)) (-1753 (((-756) $) NIL (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) NIL)) (-3933 (((-629 $) |#4| $) 79) (((-629 $) |#4| (-629 $)) NIL) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) NIL)) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) NIL)) (-2452 (((-111) |#4| $) NIL)) (-2904 (((-111) |#3| $) 53)) (-1613 (((-111) $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1008 |#1| |#2| |#3| |#4|) (-13 (-1050 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2300 ((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111))) (-15 -2330 ((-629 $) (-629 |#4|) (-111) (-111) (-111))) (-15 -2503 ((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111))))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -1008)) +((-2300 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1008 *5 *6 *7 *3))) (-5 *1 (-1008 *5 *6 *7 *3)) (-4 *3 (-1044 *5 *6 *7)))) (-1830 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) (-1830 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) (-2330 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) (-2503 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-629 *8)) (|:| |towers| (-629 (-1008 *5 *6 *7 *8))))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *3 (-629 *8))))) +(-13 (-1050 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2300 ((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111))) (-15 -2330 ((-629 $) (-629 |#4|) (-111) (-111) (-111))) (-15 -2503 ((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111))))) +((-4080 (((-629 (-673 |#1|)) (-629 (-673 |#1|))) 58) (((-673 |#1|) (-673 |#1|)) 57) (((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-629 (-673 |#1|))) 56) (((-673 |#1|) (-673 |#1|) (-673 |#1|)) 53)) (-2502 (((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902)) 52) (((-673 |#1|) (-673 |#1|) (-902)) 51)) (-2606 (((-629 (-673 (-552))) (-629 (-629 (-552)))) 68) (((-629 (-673 (-552))) (-629 (-886 (-552))) (-552)) 67) (((-673 (-552)) (-629 (-552))) 64) (((-673 (-552)) (-886 (-552)) (-552)) 63)) (-2993 (((-673 (-933 |#1|)) (-756)) 81)) (-3778 (((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902)) 37 (|has| |#1| (-6 (-4370 "*")))) (((-673 |#1|) (-673 |#1|) (-902)) 35 (|has| |#1| (-6 (-4370 "*")))))) +(((-1009 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4370 "*"))) (-15 -3778 ((-673 |#1|) (-673 |#1|) (-902))) |%noBranch|) (IF (|has| |#1| (-6 (-4370 "*"))) (-15 -3778 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902))) |%noBranch|) (-15 -2993 ((-673 (-933 |#1|)) (-756))) (-15 -2502 ((-673 |#1|) (-673 |#1|) (-902))) (-15 -2502 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902))) (-15 -4080 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4080 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -4080 ((-673 |#1|) (-673 |#1|))) (-15 -4080 ((-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -2606 ((-673 (-552)) (-886 (-552)) (-552))) (-15 -2606 ((-673 (-552)) (-629 (-552)))) (-15 -2606 ((-629 (-673 (-552))) (-629 (-886 (-552))) (-552))) (-15 -2606 ((-629 (-673 (-552))) (-629 (-629 (-552)))))) (-1030)) (T -1009)) +((-2606 (*1 *2 *3) (-12 (-5 *3 (-629 (-629 (-552)))) (-5 *2 (-629 (-673 (-552)))) (-5 *1 (-1009 *4)) (-4 *4 (-1030)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-886 (-552)))) (-5 *4 (-552)) (-5 *2 (-629 (-673 *4))) (-5 *1 (-1009 *5)) (-4 *5 (-1030)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1009 *4)) (-4 *4 (-1030)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-552))) (-5 *4 (-552)) (-5 *2 (-673 *4)) (-5 *1 (-1009 *5)) (-4 *5 (-1030)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-629 (-673 *3))) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) (-4080 (*1 *2 *2 *2) (-12 (-5 *2 (-629 (-673 *3))) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) (-4080 (*1 *2 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) (-2502 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-673 *4))) (-5 *3 (-902)) (-4 *4 (-1030)) (-5 *1 (-1009 *4)))) (-2502 (*1 *2 *2 *3) (-12 (-5 *2 (-673 *4)) (-5 *3 (-902)) (-4 *4 (-1030)) (-5 *1 (-1009 *4)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-673 (-933 *4))) (-5 *1 (-1009 *4)) (-4 *4 (-1030)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *2 (-629 (-673 *4))) (-5 *3 (-902)) (|has| *4 (-6 (-4370 "*"))) (-4 *4 (-1030)) (-5 *1 (-1009 *4)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *2 (-673 *4)) (-5 *3 (-902)) (|has| *4 (-6 (-4370 "*"))) (-4 *4 (-1030)) (-5 *1 (-1009 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4370 "*"))) (-15 -3778 ((-673 |#1|) (-673 |#1|) (-902))) |%noBranch|) (IF (|has| |#1| (-6 (-4370 "*"))) (-15 -3778 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902))) |%noBranch|) (-15 -2993 ((-673 (-933 |#1|)) (-756))) (-15 -2502 ((-673 |#1|) (-673 |#1|) (-902))) (-15 -2502 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-902))) (-15 -4080 ((-673 |#1|) (-673 |#1|) (-673 |#1|))) (-15 -4080 ((-629 (-673 |#1|)) (-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -4080 ((-673 |#1|) (-673 |#1|))) (-15 -4080 ((-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -2606 ((-673 (-552)) (-886 (-552)) (-552))) (-15 -2606 ((-673 (-552)) (-629 (-552)))) (-15 -2606 ((-629 (-673 (-552))) (-629 (-886 (-552))) (-552))) (-15 -2606 ((-629 (-673 (-552))) (-629 (-629 (-552)))))) +((-1795 (((-673 |#1|) (-629 (-673 |#1|)) (-1237 |#1|)) 50 (|has| |#1| (-301)))) (-2483 (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 (-1237 |#1|))) 76 (|has| |#1| (-357))) (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 |#1|)) 79 (|has| |#1| (-357)))) (-4323 (((-1237 |#1|) (-629 (-1237 |#1|)) (-552)) 93 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-3674 (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-902)) 85 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111)) 83 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|))) 82 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111) (-552) (-552)) 81 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-1665 (((-111) (-629 (-673 |#1|))) 71 (|has| |#1| (-357))) (((-111) (-629 (-673 |#1|)) (-552)) 73 (|has| |#1| (-357)))) (-3200 (((-1237 (-1237 |#1|)) (-629 (-673 |#1|)) (-1237 |#1|)) 48 (|has| |#1| (-301)))) (-2123 (((-673 |#1|) (-629 (-673 |#1|)) (-673 |#1|)) 34)) (-3023 (((-673 |#1|) (-1237 (-1237 |#1|))) 31)) (-4250 (((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-552)) 65 (|has| |#1| (-357))) (((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|))) 64 (|has| |#1| (-357))) (((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-111) (-552)) 69 (|has| |#1| (-357))))) +(((-1010 |#1|) (-10 -7 (-15 -3023 ((-673 |#1|) (-1237 (-1237 |#1|)))) (-15 -2123 ((-673 |#1|) (-629 (-673 |#1|)) (-673 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -3200 ((-1237 (-1237 |#1|)) (-629 (-673 |#1|)) (-1237 |#1|))) (-15 -1795 ((-673 |#1|) (-629 (-673 |#1|)) (-1237 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-111) (-552))) (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-552))) (-15 -1665 ((-111) (-629 (-673 |#1|)) (-552))) (-15 -1665 ((-111) (-629 (-673 |#1|)))) (-15 -2483 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 |#1|))) (-15 -2483 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 (-1237 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111) (-552) (-552))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-902))) (-15 -4323 ((-1237 |#1|) (-629 (-1237 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) (-1030)) (T -1010)) +((-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-1237 *5))) (-5 *4 (-552)) (-5 *2 (-1237 *5)) (-5 *1 (-1010 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030)) (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) (-5 *3 (-629 (-673 *5))))) (-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030)) (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) (-5 *3 (-629 (-673 *5))))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1030)) (-5 *2 (-629 (-629 (-673 *4)))) (-5 *1 (-1010 *4)) (-5 *3 (-629 (-673 *4))))) (-3674 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) (-4 *6 (-1030)) (-5 *2 (-629 (-629 (-673 *6)))) (-5 *1 (-1010 *6)) (-5 *3 (-629 (-673 *6))))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1237 (-1237 *5))) (-4 *5 (-357)) (-4 *5 (-1030)) (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) (-5 *3 (-629 (-673 *5))))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1237 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) (-5 *3 (-629 (-673 *5))))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-629 (-673 *4))) (-4 *4 (-357)) (-4 *4 (-1030)) (-5 *2 (-111)) (-5 *1 (-1010 *4)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-552)) (-4 *5 (-357)) (-4 *5 (-1030)) (-5 *2 (-111)) (-5 *1 (-1010 *5)))) (-4250 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-552)) (-5 *2 (-673 *5)) (-5 *1 (-1010 *5)) (-4 *5 (-357)) (-4 *5 (-1030)))) (-4250 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-673 *4))) (-5 *2 (-673 *4)) (-5 *1 (-1010 *4)) (-4 *4 (-357)) (-4 *4 (-1030)))) (-4250 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-629 (-673 *6))) (-5 *4 (-111)) (-5 *5 (-552)) (-5 *2 (-673 *6)) (-5 *1 (-1010 *6)) (-4 *6 (-357)) (-4 *6 (-1030)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-1237 *5)) (-4 *5 (-301)) (-4 *5 (-1030)) (-5 *2 (-673 *5)) (-5 *1 (-1010 *5)))) (-3200 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-673 *5))) (-4 *5 (-301)) (-4 *5 (-1030)) (-5 *2 (-1237 (-1237 *5))) (-5 *1 (-1010 *5)) (-5 *4 (-1237 *5)))) (-2123 (*1 *2 *3 *2) (-12 (-5 *3 (-629 (-673 *4))) (-5 *2 (-673 *4)) (-4 *4 (-1030)) (-5 *1 (-1010 *4)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1237 (-1237 *4))) (-4 *4 (-1030)) (-5 *2 (-673 *4)) (-5 *1 (-1010 *4))))) +(-10 -7 (-15 -3023 ((-673 |#1|) (-1237 (-1237 |#1|)))) (-15 -2123 ((-673 |#1|) (-629 (-673 |#1|)) (-673 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -3200 ((-1237 (-1237 |#1|)) (-629 (-673 |#1|)) (-1237 |#1|))) (-15 -1795 ((-673 |#1|) (-629 (-673 |#1|)) (-1237 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-111) (-552))) (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -4250 ((-673 |#1|) (-629 (-673 |#1|)) (-629 (-673 |#1|)) (-552))) (-15 -1665 ((-111) (-629 (-673 |#1|)) (-552))) (-15 -1665 ((-111) (-629 (-673 |#1|)))) (-15 -2483 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 |#1|))) (-15 -2483 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-1237 (-1237 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111) (-552) (-552))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-111))) (-15 -3674 ((-629 (-629 (-673 |#1|))) (-629 (-673 |#1|)) (-902))) (-15 -4323 ((-1237 |#1|) (-629 (-1237 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) +((-1336 ((|#1| (-902) |#1|) 9))) +(((-1011 |#1|) (-10 -7 (-15 -1336 (|#1| (-902) |#1|))) (-13 (-1078) (-10 -8 (-15 -1698 ($ $ $))))) (T -1011)) +((-1336 (*1 *2 *3 *2) (-12 (-5 *3 (-902)) (-5 *1 (-1011 *2)) (-4 *2 (-13 (-1078) (-10 -8 (-15 -1698 ($ $ $)))))))) +(-10 -7 (-15 -1336 (|#1| (-902) |#1|))) +((-3540 (((-629 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-629 (-673 (-310 (-552))))))) (-673 (-401 (-933 (-552))))) 59)) (-1915 (((-629 (-673 (-310 (-552)))) (-310 (-552)) (-673 (-401 (-933 (-552))))) 48)) (-2047 (((-629 (-310 (-552))) (-673 (-401 (-933 (-552))))) 41)) (-2757 (((-629 (-673 (-310 (-552)))) (-673 (-401 (-933 (-552))))) 68)) (-1724 (((-673 (-310 (-552))) (-673 (-310 (-552)))) 34)) (-2903 (((-629 (-673 (-310 (-552)))) (-629 (-673 (-310 (-552))))) 62)) (-2488 (((-3 (-673 (-310 (-552))) "failed") (-673 (-401 (-933 (-552))))) 66))) +(((-1012) (-10 -7 (-15 -3540 ((-629 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-629 (-673 (-310 (-552))))))) (-673 (-401 (-933 (-552)))))) (-15 -1915 ((-629 (-673 (-310 (-552)))) (-310 (-552)) (-673 (-401 (-933 (-552)))))) (-15 -2047 ((-629 (-310 (-552))) (-673 (-401 (-933 (-552)))))) (-15 -2488 ((-3 (-673 (-310 (-552))) "failed") (-673 (-401 (-933 (-552)))))) (-15 -1724 ((-673 (-310 (-552))) (-673 (-310 (-552))))) (-15 -2903 ((-629 (-673 (-310 (-552)))) (-629 (-673 (-310 (-552)))))) (-15 -2757 ((-629 (-673 (-310 (-552)))) (-673 (-401 (-933 (-552)))))))) (T -1012)) +((-2757 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-673 (-310 (-552)))) (-5 *1 (-1012)))) (-2488 (*1 *2 *3) (|partial| -12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 (-673 (-310 (-552)))) (-5 *1 (-1012)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 (-629 (-310 (-552)))) (-5 *1 (-1012)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-673 (-401 (-933 (-552))))) (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012)) (-5 *3 (-310 (-552))))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 (-629 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-629 (-673 (-310 (-552)))))))) (-5 *1 (-1012))))) +(-10 -7 (-15 -3540 ((-629 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-629 (-673 (-310 (-552))))))) (-673 (-401 (-933 (-552)))))) (-15 -1915 ((-629 (-673 (-310 (-552)))) (-310 (-552)) (-673 (-401 (-933 (-552)))))) (-15 -2047 ((-629 (-310 (-552))) (-673 (-401 (-933 (-552)))))) (-15 -2488 ((-3 (-673 (-310 (-552))) "failed") (-673 (-401 (-933 (-552)))))) (-15 -1724 ((-673 (-310 (-552))) (-673 (-310 (-552))))) (-15 -2903 ((-629 (-673 (-310 (-552)))) (-629 (-673 (-310 (-552)))))) (-15 -2757 ((-629 (-673 (-310 (-552)))) (-673 (-401 (-933 (-552))))))) +((-3325 ((|#1| |#1| (-902)) 9))) +(((-1013 |#1|) (-10 -7 (-15 -3325 (|#1| |#1| (-902)))) (-13 (-1078) (-10 -8 (-15 * ($ $ $))))) (T -1013)) +((-3325 (*1 *2 *2 *3) (-12 (-5 *3 (-902)) (-5 *1 (-1013 *2)) (-4 *2 (-13 (-1078) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3325 (|#1| |#1| (-902)))) +((-3213 ((|#1| (-306)) 11) (((-1242) |#1|) 9))) +(((-1014 |#1|) (-10 -7 (-15 -3213 ((-1242) |#1|)) (-15 -3213 (|#1| (-306)))) (-1191)) (T -1014)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1014 *2)) (-4 *2 (-1191)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-1242)) (-5 *1 (-1014 *3)) (-4 *3 (-1191))))) +(-10 -7 (-15 -3213 ((-1242) |#1|)) (-15 -3213 (|#1| (-306)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-3884 (($ |#4|) 25)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-3874 ((|#4| $) 27)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 46) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2014 (((-756)) 43)) (-3297 (($) 21 T CONST)) (-3309 (($) 23 T CONST)) (-1613 (((-111) $ $) 40)) (-1709 (($ $) 31) (($ $ $) NIL)) (-1698 (($ $ $) 29)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1015 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -3884 ($ |#4|)) (-15 -3213 ($ |#4|)) (-15 -3874 (|#4| $)))) (-357) (-778) (-832) (-930 |#1| |#2| |#3|) (-629 |#4|)) (T -1015)) +((-3884 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *2 (-930 *3 *4 *5)) (-14 *6 (-629 *2)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *2 (-930 *3 *4 *5)) (-14 *6 (-629 *2)))) (-3874 (*1 *2 *1) (-12 (-4 *2 (-930 *3 *4 *5)) (-5 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-14 *6 (-629 *2))))) +(-13 (-169) (-38 |#1|) (-10 -8 (-15 -3884 ($ |#4|)) (-15 -3213 ($ |#4|)) (-15 -3874 (|#4| $)))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-2660 (((-1242) $ (-1154) (-1154)) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1634 (((-111) (-111)) 39)) (-3562 (((-111) (-111)) 38)) (-1470 (((-52) $ (-1154) (-52)) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 (-52) "failed") (-1154) $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-1625 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-3 (-52) "failed") (-1154) $) NIL)) (-2655 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-2957 (((-52) $ (-1154) (-52)) NIL (|has| $ (-6 -4369)))) (-2892 (((-52) $ (-1154)) NIL)) (-3138 (((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-1154) $) NIL (|has| (-1154) (-832)))) (-3278 (((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-1842 (((-1154) $) NIL (|has| (-1154) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-1376 (((-629 (-1154)) $) 34)) (-2539 (((-111) (-1154) $) NIL)) (-3105 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL)) (-1580 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL)) (-2190 (((-629 (-1154)) $) NIL)) (-1335 (((-111) (-1154) $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-2702 (((-52) $) NIL (|has| (-1154) (-832)))) (-3073 (((-3 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) "failed") (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL)) (-1518 (($ $ (-52)) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-288 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-52)) (-629 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-629 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-3627 (((-629 (-52)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 (((-52) $ (-1154)) 35) (((-52) $ (-1154) (-52)) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-756) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078)))) (((-756) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-3213 (((-844) $) 37 (-4029 (|has| (-52) (-599 (-844))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1016) (-13 (-1167 (-1154) (-52)) (-10 -7 (-15 -1634 ((-111) (-111))) (-15 -3562 ((-111) (-111))) (-6 -4368)))) (T -1016)) +((-1634 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1016)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1016))))) +(-13 (-1167 (-1154) (-52)) (-10 -7 (-15 -1634 ((-111) (-111))) (-15 -3562 ((-111) (-111))) (-6 -4368))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 9)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1017) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $))))) (T -1017)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1017))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)))) +((-2832 ((|#2| $) 10))) +(((-1018 |#1| |#2|) (-10 -8 (-15 -2832 (|#2| |#1|))) (-1019 |#2|) (-1191)) (T -1018)) +NIL +(-10 -8 (-15 -2832 (|#2| |#1|))) +((-1393 (((-3 |#1| "failed") $) 7)) (-2832 ((|#1| $) 8)) (-3213 (($ |#1|) 6))) +(((-1019 |#1|) (-137) (-1191)) (T -1019)) +((-2832 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1191)))) (-1393 (*1 *2 *1) (|partial| -12 (-4 *1 (-1019 *2)) (-4 *2 (-1191)))) (-3213 (*1 *1 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1191))))) +(-13 (-10 -8 (-15 -3213 ($ |t#1|)) (-15 -1393 ((-3 |t#1| "failed") $)) (-15 -2832 (|t#1| $)))) +((-3036 (((-629 (-629 (-288 (-401 (-933 |#2|))))) (-629 (-933 |#2|)) (-629 (-1154))) 38))) +(((-1020 |#1| |#2|) (-10 -7 (-15 -3036 ((-629 (-629 (-288 (-401 (-933 |#2|))))) (-629 (-933 |#2|)) (-629 (-1154))))) (-544) (-13 (-544) (-1019 |#1|))) (T -1020)) +((-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) (-4 *6 (-13 (-544) (-1019 *5))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *6)))))) (-5 *1 (-1020 *5 *6))))) +(-10 -7 (-15 -3036 ((-629 (-629 (-288 (-401 (-933 |#2|))))) (-629 (-933 |#2|)) (-629 (-1154))))) +((-2052 (((-373)) 15)) (-3362 (((-1 (-373)) (-373) (-373)) 20)) (-4329 (((-1 (-373)) (-756)) 43)) (-1398 (((-373)) 34)) (-1681 (((-1 (-373)) (-373) (-373)) 35)) (-3293 (((-373)) 26)) (-2372 (((-1 (-373)) (-373)) 27)) (-3790 (((-373) (-756)) 38)) (-3076 (((-1 (-373)) (-756)) 39)) (-3220 (((-1 (-373)) (-756) (-756)) 42)) (-1812 (((-1 (-373)) (-756) (-756)) 40))) +(((-1021) (-10 -7 (-15 -2052 ((-373))) (-15 -1398 ((-373))) (-15 -3293 ((-373))) (-15 -3790 ((-373) (-756))) (-15 -3362 ((-1 (-373)) (-373) (-373))) (-15 -1681 ((-1 (-373)) (-373) (-373))) (-15 -2372 ((-1 (-373)) (-373))) (-15 -3076 ((-1 (-373)) (-756))) (-15 -1812 ((-1 (-373)) (-756) (-756))) (-15 -3220 ((-1 (-373)) (-756) (-756))) (-15 -4329 ((-1 (-373)) (-756))))) (T -1021)) +((-4329 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021)))) (-1812 (*1 *2 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021)))) (-2372 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373)))) (-1681 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373)))) (-3362 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-373)) (-5 *1 (-1021)))) (-3293 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021)))) (-1398 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021)))) (-2052 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021))))) +(-10 -7 (-15 -2052 ((-373))) (-15 -1398 ((-373))) (-15 -3293 ((-373))) (-15 -3790 ((-373) (-756))) (-15 -3362 ((-1 (-373)) (-373) (-373))) (-15 -1681 ((-1 (-373)) (-373) (-373))) (-15 -2372 ((-1 (-373)) (-373))) (-15 -3076 ((-1 (-373)) (-756))) (-15 -1812 ((-1 (-373)) (-756) (-756))) (-15 -3220 ((-1 (-373)) (-756) (-756))) (-15 -4329 ((-1 (-373)) (-756)))) +((-3479 (((-412 |#1|) |#1|) 33))) +(((-1022 |#1|) (-10 -7 (-15 -3479 ((-412 |#1|) |#1|))) (-1213 (-401 (-933 (-552))))) (T -1022)) +((-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1022 *3)) (-4 *3 (-1213 (-401 (-933 (-552)))))))) +(-10 -7 (-15 -3479 ((-412 |#1|) |#1|))) +((-1419 (((-401 (-412 (-933 |#1|))) (-401 (-933 |#1|))) 14))) +(((-1023 |#1|) (-10 -7 (-15 -1419 ((-401 (-412 (-933 |#1|))) (-401 (-933 |#1|))))) (-301)) (T -1023)) +((-1419 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-301)) (-5 *2 (-401 (-412 (-933 *4)))) (-5 *1 (-1023 *4))))) +(-10 -7 (-15 -1419 ((-401 (-412 (-933 |#1|))) (-401 (-933 |#1|))))) +((-3611 (((-629 (-1154)) (-401 (-933 |#1|))) 17)) (-3449 (((-401 (-1150 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154)) 24)) (-3602 (((-401 (-933 |#1|)) (-401 (-1150 (-401 (-933 |#1|)))) (-1154)) 26)) (-3506 (((-3 (-1154) "failed") (-401 (-933 |#1|))) 20)) (-2432 (((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-288 (-401 (-933 |#1|))))) 32) (((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|)))) 33) (((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-1154)) (-629 (-401 (-933 |#1|)))) 28) (((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|))) 29)) (-3213 (((-401 (-933 |#1|)) |#1|) 11))) +(((-1024 |#1|) (-10 -7 (-15 -3611 ((-629 (-1154)) (-401 (-933 |#1|)))) (-15 -3506 ((-3 (-1154) "failed") (-401 (-933 |#1|)))) (-15 -3449 ((-401 (-1150 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154))) (-15 -3602 ((-401 (-933 |#1|)) (-401 (-1150 (-401 (-933 |#1|)))) (-1154))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|)))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-1154)) (-629 (-401 (-933 |#1|))))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -3213 ((-401 (-933 |#1|)) |#1|))) (-544)) (T -1024)) +((-3213 (*1 *2 *3) (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-1024 *3)) (-4 *3 (-544)))) (-2432 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-288 (-401 (-933 *4))))) (-5 *2 (-401 (-933 *4))) (-4 *4 (-544)) (-5 *1 (-1024 *4)))) (-2432 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-401 (-933 *4)))) (-5 *2 (-401 (-933 *4))) (-4 *4 (-544)) (-5 *1 (-1024 *4)))) (-2432 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-629 (-1154))) (-5 *4 (-629 (-401 (-933 *5)))) (-5 *2 (-401 (-933 *5))) (-4 *5 (-544)) (-5 *1 (-1024 *5)))) (-2432 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-401 (-933 *4))) (-5 *3 (-1154)) (-4 *4 (-544)) (-5 *1 (-1024 *4)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1150 (-401 (-933 *5))))) (-5 *4 (-1154)) (-5 *2 (-401 (-933 *5))) (-5 *1 (-1024 *5)) (-4 *5 (-544)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-544)) (-5 *2 (-401 (-1150 (-401 (-933 *5))))) (-5 *1 (-1024 *5)) (-5 *3 (-401 (-933 *5))))) (-3506 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-5 *2 (-1154)) (-5 *1 (-1024 *4)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-5 *2 (-629 (-1154))) (-5 *1 (-1024 *4))))) +(-10 -7 (-15 -3611 ((-629 (-1154)) (-401 (-933 |#1|)))) (-15 -3506 ((-3 (-1154) "failed") (-401 (-933 |#1|)))) (-15 -3449 ((-401 (-1150 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154))) (-15 -3602 ((-401 (-933 |#1|)) (-401 (-1150 (-401 (-933 |#1|)))) (-1154))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|)))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-1154)) (-629 (-401 (-933 |#1|))))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-288 (-401 (-933 |#1|))))) (-15 -2432 ((-401 (-933 |#1|)) (-401 (-933 |#1|)) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -3213 ((-401 (-933 |#1|)) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2130 (($) 17 T CONST)) (-2533 ((|#1| $) 22)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2960 ((|#1| $) 21)) (-3453 ((|#1|) 19 T CONST)) (-3213 (((-844) $) 11)) (-3692 ((|#1| $) 20)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15))) +(((-1025 |#1|) (-137) (-23)) (T -1025)) +((-2533 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23)))) (-3453 (*1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2533 (|t#1| $)) (-15 -2960 (|t#1| $)) (-15 -3692 (|t#1| $)) (-15 -3453 (|t#1|) -3930))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-1994 (($) 24 T CONST)) (-2130 (($) 17 T CONST)) (-2533 ((|#1| $) 22)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-2960 ((|#1| $) 21)) (-3453 ((|#1|) 19 T CONST)) (-3213 (((-844) $) 11)) (-3692 ((|#1| $) 20)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15))) +(((-1026 |#1|) (-137) (-23)) (T -1026)) +((-1994 (*1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -1994 ($) -3930))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-844)) . T) ((-1025 |#1|) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 (-765 |#1| (-846 |#2|)))))) (-629 (-765 |#1| (-846 |#2|)))) NIL)) (-1830 (((-629 $) (-629 (-765 |#1| (-846 |#2|)))) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-111)) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-111) (-111)) NIL)) (-3611 (((-629 (-846 |#2|)) $) NIL)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-2007 (((-111) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) $) NIL)) (-2240 (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-4116 (((-629 (-2 (|:| |val| (-765 |#1| (-846 |#2|))) (|:| -3361 $))) (-765 |#1| (-846 |#2|)) $) NIL)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ (-846 |#2|)) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 (-765 |#1| (-846 |#2|)) "failed") $ (-846 |#2|)) NIL)) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) NIL (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3228 (((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|))) $ (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) (-1 (-111) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)))) NIL)) (-3662 (((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|))) $) NIL (|has| |#1| (-544)))) (-1468 (((-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|))) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 (-765 |#1| (-846 |#2|)))) NIL)) (-2832 (($ (-629 (-765 |#1| (-846 |#2|)))) NIL)) (-2715 (((-3 $ "failed") $) NIL)) (-3126 (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-765 |#1| (-846 |#2|)) (-1078))))) (-2655 (($ (-765 |#1| (-846 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (($ (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-765 |#1| (-846 |#2|))) (|:| |den| |#1|)) (-765 |#1| (-846 |#2|)) $) NIL (|has| |#1| (-544)))) (-3738 (((-111) (-765 |#1| (-846 |#2|)) $ (-1 (-111) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)))) NIL)) (-2081 (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-3884 (((-765 |#1| (-846 |#2|)) (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) $ (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (((-765 |#1| (-846 |#2|)) (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) $ (-765 |#1| (-846 |#2|))) NIL (|has| $ (-6 -4368))) (((-765 |#1| (-846 |#2|)) (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $ (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) (-1 (-111) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)))) NIL)) (-3817 (((-2 (|:| -2571 (-629 (-765 |#1| (-846 |#2|)))) (|:| -3092 (-629 (-765 |#1| (-846 |#2|))))) $) NIL)) (-2851 (((-111) (-765 |#1| (-846 |#2|)) $) NIL)) (-4035 (((-111) (-765 |#1| (-846 |#2|)) $) NIL)) (-3250 (((-111) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) $) NIL)) (-3138 (((-629 (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3065 (((-111) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) $) NIL)) (-2940 (((-846 |#2|) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-765 |#1| (-846 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-765 |#1| (-846 |#2|)) (-1078))))) (-2947 (($ (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) $) NIL)) (-3420 (((-629 (-846 |#2|)) $) NIL)) (-2677 (((-111) (-846 |#2|) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1322 (((-3 (-765 |#1| (-846 |#2|)) (-629 $)) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-2043 (((-629 (-2 (|:| |val| (-765 |#1| (-846 |#2|))) (|:| -3361 $))) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-2680 (((-3 (-765 |#1| (-846 |#2|)) "failed") $) NIL)) (-1999 (((-629 $) (-765 |#1| (-846 |#2|)) $) NIL)) (-4253 (((-3 (-111) (-629 $)) (-765 |#1| (-846 |#2|)) $) NIL)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) (-765 |#1| (-846 |#2|)) $) NIL)) (-4011 (((-629 $) (-765 |#1| (-846 |#2|)) $) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) $) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-629 $)) NIL) (((-629 $) (-765 |#1| (-846 |#2|)) (-629 $)) NIL)) (-2300 (($ (-765 |#1| (-846 |#2|)) $) NIL) (($ (-629 (-765 |#1| (-846 |#2|))) $) NIL)) (-3887 (((-629 (-765 |#1| (-846 |#2|))) $) NIL)) (-3287 (((-111) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) $) NIL)) (-2498 (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-4343 (((-111) $ $) NIL)) (-1527 (((-2 (|:| |num| (-765 |#1| (-846 |#2|))) (|:| |den| |#1|)) (-765 |#1| (-846 |#2|)) $) NIL (|has| |#1| (-544)))) (-3150 (((-111) (-765 |#1| (-846 |#2|)) $) NIL) (((-111) $) NIL)) (-3848 (((-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-3 (-765 |#1| (-846 |#2|)) "failed") $) NIL)) (-3073 (((-3 (-765 |#1| (-846 |#2|)) "failed") (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL)) (-1800 (((-3 $ "failed") $ (-765 |#1| (-846 |#2|))) NIL)) (-3136 (($ $ (-765 |#1| (-846 |#2|))) NIL) (((-629 $) (-765 |#1| (-846 |#2|)) $) NIL) (((-629 $) (-765 |#1| (-846 |#2|)) (-629 $)) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) $) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-629 $)) NIL)) (-3944 (((-111) (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-765 |#1| (-846 |#2|))) (-629 (-765 |#1| (-846 |#2|)))) NIL (-12 (|has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|)))) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (($ $ (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|))) NIL (-12 (|has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|)))) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (($ $ (-288 (-765 |#1| (-846 |#2|)))) NIL (-12 (|has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|)))) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (($ $ (-629 (-288 (-765 |#1| (-846 |#2|))))) NIL (-12 (|has| (-765 |#1| (-846 |#2|)) (-303 (-765 |#1| (-846 |#2|)))) (|has| (-765 |#1| (-846 |#2|)) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-3299 (((-756) $) NIL)) (-2885 (((-756) (-765 |#1| (-846 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-765 |#1| (-846 |#2|)) (-1078)))) (((-756) (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-765 |#1| (-846 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-765 |#1| (-846 |#2|)))) NIL)) (-2542 (($ $ (-846 |#2|)) NIL)) (-1853 (($ $ (-846 |#2|)) NIL)) (-3081 (($ $) NIL)) (-2387 (($ $ (-846 |#2|)) NIL)) (-3213 (((-844) $) NIL) (((-629 (-765 |#1| (-846 |#2|))) $) NIL)) (-1753 (((-756) $) NIL (|has| (-846 |#2|) (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 (-765 |#1| (-846 |#2|))))) "failed") (-629 (-765 |#1| (-846 |#2|))) (-1 (-111) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 (-765 |#1| (-846 |#2|))))) "failed") (-629 (-765 |#1| (-846 |#2|))) (-1 (-111) (-765 |#1| (-846 |#2|))) (-1 (-111) (-765 |#1| (-846 |#2|)) (-765 |#1| (-846 |#2|)))) NIL)) (-2015 (((-111) $ (-1 (-111) (-765 |#1| (-846 |#2|)) (-629 (-765 |#1| (-846 |#2|))))) NIL)) (-3933 (((-629 $) (-765 |#1| (-846 |#2|)) $) NIL) (((-629 $) (-765 |#1| (-846 |#2|)) (-629 $)) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) $) NIL) (((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-629 $)) NIL)) (-2584 (((-111) (-1 (-111) (-765 |#1| (-846 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2242 (((-629 (-846 |#2|)) $) NIL)) (-2452 (((-111) (-765 |#1| (-846 |#2|)) $) NIL)) (-2904 (((-111) (-846 |#2|) $) NIL)) (-1613 (((-111) $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1027 |#1| |#2|) (-13 (-1050 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|))) (-10 -8 (-15 -1830 ((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-111) (-111))))) (-445) (-629 (-1154))) (T -1027)) +((-1830 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-1027 *5 *6))))) +(-13 (-1050 |#1| (-523 (-846 |#2|)) (-846 |#2|) (-765 |#1| (-846 |#2|))) (-10 -8 (-15 -1830 ((-629 $) (-629 (-765 |#1| (-846 |#2|))) (-111) (-111))))) +((-3362 (((-1 (-552)) (-1072 (-552))) 33)) (-3526 (((-552) (-552) (-552) (-552) (-552)) 30)) (-1504 (((-1 (-552)) |RationalNumber|) NIL)) (-2692 (((-1 (-552)) |RationalNumber|) NIL)) (-2075 (((-1 (-552)) (-552) |RationalNumber|) NIL))) +(((-1028) (-10 -7 (-15 -3362 ((-1 (-552)) (-1072 (-552)))) (-15 -2075 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -1504 ((-1 (-552)) |RationalNumber|)) (-15 -2692 ((-1 (-552)) |RationalNumber|)) (-15 -3526 ((-552) (-552) (-552) (-552) (-552))))) (T -1028)) +((-3526 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1028)))) (-2692 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028)))) (-1504 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028)) (-5 *3 (-552)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1072 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1028))))) +(-10 -7 (-15 -3362 ((-1 (-552)) (-1072 (-552)))) (-15 -2075 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -1504 ((-1 (-552)) |RationalNumber|)) (-15 -2692 ((-1 (-552)) |RationalNumber|)) (-15 -3526 ((-552) (-552) (-552) (-552) (-552)))) +((-3213 (((-844) $) NIL) (($ (-552)) 10))) +(((-1029 |#1|) (-10 -8 (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-1030)) (T -1029)) +NIL +(-10 -8 (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-1030) (-137)) (T -1030)) +((-2014 (*1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-756)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1030))))) +(-13 (-1037) (-711) (-632 $) (-10 -8 (-15 -2014 ((-756))) (-15 -3213 ($ (-552))) (-6 -4365))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 $) . T) ((-711) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-2693 (((-401 (-933 |#2|)) (-629 |#2|) (-629 |#2|) (-756) (-756)) 45))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -2693 ((-401 (-933 |#2|)) (-629 |#2|) (-629 |#2|) (-756) (-756)))) (-1154) (-357)) (T -1031)) +((-2693 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-756)) (-4 *6 (-357)) (-5 *2 (-401 (-933 *6))) (-5 *1 (-1031 *5 *6)) (-14 *5 (-1154))))) +(-10 -7 (-15 -2693 ((-401 (-933 |#2|)) (-629 |#2|) (-629 |#2|) (-756) (-756)))) +((-4021 (((-111) $) 29)) (-2779 (((-111) $) 16)) (-2389 (((-756) $) 13)) (-2401 (((-756) $) 14)) (-1379 (((-111) $) 26)) (-3043 (((-111) $) 31))) +(((-1032 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2401 ((-756) |#1|)) (-15 -2389 ((-756) |#1|)) (-15 -3043 ((-111) |#1|)) (-15 -4021 ((-111) |#1|)) (-15 -1379 ((-111) |#1|)) (-15 -2779 ((-111) |#1|))) (-1033 |#2| |#3| |#4| |#5| |#6|) (-756) (-756) (-1030) (-233 |#3| |#4|) (-233 |#2| |#4|)) (T -1032)) +NIL +(-10 -8 (-15 -2401 ((-756) |#1|)) (-15 -2389 ((-756) |#1|)) (-15 -3043 ((-111) |#1|)) (-15 -4021 ((-111) |#1|)) (-15 -1379 ((-111) |#1|)) (-15 -2779 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4021 (((-111) $) 51)) (-4012 (((-3 $ "failed") $ $) 19)) (-2779 (((-111) $) 53)) (-4238 (((-111) $ (-756)) 61)) (-2130 (($) 17 T CONST)) (-2810 (($ $) 34 (|has| |#3| (-301)))) (-3413 ((|#4| $ (-552)) 39)) (-2128 (((-756) $) 33 (|has| |#3| (-544)))) (-2892 ((|#3| $ (-552) (-552)) 41)) (-3138 (((-629 |#3|) $) 68 (|has| $ (-6 -4368)))) (-1486 (((-756) $) 32 (|has| |#3| (-544)))) (-4229 (((-629 |#5|) $) 31 (|has| |#3| (-544)))) (-2389 (((-756) $) 45)) (-2401 (((-756) $) 44)) (-1418 (((-111) $ (-756)) 60)) (-3534 (((-552) $) 49)) (-3966 (((-552) $) 47)) (-3278 (((-629 |#3|) $) 69 (|has| $ (-6 -4368)))) (-2973 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1078)) (|has| $ (-6 -4368))))) (-3660 (((-552) $) 48)) (-3162 (((-552) $) 46)) (-3516 (($ (-629 (-629 |#3|))) 54)) (-2947 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3397 (((-629 (-629 |#3|)) $) 43)) (-1745 (((-111) $ (-756)) 59)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-544)))) (-3944 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#3|) (-629 |#3|)) 75 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-629 (-288 |#3|))) 72 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))))) (-2795 (((-111) $ $) 55)) (-3435 (((-111) $) 58)) (-3430 (($) 57)) (-2060 ((|#3| $ (-552) (-552)) 42) ((|#3| $ (-552) (-552) |#3|) 40)) (-1379 (((-111) $) 52)) (-2885 (((-756) |#3| $) 70 (-12 (|has| |#3| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4368)))) (-1487 (($ $) 56)) (-3041 ((|#5| $ (-552)) 38)) (-3213 (((-844) $) 11)) (-2584 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4368)))) (-3043 (((-111) $) 50)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#3|) 35 (|has| |#3| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2657 (((-756) $) 62 (|has| $ (-6 -4368))))) +(((-1033 |#1| |#2| |#3| |#4| |#5|) (-137) (-756) (-756) (-1030) (-233 |t#2| |t#3|) (-233 |t#1| |t#3|)) (T -1033)) +((-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *5))) (-4 *5 (-1030)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-756)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-756)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-629 (-629 *5))))) (-2060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1030)))) (-2892 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1030)))) (-2060 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) (-4 *2 (-1030)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) (-3413 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *6 *2 *7)) (-4 *6 (-1030)) (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *6 *7 *2)) (-4 *6 (-1030)) (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6)))) (-1477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3969 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *2 (-1030)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *2 (-1030)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) (-2810 (*1 *1 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-756)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-756)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-629 *7))))) +(-13 (-110 |t#3| |t#3|) (-482 |t#3|) (-10 -8 (-6 -4368) (IF (|has| |t#3| (-169)) (-6 (-702 |t#3|)) |%noBranch|) (-15 -3516 ($ (-629 (-629 |t#3|)))) (-15 -2779 ((-111) $)) (-15 -1379 ((-111) $)) (-15 -4021 ((-111) $)) (-15 -3043 ((-111) $)) (-15 -3534 ((-552) $)) (-15 -3660 ((-552) $)) (-15 -3966 ((-552) $)) (-15 -3162 ((-552) $)) (-15 -2389 ((-756) $)) (-15 -2401 ((-756) $)) (-15 -3397 ((-629 (-629 |t#3|)) $)) (-15 -2060 (|t#3| $ (-552) (-552))) (-15 -2892 (|t#3| $ (-552) (-552))) (-15 -2060 (|t#3| $ (-552) (-552) |t#3|)) (-15 -3413 (|t#4| $ (-552))) (-15 -3041 (|t#5| $ (-552))) (-15 -1477 ($ (-1 |t#3| |t#3|) $)) (-15 -1477 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-544)) (-15 -3969 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-357)) (-15 -1720 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-301)) (-15 -2810 ($ $)) |%noBranch|) (IF (|has| |t#3| (-544)) (PROGN (-15 -2128 ((-756) $)) (-15 -1486 ((-756) $)) (-15 -4229 ((-629 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-599 (-844)) . T) ((-303 |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))) ((-482 |#3|) . T) ((-506 |#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))) ((-632 |#3|) . T) ((-702 |#3|) |has| |#3| (-169)) ((-1036 |#3|) . T) ((-1078) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4021 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2779 (((-111) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-2810 (($ $) 43 (|has| |#3| (-301)))) (-3413 (((-235 |#2| |#3|) $ (-552)) 32)) (-2226 (($ (-673 |#3|)) 41)) (-2128 (((-756) $) 45 (|has| |#3| (-544)))) (-2892 ((|#3| $ (-552) (-552)) NIL)) (-3138 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-1486 (((-756) $) 47 (|has| |#3| (-544)))) (-4229 (((-629 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-544)))) (-2389 (((-756) $) NIL)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-3516 (($ (-629 (-629 |#3|))) 27)) (-2947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3397 (((-629 (-629 |#3|)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-544)))) (-3944 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#3|) (-629 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-629 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#3| $ (-552) (-552)) NIL) ((|#3| $ (-552) (-552) |#3|) NIL)) (-3725 (((-132)) 54 (|has| |#3| (-357)))) (-1379 (((-111) $) NIL)) (-2885 (((-756) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078)))) (((-756) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) 63 (|has| |#3| (-600 (-528))))) (-3041 (((-235 |#1| |#3|) $ (-552)) 36)) (-3213 (((-844) $) 16) (((-673 |#3|) $) 38)) (-2584 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-3297 (($) 13 T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1034 |#1| |#2| |#3|) (-13 (-1033 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-673 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1244 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2226 ($ (-673 |#3|))) (-15 -3213 ((-673 |#3|) $)))) (-756) (-756) (-1030)) (T -1034)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-673 *5)) (-5 *1 (-1034 *3 *4 *5)) (-14 *3 (-756)) (-14 *4 (-756)) (-4 *5 (-1030)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-673 *5)) (-4 *5 (-1030)) (-5 *1 (-1034 *3 *4 *5)) (-14 *3 (-756)) (-14 *4 (-756))))) +(-13 (-1033 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-673 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1244 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2226 ($ (-673 |#3|))) (-15 -3213 ((-673 |#3|) $)))) +((-3884 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1477 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1035 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1477 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3884 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-756) (-756) (-1030) (-233 |#2| |#3|) (-233 |#1| |#3|) (-1033 |#1| |#2| |#3| |#4| |#5|) (-1030) (-233 |#2| |#7|) (-233 |#1| |#7|) (-1033 |#1| |#2| |#7| |#8| |#9|)) (T -1035)) +((-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1030)) (-4 *2 (-1030)) (-14 *5 (-756)) (-14 *6 (-756)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) (-5 *1 (-1035 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1033 *5 *6 *7 *8 *9)) (-4 *12 (-1033 *5 *6 *2 *10 *11)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1030)) (-4 *10 (-1030)) (-14 *5 (-756)) (-14 *6 (-756)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *2 (-1033 *5 *6 *10 *11 *12)) (-5 *1 (-1035 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1033 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) (-4 *12 (-233 *5 *10))))) +(-10 -7 (-15 -1477 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3884 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ |#1|) 23))) +(((-1036 |#1|) (-137) (-1037)) (T -1036)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1037))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1035) (-137)) (T -1035)) -NIL -(-13 (-21) (-1088)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1088) . T) ((-1076) . T)) -((-4019 (($ $) 16)) (-2635 (($ $) 22)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 49)) (-2349 (($ $) 24)) (-4328 (($ $) 11)) (-2060 (($ $) 38)) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-871 (-373)) $) 33)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 28) (($ (-552)) NIL) (($ (-401 (-552))) 28)) (-3995 (((-754)) 8)) (-3796 (($ $) 39))) -(((-1036 |#1|) (-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) (-1037)) (T -1036)) -((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) -(-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 (((-552) $) 86)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4019 (($ $) 84)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 94)) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 111)) (-3887 (($) 17 T CONST)) (-2635 (($ $) 83)) (-4039 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-1703 (((-552) $) 98) (((-401 (-552)) $) 95)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2983 (((-111) $) 109)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 90)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 93)) (-2349 (($ $) 89)) (-1508 (((-111) $) 110)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 108)) (-4093 (($ $ $) 107)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 85)) (-2060 (($ $) 87)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3562 (((-373) $) 102) (((-220) $) 101) (((-871 (-373)) $) 91)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-3995 (((-754)) 28)) (-3796 (($ $) 88)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 112)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 105)) (-2329 (((-111) $ $) 104)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 106)) (-2316 (((-111) $ $) 103)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) (((-1037) (-137)) (T -1037)) -((-3329 (*1 *1 *1) (-4 *1 (-1037))) (-2349 (*1 *1 *1) (-4 *1 (-1037))) (-3796 (*1 *1 *1) (-4 *1 (-1037))) (-2060 (*1 *1 *1) (-4 *1 (-1037))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-552)))) (-4328 (*1 *1 *1) (-4 *1 (-1037))) (-4019 (*1 *1 *1) (-4 *1 (-1037))) (-2635 (*1 *1 *1) (-4 *1 (-1037)))) -(-13 (-357) (-828) (-1001) (-1017 (-552)) (-1017 (-401 (-552))) (-981) (-600 (-871 (-373))) (-865 (-373)) (-144) (-10 -8 (-15 -2349 ($ $)) (-15 -3796 ($ $)) (-15 -2060 ($ $)) (-15 -3471 ((-552) $)) (-15 -4328 ($ $)) (-15 -4019 ($ $)) (-15 -2635 ($ $)) (-15 -3329 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-871 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-865 (-373)) . T) ((-899) . T) ((-981) . T) ((-1001) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) |#2| $) 23)) (-3307 ((|#1| $) 10)) (-2422 (((-552) |#2| $) 88)) (-3348 (((-3 $ "failed") |#2| (-900)) 57)) (-2791 ((|#1| $) 28)) (-3758 ((|#1| |#2| $ |#1|) 37)) (-3938 (($ $) 25)) (-2040 (((-3 |#2| "failed") |#2| $) 87)) (-2983 (((-111) |#2| $) NIL)) (-1508 (((-111) |#2| $) NIL)) (-4075 (((-111) |#2| $) 24)) (-2594 ((|#1| $) 89)) (-2776 ((|#1| $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1376 ((|#2| $) 79)) (-1477 (((-842) $) 70)) (-3030 ((|#1| |#2| $ |#1|) 38)) (-1714 (((-627 $) |#2|) 59)) (-2292 (((-111) $ $) 74))) -(((-1038 |#1| |#2|) (-13 (-1045 |#1| |#2|) (-10 -8 (-15 -2776 (|#1| $)) (-15 -2791 (|#1| $)) (-15 -3307 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3938 ($ $)) (-15 -4075 ((-111) |#2| $)) (-15 -3758 (|#1| |#2| $ |#1|)))) (-13 (-828) (-357)) (-1211 |#1|)) (T -1038)) -((-3758 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2776 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2791 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-3307 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2594 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-3938 (*1 *1 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-4075 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-828) (-357))) (-5 *2 (-111)) (-5 *1 (-1038 *4 *3)) (-4 *3 (-1211 *4))))) -(-13 (-1045 |#1| |#2|) (-10 -8 (-15 -2776 (|#1| $)) (-15 -2791 (|#1| $)) (-15 -3307 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3938 ($ $)) (-15 -4075 ((-111) |#2| $)) (-15 -3758 (|#1| |#2| $ |#1|)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-4172 (($ (-1152)) 10) (($ (-552)) 7)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) NIL) (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) NIL)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4117 (($ $) NIL)) (-3593 (($ $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) NIL)) (-2973 (($ $) NIL)) (-3562 (((-552) $) 16) (((-528) $) NIL) (((-871 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL) (($ (-1152)) 9)) (-1477 (((-842) $) 20) (($ (-552)) 6) (($ $) NIL) (($ (-552)) 6)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) NIL)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $) 19) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-1039) (-13 (-537) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -3562 ($ (-1152))) (-15 -4172 ($ (-1152))) (-15 -4172 ($ (-552)))))) (T -1039)) -((-3562 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1039))))) -(-13 (-537) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -3562 ($ (-1152))) (-15 -4172 ($ (-1152))) (-15 -4172 ($ (-552))))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1152) (-1152)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2325 (($) 9)) (-2950 (((-52) $ (-1152) (-52)) NIL)) (-3462 (($ $) 30)) (-2742 (($ $) 28)) (-1302 (($ $) 27)) (-3208 (($ $) 29)) (-3698 (($ $) 32)) (-2066 (($ $) 33)) (-3124 (($ $) 26)) (-2353 (($ $) 31)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) 25 (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1152) $) 40)) (-3887 (($) NIL T CONST)) (-2898 (($) 7)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) 50 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1152) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3857 (((-3 (-1134) "failed") $ (-1134) (-552)) 59)) (-3473 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1152)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) 35 (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1152)) $) NIL)) (-3619 (((-111) (-1152) $) NIL)) (-4165 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) 43)) (-3892 (((-627 (-1152)) $) NIL)) (-2358 (((-111) (-1152) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2209 (((-373) $ (-1152)) 49)) (-3671 (((-627 (-1134)) $ (-1134)) 60)) (-3340 (((-52) $) NIL (|has| (-1152) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1152)) NIL) (((-52) $ (-1152) (-52)) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-2041 (($ $ (-1152)) 51)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) 37)) (-2668 (($ $ $) 38)) (-1477 (((-842) $) NIL (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-599 (-842)))))) (-3508 (($ $ (-1152) (-373)) 47)) (-3834 (($ $ (-1152) (-373)) 48)) (-2577 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1040) (-13 (-1165 (-1152) (-52)) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2898 ($)) (-15 -3124 ($ $)) (-15 -1302 ($ $)) (-15 -2742 ($ $)) (-15 -3208 ($ $)) (-15 -2353 ($ $)) (-15 -3462 ($ $)) (-15 -3698 ($ $)) (-15 -2066 ($ $)) (-15 -3508 ($ $ (-1152) (-373))) (-15 -3834 ($ $ (-1152) (-373))) (-15 -2209 ((-373) $ (-1152))) (-15 -3671 ((-627 (-1134)) $ (-1134))) (-15 -2041 ($ $ (-1152))) (-15 -2325 ($)) (-15 -3857 ((-3 (-1134) "failed") $ (-1134) (-552))) (-6 -4366)))) (T -1040)) -((-2668 (*1 *1 *1 *1) (-5 *1 (-1040))) (-2898 (*1 *1) (-5 *1 (-1040))) (-3124 (*1 *1 *1) (-5 *1 (-1040))) (-1302 (*1 *1 *1) (-5 *1 (-1040))) (-2742 (*1 *1 *1) (-5 *1 (-1040))) (-3208 (*1 *1 *1) (-5 *1 (-1040))) (-2353 (*1 *1 *1) (-5 *1 (-1040))) (-3462 (*1 *1 *1) (-5 *1 (-1040))) (-3698 (*1 *1 *1) (-5 *1 (-1040))) (-2066 (*1 *1 *1) (-5 *1 (-1040))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040)))) (-3834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-373)) (-5 *1 (-1040)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1040)) (-5 *3 (-1134)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1040)))) (-2325 (*1 *1) (-5 *1 (-1040))) (-3857 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-1040))))) -(-13 (-1165 (-1152) (-52)) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2898 ($)) (-15 -3124 ($ $)) (-15 -1302 ($ $)) (-15 -2742 ($ $)) (-15 -3208 ($ $)) (-15 -2353 ($ $)) (-15 -3462 ($ $)) (-15 -3698 ($ $)) (-15 -2066 ($ $)) (-15 -3508 ($ $ (-1152) (-373))) (-15 -3834 ($ $ (-1152) (-373))) (-15 -2209 ((-373) $ (-1152))) (-15 -3671 ((-627 (-1134)) $ (-1134))) (-15 -2041 ($ $ (-1152))) (-15 -2325 ($)) (-15 -3857 ((-3 (-1134) "failed") $ (-1134) (-552))) (-6 -4366))) -((-1700 (($ $) 45)) (-4292 (((-111) $ $) 74)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-931 (-401 (-552)))) 227) (((-3 $ "failed") (-931 (-552))) 226) (((-3 $ "failed") (-931 |#2|)) 229)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) NIL) (($ (-931 (-401 (-552)))) 215) (($ (-931 (-552))) 211) (($ (-931 |#2|)) 231)) (-2014 (($ $) NIL) (($ $ |#4|) 43)) (-4104 (((-111) $ $) 112) (((-111) $ (-627 $)) 113)) (-2870 (((-111) $) 56)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 107)) (-2914 (($ $) 138)) (-1483 (($ $) 134)) (-3145 (($ $) 133)) (-2612 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4284 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3850 (((-111) $ $) 121) (((-111) $ (-627 $)) 122)) (-4147 ((|#4| $) 33)) (-1355 (($ $ $) 110)) (-1283 (((-111) $) 55)) (-1526 (((-754) $) 35)) (-4313 (($ $) 152)) (-3535 (($ $) 149)) (-2314 (((-627 $) $) 68)) (-3346 (($ $) 57)) (-3228 (($ $) 145)) (-2075 (((-627 $) $) 65)) (-3674 (($ $) 59)) (-1993 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 111)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 108) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#4|) 109)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) 104) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#4|) 105)) (-2709 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3015 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1639 (((-627 $) $) 51)) (-2481 (((-111) $ $) 118) (((-111) $ (-627 $)) 119)) (-3921 (($ $ $) 103)) (-3002 (($ $) 37)) (-2654 (((-111) $ $) 72)) (-2163 (((-111) $ $) 114) (((-111) $ (-627 $)) 116)) (-4116 (($ $ $) 101)) (-3134 (($ $) 40)) (-1323 ((|#2| |#2| $) 142) (($ (-627 $)) NIL) (($ $ $) NIL)) (-3094 (($ $ |#2|) NIL) (($ $ $) 131)) (-2899 (($ $ |#2|) 126) (($ $ $) 129)) (-1478 (($ $) 48)) (-3667 (($ $) 52)) (-3562 (((-871 (-373)) $) NIL) (((-871 (-552)) $) NIL) (((-528) $) NIL) (($ (-931 (-401 (-552)))) 217) (($ (-931 (-552))) 213) (($ (-931 |#2|)) 228) (((-1134) $) 250) (((-931 |#2|) $) 162)) (-1477 (((-842) $) 30) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-931 |#2|) $) 163) (($ (-401 (-552))) NIL) (($ $) NIL)) (-1598 (((-3 (-111) "failed") $ $) 71))) -(((-1041 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 ((-931 |#2|) |#1|)) (-15 -3562 ((-931 |#2|) |#1|)) (-15 -3562 ((-1134) |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1323 (|#2| |#2| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#2|)) (-15 -2899 (|#1| |#1| |#2|)) (-15 -1483 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3562 (|#1| (-931 |#2|))) (-15 -1703 (|#1| (-931 |#2|))) (-15 -4039 ((-3 |#1| "failed") (-931 |#2|))) (-15 -3562 (|#1| (-931 (-552)))) (-15 -1703 (|#1| (-931 (-552)))) (-15 -4039 ((-3 |#1| "failed") (-931 (-552)))) (-15 -3562 (|#1| (-931 (-401 (-552))))) (-15 -1703 (|#1| (-931 (-401 (-552))))) (-15 -4039 ((-3 |#1| "failed") (-931 (-401 (-552))))) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -1683 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3229 (-754))) |#1| |#1|)) (-15 -1355 (|#1| |#1| |#1|)) (-15 -2148 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1| |#4|)) (-15 -2709 (|#1| |#1| |#1| |#4|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| |#1| |#4|)) (-15 -2612 (|#1| |#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3850 ((-111) |#1| (-627 |#1|))) (-15 -3850 ((-111) |#1| |#1|)) (-15 -2481 ((-111) |#1| (-627 |#1|))) (-15 -2481 ((-111) |#1| |#1|)) (-15 -2163 ((-111) |#1| (-627 |#1|))) (-15 -2163 ((-111) |#1| |#1|)) (-15 -4104 ((-111) |#1| (-627 |#1|))) (-15 -4104 ((-111) |#1| |#1|)) (-15 -4292 ((-111) |#1| |#1|)) (-15 -2654 ((-111) |#1| |#1|)) (-15 -1598 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2314 ((-627 |#1|) |#1|)) (-15 -2075 ((-627 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2870 ((-111) |#1|)) (-15 -1283 ((-111) |#1|)) (-15 -2014 (|#1| |#1| |#4|)) (-15 -1993 (|#1| |#1| |#4|)) (-15 -3667 (|#1| |#1|)) (-15 -1639 ((-627 |#1|) |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1526 ((-754) |#1|)) (-15 -4147 (|#4| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -1993 (|#2| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1042 |#2| |#3| |#4|) (-1028) (-776) (-830)) (T -1041)) -NIL -(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 ((-931 |#2|) |#1|)) (-15 -3562 ((-931 |#2|) |#1|)) (-15 -3562 ((-1134) |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1323 (|#2| |#2| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#2|)) (-15 -2899 (|#1| |#1| |#2|)) (-15 -1483 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3562 (|#1| (-931 |#2|))) (-15 -1703 (|#1| (-931 |#2|))) (-15 -4039 ((-3 |#1| "failed") (-931 |#2|))) (-15 -3562 (|#1| (-931 (-552)))) (-15 -1703 (|#1| (-931 (-552)))) (-15 -4039 ((-3 |#1| "failed") (-931 (-552)))) (-15 -3562 (|#1| (-931 (-401 (-552))))) (-15 -1703 (|#1| (-931 (-401 (-552))))) (-15 -4039 ((-3 |#1| "failed") (-931 (-401 (-552))))) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -1683 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3229 (-754))) |#1| |#1|)) (-15 -1355 (|#1| |#1| |#1|)) (-15 -2148 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1| |#4|)) (-15 -2709 (|#1| |#1| |#1| |#4|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| |#1| |#4|)) (-15 -2612 (|#1| |#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3850 ((-111) |#1| (-627 |#1|))) (-15 -3850 ((-111) |#1| |#1|)) (-15 -2481 ((-111) |#1| (-627 |#1|))) (-15 -2481 ((-111) |#1| |#1|)) (-15 -2163 ((-111) |#1| (-627 |#1|))) (-15 -2163 ((-111) |#1| |#1|)) (-15 -4104 ((-111) |#1| (-627 |#1|))) (-15 -4104 ((-111) |#1| |#1|)) (-15 -4292 ((-111) |#1| |#1|)) (-15 -2654 ((-111) |#1| |#1|)) (-15 -1598 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2314 ((-627 |#1|) |#1|)) (-15 -2075 ((-627 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2870 ((-111) |#1|)) (-15 -1283 ((-111) |#1|)) (-15 -2014 (|#1| |#1| |#4|)) (-15 -1993 (|#1| |#1| |#4|)) (-15 -3667 (|#1| |#1|)) (-15 -1639 ((-627 |#1|) |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1526 ((-754) |#1|)) (-15 -4147 (|#4| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -1993 (|#2| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-1700 (($ $) 269)) (-4292 (((-111) $ $) 255)) (-4136 (((-3 $ "failed") $ $) 19)) (-1340 (($ $ $) 214 (|has| |#1| (-544)))) (-4311 (((-627 $) $ $) 209 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-931 (-401 (-552)))) 229 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (((-3 $ "failed") (-931 (-552))) 226 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (((-3 $ "failed") (-931 |#1|)) 223 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-537))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-971 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))))) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133) (($ (-931 (-401 (-552)))) 228 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (($ (-931 (-552))) 225 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (($ (-931 |#1|)) 222 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-537))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-971 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))))) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-544)))) (-2014 (($ $) 152) (($ $ |#3|) 264)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-4104 (((-111) $ $) 254) (((-111) $ (-627 $)) 253)) (-2040 (((-3 $ "failed") $) 32)) (-2870 (((-111) $) 262)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 234)) (-2914 (($ $) 203 (|has| |#1| (-445)))) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-1483 (($ $) 219 (|has| |#1| (-544)))) (-3145 (($ $) 220 (|has| |#1| (-544)))) (-2612 (($ $ $) 246) (($ $ $ |#3|) 244)) (-4284 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2061 (($ $ |#1| |#2| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-3850 (((-111) $ $) 248) (((-111) $ (-627 $)) 247)) (-2469 (($ $ $ $ $) 205 (|has| |#1| (-544)))) (-4147 ((|#3| $) 273)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#2|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1355 (($ $ $) 233)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-1283 (((-111) $) 263)) (-3465 ((|#2| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-1526 (((-754) $) 272)) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#2| |#2|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-2685 (((-3 |#3| "failed") $) 121)) (-4313 (($ $) 200 (|has| |#1| (-445)))) (-3535 (($ $) 201 (|has| |#1| (-445)))) (-2314 (((-627 $) $) 258)) (-3346 (($ $) 261)) (-3228 (($ $) 202 (|has| |#1| (-445)))) (-2075 (((-627 $) $) 259)) (-3674 (($ $) 260)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146) (($ $ |#3|) 265)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 232)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 236) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 235)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) 238) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#3|) 237)) (-2709 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3015 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1595 (((-1134) $) 9)) (-4318 (($ $ $) 208 (|has| |#1| (-544)))) (-1639 (((-627 $) $) 267)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-2481 (((-111) $ $) 250) (((-111) $ (-627 $)) 249)) (-3921 (($ $ $) 230)) (-3002 (($ $) 271)) (-2654 (((-111) $ $) 256)) (-2163 (((-111) $ $) 252) (((-111) $ (-627 $)) 251)) (-4116 (($ $ $) 231)) (-3134 (($ $) 270)) (-1498 (((-1096) $) 10)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-544)))) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 ((|#1| |#1| $) 204 (|has| |#1| (-445))) (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3094 (($ $ |#1|) 217 (|has| |#1| (-544))) (($ $ $) 215 (|has| |#1| (-544)))) (-2899 (($ $ |#1|) 218 (|has| |#1| (-544))) (($ $ $) 216 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136)) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37)) (-3567 ((|#2| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127)) (-1478 (($ $) 268)) (-3667 (($ $) 266)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528))))) (($ (-931 (-401 (-552)))) 227 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (($ (-931 (-552))) 224 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (($ (-931 |#1|)) 221 (|has| |#3| (-600 (-1152)))) (((-1134) $) 199 (-12 (|has| |#1| (-1017 (-552))) (|has| |#3| (-600 (-1152))))) (((-931 |#1|) $) 198 (|has| |#3| (-600 (-1152))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-931 |#1|) $) 197 (|has| |#3| (-600 (-1152)))) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#2|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1598 (((-3 (-111) "failed") $ $) 257)) (-1933 (($) 29 T CONST)) (-4085 (($ $ $ $ (-754)) 206 (|has| |#1| (-544)))) (-3867 (($ $ $ (-754)) 207 (|has| |#1| (-544)))) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1042 |#1| |#2| |#3|) (-137) (-1028) (-776) (-830)) (T -1042)) -((-4147 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-754)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1478 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1639 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1993 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2014 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-1283 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2075 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-2314 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-1598 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4292 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2163 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2163 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2481 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2481 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-3850 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2612 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-4284 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2612 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-4284 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2709 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2709 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-3015 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2568 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) (-4 *1 (-1042 *4 *5 *3)))) (-2961 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2961 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *4 *5 *3)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-1355 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1683 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3229 (-754)))) (-4 *1 (-1042 *3 *4 *5)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-4039 (*1 *1 *2) (|partial| -1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-1703 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-3562 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-4039 (*1 *1 *2) (|partial| -1559 (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))))) (-1703 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *5 (-600 (-1152))) (-4 *4 (-776)) (-4 *5 (-830)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3094 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1303 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2692 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2902 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef2| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-4311 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-4318 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3867 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544)))) (-4085 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544)))) (-2469 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1323 (*1 *2 *2 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-2914 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3228 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445))))) -(-13 (-928 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4147 (|t#3| $)) (-15 -1526 ((-754) $)) (-15 -3002 ($ $)) (-15 -3134 ($ $)) (-15 -1700 ($ $)) (-15 -1478 ($ $)) (-15 -1639 ((-627 $) $)) (-15 -3667 ($ $)) (-15 -1993 ($ $ |t#3|)) (-15 -2014 ($ $ |t#3|)) (-15 -1283 ((-111) $)) (-15 -2870 ((-111) $)) (-15 -3346 ($ $)) (-15 -3674 ($ $)) (-15 -2075 ((-627 $) $)) (-15 -2314 ((-627 $) $)) (-15 -1598 ((-3 (-111) "failed") $ $)) (-15 -2654 ((-111) $ $)) (-15 -4292 ((-111) $ $)) (-15 -4104 ((-111) $ $)) (-15 -4104 ((-111) $ (-627 $))) (-15 -2163 ((-111) $ $)) (-15 -2163 ((-111) $ (-627 $))) (-15 -2481 ((-111) $ $)) (-15 -2481 ((-111) $ (-627 $))) (-15 -3850 ((-111) $ $)) (-15 -3850 ((-111) $ (-627 $))) (-15 -2612 ($ $ $)) (-15 -4284 ($ $ $)) (-15 -2612 ($ $ $ |t#3|)) (-15 -4284 ($ $ $ |t#3|)) (-15 -2709 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -2709 ($ $ $ |t#3|)) (-15 -3015 ($ $ $ |t#3|)) (-15 -2568 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $)) (-15 -2568 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |t#3|)) (-15 -2961 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2961 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |t#3|)) (-15 -2148 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $)) (-15 -4116 ($ $ $)) (-15 -3921 ($ $ $)) (IF (|has| |t#3| (-600 (-1152))) (PROGN (-6 (-599 (-931 |t#1|))) (-6 (-600 (-931 |t#1|))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -4039 ((-3 $ "failed") (-931 (-401 (-552))))) (-15 -1703 ($ (-931 (-401 (-552))))) (-15 -3562 ($ (-931 (-401 (-552))))) (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-931 (-552)))) (-15 -3562 ($ (-931 (-552)))) (IF (|has| |t#1| (-971 (-552))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-931 (-552)))) (-15 -3562 ($ (-931 (-552)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) |%noBranch| (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|)))))) (-15 -3562 ($ (-931 |t#1|))) (IF (|has| |t#1| (-1017 (-552))) (-6 (-600 (-1134))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3145 ($ $)) (-15 -1483 ($ $)) (-15 -2899 ($ $ |t#1|)) (-15 -3094 ($ $ |t#1|)) (-15 -2899 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -3116 ($ $ $)) (-15 -4311 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -3867 ($ $ $ (-754))) (-15 -4085 ($ $ $ $ (-754))) (-15 -2469 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -1323 (|t#1| |t#1| $)) (-15 -2914 ($ $)) (-15 -3228 ($ $)) (-15 -3535 ($ $)) (-15 -4313 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-599 (-931 |#1|)) |has| |#3| (-600 (-1152))) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-600 (-931 |#1|)) |has| |#3| (-600 (-1152))) ((-600 (-1134)) -12 (|has| |#1| (-1017 (-552))) (|has| |#3| (-600 (-1152)))) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-928 |#1| |#2| |#3|) . T) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1280 (((-627 (-1111)) $) 13)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 24) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 15)) (-2292 (((-111) $ $) NIL))) -(((-1043) (-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $))))) (T -1043)) -((-1280 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1043)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1043))))) -(-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $)))) -((-3024 (((-111) |#3| $) 13)) (-3348 (((-3 $ "failed") |#3| (-900)) 23)) (-2040 (((-3 |#3| "failed") |#3| $) 38)) (-2983 (((-111) |#3| $) 16)) (-1508 (((-111) |#3| $) 14))) -(((-1044 |#1| |#2| |#3|) (-10 -8 (-15 -3348 ((-3 |#1| "failed") |#3| (-900))) (-15 -2040 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2983 ((-111) |#3| |#1|)) (-15 -1508 ((-111) |#3| |#1|)) (-15 -3024 ((-111) |#3| |#1|))) (-1045 |#2| |#3|) (-13 (-828) (-357)) (-1211 |#2|)) (T -1044)) -NIL -(-10 -8 (-15 -3348 ((-3 |#1| "failed") |#3| (-900))) (-15 -2040 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2983 ((-111) |#3| |#1|)) (-15 -1508 ((-111) |#3| |#1|)) (-15 -3024 ((-111) |#3| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) |#2| $) 21)) (-2422 (((-552) |#2| $) 22)) (-3348 (((-3 $ "failed") |#2| (-900)) 15)) (-3758 ((|#1| |#2| $ |#1|) 13)) (-2040 (((-3 |#2| "failed") |#2| $) 18)) (-2983 (((-111) |#2| $) 19)) (-1508 (((-111) |#2| $) 20)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1376 ((|#2| $) 17)) (-1477 (((-842) $) 11)) (-3030 ((|#1| |#2| $ |#1|) 14)) (-1714 (((-627 $) |#2|) 16)) (-2292 (((-111) $ $) 6))) -(((-1045 |#1| |#2|) (-137) (-13 (-828) (-357)) (-1211 |t#1|)) (T -1045)) -((-2422 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-552)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-1508 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-2983 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-2040 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) (-4 *2 (-1211 *3)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) (-4 *2 (-1211 *3)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-627 *1)) (-4 *1 (-1045 *4 *3)))) (-3348 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-900)) (-4 *4 (-13 (-828) (-357))) (-4 *1 (-1045 *4 *2)) (-4 *2 (-1211 *4)))) (-3030 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) (-4 *3 (-1211 *2)))) (-3758 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) (-4 *3 (-1211 *2))))) -(-13 (-1076) (-10 -8 (-15 -2422 ((-552) |t#2| $)) (-15 -3024 ((-111) |t#2| $)) (-15 -1508 ((-111) |t#2| $)) (-15 -2983 ((-111) |t#2| $)) (-15 -2040 ((-3 |t#2| "failed") |t#2| $)) (-15 -1376 (|t#2| $)) (-15 -1714 ((-627 $) |t#2|)) (-15 -3348 ((-3 $ "failed") |t#2| (-900))) (-15 -3030 (|t#1| |t#2| $ |t#1|)) (-15 -3758 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-2767 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754)) 96)) (-2211 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 56)) (-3809 (((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)) 87)) (-1455 (((-754) (-627 |#4|) (-627 |#5|)) 27)) (-4164 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 58) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111)) 60)) (-4004 (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111)) 79)) (-3562 (((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 82)) (-3451 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111)) 55)) (-2574 (((-754) (-627 |#4|) (-627 |#5|)) 19))) -(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1046)) -((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) (-5 *1 (-1046 *4 *5 *6 *7 *8)))) (-2767 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-627 *11)) (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) (-5 *6 (-754)) (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) (-4 *11 (-1048 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))) (-4004 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-4004 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-4164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1048 *7 *8 *9 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) -((-3203 (((-111) |#5| $) 21)) (-2004 (((-111) |#5| $) 24)) (-2790 (((-111) |#5| $) 16) (((-111) $) 45)) (-3383 (((-627 $) |#5| $) NIL) (((-627 $) (-627 |#5|) $) 77) (((-627 $) (-627 |#5|) (-627 $)) 75) (((-627 $) |#5| (-627 $)) 78)) (-4168 (($ $ |#5|) NIL) (((-627 $) |#5| $) NIL) (((-627 $) |#5| (-627 $)) 60) (((-627 $) (-627 |#5|) $) 62) (((-627 $) (-627 |#5|) (-627 $)) 64)) (-2733 (((-627 $) |#5| $) NIL) (((-627 $) |#5| (-627 $)) 54) (((-627 $) (-627 |#5|) $) 56) (((-627 $) (-627 |#5|) (-627 $)) 58)) (-3612 (((-111) |#5| $) 27))) -(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4168 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -4168 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -4168 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -4168 ((-627 |#1|) |#5| |#1|)) (-15 -2733 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -2733 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -2733 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -2733 ((-627 |#1|) |#5| |#1|)) (-15 -3383 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -3383 ((-627 |#1|) |#5| |#1|)) (-15 -2004 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#1|)) (-15 -3612 ((-111) |#5| |#1|)) (-15 -3203 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#5| |#1|)) (-15 -4168 (|#1| |#1| |#5|))) (-1048 |#2| |#3| |#4| |#5|) (-445) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -1047)) -NIL -(-10 -8 (-15 -4168 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -4168 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -4168 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -4168 ((-627 |#1|) |#5| |#1|)) (-15 -2733 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -2733 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -2733 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -2733 ((-627 |#1|) |#5| |#1|)) (-15 -3383 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -3383 ((-627 |#1|) |#5| |#1|)) (-15 -2004 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#1|)) (-15 -3612 ((-111) |#5| |#1|)) (-15 -3203 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#5| |#1|)) (-15 -4168 (|#1| |#1| |#5|))) -((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-1048 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1048)) -((-2790 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2004 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2338 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 (-111) (-627 *1))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3984 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3984 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-4314 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-2661 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 *3 (-627 *1))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4318 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4014 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3383 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-2733 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-2733 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-2733 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-2733 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-1892 (*1 *1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1892 (*1 *1 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)))) (-4168 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *5 *6 *7 *8))))) -(-13 (-1182 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2790 ((-111) |t#4| $)) (-15 -3203 ((-111) |t#4| $)) (-15 -3612 ((-111) |t#4| $)) (-15 -2790 ((-111) $)) (-15 -2004 ((-111) |t#4| $)) (-15 -2338 ((-3 (-111) (-627 $)) |t#4| $)) (-15 -3984 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |t#4| $)) (-15 -3984 ((-111) |t#4| $)) (-15 -4314 ((-627 $) |t#4| $)) (-15 -2661 ((-3 |t#4| (-627 $)) |t#4| |t#4| $)) (-15 -4318 ((-627 (-2 (|:| |val| |t#4|) (|:| -3443 $))) |t#4| |t#4| $)) (-15 -4014 ((-627 (-2 (|:| |val| |t#4|) (|:| -3443 $))) |t#4| $)) (-15 -3383 ((-627 $) |t#4| $)) (-15 -3383 ((-627 $) (-627 |t#4|) $)) (-15 -3383 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -3383 ((-627 $) |t#4| (-627 $))) (-15 -2733 ((-627 $) |t#4| $)) (-15 -2733 ((-627 $) |t#4| (-627 $))) (-15 -2733 ((-627 $) (-627 |t#4|) $)) (-15 -2733 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -1892 ($ |t#4| $)) (-15 -1892 ($ (-627 |t#4|) $)) (-15 -4168 ((-627 $) |t#4| $)) (-15 -4168 ((-627 $) |t#4| (-627 $))) (-15 -4168 ((-627 $) (-627 |t#4|) $)) (-15 -4168 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -1361 ((-627 $) (-627 |t#4|) (-111))))) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) -((-2788 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 81)) (-2897 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 113)) (-4069 (((-627 |#5|) |#4| |#5|) 70)) (-2569 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-4114 (((-1240)) 37)) (-2876 (((-1240)) 26)) (-2580 (((-1240) (-1134) (-1134) (-1134)) 33)) (-4325 (((-1240) (-1134) (-1134) (-1134)) 22)) (-1850 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|) 96)) (-1635 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111)) 107) (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3308 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 102))) -(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -1850 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -3308 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2897 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-111) |#4| |#5|)) (-15 -2569 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -4069 ((-627 |#5|) |#4| |#5|)) (-15 -2788 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1049)) -((-2788 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4069 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2569 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2569 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2897 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3308 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) (-5 *1 (-1049 *6 *7 *4 *8 *9)))) (-1635 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-1850 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4114 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-2580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2876 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4325 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -1850 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -3308 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2897 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-111) |#4| |#5|)) (-15 -2569 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -4069 ((-627 |#5|) |#4| |#5|)) (-15 -2788 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) -((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1050) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -1050)) -((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1050)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1050))))) -(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) -((-1465 (((-111) $ $) NIL)) (-3112 (((-1152) $) 8)) (-1595 (((-1134) $) 16)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 13))) -(((-1051 |#1|) (-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) (-1152)) (T -1051)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1051 *3)) (-14 *3 *2)))) -(-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) -((-1465 (((-111) $ $) NIL)) (-1792 (($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|))) 33)) (-2269 (($ |#3| |#3|) 22) (($ |#3| |#3| (-627 (-1152))) 20)) (-3089 ((|#3| $) 13)) (-4039 (((-3 (-288 |#3|) "failed") $) 58)) (-1703 (((-288 |#3|) $) NIL)) (-4287 (((-627 (-1152)) $) 16)) (-3763 (((-871 |#1|) $) 11)) (-3078 ((|#3| $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-900)) 39)) (-1477 (((-842) $) 86) (($ (-288 |#3|)) 21)) (-2292 (((-111) $ $) 36))) -(((-1052 |#1| |#2| |#3|) (-13 (-1076) (-280 |#3| |#3|) (-1017 (-288 |#3|)) (-10 -8 (-15 -2269 ($ |#3| |#3|)) (-15 -2269 ($ |#3| |#3| (-627 (-1152)))) (-15 -1792 ($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|)))) (-15 -3763 ((-871 |#1|) $)) (-15 -3078 (|#3| $)) (-15 -3089 (|#3| $)) (-15 -1985 (|#3| $ |#3| (-900))) (-15 -4287 ((-627 (-1152)) $)))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -1052)) -((-2269 (*1 *1 *2 *2) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))))) (-2269 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-1792 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1 (-111) (-627 *6))) (-4 *6 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *6)))) (-3763 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 *2))) (-5 *2 (-871 *3)) (-5 *1 (-1052 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 *2))))) (-3078 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) (-3089 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) (-1985 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-4287 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *2 (-627 (-1152))) (-5 *1 (-1052 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) -(-13 (-1076) (-280 |#3| |#3|) (-1017 (-288 |#3|)) (-10 -8 (-15 -2269 ($ |#3| |#3|)) (-15 -2269 ($ |#3| |#3| (-627 (-1152)))) (-15 -1792 ($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|)))) (-15 -3763 ((-871 |#1|) $)) (-15 -3078 (|#3| $)) (-15 -3089 (|#3| $)) (-15 -1985 (|#3| $ |#3| (-900))) (-15 -4287 ((-627 (-1152)) $)))) -((-1465 (((-111) $ $) NIL)) (-1760 (($ (-627 (-1052 |#1| |#2| |#3|))) 13)) (-3773 (((-627 (-1052 |#1| |#2| |#3|)) $) 20)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-900)) 26)) (-1477 (((-842) $) 16)) (-2292 (((-111) $ $) 19))) -(((-1053 |#1| |#2| |#3|) (-13 (-1076) (-280 |#3| |#3|) (-10 -8 (-15 -1760 ($ (-627 (-1052 |#1| |#2| |#3|)))) (-15 -3773 ((-627 (-1052 |#1| |#2| |#3|)) $)) (-15 -1985 (|#3| $ |#3| (-900))))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -1053)) -((-1760 (*1 *1 *2) (-12 (-5 *2 (-627 (-1052 *3 *4 *5))) (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1053 *3 *4 *5)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *2 (-627 (-1052 *3 *4 *5))) (-5 *1 (-1053 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))))) (-1985 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1053 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4))))))) -(-13 (-1076) (-280 |#3| |#3|) (-10 -8 (-15 -1760 ($ (-627 (-1052 |#1| |#2| |#3|)))) (-15 -3773 ((-627 (-1052 |#1| |#2| |#3|)) $)) (-15 -1985 (|#3| $ |#3| (-900))))) -((-3001 (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)) 75) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|))) 77) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111)) 76))) -(((-1054 |#1| |#2|) (-10 -7 (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)))) (-13 (-301) (-144)) (-627 (-1152))) (T -1054)) -((-3001 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-627 (-931 *4))) (-14 *5 (-627 (-1152))))) (-3001 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152)))))) -(-10 -7 (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)))) -((-1727 (((-412 |#3|) |#3|) 18))) -(((-1055 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) (-1211 (-401 (-552))) (-13 (-357) (-144) (-707 (-401 (-552)) |#1|)) (-1211 |#2|)) (T -1055)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-13 (-357) (-144) (-707 (-401 (-552)) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1055 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 126)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-357)))) (-3245 (($ $) NIL (|has| |#1| (-357)))) (-4058 (((-111) $) NIL (|has| |#1| (-357)))) (-3841 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) 115)) (-3385 ((|#1| $) 119)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3307 (((-754)) 40 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) 43)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-4088 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 106) (((-671 |#1|) (-671 $)) 101)) (-2091 (($ |#2|) 61) (((-3 $ "failed") (-401 |#2|)) NIL (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-4154 (((-900)) 77)) (-1279 (($) 44 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-2740 (($) NIL (|has| |#1| (-343)))) (-1415 (((-111) $) NIL (|has| |#1| (-343)))) (-4294 (($ $ (-754)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2641 (((-900) $) NIL (|has| |#1| (-343))) (((-816 (-900)) $) NIL (|has| |#1| (-343)))) (-2624 (((-111) $) NIL)) (-2349 ((|#1| $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-4205 ((|#2| $) 84 (|has| |#1| (-357)))) (-2886 (((-900) $) 131 (|has| |#1| (-362)))) (-2079 ((|#2| $) 58)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-3002 (($) NIL (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 125 (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-2220 (($) 121)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-343)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1637 ((|#1| (-1235 $)) NIL) ((|#1|) 109)) (-4018 (((-754) $) NIL (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) NIL (|has| |#1| (-343)))) (-2942 (($ $) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1 |#1| |#1|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1376 ((|#2|) 73)) (-3439 (($) NIL (|has| |#1| (-343)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 89) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) 71) (((-671 |#1|) (-1235 $)) 85)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-343)))) (-1477 (((-842) $) 57) (($ (-552)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-357))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2410 ((|#2| $) 82)) (-3995 (((-754)) 75)) (-2957 (((-1235 $)) 81)) (-3778 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1922 (($) 30 T CONST)) (-1933 (($) 19 T CONST)) (-4251 (($ $) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1 |#1| |#1|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-2292 (((-111) $ $) 63)) (-2407 (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) 67) (($ $ $) NIL)) (-2384 (($ $ $) 65)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) -(((-1056 |#1| |#2| |#3|) (-707 |#1| |#2|) (-169) (-1211 |#1|) |#2|) (T -1056)) -NIL -(-707 |#1| |#2|) -((-1727 (((-412 |#3|) |#3|) 19))) -(((-1057 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) (-1211 (-401 (-931 (-552)))) (-13 (-357) (-144) (-707 (-401 (-931 (-552))) |#1|)) (-1211 |#2|)) (T -1057)) -((-1727 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 (-931 (-552))))) (-4 *5 (-13 (-357) (-144) (-707 (-401 (-931 (-552))) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) -((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) 14)) (-4093 (($ $ $) 15)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1695 (($) 6)) (-3562 (((-1152) $) 18)) (-1477 (((-842) $) 12)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 13)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) -(((-1058) (-13 (-830) (-10 -8 (-15 -1695 ($)) (-15 -3562 ((-1152) $))))) (T -1058)) -((-1695 (*1 *1) (-5 *1 (-1058))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1058))))) -(-13 (-830) (-10 -8 (-15 -1695 ($)) (-15 -3562 ((-1152) $)))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-2292 (((-111) $ $) 6))) -(((-1059) (-137)) (T -1059)) +NIL +(-13 (-21) (-1090)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-844)) . T) ((-1090) . T) ((-1078) . T)) +((-4157 (($ $) 16)) (-4183 (($ $) 22)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 49)) (-4346 (($ $) 24)) (-2147 (($ $) 11)) (-3410 (($ $) 38)) (-1522 (((-373) $) NIL) (((-220) $) NIL) (((-873 (-373)) $) 33)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 28) (($ (-552)) NIL) (($ (-401 (-552))) 28)) (-2014 (((-756)) 8)) (-3763 (($ $) 39))) +(((-1038 |#1|) (-10 -8 (-15 -4183 (|#1| |#1|)) (-15 -4157 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -4346 (|#1| |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -3213 ((-844) |#1|))) (-1039)) (T -1038)) +((-2014 (*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1038 *3)) (-4 *3 (-1039))))) +(-10 -8 (-15 -4183 (|#1| |#1|)) (-15 -4157 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -4346 (|#1| |#1|)) (-15 -2214 ((-870 (-373) |#1|) |#1| (-873 (-373)) (-870 (-373) |#1|))) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 -1522 ((-220) |#1|)) (-15 -1522 ((-373) |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -2014 ((-756))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3603 (((-552) $) 86)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4157 (($ $) 84)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-3489 (($ $) 94)) (-2393 (((-111) $ $) 57)) (-3886 (((-552) $) 111)) (-2130 (($) 17 T CONST)) (-4183 (($ $) 83)) (-1393 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-2832 (((-552) $) 98) (((-401 (-552)) $) 95)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1677 (((-111) $) 68)) (-1338 (((-111) $) 109)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 90)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 93)) (-4346 (($ $) 89)) (-3127 (((-111) $) 110)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-1772 (($ $ $) 108)) (-2011 (($ $ $) 107)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-2147 (($ $) 85)) (-3410 (($ $) 87)) (-3479 (((-412 $) $) 71)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-1522 (((-373) $) 102) (((-220) $) 101) (((-873 (-373)) $) 91)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-2014 (((-756)) 28)) (-3763 (($ $) 88)) (-3589 (((-111) $ $) 37)) (-1578 (($ $) 112)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1666 (((-111) $ $) 105)) (-1644 (((-111) $ $) 104)) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 106)) (-1632 (((-111) $ $) 103)) (-1720 (($ $ $) 62)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-1039) (-137)) (T -1039)) +((-1578 (*1 *1 *1) (-4 *1 (-1039))) (-4346 (*1 *1 *1) (-4 *1 (-1039))) (-3763 (*1 *1 *1) (-4 *1 (-1039))) (-3410 (*1 *1 *1) (-4 *1 (-1039))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-552)))) (-2147 (*1 *1 *1) (-4 *1 (-1039))) (-4157 (*1 *1 *1) (-4 *1 (-1039))) (-4183 (*1 *1 *1) (-4 *1 (-1039)))) +(-13 (-357) (-830) (-1003) (-1019 (-552)) (-1019 (-401 (-552))) (-983) (-600 (-873 (-373))) (-867 (-373)) (-144) (-10 -8 (-15 -4346 ($ $)) (-15 -3763 ($ $)) (-15 -3410 ($ $)) (-15 -3603 ((-552) $)) (-15 -2147 ($ $)) (-15 -4157 ($ $)) (-15 -4183 ($ $)) (-15 -1578 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-844)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-873 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 $) . T) ((-711) . T) ((-776) . T) ((-777) . T) ((-779) . T) ((-780) . T) ((-830) . T) ((-832) . T) ((-867 (-373)) . T) ((-901) . T) ((-983) . T) ((-1003) . T) ((-1019 (-401 (-552))) . T) ((-1019 (-552)) . T) ((-1036 #0#) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) |#2| $) 23)) (-2663 ((|#1| $) 10)) (-3886 (((-552) |#2| $) 88)) (-1743 (((-3 $ "failed") |#2| (-902)) 57)) (-3428 ((|#1| $) 28)) (-1437 ((|#1| |#2| $ |#1|) 37)) (-2712 (($ $) 25)) (-1293 (((-3 |#2| "failed") |#2| $) 87)) (-1338 (((-111) |#2| $) NIL)) (-3127 (((-111) |#2| $) NIL)) (-1481 (((-111) |#2| $) 24)) (-1849 ((|#1| $) 89)) (-3416 ((|#1| $) 27)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3521 ((|#2| $) 79)) (-3213 (((-844) $) 70)) (-4311 ((|#1| |#2| $ |#1|) 38)) (-4296 (((-629 $) |#2|) 59)) (-1613 (((-111) $ $) 74))) +(((-1040 |#1| |#2|) (-13 (-1047 |#1| |#2|) (-10 -8 (-15 -3416 (|#1| $)) (-15 -3428 (|#1| $)) (-15 -2663 (|#1| $)) (-15 -1849 (|#1| $)) (-15 -2712 ($ $)) (-15 -1481 ((-111) |#2| $)) (-15 -1437 (|#1| |#2| $ |#1|)))) (-13 (-830) (-357)) (-1213 |#1|)) (T -1040)) +((-1437 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-3416 (*1 *2 *1) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-3428 (*1 *2 *1) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-2663 (*1 *2 *1) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-1849 (*1 *2 *1) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-2712 (*1 *1 *1) (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-1213 *2)))) (-1481 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-830) (-357))) (-5 *2 (-111)) (-5 *1 (-1040 *4 *3)) (-4 *3 (-1213 *4))))) +(-13 (-1047 |#1| |#2|) (-10 -8 (-15 -3416 (|#1| $)) (-15 -3428 (|#1| $)) (-15 -2663 (|#1| $)) (-15 -1849 (|#1| $)) (-15 -2712 ($ $)) (-15 -1481 ((-111) |#2| $)) (-15 -1437 (|#1| |#2| $ |#1|)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4025 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2704 (($ $ $ $) NIL)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL)) (-1603 (($ $ $) NIL)) (-2130 (($) NIL T CONST)) (-3168 (($ (-1154)) 10) (($ (-552)) 7)) (-1393 (((-3 (-552) "failed") $) NIL)) (-2832 (((-552) $) NIL)) (-4006 (($ $ $) NIL)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-673 (-552)) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL)) (-2443 (((-111) $) NIL)) (-3777 (((-401 (-552)) $) NIL)) (-1332 (($) NIL) (($ $) NIL)) (-3987 (($ $ $) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1299 (($ $ $ $) NIL)) (-2990 (($ $ $) NIL)) (-1338 (((-111) $) NIL)) (-2048 (($ $ $) NIL)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL)) (-4065 (((-111) $) NIL)) (-3302 (((-111) $) NIL)) (-2032 (((-3 $ "failed") $) NIL)) (-3127 (((-111) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1760 (($ $ $ $) NIL)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-3922 (($ $) NIL)) (-2556 (($ $) NIL)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3198 (($ $ $) NIL)) (-1977 (($) NIL T CONST)) (-3864 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2006 (($ $) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-2045 (($ $) NIL)) (-1487 (($ $) NIL)) (-1522 (((-552) $) 16) (((-528) $) NIL) (((-873 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL) (($ (-1154)) 9)) (-3213 (((-844) $) 20) (($ (-552)) 6) (($ $) NIL) (($ (-552)) 6)) (-2014 (((-756)) NIL)) (-3246 (((-111) $ $) NIL)) (-2075 (($ $ $) NIL)) (-4174 (($) NIL)) (-3589 (((-111) $ $) NIL)) (-3182 (($ $ $ $) NIL)) (-1578 (($ $) NIL)) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) NIL)) (-1709 (($ $) 19) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-1041) (-13 (-537) (-10 -8 (-6 -4355) (-6 -4360) (-6 -4356) (-15 -1522 ($ (-1154))) (-15 -3168 ($ (-1154))) (-15 -3168 ($ (-552)))))) (T -1041)) +((-1522 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1041)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1041)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1041))))) +(-13 (-537) (-10 -8 (-6 -4355) (-6 -4360) (-6 -4356) (-15 -1522 ($ (-1154))) (-15 -3168 ($ (-1154))) (-15 -3168 ($ (-552))))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-2660 (((-1242) $ (-1154) (-1154)) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-4134 (($) 9)) (-1470 (((-52) $ (-1154) (-52)) NIL)) (-3523 (($ $) 30)) (-2833 (($ $) 28)) (-1797 (($ $) 27)) (-2908 (($ $) 29)) (-4016 (($ $) 32)) (-3475 (($ $) 33)) (-3375 (($ $) 26)) (-1288 (($ $) 31)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) 25 (|has| $ (-6 -4368)))) (-3078 (((-3 (-52) "failed") (-1154) $) 40)) (-2130 (($) NIL T CONST)) (-1757 (($) 7)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-1625 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) 50 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-3 (-52) "failed") (-1154) $) NIL)) (-2655 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368)))) (-3130 (((-3 (-1136) "failed") $ (-1136) (-552)) 59)) (-2957 (((-52) $ (-1154) (-52)) NIL (|has| $ (-6 -4369)))) (-2892 (((-52) $ (-1154)) NIL)) (-3138 (((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-1154) $) NIL (|has| (-1154) (-832)))) (-3278 (((-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) 35 (|has| $ (-6 -4368))) (((-629 (-52)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-1842 (((-1154) $) NIL (|has| (-1154) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-1376 (((-629 (-1154)) $) NIL)) (-2539 (((-111) (-1154) $) NIL)) (-3105 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL)) (-1580 (($ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) 43)) (-2190 (((-629 (-1154)) $) NIL)) (-1335 (((-111) (-1154) $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-2362 (((-373) $ (-1154)) 49)) (-1787 (((-629 (-1136)) $ (-1136)) 60)) (-2702 (((-52) $) NIL (|has| (-1154) (-832)))) (-3073 (((-3 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) "failed") (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL)) (-1518 (($ $ (-52)) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-288 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL (-12 (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-303 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (($ $ (-629 (-52)) (-629 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078)))) (($ $ (-629 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078))))) (-3627 (((-629 (-52)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 (((-52) $ (-1154)) NIL) (((-52) $ (-1154) (-52)) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-1304 (($ $ (-1154)) 51)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078)))) (((-756) (-52) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-52) (-1078)))) (((-756) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) 37)) (-4319 (($ $ $) 38)) (-3213 (((-844) $) NIL (-4029 (|has| (-52) (-599 (-844))) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-599 (-844)))))) (-3937 (($ $ (-1154) (-373)) 47)) (-2910 (($ $ (-1154) (-373)) 48)) (-1663 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 (-1154)) (|:| -3360 (-52)))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-52) (-1078)) (|has| (-2 (|:| -2670 (-1154)) (|:| -3360 (-52))) (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1042) (-13 (-1167 (-1154) (-52)) (-10 -8 (-15 -4319 ($ $ $)) (-15 -1757 ($)) (-15 -3375 ($ $)) (-15 -1797 ($ $)) (-15 -2833 ($ $)) (-15 -2908 ($ $)) (-15 -1288 ($ $)) (-15 -3523 ($ $)) (-15 -4016 ($ $)) (-15 -3475 ($ $)) (-15 -3937 ($ $ (-1154) (-373))) (-15 -2910 ($ $ (-1154) (-373))) (-15 -2362 ((-373) $ (-1154))) (-15 -1787 ((-629 (-1136)) $ (-1136))) (-15 -1304 ($ $ (-1154))) (-15 -4134 ($)) (-15 -3130 ((-3 (-1136) "failed") $ (-1136) (-552))) (-6 -4368)))) (T -1042)) +((-4319 (*1 *1 *1 *1) (-5 *1 (-1042))) (-1757 (*1 *1) (-5 *1 (-1042))) (-3375 (*1 *1 *1) (-5 *1 (-1042))) (-1797 (*1 *1 *1) (-5 *1 (-1042))) (-2833 (*1 *1 *1) (-5 *1 (-1042))) (-2908 (*1 *1 *1) (-5 *1 (-1042))) (-1288 (*1 *1 *1) (-5 *1 (-1042))) (-3523 (*1 *1 *1) (-5 *1 (-1042))) (-4016 (*1 *1 *1) (-5 *1 (-1042))) (-3475 (*1 *1 *1) (-5 *1 (-1042))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-373)) (-5 *1 (-1042)))) (-2910 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-373)) (-5 *1 (-1042)))) (-2362 (*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-373)) (-5 *1 (-1042)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1042)) (-5 *3 (-1136)))) (-1304 (*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1042)))) (-4134 (*1 *1) (-5 *1 (-1042))) (-3130 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-1042))))) +(-13 (-1167 (-1154) (-52)) (-10 -8 (-15 -4319 ($ $ $)) (-15 -1757 ($)) (-15 -3375 ($ $)) (-15 -1797 ($ $)) (-15 -2833 ($ $)) (-15 -2908 ($ $)) (-15 -1288 ($ $)) (-15 -3523 ($ $)) (-15 -4016 ($ $)) (-15 -3475 ($ $)) (-15 -3937 ($ $ (-1154) (-373))) (-15 -2910 ($ $ (-1154) (-373))) (-15 -2362 ((-373) $ (-1154))) (-15 -1787 ((-629 (-1136)) $ (-1136))) (-15 -1304 ($ $ (-1154))) (-15 -4134 ($)) (-15 -3130 ((-3 (-1136) "failed") $ (-1136) (-552))) (-6 -4368))) +((-1785 (($ $) 45)) (-1764 (((-111) $ $) 74)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-933 (-401 (-552)))) 227) (((-3 $ "failed") (-933 (-552))) 226) (((-3 $ "failed") (-933 |#2|)) 229)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) NIL) (($ (-933 (-401 (-552)))) 215) (($ (-933 (-552))) 211) (($ (-933 |#2|)) 231)) (-3766 (($ $) NIL) (($ $ |#4|) 43)) (-3738 (((-111) $ $) 112) (((-111) $ (-629 $)) 113)) (-2792 (((-111) $) 56)) (-2997 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 107)) (-1913 (($ $) 138)) (-2896 (($ $) 134)) (-2304 (($ $) 133)) (-2030 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1697 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3065 (((-111) $ $) 121) (((-111) $ (-629 $)) 122)) (-2940 ((|#4| $) 33)) (-1885 (($ $ $) 110)) (-2706 (((-111) $) 55)) (-1979 (((-756) $) 35)) (-1989 (($ $) 152)) (-2971 (($ $) 149)) (-4050 (((-629 $) $) 68)) (-1723 (($ $) 57)) (-3119 (($ $) 145)) (-3559 (((-629 $) $) 65)) (-1823 (($ $) 59)) (-3743 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4048 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3129 (-756))) $ $) 111)) (-4239 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $) 108) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $ |#4|) 109)) (-1574 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $) 104) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $ |#4|) 105)) (-3710 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3557 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1741 (((-629 $) $) 51)) (-3287 (((-111) $ $) 118) (((-111) $ (-629 $)) 119)) (-2498 (($ $ $) 103)) (-1977 (($ $) 37)) (-4343 (((-111) $ $) 72)) (-3150 (((-111) $ $) 114) (((-111) $ (-629 $)) 116)) (-3848 (($ $ $) 101)) (-2170 (($ $) 40)) (-2594 ((|#2| |#2| $) 142) (($ (-629 $)) NIL) (($ $ $) NIL)) (-3069 (($ $ |#2|) NIL) (($ $ $) 131)) (-1771 (($ $ |#2|) 126) (($ $ $) 129)) (-2861 (($ $) 48)) (-1763 (($ $) 52)) (-1522 (((-873 (-373)) $) NIL) (((-873 (-552)) $) NIL) (((-528) $) NIL) (($ (-933 (-401 (-552)))) 217) (($ (-933 (-552))) 213) (($ (-933 |#2|)) 228) (((-1136) $) 250) (((-933 |#2|) $) 162)) (-3213 (((-844) $) 30) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-933 |#2|) $) 163) (($ (-401 (-552))) NIL) (($ $) NIL)) (-1383 (((-3 (-111) "failed") $ $) 71))) +(((-1043 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -2594 (|#1| |#1| |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 ((-933 |#2|) |#1|)) (-15 -1522 ((-933 |#2|) |#1|)) (-15 -1522 ((-1136) |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2594 (|#2| |#2| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -3069 (|#1| |#1| |#2|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -2896 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -1522 (|#1| (-933 |#2|))) (-15 -2832 (|#1| (-933 |#2|))) (-15 -1393 ((-3 |#1| "failed") (-933 |#2|))) (-15 -1522 (|#1| (-933 (-552)))) (-15 -2832 (|#1| (-933 (-552)))) (-15 -1393 ((-3 |#1| "failed") (-933 (-552)))) (-15 -1522 (|#1| (-933 (-401 (-552))))) (-15 -2832 (|#1| (-933 (-401 (-552))))) (-15 -1393 ((-3 |#1| "failed") (-933 (-401 (-552))))) (-15 -2498 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -4048 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3129 (-756))) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2997 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -1574 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -1574 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3557 (|#1| |#1| |#1| |#4|)) (-15 -3710 (|#1| |#1| |#1| |#4|)) (-15 -3557 (|#1| |#1| |#1|)) (-15 -3710 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| |#1| |#4|)) (-15 -2030 (|#1| |#1| |#1| |#4|)) (-15 -1697 (|#1| |#1| |#1|)) (-15 -2030 (|#1| |#1| |#1|)) (-15 -3065 ((-111) |#1| (-629 |#1|))) (-15 -3065 ((-111) |#1| |#1|)) (-15 -3287 ((-111) |#1| (-629 |#1|))) (-15 -3287 ((-111) |#1| |#1|)) (-15 -3150 ((-111) |#1| (-629 |#1|))) (-15 -3150 ((-111) |#1| |#1|)) (-15 -3738 ((-111) |#1| (-629 |#1|))) (-15 -3738 ((-111) |#1| |#1|)) (-15 -1764 ((-111) |#1| |#1|)) (-15 -4343 ((-111) |#1| |#1|)) (-15 -1383 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4050 ((-629 |#1|) |#1|)) (-15 -3559 ((-629 |#1|) |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 -2792 ((-111) |#1|)) (-15 -2706 ((-111) |#1|)) (-15 -3766 (|#1| |#1| |#4|)) (-15 -3743 (|#1| |#1| |#4|)) (-15 -1763 (|#1| |#1|)) (-15 -1741 ((-629 |#1|) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1979 ((-756) |#1|)) (-15 -2940 (|#4| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -2832 (|#4| |#1|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -3213 (|#1| |#4|)) (-15 -3743 (|#2| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-1044 |#2| |#3| |#4|) (-1030) (-778) (-832)) (T -1043)) +NIL +(-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -2594 (|#1| |#1| |#1|)) (-15 -2594 (|#1| (-629 |#1|))) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 ((-933 |#2|) |#1|)) (-15 -1522 ((-933 |#2|) |#1|)) (-15 -1522 ((-1136) |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2594 (|#2| |#2| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -3069 (|#1| |#1| |#2|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -2896 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -1522 (|#1| (-933 |#2|))) (-15 -2832 (|#1| (-933 |#2|))) (-15 -1393 ((-3 |#1| "failed") (-933 |#2|))) (-15 -1522 (|#1| (-933 (-552)))) (-15 -2832 (|#1| (-933 (-552)))) (-15 -1393 ((-3 |#1| "failed") (-933 (-552)))) (-15 -1522 (|#1| (-933 (-401 (-552))))) (-15 -2832 (|#1| (-933 (-401 (-552))))) (-15 -1393 ((-3 |#1| "failed") (-933 (-401 (-552))))) (-15 -2498 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -4048 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3129 (-756))) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2997 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -4239 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -1574 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -4186 |#1|)) |#1| |#1| |#4|)) (-15 -1574 ((-2 (|:| -4158 |#1|) (|:| |gap| (-756)) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -3557 (|#1| |#1| |#1| |#4|)) (-15 -3710 (|#1| |#1| |#1| |#4|)) (-15 -3557 (|#1| |#1| |#1|)) (-15 -3710 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1| |#1| |#4|)) (-15 -2030 (|#1| |#1| |#1| |#4|)) (-15 -1697 (|#1| |#1| |#1|)) (-15 -2030 (|#1| |#1| |#1|)) (-15 -3065 ((-111) |#1| (-629 |#1|))) (-15 -3065 ((-111) |#1| |#1|)) (-15 -3287 ((-111) |#1| (-629 |#1|))) (-15 -3287 ((-111) |#1| |#1|)) (-15 -3150 ((-111) |#1| (-629 |#1|))) (-15 -3150 ((-111) |#1| |#1|)) (-15 -3738 ((-111) |#1| (-629 |#1|))) (-15 -3738 ((-111) |#1| |#1|)) (-15 -1764 ((-111) |#1| |#1|)) (-15 -4343 ((-111) |#1| |#1|)) (-15 -1383 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4050 ((-629 |#1|) |#1|)) (-15 -3559 ((-629 |#1|) |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 -2792 ((-111) |#1|)) (-15 -2706 ((-111) |#1|)) (-15 -3766 (|#1| |#1| |#4|)) (-15 -3743 (|#1| |#1| |#4|)) (-15 -1763 (|#1| |#1|)) (-15 -1741 ((-629 |#1|) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1979 ((-756) |#1|)) (-15 -2940 (|#4| |#1|)) (-15 -1522 ((-528) |#1|)) (-15 -1522 ((-873 (-552)) |#1|)) (-15 -1522 ((-873 (-373)) |#1|)) (-15 -2832 (|#4| |#1|)) (-15 -1393 ((-3 |#4| "failed") |#1|)) (-15 -3213 (|#1| |#4|)) (-15 -3743 (|#2| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 |#3|) $) 108)) (-3449 (((-1150 $) $ |#3|) 123) (((-1150 |#1|) $) 122)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3303 (($ $) 86 (|has| |#1| (-544)))) (-1334 (((-111) $) 88 (|has| |#1| (-544)))) (-2349 (((-756) $) 110) (((-756) $ (-629 |#3|)) 109)) (-1785 (($ $) 269)) (-1764 (((-111) $ $) 255)) (-4012 (((-3 $ "failed") $ $) 19)) (-2134 (($ $ $) 214 (|has| |#1| (-544)))) (-1966 (((-629 $) $ $) 209 (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) 98 (|has| |#1| (-890)))) (-4116 (($ $) 96 (|has| |#1| (-445)))) (-3343 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 101 (|has| |#1| (-890)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1019 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-933 (-401 (-552)))) 229 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154))))) (((-3 $ "failed") (-933 (-552))) 226 (-4029 (-12 (-4107 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1154)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154)))))) (((-3 $ "failed") (-933 |#1|)) 223 (-4029 (-12 (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1154)))) (-12 (-4107 (|has| |#1| (-537))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1154)))) (-12 (-4107 (|has| |#1| (-973 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154))))))) (-2832 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1019 (-552)))) ((|#3| $) 133) (($ (-933 (-401 (-552)))) 228 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154))))) (($ (-933 (-552))) 225 (-4029 (-12 (-4107 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1154)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154)))))) (($ (-933 |#1|)) 222 (-4029 (-12 (-4107 (|has| |#1| (-38 (-401 (-552))))) (-4107 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1154)))) (-12 (-4107 (|has| |#1| (-537))) (-4107 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1154)))) (-12 (-4107 (|has| |#1| (-973 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154))))))) (-3301 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-544)))) (-3766 (($ $) 152) (($ $ |#3|) 264)) (-2714 (((-673 (-552)) (-673 $)) 132 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 131 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 130) (((-673 |#1|) (-673 $)) 129)) (-3738 (((-111) $ $) 254) (((-111) $ (-629 $)) 253)) (-1293 (((-3 $ "failed") $) 32)) (-2792 (((-111) $) 262)) (-2997 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 234)) (-1913 (($ $) 203 (|has| |#1| (-445)))) (-3471 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-3754 (((-629 $) $) 107)) (-1677 (((-111) $) 94 (|has| |#1| (-890)))) (-2896 (($ $) 219 (|has| |#1| (-544)))) (-2304 (($ $) 220 (|has| |#1| (-544)))) (-2030 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1697 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3423 (($ $ |#1| |#2| $) 170)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 82 (-12 (|has| |#3| (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 81 (-12 (|has| |#3| (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4065 (((-111) $) 30)) (-2856 (((-756) $) 167)) (-3065 (((-111) $ $) 248) (((-111) $ (-629 $)) 247)) (-3154 (($ $ $ $ $) 205 (|has| |#1| (-544)))) (-2940 ((|#3| $) 273)) (-3602 (($ (-1150 |#1|) |#3|) 115) (($ (-1150 $) |#3|) 114)) (-3939 (((-629 $) $) 124)) (-2231 (((-111) $) 150)) (-3590 (($ |#1| |#2|) 151) (($ $ |#3| (-756)) 117) (($ $ (-629 |#3|) (-629 (-756))) 116)) (-1885 (($ $ $) 233)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#3|) 118)) (-2706 (((-111) $) 263)) (-3544 ((|#2| $) 168) (((-756) $ |#3|) 120) (((-629 (-756)) $ (-629 |#3|)) 119)) (-1772 (($ $ $) 77 (|has| |#1| (-832)))) (-1979 (((-756) $) 272)) (-2011 (($ $ $) 76 (|has| |#1| (-832)))) (-3891 (($ (-1 |#2| |#2|) $) 169)) (-1477 (($ (-1 |#1| |#1|) $) 149)) (-3506 (((-3 |#3| "failed") $) 121)) (-1989 (($ $) 200 (|has| |#1| (-445)))) (-2971 (($ $) 201 (|has| |#1| (-445)))) (-4050 (((-629 $) $) 258)) (-1723 (($ $) 261)) (-3119 (($ $) 202 (|has| |#1| (-445)))) (-3559 (((-629 $) $) 259)) (-1823 (($ $) 260)) (-3733 (($ $) 147)) (-3743 ((|#1| $) 146) (($ $ |#3|) 265)) (-2552 (($ (-629 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-4048 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3129 (-756))) $ $) 232)) (-4239 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $) 236) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $ |#3|) 235)) (-1574 (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $) 238) (((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $ |#3|) 237)) (-3710 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3557 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2623 (((-1136) $) 9)) (-2043 (($ $ $) 208 (|has| |#1| (-544)))) (-1741 (((-629 $) $) 267)) (-4263 (((-3 (-629 $) "failed") $) 112)) (-2878 (((-3 (-629 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -1406 (-756))) "failed") $) 111)) (-3287 (((-111) $ $) 250) (((-111) $ (-629 $)) 249)) (-2498 (($ $ $) 230)) (-1977 (($ $) 271)) (-4343 (((-111) $ $) 256)) (-3150 (((-111) $ $) 252) (((-111) $ (-629 $)) 251)) (-3848 (($ $ $) 231)) (-2170 (($ $) 270)) (-2876 (((-1098) $) 10)) (-1808 (((-2 (|:| -2594 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-544)))) (-3571 (((-2 (|:| -2594 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-544)))) (-3711 (((-111) $) 164)) (-3722 ((|#1| $) 165)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 93 (|has| |#1| (-445)))) (-2594 ((|#1| |#1| $) 204 (|has| |#1| (-445))) (($ (-629 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 100 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 99 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 97 (|has| |#1| (-890)))) (-1810 (((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-544)))) (-3969 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3069 (($ $ |#1|) 217 (|has| |#1| (-544))) (($ $ $) 215 (|has| |#1| (-544)))) (-1771 (($ $ |#1|) 218 (|has| |#1| (-544))) (($ $ $) 216 (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-629 $) (-629 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-629 |#3|) (-629 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-629 |#3|) (-629 $)) 136)) (-1721 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3096 (($ $ |#3|) 40) (($ $ (-629 |#3|)) 39) (($ $ |#3| (-756)) 38) (($ $ (-629 |#3|) (-629 (-756))) 37)) (-3299 ((|#2| $) 148) (((-756) $ |#3|) 128) (((-629 (-756)) $ (-629 |#3|)) 127)) (-2861 (($ $) 268)) (-1763 (($ $) 266)) (-1522 (((-873 (-373)) $) 80 (-12 (|has| |#3| (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) 79 (-12 (|has| |#3| (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528))))) (($ (-933 (-401 (-552)))) 227 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154))))) (($ (-933 (-552))) 224 (-4029 (-12 (-4107 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1154)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1154)))))) (($ (-933 |#1|)) 221 (|has| |#3| (-600 (-1154)))) (((-1136) $) 199 (-12 (|has| |#1| (-1019 (-552))) (|has| |#3| (-600 (-1154))))) (((-933 |#1|) $) 198 (|has| |#3| (-600 (-1154))))) (-3807 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 102 (-3792 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-933 |#1|) $) 197 (|has| |#3| (-600 (-1154)))) (($ (-401 (-552))) 70 (-4029 (|has| |#1| (-1019 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) 166)) (-2266 ((|#1| $ |#2|) 153) (($ $ |#3| (-756)) 126) (($ $ (-629 |#3|) (-629 (-756))) 125)) (-3878 (((-3 $ "failed") $) 71 (-4029 (-3792 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 28)) (-4306 (($ $ $ (-756)) 171 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 87 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-1383 (((-3 (-111) "failed") $ $) 257)) (-3309 (($) 29 T CONST)) (-3556 (($ $ $ $ (-756)) 206 (|has| |#1| (-544)))) (-3239 (($ $ $ (-756)) 207 (|has| |#1| (-544)))) (-1765 (($ $ |#3|) 36) (($ $ (-629 |#3|)) 35) (($ $ |#3| (-756)) 34) (($ $ (-629 |#3|) (-629 (-756))) 33)) (-1666 (((-111) $ $) 74 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 73 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 75 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 72 (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1044 |#1| |#2| |#3|) (-137) (-1030) (-778) (-832)) (T -1044)) +((-2940 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-756)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-2170 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-1741 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1044 *3 *4 *5)))) (-1763 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-1723 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-1823 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-3559 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1044 *3 *4 *5)))) (-4050 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1044 *3 *4 *5)))) (-1383 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-4343 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-1764 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-3738 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-3738 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-3150 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) (-3287 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) (-3065 (*1 *2 *1 *1) (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) (-2030 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-1697 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-2030 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-1697 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-3710 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-3557 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-3710 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-3557 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *2 (-832)))) (-1574 (*1 *2 *1 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -4186 *1))) (-4 *1 (-1044 *3 *4 *5)))) (-1574 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -4186 *1))) (-4 *1 (-1044 *4 *5 *3)))) (-4239 (*1 *2 *1 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1044 *3 *4 *5)))) (-4239 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1044 *4 *5 *3)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1044 *3 *4 *5)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-4048 (*1 *2 *1 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3129 (-756)))) (-4 *1 (-1044 *3 *4 *5)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-2498 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)))) (-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)))) (-1393 (*1 *1 *2) (|partial| -4029 (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) (-2832 (*1 *1 *2) (-4029 (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) (-1522 (*1 *1 *2) (-4029 (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) (-1393 (*1 *1 *2) (|partial| -4029 (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4107 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-537))) (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-973 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))))) (-2832 (*1 *1 *2) (-4029 (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4107 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-537))) (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))) (-12 (-5 *2 (-933 *3)) (-12 (-4107 (-4 *3 (-973 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) (-4 *5 (-832))))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *5 (-600 (-1154))) (-4 *4 (-778)) (-4 *5 (-832)))) (-2304 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-1771 (*1 *1 *1 *2) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-1771 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-3069 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-2134 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-1810 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -2594 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1044 *3 *4 *5)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -2594 *1) (|:| |coef1| *1))) (-4 *1 (-1044 *3 *4 *5)))) (-1808 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-2 (|:| -2594 *1) (|:| |coef2| *1))) (-4 *1 (-1044 *3 *4 *5)))) (-3301 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-1966 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1044 *3 *4 *5)))) (-2043 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-3239 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *3 (-544)))) (-3556 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *3 (-544)))) (-3154 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-544)))) (-2594 (*1 *2 *2 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-1913 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-3119 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445)))) (-1989 (*1 *1 *1) (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-445))))) +(-13 (-930 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2940 (|t#3| $)) (-15 -1979 ((-756) $)) (-15 -1977 ($ $)) (-15 -2170 ($ $)) (-15 -1785 ($ $)) (-15 -2861 ($ $)) (-15 -1741 ((-629 $) $)) (-15 -1763 ($ $)) (-15 -3743 ($ $ |t#3|)) (-15 -3766 ($ $ |t#3|)) (-15 -2706 ((-111) $)) (-15 -2792 ((-111) $)) (-15 -1723 ($ $)) (-15 -1823 ($ $)) (-15 -3559 ((-629 $) $)) (-15 -4050 ((-629 $) $)) (-15 -1383 ((-3 (-111) "failed") $ $)) (-15 -4343 ((-111) $ $)) (-15 -1764 ((-111) $ $)) (-15 -3738 ((-111) $ $)) (-15 -3738 ((-111) $ (-629 $))) (-15 -3150 ((-111) $ $)) (-15 -3150 ((-111) $ (-629 $))) (-15 -3287 ((-111) $ $)) (-15 -3287 ((-111) $ (-629 $))) (-15 -3065 ((-111) $ $)) (-15 -3065 ((-111) $ (-629 $))) (-15 -2030 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -2030 ($ $ $ |t#3|)) (-15 -1697 ($ $ $ |t#3|)) (-15 -3710 ($ $ $)) (-15 -3557 ($ $ $)) (-15 -3710 ($ $ $ |t#3|)) (-15 -3557 ($ $ $ |t#3|)) (-15 -1574 ((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $)) (-15 -1574 ((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -4186 $)) $ $ |t#3|)) (-15 -4239 ((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -4239 ((-2 (|:| -4158 $) (|:| |gap| (-756)) (|:| -3713 $) (|:| -4186 $)) $ $ |t#3|)) (-15 -2997 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -1885 ($ $ $)) (-15 -4048 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3129 (-756))) $ $)) (-15 -3848 ($ $ $)) (-15 -2498 ($ $ $)) (IF (|has| |t#3| (-600 (-1154))) (PROGN (-6 (-599 (-933 |t#1|))) (-6 (-600 (-933 |t#1|))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -1393 ((-3 $ "failed") (-933 (-401 (-552))))) (-15 -2832 ($ (-933 (-401 (-552))))) (-15 -1522 ($ (-933 (-401 (-552))))) (-15 -1393 ((-3 $ "failed") (-933 (-552)))) (-15 -2832 ($ (-933 (-552)))) (-15 -1522 ($ (-933 (-552)))) (IF (|has| |t#1| (-973 (-552))) |%noBranch| (PROGN (-15 -1393 ((-3 $ "failed") (-933 |t#1|))) (-15 -2832 ($ (-933 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -1393 ((-3 $ "failed") (-933 (-552)))) (-15 -2832 ($ (-933 (-552)))) (-15 -1522 ($ (-933 (-552)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -1393 ((-3 $ "failed") (-933 |t#1|))) (-15 -2832 ($ (-933 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) |%noBranch| (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -1393 ((-3 $ "failed") (-933 |t#1|))) (-15 -2832 ($ (-933 |t#1|)))))) (-15 -1522 ($ (-933 |t#1|))) (IF (|has| |t#1| (-1019 (-552))) (-6 (-600 (-1136))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2304 ($ $)) (-15 -2896 ($ $)) (-15 -1771 ($ $ |t#1|)) (-15 -3069 ($ $ |t#1|)) (-15 -1771 ($ $ $)) (-15 -3069 ($ $ $)) (-15 -2134 ($ $ $)) (-15 -1810 ((-2 (|:| -2594 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3571 ((-2 (|:| -2594 $) (|:| |coef1| $)) $ $)) (-15 -1808 ((-2 (|:| -2594 $) (|:| |coef2| $)) $ $)) (-15 -3301 ($ $ $)) (-15 -1966 ((-629 $) $ $)) (-15 -2043 ($ $ $)) (-15 -3239 ($ $ $ (-756))) (-15 -3556 ($ $ $ $ (-756))) (-15 -3154 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -2594 (|t#1| |t#1| $)) (-15 -1913 ($ $)) (-15 -3119 ($ $)) (-15 -2971 ($ $)) (-15 -1989 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-599 (-933 |#1|)) |has| |#3| (-600 (-1154))) ((-169) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-873 (-373))) -12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#3| (-600 (-873 (-373))))) ((-600 (-873 (-552))) -12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#3| (-600 (-873 (-552))))) ((-600 (-933 |#1|)) |has| |#3| (-600 (-1154))) ((-600 (-1136)) -12 (|has| |#1| (-1019 (-552))) (|has| |#3| (-600 (-1154)))) ((-284) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-890)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 |#3|) . T) ((-867 (-373)) -12 (|has| |#1| (-867 (-373))) (|has| |#3| (-867 (-373)))) ((-867 (-552)) -12 (|has| |#1| (-867 (-552))) (|has| |#3| (-867 (-552)))) ((-930 |#1| |#2| |#3|) . T) ((-890) |has| |#1| (-890)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 |#1|) . T) ((-1019 |#3|) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) |has| |#1| (-890))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-1497 (((-629 (-1113)) $) 13)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 24) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-1113) $) 15)) (-1613 (((-111) $ $) NIL))) +(((-1045) (-13 (-1061) (-10 -8 (-15 -1497 ((-629 (-1113)) $)) (-15 -4300 ((-1113) $))))) (T -1045)) +((-1497 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1045)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1045))))) +(-13 (-1061) (-10 -8 (-15 -1497 ((-629 (-1113)) $)) (-15 -4300 ((-1113) $)))) +((-3643 (((-111) |#3| $) 13)) (-1743 (((-3 $ "failed") |#3| (-902)) 23)) (-1293 (((-3 |#3| "failed") |#3| $) 38)) (-1338 (((-111) |#3| $) 16)) (-3127 (((-111) |#3| $) 14))) +(((-1046 |#1| |#2| |#3|) (-10 -8 (-15 -1743 ((-3 |#1| "failed") |#3| (-902))) (-15 -1293 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1338 ((-111) |#3| |#1|)) (-15 -3127 ((-111) |#3| |#1|)) (-15 -3643 ((-111) |#3| |#1|))) (-1047 |#2| |#3|) (-13 (-830) (-357)) (-1213 |#2|)) (T -1046)) +NIL +(-10 -8 (-15 -1743 ((-3 |#1| "failed") |#3| (-902))) (-15 -1293 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1338 ((-111) |#3| |#1|)) (-15 -3127 ((-111) |#3| |#1|)) (-15 -3643 ((-111) |#3| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) |#2| $) 21)) (-3886 (((-552) |#2| $) 22)) (-1743 (((-3 $ "failed") |#2| (-902)) 15)) (-1437 ((|#1| |#2| $ |#1|) 13)) (-1293 (((-3 |#2| "failed") |#2| $) 18)) (-1338 (((-111) |#2| $) 19)) (-3127 (((-111) |#2| $) 20)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3521 ((|#2| $) 17)) (-3213 (((-844) $) 11)) (-4311 ((|#1| |#2| $ |#1|) 14)) (-4296 (((-629 $) |#2|) 16)) (-1613 (((-111) $ $) 6))) +(((-1047 |#1| |#2|) (-137) (-13 (-830) (-357)) (-1213 |t#1|)) (T -1047)) +((-3886 (*1 *2 *3 *1) (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-552)))) (-3643 (*1 *2 *3 *1) (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-111)))) (-3127 (*1 *2 *3 *1) (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-111)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-111)))) (-1293 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-13 (-830) (-357))) (-4 *2 (-1213 *3)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-13 (-830) (-357))) (-4 *2 (-1213 *3)))) (-4296 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-629 *1)) (-4 *1 (-1047 *4 *3)))) (-1743 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-902)) (-4 *4 (-13 (-830) (-357))) (-4 *1 (-1047 *4 *2)) (-4 *2 (-1213 *4)))) (-4311 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1047 *2 *3)) (-4 *2 (-13 (-830) (-357))) (-4 *3 (-1213 *2)))) (-1437 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1047 *2 *3)) (-4 *2 (-13 (-830) (-357))) (-4 *3 (-1213 *2))))) +(-13 (-1078) (-10 -8 (-15 -3886 ((-552) |t#2| $)) (-15 -3643 ((-111) |t#2| $)) (-15 -3127 ((-111) |t#2| $)) (-15 -1338 ((-111) |t#2| $)) (-15 -1293 ((-3 |t#2| "failed") |t#2| $)) (-15 -3521 (|t#2| $)) (-15 -4296 ((-629 $) |t#2|)) (-15 -1743 ((-3 $ "failed") |t#2| (-902))) (-15 -4311 (|t#1| |t#2| $ |t#1|)) (-15 -1437 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3077 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756)) 96)) (-2385 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756)) 56)) (-1450 (((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)) 87)) (-3859 (((-756) (-629 |#4|) (-629 |#5|)) 27)) (-3095 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756)) 58) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111)) 60)) (-2089 (((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111)) 79)) (-1522 (((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) 82)) (-3418 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-111)) 55)) (-1630 (((-756) (-629 |#4|) (-629 |#5|)) 19))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1630 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3859 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3418 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-111))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3077 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756))) (-15 -1522 ((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -1450 ((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -1048)) +((-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) (-5 *4 (-756)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-1242)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1136)) (-5 *1 (-1048 *4 *5 *6 *7 *8)))) (-3077 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-629 *11)) (|:| |todo| (-629 (-2 (|:| |val| *3) (|:| -3361 *11)))))) (-5 *6 (-756)) (-5 *2 (-629 (-2 (|:| |val| (-629 *10)) (|:| -3361 *11)))) (-5 *3 (-629 *10)) (-5 *4 (-629 *11)) (-4 *10 (-1044 *7 *8 *9)) (-4 *11 (-1050 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-778)) (-4 *9 (-832)) (-5 *1 (-1048 *7 *8 *9 *10 *11)))) (-2089 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-2089 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-3095 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-3095 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) (-3095 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-756)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-778)) (-4 *9 (-832)) (-4 *3 (-1044 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *7 *8 *9 *3 *4)) (-4 *4 (-1050 *7 *8 *9 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) (-3418 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1048 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1630 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3859 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3418 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-111))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3077 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756))) (-15 -1522 ((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -1450 ((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)))) +((-2851 (((-111) |#5| $) 21)) (-4035 (((-111) |#5| $) 24)) (-3250 (((-111) |#5| $) 16) (((-111) $) 45)) (-4011 (((-629 $) |#5| $) NIL) (((-629 $) (-629 |#5|) $) 77) (((-629 $) (-629 |#5|) (-629 $)) 75) (((-629 $) |#5| (-629 $)) 78)) (-3136 (($ $ |#5|) NIL) (((-629 $) |#5| $) NIL) (((-629 $) |#5| (-629 $)) 60) (((-629 $) (-629 |#5|) $) 62) (((-629 $) (-629 |#5|) (-629 $)) 64)) (-3933 (((-629 $) |#5| $) NIL) (((-629 $) |#5| (-629 $)) 54) (((-629 $) (-629 |#5|) $) 56) (((-629 $) (-629 |#5|) (-629 $)) 58)) (-2452 (((-111) |#5| $) 27))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3136 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -3136 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -3136 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -3136 ((-629 |#1|) |#5| |#1|)) (-15 -3933 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -3933 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -3933 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -3933 ((-629 |#1|) |#5| |#1|)) (-15 -4011 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -4011 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -4011 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -4011 ((-629 |#1|) |#5| |#1|)) (-15 -4035 ((-111) |#5| |#1|)) (-15 -3250 ((-111) |#1|)) (-15 -2452 ((-111) |#5| |#1|)) (-15 -2851 ((-111) |#5| |#1|)) (-15 -3250 ((-111) |#5| |#1|)) (-15 -3136 (|#1| |#1| |#5|))) (-1050 |#2| |#3| |#4| |#5|) (-445) (-778) (-832) (-1044 |#2| |#3| |#4|)) (T -1049)) +NIL +(-10 -8 (-15 -3136 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -3136 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -3136 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -3136 ((-629 |#1|) |#5| |#1|)) (-15 -3933 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -3933 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -3933 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -3933 ((-629 |#1|) |#5| |#1|)) (-15 -4011 ((-629 |#1|) |#5| (-629 |#1|))) (-15 -4011 ((-629 |#1|) (-629 |#5|) (-629 |#1|))) (-15 -4011 ((-629 |#1|) (-629 |#5|) |#1|)) (-15 -4011 ((-629 |#1|) |#5| |#1|)) (-15 -4035 ((-111) |#5| |#1|)) (-15 -3250 ((-111) |#1|)) (-15 -2452 ((-111) |#5| |#1|)) (-15 -2851 ((-111) |#5| |#1|)) (-15 -3250 ((-111) |#5| |#1|)) (-15 -3136 (|#1| |#1| |#5|))) +((-3202 (((-111) $ $) 7)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) 85)) (-1830 (((-629 $) (-629 |#4|)) 86) (((-629 $) (-629 |#4|) (-111)) 111)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) 101) (((-111) $) 97)) (-2240 ((|#4| |#4| $) 92)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 126)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 79)) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2715 (((-3 $ "failed") $) 82)) (-3126 ((|#4| |#4| $) 89)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2081 ((|#4| |#4| $) 87)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) 105)) (-2851 (((-111) |#4| $) 136)) (-4035 (((-111) |#4| $) 133)) (-3250 (((-111) |#4| $) 137) (((-111) $) 134)) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) 104) (((-111) $) 103)) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) 128)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 127)) (-2680 (((-3 |#4| "failed") $) 83)) (-1999 (((-629 $) |#4| $) 129)) (-4253 (((-3 (-111) (-629 $)) |#4| $) 132)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-4011 (((-629 $) |#4| $) 125) (((-629 $) (-629 |#4|) $) 124) (((-629 $) (-629 |#4|) (-629 $)) 123) (((-629 $) |#4| (-629 $)) 122)) (-2300 (($ |#4| $) 117) (($ (-629 |#4|) $) 116)) (-3887 (((-629 |#4|) $) 107)) (-3287 (((-111) |#4| $) 99) (((-111) $) 95)) (-2498 ((|#4| |#4| $) 90)) (-4343 (((-111) $ $) 110)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) 100) (((-111) $) 96)) (-3848 ((|#4| |#4| $) 91)) (-2876 (((-1098) $) 10)) (-2702 (((-3 |#4| "failed") $) 84)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-1800 (((-3 $ "failed") $ |#4|) 78)) (-3136 (($ $ |#4|) 77) (((-629 $) |#4| $) 115) (((-629 $) |#4| (-629 $)) 114) (((-629 $) (-629 |#4|) $) 113) (((-629 $) (-629 |#4|) (-629 $)) 112)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-3299 (((-756) $) 106)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-3081 (($ $) 88)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-1753 (((-756) $) 76 (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) 98)) (-3933 (((-629 $) |#4| $) 121) (((-629 $) |#4| (-629 $)) 120) (((-629 $) (-629 |#4|) $) 119) (((-629 $) (-629 |#4|) (-629 $)) 118)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) 81)) (-2452 (((-111) |#4| $) 135)) (-2904 (((-111) |#3| $) 80)) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-1050 |#1| |#2| |#3| |#4|) (-137) (-445) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -1050)) +((-3250 (*1 *2 *3 *1) (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-2851 (*1 *2 *3 *1) (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-2452 (*1 *2 *3 *1) (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-4035 (*1 *2 *3 *1) (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-4253 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-3 (-111) (-629 *1))) (-4 *1 (-1050 *4 *5 *6 *3)))) (-1890 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *1)))) (-4 *1 (-1050 *4 *5 *6 *3)))) (-1890 (*1 *2 *3 *1) (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-1999 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)))) (-1322 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-3 *3 (-629 *1))) (-4 *1 (-1050 *4 *5 *6 *3)))) (-2043 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *1)))) (-4 *1 (-1050 *4 *5 *6 *3)))) (-4116 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *1)))) (-4 *1 (-1050 *4 *5 *6 *3)))) (-4011 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)))) (-4011 (*1 *2 *3 *1) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)))) (-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) (-3933 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)))) (-3933 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) (-3933 (*1 *2 *3 *1) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *7)))) (-3933 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)))) (-2300 (*1 *1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-2300 (*1 *1 *2 *1) (-12 (-5 *2 (-629 *6)) (-4 *1 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)))) (-3136 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)))) (-3136 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) (-3136 (*1 *2 *3 *1) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *7)))) (-3136 (*1 *2 *3 *2) (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1050 *5 *6 *7 *8))))) +(-13 (-1184 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3250 ((-111) |t#4| $)) (-15 -2851 ((-111) |t#4| $)) (-15 -2452 ((-111) |t#4| $)) (-15 -3250 ((-111) $)) (-15 -4035 ((-111) |t#4| $)) (-15 -4253 ((-3 (-111) (-629 $)) |t#4| $)) (-15 -1890 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |t#4| $)) (-15 -1890 ((-111) |t#4| $)) (-15 -1999 ((-629 $) |t#4| $)) (-15 -1322 ((-3 |t#4| (-629 $)) |t#4| |t#4| $)) (-15 -2043 ((-629 (-2 (|:| |val| |t#4|) (|:| -3361 $))) |t#4| |t#4| $)) (-15 -4116 ((-629 (-2 (|:| |val| |t#4|) (|:| -3361 $))) |t#4| $)) (-15 -4011 ((-629 $) |t#4| $)) (-15 -4011 ((-629 $) (-629 |t#4|) $)) (-15 -4011 ((-629 $) (-629 |t#4|) (-629 $))) (-15 -4011 ((-629 $) |t#4| (-629 $))) (-15 -3933 ((-629 $) |t#4| $)) (-15 -3933 ((-629 $) |t#4| (-629 $))) (-15 -3933 ((-629 $) (-629 |t#4|) $)) (-15 -3933 ((-629 $) (-629 |t#4|) (-629 $))) (-15 -2300 ($ |t#4| $)) (-15 -2300 ($ (-629 |t#4|) $)) (-15 -3136 ((-629 $) |t#4| $)) (-15 -3136 ((-629 $) |t#4| (-629 $))) (-15 -3136 ((-629 $) (-629 |t#4|) $)) (-15 -3136 ((-629 $) (-629 |t#4|) (-629 $))) (-15 -1830 ((-629 $) (-629 |t#4|) (-111))))) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-957 |#1| |#2| |#3| |#4|) . T) ((-1078) . T) ((-1184 |#1| |#2| |#3| |#4|) . T) ((-1191) . T)) +((-3240 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|) 81)) (-1744 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|) 113)) (-1423 (((-629 |#5|) |#4| |#5|) 70)) (-1583 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3829 (((-1242)) 37)) (-1553 (((-1242)) 26)) (-1696 (((-1242) (-1136) (-1136) (-1136)) 33)) (-2116 (((-1242) (-1136) (-1136) (-1136)) 22)) (-3175 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|) 96)) (-1699 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111)) 107) (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-2685 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|) 102))) +(((-1051 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2116 ((-1242) (-1136) (-1136) (-1136))) (-15 -1553 ((-1242))) (-15 -1696 ((-1242) (-1136) (-1136) (-1136))) (-15 -3829 ((-1242))) (-15 -3175 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1699 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1699 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111))) (-15 -2685 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1744 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1583 ((-111) |#4| |#5|)) (-15 -1583 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1423 ((-629 |#5|) |#4| |#5|)) (-15 -3240 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -1051)) +((-3240 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1423 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1744 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2685 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) (-5 *5 (-111)) (-4 *8 (-1044 *6 *7 *4)) (-4 *9 (-1050 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *4 (-832)) (-5 *2 (-629 (-2 (|:| |val| *8) (|:| -3361 *9)))) (-5 *1 (-1051 *6 *7 *4 *8 *9)))) (-1699 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1051 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) (-3175 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))) (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-3829 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-1696 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-1051 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-1553 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-2116 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-1051 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(-10 -7 (-15 -2116 ((-1242) (-1136) (-1136) (-1136))) (-15 -1553 ((-1242))) (-15 -1696 ((-1242) (-1136) (-1136) (-1136))) (-15 -3829 ((-1242))) (-15 -3175 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1699 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1699 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111))) (-15 -2685 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1744 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1583 ((-111) |#4| |#5|)) (-15 -1583 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1423 ((-629 |#5|) |#4| |#5|)) (-15 -3240 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|))) +((-3202 (((-111) $ $) NIL)) (-1355 (((-1190) $) 13)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3553 (((-1113) $) 10)) (-3213 (((-844) $) 22) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1052) (-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $))))) (T -1052)) +((-3553 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1052)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1052))))) +(-13 (-1061) (-10 -8 (-15 -3553 ((-1113) $)) (-15 -1355 ((-1190) $)))) +((-3202 (((-111) $ $) NIL)) (-4290 (((-1154) $) 8)) (-2623 (((-1136) $) 16)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 13))) +(((-1053 |#1|) (-13 (-1078) (-10 -8 (-15 -4290 ((-1154) $)))) (-1154)) (T -1053)) +((-4290 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1053 *3)) (-14 *3 *2)))) +(-13 (-1078) (-10 -8 (-15 -4290 ((-1154) $)))) +((-3202 (((-111) $ $) NIL)) (-3952 (($ $ (-629 (-1154)) (-1 (-111) (-629 |#3|))) 33)) (-1811 (($ |#3| |#3|) 22) (($ |#3| |#3| (-629 (-1154))) 20)) (-1300 ((|#3| $) 13)) (-1393 (((-3 (-288 |#3|) "failed") $) 58)) (-2832 (((-288 |#3|) $) NIL)) (-1731 (((-629 (-1154)) $) 16)) (-2355 (((-873 |#1|) $) 11)) (-1286 ((|#3| $) 12)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2060 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-902)) 39)) (-3213 (((-844) $) 86) (($ (-288 |#3|)) 21)) (-1613 (((-111) $ $) 36))) +(((-1054 |#1| |#2| |#3|) (-13 (-1078) (-280 |#3| |#3|) (-1019 (-288 |#3|)) (-10 -8 (-15 -1811 ($ |#3| |#3|)) (-15 -1811 ($ |#3| |#3| (-629 (-1154)))) (-15 -3952 ($ $ (-629 (-1154)) (-1 (-111) (-629 |#3|)))) (-15 -2355 ((-873 |#1|) $)) (-15 -1286 (|#3| $)) (-15 -1300 (|#3| $)) (-15 -2060 (|#3| $ |#3| (-902))) (-15 -1731 ((-629 (-1154)) $)))) (-1078) (-13 (-1030) (-867 |#1|) (-832) (-600 (-873 |#1|))) (-13 (-424 |#2|) (-867 |#1|) (-600 (-873 |#1|)))) (T -1054)) +((-1811 (*1 *1 *2 *2) (-12 (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) (-5 *1 (-1054 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))))) (-1811 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-5 *1 (-1054 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) (-3952 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-1 (-111) (-629 *6))) (-4 *6 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-5 *1 (-1054 *4 *5 *6)))) (-2355 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 *2))) (-5 *2 (-873 *3)) (-5 *1 (-1054 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-867 *3) (-600 *2))))) (-1286 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) (-5 *1 (-1054 *3 *4 *2)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) (-5 *1 (-1054 *3 *4 *2)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))))) (-2060 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-902)) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-5 *1 (-1054 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) (-1731 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) (-5 *2 (-629 (-1154))) (-5 *1 (-1054 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3))))))) +(-13 (-1078) (-280 |#3| |#3|) (-1019 (-288 |#3|)) (-10 -8 (-15 -1811 ($ |#3| |#3|)) (-15 -1811 ($ |#3| |#3| (-629 (-1154)))) (-15 -3952 ($ $ (-629 (-1154)) (-1 (-111) (-629 |#3|)))) (-15 -2355 ((-873 |#1|) $)) (-15 -1286 (|#3| $)) (-15 -1300 (|#3| $)) (-15 -2060 (|#3| $ |#3| (-902))) (-15 -1731 ((-629 (-1154)) $)))) +((-3202 (((-111) $ $) NIL)) (-3923 (($ (-629 (-1054 |#1| |#2| |#3|))) 13)) (-2794 (((-629 (-1054 |#1| |#2| |#3|)) $) 20)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2060 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-902)) 26)) (-3213 (((-844) $) 16)) (-1613 (((-111) $ $) 19))) +(((-1055 |#1| |#2| |#3|) (-13 (-1078) (-280 |#3| |#3|) (-10 -8 (-15 -3923 ($ (-629 (-1054 |#1| |#2| |#3|)))) (-15 -2794 ((-629 (-1054 |#1| |#2| |#3|)) $)) (-15 -2060 (|#3| $ |#3| (-902))))) (-1078) (-13 (-1030) (-867 |#1|) (-832) (-600 (-873 |#1|))) (-13 (-424 |#2|) (-867 |#1|) (-600 (-873 |#1|)))) (T -1055)) +((-3923 (*1 *1 *2) (-12 (-5 *2 (-629 (-1054 *3 *4 *5))) (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) (-5 *1 (-1055 *3 *4 *5)))) (-2794 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) (-5 *2 (-629 (-1054 *3 *4 *5))) (-5 *1 (-1055 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))))) (-2060 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-902)) (-4 *4 (-1078)) (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) (-5 *1 (-1055 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4))))))) +(-13 (-1078) (-280 |#3| |#3|) (-10 -8 (-15 -3923 ($ (-629 (-1054 |#1| |#2| |#3|)))) (-15 -2794 ((-629 (-1054 |#1| |#2| |#3|)) $)) (-15 -2060 (|#3| $ |#3| (-902))))) +((-1474 (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111)) 75) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|))) 77) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111)) 76))) +(((-1056 |#1| |#2|) (-10 -7 (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111))) (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111)))) (-13 (-301) (-144)) (-629 (-1154))) (T -1056)) +((-1474 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) (-5 *1 (-1056 *5 *6)) (-5 *3 (-629 (-933 *5))) (-14 *6 (-629 (-1154))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) (-5 *1 (-1056 *4 *5)) (-5 *3 (-629 (-933 *4))) (-14 *5 (-629 (-1154))))) (-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) (-5 *1 (-1056 *5 *6)) (-5 *3 (-629 (-933 *5))) (-14 *6 (-629 (-1154)))))) +(-10 -7 (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111))) (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -1474 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111)))) +((-3479 (((-412 |#3|) |#3|) 18))) +(((-1057 |#1| |#2| |#3|) (-10 -7 (-15 -3479 ((-412 |#3|) |#3|))) (-1213 (-401 (-552))) (-13 (-357) (-144) (-709 (-401 (-552)) |#1|)) (-1213 |#2|)) (T -1057)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-13 (-357) (-144) (-709 (-401 (-552)) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1213 *5))))) +(-10 -7 (-15 -3479 ((-412 |#3|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 126)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-357)))) (-3303 (($ $) NIL (|has| |#1| (-357)))) (-1334 (((-111) $) NIL (|has| |#1| (-357)))) (-2977 (((-673 |#1|) (-1237 $)) NIL) (((-673 |#1|)) 115)) (-1549 ((|#1| $) 119)) (-1271 (((-1164 (-902) (-756)) (-552)) NIL (|has| |#1| (-343)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2663 (((-756)) 40 (|has| |#1| (-362)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-4278 (($ (-1237 |#1|) (-1237 $)) NIL) (($ (-1237 |#1|)) 43)) (-4274 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3584 (((-673 |#1|) $ (-1237 $)) NIL) (((-673 |#1|) $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 106) (((-673 |#1|) (-673 $)) 101)) (-3884 (($ |#2|) 61) (((-3 $ "failed") (-401 |#2|)) NIL (|has| |#1| (-357)))) (-1293 (((-3 $ "failed") $) NIL)) (-2128 (((-902)) 77)) (-1332 (($) 44 (|has| |#1| (-362)))) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-4000 (($) NIL (|has| |#1| (-343)))) (-3504 (((-111) $) NIL (|has| |#1| (-343)))) (-1788 (($ $ (-756)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-4241 (((-902) $) NIL (|has| |#1| (-343))) (((-818 (-902)) $) NIL (|has| |#1| (-343)))) (-4065 (((-111) $) NIL)) (-4346 ((|#1| $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2169 ((|#2| $) 84 (|has| |#1| (-357)))) (-1637 (((-902) $) 131 (|has| |#1| (-362)))) (-3874 ((|#2| $) 58)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-1977 (($) NIL (|has| |#1| (-343)) CONST)) (-2840 (($ (-902)) 125 (|has| |#1| (-362)))) (-2876 (((-1098) $) NIL)) (-4126 (($) 121)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4056 (((-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552))))) NIL (|has| |#1| (-343)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-1721 ((|#1| (-1237 $)) NIL) ((|#1|) 109)) (-4147 (((-756) $) NIL (|has| |#1| (-343))) (((-3 (-756) "failed") $ $) NIL (|has| |#1| (-343)))) (-3096 (($ $) NIL (-4029 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-756)) NIL (-4029 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-1 |#1| |#1|) (-756)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1433 (((-673 |#1|) (-1237 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-3521 ((|#2|) 73)) (-1368 (($) NIL (|has| |#1| (-343)))) (-3464 (((-1237 |#1|) $ (-1237 $)) 89) (((-673 |#1|) (-1237 $) (-1237 $)) NIL) (((-1237 |#1|) $) 71) (((-673 |#1|) (-1237 $)) 85)) (-1522 (((-1237 |#1|) $) NIL) (($ (-1237 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (|has| |#1| (-343)))) (-3213 (((-844) $) 57) (($ (-552)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-357))) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-357)) (|has| |#1| (-1019 (-401 (-552))))))) (-3878 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3767 ((|#2| $) 82)) (-2014 (((-756)) 75)) (-4199 (((-1237 $)) 81)) (-3589 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3297 (($) 30 T CONST)) (-3309 (($) 19 T CONST)) (-1765 (($ $) NIL (-4029 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-756)) NIL (-4029 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-881 (-1154))))) (($ $ (-1 |#1| |#1|) (-756)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1613 (((-111) $ $) 63)) (-1720 (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) 67) (($ $ $) NIL)) (-1698 (($ $ $) 65)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) +(((-1058 |#1| |#2| |#3|) (-709 |#1| |#2|) (-169) (-1213 |#1|) |#2|) (T -1058)) +NIL +(-709 |#1| |#2|) +((-3479 (((-412 |#3|) |#3|) 19))) +(((-1059 |#1| |#2| |#3|) (-10 -7 (-15 -3479 ((-412 |#3|) |#3|))) (-1213 (-401 (-933 (-552)))) (-13 (-357) (-144) (-709 (-401 (-933 (-552))) |#1|)) (-1213 |#2|)) (T -1059)) +((-3479 (*1 *2 *3) (-12 (-4 *4 (-1213 (-401 (-933 (-552))))) (-4 *5 (-13 (-357) (-144) (-709 (-401 (-933 (-552))) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1059 *4 *5 *3)) (-4 *3 (-1213 *5))))) +(-10 -7 (-15 -3479 ((-412 |#3|) |#3|))) +((-3202 (((-111) $ $) NIL)) (-1772 (($ $ $) 14)) (-2011 (($ $ $) 15)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4144 (($) 6)) (-1522 (((-1154) $) 18)) (-3213 (((-844) $) 12)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 13)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 8))) +(((-1060) (-13 (-832) (-10 -8 (-15 -4144 ($)) (-15 -1522 ((-1154) $))))) (T -1060)) +((-4144 (*1 *1) (-5 *1 (-1060))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1060))))) +(-13 (-832) (-10 -8 (-15 -4144 ($)) (-15 -1522 ((-1154) $)))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (((-1159) $) 15) (($ (-1159)) 14)) (-1613 (((-111) $ $) 6))) +(((-1061) (-137)) (T -1061)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T)) -((-1533 ((|#1| |#1| (-1 (-552) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-1435 (((-1240)) 15)) (-3325 (((-627 |#1|)) 9))) -(((-1060 |#1|) (-10 -7 (-15 -1435 ((-1240))) (-15 -3325 ((-627 |#1|))) (-15 -1533 (|#1| |#1| (-1 (-111) |#1|))) (-15 -1533 (|#1| |#1| (-1 (-552) |#1| |#1|)))) (-130)) (T -1060)) -((-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) (-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) (-3325 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-130)))) (-1435 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) -(-10 -7 (-15 -1435 ((-1240))) (-15 -3325 ((-627 |#1|))) (-15 -1533 (|#1| |#1| (-1 (-111) |#1|))) (-15 -1533 (|#1| |#1| (-1 (-552) |#1| |#1|)))) -((-3721 (($ (-108) $) 16)) (-2176 (((-3 (-108) "failed") (-1152) $) 15)) (-2373 (($) 7)) (-2077 (($) 17)) (-3292 (($) 18)) (-1886 (((-627 (-172)) $) 10)) (-1477 (((-842) $) 21))) -(((-1061) (-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -1886 ((-627 (-172)) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)) (-15 -3721 ($ (-108) $)) (-15 -2077 ($)) (-15 -3292 ($))))) (T -1061)) -((-2373 (*1 *1) (-5 *1 (-1061))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-627 (-172))) (-5 *1 (-1061)))) (-2176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-1061)))) (-3721 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1061)))) (-2077 (*1 *1) (-5 *1 (-1061))) (-3292 (*1 *1) (-5 *1 (-1061)))) -(-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -1886 ((-627 (-172)) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)) (-15 -3721 ($ (-108) $)) (-15 -2077 ($)) (-15 -3292 ($)))) -((-3449 (((-1235 (-671 |#1|)) (-627 (-671 |#1|))) 42) (((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|))) 63) (((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|)))) 79)) (-3133 (((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))) 36))) -(((-1062 |#1|) (-10 -7 (-15 -3449 ((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|))))) (-15 -3449 ((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|)))) (-15 -3449 ((-1235 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3133 ((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))))) (-357)) (T -1062)) -((-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-1235 *5)) (-5 *1 (-1062 *5)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-1062 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) (-5 *2 (-1235 (-671 (-931 *5)))) (-5 *1 (-1062 *5)) (-5 *4 (-671 (-931 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) (-5 *2 (-1235 (-671 (-401 (-931 *5))))) (-5 *1 (-1062 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) -(-10 -7 (-15 -3449 ((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|))))) (-15 -3449 ((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|)))) (-15 -3449 ((-1235 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3133 ((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ (-1152)) NIL)) (-2671 (((-754) $) NIL) (((-754) $ (-1152)) NIL)) (-1853 (((-627 (-1064 (-1152))) $) NIL)) (-1694 (((-1148 $) $ (-1064 (-1152))) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1064 (-1152)))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1064 (-1152)) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL) (((-3 (-1101 |#1| (-1152)) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1064 (-1152)) $) NIL) (((-1152) $) NIL) (((-1101 |#1| (-1152)) $) NIL)) (-3116 (($ $ $ (-1064 (-1152))) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1064 (-1152))) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-1064 (-1152))) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1064 (-1152)) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1064 (-1152)) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-1064 (-1152))) NIL) (($ (-1148 $) (-1064 (-1152))) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1064 (-1152))) NIL)) (-3465 (((-523 (-1064 (-1152))) $) NIL) (((-754) $ (-1064 (-1152))) NIL) (((-627 (-754)) $ (-627 (-1064 (-1152)))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-1064 (-1152))) (-523 (-1064 (-1152)))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) (-1152)) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 (-1064 (-1152)) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 (((-1064 (-1152)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1064 (-1152))) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1064 (-1152)) |#1|) NIL) (($ $ (-627 (-1064 (-1152))) (-627 |#1|)) NIL) (($ $ (-1064 (-1152)) $) NIL) (($ $ (-627 (-1064 (-1152))) (-627 $)) NIL) (($ $ (-1152) $) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 $)) NIL (|has| |#1| (-228))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ (-1064 (-1152))) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1064 (-1152))) NIL) (($ $ (-627 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 (-1152)) $) NIL)) (-3567 (((-523 (-1064 (-1152))) $) NIL) (((-754) $ (-1064 (-1152))) NIL) (((-627 (-754)) $ (-627 (-1064 (-1152)))) NIL) (((-754) $ (-1152)) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1064 (-1152))) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1064 (-1152))) NIL) (($ (-1152)) NIL) (($ (-1101 |#1| (-1152))) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1064 (-1152))) NIL) (($ $ (-627 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1063 |#1|) (-13 (-247 |#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) (-1017 (-1101 |#1| (-1152)))) (-1028)) (T -1063)) -NIL -(-13 (-247 |#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) (-1017 (-1101 |#1| (-1152)))) -((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) NIL)) (-4344 ((|#1| $) 10)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2641 (((-754) $) 11)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4250 (($ |#1| (-754)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 15))) -(((-1064 |#1|) (-260 |#1|) (-830)) (T -1064)) +(((-92) . T) ((-101) . T) ((-599 (-844)) . T) ((-599 (-1159)) . T) ((-1078) . T)) +((-2054 ((|#1| |#1| (-1 (-552) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-1692 (((-1242)) 15)) (-3686 (((-629 |#1|)) 9))) +(((-1062 |#1|) (-10 -7 (-15 -1692 ((-1242))) (-15 -3686 ((-629 |#1|))) (-15 -2054 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2054 (|#1| |#1| (-1 (-552) |#1| |#1|)))) (-130)) (T -1062)) +((-2054 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1062 *2)))) (-2054 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1062 *2)))) (-3686 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-130)))) (-1692 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1062 *3)) (-4 *3 (-130))))) +(-10 -7 (-15 -1692 ((-1242))) (-15 -3686 ((-629 |#1|))) (-15 -2054 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2054 (|#1| |#1| (-1 (-552) |#1| |#1|)))) +((-4233 (($ (-108) $) 16)) (-3292 (((-3 (-108) "failed") (-1154) $) 15)) (-3430 (($) 7)) (-3578 (($) 17)) (-2496 (($) 18)) (-2234 (((-629 (-172)) $) 10)) (-3213 (((-844) $) 21))) +(((-1063) (-13 (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -2234 ((-629 (-172)) $)) (-15 -3292 ((-3 (-108) "failed") (-1154) $)) (-15 -4233 ($ (-108) $)) (-15 -3578 ($)) (-15 -2496 ($))))) (T -1063)) +((-3430 (*1 *1) (-5 *1 (-1063))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-629 (-172))) (-5 *1 (-1063)))) (-3292 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-108)) (-5 *1 (-1063)))) (-4233 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1063)))) (-3578 (*1 *1) (-5 *1 (-1063))) (-2496 (*1 *1) (-5 *1 (-1063)))) +(-13 (-599 (-844)) (-10 -8 (-15 -3430 ($)) (-15 -2234 ((-629 (-172)) $)) (-15 -3292 ((-3 (-108) "failed") (-1154) $)) (-15 -4233 ($ (-108) $)) (-15 -3578 ($)) (-15 -2496 ($)))) +((-1432 (((-1237 (-673 |#1|)) (-629 (-673 |#1|))) 42) (((-1237 (-673 (-933 |#1|))) (-629 (-1154)) (-673 (-933 |#1|))) 63) (((-1237 (-673 (-401 (-933 |#1|)))) (-629 (-1154)) (-673 (-401 (-933 |#1|)))) 79)) (-3464 (((-1237 |#1|) (-673 |#1|) (-629 (-673 |#1|))) 36))) +(((-1064 |#1|) (-10 -7 (-15 -1432 ((-1237 (-673 (-401 (-933 |#1|)))) (-629 (-1154)) (-673 (-401 (-933 |#1|))))) (-15 -1432 ((-1237 (-673 (-933 |#1|))) (-629 (-1154)) (-673 (-933 |#1|)))) (-15 -1432 ((-1237 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -3464 ((-1237 |#1|) (-673 |#1|) (-629 (-673 |#1|))))) (-357)) (T -1064)) +((-3464 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-673 *5))) (-5 *3 (-673 *5)) (-4 *5 (-357)) (-5 *2 (-1237 *5)) (-5 *1 (-1064 *5)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-629 (-673 *4))) (-4 *4 (-357)) (-5 *2 (-1237 (-673 *4))) (-5 *1 (-1064 *4)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-1154))) (-4 *5 (-357)) (-5 *2 (-1237 (-673 (-933 *5)))) (-5 *1 (-1064 *5)) (-5 *4 (-673 (-933 *5))))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-1154))) (-4 *5 (-357)) (-5 *2 (-1237 (-673 (-401 (-933 *5))))) (-5 *1 (-1064 *5)) (-5 *4 (-673 (-401 (-933 *5))))))) +(-10 -7 (-15 -1432 ((-1237 (-673 (-401 (-933 |#1|)))) (-629 (-1154)) (-673 (-401 (-933 |#1|))))) (-15 -1432 ((-1237 (-673 (-933 |#1|))) (-629 (-1154)) (-673 (-933 |#1|)))) (-15 -1432 ((-1237 (-673 |#1|)) (-629 (-673 |#1|)))) (-15 -3464 ((-1237 |#1|) (-673 |#1|) (-629 (-673 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2025 (((-629 (-756)) $) NIL) (((-629 (-756)) $ (-1154)) NIL)) (-1400 (((-756) $) NIL) (((-756) $ (-1154)) NIL)) (-3611 (((-629 (-1066 (-1154))) $) NIL)) (-3449 (((-1150 $) $ (-1066 (-1154))) NIL) (((-1150 |#1|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1066 (-1154)))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1523 (($ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-1066 (-1154)) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL) (((-3 (-1103 |#1| (-1154)) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-1066 (-1154)) $) NIL) (((-1154) $) NIL) (((-1103 |#1| (-1154)) $) NIL)) (-3301 (($ $ $ (-1066 (-1154))) NIL (|has| |#1| (-169)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1066 (-1154))) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-523 (-1066 (-1154))) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1066 (-1154)) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1066 (-1154)) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ (-1154)) NIL) (((-756) $) NIL)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3602 (($ (-1150 |#1|) (-1066 (-1154))) NIL) (($ (-1150 $) (-1066 (-1154))) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-523 (-1066 (-1154)))) NIL) (($ $ (-1066 (-1154)) (-756)) NIL) (($ $ (-629 (-1066 (-1154))) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1066 (-1154))) NIL)) (-3544 (((-523 (-1066 (-1154))) $) NIL) (((-756) $ (-1066 (-1154))) NIL) (((-629 (-756)) $ (-629 (-1066 (-1154)))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 (-1066 (-1154))) (-523 (-1066 (-1154)))) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2681 (((-1 $ (-756)) (-1154)) NIL) (((-1 $ (-756)) $) NIL (|has| |#1| (-228)))) (-3506 (((-3 (-1066 (-1154)) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2507 (((-1066 (-1154)) $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1836 (((-111) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1066 (-1154))) (|:| -1406 (-756))) "failed") $) NIL)) (-3017 (($ $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1066 (-1154)) |#1|) NIL) (($ $ (-629 (-1066 (-1154))) (-629 |#1|)) NIL) (($ $ (-1066 (-1154)) $) NIL) (($ $ (-629 (-1066 (-1154))) (-629 $)) NIL) (($ $ (-1154) $) NIL (|has| |#1| (-228))) (($ $ (-629 (-1154)) (-629 $)) NIL (|has| |#1| (-228))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-228))) (($ $ (-629 (-1154)) (-629 |#1|)) NIL (|has| |#1| (-228)))) (-1721 (($ $ (-1066 (-1154))) NIL (|has| |#1| (-169)))) (-3096 (($ $ (-1066 (-1154))) NIL) (($ $ (-629 (-1066 (-1154)))) NIL) (($ $ (-1066 (-1154)) (-756)) NIL) (($ $ (-629 (-1066 (-1154))) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2619 (((-629 (-1154)) $) NIL)) (-3299 (((-523 (-1066 (-1154))) $) NIL) (((-756) $ (-1066 (-1154))) NIL) (((-629 (-756)) $ (-629 (-1066 (-1154)))) NIL) (((-756) $ (-1154)) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1066 (-1154)) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1066 (-1154)) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1066 (-1154)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1066 (-1154))) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1066 (-1154))) NIL) (($ (-1154)) NIL) (($ (-1103 |#1| (-1154))) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-523 (-1066 (-1154)))) NIL) (($ $ (-1066 (-1154)) (-756)) NIL) (($ $ (-629 (-1066 (-1154))) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1066 (-1154))) NIL) (($ $ (-629 (-1066 (-1154)))) NIL) (($ $ (-1066 (-1154)) (-756)) NIL) (($ $ (-629 (-1066 (-1154))) (-629 (-756))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-756)) NIL (|has| |#1| (-228))) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1065 |#1|) (-13 (-247 |#1| (-1154) (-1066 (-1154)) (-523 (-1066 (-1154)))) (-1019 (-1103 |#1| (-1154)))) (-1030)) (T -1065)) +NIL +(-13 (-247 |#1| (-1154) (-1066 (-1154)) (-523 (-1066 (-1154)))) (-1019 (-1103 |#1| (-1154)))) +((-3202 (((-111) $ $) NIL)) (-1400 (((-756) $) NIL)) (-1485 ((|#1| $) 10)) (-1393 (((-3 |#1| "failed") $) NIL)) (-2832 ((|#1| $) NIL)) (-4241 (((-756) $) 11)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2681 (($ |#1| (-756)) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3096 (($ $) NIL) (($ $ (-756)) NIL)) (-3213 (((-844) $) NIL) (($ |#1|) NIL)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 15))) +(((-1066 |#1|) (-260 |#1|) (-832)) (T -1066)) NIL (-260 |#1|) -((-3516 (((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 24 (|has| |#1| (-828))) (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 14))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -3516 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) |%noBranch|)) (-1189) (-1189)) (T -1065)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-828)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-1065 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1070 *6)) (-5 *1 (-1065 *5 *6))))) -(-10 -7 (-15 -3516 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3536 (((-627 (-1111)) $) 9)) (-2292 (((-111) $ $) NIL))) -(((-1066) (-13 (-1059) (-10 -8 (-15 -3536 ((-627 (-1111)) $))))) (T -1066)) -((-3536 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1066))))) -(-13 (-1059) (-10 -8 (-15 -3536 ((-627 (-1111)) $)))) -((-3516 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 19))) -(((-1067 |#1| |#2|) (-10 -7 (-15 -3516 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)))) (-1189) (-1189)) (T -1067)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1068 *6)) (-5 *1 (-1067 *5 *6))))) -(-10 -7 (-15 -3516 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4344 (((-1152) $) 11)) (-4202 (((-1070 |#1|) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3262 (($ (-1152) (-1070 |#1|)) 10)) (-1477 (((-842) $) 20 (|has| |#1| (-1076)))) (-2292 (((-111) $ $) 15 (|has| |#1| (-1076))))) -(((-1068 |#1|) (-13 (-1189) (-10 -8 (-15 -3262 ($ (-1152) (-1070 |#1|))) (-15 -4344 ((-1152) $)) (-15 -4202 ((-1070 |#1|) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1068)) -((-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1070 *4)) (-4 *4 (-1189)) (-5 *1 (-1068 *4)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-1189))))) -(-13 (-1189) (-10 -8 (-15 -3262 ($ (-1152) (-1070 |#1|))) (-15 -4344 ((-1152) $)) (-15 -4202 ((-1070 |#1|) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) -((-4202 (($ |#1| |#1|) 7)) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 12)) (-2309 (((-552) $) 8)) (-3180 ((|#1| $) 9)) (-2323 ((|#1| $) 11)) (-3562 (($ |#1|) 6)) (-2591 (($ |#1| |#1|) 14)) (-2089 (($ $ (-552)) 13))) -(((-1069 |#1|) (-137) (-1189)) (T -1069)) -((-2591 (*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2089 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1069 *3)) (-4 *3 (-1189)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1189)) (-5 *2 (-552)))) (-4202 (*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) -(-13 (-1189) (-10 -8 (-15 -2591 ($ |t#1| |t#1|)) (-15 -2089 ($ $ (-552))) (-15 -2298 (|t#1| $)) (-15 -2323 (|t#1| $)) (-15 -1781 (|t#1| $)) (-15 -3180 (|t#1| $)) (-15 -2309 ((-552) $)) (-15 -4202 ($ |t#1| |t#1|)) (-15 -3562 ($ |t#1|)))) -(((-1189) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4202 (($ |#1| |#1|) 15)) (-3516 (((-627 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-828)))) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 9)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2309 (((-552) $) 14)) (-3180 ((|#1| $) 12)) (-2323 ((|#1| $) 11)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-2496 (((-627 |#1|) $) 36 (|has| |#1| (-828))) (((-627 |#1|) (-627 $)) 35 (|has| |#1| (-828)))) (-3562 (($ |#1|) 26)) (-1477 (((-842) $) 25 (|has| |#1| (-1076)))) (-2591 (($ |#1| |#1|) 8)) (-2089 (($ $ (-552)) 16)) (-2292 (((-111) $ $) 19 (|has| |#1| (-1076))))) -(((-1070 |#1|) (-13 (-1069 |#1|) (-10 -7 (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-627 |#1|))) |%noBranch|))) (-1189)) (T -1070)) -NIL -(-13 (-1069 |#1|) (-10 -7 (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-627 |#1|))) |%noBranch|))) -((-4202 (($ |#1| |#1|) 7)) (-3516 ((|#2| (-1 |#1| |#1|) $) 16)) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 12)) (-2309 (((-552) $) 8)) (-3180 ((|#1| $) 9)) (-2323 ((|#1| $) 11)) (-2496 ((|#2| (-627 $)) 18) ((|#2| $) 17)) (-3562 (($ |#1|) 6)) (-2591 (($ |#1| |#1|) 14)) (-2089 (($ $ (-552)) 13))) -(((-1071 |#1| |#2|) (-137) (-828) (-1125 |t#1|)) (T -1071)) -((-2496 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) (-4 *2 (-1125 *4)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-828)) (-4 *2 (-1125 *3)))) (-3516 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) (-4 *2 (-1125 *4))))) -(-13 (-1069 |t#1|) (-10 -8 (-15 -2496 (|t#2| (-627 $))) (-15 -2496 (|t#2| $)) (-15 -3516 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1069 |#1|) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-1111) $) 12)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 10)) (-2292 (((-111) $ $) NIL))) -(((-1072) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)) (-15 -1294 ((-1111) $))))) (T -1072)) -((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1072)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1072))))) -(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)) (-15 -1294 ((-1111) $)))) -((-3416 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3694 (($ $ $) 10)) (-2613 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1073 |#1| |#2|) (-10 -8 (-15 -3416 (|#1| |#2| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|))) (-1074 |#2|) (-1076)) (T -1073)) -NIL -(-10 -8 (-15 -3416 (|#1| |#2| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-3416 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3694 (($ $ $) 20)) (-3632 (((-111) $ $) 19)) (-4031 (((-111) $ (-754)) 35)) (-1342 (($) 25) (($ (-627 |#1|)) 24)) (-2536 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4366)))) (-3887 (($) 36 T CONST)) (-3370 (($ $) 59 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 43 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 28)) (-1602 (((-111) $ (-754)) 34)) (-3114 (((-627 |#1|) $) 44 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 38)) (-3971 (((-111) $ (-754)) 33)) (-1595 (((-1134) $) 9)) (-3383 (($ $ $) 23)) (-1498 (((-1096) $) 10)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3509 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 50 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-288 |#1|))) 47 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 29)) (-1275 (((-111) $) 32)) (-2373 (($) 31)) (-2613 (($ $ $) 22) (($ $ |#1|) 21)) (-1509 (((-754) |#1| $) 45 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4366)))) (-2973 (($ $) 30)) (-3562 (((-528) $) 60 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 51)) (-1477 (((-842) $) 11)) (-4243 (($) 27) (($ (-627 |#1|)) 26)) (-3299 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 37 (|has| $ (-6 -4366))))) -(((-1074 |#1|) (-137) (-1076)) (T -1074)) -((-1854 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-4243 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) (-1342 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-2613 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-2613 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3694 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3632 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-3416 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3416 (*1 *1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(-13 (-1076) (-148 |t#1|) (-10 -8 (-6 -4356) (-15 -1854 ((-111) $ $)) (-15 -4243 ($)) (-15 -4243 ($ (-627 |t#1|))) (-15 -1342 ($)) (-15 -1342 ($ (-627 |t#1|))) (-15 -3383 ($ $ $)) (-15 -2613 ($ $ $)) (-15 -2613 ($ $ |t#1|)) (-15 -3694 ($ $ $)) (-15 -3632 ((-111) $ $)) (-15 -3416 ($ $ $)) (-15 -3416 ($ $ |t#1|)) (-15 -3416 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) . T) ((-1189) . T)) -((-1595 (((-1134) $) 10)) (-1498 (((-1096) $) 8))) -(((-1075 |#1|) (-10 -8 (-15 -1595 ((-1134) |#1|)) (-15 -1498 ((-1096) |#1|))) (-1076)) (T -1075)) -NIL -(-10 -8 (-15 -1595 ((-1134) |#1|)) (-15 -1498 ((-1096) |#1|))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-1076) (-137)) (T -1076)) -((-1498 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1096)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1134))))) -(-13 (-101) (-599 (-842)) (-10 -8 (-15 -1498 ((-1096) $)) (-15 -1595 ((-1134) $)))) -(((-101) . T) ((-599 (-842)) . T)) -((-1465 (((-111) $ $) NIL)) (-3307 (((-754)) 30)) (-4256 (($ (-627 (-900))) 52)) (-3088 (((-3 $ "failed") $ (-900) (-900)) 58)) (-1279 (($) 32)) (-3082 (((-111) (-900) $) 35)) (-2886 (((-900) $) 50)) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 31)) (-2755 (((-3 $ "failed") $ (-900)) 55)) (-1498 (((-1096) $) NIL)) (-2748 (((-1235 $)) 40)) (-3575 (((-627 (-900)) $) 24)) (-3427 (((-754) $ (-900) (-900)) 56)) (-1477 (((-842) $) 29)) (-2292 (((-111) $ $) 21))) -(((-1077 |#1| |#2|) (-13 (-362) (-10 -8 (-15 -2755 ((-3 $ "failed") $ (-900))) (-15 -3088 ((-3 $ "failed") $ (-900) (-900))) (-15 -3575 ((-627 (-900)) $)) (-15 -4256 ($ (-627 (-900)))) (-15 -2748 ((-1235 $))) (-15 -3082 ((-111) (-900) $)) (-15 -3427 ((-754) $ (-900) (-900))))) (-900) (-900)) (T -1077)) -((-2755 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3088 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-4256 (*1 *1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-2748 (*1 *2) (-12 (-5 *2 (-1235 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-3082 (*1 *2 *3 *1) (-12 (-5 *3 (-900)) (-5 *2 (-111)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3427 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-754)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-362) (-10 -8 (-15 -2755 ((-3 $ "failed") $ (-900))) (-15 -3088 ((-3 $ "failed") $ (-900) (-900))) (-15 -3575 ((-627 (-900)) $)) (-15 -4256 ($ (-627 (-900)))) (-15 -2748 ((-1235 $))) (-15 -3082 ((-111) (-900) $)) (-15 -3427 ((-754) $ (-900) (-900))))) -((-1465 (((-111) $ $) NIL)) (-3065 (($) NIL (|has| |#1| (-362)))) (-3416 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-1342 (($ (-627 |#1|)) NIL) (($) 13)) (-4289 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 67 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4366)))) (-1279 (($) NIL (|has| |#1| (-362)))) (-3215 (((-627 |#1|) $) 19 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1816 ((|#1| $) 57 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4093 ((|#1| $) 55 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 34)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 70)) (-4165 ((|#1| $) 25)) (-3954 (($ |#1| $) 65)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-4133 ((|#1| $) 27)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 21)) (-2373 (($) 11)) (-2613 (($ $ |#1|) NIL) (($ $ $) 71)) (-3028 (($) NIL) (($ (-627 |#1|)) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 16)) (-3562 (((-528) $) 52 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 61)) (-1901 (($ $) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL)) (-3550 (((-754) $) NIL)) (-4243 (($ (-627 |#1|)) NIL) (($) 12)) (-2577 (($ (-627 |#1|)) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 54)) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) -(((-1078 |#1|) (-419 |#1|) (-1076)) (T -1078)) +((-1477 (((-629 |#2|) (-1 |#2| |#1|) (-1072 |#1|)) 24 (|has| |#1| (-830))) (((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|)) 14))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -1477 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) (IF (|has| |#1| (-830)) (-15 -1477 ((-629 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) |%noBranch|)) (-1191) (-1191)) (T -1067)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-830)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-629 *6)) (-5 *1 (-1067 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1072 *6)) (-5 *1 (-1067 *5 *6))))) +(-10 -7 (-15 -1477 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) (IF (|has| |#1| (-830)) (-15 -1477 ((-629 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-2981 (((-629 (-1113)) $) 9)) (-1613 (((-111) $ $) NIL))) +(((-1068) (-13 (-1061) (-10 -8 (-15 -2981 ((-629 (-1113)) $))))) (T -1068)) +((-2981 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1068))))) +(-13 (-1061) (-10 -8 (-15 -2981 ((-629 (-1113)) $)))) +((-1477 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 19))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -1477 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)))) (-1191) (-1191)) (T -1069)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1070 *6)) (-5 *1 (-1069 *5 *6))))) +(-10 -7 (-15 -1477 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1485 (((-1154) $) 11)) (-1463 (((-1072 |#1|) $) 12)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3369 (($ (-1154) (-1072 |#1|)) 10)) (-3213 (((-844) $) 20 (|has| |#1| (-1078)))) (-1613 (((-111) $ $) 15 (|has| |#1| (-1078))))) +(((-1070 |#1|) (-13 (-1191) (-10 -8 (-15 -3369 ($ (-1154) (-1072 |#1|))) (-15 -1485 ((-1154) $)) (-15 -1463 ((-1072 |#1|) $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) (-1191)) (T -1070)) +((-3369 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1072 *4)) (-4 *4 (-1191)) (-5 *1 (-1070 *4)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1070 *3)) (-4 *3 (-1191)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-1191))))) +(-13 (-1191) (-10 -8 (-15 -3369 ($ (-1154) (-1072 |#1|))) (-15 -1485 ((-1154) $)) (-15 -1463 ((-1072 |#1|) $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) +((-1463 (($ |#1| |#1|) 7)) (-3744 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-4219 (((-552) $) 8)) (-2707 ((|#1| $) 9)) (-4230 ((|#1| $) 11)) (-1522 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 14)) (-1420 (($ $ (-552)) 13))) +(((-1071 |#1|) (-137) (-1191)) (T -1071)) +((-4268 (*1 *1 *2 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-1420 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1071 *3)) (-4 *3 (-1191)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1191)) (-5 *2 (-552)))) (-1463 (*1 *1 *2 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191))))) +(-13 (-1191) (-10 -8 (-15 -4268 ($ |t#1| |t#1|)) (-15 -1420 ($ $ (-552))) (-15 -4209 (|t#1| $)) (-15 -4230 (|t#1| $)) (-15 -3744 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -4219 ((-552) $)) (-15 -1463 ($ |t#1| |t#1|)) (-15 -1522 ($ |t#1|)))) +(((-1191) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1463 (($ |#1| |#1|) 15)) (-1477 (((-629 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-830)))) (-3744 ((|#1| $) 10)) (-4209 ((|#1| $) 9)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-4219 (((-552) $) 14)) (-2707 ((|#1| $) 12)) (-4230 ((|#1| $) 11)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3925 (((-629 |#1|) $) 36 (|has| |#1| (-830))) (((-629 |#1|) (-629 $)) 35 (|has| |#1| (-830)))) (-1522 (($ |#1|) 26)) (-3213 (((-844) $) 25 (|has| |#1| (-1078)))) (-4268 (($ |#1| |#1|) 8)) (-1420 (($ $ (-552)) 16)) (-1613 (((-111) $ $) 19 (|has| |#1| (-1078))))) +(((-1072 |#1|) (-13 (-1071 |#1|) (-10 -7 (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-1073 |#1| (-629 |#1|))) |%noBranch|))) (-1191)) (T -1072)) +NIL +(-13 (-1071 |#1|) (-10 -7 (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-1073 |#1| (-629 |#1|))) |%noBranch|))) +((-1463 (($ |#1| |#1|) 7)) (-1477 ((|#2| (-1 |#1| |#1|) $) 16)) (-3744 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-4219 (((-552) $) 8)) (-2707 ((|#1| $) 9)) (-4230 ((|#1| $) 11)) (-3925 ((|#2| (-629 $)) 18) ((|#2| $) 17)) (-1522 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 14)) (-1420 (($ $ (-552)) 13))) +(((-1073 |#1| |#2|) (-137) (-830) (-1127 |t#1|)) (T -1073)) +((-3925 (*1 *2 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-1073 *4 *2)) (-4 *4 (-830)) (-4 *2 (-1127 *4)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1127 *3)))) (-1477 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1073 *4 *2)) (-4 *4 (-830)) (-4 *2 (-1127 *4))))) +(-13 (-1071 |t#1|) (-10 -8 (-15 -3925 (|t#2| (-629 $))) (-15 -3925 (|t#2| $)) (-15 -1477 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1071 |#1|) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2680 (((-1113) $) 12)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20) (((-1159) $) NIL) (($ (-1159)) NIL)) (-4300 (((-629 (-1113)) $) 10)) (-1613 (((-111) $ $) NIL))) +(((-1074) (-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $)) (-15 -2680 ((-1113) $))))) (T -1074)) +((-4300 (*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1074)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1074))))) +(-13 (-1061) (-10 -8 (-15 -4300 ((-629 (-1113)) $)) (-15 -2680 ((-1113) $)))) +((-1501 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2041 (($ $ $) 10)) (-2042 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1075 |#1| |#2|) (-10 -8 (-15 -1501 (|#1| |#2| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| |#1|))) (-1076 |#2|) (-1078)) (T -1075)) +NIL +(-10 -8 (-15 -1501 (|#1| |#2| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-1501 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2041 (($ $ $) 20)) (-2691 (((-111) $ $) 19)) (-4238 (((-111) $ (-756)) 35)) (-1439 (($) 25) (($ (-629 |#1|)) 24)) (-3954 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4368)))) (-2130 (($) 36 T CONST)) (-2738 (($ $) 59 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 58 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4368)))) (-3138 (((-629 |#1|) $) 43 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) 28)) (-1418 (((-111) $ (-756)) 34)) (-3278 (((-629 |#1|) $) 44 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 38)) (-1745 (((-111) $ (-756)) 33)) (-2623 (((-1136) $) 9)) (-4011 (($ $ $) 23)) (-2876 (((-1098) $) 10)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3944 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#1|) (-629 |#1|)) 50 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 (-288 |#1|))) 47 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 29)) (-3435 (((-111) $) 32)) (-3430 (($) 31)) (-2042 (($ $ $) 22) (($ $ |#1|) 21)) (-2885 (((-756) |#1| $) 45 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4368)))) (-1487 (($ $) 30)) (-1522 (((-528) $) 60 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 51)) (-3213 (((-844) $) 11)) (-3541 (($) 27) (($ (-629 |#1|)) 26)) (-2584 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 37 (|has| $ (-6 -4368))))) +(((-1076 |#1|) (-137) (-1078)) (T -1076)) +((-3207 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1078)) (-5 *2 (-111)))) (-3541 (*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-1076 *3)))) (-1439 (*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-1076 *3)))) (-4011 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-2042 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-2041 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-2691 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1078)) (-5 *2 (-111)))) (-1501 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-1501 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) (-1501 (*1 *1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) +(-13 (-1078) (-148 |t#1|) (-10 -8 (-6 -4358) (-15 -3207 ((-111) $ $)) (-15 -3541 ($)) (-15 -3541 ($ (-629 |t#1|))) (-15 -1439 ($)) (-15 -1439 ($ (-629 |t#1|))) (-15 -4011 ($ $ $)) (-15 -2042 ($ $ $)) (-15 -2042 ($ $ |t#1|)) (-15 -2041 ($ $ $)) (-15 -2691 ((-111) $ $)) (-15 -1501 ($ $ $)) (-15 -1501 ($ $ |t#1|)) (-15 -1501 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) . T) ((-1191) . T)) +((-2623 (((-1136) $) 10)) (-2876 (((-1098) $) 8))) +(((-1077 |#1|) (-10 -8 (-15 -2623 ((-1136) |#1|)) (-15 -2876 ((-1098) |#1|))) (-1078)) (T -1077)) +NIL +(-10 -8 (-15 -2623 ((-1136) |#1|)) (-15 -2876 ((-1098) |#1|))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-1078) (-137)) (T -1078)) +((-2876 (*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-1098)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-1136))))) +(-13 (-101) (-599 (-844)) (-10 -8 (-15 -2876 ((-1098) $)) (-15 -2623 ((-1136) $)))) +(((-101) . T) ((-599 (-844)) . T)) +((-3202 (((-111) $ $) NIL)) (-2663 (((-756)) 30)) (-2743 (($ (-629 (-902))) 52)) (-3028 (((-3 $ "failed") $ (-902) (-902)) 58)) (-1332 (($) 32)) (-2973 (((-111) (-902) $) 35)) (-1637 (((-902) $) 50)) (-2623 (((-1136) $) NIL)) (-2840 (($ (-902)) 31)) (-2968 (((-3 $ "failed") $ (-902)) 55)) (-2876 (((-1098) $) NIL)) (-2899 (((-1237 $)) 40)) (-3374 (((-629 (-902)) $) 24)) (-2696 (((-756) $ (-902) (-902)) 56)) (-3213 (((-844) $) 29)) (-1613 (((-111) $ $) 21))) +(((-1079 |#1| |#2|) (-13 (-362) (-10 -8 (-15 -2968 ((-3 $ "failed") $ (-902))) (-15 -3028 ((-3 $ "failed") $ (-902) (-902))) (-15 -3374 ((-629 (-902)) $)) (-15 -2743 ($ (-629 (-902)))) (-15 -2899 ((-1237 $))) (-15 -2973 ((-111) (-902) $)) (-15 -2696 ((-756) $ (-902) (-902))))) (-902) (-902)) (T -1079)) +((-2968 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-902)) (-5 *1 (-1079 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3028 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-902)) (-5 *1 (-1079 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) (-2743 (*1 *1 *2) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) (-2899 (*1 *2) (-12 (-5 *2 (-1237 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) (-2973 (*1 *2 *3 *1) (-12 (-5 *3 (-902)) (-5 *2 (-111)) (-5 *1 (-1079 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2696 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-756)) (-5 *1 (-1079 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-362) (-10 -8 (-15 -2968 ((-3 $ "failed") $ (-902))) (-15 -3028 ((-3 $ "failed") $ (-902) (-902))) (-15 -3374 ((-629 (-902)) $)) (-15 -2743 ($ (-629 (-902)))) (-15 -2899 ((-1237 $))) (-15 -2973 ((-111) (-902) $)) (-15 -2696 ((-756) $ (-902) (-902))))) +((-3202 (((-111) $ $) NIL)) (-4024 (($) NIL (|has| |#1| (-362)))) (-1501 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2041 (($ $ $) 72)) (-2691 (((-111) $ $) 73)) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#1| (-362)))) (-1439 (($ (-629 |#1|)) NIL) (($) 13)) (-1740 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1625 (($ |#1| $) 67 (|has| $ (-6 -4368))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4368)))) (-1332 (($) NIL (|has| |#1| (-362)))) (-3138 (((-629 |#1|) $) 19 (|has| $ (-6 -4368)))) (-3207 (((-111) $ $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1772 ((|#1| $) 57 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2011 ((|#1| $) 55 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 34)) (-1637 (((-902) $) NIL (|has| |#1| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-4011 (($ $ $) 70)) (-3105 ((|#1| $) 25)) (-1580 (($ |#1| $) 65)) (-2840 (($ (-902)) NIL (|has| |#1| (-362)))) (-2876 (((-1098) $) NIL)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-3995 ((|#1| $) 27)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 21)) (-3430 (($) 11)) (-2042 (($ $ |#1|) NIL) (($ $ $) 71)) (-3680 (($) NIL) (($ (-629 |#1|)) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 16)) (-1522 (((-528) $) 52 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 61)) (-2402 (($ $) NIL (|has| |#1| (-362)))) (-3213 (((-844) $) NIL)) (-3133 (((-756) $) NIL)) (-3541 (($ (-629 |#1|)) NIL) (($) 12)) (-1663 (($ (-629 |#1|)) NIL)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 54)) (-2657 (((-756) $) 10 (|has| $ (-6 -4368))))) +(((-1080 |#1|) (-419 |#1|) (-1078)) (T -1080)) NIL (-419 |#1|) -((-1465 (((-111) $ $) 7)) (-1891 (((-111) $) 32)) (-2909 ((|#2| $) 27)) (-2563 (((-111) $) 33)) (-2258 ((|#1| $) 28)) (-3631 (((-111) $) 35)) (-2836 (((-111) $) 37)) (-2043 (((-111) $) 34)) (-1595 (((-1134) $) 9)) (-2170 (((-111) $) 31)) (-2933 ((|#3| $) 26)) (-1498 (((-1096) $) 10)) (-2305 (((-111) $) 30)) (-2103 ((|#4| $) 25)) (-4301 ((|#5| $) 24)) (-1651 (((-111) $ $) 38)) (-1985 (($ $ (-552)) 14) (($ $ (-627 (-552))) 13)) (-1790 (((-627 $) $) 29)) (-3562 (($ (-627 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1477 (((-842) $) 11)) (-1328 (($ $) 16)) (-1314 (($ $) 17)) (-3233 (((-111) $) 36)) (-2292 (((-111) $ $) 6)) (-1383 (((-552) $) 15))) -(((-1079 |#1| |#2| |#3| |#4| |#5|) (-137) (-1076) (-1076) (-1076) (-1076) (-1076)) (T -1079)) -((-1651 (*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-1790 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *2 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *2 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *2 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-1314 (*1 *1 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-1383 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-552)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -1651 ((-111) $ $)) (-15 -2836 ((-111) $)) (-15 -3233 ((-111) $)) (-15 -3631 ((-111) $)) (-15 -2043 ((-111) $)) (-15 -2563 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -2305 ((-111) $)) (-15 -1790 ((-627 $) $)) (-15 -2258 (|t#1| $)) (-15 -2909 (|t#2| $)) (-15 -2933 (|t#3| $)) (-15 -2103 (|t#4| $)) (-15 -4301 (|t#5| $)) (-15 -3562 ($ (-627 $))) (-15 -3562 ($ |t#1|)) (-15 -3562 ($ |t#2|)) (-15 -3562 ($ |t#3|)) (-15 -3562 ($ |t#4|)) (-15 -3562 ($ |t#5|)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1383 ((-552) $)) (-15 -1985 ($ $ (-552))) (-15 -1985 ($ $ (-627 (-552)))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-1891 (((-111) $) NIL)) (-2909 (((-1152) $) NIL)) (-2563 (((-111) $) NIL)) (-2258 (((-1134) $) NIL)) (-3631 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2043 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-2170 (((-111) $) NIL)) (-2933 (((-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-2305 (((-111) $) NIL)) (-2103 (((-220) $) NIL)) (-4301 (((-842) $) NIL)) (-1651 (((-111) $ $) NIL)) (-1985 (($ $ (-552)) NIL) (($ $ (-627 (-552))) NIL)) (-1790 (((-627 $) $) NIL)) (-3562 (($ (-627 $)) NIL) (($ (-1134)) NIL) (($ (-1152)) NIL) (($ (-552)) NIL) (($ (-220)) NIL) (($ (-842)) NIL)) (-1477 (((-842) $) NIL)) (-1328 (($ $) NIL)) (-1314 (($ $) NIL)) (-3233 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-552) $) NIL))) -(((-1080) (-1079 (-1134) (-1152) (-552) (-220) (-842))) (T -1080)) -NIL -(-1079 (-1134) (-1152) (-552) (-220) (-842)) -((-1465 (((-111) $ $) NIL)) (-1891 (((-111) $) 38)) (-2909 ((|#2| $) 42)) (-2563 (((-111) $) 37)) (-2258 ((|#1| $) 41)) (-3631 (((-111) $) 35)) (-2836 (((-111) $) 14)) (-2043 (((-111) $) 36)) (-1595 (((-1134) $) NIL)) (-2170 (((-111) $) 39)) (-2933 ((|#3| $) 44)) (-1498 (((-1096) $) NIL)) (-2305 (((-111) $) 40)) (-2103 ((|#4| $) 43)) (-4301 ((|#5| $) 45)) (-1651 (((-111) $ $) 34)) (-1985 (($ $ (-552)) 56) (($ $ (-627 (-552))) 58)) (-1790 (((-627 $) $) 22)) (-3562 (($ (-627 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1477 (((-842) $) 23)) (-1328 (($ $) 21)) (-1314 (($ $) 52)) (-3233 (((-111) $) 18)) (-2292 (((-111) $ $) 33)) (-1383 (((-552) $) 54))) -(((-1081 |#1| |#2| |#3| |#4| |#5|) (-1079 |#1| |#2| |#3| |#4| |#5|) (-1076) (-1076) (-1076) (-1076) (-1076)) (T -1081)) -NIL -(-1079 |#1| |#2| |#3| |#4| |#5|) -((-2802 (((-1240) $) 23)) (-2459 (($ (-1152) (-428) |#2|) 11)) (-1477 (((-842) $) 16))) -(((-1082 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -2459 ($ (-1152) (-428) |#2|)))) (-830) (-424 |#1|)) (T -1082)) -((-2459 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-428)) (-4 *5 (-830)) (-5 *1 (-1082 *5 *4)) (-4 *4 (-424 *5))))) -(-13 (-389) (-10 -8 (-15 -2459 ($ (-1152) (-428) |#2|)))) -((-3257 (((-111) |#5| |#5|) 38)) (-2172 (((-111) |#5| |#5|) 52)) (-1331 (((-111) |#5| (-627 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-3701 (((-111) (-627 |#4|) (-627 |#4|)) 58)) (-1680 (((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 63)) (-3935 (((-1240)) 33)) (-4233 (((-1240) (-1134) (-1134) (-1134)) 29)) (-3115 (((-627 |#5|) (-627 |#5|)) 82)) (-1462 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) 80)) (-3155 (((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111)) 102)) (-2506 (((-111) |#5| |#5|) 47)) (-2719 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3306 (((-111) (-627 |#4|) (-627 |#4|)) 57)) (-3949 (((-111) (-627 |#4|) (-627 |#4|)) 59)) (-2654 (((-111) (-627 |#4|) (-627 |#4|)) 60)) (-1570 (((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2937 (((-627 |#5|) (-627 |#5|)) 43))) -(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1083)) -((-1570 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) (-5 *1 (-1083 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) (-4 *4 (-1048 *6 *7 *8 *9)))) (-3155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) (-5 *1 (-1083 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1083 *5 *6 *7 *8 *3)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3306 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-3935 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4233 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-1982 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 96)) (-2841 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|) 72)) (-4304 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 91)) (-1308 (((-627 |#5|) |#4| |#5|) 110)) (-1699 (((-627 |#5|) |#4| |#5|) 117)) (-3961 (((-627 |#5|) |#4| |#5|) 118)) (-1618 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 97)) (-1994 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 116)) (-3270 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-1347 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111)) 84) (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-2756 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 79)) (-4114 (((-1240)) 37)) (-2876 (((-1240)) 26)) (-2580 (((-1240) (-1134) (-1134) (-1134)) 33)) (-4325 (((-1240) (-1134) (-1134) (-1134)) 22))) -(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -2841 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -2756 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -4304 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -3270 ((-111) |#4| |#5|)) (-15 -1618 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1308 ((-627 |#5|) |#4| |#5|)) (-15 -1994 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1699 ((-627 |#5|) |#4| |#5|)) (-15 -3270 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3961 ((-627 |#5|) |#4| |#5|)) (-15 -1982 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1084)) -((-1982 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3961 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1699 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1308 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1618 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4304 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2756 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) (-5 *1 (-1084 *6 *7 *4 *8 *9)))) (-1347 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-2841 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4114 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-2580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2876 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4325 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -2841 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -2756 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -4304 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -3270 ((-111) |#4| |#5|)) (-15 -1618 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1308 ((-627 |#5|) |#4| |#5|)) (-15 -1994 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1699 ((-627 |#5|) |#4| |#5|)) (-15 -3270 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3961 ((-627 |#5|) |#4| |#5|)) (-15 -1982 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) -((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-1085 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1085)) -NIL -(-13 (-1048 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) -((-3077 (((-627 (-552)) (-552) (-552) (-552)) 22)) (-1647 (((-627 (-552)) (-552) (-552) (-552)) 12)) (-1877 (((-627 (-552)) (-552) (-552) (-552)) 18)) (-2082 (((-552) (-552) (-552)) 9)) (-4163 (((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552)) 46) (((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552)) 41)) (-2759 (((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111)) 28)) (-2374 (((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552))) 45)) (-3149 (((-671 (-552)) (-627 (-552)) (-627 (-552))) 33)) (-2115 (((-627 (-671 (-552))) (-627 (-552))) 35)) (-2333 (((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552))) 49)) (-3708 (((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552))) 57))) -(((-1086) (-10 -7 (-15 -3708 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2333 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2115 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -3149 ((-671 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2374 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2759 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111))) (-15 -4163 ((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552))) (-15 -4163 ((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552))) (-15 -2082 ((-552) (-552) (-552))) (-15 -1877 ((-627 (-552)) (-552) (-552) (-552))) (-15 -1647 ((-627 (-552)) (-552) (-552) (-552))) (-15 -3077 ((-627 (-552)) (-552) (-552) (-552))))) (T -1086)) -((-3077 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-1647 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-1877 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1086)))) (-4163 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-627 (-552))) (-5 *4 (-552)) (-5 *1 (-1086)))) (-4163 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-552)) (-5 *1 (-1086)))) (-2759 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *3 (-111)) (-5 *1 (-1086)))) (-2374 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-671 (-552))) (-5 *3 (-627 (-552))) (-5 *1 (-1086)))) (-3149 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-1086)))) (-2333 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *3 (-671 (-552))) (-5 *1 (-1086)))) (-3708 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) -(-10 -7 (-15 -3708 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2333 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2115 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -3149 ((-671 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2374 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2759 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111))) (-15 -4163 ((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552))) (-15 -4163 ((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552))) (-15 -2082 ((-552) (-552) (-552))) (-15 -1877 ((-627 (-552)) (-552) (-552) (-552))) (-15 -1647 ((-627 (-552)) (-552) (-552) (-552))) (-15 -3077 ((-627 (-552)) (-552) (-552) (-552)))) -((** (($ $ (-900)) 10))) -(((-1087 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-900)))) (-1088)) (T -1087)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-900)))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13)) (* (($ $ $) 14))) -(((-1088) (-137)) (T -1088)) -((* (*1 *1 *1 *1) (-4 *1 (-1088))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1088)) (-5 *2 (-900))))) -(-13 (-1076) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-900))))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL (|has| |#3| (-1076)))) (-3024 (((-111) $) NIL (|has| |#3| (-129)))) (-3969 (($ (-900)) NIL (|has| |#3| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#3| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#3| (-362)))) (-2422 (((-552) $) NIL (|has| |#3| (-828)))) (-2950 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) ((|#3| $) NIL (|has| |#3| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) NIL (|has| |#3| (-1028))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#3| (-709)))) (-1279 (($) NIL (|has| |#3| (-362)))) (-3473 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#3| $ (-552)) 12)) (-2983 (((-111) $) NIL (|has| |#3| (-828)))) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#3| (-709)))) (-1508 (((-111) $) NIL (|has| |#3| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#3| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#3| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#3| (-362)))) (-1498 (((-1096) $) NIL (|has| |#3| (-1076)))) (-3340 ((|#3| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2083 (((-627 |#3|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) NIL)) (-2395 ((|#3| $ $) NIL (|has| |#3| (-1028)))) (-1767 (($ (-1235 |#3|)) NIL)) (-2405 (((-132)) NIL (|has| |#3| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028)))) (-1509 (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366))) (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (|has| |#3| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) (($ |#3|) NIL (|has| |#3| (-1076))) (((-842) $) NIL (|has| |#3| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#3| (-1028)))) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#3| (-828)))) (-1922 (($) NIL (|has| |#3| (-129)) CONST)) (-1933 (($) NIL (|has| |#3| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#3| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2316 (((-111) $ $) 17 (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $ $) NIL (|has| |#3| (-1028))) (($ $) NIL (|has| |#3| (-1028)))) (-2384 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-754)) NIL (|has| |#3| (-709))) (($ $ (-900)) NIL (|has| |#3| (-709)))) (* (($ (-552) $) NIL (|has| |#3| (-1028))) (($ $ $) NIL (|has| |#3| (-709))) (($ $ |#3|) NIL (|has| |#3| (-709))) (($ |#3| $) NIL (|has| |#3| (-709))) (($ (-754) $) NIL (|has| |#3| (-129))) (($ (-900) $) NIL (|has| |#3| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1089 |#1| |#2| |#3|) (-233 |#1| |#3|) (-754) (-754) (-776)) (T -1089)) +((-3202 (((-111) $ $) 7)) (-2288 (((-111) $) 32)) (-3542 ((|#2| $) 27)) (-1529 (((-111) $) 33)) (-3986 ((|#1| $) 28)) (-2679 (((-111) $) 35)) (-2400 (((-111) $) 37)) (-1320 (((-111) $) 34)) (-2623 (((-1136) $) 9)) (-3227 (((-111) $) 31)) (-3563 ((|#3| $) 26)) (-2876 (((-1098) $) 10)) (-3983 (((-111) $) 30)) (-3396 ((|#4| $) 25)) (-1452 ((|#5| $) 24)) (-2771 (((-111) $ $) 38)) (-2060 (($ $ (-552)) 14) (($ $ (-629 (-552))) 13)) (-3552 (((-629 $) $) 29)) (-1522 (($ (-629 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3213 (((-844) $) 11)) (-2588 (($ $) 16)) (-2576 (($ $) 17)) (-3171 (((-111) $) 36)) (-1613 (((-111) $ $) 6)) (-2657 (((-552) $) 15))) +(((-1081 |#1| |#2| |#3| |#4| |#5|) (-137) (-1078) (-1078) (-1078) (-1078) (-1078)) (T -1081)) +((-2771 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111)))) (-3552 (*1 *2 *1) (-12 (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-629 *1)) (-4 *1 (-1081 *3 *4 *5 *6 *7)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *2 *4 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *2 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *2 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *2)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1081 *3 *2 *4 *5 *6)) (-4 *3 (-1078)) (-4 *2 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *2 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *5 *2 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *2 (-1078)) (-4 *6 (-1078)))) (-1522 (*1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *2)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) (-2576 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) (-2588 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-552)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -2771 ((-111) $ $)) (-15 -2400 ((-111) $)) (-15 -3171 ((-111) $)) (-15 -2679 ((-111) $)) (-15 -1320 ((-111) $)) (-15 -1529 ((-111) $)) (-15 -2288 ((-111) $)) (-15 -3227 ((-111) $)) (-15 -3983 ((-111) $)) (-15 -3552 ((-629 $) $)) (-15 -3986 (|t#1| $)) (-15 -3542 (|t#2| $)) (-15 -3563 (|t#3| $)) (-15 -3396 (|t#4| $)) (-15 -1452 (|t#5| $)) (-15 -1522 ($ (-629 $))) (-15 -1522 ($ |t#1|)) (-15 -1522 ($ |t#2|)) (-15 -1522 ($ |t#3|)) (-15 -1522 ($ |t#4|)) (-15 -1522 ($ |t#5|)) (-15 -2576 ($ $)) (-15 -2588 ($ $)) (-15 -2657 ((-552) $)) (-15 -2060 ($ $ (-552))) (-15 -2060 ($ $ (-629 (-552)))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2288 (((-111) $) NIL)) (-3542 (((-1154) $) NIL)) (-1529 (((-111) $) NIL)) (-3986 (((-1136) $) NIL)) (-2679 (((-111) $) NIL)) (-2400 (((-111) $) NIL)) (-1320 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-3227 (((-111) $) NIL)) (-3563 (((-552) $) NIL)) (-2876 (((-1098) $) NIL)) (-3983 (((-111) $) NIL)) (-3396 (((-220) $) NIL)) (-1452 (((-844) $) NIL)) (-2771 (((-111) $ $) NIL)) (-2060 (($ $ (-552)) NIL) (($ $ (-629 (-552))) NIL)) (-3552 (((-629 $) $) NIL)) (-1522 (($ (-629 $)) NIL) (($ (-1136)) NIL) (($ (-1154)) NIL) (($ (-552)) NIL) (($ (-220)) NIL) (($ (-844)) NIL)) (-3213 (((-844) $) NIL)) (-2588 (($ $) NIL)) (-2576 (($ $) NIL)) (-3171 (((-111) $) NIL)) (-1613 (((-111) $ $) NIL)) (-2657 (((-552) $) NIL))) +(((-1082) (-1081 (-1136) (-1154) (-552) (-220) (-844))) (T -1082)) +NIL +(-1081 (-1136) (-1154) (-552) (-220) (-844)) +((-3202 (((-111) $ $) NIL)) (-2288 (((-111) $) 40)) (-3542 ((|#2| $) 43)) (-1529 (((-111) $) 18)) (-3986 ((|#1| $) 19)) (-2679 (((-111) $) 38)) (-2400 (((-111) $) 14)) (-1320 (((-111) $) 39)) (-2623 (((-1136) $) NIL)) (-3227 (((-111) $) 41)) (-3563 ((|#3| $) 45)) (-2876 (((-1098) $) NIL)) (-3983 (((-111) $) 42)) (-3396 ((|#4| $) 44)) (-1452 ((|#5| $) 46)) (-2771 (((-111) $ $) 37)) (-2060 (($ $ (-552)) 57) (($ $ (-629 (-552))) 59)) (-3552 (((-629 $) $) 25)) (-1522 (($ (-629 $)) 47) (($ |#1|) 48) (($ |#2|) 49) (($ |#3|) 50) (($ |#4|) 51) (($ |#5|) 52)) (-3213 (((-844) $) 26)) (-2588 (($ $) 24)) (-2576 (($ $) 53)) (-3171 (((-111) $) 21)) (-1613 (((-111) $ $) 36)) (-2657 (((-552) $) 55))) +(((-1083 |#1| |#2| |#3| |#4| |#5|) (-1081 |#1| |#2| |#3| |#4| |#5|) (-1078) (-1078) (-1078) (-1078) (-1078)) (T -1083)) +NIL +(-1081 |#1| |#2| |#3| |#4| |#5|) +((-2175 (((-1242) $) 23)) (-2610 (($ (-1154) (-428) |#2|) 11)) (-3213 (((-844) $) 16))) +(((-1084 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -2610 ($ (-1154) (-428) |#2|)))) (-832) (-424 |#1|)) (T -1084)) +((-2610 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *3 (-428)) (-4 *5 (-832)) (-5 *1 (-1084 *5 *4)) (-4 *4 (-424 *5))))) +(-13 (-389) (-10 -8 (-15 -2610 ($ (-1154) (-428) |#2|)))) +((-2119 (((-111) |#5| |#5|) 38)) (-3248 (((-111) |#5| |#5|) 52)) (-2049 (((-111) |#5| (-629 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-4045 (((-111) (-629 |#4|) (-629 |#4|)) 58)) (-4030 (((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) 63)) (-2675 (((-1242)) 33)) (-2490 (((-1242) (-1136) (-1136) (-1136)) 29)) (-3288 (((-629 |#5|) (-629 |#5|)) 82)) (-2722 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) 80)) (-2418 (((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111)) 102)) (-2237 (((-111) |#5| |#5|) 47)) (-3804 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2672 (((-111) (-629 |#4|) (-629 |#4|)) 57)) (-1535 (((-111) (-629 |#4|) (-629 |#4|)) 59)) (-4343 (((-111) (-629 |#4|) (-629 |#4|)) 60)) (-2383 (((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2111 (((-629 |#5|) (-629 |#5|)) 43))) +(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2490 ((-1242) (-1136) (-1136) (-1136))) (-15 -2675 ((-1242))) (-15 -2119 ((-111) |#5| |#5|)) (-15 -2111 ((-629 |#5|) (-629 |#5|))) (-15 -2237 ((-111) |#5| |#5|)) (-15 -3248 ((-111) |#5| |#5|)) (-15 -4045 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -2672 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -1535 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -4343 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3804 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2049 ((-111) |#5| |#5|)) (-15 -2049 ((-111) |#5| (-629 |#5|))) (-15 -3288 ((-629 |#5|) (-629 |#5|))) (-15 -4030 ((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -2722 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-15 -2418 ((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2383 ((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -1085)) +((-2383 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| -2771 (-629 *9)) (|:| -3361 *4) (|:| |ineq| (-629 *9)))) (-5 *1 (-1085 *6 *7 *8 *9 *4)) (-5 *3 (-629 *9)) (-4 *4 (-1050 *6 *7 *8 *9)))) (-2418 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-629 *10)) (-5 *5 (-111)) (-4 *10 (-1050 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) (-5 *2 (-629 (-2 (|:| -2771 (-629 *9)) (|:| -3361 *10) (|:| |ineq| (-629 *9))))) (-5 *1 (-1085 *6 *7 *8 *9 *10)) (-5 *3 (-629 *9)))) (-2722 (*1 *2 *2) (-12 (-5 *2 (-629 (-2 (|:| |val| (-629 *6)) (|:| -3361 *7)))) (-4 *6 (-1044 *3 *4 *5)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1085 *3 *4 *5 *6 *7)))) (-4030 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *8)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-1085 *3 *4 *5 *6 *7)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1085 *5 *6 *7 *8 *3)))) (-2049 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-3804 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-4343 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-1535 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-2672 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-3248 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2237 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-1085 *3 *4 *5 *6 *7)))) (-2119 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) (-2675 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-2490 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(-10 -7 (-15 -2490 ((-1242) (-1136) (-1136) (-1136))) (-15 -2675 ((-1242))) (-15 -2119 ((-111) |#5| |#5|)) (-15 -2111 ((-629 |#5|) (-629 |#5|))) (-15 -2237 ((-111) |#5| |#5|)) (-15 -3248 ((-111) |#5| |#5|)) (-15 -4045 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -2672 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -1535 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -4343 ((-111) (-629 |#4|) (-629 |#4|))) (-15 -3804 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2049 ((-111) |#5| |#5|)) (-15 -2049 ((-111) |#5| (-629 |#5|))) (-15 -3288 ((-629 |#5|) (-629 |#5|))) (-15 -4030 ((-111) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -2722 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-15 -2418 ((-629 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|)))) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2383 ((-3 (-2 (|:| -2771 (-629 |#4|)) (|:| -3361 |#5|) (|:| |ineq| (-629 |#4|))) "failed") (-629 |#4|) |#5| (-629 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-1892 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|) 96)) (-2460 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|) 72)) (-1883 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|) 91)) (-1846 (((-629 |#5|) |#4| |#5|) 110)) (-4175 (((-629 |#5|) |#4| |#5|) 117)) (-1649 (((-629 |#5|) |#4| |#5|) 118)) (-1548 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|) 97)) (-3949 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|) 116)) (-2252 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-2198 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111)) 84) (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-2978 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|) 79)) (-3829 (((-1242)) 37)) (-1553 (((-1242)) 26)) (-1696 (((-1242) (-1136) (-1136) (-1136)) 33)) (-2116 (((-1242) (-1136) (-1136) (-1136)) 22))) +(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2116 ((-1242) (-1136) (-1136) (-1136))) (-15 -1553 ((-1242))) (-15 -1696 ((-1242) (-1136) (-1136) (-1136))) (-15 -3829 ((-1242))) (-15 -2460 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -2198 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2198 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111))) (-15 -2978 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1883 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -2252 ((-111) |#4| |#5|)) (-15 -1548 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1846 ((-629 |#5|) |#4| |#5|)) (-15 -3949 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -4175 ((-629 |#5|) |#4| |#5|)) (-15 -2252 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1649 ((-629 |#5|) |#4| |#5|)) (-15 -1892 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1050 |#1| |#2| |#3| |#4|)) (T -1086)) +((-1892 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1649 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2252 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-3949 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1548 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2252 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-1883 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2978 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-2198 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) (-5 *5 (-111)) (-4 *8 (-1044 *6 *7 *4)) (-4 *9 (-1050 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *4 (-832)) (-5 *2 (-629 (-2 (|:| |val| *8) (|:| -3361 *9)))) (-5 *1 (-1086 *6 *7 *4 *8 *9)))) (-2198 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) (-2460 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) (-3829 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-1696 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) (-1553 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) (-2116 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(-10 -7 (-15 -2116 ((-1242) (-1136) (-1136) (-1136))) (-15 -1553 ((-1242))) (-15 -1696 ((-1242) (-1136) (-1136) (-1136))) (-15 -3829 ((-1242))) (-15 -2460 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -2198 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2198 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) |#3| (-111))) (-15 -2978 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -1883 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#4| |#5|)) (-15 -2252 ((-111) |#4| |#5|)) (-15 -1548 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1846 ((-629 |#5|) |#4| |#5|)) (-15 -3949 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -4175 ((-629 |#5|) |#4| |#5|)) (-15 -2252 ((-629 (-2 (|:| |val| (-111)) (|:| -3361 |#5|))) |#4| |#5|)) (-15 -1649 ((-629 |#5|) |#4| |#5|)) (-15 -1892 ((-629 (-2 (|:| |val| |#4|) (|:| -3361 |#5|))) |#4| |#5|))) +((-3202 (((-111) $ $) 7)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) 85)) (-1830 (((-629 $) (-629 |#4|)) 86) (((-629 $) (-629 |#4|) (-111)) 111)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) 101) (((-111) $) 97)) (-2240 ((|#4| |#4| $) 92)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 126)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 79)) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2715 (((-3 $ "failed") $) 82)) (-3126 ((|#4| |#4| $) 89)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2081 ((|#4| |#4| $) 87)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) 105)) (-2851 (((-111) |#4| $) 136)) (-4035 (((-111) |#4| $) 133)) (-3250 (((-111) |#4| $) 137) (((-111) $) 134)) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) 104) (((-111) $) 103)) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) 128)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 127)) (-2680 (((-3 |#4| "failed") $) 83)) (-1999 (((-629 $) |#4| $) 129)) (-4253 (((-3 (-111) (-629 $)) |#4| $) 132)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-4011 (((-629 $) |#4| $) 125) (((-629 $) (-629 |#4|) $) 124) (((-629 $) (-629 |#4|) (-629 $)) 123) (((-629 $) |#4| (-629 $)) 122)) (-2300 (($ |#4| $) 117) (($ (-629 |#4|) $) 116)) (-3887 (((-629 |#4|) $) 107)) (-3287 (((-111) |#4| $) 99) (((-111) $) 95)) (-2498 ((|#4| |#4| $) 90)) (-4343 (((-111) $ $) 110)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) 100) (((-111) $) 96)) (-3848 ((|#4| |#4| $) 91)) (-2876 (((-1098) $) 10)) (-2702 (((-3 |#4| "failed") $) 84)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-1800 (((-3 $ "failed") $ |#4|) 78)) (-3136 (($ $ |#4|) 77) (((-629 $) |#4| $) 115) (((-629 $) |#4| (-629 $)) 114) (((-629 $) (-629 |#4|) $) 113) (((-629 $) (-629 |#4|) (-629 $)) 112)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-3299 (((-756) $) 106)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-3081 (($ $) 88)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-1753 (((-756) $) 76 (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) 98)) (-3933 (((-629 $) |#4| $) 121) (((-629 $) |#4| (-629 $)) 120) (((-629 $) (-629 |#4|) $) 119) (((-629 $) (-629 |#4|) (-629 $)) 118)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) 81)) (-2452 (((-111) |#4| $) 135)) (-2904 (((-111) |#3| $) 80)) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-1087 |#1| |#2| |#3| |#4|) (-137) (-445) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -1087)) +NIL +(-13 (-1050 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-957 |#1| |#2| |#3| |#4|) . T) ((-1050 |#1| |#2| |#3| |#4|) . T) ((-1078) . T) ((-1184 |#1| |#2| |#3| |#4|) . T) ((-1191) . T)) +((-2929 (((-629 (-552)) (-552) (-552) (-552)) 22)) (-1816 (((-629 (-552)) (-552) (-552) (-552)) 12)) (-2132 (((-629 (-552)) (-552) (-552) (-552)) 18)) (-3618 (((-552) (-552) (-552)) 9)) (-3083 (((-1237 (-552)) (-629 (-552)) (-1237 (-552)) (-552)) 46) (((-1237 (-552)) (-1237 (-552)) (-1237 (-552)) (-552)) 41)) (-3010 (((-629 (-552)) (-629 (-552)) (-629 (-552)) (-111)) 28)) (-3440 (((-673 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552))) 45)) (-2357 (((-673 (-552)) (-629 (-552)) (-629 (-552))) 33)) (-3879 (((-629 (-673 (-552))) (-629 (-552))) 35)) (-4206 (((-629 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552))) 49)) (-4110 (((-673 (-552)) (-629 (-552)) (-629 (-552)) (-629 (-552))) 57))) +(((-1088) (-10 -7 (-15 -4110 ((-673 (-552)) (-629 (-552)) (-629 (-552)) (-629 (-552)))) (-15 -4206 ((-629 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552)))) (-15 -3879 ((-629 (-673 (-552))) (-629 (-552)))) (-15 -2357 ((-673 (-552)) (-629 (-552)) (-629 (-552)))) (-15 -3440 ((-673 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552)))) (-15 -3010 ((-629 (-552)) (-629 (-552)) (-629 (-552)) (-111))) (-15 -3083 ((-1237 (-552)) (-1237 (-552)) (-1237 (-552)) (-552))) (-15 -3083 ((-1237 (-552)) (-629 (-552)) (-1237 (-552)) (-552))) (-15 -3618 ((-552) (-552) (-552))) (-15 -2132 ((-629 (-552)) (-552) (-552) (-552))) (-15 -1816 ((-629 (-552)) (-552) (-552) (-552))) (-15 -2929 ((-629 (-552)) (-552) (-552) (-552))))) (T -1088)) +((-2929 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552)))) (-1816 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552)))) (-2132 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552)))) (-3618 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1088)))) (-3083 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1237 (-552))) (-5 *3 (-629 (-552))) (-5 *4 (-552)) (-5 *1 (-1088)))) (-3083 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1237 (-552))) (-5 *3 (-552)) (-5 *1 (-1088)))) (-3010 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *3 (-111)) (-5 *1 (-1088)))) (-3440 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-673 (-552))) (-5 *3 (-629 (-552))) (-5 *1 (-1088)))) (-2357 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1088)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-629 (-673 (-552)))) (-5 *1 (-1088)))) (-4206 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *3 (-673 (-552))) (-5 *1 (-1088)))) (-4110 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1088))))) +(-10 -7 (-15 -4110 ((-673 (-552)) (-629 (-552)) (-629 (-552)) (-629 (-552)))) (-15 -4206 ((-629 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552)))) (-15 -3879 ((-629 (-673 (-552))) (-629 (-552)))) (-15 -2357 ((-673 (-552)) (-629 (-552)) (-629 (-552)))) (-15 -3440 ((-673 (-552)) (-629 (-552)) (-629 (-552)) (-673 (-552)))) (-15 -3010 ((-629 (-552)) (-629 (-552)) (-629 (-552)) (-111))) (-15 -3083 ((-1237 (-552)) (-1237 (-552)) (-1237 (-552)) (-552))) (-15 -3083 ((-1237 (-552)) (-629 (-552)) (-1237 (-552)) (-552))) (-15 -3618 ((-552) (-552) (-552))) (-15 -2132 ((-629 (-552)) (-552) (-552) (-552))) (-15 -1816 ((-629 (-552)) (-552) (-552) (-552))) (-15 -2929 ((-629 (-552)) (-552) (-552) (-552)))) +((** (($ $ (-902)) 10))) +(((-1089 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-902)))) (-1090)) (T -1089)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-902)))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6)) (** (($ $ (-902)) 13)) (* (($ $ $) 14))) +(((-1090) (-137)) (T -1090)) +((* (*1 *1 *1 *1) (-4 *1 (-1090))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1090)) (-5 *2 (-902))))) +(-13 (-1078) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-902))))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL (|has| |#3| (-1078)))) (-3643 (((-111) $) NIL (|has| |#3| (-129)))) (-1725 (($ (-902)) NIL (|has| |#3| (-1030)))) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3305 (($ $ $) NIL (|has| |#3| (-778)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-4238 (((-111) $ (-756)) NIL)) (-2663 (((-756)) NIL (|has| |#3| (-362)))) (-3886 (((-552) $) NIL (|has| |#3| (-830)))) (-1470 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1078)))) (-2832 (((-552) $) NIL (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078)))) ((|#3| $) NIL (|has| |#3| (-1078)))) (-2714 (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#3| (-625 (-552))) (|has| |#3| (-1030)))) (((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 $) (-1237 $)) NIL (|has| |#3| (-1030))) (((-673 |#3|) (-673 $)) NIL (|has| |#3| (-1030)))) (-1293 (((-3 $ "failed") $) NIL (|has| |#3| (-711)))) (-1332 (($) NIL (|has| |#3| (-362)))) (-2957 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#3| $ (-552)) 12)) (-1338 (((-111) $) NIL (|has| |#3| (-830)))) (-3138 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL (|has| |#3| (-711)))) (-3127 (((-111) $) NIL (|has| |#3| (-830)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-3278 (((-629 |#3|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-2947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#3| |#3|) $) NIL)) (-1637 (((-902) $) NIL (|has| |#3| (-362)))) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#3| (-1078)))) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2840 (($ (-902)) NIL (|has| |#3| (-362)))) (-2876 (((-1098) $) NIL (|has| |#3| (-1078)))) (-2702 ((|#3| $) NIL (|has| (-552) (-832)))) (-1518 (($ $ |#3|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078)))) (($ $ (-629 |#3|) (-629 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-3627 (((-629 |#3|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) NIL)) (-3632 ((|#3| $ $) NIL (|has| |#3| (-1030)))) (-3519 (($ (-1237 |#3|)) NIL)) (-3725 (((-132)) NIL (|has| |#3| (-357)))) (-3096 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1 |#3| |#3|) (-756)) NIL (|has| |#3| (-1030))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1030)))) (-2885 (((-756) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368))) (((-756) |#3| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#3| (-1078))))) (-1487 (($ $) NIL)) (-3213 (((-1237 |#3|) $) NIL) (($ (-552)) NIL (-4029 (-12 (|has| |#3| (-1019 (-552))) (|has| |#3| (-1078))) (|has| |#3| (-1030)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1019 (-401 (-552)))) (|has| |#3| (-1078)))) (($ |#3|) NIL (|has| |#3| (-1078))) (((-844) $) NIL (|has| |#3| (-599 (-844))))) (-2014 (((-756)) NIL (|has| |#3| (-1030)))) (-2584 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4368)))) (-1578 (($ $) NIL (|has| |#3| (-830)))) (-3297 (($) NIL (|has| |#3| (-129)) CONST)) (-3309 (($) NIL (|has| |#3| (-711)) CONST)) (-1765 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $ (-756)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1030)))) (($ $ (-1154)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#3| (-881 (-1154))) (|has| |#3| (-1030)))) (($ $ (-1 |#3| |#3|) (-756)) NIL (|has| |#3| (-1030))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1030)))) (-1666 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1644 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1613 (((-111) $ $) NIL (|has| |#3| (-1078)))) (-1655 (((-111) $ $) NIL (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1632 (((-111) $ $) 17 (-4029 (|has| |#3| (-778)) (|has| |#3| (-830))))) (-1720 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1709 (($ $ $) NIL (|has| |#3| (-1030))) (($ $) NIL (|has| |#3| (-1030)))) (-1698 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-756)) NIL (|has| |#3| (-711))) (($ $ (-902)) NIL (|has| |#3| (-711)))) (* (($ (-552) $) NIL (|has| |#3| (-1030))) (($ $ $) NIL (|has| |#3| (-711))) (($ $ |#3|) NIL (|has| |#3| (-711))) (($ |#3| $) NIL (|has| |#3| (-711))) (($ (-756) $) NIL (|has| |#3| (-129))) (($ (-902) $) NIL (|has| |#3| (-25)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1091 |#1| |#2| |#3|) (-233 |#1| |#3|) (-756) (-756) (-778)) (T -1091)) NIL (-233 |#1| |#3|) -((-2553 (((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 37)) (-3582 (((-552) (-1208 |#2| |#1|)) 69 (|has| |#1| (-445)))) (-2480 (((-552) (-1208 |#2| |#1|)) 54)) (-2196 (((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 45)) (-2037 (((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 68 (|has| |#1| (-445)))) (-2440 (((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 48)) (-4140 (((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 53))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -2553 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2196 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2440 ((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -4140 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2480 ((-552) (-1208 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2037 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3582 ((-552) (-1208 |#2| |#1|)))) |%noBranch|)) (-803) (-1152)) (T -1090)) -((-3582 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2037 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-4140 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2440 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 *4)) (-5 *1 (-1090 *4 *5)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4)))) (-2553 (*1 *2 *3 *3) (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(-10 -7 (-15 -2553 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2196 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2440 ((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -4140 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2480 ((-552) (-1208 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2037 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3582 ((-552) (-1208 |#2| |#1|)))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-4144 (($ (-498) (-1094)) 14)) (-4199 (((-1094) $) 20)) (-3112 (((-498) $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1091) (-13 (-1059) (-10 -8 (-15 -4144 ($ (-498) (-1094))) (-15 -3112 ((-498) $)) (-15 -4199 ((-1094) $))))) (T -1091)) -((-4144 (*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1094)) (-5 *1 (-1091)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1091)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1091))))) -(-13 (-1059) (-10 -8 (-15 -4144 ($ (-498) (-1094))) (-15 -3112 ((-498) $)) (-15 -4199 ((-1094) $)))) -((-2422 (((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)) 17) (((-3 (-552) "failed") |#2| (-1152) (-823 |#2|)) 15) (((-3 (-552) "failed") |#2|) 54))) -(((-1092 |#1| |#2|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") |#2|)) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) (-823 |#2|))) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|))) (T -1092)) -((-2422 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-1134)) (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))))) (-2422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)))) (-2422 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) -(-10 -7 (-15 -2422 ((-3 (-552) "failed") |#2|)) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) (-823 |#2|))) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)))) -((-2422 (((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)) 35) (((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|)))) 30) (((-3 (-552) "failed") (-401 (-931 |#1|))) 13))) -(((-1093 |#1|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|))))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)))) (-445)) (T -1093)) -((-2422 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1152)) (-5 *5 (-1134)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) (-2422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 (-401 (-931 *6)))) (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) (-2422 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *4))))) -(-10 -7 (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|))))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)))) -((-1465 (((-111) $ $) NIL)) (-2816 (((-1157) $) 10)) (-3901 (((-627 (-1157)) $) 11)) (-4199 (($ (-627 (-1157)) (-1157)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20)) (-2292 (((-111) $ $) 14))) -(((-1094) (-13 (-1076) (-10 -8 (-15 -4199 ($ (-627 (-1157)) (-1157))) (-15 -2816 ((-1157) $)) (-15 -3901 ((-627 (-1157)) $))))) (T -1094)) -((-4199 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1157))) (-5 *3 (-1157)) (-5 *1 (-1094)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1094)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1094))))) -(-13 (-1076) (-10 -8 (-15 -4199 ($ (-627 (-1157)) (-1157))) (-15 -2816 ((-1157) $)) (-15 -3901 ((-627 (-1157)) $)))) -((-2380 (((-310 (-552)) (-48)) 12))) -(((-1095) (-10 -7 (-15 -2380 ((-310 (-552)) (-48))))) (T -1095)) -((-2380 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1095))))) -(-10 -7 (-15 -2380 ((-310 (-552)) (-48)))) -((-1465 (((-111) $ $) NIL)) (-2831 (($ $) 41)) (-3024 (((-111) $) 65)) (-2543 (($ $ $) 48)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 86)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) 75)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) 72)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) 59)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 80) (((-671 (-552)) (-671 $)) 28)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) 83) (($ $) 84)) (-2789 (($ $ $) 58)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) 81)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) 66)) (-1394 (((-111) $) 64)) (-1681 (($ $) 42)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) 76)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) 73)) (-1816 (($ $ $) 68) (($) 39)) (-4093 (($ $ $) 67) (($) 38)) (-4117 (($ $) NIL)) (-3593 (($ $) 71)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) 50)) (-1498 (((-1096) $) 70)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) 62) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 61)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) 51)) (-2973 (($ $) NIL)) (-3562 (((-552) $) 32) (((-528) $) NIL) (((-871 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL)) (-1477 (((-842) $) 31) (($ (-552)) 82) (($ $) NIL) (($ (-552)) 82)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) 37)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) 74)) (-3329 (($ $) 63)) (-1872 (($ $ $) 44)) (-1922 (($) 35 T CONST)) (-2132 (($ $ $) 47)) (-1933 (($) 36 T CONST)) (-4157 (((-1134) $) 21) (((-1134) $ (-111)) 23) (((-1240) (-805) $) 24) (((-1240) (-805) $ (-111)) 25)) (-2142 (($ $) 45)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2121 (($ $ $) 46)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 40)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 49)) (-1861 (($ $ $) 43)) (-2396 (($ $) 52) (($ $ $) 54)) (-2384 (($ $ $) 53)) (** (($ $ (-900)) NIL) (($ $ (-754)) 57)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 34) (($ $ $) 55))) -(((-1096) (-13 (-537) (-643) (-811) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -4093 ($)) (-15 -1816 ($)) (-15 -1681 ($ $)) (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2142 ($ $)) (-15 -2121 ($ $ $)) (-15 -2132 ($ $ $))))) (T -1096)) -((-1872 (*1 *1 *1 *1) (-5 *1 (-1096))) (-1861 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2831 (*1 *1 *1) (-5 *1 (-1096))) (-4093 (*1 *1) (-5 *1 (-1096))) (-1816 (*1 *1) (-5 *1 (-1096))) (-1681 (*1 *1 *1) (-5 *1 (-1096))) (-2543 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2142 (*1 *1 *1) (-5 *1 (-1096))) (-2121 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2132 (*1 *1 *1 *1) (-5 *1 (-1096)))) -(-13 (-537) (-643) (-811) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -4093 ($)) (-15 -1816 ($)) (-15 -1681 ($ $)) (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2142 ($ $)) (-15 -2121 ($ $ $)) (-15 -2132 ($ $ $)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2240 ((|#1| $) 44)) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3468 ((|#1| |#1| $) 46)) (-3846 ((|#1| $) 45)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4170 (((-754) $) 43)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1097 |#1|) (-137) (-1189)) (T -1097)) -((-3468 (*1 *2 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -3468 (|t#1| |t#1| $)) (-15 -3846 (|t#1| $)) (-15 -2240 (|t#1| $)) (-15 -4170 ((-754) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3385 ((|#3| $) 76)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#3| $) 37)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) 73) (((-671 |#3|) (-671 $)) 65)) (-2942 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-3877 ((|#3| $) 78)) (-2372 ((|#4| $) 32)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#3|) 16)) (** (($ $ (-900)) NIL) (($ $ (-754)) 15) (($ $ (-552)) 82))) -(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3877 (|#3| |#1|)) (-15 -3385 (|#3| |#1|)) (-15 -2372 (|#4| |#1|)) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -1477 ((-842) |#1|))) (-1099 |#2| |#3| |#4| |#5|) (-754) (-1028) (-233 |#2| |#3|) (-233 |#2| |#3|)) (T -1098)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3877 (|#3| |#1|)) (-15 -3385 (|#3| |#1|)) (-15 -2372 (|#4| |#1|)) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3385 ((|#2| $) 70)) (-2311 (((-111) $) 110)) (-4136 (((-3 $ "failed") $ $) 19)) (-3944 (((-111) $) 108)) (-4031 (((-111) $ (-754)) 100)) (-1665 (($ |#2|) 73)) (-3887 (($) 17 T CONST)) (-1472 (($ $) 127 (|has| |#2| (-301)))) (-3884 ((|#3| $ (-552)) 122)) (-4039 (((-3 (-552) "failed") $) 84 (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 82 (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) 79)) (-1703 (((-552) $) 85 (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) 83 (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) 78)) (-1800 (((-671 (-552)) (-671 $)) 77 (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 76 (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 75) (((-671 |#2|) (-671 $)) 74)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-754) $) 128 (|has| |#2| (-544)))) (-3413 ((|#2| $ (-552) (-552)) 120)) (-3215 (((-627 |#2|) $) 93 (|has| $ (-6 -4366)))) (-2624 (((-111) $) 30)) (-1610 (((-754) $) 129 (|has| |#2| (-544)))) (-2960 (((-627 |#4|) $) 130 (|has| |#2| (-544)))) (-3560 (((-754) $) 116)) (-3572 (((-754) $) 117)) (-1602 (((-111) $ (-754)) 101)) (-1744 ((|#2| $) 65 (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) 112)) (-3511 (((-552) $) 114)) (-3114 (((-627 |#2|) $) 92 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 113)) (-2780 (((-552) $) 115)) (-4176 (($ (-627 (-627 |#2|))) 107)) (-3463 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3127 (((-627 (-627 |#2|)) $) 118)) (-3971 (((-111) $ (-754)) 102)) (-1595 (((-1134) $) 9)) (-2952 (((-3 $ "failed") $) 64 (|has| |#2| (-357)))) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 89 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 88 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 106)) (-1275 (((-111) $) 103)) (-2373 (($) 104)) (-1985 ((|#2| $ (-552) (-552) |#2|) 121) ((|#2| $ (-552) (-552)) 119)) (-2942 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-754)) 49) (($ $ (-627 (-1152)) (-627 (-754))) 42 (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) 41 (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) 40 (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) 39 (|has| |#2| (-879 (-1152)))) (($ $ (-754)) 37 (|has| |#2| (-228))) (($ $) 35 (|has| |#2| (-228)))) (-3877 ((|#2| $) 69)) (-3202 (($ (-627 |#2|)) 72)) (-4064 (((-111) $) 109)) (-2372 ((|#3| $) 71)) (-1530 ((|#2| $) 66 (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4366))) (((-754) |#2| $) 91 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 105)) (-2152 ((|#4| $ (-552)) 123)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 81 (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) 80)) (-3995 (((-754)) 28)) (-3299 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 111)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-754)) 47) (($ $ (-627 (-1152)) (-627 (-754))) 46 (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) 45 (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) 44 (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) 43 (|has| |#2| (-879 (-1152)))) (($ $ (-754)) 38 (|has| |#2| (-228))) (($ $) 36 (|has| |#2| (-228)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#2|) 126 (|has| |#2| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 63 (|has| |#2| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-1383 (((-754) $) 99 (|has| $ (-6 -4366))))) -(((-1099 |#1| |#2| |#3| |#4|) (-137) (-754) (-1028) (-233 |t#1| |t#2|) (-233 |t#1| |t#2|)) (T -1099)) -((-1665 (*1 *1 *2) (-12 (-4 *2 (-1028)) (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *4)) (-4 *4 (-1028)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1028)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1028)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *2 (-233 *3 *4)) (-4 *5 (-233 *3 *4)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-2952 (*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357))))) -(-13 (-226 |t#2|) (-110 |t#2| |t#2|) (-1031 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-371 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-700 |t#2|)) |%noBranch|) (-15 -1665 ($ |t#2|)) (-15 -3202 ($ (-627 |t#2|))) (-15 -2372 (|t#3| $)) (-15 -3385 (|t#2| $)) (-15 -3877 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4368 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1530 (|t#2| $)) (-15 -1744 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-357)) (PROGN (-15 -2952 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4368 "*"))) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-226 |#2|) . T) ((-228) |has| |#2| (-228)) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-371 |#2|) . T) ((-405 |#2|) . T) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-630 |#2|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#2| (-623 (-552))) ((-623 |#2|) . T) ((-700 |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-6 (-4368 "*")))) ((-709) . T) ((-879 (-1152)) |has| |#2| (-879 (-1152))) ((-1031 |#1| |#1| |#2| |#3| |#4|) . T) ((-1017 (-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#2| (-1017 (-552))) ((-1017 |#2|) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1189) . T)) -((-1448 ((|#4| |#4|) 70)) (-1324 ((|#4| |#4|) 65)) (-1716 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|) 78)) (-3129 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2881 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1100 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| |#4|)) (-15 -2881 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1448 (|#4| |#4|)) (-15 -3129 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1716 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|))) (-301) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -1100)) -((-1716 (*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-1100 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-3129 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1324 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -1324 (|#4| |#4|)) (-15 -2881 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1448 (|#4| |#4|)) (-15 -3129 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1716 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 17)) (-1853 (((-627 |#2|) $) 159)) (-1694 (((-1148 $) $ |#2|) 54) (((-1148 |#1|) $) 43)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 108 (|has| |#1| (-544)))) (-3245 (($ $) 110 (|has| |#1| (-544)))) (-4058 (((-111) $) 112 (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#2|)) 192)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 156) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#2| "failed") $) NIL)) (-1703 ((|#1| $) 154) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#2| $) NIL)) (-3116 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-2014 (($ $) 196)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 82)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 |#2|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) 19)) (-3522 (((-754) $) 26)) (-1842 (($ (-1148 |#1|) |#2|) 48) (($ (-1148 $) |#2|) 64)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) 32)) (-1832 (($ |#1| (-523 |#2|)) 71) (($ $ |#2| (-754)) 52) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-3465 (((-523 |#2|) $) 186) (((-754) $ |#2|) 187) (((-627 (-754)) $ (-627 |#2|)) 188)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 120)) (-2685 (((-3 |#2| "failed") $) 161)) (-1981 (($ $) 195)) (-1993 ((|#1| $) 37)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 33)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 138 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 143 (|has| |#1| (-445))) (($ $ $) 130 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-627 |#2|) (-627 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-627 |#2|) (-627 $)) 176)) (-1637 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#2|) 194) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) 182) (((-754) $ |#2|) 178) (((-627 (-754)) $ (-627 |#2|)) 180)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#1| $) 126 (|has| |#1| (-445))) (($ $ |#2|) 129 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 149) (($ (-552)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 152)) (-1889 ((|#1| $ (-523 |#2|)) 73) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 79)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) 115 (|has| |#1| (-544)))) (-1922 (($) 12 T CONST)) (-1933 (($) 14 T CONST)) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 97)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 124 (|has| |#1| (-357)))) (-2396 (($ $) 85) (($ $ $) 95)) (-2384 (($ $ $) 49)) (** (($ $ (-900)) 102) (($ $ (-754)) 100)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 88) (($ $ $) 65) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1101 |#1| |#2|) (-928 |#1| (-523 |#2|) |#2|) (-1028) (-830)) (T -1101)) -NIL -(-928 |#1| (-523 |#2|) |#2|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-1607 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2212 (((-931 |#1|) $ (-754)) NIL) (((-931 |#1|) $ (-754) (-754)) NIL)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ |#2|) NIL) (((-754) $ |#2| (-754)) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) NIL)) (-1832 (($ $ (-627 |#2|) (-627 (-523 |#2|))) NIL) (($ $ |#2| (-523 |#2|)) NIL) (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-754)) 56) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $ |#2|) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2315 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-401 (-552)))))) (-4168 (($ $ (-754)) 13)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ |#2| $) 95) (($ $ (-627 |#2|) (-627 $)) 88) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL)) (-2942 (($ $ |#2|) 98) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) NIL)) (-1560 (((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|))) 77)) (-1640 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 15)) (-1477 (((-842) $) 180) (($ (-552)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#2|) 63) (($ |#3|) 61)) (-1889 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL) ((|#3| $ (-754)) 38)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1673 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 47 T CONST)) (-1933 (($) 55 T CONST)) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) 182 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 59)) (** (($ $ (-900)) NIL) (($ $ (-754)) 68) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 101 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 58) (($ $ (-401 (-552))) 106 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 104 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1102 |#1| |#2| |#3|) (-13 (-723 |#1| |#2|) (-10 -8 (-15 -1889 (|#3| $ (-754))) (-15 -1477 ($ |#2|)) (-15 -1477 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1560 ((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |#2| |#1|)) (-15 -2315 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1028) (-830) (-928 |#1| (-523 |#2|) |#2|)) (T -1102)) -((-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *2 (-928 *4 (-523 *5) *5)) (-5 *1 (-1102 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) (-4 *2 (-928 *3 (-523 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) (-4 *2 (-928 *3 (-523 *4) *4)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1132 *7))) (-4 *6 (-830)) (-4 *7 (-928 *5 (-523 *6) *6)) (-4 *5 (-1028)) (-5 *2 (-1 (-1132 *7) *7)) (-5 *1 (-1102 *5 *6 *7)))) (-2747 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) (-2315 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1102 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *1 (-1102 *4 *3 *5)) (-4 *5 (-928 *4 (-523 *3) *3))))) -(-13 (-723 |#1| |#2|) (-10 -8 (-15 -1889 (|#3| $ (-754))) (-15 -1477 ($ |#2|)) (-15 -1477 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1560 ((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |#2| |#1|)) (-15 -2315 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-1103 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1103)) -NIL -(-13 (-1085 |t#1| |t#2| |t#3| |t#4|) (-767 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-767 |#1| |#2| |#3| |#4|) . T) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1085 |#1| |#2| |#3| |#4|) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) -((-1696 (((-627 |#2|) |#1|) 12)) (-1907 (((-627 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-627 |#2|) |#1|) 52)) (-3653 (((-627 |#2|) |#2| |#2| |#2|) 39) (((-627 |#2|) |#1|) 50)) (-3313 ((|#2| |#1|) 46)) (-1895 (((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2191 (((-627 |#2|) |#2| |#2|) 38) (((-627 |#2|) |#1|) 49)) (-2183 (((-627 |#2|) |#2| |#2| |#2| |#2|) 40) (((-627 |#2|) |#1|) 51)) (-3199 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3150 ((|#2| |#2| |#2| |#2|) 43)) (-3458 ((|#2| |#2| |#2|) 42)) (-2811 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -1696 ((-627 |#2|) |#1|)) (-15 -3313 (|#2| |#1|)) (-15 -1895 ((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2191 ((-627 |#2|) |#1|)) (-15 -3653 ((-627 |#2|) |#1|)) (-15 -2183 ((-627 |#2|) |#1|)) (-15 -1907 ((-627 |#2|) |#1|)) (-15 -2191 ((-627 |#2|) |#2| |#2|)) (-15 -3653 ((-627 |#2|) |#2| |#2| |#2|)) (-15 -2183 ((-627 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1907 ((-627 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3458 (|#2| |#2| |#2|)) (-15 -3150 (|#2| |#2| |#2| |#2|)) (-15 -2811 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3199 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1211 |#2|) (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (T -1104)) -((-3199 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-2811 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-3150 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-3458 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-1907 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-2183 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-3653 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-2191 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-2 (|:| |solns| (-627 *5)) (|:| |maps| (-627 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1104 *3 *5)) (-4 *3 (-1211 *5)))) (-3313 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1696 ((-627 |#2|) |#1|)) (-15 -3313 (|#2| |#1|)) (-15 -1895 ((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2191 ((-627 |#2|) |#1|)) (-15 -3653 ((-627 |#2|) |#1|)) (-15 -2183 ((-627 |#2|) |#1|)) (-15 -1907 ((-627 |#2|) |#1|)) (-15 -2191 ((-627 |#2|) |#2| |#2|)) (-15 -3653 ((-627 |#2|) |#2| |#2| |#2|)) (-15 -2183 ((-627 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1907 ((-627 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3458 (|#2| |#2| |#2|)) (-15 -3150 (|#2| |#2| |#2| |#2|)) (-15 -2811 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3199 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1921 (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|))))) 95) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152))) 94) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|)))) 92) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 90) (((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|)))) 75) (((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152)) 76) (((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|))) 70) (((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152)) 59)) (-1571 (((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 88) (((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152)) 43)) (-4072 (((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)) 98) (((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152)) 97))) -(((-1105 |#1|) (-10 -7 (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1571 ((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -1571 ((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)))) (-13 (-301) (-830) (-144))) (T -1105)) -((-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-310 *5)))) (-5 *1 (-1105 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-310 *5))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 *5))))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1105 *5))))) -(-10 -7 (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1571 ((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -1571 ((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)))) -((-2327 (((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)) 29)) (-1609 (((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|)))) 40))) -(((-1106 |#1|) (-10 -7 (-15 -1609 ((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))))) (-15 -2327 ((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)))) (-13 (-544) (-830))) (T -1106)) -((-2327 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-401 (-1148 (-310 *5)))) (-5 *3 (-1235 (-310 *5))) (-5 *4 (-552)) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-1106 *5)))) (-1609 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-401 (-1148 (-310 *3)))) (-4 *3 (-13 (-544) (-830))) (-5 *1 (-1106 *3))))) -(-10 -7 (-15 -1609 ((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))))) (-15 -2327 ((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)))) -((-1696 (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))) 224) (((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152)) 20) (((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152)) 26) (((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|))) 25) (((-627 (-288 (-310 |#1|))) (-310 |#1|)) 21))) -(((-1107 |#1|) (-10 -7 (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152))) (-15 -1696 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (T -1107)) -((-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1107 *5)) (-5 *3 (-627 (-288 (-310 *5)))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-310 *5)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-288 (-310 *5))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-288 (-310 *4))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-310 *4))))) -(-10 -7 (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152))) (-15 -1696 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))))) -((-3587 ((|#2| |#2|) 20 (|has| |#1| (-830))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-1983 ((|#2| |#2|) 19 (|has| |#1| (-830))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -1983 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3587 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-830)) (PROGN (-15 -1983 (|#2| |#2|)) (-15 -3587 (|#2| |#2|))) |%noBranch|)) (-1189) (-13 (-590 (-552) |#1|) (-10 -7 (-6 -4366) (-6 -4367)))) (T -1108)) -((-3587 (*1 *2 *2) (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367)))))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367)))))) (-3587 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367))))))) -(-10 -7 (-15 -1983 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3587 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-830)) (PROGN (-15 -1983 (|#2| |#2|)) (-15 -3587 (|#2| |#2|))) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-3757 (((-1140 3 |#1|) $) 107)) (-2018 (((-111) $) 72)) (-3561 (($ $ (-627 (-922 |#1|))) 20) (($ $ (-627 (-627 |#1|))) 75) (($ (-627 (-922 |#1|))) 74) (((-627 (-922 |#1|)) $) 73)) (-3855 (((-111) $) 41)) (-1745 (($ $ (-922 |#1|)) 46) (($ $ (-627 |#1|)) 51) (($ $ (-754)) 53) (($ (-922 |#1|)) 47) (((-922 |#1|) $) 45)) (-2690 (((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $) 105)) (-2656 (((-754) $) 26)) (-4080 (((-754) $) 25)) (-2168 (($ $ (-754) (-922 |#1|)) 39)) (-2795 (((-111) $) 82)) (-2331 (($ $ (-627 (-627 (-922 |#1|))) (-627 (-168)) (-168)) 89) (($ $ (-627 (-627 (-627 |#1|))) (-627 (-168)) (-168)) 91) (($ $ (-627 (-627 (-922 |#1|))) (-111) (-111)) 85) (($ $ (-627 (-627 (-627 |#1|))) (-111) (-111)) 93) (($ (-627 (-627 (-922 |#1|)))) 86) (($ (-627 (-627 (-922 |#1|))) (-111) (-111)) 87) (((-627 (-627 (-922 |#1|))) $) 84)) (-3759 (($ (-627 $)) 28) (($ $ $) 29)) (-2774 (((-627 (-168)) $) 102)) (-2050 (((-627 (-922 |#1|)) $) 96)) (-4185 (((-627 (-627 (-168))) $) 101)) (-1520 (((-627 (-627 (-627 (-922 |#1|)))) $) NIL)) (-3100 (((-627 (-627 (-627 (-754)))) $) 99)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2617 (((-754) $ (-627 (-922 |#1|))) 37)) (-2261 (((-111) $) 54)) (-2139 (($ $ (-627 (-922 |#1|))) 56) (($ $ (-627 (-627 |#1|))) 62) (($ (-627 (-922 |#1|))) 57) (((-627 (-922 |#1|)) $) 55)) (-3764 (($) 23) (($ (-1140 3 |#1|)) 24)) (-2973 (($ $) 35)) (-4186 (((-627 $) $) 34)) (-2749 (($ (-627 $)) 31)) (-2921 (((-627 $) $) 33)) (-1477 (((-842) $) 111)) (-3167 (((-111) $) 64)) (-3711 (($ $ (-627 (-922 |#1|))) 66) (($ $ (-627 (-627 |#1|))) 69) (($ (-627 (-922 |#1|))) 67) (((-627 (-922 |#1|)) $) 65)) (-3184 (($ $) 106)) (-2292 (((-111) $ $) NIL))) -(((-1109 |#1|) (-1110 |#1|) (-1028)) (T -1109)) -NIL -(-1110 |#1|) -((-1465 (((-111) $ $) 7)) (-3757 (((-1140 3 |#1|) $) 13)) (-2018 (((-111) $) 29)) (-3561 (($ $ (-627 (-922 |#1|))) 33) (($ $ (-627 (-627 |#1|))) 32) (($ (-627 (-922 |#1|))) 31) (((-627 (-922 |#1|)) $) 30)) (-3855 (((-111) $) 44)) (-1745 (($ $ (-922 |#1|)) 49) (($ $ (-627 |#1|)) 48) (($ $ (-754)) 47) (($ (-922 |#1|)) 46) (((-922 |#1|) $) 45)) (-2690 (((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $) 15)) (-2656 (((-754) $) 58)) (-4080 (((-754) $) 59)) (-2168 (($ $ (-754) (-922 |#1|)) 50)) (-2795 (((-111) $) 21)) (-2331 (($ $ (-627 (-627 (-922 |#1|))) (-627 (-168)) (-168)) 28) (($ $ (-627 (-627 (-627 |#1|))) (-627 (-168)) (-168)) 27) (($ $ (-627 (-627 (-922 |#1|))) (-111) (-111)) 26) (($ $ (-627 (-627 (-627 |#1|))) (-111) (-111)) 25) (($ (-627 (-627 (-922 |#1|)))) 24) (($ (-627 (-627 (-922 |#1|))) (-111) (-111)) 23) (((-627 (-627 (-922 |#1|))) $) 22)) (-3759 (($ (-627 $)) 57) (($ $ $) 56)) (-2774 (((-627 (-168)) $) 16)) (-2050 (((-627 (-922 |#1|)) $) 20)) (-4185 (((-627 (-627 (-168))) $) 17)) (-1520 (((-627 (-627 (-627 (-922 |#1|)))) $) 18)) (-3100 (((-627 (-627 (-627 (-754)))) $) 19)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2617 (((-754) $ (-627 (-922 |#1|))) 51)) (-2261 (((-111) $) 39)) (-2139 (($ $ (-627 (-922 |#1|))) 43) (($ $ (-627 (-627 |#1|))) 42) (($ (-627 (-922 |#1|))) 41) (((-627 (-922 |#1|)) $) 40)) (-3764 (($) 61) (($ (-1140 3 |#1|)) 60)) (-2973 (($ $) 52)) (-4186 (((-627 $) $) 53)) (-2749 (($ (-627 $)) 55)) (-2921 (((-627 $) $) 54)) (-1477 (((-842) $) 11)) (-3167 (((-111) $) 34)) (-3711 (($ $ (-627 (-922 |#1|))) 38) (($ $ (-627 (-627 |#1|))) 37) (($ (-627 (-922 |#1|))) 36) (((-627 (-922 |#1|)) $) 35)) (-3184 (($ $) 14)) (-2292 (((-111) $ $) 6))) -(((-1110 |#1|) (-137) (-1028)) (T -1110)) -((-1477 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-842)))) (-3764 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-1140 3 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2921 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)))) (-4186 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)))) (-2973 (*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-2617 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-922 *4))) (-4 *1 (-1110 *4)) (-4 *4 (-1028)) (-5 *2 (-754)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-922 *4)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-922 *3)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2331 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-627 (-922 *5)))) (-5 *3 (-627 (-168))) (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-627 (-168))) (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-111)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 *3)))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-2331 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *4 (-1028)) (-4 *1 (-1110 *4)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-922 *3)))))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-627 (-754))))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-627 (-922 *3))))))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-168)))))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-168))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754)))))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-1140 3 *3))))) -(-13 (-1076) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ (-1140 3 |t#1|))) (-15 -4080 ((-754) $)) (-15 -2656 ((-754) $)) (-15 -3759 ($ (-627 $))) (-15 -3759 ($ $ $)) (-15 -2749 ($ (-627 $))) (-15 -2921 ((-627 $) $)) (-15 -4186 ((-627 $) $)) (-15 -2973 ($ $)) (-15 -2617 ((-754) $ (-627 (-922 |t#1|)))) (-15 -2168 ($ $ (-754) (-922 |t#1|))) (-15 -1745 ($ $ (-922 |t#1|))) (-15 -1745 ($ $ (-627 |t#1|))) (-15 -1745 ($ $ (-754))) (-15 -1745 ($ (-922 |t#1|))) (-15 -1745 ((-922 |t#1|) $)) (-15 -3855 ((-111) $)) (-15 -2139 ($ $ (-627 (-922 |t#1|)))) (-15 -2139 ($ $ (-627 (-627 |t#1|)))) (-15 -2139 ($ (-627 (-922 |t#1|)))) (-15 -2139 ((-627 (-922 |t#1|)) $)) (-15 -2261 ((-111) $)) (-15 -3711 ($ $ (-627 (-922 |t#1|)))) (-15 -3711 ($ $ (-627 (-627 |t#1|)))) (-15 -3711 ($ (-627 (-922 |t#1|)))) (-15 -3711 ((-627 (-922 |t#1|)) $)) (-15 -3167 ((-111) $)) (-15 -3561 ($ $ (-627 (-922 |t#1|)))) (-15 -3561 ($ $ (-627 (-627 |t#1|)))) (-15 -3561 ($ (-627 (-922 |t#1|)))) (-15 -3561 ((-627 (-922 |t#1|)) $)) (-15 -2018 ((-111) $)) (-15 -2331 ($ $ (-627 (-627 (-922 |t#1|))) (-627 (-168)) (-168))) (-15 -2331 ($ $ (-627 (-627 (-627 |t#1|))) (-627 (-168)) (-168))) (-15 -2331 ($ $ (-627 (-627 (-922 |t#1|))) (-111) (-111))) (-15 -2331 ($ $ (-627 (-627 (-627 |t#1|))) (-111) (-111))) (-15 -2331 ($ (-627 (-627 (-922 |t#1|))))) (-15 -2331 ($ (-627 (-627 (-922 |t#1|))) (-111) (-111))) (-15 -2331 ((-627 (-627 (-922 |t#1|))) $)) (-15 -2795 ((-111) $)) (-15 -2050 ((-627 (-922 |t#1|)) $)) (-15 -3100 ((-627 (-627 (-627 (-754)))) $)) (-15 -1520 ((-627 (-627 (-627 (-922 |t#1|)))) $)) (-15 -4185 ((-627 (-627 (-168))) $)) (-15 -2774 ((-627 (-168)) $)) (-15 -2690 ((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $)) (-15 -3184 ($ $)) (-15 -3757 ((-1140 3 |t#1|) $)) (-15 -1477 ((-842) $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 176) (((-1157) $) 7) (($ (-1157)) NIL)) (-1911 (((-111) $ (|[\|\|]| (-516))) 17) (((-111) $ (|[\|\|]| (-213))) 21) (((-111) $ (|[\|\|]| (-658))) 25) (((-111) $ (|[\|\|]| (-1245))) 29) (((-111) $ (|[\|\|]| (-136))) 33) (((-111) $ (|[\|\|]| (-131))) 37) (((-111) $ (|[\|\|]| (-1091))) 41) (((-111) $ (|[\|\|]| (-95))) 45) (((-111) $ (|[\|\|]| (-663))) 49) (((-111) $ (|[\|\|]| (-509))) 53) (((-111) $ (|[\|\|]| (-1043))) 57) (((-111) $ (|[\|\|]| (-1246))) 61) (((-111) $ (|[\|\|]| (-517))) 65) (((-111) $ (|[\|\|]| (-151))) 69) (((-111) $ (|[\|\|]| (-653))) 73) (((-111) $ (|[\|\|]| (-305))) 77) (((-111) $ (|[\|\|]| (-1015))) 81) (((-111) $ (|[\|\|]| (-177))) 85) (((-111) $ (|[\|\|]| (-949))) 89) (((-111) $ (|[\|\|]| (-1050))) 93) (((-111) $ (|[\|\|]| (-1066))) 97) (((-111) $ (|[\|\|]| (-1072))) 101) (((-111) $ (|[\|\|]| (-610))) 105) (((-111) $ (|[\|\|]| (-1142))) 109) (((-111) $ (|[\|\|]| (-153))) 113) (((-111) $ (|[\|\|]| (-135))) 117) (((-111) $ (|[\|\|]| (-471))) 121) (((-111) $ (|[\|\|]| (-579))) 125) (((-111) $ (|[\|\|]| (-498))) 131) (((-111) $ (|[\|\|]| (-1134))) 135) (((-111) $ (|[\|\|]| (-552))) 139)) (-3007 (((-516) $) 18) (((-213) $) 22) (((-658) $) 26) (((-1245) $) 30) (((-136) $) 34) (((-131) $) 38) (((-1091) $) 42) (((-95) $) 46) (((-663) $) 50) (((-509) $) 54) (((-1043) $) 58) (((-1246) $) 62) (((-517) $) 66) (((-151) $) 70) (((-653) $) 74) (((-305) $) 78) (((-1015) $) 82) (((-177) $) 86) (((-949) $) 90) (((-1050) $) 94) (((-1066) $) 98) (((-1072) $) 102) (((-610) $) 106) (((-1142) $) 110) (((-153) $) 114) (((-135) $) 118) (((-471) $) 122) (((-579) $) 126) (((-498) $) 132) (((-1134) $) 136) (((-552) $) 140)) (-2292 (((-111) $ $) NIL))) -(((-1111) (-1113)) (T -1111)) -NIL -(-1113) -((-4043 (((-627 (-1157)) (-1134)) 9))) -(((-1112) (-10 -7 (-15 -4043 ((-627 (-1157)) (-1134))))) (T -1112)) -((-4043 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-1112))))) -(-10 -7 (-15 -4043 ((-627 (-1157)) (-1134)))) -((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-1911 (((-111) $ (|[\|\|]| (-516))) 80) (((-111) $ (|[\|\|]| (-213))) 78) (((-111) $ (|[\|\|]| (-658))) 76) (((-111) $ (|[\|\|]| (-1245))) 74) (((-111) $ (|[\|\|]| (-136))) 72) (((-111) $ (|[\|\|]| (-131))) 70) (((-111) $ (|[\|\|]| (-1091))) 68) (((-111) $ (|[\|\|]| (-95))) 66) (((-111) $ (|[\|\|]| (-663))) 64) (((-111) $ (|[\|\|]| (-509))) 62) (((-111) $ (|[\|\|]| (-1043))) 60) (((-111) $ (|[\|\|]| (-1246))) 58) (((-111) $ (|[\|\|]| (-517))) 56) (((-111) $ (|[\|\|]| (-151))) 54) (((-111) $ (|[\|\|]| (-653))) 52) (((-111) $ (|[\|\|]| (-305))) 50) (((-111) $ (|[\|\|]| (-1015))) 48) (((-111) $ (|[\|\|]| (-177))) 46) (((-111) $ (|[\|\|]| (-949))) 44) (((-111) $ (|[\|\|]| (-1050))) 42) (((-111) $ (|[\|\|]| (-1066))) 40) (((-111) $ (|[\|\|]| (-1072))) 38) (((-111) $ (|[\|\|]| (-610))) 36) (((-111) $ (|[\|\|]| (-1142))) 34) (((-111) $ (|[\|\|]| (-153))) 32) (((-111) $ (|[\|\|]| (-135))) 30) (((-111) $ (|[\|\|]| (-471))) 28) (((-111) $ (|[\|\|]| (-579))) 26) (((-111) $ (|[\|\|]| (-498))) 24) (((-111) $ (|[\|\|]| (-1134))) 22) (((-111) $ (|[\|\|]| (-552))) 20)) (-3007 (((-516) $) 79) (((-213) $) 77) (((-658) $) 75) (((-1245) $) 73) (((-136) $) 71) (((-131) $) 69) (((-1091) $) 67) (((-95) $) 65) (((-663) $) 63) (((-509) $) 61) (((-1043) $) 59) (((-1246) $) 57) (((-517) $) 55) (((-151) $) 53) (((-653) $) 51) (((-305) $) 49) (((-1015) $) 47) (((-177) $) 45) (((-949) $) 43) (((-1050) $) 41) (((-1066) $) 39) (((-1072) $) 37) (((-610) $) 35) (((-1142) $) 33) (((-153) $) 31) (((-135) $) 29) (((-471) $) 27) (((-579) $) 25) (((-498) $) 23) (((-1134) $) 21) (((-552) $) 19)) (-2292 (((-111) $ $) 6))) -(((-1113) (-137)) (T -1113)) -((-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-516)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-213)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-658))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-658)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1245))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1245)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-136)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-131)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1091)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-95)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-663))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-663)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-509)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1043)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1246))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1246)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-517)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-151)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-653))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-653)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-305)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1015))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1015)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-177)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-949)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1050))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1050)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1066)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1072)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-610)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1142)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-153)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-135)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-471)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-579)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-498)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1134)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-552))))) -(-13 (-1059) (-1230) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| (-516)))) (-15 -3007 ((-516) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-213)))) (-15 -3007 ((-213) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-658)))) (-15 -3007 ((-658) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1245)))) (-15 -3007 ((-1245) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-136)))) (-15 -3007 ((-136) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-131)))) (-15 -3007 ((-131) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1091)))) (-15 -3007 ((-1091) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-95)))) (-15 -3007 ((-95) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-663)))) (-15 -3007 ((-663) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-509)))) (-15 -3007 ((-509) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1043)))) (-15 -3007 ((-1043) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1246)))) (-15 -3007 ((-1246) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-517)))) (-15 -3007 ((-517) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-151)))) (-15 -3007 ((-151) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-653)))) (-15 -3007 ((-653) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-305)))) (-15 -3007 ((-305) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1015)))) (-15 -3007 ((-1015) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-177)))) (-15 -3007 ((-177) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-949)))) (-15 -3007 ((-949) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1050)))) (-15 -3007 ((-1050) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1066)))) (-15 -3007 ((-1066) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1072)))) (-15 -3007 ((-1072) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-610)))) (-15 -3007 ((-610) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1142)))) (-15 -3007 ((-1142) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-153)))) (-15 -3007 ((-153) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-135)))) (-15 -3007 ((-135) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-471)))) (-15 -3007 ((-471) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-579)))) (-15 -3007 ((-579) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-498)))) (-15 -3007 ((-498) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1134)))) (-15 -3007 ((-1134) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -3007 ((-552) $)))) -(((-92) . T) ((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T) ((-1059) . T) ((-1230) . T)) -((-1914 (((-1240) (-627 (-842))) 23) (((-1240) (-842)) 22)) (-2237 (((-1240) (-627 (-842))) 21) (((-1240) (-842)) 20)) (-2802 (((-1240) (-627 (-842))) 19) (((-1240) (-842)) 11) (((-1240) (-1134) (-842)) 17))) -(((-1114) (-10 -7 (-15 -2802 ((-1240) (-1134) (-842))) (-15 -2802 ((-1240) (-842))) (-15 -2237 ((-1240) (-842))) (-15 -1914 ((-1240) (-842))) (-15 -2802 ((-1240) (-627 (-842)))) (-15 -2237 ((-1240) (-627 (-842)))) (-15 -1914 ((-1240) (-627 (-842)))))) (T -1114)) -((-1914 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114))))) -(-10 -7 (-15 -2802 ((-1240) (-1134) (-842))) (-15 -2802 ((-1240) (-842))) (-15 -2237 ((-1240) (-842))) (-15 -1914 ((-1240) (-842))) (-15 -2802 ((-1240) (-627 (-842)))) (-15 -2237 ((-1240) (-627 (-842)))) (-15 -1914 ((-1240) (-627 (-842))))) -((-3958 (($ $ $) 10)) (-3709 (($ $) 9)) (-2804 (($ $ $) 13)) (-3396 (($ $ $) 15)) (-3075 (($ $ $) 12)) (-1512 (($ $ $) 14)) (-3794 (($ $) 17)) (-2039 (($ $) 16)) (-3329 (($ $) 6)) (-1393 (($ $ $) 11) (($ $) 7)) (-1974 (($ $ $) 8))) +((-2719 (((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|)) 37)) (-2145 (((-552) (-1210 |#2| |#1|)) 69 (|has| |#1| (-445)))) (-3277 (((-552) (-1210 |#2| |#1|)) 54)) (-2204 (((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|)) 45)) (-4341 (((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|)) 68 (|has| |#1| (-445)))) (-2868 (((-629 |#1|) (-1210 |#2| |#1|) (-1210 |#2| |#1|)) 48)) (-2870 (((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|)) 53))) +(((-1092 |#1| |#2|) (-10 -7 (-15 -2719 ((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2204 ((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2868 ((-629 |#1|) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2870 ((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -3277 ((-552) (-1210 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -4341 ((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2145 ((-552) (-1210 |#2| |#1|)))) |%noBranch|)) (-805) (-1154)) (T -1092)) +((-2145 (*1 *2 *3) (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-445)) (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5)))) (-4341 (*1 *2 *3 *3) (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-445)) (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5)))) (-2870 (*1 *2 *3 *3) (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5)))) (-2868 (*1 *2 *3 *3) (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-629 *4)) (-5 *1 (-1092 *4 *5)))) (-2204 (*1 *2 *3 *3) (-12 (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-629 (-1210 *5 *4))) (-5 *1 (-1092 *4 *5)) (-5 *3 (-1210 *5 *4)))) (-2719 (*1 *2 *3 *3) (-12 (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-629 (-1210 *5 *4))) (-5 *1 (-1092 *4 *5)) (-5 *3 (-1210 *5 *4))))) +(-10 -7 (-15 -2719 ((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2204 ((-629 (-1210 |#2| |#1|)) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2868 ((-629 |#1|) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2870 ((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -3277 ((-552) (-1210 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -4341 ((-552) (-1210 |#2| |#1|) (-1210 |#2| |#1|))) (-15 -2145 ((-552) (-1210 |#2| |#1|)))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-2905 (($ (-498) (-1096)) 14)) (-1337 (((-1096) $) 20)) (-4290 (((-498) $) 17)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 28) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1093) (-13 (-1061) (-10 -8 (-15 -2905 ($ (-498) (-1096))) (-15 -4290 ((-498) $)) (-15 -1337 ((-1096) $))))) (T -1093)) +((-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1096)) (-5 *1 (-1093)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1093)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1093))))) +(-13 (-1061) (-10 -8 (-15 -2905 ($ (-498) (-1096))) (-15 -4290 ((-498) $)) (-15 -1337 ((-1096) $)))) +((-3886 (((-3 (-552) "failed") |#2| (-1154) |#2| (-1136)) 17) (((-3 (-552) "failed") |#2| (-1154) (-825 |#2|)) 15) (((-3 (-552) "failed") |#2|) 54))) +(((-1094 |#1| |#2|) (-10 -7 (-15 -3886 ((-3 (-552) "failed") |#2|)) (-15 -3886 ((-3 (-552) "failed") |#2| (-1154) (-825 |#2|))) (-15 -3886 ((-3 (-552) "failed") |#2| (-1154) |#2| (-1136)))) (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)) (-445)) (-13 (-27) (-1176) (-424 |#1|))) (T -1094)) +((-3886 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-1136)) (-4 *6 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1094 *6 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))))) (-3886 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-825 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) (-4 *6 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1094 *6 *3)))) (-3886 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4)))))) +(-10 -7 (-15 -3886 ((-3 (-552) "failed") |#2|)) (-15 -3886 ((-3 (-552) "failed") |#2| (-1154) (-825 |#2|))) (-15 -3886 ((-3 (-552) "failed") |#2| (-1154) |#2| (-1136)))) +((-3886 (((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|)) (-1136)) 35) (((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-825 (-401 (-933 |#1|)))) 30) (((-3 (-552) "failed") (-401 (-933 |#1|))) 13))) +(((-1095 |#1|) (-10 -7 (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)))) (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-825 (-401 (-933 |#1|))))) (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|)) (-1136)))) (-445)) (T -1095)) +((-3886 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-401 (-933 *6))) (-5 *4 (-1154)) (-5 *5 (-1136)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1095 *6)))) (-3886 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-825 (-401 (-933 *6)))) (-5 *3 (-401 (-933 *6))) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1095 *6)))) (-3886 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-445)) (-5 *2 (-552)) (-5 *1 (-1095 *4))))) +(-10 -7 (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)))) (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-825 (-401 (-933 |#1|))))) (-15 -3886 ((-3 (-552) "failed") (-401 (-933 |#1|)) (-1154) (-401 (-933 |#1|)) (-1136)))) +((-3202 (((-111) $ $) NIL)) (-1355 (((-1159) $) 10)) (-2536 (((-629 (-1159)) $) 11)) (-1337 (($ (-629 (-1159)) (-1159)) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 20)) (-1613 (((-111) $ $) 14))) +(((-1096) (-13 (-1078) (-10 -8 (-15 -1337 ($ (-629 (-1159)) (-1159))) (-15 -1355 ((-1159) $)) (-15 -2536 ((-629 (-1159)) $))))) (T -1096)) +((-1337 (*1 *1 *2 *3) (-12 (-5 *2 (-629 (-1159))) (-5 *3 (-1159)) (-5 *1 (-1096)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1096)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1096))))) +(-13 (-1078) (-10 -8 (-15 -1337 ($ (-629 (-1159)) (-1159))) (-15 -1355 ((-1159) $)) (-15 -2536 ((-629 (-1159)) $)))) +((-3501 (((-310 (-552)) (-48)) 12))) +(((-1097) (-10 -7 (-15 -3501 ((-310 (-552)) (-48))))) (T -1097)) +((-3501 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1097))))) +(-10 -7 (-15 -3501 ((-310 (-552)) (-48)))) +((-3202 (((-111) $ $) NIL)) (-3072 (($ $) 41)) (-3643 (((-111) $) 65)) (-2520 (($ $ $) 48)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 86)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4025 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2704 (($ $ $ $) 75)) (-4116 (($ $) NIL)) (-3343 (((-412 $) $) NIL)) (-2393 (((-111) $ $) NIL)) (-3886 (((-552) $) NIL)) (-1603 (($ $ $) 72)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL)) (-2832 (((-552) $) NIL)) (-4006 (($ $ $) 59)) (-2714 (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 80) (((-673 (-552)) (-673 $)) 28)) (-1293 (((-3 $ "failed") $) NIL)) (-2674 (((-3 (-401 (-552)) "failed") $) NIL)) (-2443 (((-111) $) NIL)) (-3777 (((-401 (-552)) $) NIL)) (-1332 (($) 83) (($ $) 84)) (-3987 (($ $ $) 58)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL)) (-1677 (((-111) $) NIL)) (-1299 (($ $ $ $) NIL)) (-2990 (($ $ $) 81)) (-1338 (((-111) $) NIL)) (-2048 (($ $ $) NIL)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL)) (-4065 (((-111) $) 66)) (-3302 (((-111) $) 64)) (-4107 (($ $) 42)) (-2032 (((-3 $ "failed") $) NIL)) (-3127 (((-111) $) 76)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-1760 (($ $ $ $) 73)) (-1772 (($ $ $) 68) (($) 39)) (-2011 (($ $ $) 67) (($) 38)) (-3922 (($ $) NIL)) (-2556 (($ $) 71)) (-2552 (($ $ $) NIL) (($ (-629 $)) NIL)) (-2623 (((-1136) $) NIL)) (-3198 (($ $ $) NIL)) (-1977 (($) NIL T CONST)) (-3864 (($ $) 50)) (-2876 (((-1098) $) 70)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL)) (-2594 (($ $ $) 62) (($ (-629 $)) NIL)) (-2006 (($ $) NIL)) (-3479 (((-412 $) $) NIL)) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL)) (-3969 (((-3 $ "failed") $ $) NIL)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL)) (-3117 (((-111) $) NIL)) (-3795 (((-756) $) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 61)) (-3096 (($ $ (-756)) NIL) (($ $) NIL)) (-2045 (($ $) 51)) (-1487 (($ $) NIL)) (-1522 (((-552) $) 32) (((-528) $) NIL) (((-873 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL)) (-3213 (((-844) $) 31) (($ (-552)) 82) (($ $) NIL) (($ (-552)) 82)) (-2014 (((-756)) NIL)) (-3246 (((-111) $ $) NIL)) (-2075 (($ $ $) NIL)) (-4174 (($) 37)) (-3589 (((-111) $ $) NIL)) (-3182 (($ $ $ $) 74)) (-1578 (($ $) 63)) (-2038 (($ $ $) 44)) (-3297 (($) 35 T CONST)) (-2345 (($ $ $) 47)) (-3309 (($) 36 T CONST)) (-3016 (((-1136) $) 21) (((-1136) $ (-111)) 23) (((-1242) (-807) $) 24) (((-1242) (-807) $ (-111)) 25)) (-2358 (($ $) 45)) (-1765 (($ $ (-756)) NIL) (($ $) NIL)) (-2331 (($ $ $) 46)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 40)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 49)) (-2026 (($ $ $) 43)) (-1709 (($ $) 52) (($ $ $) 54)) (-1698 (($ $ $) 53)) (** (($ $ (-902)) NIL) (($ $ (-756)) 57)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 34) (($ $ $) 55))) +(((-1098) (-13 (-537) (-645) (-813) (-10 -8 (-6 -4355) (-6 -4360) (-6 -4356) (-15 -2011 ($)) (-15 -1772 ($)) (-15 -4107 ($ $)) (-15 -3072 ($ $)) (-15 -2026 ($ $ $)) (-15 -2038 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2358 ($ $)) (-15 -2331 ($ $ $)) (-15 -2345 ($ $ $))))) (T -1098)) +((-2038 (*1 *1 *1 *1) (-5 *1 (-1098))) (-2026 (*1 *1 *1 *1) (-5 *1 (-1098))) (-3072 (*1 *1 *1) (-5 *1 (-1098))) (-2011 (*1 *1) (-5 *1 (-1098))) (-1772 (*1 *1) (-5 *1 (-1098))) (-4107 (*1 *1 *1) (-5 *1 (-1098))) (-2520 (*1 *1 *1 *1) (-5 *1 (-1098))) (-2358 (*1 *1 *1) (-5 *1 (-1098))) (-2331 (*1 *1 *1 *1) (-5 *1 (-1098))) (-2345 (*1 *1 *1 *1) (-5 *1 (-1098)))) +(-13 (-537) (-645) (-813) (-10 -8 (-6 -4355) (-6 -4360) (-6 -4356) (-15 -2011 ($)) (-15 -1772 ($)) (-15 -4107 ($ $)) (-15 -3072 ($ $)) (-15 -2026 ($ $ $)) (-15 -2038 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2358 ($ $)) (-15 -2331 ($ $ $)) (-15 -2345 ($ $ $)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-3447 ((|#1| $) 44)) (-4238 (((-111) $ (-756)) 8)) (-2130 (($) 7 T CONST)) (-3574 ((|#1| |#1| $) 46)) (-3033 ((|#1| $) 45)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-3105 ((|#1| $) 39)) (-1580 (($ |#1| $) 40)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-3995 ((|#1| $) 41)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-3907 (((-756) $) 43)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) 42)) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1099 |#1|) (-137) (-1191)) (T -1099)) +((-3574 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1191)) (-5 *2 (-756))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4368) (-15 -3574 (|t#1| |t#1| $)) (-15 -3033 (|t#1| $)) (-15 -3447 (|t#1| $)) (-15 -3907 ((-756) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-1549 ((|#3| $) 76)) (-1393 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2832 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#3| $) 37)) (-2714 (((-673 (-552)) (-673 $)) NIL) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL) (((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 $) (-1237 $)) 73) (((-673 |#3|) (-673 $)) 65)) (-3096 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154)) NIL) (($ $ (-756)) NIL) (($ $) NIL)) (-3350 ((|#3| $) 78)) (-3417 ((|#4| $) 32)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#3|) 16)) (** (($ $ (-902)) NIL) (($ $ (-756)) 15) (($ $ (-552)) 82))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3350 (|#3| |#1|)) (-15 -1549 (|#3| |#1|)) (-15 -3417 (|#4| |#1|)) (-15 -2714 ((-673 |#3|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3213 (|#1| |#3|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|) (-756))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3213 (|#1| (-552))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902))) (-15 -3213 ((-844) |#1|))) (-1101 |#2| |#3| |#4| |#5|) (-756) (-1030) (-233 |#2| |#3|) (-233 |#2| |#3|)) (T -1100)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3350 (|#3| |#1|)) (-15 -1549 (|#3| |#1|)) (-15 -3417 (|#4| |#1|)) (-15 -2714 ((-673 |#3|) (-673 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 |#3|)) (|:| |vec| (-1237 |#3|))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 |#1|) (-1237 |#1|))) (-15 -2714 ((-673 (-552)) (-673 |#1|))) (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3213 (|#1| |#3|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-552) |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|) (-756))) (-15 -3096 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3213 (|#1| (-552))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-1549 ((|#2| $) 70)) (-4021 (((-111) $) 110)) (-4012 (((-3 $ "failed") $ $) 19)) (-2779 (((-111) $) 108)) (-4238 (((-111) $ (-756)) 100)) (-3924 (($ |#2|) 73)) (-2130 (($) 17 T CONST)) (-2810 (($ $) 127 (|has| |#2| (-301)))) (-3413 ((|#3| $ (-552)) 122)) (-1393 (((-3 (-552) "failed") $) 84 (|has| |#2| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) 82 (|has| |#2| (-1019 (-401 (-552))))) (((-3 |#2| "failed") $) 79)) (-2832 (((-552) $) 85 (|has| |#2| (-1019 (-552)))) (((-401 (-552)) $) 83 (|has| |#2| (-1019 (-401 (-552))))) ((|#2| $) 78)) (-2714 (((-673 (-552)) (-673 $)) 77 (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 76 (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 75) (((-673 |#2|) (-673 $)) 74)) (-1293 (((-3 $ "failed") $) 32)) (-2128 (((-756) $) 128 (|has| |#2| (-544)))) (-2892 ((|#2| $ (-552) (-552)) 120)) (-3138 (((-629 |#2|) $) 93 (|has| $ (-6 -4368)))) (-4065 (((-111) $) 30)) (-1486 (((-756) $) 129 (|has| |#2| (-544)))) (-4229 (((-629 |#4|) $) 130 (|has| |#2| (-544)))) (-2389 (((-756) $) 116)) (-2401 (((-756) $) 117)) (-1418 (((-111) $ (-756)) 101)) (-3427 ((|#2| $) 65 (|has| |#2| (-6 (-4370 "*"))))) (-3534 (((-552) $) 112)) (-3966 (((-552) $) 114)) (-3278 (((-629 |#2|) $) 92 (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-3660 (((-552) $) 113)) (-3162 (((-552) $) 115)) (-3516 (($ (-629 (-629 |#2|))) 107)) (-2947 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3397 (((-629 (-629 |#2|)) $) 118)) (-1745 (((-111) $ (-756)) 102)) (-2623 (((-1136) $) 9)) (-4156 (((-3 $ "failed") $) 64 (|has| |#2| (-357)))) (-2876 (((-1098) $) 10)) (-3969 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-544)))) (-3944 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) 89 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) 88 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) 106)) (-3435 (((-111) $) 103)) (-3430 (($) 104)) (-2060 ((|#2| $ (-552) (-552) |#2|) 121) ((|#2| $ (-552) (-552)) 119)) (-3096 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-756)) 49) (($ $ (-629 (-1154)) (-629 (-756))) 42 (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) 41 (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) 40 (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) 39 (|has| |#2| (-881 (-1154)))) (($ $ (-756)) 37 (|has| |#2| (-228))) (($ $) 35 (|has| |#2| (-228)))) (-3350 ((|#2| $) 69)) (-2843 (($ (-629 |#2|)) 72)) (-1379 (((-111) $) 109)) (-3417 ((|#3| $) 71)) (-2021 ((|#2| $) 66 (|has| |#2| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4368))) (((-756) |#2| $) 91 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 105)) (-3041 ((|#4| $ (-552)) 123)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 81 (|has| |#2| (-1019 (-401 (-552))))) (($ |#2|) 80)) (-2014 (((-756)) 28)) (-2584 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4368)))) (-3043 (((-111) $) 111)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-756)) 47) (($ $ (-629 (-1154)) (-629 (-756))) 46 (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) 45 (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) 44 (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) 43 (|has| |#2| (-881 (-1154)))) (($ $ (-756)) 38 (|has| |#2| (-228))) (($ $) 36 (|has| |#2| (-228)))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#2|) 126 (|has| |#2| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 63 (|has| |#2| (-357)))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2657 (((-756) $) 99 (|has| $ (-6 -4368))))) +(((-1101 |#1| |#2| |#3| |#4|) (-137) (-756) (-1030) (-233 |t#1| |t#2|) (-233 |t#1| |t#2|)) (T -1101)) +((-3924 (*1 *1 *2) (-12 (-4 *2 (-1030)) (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)))) (-2843 (*1 *1 *2) (-12 (-5 *2 (-629 *4)) (-4 *4 (-1030)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *2 *5)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1030)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1030)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *2 *5)) (-4 *4 (-1030)) (-4 *2 (-233 *3 *4)) (-4 *5 (-233 *3 *4)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) (-4156 (*1 *1 *1) (|partial| -12 (-4 *1 (-1101 *2 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357))))) +(-13 (-226 |t#2|) (-110 |t#2| |t#2|) (-1033 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-371 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-702 |t#2|)) |%noBranch|) (-15 -3924 ($ |t#2|)) (-15 -2843 ($ (-629 |t#2|))) (-15 -3417 (|t#3| $)) (-15 -1549 (|t#2| $)) (-15 -3350 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4370 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2021 (|t#2| $)) (-15 -3427 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-357)) (PROGN (-15 -4156 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4370 "*"))) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-844)) . T) ((-226 |#2|) . T) ((-228) |has| |#2| (-228)) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-371 |#2|) . T) ((-405 |#2|) . T) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-632 |#2|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#2| (-625 (-552))) ((-625 |#2|) . T) ((-702 |#2|) -4029 (|has| |#2| (-169)) (|has| |#2| (-6 (-4370 "*")))) ((-711) . T) ((-881 (-1154)) |has| |#2| (-881 (-1154))) ((-1033 |#1| |#1| |#2| |#3| |#4|) . T) ((-1019 (-401 (-552))) |has| |#2| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#2| (-1019 (-552))) ((-1019 |#2|) . T) ((-1036 |#2|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1191) . T)) +((-3802 ((|#4| |#4|) 70)) (-1985 ((|#4| |#4|) 65)) (-4314 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|) 78)) (-3421 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1597 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1102 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1985 (|#4| |#4|)) (-15 -1597 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3421 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4314 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|))) (-301) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|)) (T -1102)) +((-4314 (*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) (-5 *1 (-1102 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4)))) (-3421 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1102 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-1597 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1102 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) (-1985 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(-10 -7 (-15 -1985 (|#4| |#4|)) (-15 -1597 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3421 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4314 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4199 (-629 |#3|))) |#4| |#3|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 17)) (-3611 (((-629 |#2|) $) 159)) (-3449 (((-1150 $) $ |#2|) 54) (((-1150 |#1|) $) 43)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 108 (|has| |#1| (-544)))) (-3303 (($ $) 110 (|has| |#1| (-544)))) (-1334 (((-111) $) 112 (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 |#2|)) 192)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) 156) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 |#2| "failed") $) NIL)) (-2832 ((|#1| $) 154) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) ((|#2| $) NIL)) (-3301 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-3766 (($ $) 196)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) 82)) (-3471 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-523 |#2|) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| |#1| (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| |#1| (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4065 (((-111) $) 19)) (-2856 (((-756) $) 26)) (-3602 (($ (-1150 |#1|) |#2|) 48) (($ (-1150 $) |#2|) 64)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) 32)) (-3590 (($ |#1| (-523 |#2|)) 71) (($ $ |#2| (-756)) 52) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ |#2|) NIL)) (-3544 (((-523 |#2|) $) 186) (((-756) $ |#2|) 187) (((-629 (-756)) $ (-629 |#2|)) 188)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) 120)) (-3506 (((-3 |#2| "failed") $) 161)) (-3733 (($ $) 195)) (-3743 ((|#1| $) 37)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -1406 (-756))) "failed") $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) 33)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 138 (|has| |#1| (-445)))) (-2594 (($ (-629 $)) 143 (|has| |#1| (-445))) (($ $ $) 130 (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#1| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-890)))) (-3969 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-544)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-629 |#2|) (-629 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-629 |#2|) (-629 $)) 176)) (-1721 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3096 (($ $ |#2|) 194) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-3299 (((-523 |#2|) $) 182) (((-756) $ |#2|) 178) (((-629 (-756)) $ (-629 |#2|)) 180)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| |#1| (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| |#1| (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#1| $) 126 (|has| |#1| (-445))) (($ $ |#2|) 129 (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-3213 (((-844) $) 149) (($ (-552)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-2984 (((-629 |#1|) $) 152)) (-2266 ((|#1| $ (-523 |#2|)) 73) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 79)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) 115 (|has| |#1| (-544)))) (-3297 (($) 12 T CONST)) (-3309 (($) 14 T CONST)) (-1765 (($ $ |#2|) NIL) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 97)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 124 (|has| |#1| (-357)))) (-1709 (($ $) 85) (($ $ $) 95)) (-1698 (($ $ $) 49)) (** (($ $ (-902)) 102) (($ $ (-756)) 100)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 88) (($ $ $) 65) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1103 |#1| |#2|) (-930 |#1| (-523 |#2|) |#2|) (-1030) (-832)) (T -1103)) +NIL +(-930 |#1| (-523 |#2|) |#2|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 |#2|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2478 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-2506 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2211 (((-933 |#1|) $ (-756)) NIL) (((-933 |#1|) $ (-756) (-756)) NIL)) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $ |#2|) NIL) (((-756) $ |#2| (-756)) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2231 (((-111) $) NIL)) (-3590 (($ $ (-629 |#2|) (-629 (-523 |#2|))) NIL) (($ $ |#2| (-523 |#2|)) NIL) (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-756)) 56) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2889 (($ $ |#2|) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-4060 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-401 (-552)))))) (-3136 (($ $ (-756)) 13)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2855 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (($ $ |#2| $) 95) (($ $ (-629 |#2|) (-629 $)) 88) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL)) (-3096 (($ $ |#2|) 98) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-3299 (((-523 |#2|) $) NIL)) (-2281 (((-1 (-1134 |#3|) |#3|) (-629 |#2|) (-629 (-1134 |#3|))) 77)) (-2518 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 15)) (-3213 (((-844) $) 180) (($ (-552)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#2|) 63) (($ |#3|) 61)) (-2266 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL) ((|#3| $ (-756)) 38)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-3843 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-3013 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 47 T CONST)) (-3309 (($) 55 T CONST)) (-1765 (($ $ |#2|) NIL) (($ $ (-629 |#2|)) NIL) (($ $ |#2| (-756)) NIL) (($ $ (-629 |#2|) (-629 (-756))) NIL)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) 182 (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 59)) (** (($ $ (-902)) NIL) (($ $ (-756)) 68) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 101 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 58) (($ $ (-401 (-552))) 106 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 104 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1104 |#1| |#2| |#3|) (-13 (-725 |#1| |#2|) (-10 -8 (-15 -2266 (|#3| $ (-756))) (-15 -3213 ($ |#2|)) (-15 -3213 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2281 ((-1 (-1134 |#3|) |#3|) (-629 |#2|) (-629 (-1134 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $ |#2| |#1|)) (-15 -4060 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1030) (-832) (-930 |#1| (-523 |#2|) |#2|)) (T -1104)) +((-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *2 (-930 *4 (-523 *5) *5)) (-5 *1 (-1104 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-832)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *2 (-832)) (-5 *1 (-1104 *3 *2 *4)) (-4 *4 (-930 *3 (-523 *2) *2)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-5 *1 (-1104 *3 *4 *2)) (-4 *2 (-930 *3 (-523 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-5 *1 (-1104 *3 *4 *2)) (-4 *2 (-930 *3 (-523 *4) *4)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-1134 *7))) (-4 *6 (-832)) (-4 *7 (-930 *5 (-523 *6) *6)) (-4 *5 (-1030)) (-5 *2 (-1 (-1134 *7) *7)) (-5 *1 (-1104 *5 *6 *7)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-4 *2 (-832)) (-5 *1 (-1104 *3 *2 *4)) (-4 *4 (-930 *3 (-523 *2) *2)))) (-4060 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1104 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1030)) (-4 *3 (-832)) (-5 *1 (-1104 *4 *3 *5)) (-4 *5 (-930 *4 (-523 *3) *3))))) +(-13 (-725 |#1| |#2|) (-10 -8 (-15 -2266 (|#3| $ (-756))) (-15 -3213 ($ |#2|)) (-15 -3213 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2281 ((-1 (-1134 |#3|) |#3|) (-629 |#2|) (-629 (-1134 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $ |#2| |#1|)) (-15 -4060 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3202 (((-111) $ $) 7)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) 85)) (-1830 (((-629 $) (-629 |#4|)) 86) (((-629 $) (-629 |#4|) (-111)) 111)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) 101) (((-111) $) 97)) (-2240 ((|#4| |#4| $) 92)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 126)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 79)) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2715 (((-3 $ "failed") $) 82)) (-3126 ((|#4| |#4| $) 89)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2081 ((|#4| |#4| $) 87)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) 105)) (-2851 (((-111) |#4| $) 136)) (-4035 (((-111) |#4| $) 133)) (-3250 (((-111) |#4| $) 137) (((-111) $) 134)) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) 104) (((-111) $) 103)) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) 128)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 127)) (-2680 (((-3 |#4| "failed") $) 83)) (-1999 (((-629 $) |#4| $) 129)) (-4253 (((-3 (-111) (-629 $)) |#4| $) 132)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-4011 (((-629 $) |#4| $) 125) (((-629 $) (-629 |#4|) $) 124) (((-629 $) (-629 |#4|) (-629 $)) 123) (((-629 $) |#4| (-629 $)) 122)) (-2300 (($ |#4| $) 117) (($ (-629 |#4|) $) 116)) (-3887 (((-629 |#4|) $) 107)) (-3287 (((-111) |#4| $) 99) (((-111) $) 95)) (-2498 ((|#4| |#4| $) 90)) (-4343 (((-111) $ $) 110)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) 100) (((-111) $) 96)) (-3848 ((|#4| |#4| $) 91)) (-2876 (((-1098) $) 10)) (-2702 (((-3 |#4| "failed") $) 84)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-1800 (((-3 $ "failed") $ |#4|) 78)) (-3136 (($ $ |#4|) 77) (((-629 $) |#4| $) 115) (((-629 $) |#4| (-629 $)) 114) (((-629 $) (-629 |#4|) $) 113) (((-629 $) (-629 |#4|) (-629 $)) 112)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-3299 (((-756) $) 106)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-3081 (($ $) 88)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-1753 (((-756) $) 76 (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) 98)) (-3933 (((-629 $) |#4| $) 121) (((-629 $) |#4| (-629 $)) 120) (((-629 $) (-629 |#4|) $) 119) (((-629 $) (-629 |#4|) (-629 $)) 118)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) 81)) (-2452 (((-111) |#4| $) 135)) (-2904 (((-111) |#3| $) 80)) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-1105 |#1| |#2| |#3| |#4|) (-137) (-445) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -1105)) +NIL +(-13 (-1087 |t#1| |t#2| |t#3| |t#4|) (-769 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-769 |#1| |#2| |#3| |#4|) . T) ((-957 |#1| |#2| |#3| |#4|) . T) ((-1050 |#1| |#2| |#3| |#4|) . T) ((-1078) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1184 |#1| |#2| |#3| |#4|) . T) ((-1191) . T)) +((-4153 (((-629 |#2|) |#1|) 12)) (-2473 (((-629 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-629 |#2|) |#1|) 52)) (-1611 (((-629 |#2|) |#2| |#2| |#2|) 39) (((-629 |#2|) |#1|) 50)) (-1461 ((|#2| |#1|) 46)) (-2340 (((-2 (|:| |solns| (-629 |#2|)) (|:| |maps| (-629 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2182 (((-629 |#2|) |#2| |#2|) 38) (((-629 |#2|) |#1|) 49)) (-2068 (((-629 |#2|) |#2| |#2| |#2| |#2|) 40) (((-629 |#2|) |#1|) 51)) (-2812 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2369 ((|#2| |#2| |#2| |#2|) 43)) (-3481 ((|#2| |#2| |#2|) 42)) (-2141 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1106 |#1| |#2|) (-10 -7 (-15 -4153 ((-629 |#2|) |#1|)) (-15 -1461 (|#2| |#1|)) (-15 -2340 ((-2 (|:| |solns| (-629 |#2|)) (|:| |maps| (-629 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2182 ((-629 |#2|) |#1|)) (-15 -1611 ((-629 |#2|) |#1|)) (-15 -2068 ((-629 |#2|) |#1|)) (-15 -2473 ((-629 |#2|) |#1|)) (-15 -2182 ((-629 |#2|) |#2| |#2|)) (-15 -1611 ((-629 |#2|) |#2| |#2| |#2|)) (-15 -2068 ((-629 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2473 ((-629 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2| |#2| |#2|)) (-15 -2141 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2812 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1213 |#2|) (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (T -1106)) +((-2812 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2)))) (-2141 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2)))) (-2369 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2)))) (-3481 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2)))) (-2473 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3)))) (-2068 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3)))) (-1611 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3)))) (-2182 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) (-1611 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-2 (|:| |solns| (-629 *5)) (|:| |maps| (-629 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1106 *3 *5)) (-4 *3 (-1213 *5)))) (-1461 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -4153 ((-629 |#2|) |#1|)) (-15 -1461 (|#2| |#1|)) (-15 -2340 ((-2 (|:| |solns| (-629 |#2|)) (|:| |maps| (-629 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2182 ((-629 |#2|) |#1|)) (-15 -1611 ((-629 |#2|) |#1|)) (-15 -2068 ((-629 |#2|) |#1|)) (-15 -2473 ((-629 |#2|) |#1|)) (-15 -2182 ((-629 |#2|) |#2| |#2|)) (-15 -1611 ((-629 |#2|) |#2| |#2| |#2|)) (-15 -2068 ((-629 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2473 ((-629 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2| |#2| |#2|)) (-15 -2141 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2812 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2618 (((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|))))) 95) (((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154))) 94) (((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|)))) 92) (((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|))) (-629 (-1154))) 90) (((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|)))) 75) (((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|))) (-1154)) 76) (((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|))) 70) (((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|)) (-1154)) 59)) (-2396 (((-629 (-629 (-310 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154))) 88) (((-629 (-310 |#1|)) (-401 (-933 |#1|)) (-1154)) 43)) (-1454 (((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-401 (-933 |#1|)) (-1154)) 98) (((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154)) 97))) +(((-1107 |#1|) (-10 -7 (-15 -2618 ((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|)))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|))))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|))))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154)))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -2396 ((-629 (-310 |#1|)) (-401 (-933 |#1|)) (-1154))) (-15 -2396 ((-629 (-629 (-310 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -1454 ((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -1454 ((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-401 (-933 |#1|)) (-1154)))) (-13 (-301) (-832) (-144))) (T -1107)) +((-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-1143 (-629 (-310 *5)) (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-933 *5)))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-1143 (-629 (-310 *5)) (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-310 *5)))) (-5 *1 (-1107 *5)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-310 *5))) (-5 *1 (-1107 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-629 (-288 (-401 (-933 *4))))) (-4 *4 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-288 (-310 *4))))) (-5 *1 (-1107 *4)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-288 (-401 (-933 *5))))) (-5 *4 (-629 (-1154))) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-629 (-401 (-933 *4)))) (-4 *4 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-288 (-310 *4))))) (-5 *1 (-1107 *4)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-288 (-401 (-933 *4)))) (-4 *4 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1107 *4)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-933 *5)))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1107 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1107 *4)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1107 *5))))) +(-10 -7 (-15 -2618 ((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|)) (-1154))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-401 (-933 |#1|)))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -2618 ((-629 (-288 (-310 |#1|))) (-288 (-401 (-933 |#1|))))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-401 (-933 |#1|))))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154)))) (-15 -2618 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -2396 ((-629 (-310 |#1|)) (-401 (-933 |#1|)) (-1154))) (-15 -2396 ((-629 (-629 (-310 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -1454 ((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -1454 ((-1143 (-629 (-310 |#1|)) (-629 (-288 (-310 |#1|)))) (-401 (-933 |#1|)) (-1154)))) +((-4155 (((-401 (-1150 (-310 |#1|))) (-1237 (-310 |#1|)) (-401 (-1150 (-310 |#1|))) (-552)) 29)) (-1476 (((-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|)))) 40))) +(((-1108 |#1|) (-10 -7 (-15 -1476 ((-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))))) (-15 -4155 ((-401 (-1150 (-310 |#1|))) (-1237 (-310 |#1|)) (-401 (-1150 (-310 |#1|))) (-552)))) (-13 (-544) (-832))) (T -1108)) +((-4155 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-401 (-1150 (-310 *5)))) (-5 *3 (-1237 (-310 *5))) (-5 *4 (-552)) (-4 *5 (-13 (-544) (-832))) (-5 *1 (-1108 *5)))) (-1476 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-401 (-1150 (-310 *3)))) (-4 *3 (-13 (-544) (-832))) (-5 *1 (-1108 *3))))) +(-10 -7 (-15 -1476 ((-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))) (-401 (-1150 (-310 |#1|))))) (-15 -4155 ((-401 (-1150 (-310 |#1|))) (-1237 (-310 |#1|)) (-401 (-1150 (-310 |#1|))) (-552)))) +((-4153 (((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-310 |#1|))) (-629 (-1154))) 224) (((-629 (-288 (-310 |#1|))) (-310 |#1|) (-1154)) 20) (((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1154)) 26) (((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|))) 25) (((-629 (-288 (-310 |#1|))) (-310 |#1|)) 21))) +(((-1109 |#1|) (-10 -7 (-15 -4153 ((-629 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1154))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-310 |#1|) (-1154))) (-15 -4153 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-310 |#1|))) (-629 (-1154))))) (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (T -1109)) +((-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-1154))) (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1109 *5)) (-5 *3 (-629 (-288 (-310 *5)))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1109 *5)) (-5 *3 (-310 *5)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1109 *5)) (-5 *3 (-288 (-310 *5))))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-288 (-310 *4))))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-310 *4))))) +(-10 -7 (-15 -4153 ((-629 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1154))) (-15 -4153 ((-629 (-288 (-310 |#1|))) (-310 |#1|) (-1154))) (-15 -4153 ((-629 (-629 (-288 (-310 |#1|)))) (-629 (-288 (-310 |#1|))) (-629 (-1154))))) +((-2212 ((|#2| |#2|) 20 (|has| |#1| (-832))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-1905 ((|#2| |#2|) 19 (|has| |#1| (-832))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -1905 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2212 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-832)) (PROGN (-15 -1905 (|#2| |#2|)) (-15 -2212 (|#2| |#2|))) |%noBranch|)) (-1191) (-13 (-590 (-552) |#1|) (-10 -7 (-6 -4368) (-6 -4369)))) (T -1110)) +((-2212 (*1 *2 *2) (-12 (-4 *3 (-832)) (-4 *3 (-1191)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4368) (-6 -4369)))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-832)) (-4 *3 (-1191)) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4368) (-6 -4369)))))) (-2212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4368) (-6 -4369)))))) (-1905 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4368) (-6 -4369))))))) +(-10 -7 (-15 -1905 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2212 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-832)) (PROGN (-15 -1905 (|#2| |#2|)) (-15 -2212 (|#2| |#2|))) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-1426 (((-1142 3 |#1|) $) 107)) (-4170 (((-111) $) 72)) (-3243 (($ $ (-629 (-924 |#1|))) 20) (($ $ (-629 (-629 |#1|))) 75) (($ (-629 (-924 |#1|))) 74) (((-629 (-924 |#1|)) $) 73)) (-3111 (((-111) $) 41)) (-1693 (($ $ (-924 |#1|)) 46) (($ $ (-629 |#1|)) 51) (($ $ (-756)) 53) (($ (-924 |#1|)) 47) (((-924 |#1|) $) 45)) (-4163 (((-2 (|:| -3653 (-756)) (|:| |curves| (-756)) (|:| |polygons| (-756)) (|:| |constructs| (-756))) $) 105)) (-1273 (((-756) $) 26)) (-3503 (((-756) $) 25)) (-3204 (($ $ (-756) (-924 |#1|)) 39)) (-3294 (((-111) $) 82)) (-4187 (($ $ (-629 (-629 (-924 |#1|))) (-629 (-168)) (-168)) 89) (($ $ (-629 (-629 (-629 |#1|))) (-629 (-168)) (-168)) 91) (($ $ (-629 (-629 (-924 |#1|))) (-111) (-111)) 85) (($ $ (-629 (-629 (-629 |#1|))) (-111) (-111)) 93) (($ (-629 (-629 (-924 |#1|)))) 86) (($ (-629 (-629 (-924 |#1|))) (-111) (-111)) 87) (((-629 (-629 (-924 |#1|))) $) 84)) (-1446 (($ (-629 $)) 28) (($ $ $) 29)) (-3131 (((-629 (-168)) $) 102)) (-2286 (((-629 (-924 |#1|)) $) 96)) (-3300 (((-629 (-629 (-168))) $) 101)) (-3225 (((-629 (-629 (-629 (-924 |#1|)))) $) NIL)) (-3135 (((-629 (-629 (-629 (-756)))) $) 99)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4017 (((-756) $ (-629 (-924 |#1|))) 37)) (-1596 (((-111) $) 54)) (-2909 (($ $ (-629 (-924 |#1|))) 56) (($ $ (-629 (-629 |#1|))) 62) (($ (-629 (-924 |#1|))) 57) (((-629 (-924 |#1|)) $) 55)) (-3457 (($) 23) (($ (-1142 3 |#1|)) 24)) (-1487 (($ $) 35)) (-3313 (((-629 $) $) 34)) (-2911 (($ (-629 $)) 31)) (-1972 (((-629 $) $) 33)) (-3213 (((-844) $) 111)) (-2555 (((-111) $) 64)) (-4141 (($ $ (-629 (-924 |#1|))) 66) (($ $ (-629 (-629 |#1|))) 69) (($ (-629 (-924 |#1|))) 67) (((-629 (-924 |#1|)) $) 65)) (-2753 (($ $) 106)) (-1613 (((-111) $ $) NIL))) +(((-1111 |#1|) (-1112 |#1|) (-1030)) (T -1111)) +NIL +(-1112 |#1|) +((-3202 (((-111) $ $) 7)) (-1426 (((-1142 3 |#1|) $) 13)) (-4170 (((-111) $) 29)) (-3243 (($ $ (-629 (-924 |#1|))) 33) (($ $ (-629 (-629 |#1|))) 32) (($ (-629 (-924 |#1|))) 31) (((-629 (-924 |#1|)) $) 30)) (-3111 (((-111) $) 44)) (-1693 (($ $ (-924 |#1|)) 49) (($ $ (-629 |#1|)) 48) (($ $ (-756)) 47) (($ (-924 |#1|)) 46) (((-924 |#1|) $) 45)) (-4163 (((-2 (|:| -3653 (-756)) (|:| |curves| (-756)) (|:| |polygons| (-756)) (|:| |constructs| (-756))) $) 15)) (-1273 (((-756) $) 58)) (-3503 (((-756) $) 59)) (-3204 (($ $ (-756) (-924 |#1|)) 50)) (-3294 (((-111) $) 21)) (-4187 (($ $ (-629 (-629 (-924 |#1|))) (-629 (-168)) (-168)) 28) (($ $ (-629 (-629 (-629 |#1|))) (-629 (-168)) (-168)) 27) (($ $ (-629 (-629 (-924 |#1|))) (-111) (-111)) 26) (($ $ (-629 (-629 (-629 |#1|))) (-111) (-111)) 25) (($ (-629 (-629 (-924 |#1|)))) 24) (($ (-629 (-629 (-924 |#1|))) (-111) (-111)) 23) (((-629 (-629 (-924 |#1|))) $) 22)) (-1446 (($ (-629 $)) 57) (($ $ $) 56)) (-3131 (((-629 (-168)) $) 16)) (-2286 (((-629 (-924 |#1|)) $) 20)) (-3300 (((-629 (-629 (-168))) $) 17)) (-3225 (((-629 (-629 (-629 (-924 |#1|)))) $) 18)) (-3135 (((-629 (-629 (-629 (-756)))) $) 19)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-4017 (((-756) $ (-629 (-924 |#1|))) 51)) (-1596 (((-111) $) 39)) (-2909 (($ $ (-629 (-924 |#1|))) 43) (($ $ (-629 (-629 |#1|))) 42) (($ (-629 (-924 |#1|))) 41) (((-629 (-924 |#1|)) $) 40)) (-3457 (($) 61) (($ (-1142 3 |#1|)) 60)) (-1487 (($ $) 52)) (-3313 (((-629 $) $) 53)) (-2911 (($ (-629 $)) 55)) (-1972 (((-629 $) $) 54)) (-3213 (((-844) $) 11)) (-2555 (((-111) $) 34)) (-4141 (($ $ (-629 (-924 |#1|))) 38) (($ $ (-629 (-629 |#1|))) 37) (($ (-629 (-924 |#1|))) 36) (((-629 (-924 |#1|)) $) 35)) (-2753 (($ $) 14)) (-1613 (((-111) $ $) 6))) +(((-1112 |#1|) (-137) (-1030)) (T -1112)) +((-3213 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-844)))) (-3457 (*1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1142 3 *3)) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-1446 (*1 *1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)))) (-3313 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-629 (-924 *4))) (-4 *1 (-1112 *4)) (-4 *4 (-1030)) (-5 *2 (-756)))) (-3204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-924 *4)) (-4 *1 (-1112 *4)) (-4 *4 (-1030)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-924 *3)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-924 *3)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111)))) (-4141 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-4141 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111)))) (-3243 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-3243 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-629 (-629 (-924 *5)))) (-5 *3 (-629 (-168))) (-5 *4 (-168)) (-4 *1 (-1112 *5)) (-4 *5 (-1030)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-629 (-629 (-629 *5)))) (-5 *3 (-629 (-168))) (-5 *4 (-168)) (-4 *1 (-1112 *5)) (-4 *5 (-1030)))) (-4187 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-629 (-629 (-924 *4)))) (-5 *3 (-111)) (-4 *1 (-1112 *4)) (-4 *4 (-1030)))) (-4187 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-629 (-629 (-629 *4)))) (-5 *3 (-111)) (-4 *1 (-1112 *4)) (-4 *4 (-1030)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-924 *3)))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) (-4187 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-629 (-629 (-924 *4)))) (-5 *3 (-111)) (-4 *4 (-1030)) (-4 *1 (-1112 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-629 (-924 *3)))))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-629 (-629 (-756))))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-629 (-629 (-924 *3))))))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-629 (-168)))))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-168))))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3653 (-756)) (|:| |curves| (-756)) (|:| |polygons| (-756)) (|:| |constructs| (-756)))))) (-2753 (*1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-1142 3 *3))))) +(-13 (-1078) (-10 -8 (-15 -3457 ($)) (-15 -3457 ($ (-1142 3 |t#1|))) (-15 -3503 ((-756) $)) (-15 -1273 ((-756) $)) (-15 -1446 ($ (-629 $))) (-15 -1446 ($ $ $)) (-15 -2911 ($ (-629 $))) (-15 -1972 ((-629 $) $)) (-15 -3313 ((-629 $) $)) (-15 -1487 ($ $)) (-15 -4017 ((-756) $ (-629 (-924 |t#1|)))) (-15 -3204 ($ $ (-756) (-924 |t#1|))) (-15 -1693 ($ $ (-924 |t#1|))) (-15 -1693 ($ $ (-629 |t#1|))) (-15 -1693 ($ $ (-756))) (-15 -1693 ($ (-924 |t#1|))) (-15 -1693 ((-924 |t#1|) $)) (-15 -3111 ((-111) $)) (-15 -2909 ($ $ (-629 (-924 |t#1|)))) (-15 -2909 ($ $ (-629 (-629 |t#1|)))) (-15 -2909 ($ (-629 (-924 |t#1|)))) (-15 -2909 ((-629 (-924 |t#1|)) $)) (-15 -1596 ((-111) $)) (-15 -4141 ($ $ (-629 (-924 |t#1|)))) (-15 -4141 ($ $ (-629 (-629 |t#1|)))) (-15 -4141 ($ (-629 (-924 |t#1|)))) (-15 -4141 ((-629 (-924 |t#1|)) $)) (-15 -2555 ((-111) $)) (-15 -3243 ($ $ (-629 (-924 |t#1|)))) (-15 -3243 ($ $ (-629 (-629 |t#1|)))) (-15 -3243 ($ (-629 (-924 |t#1|)))) (-15 -3243 ((-629 (-924 |t#1|)) $)) (-15 -4170 ((-111) $)) (-15 -4187 ($ $ (-629 (-629 (-924 |t#1|))) (-629 (-168)) (-168))) (-15 -4187 ($ $ (-629 (-629 (-629 |t#1|))) (-629 (-168)) (-168))) (-15 -4187 ($ $ (-629 (-629 (-924 |t#1|))) (-111) (-111))) (-15 -4187 ($ $ (-629 (-629 (-629 |t#1|))) (-111) (-111))) (-15 -4187 ($ (-629 (-629 (-924 |t#1|))))) (-15 -4187 ($ (-629 (-629 (-924 |t#1|))) (-111) (-111))) (-15 -4187 ((-629 (-629 (-924 |t#1|))) $)) (-15 -3294 ((-111) $)) (-15 -2286 ((-629 (-924 |t#1|)) $)) (-15 -3135 ((-629 (-629 (-629 (-756)))) $)) (-15 -3225 ((-629 (-629 (-629 (-924 |t#1|)))) $)) (-15 -3300 ((-629 (-629 (-168))) $)) (-15 -3131 ((-629 (-168)) $)) (-15 -4163 ((-2 (|:| -3653 (-756)) (|:| |curves| (-756)) (|:| |polygons| (-756)) (|:| |constructs| (-756))) $)) (-15 -2753 ($ $)) (-15 -1426 ((-1142 3 |t#1|) $)) (-15 -3213 ((-844) $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 176) (((-1159) $) 7) (($ (-1159)) NIL)) (-3285 (((-111) $ (|[\|\|]| (-516))) 17) (((-111) $ (|[\|\|]| (-213))) 21) (((-111) $ (|[\|\|]| (-660))) 25) (((-111) $ (|[\|\|]| (-1247))) 29) (((-111) $ (|[\|\|]| (-136))) 33) (((-111) $ (|[\|\|]| (-131))) 37) (((-111) $ (|[\|\|]| (-1093))) 41) (((-111) $ (|[\|\|]| (-95))) 45) (((-111) $ (|[\|\|]| (-665))) 49) (((-111) $ (|[\|\|]| (-509))) 53) (((-111) $ (|[\|\|]| (-1045))) 57) (((-111) $ (|[\|\|]| (-1248))) 61) (((-111) $ (|[\|\|]| (-517))) 65) (((-111) $ (|[\|\|]| (-151))) 69) (((-111) $ (|[\|\|]| (-655))) 73) (((-111) $ (|[\|\|]| (-305))) 77) (((-111) $ (|[\|\|]| (-1017))) 81) (((-111) $ (|[\|\|]| (-177))) 85) (((-111) $ (|[\|\|]| (-951))) 89) (((-111) $ (|[\|\|]| (-1052))) 93) (((-111) $ (|[\|\|]| (-1068))) 97) (((-111) $ (|[\|\|]| (-1074))) 101) (((-111) $ (|[\|\|]| (-612))) 105) (((-111) $ (|[\|\|]| (-1144))) 109) (((-111) $ (|[\|\|]| (-153))) 113) (((-111) $ (|[\|\|]| (-135))) 117) (((-111) $ (|[\|\|]| (-471))) 121) (((-111) $ (|[\|\|]| (-579))) 125) (((-111) $ (|[\|\|]| (-498))) 131) (((-111) $ (|[\|\|]| (-1136))) 135) (((-111) $ (|[\|\|]| (-552))) 139)) (-1512 (((-516) $) 18) (((-213) $) 22) (((-660) $) 26) (((-1247) $) 30) (((-136) $) 34) (((-131) $) 38) (((-1093) $) 42) (((-95) $) 46) (((-665) $) 50) (((-509) $) 54) (((-1045) $) 58) (((-1248) $) 62) (((-517) $) 66) (((-151) $) 70) (((-655) $) 74) (((-305) $) 78) (((-1017) $) 82) (((-177) $) 86) (((-951) $) 90) (((-1052) $) 94) (((-1068) $) 98) (((-1074) $) 102) (((-612) $) 106) (((-1144) $) 110) (((-153) $) 114) (((-135) $) 118) (((-471) $) 122) (((-579) $) 126) (((-498) $) 132) (((-1136) $) 136) (((-552) $) 140)) (-1613 (((-111) $ $) NIL))) +(((-1113) (-1115)) (T -1113)) +NIL +(-1115) +((-2723 (((-629 (-1159)) (-1136)) 9))) +(((-1114) (-10 -7 (-15 -2723 ((-629 (-1159)) (-1136))))) (T -1114)) +((-2723 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-629 (-1159))) (-5 *1 (-1114))))) +(-10 -7 (-15 -2723 ((-629 (-1159)) (-1136)))) +((-3202 (((-111) $ $) 7)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (((-1159) $) 15) (($ (-1159)) 14)) (-3285 (((-111) $ (|[\|\|]| (-516))) 80) (((-111) $ (|[\|\|]| (-213))) 78) (((-111) $ (|[\|\|]| (-660))) 76) (((-111) $ (|[\|\|]| (-1247))) 74) (((-111) $ (|[\|\|]| (-136))) 72) (((-111) $ (|[\|\|]| (-131))) 70) (((-111) $ (|[\|\|]| (-1093))) 68) (((-111) $ (|[\|\|]| (-95))) 66) (((-111) $ (|[\|\|]| (-665))) 64) (((-111) $ (|[\|\|]| (-509))) 62) (((-111) $ (|[\|\|]| (-1045))) 60) (((-111) $ (|[\|\|]| (-1248))) 58) (((-111) $ (|[\|\|]| (-517))) 56) (((-111) $ (|[\|\|]| (-151))) 54) (((-111) $ (|[\|\|]| (-655))) 52) (((-111) $ (|[\|\|]| (-305))) 50) (((-111) $ (|[\|\|]| (-1017))) 48) (((-111) $ (|[\|\|]| (-177))) 46) (((-111) $ (|[\|\|]| (-951))) 44) (((-111) $ (|[\|\|]| (-1052))) 42) (((-111) $ (|[\|\|]| (-1068))) 40) (((-111) $ (|[\|\|]| (-1074))) 38) (((-111) $ (|[\|\|]| (-612))) 36) (((-111) $ (|[\|\|]| (-1144))) 34) (((-111) $ (|[\|\|]| (-153))) 32) (((-111) $ (|[\|\|]| (-135))) 30) (((-111) $ (|[\|\|]| (-471))) 28) (((-111) $ (|[\|\|]| (-579))) 26) (((-111) $ (|[\|\|]| (-498))) 24) (((-111) $ (|[\|\|]| (-1136))) 22) (((-111) $ (|[\|\|]| (-552))) 20)) (-1512 (((-516) $) 79) (((-213) $) 77) (((-660) $) 75) (((-1247) $) 73) (((-136) $) 71) (((-131) $) 69) (((-1093) $) 67) (((-95) $) 65) (((-665) $) 63) (((-509) $) 61) (((-1045) $) 59) (((-1248) $) 57) (((-517) $) 55) (((-151) $) 53) (((-655) $) 51) (((-305) $) 49) (((-1017) $) 47) (((-177) $) 45) (((-951) $) 43) (((-1052) $) 41) (((-1068) $) 39) (((-1074) $) 37) (((-612) $) 35) (((-1144) $) 33) (((-153) $) 31) (((-135) $) 29) (((-471) $) 27) (((-579) $) 25) (((-498) $) 23) (((-1136) $) 21) (((-552) $) 19)) (-1613 (((-111) $ $) 6))) (((-1115) (-137)) (T -1115)) -((-3794 (*1 *1 *1) (-4 *1 (-1115))) (-2039 (*1 *1 *1) (-4 *1 (-1115))) (-3396 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1512 (*1 *1 *1 *1) (-4 *1 (-1115))) (-2804 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3075 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1393 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3958 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3709 (*1 *1 *1) (-4 *1 (-1115))) (-1974 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1393 (*1 *1 *1) (-4 *1 (-1115))) (-3329 (*1 *1 *1) (-4 *1 (-1115)))) -(-13 (-10 -8 (-15 -3329 ($ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -3709 ($ $)) (-15 -3958 ($ $ $)) (-15 -1393 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -2804 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -3396 ($ $ $)) (-15 -2039 ($ $)) (-15 -3794 ($ $)))) -((-1465 (((-111) $ $) 41)) (-4288 ((|#1| $) 15)) (-2335 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-2523 (((-111) $) 17)) (-2660 (($ $ |#1|) 28)) (-2332 (($ $ (-111)) 30)) (-3782 (($ $) 31)) (-2080 (($ $ |#2|) 29)) (-1595 (((-1134) $) NIL)) (-3988 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-1498 (((-1096) $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 10)) (-2973 (($ $) 27)) (-1490 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) 21) (((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) 24) (((-627 $) |#1| (-627 |#2|)) 26)) (-2242 ((|#2| $) 16)) (-1477 (((-842) $) 50)) (-2292 (((-111) $ $) 39))) -(((-1116 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -4288 (|#1| $)) (-15 -2242 (|#2| $)) (-15 -2523 ((-111) $)) (-15 -1490 ($ |#1| |#2| (-111))) (-15 -1490 ($ |#1| |#2|)) (-15 -1490 ($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) (-15 -1490 ((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))))) (-15 -1490 ((-627 $) |#1| (-627 |#2|))) (-15 -2973 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -2080 ($ $ |#2|)) (-15 -2332 ($ $ (-111))) (-15 -3782 ($ $)) (-15 -3988 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -2335 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1076) (-34)) (-13 (-1076) (-34))) (T -1116)) -((-2373 (*1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-4288 (*1 *2 *1) (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *2 *3)) (-4 *3 (-13 (-1076) (-34))))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3443 *4))) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *4)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |val| *4) (|:| -3443 *5)))) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-627 (-1116 *4 *5))) (-5 *1 (-1116 *4 *5)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *5)) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-627 (-1116 *3 *5))) (-5 *1 (-1116 *3 *5)) (-4 *3 (-13 (-1076) (-34))))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-2660 (*1 *1 *1 *2) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-2080 (*1 *1 *1 *2) (-12 (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))) (-4 *2 (-13 (-1076) (-34))))) (-2332 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-3988 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1116 *5 *6)))) (-2335 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34)))))) -(-13 (-1076) (-10 -8 (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -4288 (|#1| $)) (-15 -2242 (|#2| $)) (-15 -2523 ((-111) $)) (-15 -1490 ($ |#1| |#2| (-111))) (-15 -1490 ($ |#1| |#2|)) (-15 -1490 ($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) (-15 -1490 ((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))))) (-15 -1490 ((-627 $) |#1| (-627 |#2|))) (-15 -2973 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -2080 ($ $ |#2|)) (-15 -2332 ($ $ (-111))) (-15 -3782 ($ $)) (-15 -3988 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -2335 ((-111) $ $ (-1 (-111) |#2| |#2|))))) -((-1465 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-4288 (((-1116 |#1| |#2|) $) 25)) (-3640 (($ $) 76)) (-4001 (((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3013 (($ $ $ (-627 (-1116 |#1| |#2|))) 90) (($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-4031 (((-111) $ (-754)) NIL)) (-2472 (((-1116 |#1| |#2|) $ (-1116 |#1| |#2|)) 43 (|has| $ (-6 -4367)))) (-2950 (((-1116 |#1| |#2|) $ "value" (-1116 |#1| |#2|)) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2441 (((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $) 80)) (-2265 (($ (-1116 |#1| |#2|) $) 39)) (-4342 (($ (-1116 |#1| |#2|) $) 31)) (-3215 (((-627 (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 51)) (-1843 (((-111) (-1116 |#1| |#2|) $) 82)) (-3726 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 (-1116 |#1| |#2|)) $) 55 (|has| $ (-6 -4366)))) (-3082 (((-111) (-1116 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-1116 |#1| |#2|) (-1076))))) (-3463 (($ (-1 (-1116 |#1| |#2|) (-1116 |#1| |#2|)) $) 47 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-1116 |#1| |#2|) (-1116 |#1| |#2|)) $) 46)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 (-1116 |#1| |#2|)) $) 53)) (-3810 (((-111) $) 42)) (-1595 (((-1134) $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-1498 (((-1096) $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-3397 (((-3 $ "failed") $) 75)) (-3509 (((-111) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-1116 |#1| |#2|)))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-288 (-1116 |#1| |#2|))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-1116 |#1| |#2|) (-1116 |#1| |#2|)) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-627 (-1116 |#1| |#2|)) (-627 (-1116 |#1| |#2|))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076))))) (-2432 (((-111) $ $) 50)) (-1275 (((-111) $) 22)) (-2373 (($) 24)) (-1985 (((-1116 |#1| |#2|) $ "value") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) 44)) (-1509 (((-754) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366))) (((-754) (-1116 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-1116 |#1| |#2|) (-1076))))) (-2973 (($ $) 49)) (-1490 (($ (-1116 |#1| |#2|)) 9) (($ |#1| |#2| (-627 $)) 12) (($ |#1| |#2| (-627 (-1116 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-627 |#2|)) 17)) (-3826 (((-627 |#2|) $) 81)) (-1477 (((-842) $) 73 (|has| (-1116 |#1| |#2|) (-599 (-842))))) (-2535 (((-627 $) $) 28)) (-3415 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-3299 (((-111) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 64 (|has| (-1116 |#1| |#2|) (-1076)))) (-1383 (((-754) $) 58 (|has| $ (-6 -4366))))) -(((-1117 |#1| |#2|) (-13 (-989 (-1116 |#1| |#2|)) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3397 ((-3 $ "failed") $)) (-15 -3640 ($ $)) (-15 -1490 ($ (-1116 |#1| |#2|))) (-15 -1490 ($ |#1| |#2| (-627 $))) (-15 -1490 ($ |#1| |#2| (-627 (-1116 |#1| |#2|)))) (-15 -1490 ($ |#1| |#2| |#1| (-627 |#2|))) (-15 -3826 ((-627 |#2|) $)) (-15 -2441 ((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $)) (-15 -1843 ((-111) (-1116 |#1| |#2|) $)) (-15 -4001 ((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -4342 ($ (-1116 |#1| |#2|) $)) (-15 -2265 ($ (-1116 |#1| |#2|) $)) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)))) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1076) (-34)) (-13 (-1076) (-34))) (T -1117)) -((-3397 (*1 *1 *1) (|partial| -12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-3640 (*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-627 (-1117 *2 *3))) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-627 (-1116 *2 *3))) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)))) (-1490 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-627 *4)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *4 *5)))) (-4001 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1116 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *5 *6)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-3013 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-627 (-1116 *3 *4))) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-3013 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1116 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *1 (-1117 *4 *5))))) -(-13 (-989 (-1116 |#1| |#2|)) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3397 ((-3 $ "failed") $)) (-15 -3640 ($ $)) (-15 -1490 ($ (-1116 |#1| |#2|))) (-15 -1490 ($ |#1| |#2| (-627 $))) (-15 -1490 ($ |#1| |#2| (-627 (-1116 |#1| |#2|)))) (-15 -1490 ($ |#1| |#2| |#1| (-627 |#2|))) (-15 -3826 ((-627 |#2|) $)) (-15 -2441 ((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $)) (-15 -1843 ((-111) (-1116 |#1| |#2|) $)) (-15 -4001 ((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -4342 ($ (-1116 |#1| |#2|) $)) (-15 -2265 ($ (-1116 |#1| |#2|) $)) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)))) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3595 (($ $) NIL)) (-3385 ((|#2| $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1959 (($ (-671 |#2|)) 50)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1665 (($ |#2|) 10)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 63 (|has| |#2| (-301)))) (-3884 (((-235 |#1| |#2|) $ (-552)) 36)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 77)) (-4154 (((-754) $) 65 (|has| |#2| (-544)))) (-3413 ((|#2| $ (-552) (-552)) NIL)) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL)) (-1610 (((-754) $) 67 (|has| |#2| (-544)))) (-2960 (((-627 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ |#2|) 20)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#2| $) 61 (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#2|))) 31)) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3127 (((-627 (-627 |#2|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2952 (((-3 $ "failed") $) 74 (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) NIL)) (-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3877 ((|#2| $) NIL)) (-3202 (($ (-627 |#2|)) 44)) (-4064 (((-111) $) NIL)) (-2372 (((-235 |#1| |#2|) $) NIL)) (-1530 ((|#2| $) 59 (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 86 (|has| |#2| (-600 (-528))))) (-2152 (((-235 |#1| |#2|) $ (-552)) 38)) (-1477 (((-842) $) 41) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (((-671 |#2|) $) 46)) (-3995 (((-754)) 18)) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-1922 (($) 12 T CONST)) (-1933 (($) 15 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) 57) (($ $ (-552)) 76 (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1118 |#1| |#2|) (-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-10 -8 (-15 -2655 ($ |#2|)) (-15 -3595 ($ $)) (-15 -1959 ($ (-671 |#2|))) (IF (|has| |#2| (-6 (-4368 "*"))) (-6 -4355) |%noBranch|) (IF (|has| |#2| (-6 (-4368 "*"))) (IF (|has| |#2| (-6 -4363)) (-6 -4363) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-754) (-1028)) (T -1118)) -((-2655 (*1 *1 *2) (-12 (-5 *1 (-1118 *3 *2)) (-14 *3 (-754)) (-4 *2 (-1028)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-14 *2 (-754)) (-4 *3 (-1028)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1118 *3 *4)) (-14 *3 (-754))))) -(-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-10 -8 (-15 -2655 ($ |#2|)) (-15 -3595 ($ $)) (-15 -1959 ($ (-671 |#2|))) (IF (|has| |#2| (-6 (-4368 "*"))) (-6 -4355) |%noBranch|) (IF (|has| |#2| (-6 (-4368 "*"))) (IF (|has| |#2| (-6 -4363)) (-6 -4363) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) -((-1349 (($ $) 19)) (-3064 (($ $ (-141)) 10) (($ $ (-138)) 14)) (-4050 (((-111) $ $) 24)) (-3769 (($ $) 17)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (($ $ $) 29)) (-1477 (($ (-141)) 27) (((-842) $) NIL))) -(((-1119 |#1|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| (-138))) (-15 -3064 (|#1| |#1| (-141))) (-15 -1477 (|#1| (-141))) (-15 -4050 ((-111) |#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -1985 ((-141) |#1| (-552))) (-15 -1985 ((-141) |#1| (-552) (-141)))) (-1120)) (T -1119)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| (-138))) (-15 -3064 (|#1| |#1| (-141))) (-15 -1477 (|#1| (-141))) (-15 -4050 ((-111) |#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -1985 ((-141) |#1| (-552))) (-15 -1985 ((-141) |#1| (-552) (-141)))) -((-1465 (((-111) $ $) 19 (|has| (-141) (-1076)))) (-2726 (($ $) 120)) (-1349 (($ $) 121)) (-3064 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 118)) (-4003 (((-111) $ $ (-552)) 117)) (-2843 (((-627 $) $ (-141)) 110) (((-627 $) $ (-138)) 109)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| (-141) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3702 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3754 (($ $ (-1202 (-552)) $) 114)) (-3370 (($ $) 78 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-141) $) 77 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) 51)) (-4050 (((-111) $ $) 119)) (-2967 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3215 (((-627 (-141)) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 115)) (-3835 (((-754) $ $ (-141)) 116)) (-3463 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3053 (($ $) 122)) (-3769 (($ $) 123)) (-3971 (((-111) $ (-754)) 10)) (-3712 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1595 (((-1134) $) 22 (|has| (-141) (-1076)))) (-3252 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| (-141) (-1076)))) (-3340 (((-141) $) 42 (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1942 (($ $ (-141)) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1202 (-552))) 63) (($ $ $) 102)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4366))) (((-754) (-141) $) 28 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) 70)) (-2668 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (($ (-141)) 111) (((-842) $) 18 (|has| (-141) (-599 (-842))))) (-3299 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| (-141) (-830)))) (-2329 (((-111) $ $) 83 (|has| (-141) (-830)))) (-2292 (((-111) $ $) 20 (|has| (-141) (-1076)))) (-2340 (((-111) $ $) 85 (|has| (-141) (-830)))) (-2316 (((-111) $ $) 82 (|has| (-141) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1120) (-137)) (T -1120)) -((-3769 (*1 *1 *1) (-4 *1 (-1120))) (-3053 (*1 *1 *1) (-4 *1 (-1120))) (-1349 (*1 *1 *1) (-4 *1 (-1120))) (-2726 (*1 *1 *1) (-4 *1 (-1120))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111)))) (-4025 (*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111)))) (-4003 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-552)) (-5 *2 (-111)))) (-3835 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-754)))) (-2999 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-111)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1202 (-552))))) (-2967 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)) (-5 *3 (-138)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1120)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-1985 (*1 *1 *1 *1) (-4 *1 (-1120)))) -(-13 (-19 (-141)) (-10 -8 (-15 -3769 ($ $)) (-15 -3053 ($ $)) (-15 -1349 ($ $)) (-15 -2726 ($ $)) (-15 -4050 ((-111) $ $)) (-15 -4025 ((-111) $ $)) (-15 -4003 ((-111) $ $ (-552))) (-15 -3835 ((-754) $ $ (-141))) (-15 -2999 ((-111) $ $ (-141))) (-15 -3754 ($ $ (-1202 (-552)) $)) (-15 -2967 ((-552) $ $ (-552))) (-15 -2967 ((-552) (-138) $ (-552))) (-15 -1477 ($ (-141))) (-15 -2843 ((-627 $) $ (-141))) (-15 -2843 ((-627 $) $ (-138))) (-15 -3064 ($ $ (-141))) (-15 -3064 ($ $ (-138))) (-15 -3712 ($ $ (-141))) (-15 -3712 ($ $ (-138))) (-15 -3702 ($ $ (-141))) (-15 -3702 ($ $ (-138))) (-15 -1985 ($ $ $)))) -(((-34) . T) ((-101) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830))) ((-599 (-842)) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830)) (|has| (-141) (-599 (-842)))) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-633 #0#) . T) ((-19 #0#) . T) ((-830) |has| (-141) (-830)) ((-1076) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830))) ((-1189) . T)) -((-2767 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754)) 94)) (-2211 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 54)) (-3809 (((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)) 85)) (-1455 (((-754) (-627 |#4|) (-627 |#5|)) 27)) (-4164 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 56) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111)) 58)) (-4004 (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111)) 77)) (-3562 (((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 80)) (-3451 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 53)) (-2574 (((-754) (-627 |#4|) (-627 |#5|)) 19))) -(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3| |#4|)) (T -1121)) -((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1085 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) (-5 *1 (-1121 *4 *5 *6 *7 *8)))) (-2767 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-627 *11)) (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) (-5 *6 (-754)) (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) (-4 *11 (-1085 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-5 *1 (-1121 *7 *8 *9 *10 *11)))) (-4004 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-4004 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) (-4164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *7 *8 *9 *3 *4)) (-4 *4 (-1085 *7 *8 *9 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) (-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) -((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 110) (((-627 $) (-627 |#4|) (-111)) 111) (((-627 $) (-627 |#4|) (-111) (-111)) 109) (((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111)) 112)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 84)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 62)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) 65)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3203 (((-111) |#4| $) NIL)) (-2004 (((-111) |#4| $) NIL)) (-2790 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2533 (((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111)) 124)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) NIL)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 103)) (-1294 (((-3 |#4| "failed") $) 37)) (-4314 (((-627 $) |#4| $) 88)) (-2338 (((-3 (-111) (-627 $)) |#4| $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3383 (((-627 $) |#4| $) 107) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 108) (((-627 $) |#4| (-627 $)) NIL)) (-4219 (((-627 $) (-627 |#4|) (-111) (-111) (-111)) 119)) (-1892 (($ |#4| $) 75) (($ (-627 |#4|) $) 76) (((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 48)) (-4168 (($ $ |#4|) NIL) (((-627 $) |#4| $) 90) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 86)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-2733 (((-627 $) |#4| $) 54) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3612 (((-111) |#4| $) NIL)) (-3528 (((-111) |#3| $) 61)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1122 |#1| |#2| |#3| |#4|) (-13 (-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1122)) -((-1892 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *3))) (-5 *1 (-1122 *5 *6 *7 *3)) (-4 *3 (-1042 *5 *6 *7)))) (-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-1361 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-4219 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-2533 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-627 *8)) (|:| |towers| (-627 (-1122 *5 *6 *7 *8))))) (-5 *1 (-1122 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) -(-13 (-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2240 ((|#1| $) 34)) (-3690 (($ (-627 |#1|)) 39)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3468 ((|#1| |#1| $) 36)) (-3846 ((|#1| $) 32)) (-3215 (((-627 |#1|) $) 18 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 35)) (-3954 (($ |#1| $) 37)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 33)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 31)) (-2373 (($) 38)) (-4170 (((-754) $) 29)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 27)) (-1477 (((-842) $) 14 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 17 (|has| |#1| (-1076)))) (-1383 (((-754) $) 30 (|has| $ (-6 -4366))))) -(((-1123 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -3690 ($ (-627 |#1|))))) (-1189)) (T -1123)) -((-3690 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1123 *3))))) -(-13 (-1097 |#1|) (-10 -8 (-15 -3690 ($ (-627 |#1|))))) -((-2950 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1202 (-552)) |#2|) 44) ((|#2| $ (-552) |#2|) 41)) (-3592 (((-111) $) 12)) (-3463 (($ (-1 |#2| |#2|) $) 39)) (-3340 ((|#2| $) NIL) (($ $ (-754)) 17)) (-1942 (($ $ |#2|) 40)) (-2361 (((-111) $) 11)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1202 (-552))) 31) ((|#2| $ (-552)) 23) ((|#2| $ (-552) |#2|) NIL)) (-3151 (($ $ $) 47) (($ $ |#2|) NIL)) (-2668 (($ $ $) 33) (($ |#2| $) NIL) (($ (-627 $)) 36) (($ $ |#2|) NIL))) -(((-1124 |#1| |#2|) (-10 -8 (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| "last")) (-15 -1985 (|#1| |#1| "rest")) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|))) (-1125 |#2|) (-1189)) (T -1124)) -NIL -(-10 -8 (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| "last")) (-15 -1985 (|#1| |#1| "rest")) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4366)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4366))) (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-2361 (((-111) $) 84)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1125 |#1|) (-137) (-1189)) (T -1125)) -((-2361 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(-13 (-1223 |t#1|) (-633 |t#1|) (-10 -8 (-15 -2361 ((-111) $)) (-15 -3592 ((-111) $)))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T) ((-1223 |#1|) . T)) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1126 |#1| |#2| |#3|) (-1165 |#1| |#2|) (-1076) (-1076) |#2|) (T -1126)) -NIL -(-1165 |#1| |#2|) -((-1465 (((-111) $ $) 7)) (-4317 (((-3 $ "failed") $) 13)) (-1595 (((-1134) $) 9)) (-3002 (($) 14 T CONST)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) -(((-1127) (-137)) (T -1127)) -((-3002 (*1 *1) (-4 *1 (-1127))) (-4317 (*1 *1 *1) (|partial| -4 *1 (-1127)))) -(-13 (-1076) (-10 -8 (-15 -3002 ($) -3488) (-15 -4317 ((-3 $ "failed") $)))) -(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) -((-3590 (((-1132 |#1|) (-1132 |#1|)) 17)) (-3153 (((-1132 |#1|) (-1132 |#1|)) 13)) (-3371 (((-1132 |#1|) (-1132 |#1|) (-552) (-552)) 20)) (-1817 (((-1132 |#1|) (-1132 |#1|)) 15))) -(((-1128 |#1|) (-10 -7 (-15 -3153 ((-1132 |#1|) (-1132 |#1|))) (-15 -1817 ((-1132 |#1|) (-1132 |#1|))) (-15 -3590 ((-1132 |#1|) (-1132 |#1|))) (-15 -3371 ((-1132 |#1|) (-1132 |#1|) (-552) (-552)))) (-13 (-544) (-144))) (T -1128)) -((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1128 *4)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3))))) -(-10 -7 (-15 -3153 ((-1132 |#1|) (-1132 |#1|))) (-15 -1817 ((-1132 |#1|) (-1132 |#1|))) (-15 -3590 ((-1132 |#1|) (-1132 |#1|))) (-15 -3371 ((-1132 |#1|) (-1132 |#1|) (-552) (-552)))) -((-2668 (((-1132 |#1|) (-1132 (-1132 |#1|))) 15))) -(((-1129 |#1|) (-10 -7 (-15 -2668 ((-1132 |#1|) (-1132 (-1132 |#1|))))) (-1189)) (T -1129)) -((-2668 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1129 *4)) (-4 *4 (-1189))))) -(-10 -7 (-15 -2668 ((-1132 |#1|) (-1132 (-1132 |#1|))))) -((-2169 (((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)) 25)) (-2091 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)) 26)) (-3516 (((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 16))) -(((-1130 |#1| |#2|) (-10 -7 (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (-15 -2169 ((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|))) (-15 -2091 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)))) (-1189) (-1189)) (T -1130)) -((-2091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-1130 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1132 *6)) (-4 *6 (-1189)) (-4 *3 (-1189)) (-5 *2 (-1132 *3)) (-5 *1 (-1130 *6 *3)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6))))) -(-10 -7 (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (-15 -2169 ((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|))) (-15 -2091 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)))) -((-3516 (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)) 21))) -(((-1131 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)))) (-1189) (-1189) (-1189)) (T -1131)) -((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-1132 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-1131 *6 *7 *8))))) -(-10 -7 (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) 52)) (-3305 (((-1240) $ (-552) (-552)) 77 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 111 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-3576 (((-842) $) 41 (|has| |#1| (-1076)))) (-1852 (((-111)) 40 (|has| |#1| (-1076)))) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 99 (|has| $ (-6 -4367))) (($ $ (-552) $) 123)) (-2801 ((|#1| $ |#1|) 108 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 103 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4367))) (($ $ "rest" $) 107 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 90 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 56 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 59)) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2860 (($ $) 14)) (-3351 (($ $) 29) (($ $ (-754)) 89)) (-3518 (((-111) (-627 |#1|) $) 117 (|has| |#1| (-1076)))) (-2158 (($ (-627 |#1|)) 113)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) 58)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1395 (((-1240) (-552) $) 122 (|has| |#1| (-1076)))) (-3939 (((-754) $) 119)) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-2421 (($ $) 91)) (-4244 (((-111) $) 13)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) 75)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-2458 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3566 ((|#1| $) 10)) (-3340 ((|#1| $) 28) (($ $ (-754)) 50)) (-3771 (((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $) 25)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2509 (($ (-1 (-111) |#1|) $) 127)) (-2524 (($ (-1 (-111) |#1|) $) 128)) (-1942 (($ $ |#1|) 69 (|has| $ (-6 -4367)))) (-4168 (($ $ (-552)) 32)) (-2361 (((-111) $) 73)) (-1298 (((-111) $) 12)) (-3076 (((-111) $) 118)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 20)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 45)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) 55) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) 49)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2217 (($ (-1 $)) 48)) (-2978 (((-111) $) 70)) (-1805 (($ $) 71)) (-3384 (($ $) 100 (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 44)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 54)) (-3848 (($ |#1| $) 98)) (-3151 (($ $ $) 101 (|has| $ (-6 -4367))) (($ $ |#1|) 102 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 79) (($ |#1| $) 46) (($ (-627 $)) 84) (($ $ |#1|) 78)) (-2890 (($ $) 51)) (-1477 (($ (-627 |#1|)) 112) (((-842) $) 42 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 115 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1132 |#1|) (-13 (-656 |#1|) (-10 -8 (-6 -4367) (-15 -1477 ($ (-627 |#1|))) (-15 -2158 ($ (-627 |#1|))) (IF (|has| |#1| (-1076)) (-15 -3518 ((-111) (-627 |#1|) $)) |%noBranch|) (-15 -3771 ((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $)) (-15 -2217 ($ (-1 $))) (-15 -3848 ($ |#1| $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1395 ((-1240) (-552) $)) (-15 -3576 ((-842) $)) (-15 -1852 ((-111)))) |%noBranch|) (-15 -1474 ($ $ (-552) $)) (-15 -2458 ($ (-1 |#1|))) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)))) (-1189)) (T -1132)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-3518 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)) (-5 *1 (-1132 *4)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754)))) (-5 *1 (-1132 *4)) (-4 *4 (-1189)) (-5 *3 (-754)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1 (-1132 *3))) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1189)))) (-1395 (*1 *2 *3 *1) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1132 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)))) (-1852 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)))) (-1474 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2509 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2524 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) -(-13 (-656 |#1|) (-10 -8 (-6 -4367) (-15 -1477 ($ (-627 |#1|))) (-15 -2158 ($ (-627 |#1|))) (IF (|has| |#1| (-1076)) (-15 -3518 ((-111) (-627 |#1|) $)) |%noBranch|) (-15 -3771 ((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $)) (-15 -2217 ($ (-1 $))) (-15 -3848 ($ |#1| $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1395 ((-1240) (-552) $)) (-15 -3576 ((-842) $)) (-15 -1852 ((-111)))) |%noBranch|) (-15 -1474 ($ $ (-552) $)) (-15 -2458 ($ (-1 |#1|))) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)))) -((-1465 (((-111) $ $) 19)) (-2726 (($ $) 120)) (-1349 (($ $) 121)) (-3064 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 118)) (-4003 (((-111) $ $ (-552)) 117)) (-2258 (($ (-552)) 127)) (-2843 (((-627 $) $ (-141)) 110) (((-627 $) $ (-138)) 109)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| (-141) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3702 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3754 (($ $ (-1202 (-552)) $) 114)) (-3370 (($ $) 78 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-141) $) 77 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) 51)) (-4050 (((-111) $ $) 119)) (-2967 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3215 (((-627 (-141)) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 115)) (-3835 (((-754) $ $ (-141)) 116)) (-3463 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3053 (($ $) 122)) (-3769 (($ $) 123)) (-3971 (((-111) $ (-754)) 10)) (-3712 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1595 (((-1134) $) 22)) (-3252 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21)) (-3340 (((-141) $) 42 (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1942 (($ $ (-141)) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1202 (-552))) 63) (($ $ $) 102)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4366))) (((-754) (-141) $) 28 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) 70)) (-2668 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (($ (-141)) 111) (((-842) $) 18)) (-3299 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 131) (((-1134) $ (-111)) 130) (((-1240) (-805) $) 129) (((-1240) (-805) $ (-111)) 128)) (-2351 (((-111) $ $) 84 (|has| (-141) (-830)))) (-2329 (((-111) $ $) 83 (|has| (-141) (-830)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) 85 (|has| (-141) (-830)))) (-2316 (((-111) $ $) 82 (|has| (-141) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1133) (-137)) (T -1133)) -((-2258 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1133))))) -(-13 (-1120) (-1076) (-811) (-10 -8 (-15 -2258 ($ (-552))))) -(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-633 #0#) . T) ((-19 #0#) . T) ((-811) . T) ((-830) |has| (-141) (-830)) ((-1076) . T) ((-1120) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-2726 (($ $) NIL)) (-1349 (($ $) NIL)) (-3064 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) NIL)) (-4003 (((-111) $ $ (-552)) NIL)) (-2258 (($ (-552)) 7)) (-2843 (((-627 $) $ (-141)) NIL) (((-627 $) $ (-138)) NIL)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-141) (-830))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3702 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3754 (($ $ (-1202 (-552)) $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4342 (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) NIL)) (-4050 (((-111) $ $) NIL)) (-2967 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) NIL (|has| (-141) (-1076))) (((-552) $ $ (-552)) NIL) (((-552) (-138) $ (-552)) NIL)) (-3215 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) NIL)) (-3835 (((-754) $ $ (-141)) NIL)) (-3463 (($ (-1 (-141) (-141)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3053 (($ $) NIL)) (-3769 (($ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3712 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-141) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1942 (($ $ (-141)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (($ $ $) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) NIL)) (-2668 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (($ (-141)) NIL) (((-842) $) NIL)) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 18) (((-1134) $ (-111)) 20) (((-1240) (-805) $) 21) (((-1240) (-805) $ (-111)) 22)) (-2351 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-141) (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1134) (-1133)) (T -1134)) -NIL -(-1133) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-1134) |#1|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#1| "failed") (-1134) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#1| "failed") (-1134) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-1134) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-1134)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-1296 (((-627 (-1134)) $) NIL)) (-3619 (((-111) (-1134) $) NIL)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-3340 ((|#1| $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-1134)) NIL) ((|#1| $ (-1134) |#1|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-599 (-842))) (|has| |#1| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1135 |#1|) (-13 (-1165 (-1134) |#1|) (-10 -7 (-6 -4366))) (-1076)) (T -1135)) -NIL -(-13 (-1165 (-1134) |#1|) (-10 -7 (-6 -4366))) -((-3738 (((-1132 |#1|) (-1132 |#1|)) 77)) (-2040 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 37)) (-1500 (((-1132 |#1|) (-401 (-552)) (-1132 |#1|)) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3229 (((-1132 |#1|) |#1| (-1132 |#1|)) 127 (|has| |#1| (-357)))) (-2910 (((-1132 |#1|) (-1132 |#1|)) 90)) (-2429 (((-1132 (-552)) (-552)) 57)) (-1725 (((-1132 |#1|) (-1132 (-1132 |#1|))) 109 (|has| |#1| (-38 (-401 (-552)))))) (-1780 (((-1132 |#1|) (-552) (-552) (-1132 |#1|)) 95)) (-3755 (((-1132 |#1|) |#1| (-552)) 45)) (-1898 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 60)) (-3192 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 124 (|has| |#1| (-357)))) (-3273 (((-1132 |#1|) |#1| (-1 (-1132 |#1|))) 108 (|has| |#1| (-38 (-401 (-552)))))) (-3584 (((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|))) 125 (|has| |#1| (-357)))) (-2525 (((-1132 |#1|) (-1132 |#1|)) 89)) (-4258 (((-1132 |#1|) (-1132 |#1|)) 76)) (-2956 (((-1132 |#1|) (-552) (-552) (-1132 |#1|)) 96)) (-2747 (((-1132 |#1|) |#1| (-1132 |#1|)) 105 (|has| |#1| (-38 (-401 (-552)))))) (-1632 (((-1132 (-552)) (-552)) 56)) (-3275 (((-1132 |#1|) |#1|) 59)) (-2483 (((-1132 |#1|) (-1132 |#1|) (-552) (-552)) 92)) (-3487 (((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|)) 66)) (-2761 (((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|)) 35)) (-4286 (((-1132 |#1|) (-1132 |#1|)) 91)) (-3321 (((-1132 |#1|) (-1132 |#1|) |#1|) 71)) (-3621 (((-1132 |#1|) (-1132 |#1|)) 62)) (-2047 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 72)) (-1477 (((-1132 |#1|) |#1|) 67)) (-3604 (((-1132 |#1|) (-1132 (-1132 |#1|))) 82)) (-2407 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 36)) (-2396 (((-1132 |#1|) (-1132 |#1|)) 21) (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 23)) (-2384 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 17)) (* (((-1132 |#1|) (-1132 |#1|) |#1|) 29) (((-1132 |#1|) |#1| (-1132 |#1|)) 26) (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 27))) -(((-1136 |#1|) (-10 -7 (-15 -2384 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2761 ((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|))) (-15 -2407 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2040 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3755 ((-1132 |#1|) |#1| (-552))) (-15 -1632 ((-1132 (-552)) (-552))) (-15 -2429 ((-1132 (-552)) (-552))) (-15 -3275 ((-1132 |#1|) |#1|)) (-15 -1898 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3621 ((-1132 |#1|) (-1132 |#1|))) (-15 -3487 ((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|))) (-15 -1477 ((-1132 |#1|) |#1|)) (-15 -3321 ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2047 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -4258 ((-1132 |#1|) (-1132 |#1|))) (-15 -3738 ((-1132 |#1|) (-1132 |#1|))) (-15 -3604 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -2525 ((-1132 |#1|) (-1132 |#1|))) (-15 -2910 ((-1132 |#1|) (-1132 |#1|))) (-15 -4286 ((-1132 |#1|) (-1132 |#1|))) (-15 -2483 ((-1132 |#1|) (-1132 |#1|) (-552) (-552))) (-15 -1780 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (-15 -2956 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 -3273 ((-1132 |#1|) |#1| (-1 (-1132 |#1|)))) (-15 -1725 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -1500 ((-1132 |#1|) (-401 (-552)) (-1132 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -3192 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3584 ((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|)))) (-15 -3229 ((-1132 |#1|) |#1| (-1132 |#1|)))) |%noBranch|)) (-1028)) (T -1136)) -((-3229 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3584 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1132 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)))) (-3192 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1028)) (-5 *3 (-401 (-552))) (-5 *1 (-1136 *4)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1132 *3))) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)))) (-2747 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2956 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-1780 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-2483 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2525 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) (-4 *4 (-1028)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2047 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-3487 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1898 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-2429 (*1 *2 *3) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) (-5 *3 (-552)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) (-5 *3 (-552)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-2040 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2407 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2761 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) -(-10 -7 (-15 -2384 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2761 ((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|))) (-15 -2407 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2040 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3755 ((-1132 |#1|) |#1| (-552))) (-15 -1632 ((-1132 (-552)) (-552))) (-15 -2429 ((-1132 (-552)) (-552))) (-15 -3275 ((-1132 |#1|) |#1|)) (-15 -1898 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3621 ((-1132 |#1|) (-1132 |#1|))) (-15 -3487 ((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|))) (-15 -1477 ((-1132 |#1|) |#1|)) (-15 -3321 ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2047 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -4258 ((-1132 |#1|) (-1132 |#1|))) (-15 -3738 ((-1132 |#1|) (-1132 |#1|))) (-15 -3604 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -2525 ((-1132 |#1|) (-1132 |#1|))) (-15 -2910 ((-1132 |#1|) (-1132 |#1|))) (-15 -4286 ((-1132 |#1|) (-1132 |#1|))) (-15 -2483 ((-1132 |#1|) (-1132 |#1|) (-552) (-552))) (-15 -1780 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (-15 -2956 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 -3273 ((-1132 |#1|) |#1| (-1 (-1132 |#1|)))) (-15 -1725 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -1500 ((-1132 |#1|) (-401 (-552)) (-1132 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -3192 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3584 ((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|)))) (-15 -3229 ((-1132 |#1|) |#1| (-1132 |#1|)))) |%noBranch|)) -((-1607 (((-1132 |#1|) (-1132 |#1|)) 57)) (-1467 (((-1132 |#1|) (-1132 |#1|)) 39)) (-1584 (((-1132 |#1|) (-1132 |#1|)) 53)) (-1445 (((-1132 |#1|) (-1132 |#1|)) 35)) (-1628 (((-1132 |#1|) (-1132 |#1|)) 60)) (-1492 (((-1132 |#1|) (-1132 |#1|)) 42)) (-4135 (((-1132 |#1|) (-1132 |#1|)) 31)) (-3154 (((-1132 |#1|) (-1132 |#1|)) 27)) (-1640 (((-1132 |#1|) (-1132 |#1|)) 61)) (-1502 (((-1132 |#1|) (-1132 |#1|)) 43)) (-1615 (((-1132 |#1|) (-1132 |#1|)) 58)) (-1479 (((-1132 |#1|) (-1132 |#1|)) 40)) (-1596 (((-1132 |#1|) (-1132 |#1|)) 55)) (-1456 (((-1132 |#1|) (-1132 |#1|)) 37)) (-1673 (((-1132 |#1|) (-1132 |#1|)) 65)) (-1534 (((-1132 |#1|) (-1132 |#1|)) 47)) (-1652 (((-1132 |#1|) (-1132 |#1|)) 63)) (-1513 (((-1132 |#1|) (-1132 |#1|)) 45)) (-1697 (((-1132 |#1|) (-1132 |#1|)) 68)) (-1561 (((-1132 |#1|) (-1132 |#1|)) 50)) (-3519 (((-1132 |#1|) (-1132 |#1|)) 69)) (-1575 (((-1132 |#1|) (-1132 |#1|)) 51)) (-1686 (((-1132 |#1|) (-1132 |#1|)) 67)) (-1547 (((-1132 |#1|) (-1132 |#1|)) 49)) (-1661 (((-1132 |#1|) (-1132 |#1|)) 66)) (-1524 (((-1132 |#1|) (-1132 |#1|)) 48)) (** (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 33))) -(((-1137 |#1|) (-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) (-38 (-401 (-552)))) (T -1137)) -((-3519 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3))))) -(-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) -((-1607 (((-1132 |#1|) (-1132 |#1|)) 100)) (-1467 (((-1132 |#1|) (-1132 |#1|)) 64)) (-1480 (((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|)) 96)) (-1584 (((-1132 |#1|) (-1132 |#1|)) 97)) (-1739 (((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|)) 53)) (-1445 (((-1132 |#1|) (-1132 |#1|)) 54)) (-1628 (((-1132 |#1|) (-1132 |#1|)) 102)) (-1492 (((-1132 |#1|) (-1132 |#1|)) 71)) (-4135 (((-1132 |#1|) (-1132 |#1|)) 39)) (-3154 (((-1132 |#1|) (-1132 |#1|)) 36)) (-1640 (((-1132 |#1|) (-1132 |#1|)) 103)) (-1502 (((-1132 |#1|) (-1132 |#1|)) 72)) (-1615 (((-1132 |#1|) (-1132 |#1|)) 101)) (-1479 (((-1132 |#1|) (-1132 |#1|)) 67)) (-1596 (((-1132 |#1|) (-1132 |#1|)) 98)) (-1456 (((-1132 |#1|) (-1132 |#1|)) 55)) (-1673 (((-1132 |#1|) (-1132 |#1|)) 111)) (-1534 (((-1132 |#1|) (-1132 |#1|)) 86)) (-1652 (((-1132 |#1|) (-1132 |#1|)) 105)) (-1513 (((-1132 |#1|) (-1132 |#1|)) 82)) (-1697 (((-1132 |#1|) (-1132 |#1|)) 115)) (-1561 (((-1132 |#1|) (-1132 |#1|)) 90)) (-3519 (((-1132 |#1|) (-1132 |#1|)) 117)) (-1575 (((-1132 |#1|) (-1132 |#1|)) 92)) (-1686 (((-1132 |#1|) (-1132 |#1|)) 113)) (-1547 (((-1132 |#1|) (-1132 |#1|)) 88)) (-1661 (((-1132 |#1|) (-1132 |#1|)) 107)) (-1524 (((-1132 |#1|) (-1132 |#1|)) 84)) (** (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 40))) -(((-1138 |#1|) (-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1739 ((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1480 ((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) (-38 (-401 (-552)))) (T -1138)) -((-3519 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -1584 (-1132 *4)) (|:| -1596 (-1132 *4)))) (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -1445 (-1132 *4)) (|:| -1456 (-1132 *4)))) (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3))))) -(-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1739 ((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1480 ((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) -((-3200 (((-937 |#2|) |#2| |#2|) 35)) (-1375 ((|#2| |#2| |#1|) 19 (|has| |#1| (-301))))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -3200 ((-937 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1375 (|#2| |#2| |#1|)) |%noBranch|)) (-544) (-1211 |#1|)) (T -1139)) -((-1375 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1139 *3 *2)) (-4 *2 (-1211 *3)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-937 *3)) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3200 ((-937 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1375 (|#2| |#2| |#1|)) |%noBranch|)) -((-1465 (((-111) $ $) NIL)) (-1373 (($ $ (-627 (-754))) 67)) (-3757 (($) 26)) (-2178 (($ $) 42)) (-4194 (((-627 $) $) 51)) (-4109 (((-111) $) 16)) (-1751 (((-627 (-922 |#2|)) $) 74)) (-2414 (($ $) 68)) (-3880 (((-754) $) 37)) (-2655 (($) 25)) (-3404 (($ $ (-627 (-754)) (-922 |#2|)) 60) (($ $ (-627 (-754)) (-754)) 61) (($ $ (-754) (-922 |#2|)) 63)) (-3759 (($ $ $) 48) (($ (-627 $)) 50)) (-2071 (((-754) $) 75)) (-3810 (((-111) $) 15)) (-1595 (((-1134) $) NIL)) (-2369 (((-111) $) 18)) (-1498 (((-1096) $) NIL)) (-2204 (((-168) $) 73)) (-2192 (((-922 |#2|) $) 69)) (-2401 (((-754) $) 70)) (-3856 (((-111) $) 72)) (-4071 (($ $ (-627 (-754)) (-168)) 66)) (-2290 (($ $) 43)) (-1477 (((-842) $) 86)) (-2599 (($ $ (-627 (-754)) (-111)) 65)) (-2535 (((-627 $) $) 11)) (-4241 (($ $ (-754)) 36)) (-3902 (($ $) 32)) (-1857 (($ $ $ (-922 |#2|) (-754)) 56)) (-3526 (($ $ (-922 |#2|)) 55)) (-4036 (($ $ (-627 (-754)) (-922 |#2|)) 54) (($ $ (-627 (-754)) (-754)) 58) (((-754) $ (-922 |#2|)) 59)) (-2292 (((-111) $ $) 80))) -(((-1140 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -3810 ((-111) $)) (-15 -4109 ((-111) $)) (-15 -2369 ((-111) $)) (-15 -2655 ($)) (-15 -3757 ($)) (-15 -3902 ($ $)) (-15 -4241 ($ $ (-754))) (-15 -2535 ((-627 $) $)) (-15 -3880 ((-754) $)) (-15 -2178 ($ $)) (-15 -2290 ($ $)) (-15 -3759 ($ $ $)) (-15 -3759 ($ (-627 $))) (-15 -4194 ((-627 $) $)) (-15 -4036 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -3526 ($ $ (-922 |#2|))) (-15 -1857 ($ $ $ (-922 |#2|) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -4036 ($ $ (-627 (-754)) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-754))) (-15 -4036 ((-754) $ (-922 |#2|))) (-15 -3404 ($ $ (-754) (-922 |#2|))) (-15 -2599 ($ $ (-627 (-754)) (-111))) (-15 -4071 ($ $ (-627 (-754)) (-168))) (-15 -1373 ($ $ (-627 (-754)))) (-15 -2192 ((-922 |#2|) $)) (-15 -2401 ((-754) $)) (-15 -3856 ((-111) $)) (-15 -2204 ((-168) $)) (-15 -2071 ((-754) $)) (-15 -2414 ($ $)) (-15 -1751 ((-627 (-922 |#2|)) $)))) (-900) (-1028)) (T -1140)) -((-3810 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2655 (*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3757 (*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-922 *4)) (-4 *4 (-1028)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)))) (-1857 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-922 *5)) (-5 *3 (-754)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-4036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *2 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-2599 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-111)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-4071 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-168)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-922 *4)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2414 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-627 (-922 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028))))) -(-13 (-1076) (-10 -8 (-15 -3810 ((-111) $)) (-15 -4109 ((-111) $)) (-15 -2369 ((-111) $)) (-15 -2655 ($)) (-15 -3757 ($)) (-15 -3902 ($ $)) (-15 -4241 ($ $ (-754))) (-15 -2535 ((-627 $) $)) (-15 -3880 ((-754) $)) (-15 -2178 ($ $)) (-15 -2290 ($ $)) (-15 -3759 ($ $ $)) (-15 -3759 ($ (-627 $))) (-15 -4194 ((-627 $) $)) (-15 -4036 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -3526 ($ $ (-922 |#2|))) (-15 -1857 ($ $ $ (-922 |#2|) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -4036 ($ $ (-627 (-754)) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-754))) (-15 -4036 ((-754) $ (-922 |#2|))) (-15 -3404 ($ $ (-754) (-922 |#2|))) (-15 -2599 ($ $ (-627 (-754)) (-111))) (-15 -4071 ($ $ (-627 (-754)) (-168))) (-15 -1373 ($ $ (-627 (-754)))) (-15 -2192 ((-922 |#2|) $)) (-15 -2401 ((-754) $)) (-15 -3856 ((-111) $)) (-15 -2204 ((-168) $)) (-15 -2071 ((-754) $)) (-15 -2414 ($ $)) (-15 -1751 ((-627 (-922 |#2|)) $)))) -((-1465 (((-111) $ $) NIL)) (-3089 ((|#2| $) 11)) (-3078 ((|#1| $) 10)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1490 (($ |#1| |#2|) 9)) (-1477 (((-842) $) 16)) (-2292 (((-111) $ $) NIL))) -(((-1141 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -1490 ($ |#1| |#2|)) (-15 -3078 (|#1| $)) (-15 -3089 (|#2| $)))) (-1076) (-1076)) (T -1141)) -((-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *2 *3)) (-4 *3 (-1076)))) (-3089 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1076))))) -(-13 (-1076) (-10 -8 (-15 -1490 ($ |#1| |#2|)) (-15 -3078 (|#1| $)) (-15 -3089 (|#2| $)))) -((-1465 (((-111) $ $) NIL)) (-2714 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1142) (-13 (-1059) (-10 -8 (-15 -2714 ((-1111) $))))) (T -1142)) -((-2714 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1142))))) -(-13 (-1059) (-10 -8 (-15 -2714 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4019 (($ $ (-552)) NIL) (($ $ (-552) (-552)) 66)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3086 (((-1150 |#1| |#2| |#3|) $) 36)) (-3967 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 29)) (-1909 (((-1150 |#1| |#2| |#3|) $) 30)) (-1607 (($ $) 107 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 103 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1152) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1703 (((-1150 |#1| |#2| |#3|) $) 131) (((-1152) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1405 (($ $) 34) (($ (-552) $) 35)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-1150 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-1150 |#1| |#2| |#3|))) (|:| |vec| (-1235 (-1150 |#1| |#2| |#3|)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 48)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 65 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 67 (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 25)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-865 (-552))) (|has| |#1| (-357)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-865 (-373))) (|has| |#1| (-357))))) (-2641 (((-552) $) NIL) (((-552) $ (-552)) 24)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 (((-1150 |#1| |#2| |#3|) $) 38 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 18) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) (-1150 |#1| |#2| |#3|)) 33)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 70 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 71 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2060 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 145)) (-2761 (((-3 $ "failed") $ $) 49 (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-288 (-1150 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1150 |#1| |#2| |#3|)) (-627 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) NIL) (($ $ $) 54 (|has| (-552) (-1088))) (($ $ (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1231 |#2|)) 51) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 50 (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 (((-1150 |#1| |#2| |#3|) $) 41 (|has| |#1| (-357)))) (-3567 (((-552) $) 37)) (-1640 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 105 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-528) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 149) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1150 |#1| |#2| |#3|)) 27) (($ (-1231 |#2|)) 23) (($ (-1152)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-1889 ((|#1| $ (-552)) 68)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-3796 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 95 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1652 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 99 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 101 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 97 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 93 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1922 (($) 20 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2316 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 44 (|has| |#1| (-357))) (($ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) 45 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 21)) (** (($ $ (-900)) NIL) (($ $ (-754)) 53) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) 74 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1150 |#1| |#2| |#3|)) 43 (|has| |#1| (-357))) (($ (-1150 |#1| |#2| |#3|) $) 42 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1143 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1143)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1197 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-2707 ((|#2| |#2| (-1068 |#2|)) 26) ((|#2| |#2| (-1152)) 28))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -2707 (|#2| |#2| (-1152))) (-15 -2707 (|#2| |#2| (-1068 |#2|)))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-424 |#1|) (-157) (-27) (-1174))) (T -1144)) -((-2707 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1144 *4 *2)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174)))))) -(-10 -7 (-15 -2707 (|#2| |#2| (-1152))) (-15 -2707 (|#2| |#2| (-1068 |#2|)))) -((-2707 (((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))) 31) (((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|))) 44) (((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152)) 33) (((-401 (-931 |#1|)) (-931 |#1|) (-1152)) 36))) -(((-1145 |#1|) (-10 -7 (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1152))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|)))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))))) (-13 (-544) (-830) (-1017 (-552)))) (T -1145)) -((-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1145 *5)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-931 *5))) (-5 *3 (-931 *5)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 *3)) (-5 *1 (-1145 *5)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 (-401 (-931 *5)) (-310 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-401 (-931 *5))))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 (-931 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-931 *5))))) -(-10 -7 (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1152))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|)))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))))) -((-3516 (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 13))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -3516 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)))) (-1028) (-1028)) (T -1146)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6))))) -(-10 -7 (-15 -3516 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)))) -((-2487 (((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))) 51)) (-1727 (((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))) 52))) -(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|)))) (-15 -2487 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))))) (-776) (-830) (-445) (-928 |#3| |#1| |#2|)) (T -1147)) -((-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7)))))) -(-10 -7 (-15 -1727 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|)))) (-15 -2487 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))))) -((-1465 (((-111) $ $) 137)) (-3024 (((-111) $) 27)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) 58) (((-1148 |#1|) $) 47)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) 132 (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) 126 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 71 (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 91 (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1611 (($ $ (-754)) 39)) (-3123 (($ $ (-754)) 40)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 56)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) 104)) (-3955 (($ $ $) NIL (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) 133 (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) 45)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2267 (((-842) $ (-842)) 117)) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) 49) (($ (-1148 $) (-1058)) 65)) (-3322 (($ $ (-754)) 32)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 63) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 121)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) 52)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 38)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 31)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 79 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) 135 (|has| |#1| (-445)))) (-1839 (($ $ (-754) |#1| $) 99)) (-3676 (((-412 (-1148 $)) (-1148 $)) 77 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 76 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 84 (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) 35)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 138 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) 54) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 130 (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) 118) (($ (-552)) NIL) (($ |#1|) 53) (($ (-1058)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) 25 (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 15 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 96)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 139 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 66)) (** (($ $ (-900)) 14) (($ $ (-754)) 12)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1148 |#1|) (-13 (-1211 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))) (-15 -1839 ($ $ (-754) |#1| $)))) (-1028)) (T -1148)) -((-2267 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1148 *3)) (-4 *3 (-1028)))) (-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1148 *3)) (-4 *3 (-1028))))) -(-13 (-1211 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))) (-15 -1839 ($ $ (-754) |#1| $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 36)) (-1703 (((-1143 |#1| |#2| |#3|) $) NIL) (((-1150 |#1| |#2| |#3|) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3455 (((-401 (-552)) $) 55)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) (-1143 |#1| |#2| |#3|)) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 20) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 (((-1143 |#1| |#2| |#3|) $) 41)) (-1977 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) NIL)) (-1920 (((-1143 |#1| |#2| |#3|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 38)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 58) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1143 |#1| |#2| |#3|)) 30) (($ (-1150 |#1| |#2| |#3|)) 31) (($ (-1231 |#2|)) 26) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 22 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 24)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1149 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1017 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1149)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1017 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 125)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 116)) (-3017 (((-1208 |#2| |#1|) $ (-754)) 63)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 79) (($ $ (-754) (-754)) 76)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 102)) (-1607 (($ $) 169 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 165 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 115) (($ (-1132 |#1|)) 110)) (-1628 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 23)) (-2872 (($ $) 26)) (-2212 (((-931 |#1|) $ (-754)) 75) (((-931 |#1|) $ (-754) (-754)) 77)) (-2391 (((-111) $) 120)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) 122) (((-754) $ (-754)) 124)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 13) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $) 129 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-4168 (($ $ (-754)) 15)) (-2761 (((-3 $ "failed") $ $) 24 (|has| |#1| (-544)))) (-3154 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 119) (($ $ $) 128 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $ (-1231 |#2|)) 29)) (-3567 (((-754) $) NIL)) (-1640 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 167 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 201) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1208 |#2| |#1|)) 51) (($ (-1231 |#2|)) 32)) (-1493 (((-1132 |#1|) $) 98)) (-1889 ((|#1| $ (-754)) 118)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 54)) (-1673 (($ $) 181 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 185 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 183 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 17 T CONST)) (-1933 (($) 19 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 194)) (-2384 (($ $ $) 31)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#1|) 198 (|has| |#1| (-357))) (($ $ $) 134 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 137 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1150 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1150)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1477 (((-842) $) 27) (($ (-1152)) 29)) (-1559 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 40)) (-1545 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-4048 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 35)) (-4037 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 37)) (-4023 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 36)) (-4011 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 38)) (-3909 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 39))) -(((-1151) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -4048 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4011 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1559 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3909 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ $))))) (T -1151)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1151)))) (-4048 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4023 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4011 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1559 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-3909 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1545 (*1 *1 *1) (-5 *1 (-1151)))) -(-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -4048 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4011 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1559 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3909 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ $)))) -((-1465 (((-111) $ $) NIL)) (-2130 (($ $ (-627 (-842))) 59)) (-3651 (($ $ (-627 (-842))) 57)) (-2258 (((-1134) $) 84)) (-3606 (((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $) 87)) (-2861 (((-111) $) 22)) (-2606 (($ $ (-627 (-627 (-842)))) 56) (($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) 82)) (-3887 (($) 124 T CONST)) (-2504 (((-1240)) 106)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 66) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 73)) (-2655 (($) 95) (($ $) 101)) (-3112 (($ $) 83)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1299 (((-627 $) $) 107)) (-1595 (((-1134) $) 90)) (-1498 (((-1096) $) NIL)) (-1985 (($ $ (-627 (-842))) 58)) (-3562 (((-528) $) 46) (((-1152) $) 47) (((-871 (-552)) $) 77) (((-871 (-373)) $) 75)) (-1477 (((-842) $) 53) (($ (-1134)) 48)) (-2350 (($ $ (-627 (-842))) 60)) (-4157 (((-1134) $) 33) (((-1134) $ (-111)) 34) (((-1240) (-805) $) 35) (((-1240) (-805) $ (-111)) 36)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 49)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 50))) -(((-1152) (-13 (-830) (-600 (-528)) (-811) (-600 (-1152)) (-600 (-871 (-552))) (-600 (-871 (-373))) (-865 (-552)) (-865 (-373)) (-10 -8 (-15 -2655 ($)) (-15 -2655 ($ $)) (-15 -2504 ((-1240))) (-15 -1477 ($ (-1134))) (-15 -3112 ($ $)) (-15 -2861 ((-111) $)) (-15 -3606 ((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $)) (-15 -2606 ($ $ (-627 (-627 (-842))))) (-15 -2606 ($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))))) (-15 -3651 ($ $ (-627 (-842)))) (-15 -2130 ($ $ (-627 (-842)))) (-15 -2350 ($ $ (-627 (-842)))) (-15 -1985 ($ $ (-627 (-842)))) (-15 -2258 ((-1134) $)) (-15 -1299 ((-627 $) $)) (-15 -3887 ($) -3488)))) (T -1152)) -((-2655 (*1 *1) (-5 *1 (-1152))) (-2655 (*1 *1 *1) (-5 *1 (-1152))) (-2504 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1152)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) (-3112 (*1 *1 *1) (-5 *1 (-1152))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1152)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) (-5 *1 (-1152)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-1152)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) (-5 *1 (-1152)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1152)))) (-3887 (*1 *1) (-5 *1 (-1152)))) -(-13 (-830) (-600 (-528)) (-811) (-600 (-1152)) (-600 (-871 (-552))) (-600 (-871 (-373))) (-865 (-552)) (-865 (-373)) (-10 -8 (-15 -2655 ($)) (-15 -2655 ($ $)) (-15 -2504 ((-1240))) (-15 -1477 ($ (-1134))) (-15 -3112 ($ $)) (-15 -2861 ((-111) $)) (-15 -3606 ((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $)) (-15 -2606 ($ $ (-627 (-627 (-842))))) (-15 -2606 ($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))))) (-15 -3651 ($ $ (-627 (-842)))) (-15 -2130 ($ $ (-627 (-842)))) (-15 -2350 ($ $ (-627 (-842)))) (-15 -1985 ($ $ (-627 (-842)))) (-15 -2258 ((-1134) $)) (-15 -1299 ((-627 $) $)) (-15 -3887 ($) -3488))) -((-4046 (((-1235 |#1|) |#1| (-900)) 16) (((-1235 |#1|) (-627 |#1|)) 20))) -(((-1153 |#1|) (-10 -7 (-15 -4046 ((-1235 |#1|) (-627 |#1|))) (-15 -4046 ((-1235 |#1|) |#1| (-900)))) (-1028)) (T -1153)) -((-4046 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-1235 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1028)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)) (-5 *1 (-1153 *4))))) -(-10 -7 (-15 -4046 ((-1235 |#1|) (-627 |#1|))) (-15 -4046 ((-1235 |#1|) |#1| (-900)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2061 (($ $ |#1| (-950) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-950)) NIL)) (-3465 (((-950) $) NIL)) (-3813 (($ (-1 (-950) (-950)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-1839 (($ $ (-950) |#1| $) NIL (-12 (|has| (-950) (-129)) (|has| |#1| (-544))))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3567 (((-950) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-950)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 9 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) 16)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 19)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1154 |#1|) (-13 (-320 |#1| (-950)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-950) (-129)) (-15 -1839 ($ $ (-950) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028)) (T -1154)) -((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-950)) (-4 *2 (-129)) (-5 *1 (-1154 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) -(-13 (-320 |#1| (-950)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-950) (-129)) (-15 -1839 ($ $ (-950) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) -((-1669 (((-1156) (-1152) $) 25)) (-2026 (($) 29)) (-3019 (((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $) 22)) (-2175 (((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $) 41) (((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) 42) (((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) 43)) (-3504 (((-1240) (-1152)) 58)) (-2457 (((-1240) (-1152) $) 55) (((-1240) (-1152)) 56) (((-1240)) 57)) (-3367 (((-1240) (-1152)) 37)) (-3109 (((-1152)) 36)) (-2373 (($) 34)) (-4120 (((-431) (-1152) (-431) (-1152) $) 45) (((-431) (-627 (-1152)) (-431) (-1152) $) 49) (((-431) (-1152) (-431)) 46) (((-431) (-1152) (-431) (-1152)) 50)) (-2554 (((-1152)) 35)) (-1477 (((-842) $) 28)) (-1826 (((-1240)) 30) (((-1240) (-1152)) 33)) (-1501 (((-627 (-1152)) (-1152) $) 24)) (-3743 (((-1240) (-1152) (-627 (-1152)) $) 38) (((-1240) (-1152) (-627 (-1152))) 39) (((-1240) (-627 (-1152))) 40))) -(((-1155) (-13 (-599 (-842)) (-10 -8 (-15 -2026 ($)) (-15 -1826 ((-1240))) (-15 -1826 ((-1240) (-1152))) (-15 -4120 ((-431) (-1152) (-431) (-1152) $)) (-15 -4120 ((-431) (-627 (-1152)) (-431) (-1152) $)) (-15 -4120 ((-431) (-1152) (-431))) (-15 -4120 ((-431) (-1152) (-431) (-1152))) (-15 -3367 ((-1240) (-1152))) (-15 -2554 ((-1152))) (-15 -3109 ((-1152))) (-15 -3743 ((-1240) (-1152) (-627 (-1152)) $)) (-15 -3743 ((-1240) (-1152) (-627 (-1152)))) (-15 -3743 ((-1240) (-627 (-1152)))) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2175 ((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2457 ((-1240) (-1152) $)) (-15 -2457 ((-1240) (-1152))) (-15 -2457 ((-1240))) (-15 -3504 ((-1240) (-1152))) (-15 -2373 ($)) (-15 -3019 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $)) (-15 -1501 ((-627 (-1152)) (-1152) $)) (-15 -1669 ((-1156) (-1152) $))))) (T -1155)) -((-2026 (*1 *1) (-5 *1 (-1155))) (-1826 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *4 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2554 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155)))) (-3109 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1152)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2373 (*1 *1) (-5 *1 (-1155))) (-3019 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-1155)))) (-1501 (*1 *2 *3 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1155)) (-5 *3 (-1152)))) (-1669 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1156)) (-5 *1 (-1155))))) -(-13 (-599 (-842)) (-10 -8 (-15 -2026 ($)) (-15 -1826 ((-1240))) (-15 -1826 ((-1240) (-1152))) (-15 -4120 ((-431) (-1152) (-431) (-1152) $)) (-15 -4120 ((-431) (-627 (-1152)) (-431) (-1152) $)) (-15 -4120 ((-431) (-1152) (-431))) (-15 -4120 ((-431) (-1152) (-431) (-1152))) (-15 -3367 ((-1240) (-1152))) (-15 -2554 ((-1152))) (-15 -3109 ((-1152))) (-15 -3743 ((-1240) (-1152) (-627 (-1152)) $)) (-15 -3743 ((-1240) (-1152) (-627 (-1152)))) (-15 -3743 ((-1240) (-627 (-1152)))) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2175 ((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2457 ((-1240) (-1152) $)) (-15 -2457 ((-1240) (-1152))) (-15 -2457 ((-1240))) (-15 -3504 ((-1240) (-1152))) (-15 -2373 ($)) (-15 -3019 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $)) (-15 -1501 ((-627 (-1152)) (-1152) $)) (-15 -1669 ((-1156) (-1152) $)))) -((-2607 (((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $) 59)) (-3827 (((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $) 43)) (-2750 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) 17)) (-3504 (((-1240) $) 67)) (-4290 (((-627 (-1152)) $) 22)) (-3073 (((-1080) $) 55)) (-3896 (((-431) (-1152) $) 27)) (-4130 (((-627 (-1152)) $) 30)) (-2373 (($) 19)) (-4120 (((-431) (-627 (-1152)) (-431) $) 25) (((-431) (-1152) (-431) $) 24)) (-1477 (((-842) $) 9) (((-1162 (-1152) (-431)) $) 13))) -(((-1156) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ((-1162 (-1152) (-431)) $)) (-15 -2373 ($)) (-15 -4120 ((-431) (-627 (-1152)) (-431) $)) (-15 -4120 ((-431) (-1152) (-431) $)) (-15 -3896 ((-431) (-1152) $)) (-15 -4290 ((-627 (-1152)) $)) (-15 -3827 ((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $)) (-15 -4130 ((-627 (-1152)) $)) (-15 -2607 ((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $)) (-15 -3073 ((-1080) $)) (-15 -3504 ((-1240) $)) (-15 -2750 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))))))) (T -1156)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-1162 (-1152) (-431))) (-5 *1 (-1156)))) (-2373 (*1 *1) (-5 *1 (-1156))) (-4120 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *1 (-1156)))) (-4120 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1156)))) (-3896 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-431)) (-5 *1 (-1156)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156)))) (-3827 (*1 *2 *3 *1) (-12 (-5 *3 (-428)) (-5 *2 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) (-5 *1 (-1156)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))))) (-5 *1 (-1156)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1156)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1156)))) (-2750 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) (-5 *1 (-1156))))) -(-13 (-599 (-842)) (-10 -8 (-15 -1477 ((-1162 (-1152) (-431)) $)) (-15 -2373 ($)) (-15 -4120 ((-431) (-627 (-1152)) (-431) $)) (-15 -4120 ((-431) (-1152) (-431) $)) (-15 -3896 ((-431) (-1152) $)) (-15 -4290 ((-627 (-1152)) $)) (-15 -3827 ((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $)) (-15 -4130 ((-627 (-1152)) $)) (-15 -2607 ((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $)) (-15 -3073 ((-1080) $)) (-15 -3504 ((-1240) $)) (-15 -2750 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431)))))))) -((-1465 (((-111) $ $) NIL)) (-4039 (((-3 (-552) "failed") $) 29) (((-3 (-220) "failed") $) 35) (((-3 (-1152) "failed") $) 41) (((-3 (-1134) "failed") $) 47)) (-1703 (((-552) $) 30) (((-220) $) 36) (((-1152) $) 42) (((-1134) $) 48)) (-3760 (((-111) $) 53)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1882 (((-3 (-552) (-220) (-1152) (-1134) $) $) 55)) (-1295 (((-627 $) $) 57)) (-3562 (((-1080) $) 24) (($ (-1080)) 25)) (-2149 (((-111) $) 56)) (-1477 (((-842) $) 22) (($ (-552)) 26) (($ (-220)) 32) (($ (-1152)) 38) (($ (-1134)) 44) (((-552) $) 31) (((-220) $) 37) (((-1152) $) 43) (((-1134) $) 49)) (-1911 (((-111) $ (|[\|\|]| (-552))) 10) (((-111) $ (|[\|\|]| (-220))) 13) (((-111) $ (|[\|\|]| (-1152))) 19) (((-111) $ (|[\|\|]| (-1134))) 16)) (-3328 (($ (-1152) (-627 $)) 51) (($ $ (-627 $)) 52)) (-3007 (((-552) $) 27) (((-220) $) 33) (((-1152) $) 39) (((-1134) $) 45)) (-2292 (((-111) $ $) 7))) -(((-1157) (-13 (-1230) (-1076) (-1017 (-552)) (-1017 (-220)) (-1017 (-1152)) (-1017 (-1134)) (-10 -8 (-15 -3562 ((-1080) $)) (-15 -3562 ($ (-1080))) (-15 -1477 ((-552) $)) (-15 -3007 ((-552) $)) (-15 -1477 ((-220) $)) (-15 -3007 ((-220) $)) (-15 -1477 ((-1152) $)) (-15 -3007 ((-1152) $)) (-15 -1477 ((-1134) $)) (-15 -3007 ((-1134) $)) (-15 -3328 ($ (-1152) (-627 $))) (-15 -3328 ($ $ (-627 $))) (-15 -3760 ((-111) $)) (-15 -1882 ((-3 (-552) (-220) (-1152) (-1134) $) $)) (-15 -1295 ((-627 $) $)) (-15 -2149 ((-111) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -1911 ((-111) $ (|[\|\|]| (-220)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1152)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1134))))))) (T -1157)) -((-3562 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) (-3328 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-1157))) (-5 *1 (-1157)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-3 (-552) (-220) (-1152) (-1134) (-1157))) (-5 *1 (-1157)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)) (-5 *1 (-1157))))) -(-13 (-1230) (-1076) (-1017 (-552)) (-1017 (-220)) (-1017 (-1152)) (-1017 (-1134)) (-10 -8 (-15 -3562 ((-1080) $)) (-15 -3562 ($ (-1080))) (-15 -1477 ((-552) $)) (-15 -3007 ((-552) $)) (-15 -1477 ((-220) $)) (-15 -3007 ((-220) $)) (-15 -1477 ((-1152) $)) (-15 -3007 ((-1152) $)) (-15 -1477 ((-1134) $)) (-15 -3007 ((-1134) $)) (-15 -3328 ($ (-1152) (-627 $))) (-15 -3328 ($ $ (-627 $))) (-15 -3760 ((-111) $)) (-15 -1882 ((-3 (-552) (-220) (-1152) (-1134) $) $)) (-15 -1295 ((-627 $) $)) (-15 -2149 ((-111) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -1911 ((-111) $ (|[\|\|]| (-220)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1152)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1134)))))) -((-1411 (((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 57)) (-1696 (((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|)))) 69) (((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|))) 65) (((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152)) 70) (((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152)) 64) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|))))) 93) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|)))) 92) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152))) 94) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 91))) -(((-1158 |#1|) (-10 -7 (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))))) (-15 -1411 ((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))))) (-544)) (T -1158)) -((-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-931 *5)))) (-5 *1 (-1158 *5)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-288 (-401 (-931 *4)))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-401 (-931 *4))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-288 (-401 (-931 *5)))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-401 (-931 *5))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)) (-5 *3 (-627 (-288 (-401 (-931 *4))))))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5)) (-5 *3 (-627 (-288 (-401 (-931 *5))))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5))))) -(-10 -7 (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))))) (-15 -1411 ((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))))) -((-2941 (((-1134)) 7)) (-2105 (((-1134)) 9)) (-4190 (((-1240) (-1134)) 11)) (-2482 (((-1134)) 8))) -(((-1159) (-10 -7 (-15 -2941 ((-1134))) (-15 -2482 ((-1134))) (-15 -2105 ((-1134))) (-15 -4190 ((-1240) (-1134))))) (T -1159)) -((-4190 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1159)))) (-2105 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159)))) (-2482 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159)))) (-2941 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) -(-10 -7 (-15 -2941 ((-1134))) (-15 -2482 ((-1134))) (-15 -2105 ((-1134))) (-15 -4190 ((-1240) (-1134)))) -((-2248 (((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|)))) 38)) (-4012 (((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|))) 24)) (-3833 (((-1161 (-627 |#1|)) (-627 |#1|)) 34)) (-4227 (((-627 (-627 |#1|)) (-627 |#1|)) 30)) (-2762 (((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))) 37)) (-1688 (((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|)))) 36)) (-2527 (((-627 (-627 |#1|)) (-627 (-627 |#1|))) 28)) (-2952 (((-627 |#1|) (-627 |#1|)) 31)) (-2695 (((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|)))) 18)) (-3025 (((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|)))) 16)) (-1362 (((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|))) 14)) (-1946 (((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|)))) 39)) (-3506 (((-627 (-627 |#1|)) (-1161 (-627 |#1|))) 41))) -(((-1160 |#1|) (-10 -7 (-15 -1362 ((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|)))) (-15 -3025 ((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2695 ((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2248 ((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -1946 ((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -3506 ((-627 (-627 |#1|)) (-1161 (-627 |#1|)))) (-15 -4012 ((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)))) (-15 -3833 ((-1161 (-627 |#1|)) (-627 |#1|))) (-15 -2527 ((-627 (-627 |#1|)) (-627 (-627 |#1|)))) (-15 -4227 ((-627 (-627 |#1|)) (-627 |#1|))) (-15 -2952 ((-627 |#1|) (-627 |#1|))) (-15 -1688 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))))) (-15 -2762 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))))) (-830)) (T -1160)) -((-2762 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-2 (|:| |f1| (-627 *4)) (|:| |f2| (-627 (-627 (-627 *4)))) (|:| |f3| (-627 (-627 *4))) (|:| |f4| (-627 (-627 (-627 *4)))))) (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 (-627 *4)))))) (-1688 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-830)) (-5 *3 (-627 *6)) (-5 *5 (-627 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-627 *5)) (|:| |f3| *5) (|:| |f4| (-627 *5)))) (-5 *1 (-1160 *6)) (-5 *4 (-627 *5)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-1160 *3)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) (-5 *3 (-627 *4)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-830)) (-5 *1 (-1160 *3)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-1161 (-627 *4))) (-5 *1 (-1160 *4)) (-5 *3 (-627 *4)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 (-627 *4)))) (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 *4))))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1161 (-627 *4))) (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) (-4 *4 (-830)))) (-2248 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) (-4 *4 (-830)) (-5 *1 (-1160 *4)))) (-2695 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *1 (-1160 *4)))) (-3025 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-627 *5)) (-4 *5 (-830)) (-5 *1 (-1160 *5)))) (-1362 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-830)) (-5 *4 (-627 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-627 *4)))) (-5 *1 (-1160 *6)) (-5 *5 (-627 *4))))) -(-10 -7 (-15 -1362 ((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|)))) (-15 -3025 ((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2695 ((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2248 ((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -1946 ((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -3506 ((-627 (-627 |#1|)) (-1161 (-627 |#1|)))) (-15 -4012 ((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)))) (-15 -3833 ((-1161 (-627 |#1|)) (-627 |#1|))) (-15 -2527 ((-627 (-627 |#1|)) (-627 (-627 |#1|)))) (-15 -4227 ((-627 (-627 |#1|)) (-627 |#1|))) (-15 -2952 ((-627 |#1|) (-627 |#1|))) (-15 -1688 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))))) (-15 -2762 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))))) -((-1470 (($ (-627 (-627 |#1|))) 10)) (-3127 (((-627 (-627 |#1|)) $) 11)) (-1477 (((-842) $) 26))) -(((-1161 |#1|) (-10 -8 (-15 -1470 ($ (-627 (-627 |#1|)))) (-15 -3127 ((-627 (-627 |#1|)) $)) (-15 -1477 ((-842) $))) (-1076)) (T -1161)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 *3))) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-1161 *3))))) -(-10 -8 (-15 -1470 ($ (-627 (-627 |#1|)))) (-15 -3127 ((-627 (-627 |#1|)) $)) (-15 -1477 ((-842) $))) -((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1162 |#1| |#2|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076)) (T -1162)) -NIL -(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) -((-2777 ((|#1| (-627 |#1|)) 32)) (-2844 ((|#1| |#1| (-552)) 18)) (-4293 (((-1148 |#1|) |#1| (-900)) 15))) -(((-1163 |#1|) (-10 -7 (-15 -2777 (|#1| (-627 |#1|))) (-15 -4293 ((-1148 |#1|) |#1| (-900))) (-15 -2844 (|#1| |#1| (-552)))) (-357)) (T -1163)) -((-2844 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1163 *2)) (-4 *2 (-357)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-1148 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-357)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) -(-10 -7 (-15 -2777 (|#1| (-627 |#1|))) (-15 -4293 ((-1148 |#1|) |#1| (-900))) (-15 -2844 (|#1| |#1| (-552)))) -((-2642 (($) 10) (($ (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)))) 14)) (-2265 (($ (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 39) (((-627 |#3|) $) 41)) (-3463 (($ (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3516 (($ (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4165 (((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 54)) (-3954 (($ (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 16)) (-3892 (((-627 |#2|) $) 19)) (-2358 (((-111) |#2| $) 59)) (-1503 (((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 58)) (-4133 (((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 63)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-2083 (((-627 |#3|) $) 43)) (-1985 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) NIL) (((-754) |#3| $) NIL) (((-754) (-1 (-111) |#3|) $) 68)) (-1477 (((-842) $) 27)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-2292 (((-111) $ $) 49))) -(((-1164 |#1| |#2| |#3|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2642 (|#1| (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))))) (-15 -2642 (|#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#3|) |#1|)) (-15 -3215 ((-627 |#3|) |#1|)) (-15 -1509 ((-754) |#3| |#1|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -2358 ((-111) |#2| |#1|)) (-15 -3892 ((-627 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1503 ((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -4165 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3954 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -4133 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1509 ((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3215 ((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -1509 ((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3509 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3299 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3463 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3516 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|))) (-1165 |#2| |#3|) (-1076) (-1076)) (T -1164)) -NIL -(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2642 (|#1| (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))))) (-15 -2642 (|#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#3|) |#1|)) (-15 -3215 ((-627 |#3|) |#1|)) (-15 -1509 ((-754) |#3| |#1|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -2358 ((-111) |#2| |#1|)) (-15 -3892 ((-627 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1503 ((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -4165 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3954 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -4133 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1509 ((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3215 ((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -1509 ((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3509 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3299 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3463 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3516 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|))) -((-1465 (((-111) $ $) 19 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2642 (($) 72) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 71)) (-3305 (((-1240) $ |#1| |#1|) 99 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#2| $ |#1| |#2|) 73)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 88)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366))) (((-627 |#2|) $) 79 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 96 (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366))) (((-627 |#2|) $) 80 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 95 (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40)) (-3892 (((-627 |#1|) $) 93)) (-2358 (((-111) |#1| $) 92)) (-1498 (((-1096) $) 21 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-3340 ((|#2| $) 97 (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51)) (-1942 (($ $ |#2|) 98 (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 91)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) |#2| $) 81 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4366)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50)) (-1477 (((-842) $) 18 (-1559 (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1165 |#1| |#2|) (-137) (-1076) (-1076)) (T -1165)) -((-2950 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2642 (*1 *1) (-12 (-4 *1 (-1165 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2642 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 *3) (|:| -2162 *4)))) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *1 (-1165 *3 *4)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1165 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076))))) -(-13 (-596 |t#1| |t#2|) (-590 |t#1| |t#2|) (-10 -8 (-15 -2950 (|t#2| $ |t#1| |t#2|)) (-15 -2642 ($)) (-15 -2642 ($ (-627 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))))) (-15 -3516 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-482 #0#) . T) ((-482 |#2|) . T) ((-590 |#1| |#2|) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-596 |#1| |#2|) . T) ((-1076) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-1189) . T)) -((-2187 (((-111)) 24)) (-2564 (((-1240) (-1134)) 26)) (-3062 (((-111)) 36)) (-4261 (((-1240)) 34)) (-4040 (((-1240) (-1134) (-1134)) 25)) (-2681 (((-111)) 37)) (-3954 (((-1240) |#1| |#2|) 44)) (-1374 (((-1240)) 20)) (-4307 (((-3 |#2| "failed") |#1|) 42)) (-2854 (((-1240)) 35))) -(((-1166 |#1| |#2|) (-10 -7 (-15 -1374 ((-1240))) (-15 -4040 ((-1240) (-1134) (-1134))) (-15 -2564 ((-1240) (-1134))) (-15 -4261 ((-1240))) (-15 -2854 ((-1240))) (-15 -2187 ((-111))) (-15 -3062 ((-111))) (-15 -2681 ((-111))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3954 ((-1240) |#1| |#2|))) (-1076) (-1076)) (T -1166)) -((-3954 (*1 *2 *3 *4) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-4307 (*1 *2 *3) (|partial| -12 (-4 *2 (-1076)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1076)))) (-2681 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-3062 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2187 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2854 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-4261 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)))) (-4040 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)))) (-1374 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076))))) -(-10 -7 (-15 -1374 ((-1240))) (-15 -4040 ((-1240) (-1134) (-1134))) (-15 -2564 ((-1240) (-1134))) (-15 -4261 ((-1240))) (-15 -2854 ((-1240))) (-15 -2187 ((-111))) (-15 -3062 ((-111))) (-15 -2681 ((-111))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3954 ((-1240) |#1| |#2|))) -((-2072 (((-1134) (-1134)) 18)) (-2334 (((-52) (-1134)) 21))) -(((-1167) (-10 -7 (-15 -2334 ((-52) (-1134))) (-15 -2072 ((-1134) (-1134))))) (T -1167)) -((-2072 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1167)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-1167))))) -(-10 -7 (-15 -2334 ((-52) (-1134))) (-15 -2072 ((-1134) (-1134)))) -((-1477 (((-1169) |#1|) 11))) -(((-1168 |#1|) (-10 -7 (-15 -1477 ((-1169) |#1|))) (-1076)) (T -1168)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1168 *3)) (-4 *3 (-1076))))) -(-10 -7 (-15 -1477 ((-1169) |#1|))) -((-1465 (((-111) $ $) NIL)) (-2643 (((-627 (-1134)) $) 34)) (-3926 (((-627 (-1134)) $ (-627 (-1134))) 37)) (-1312 (((-627 (-1134)) $ (-627 (-1134))) 36)) (-2417 (((-627 (-1134)) $ (-627 (-1134))) 38)) (-3249 (((-627 (-1134)) $) 33)) (-2655 (($) 22)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1711 (((-627 (-1134)) $) 35)) (-4291 (((-1240) $ (-552)) 29) (((-1240) $) 30)) (-3562 (($ (-842) (-552)) 26) (($ (-842) (-552) (-842)) NIL)) (-1477 (((-842) $) 40) (($ (-842)) 24)) (-2292 (((-111) $ $) NIL))) -(((-1169) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -3562 ($ (-842) (-552) (-842))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -2643 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3926 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134))))))) (T -1169)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1169)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) (-3562 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1169)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1169)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2655 (*1 *1) (-5 *1 (-1169))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-3926 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-1312 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) -(-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -3562 ($ (-842) (-552) (-842))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -2643 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3926 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134)))))) -((-1465 (((-111) $ $) NIL)) (-4008 (((-1134) $ (-1134)) 17) (((-1134) $) 16)) (-2035 (((-1134) $ (-1134)) 15)) (-1496 (($ $ (-1134)) NIL)) (-3498 (((-3 (-1134) "failed") $) 11)) (-1332 (((-1134) $) 8)) (-1783 (((-3 (-1134) "failed") $) 12)) (-3689 (((-1134) $) 9)) (-2849 (($ (-382)) NIL) (($ (-382) (-1134)) NIL)) (-3112 (((-382) $) NIL)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4231 (((-111) $) 18)) (-1477 (((-842) $) NIL)) (-2219 (($ $) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1170) (-13 (-358 (-382) (-1134)) (-10 -8 (-15 -4008 ((-1134) $ (-1134))) (-15 -4008 ((-1134) $)) (-15 -1332 ((-1134) $)) (-15 -3498 ((-3 (-1134) "failed") $)) (-15 -1783 ((-3 (-1134) "failed") $)) (-15 -4231 ((-111) $))))) (T -1170)) -((-4008 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-3498 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1170))))) -(-13 (-358 (-382) (-1134)) (-10 -8 (-15 -4008 ((-1134) $ (-1134))) (-15 -4008 ((-1134) $)) (-15 -1332 ((-1134) $)) (-15 -3498 ((-3 (-1134) "failed") $)) (-15 -1783 ((-3 (-1134) "failed") $)) (-15 -4231 ((-111) $)))) -((-2422 (((-3 (-552) "failed") |#1|) 19)) (-2051 (((-3 (-552) "failed") |#1|) 14)) (-3607 (((-552) (-1134)) 28))) -(((-1171 |#1|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") |#1|)) (-15 -2051 ((-3 (-552) "failed") |#1|)) (-15 -3607 ((-552) (-1134)))) (-1028)) (T -1171)) -((-3607 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-1171 *4)) (-4 *4 (-1028)))) (-2051 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028)))) (-2422 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) -(-10 -7 (-15 -2422 ((-3 (-552) "failed") |#1|)) (-15 -2051 ((-3 (-552) "failed") |#1|)) (-15 -3607 ((-552) (-1134)))) -((-3986 (((-1109 (-220))) 9))) -(((-1172) (-10 -7 (-15 -3986 ((-1109 (-220)))))) (T -1172)) -((-3986 (*1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1172))))) -(-10 -7 (-15 -3986 ((-1109 (-220))))) -((-2951 (($) 11)) (-1673 (($ $) 35)) (-1652 (($ $) 33)) (-1513 (($ $) 25)) (-1697 (($ $) 17)) (-3519 (($ $) 15)) (-1686 (($ $) 19)) (-1547 (($ $) 30)) (-1661 (($ $) 34)) (-1524 (($ $) 29))) -(((-1173 |#1|) (-10 -8 (-15 -2951 (|#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1524 (|#1| |#1|))) (-1174)) (T -1173)) -NIL -(-10 -8 (-15 -2951 (|#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1524 (|#1| |#1|))) -((-1607 (($ $) 26)) (-1467 (($ $) 11)) (-1584 (($ $) 27)) (-1445 (($ $) 10)) (-1628 (($ $) 28)) (-1492 (($ $) 9)) (-2951 (($) 16)) (-4135 (($ $) 19)) (-3154 (($ $) 18)) (-1640 (($ $) 29)) (-1502 (($ $) 8)) (-1615 (($ $) 30)) (-1479 (($ $) 7)) (-1596 (($ $) 31)) (-1456 (($ $) 6)) (-1673 (($ $) 20)) (-1534 (($ $) 32)) (-1652 (($ $) 21)) (-1513 (($ $) 33)) (-1697 (($ $) 22)) (-1561 (($ $) 34)) (-3519 (($ $) 23)) (-1575 (($ $) 35)) (-1686 (($ $) 24)) (-1547 (($ $) 36)) (-1661 (($ $) 25)) (-1524 (($ $) 37)) (** (($ $ $) 17))) -(((-1174) (-137)) (T -1174)) -((-2951 (*1 *1) (-4 *1 (-1174)))) -(-13 (-1177) (-94) (-485) (-35) (-278) (-10 -8 (-15 -2951 ($)))) -(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-1177) . T)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 17)) (-2030 (($ |#1| (-627 $)) 23) (($ (-627 |#1|)) 27) (($ |#1|) 25)) (-4031 (((-111) $ (-754)) 48)) (-2472 ((|#1| $ |#1|) 14 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 13 (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-3215 (((-627 |#1|) $) 52 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 43)) (-3726 (((-111) $ $) 33 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 41)) (-3114 (((-627 |#1|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-3971 (((-111) $ (-754)) 40)) (-1823 (((-627 |#1|) $) 37)) (-3810 (((-111) $) 36)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 74)) (-1275 (((-111) $) 9)) (-2373 (($) 10)) (-1985 ((|#1| $ "value") NIL)) (-1848 (((-552) $ $) 32)) (-2501 (((-627 $) $) 59)) (-3311 (((-111) $ $) 77)) (-1784 (((-627 $) $) 72)) (-1449 (($ $) 73)) (-2978 (((-111) $) 56)) (-1509 (((-754) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4366))) (((-754) |#1| $) 16 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 58)) (-1477 (((-842) $) 61 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 12)) (-3415 (((-111) $ $) 29 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 28 (|has| |#1| (-1076)))) (-1383 (((-754) $) 39 (|has| $ (-6 -4366))))) -(((-1175 |#1|) (-13 (-989 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2030 ($ |#1| (-627 $))) (-15 -2030 ($ (-627 |#1|))) (-15 -2030 ($ |#1|)) (-15 -2978 ((-111) $)) (-15 -1449 ($ $)) (-15 -1784 ((-627 $) $)) (-15 -3311 ((-111) $ $)) (-15 -2501 ((-627 $) $)))) (-1076)) (T -1175)) -((-2978 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-1175 *2))) (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-1175 *3)))) (-2030 (*1 *1 *2) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-3311 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) -(-13 (-989 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2030 ($ |#1| (-627 $))) (-15 -2030 ($ (-627 |#1|))) (-15 -2030 ($ |#1|)) (-15 -2978 ((-111) $)) (-15 -1449 ($ $)) (-15 -1784 ((-627 $) $)) (-15 -3311 ((-111) $ $)) (-15 -2501 ((-627 $) $)))) -((-1467 (($ $) 15)) (-1492 (($ $) 12)) (-1502 (($ $) 10)) (-1479 (($ $) 17))) -(((-1176 |#1|) (-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1467 (|#1| |#1|))) (-1177)) (T -1176)) -NIL -(-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1467 (|#1| |#1|))) -((-1467 (($ $) 11)) (-1445 (($ $) 10)) (-1492 (($ $) 9)) (-1502 (($ $) 8)) (-1479 (($ $) 7)) (-1456 (($ $) 6))) -(((-1177) (-137)) (T -1177)) -((-1467 (*1 *1 *1) (-4 *1 (-1177))) (-1445 (*1 *1 *1) (-4 *1 (-1177))) (-1492 (*1 *1 *1) (-4 *1 (-1177))) (-1502 (*1 *1 *1) (-4 *1 (-1177))) (-1479 (*1 *1 *1) (-4 *1 (-1177))) (-1456 (*1 *1 *1) (-4 *1 (-1177)))) -(-13 (-10 -8 (-15 -1456 ($ $)) (-15 -1479 ($ $)) (-15 -1502 ($ $)) (-15 -1492 ($ $)) (-15 -1445 ($ $)) (-15 -1467 ($ $)))) -((-2085 ((|#2| |#2|) 88)) (-3802 (((-111) |#2|) 26)) (-1749 ((|#2| |#2|) 30)) (-1759 ((|#2| |#2|) 32)) (-3472 ((|#2| |#2| (-1152)) 83) ((|#2| |#2|) 84)) (-2433 (((-166 |#2|) |#2|) 28)) (-3339 ((|#2| |#2| (-1152)) 85) ((|#2| |#2|) 86))) -(((-1178 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -2085 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2433 ((-166 |#2|) |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -1178)) -((-2433 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-166 *3)) (-5 *1 (-1178 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-111)) (-5 *1 (-1178 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) -(-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -2085 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2433 ((-166 |#2|) |#2|))) -((-4128 ((|#4| |#4| |#1|) 27)) (-3913 ((|#4| |#4| |#1|) 28))) -(((-1179 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4128 (|#4| |#4| |#1|)) (-15 -3913 (|#4| |#4| |#1|))) (-544) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -1179)) -((-3913 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -4128 (|#4| |#4| |#1|)) (-15 -3913 (|#4| |#4| |#1|))) -((-3125 ((|#2| |#2|) 133)) (-3906 ((|#2| |#2|) 130)) (-1346 ((|#2| |#2|) 121)) (-1692 ((|#2| |#2|) 118)) (-2731 ((|#2| |#2|) 126)) (-1401 ((|#2| |#2|) 114)) (-3344 ((|#2| |#2|) 43)) (-3638 ((|#2| |#2|) 94)) (-2380 ((|#2| |#2|) 74)) (-2205 ((|#2| |#2|) 128)) (-4338 ((|#2| |#2|) 116)) (-1363 ((|#2| |#2|) 138)) (-2512 ((|#2| |#2|) 136)) (-1736 ((|#2| |#2|) 137)) (-1704 ((|#2| |#2|) 135)) (-2106 ((|#2| |#2|) 148)) (-3942 ((|#2| |#2|) 30 (-12 (|has| |#2| (-600 (-871 |#1|))) (|has| |#2| (-865 |#1|)) (|has| |#1| (-600 (-871 |#1|))) (|has| |#1| (-865 |#1|))))) (-1858 ((|#2| |#2|) 75)) (-2363 ((|#2| |#2|) 139)) (-2496 ((|#2| |#2|) 140)) (-2829 ((|#2| |#2|) 127)) (-3956 ((|#2| |#2|) 115)) (-2418 ((|#2| |#2|) 134)) (-2565 ((|#2| |#2|) 132)) (-1619 ((|#2| |#2|) 122)) (-2716 ((|#2| |#2|) 120)) (-1593 ((|#2| |#2|) 124)) (-2140 ((|#2| |#2|) 112))) -(((-1180 |#1| |#2|) (-10 -7 (-15 -2496 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4338 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (IF (|has| |#1| (-865 |#1|)) (IF (|has| |#1| (-600 (-871 |#1|))) (IF (|has| |#2| (-600 (-871 |#1|))) (IF (|has| |#2| (-865 |#1|)) (-15 -3942 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-830) (-445)) (-13 (-424 |#1|) (-1174))) (T -1180)) -((-3942 (*1 *2 *2) (-12 (-4 *3 (-600 (-871 *3))) (-4 *3 (-865 *3)) (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-600 (-871 *3))) (-4 *2 (-865 *3)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1736 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2731 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2205 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-4338 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2418 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174)))))) -(-10 -7 (-15 -2496 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4338 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (IF (|has| |#1| (-865 |#1|)) (IF (|has| |#1| (-600 (-871 |#1|))) (IF (|has| |#2| (-600 (-871 |#1|))) (IF (|has| |#2| (-865 |#1|)) (-15 -3942 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3691 (((-111) |#5| $) 60) (((-111) $) 102)) (-1553 ((|#5| |#5| $) 75)) (-2536 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3238 (((-627 |#5|) (-627 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-4039 (((-3 $ "failed") (-627 |#5|)) 126)) (-3351 (((-3 $ "failed") $) 112)) (-4167 ((|#5| |#5| $) 94)) (-4104 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-2934 ((|#5| |#5| $) 98)) (-2091 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-2415 (((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) $) 55)) (-3850 (((-111) |#5| $) 58) (((-111) $) 103)) (-4147 ((|#4| $) 108)) (-1294 (((-3 |#5| "failed") $) 110)) (-4122 (((-627 |#5|) $) 49)) (-2481 (((-111) |#5| $) 67) (((-111) $) 107)) (-3921 ((|#5| |#5| $) 81)) (-2654 (((-111) $ $) 27)) (-2163 (((-111) |#5| $) 63) (((-111) $) 105)) (-4116 ((|#5| |#5| $) 78)) (-3340 (((-3 |#5| "failed") $) 109)) (-4168 (($ $ |#5|) 127)) (-3567 (((-754) $) 52)) (-1490 (($ (-627 |#5|)) 124)) (-4237 (($ $ |#4|) 122)) (-2286 (($ $ |#4|) 121)) (-2462 (($ $) 120)) (-1477 (((-842) $) NIL) (((-627 |#5|) $) 113)) (-1641 (((-754) $) 130)) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-2925 (((-111) $ (-1 (-111) |#5| (-627 |#5|))) 100)) (-2199 (((-627 |#4|) $) 115)) (-3528 (((-111) |#4| $) 118)) (-2292 (((-111) $ $) 19))) -(((-1181 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1641 ((-754) |#1|)) (-15 -4168 (|#1| |#1| |#5|)) (-15 -2536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3528 ((-111) |#4| |#1|)) (-15 -2199 ((-627 |#4|) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -1294 ((-3 |#5| "failed") |#1|)) (-15 -3340 ((-3 |#5| "failed") |#1|)) (-15 -2934 (|#5| |#5| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -4167 (|#5| |#5| |#1|)) (-15 -3921 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -1553 (|#5| |#5| |#1|)) (-15 -3238 ((-627 |#5|) (-627 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2091 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2481 ((-111) |#1|)) (-15 -2163 ((-111) |#1|)) (-15 -3691 ((-111) |#1|)) (-15 -2925 ((-111) |#1| (-1 (-111) |#5| (-627 |#5|)))) (-15 -2481 ((-111) |#5| |#1|)) (-15 -2163 ((-111) |#5| |#1|)) (-15 -3691 ((-111) |#5| |#1|)) (-15 -4104 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3850 ((-111) |#1|)) (-15 -3850 ((-111) |#5| |#1|)) (-15 -2415 ((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) |#1|)) (-15 -3567 ((-754) |#1|)) (-15 -4122 ((-627 |#5|) |#1|)) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 ((-111) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -4147 (|#4| |#1|)) (-15 -4039 ((-3 |#1| "failed") (-627 |#5|))) (-15 -1477 ((-627 |#5|) |#1|)) (-15 -1490 (|#1| (-627 |#5|))) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2536 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-1182 |#2| |#3| |#4| |#5|) (-544) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -1181)) -NIL -(-10 -8 (-15 -1641 ((-754) |#1|)) (-15 -4168 (|#1| |#1| |#5|)) (-15 -2536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3528 ((-111) |#4| |#1|)) (-15 -2199 ((-627 |#4|) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -1294 ((-3 |#5| "failed") |#1|)) (-15 -3340 ((-3 |#5| "failed") |#1|)) (-15 -2934 (|#5| |#5| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -4167 (|#5| |#5| |#1|)) (-15 -3921 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -1553 (|#5| |#5| |#1|)) (-15 -3238 ((-627 |#5|) (-627 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2091 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2481 ((-111) |#1|)) (-15 -2163 ((-111) |#1|)) (-15 -3691 ((-111) |#1|)) (-15 -2925 ((-111) |#1| (-1 (-111) |#5| (-627 |#5|)))) (-15 -2481 ((-111) |#5| |#1|)) (-15 -2163 ((-111) |#5| |#1|)) (-15 -3691 ((-111) |#5| |#1|)) (-15 -4104 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3850 ((-111) |#1|)) (-15 -3850 ((-111) |#5| |#1|)) (-15 -2415 ((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) |#1|)) (-15 -3567 ((-754) |#1|)) (-15 -4122 ((-627 |#5|) |#1|)) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 ((-111) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -4147 (|#4| |#1|)) (-15 -4039 ((-3 |#1| "failed") (-627 |#5|))) (-15 -1477 ((-627 |#5|) |#1|)) (-15 -1490 (|#1| (-627 |#5|))) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2536 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) -((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-1294 (((-3 |#4| "failed") $) 83)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) -(((-1182 |#1| |#2| |#3| |#4|) (-137) (-544) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1182)) -((-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-3981 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *8)))) (-5 *3 (-627 *8)) (-4 *1 (-1182 *5 *6 *7 *8)))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *9)))) (-5 *3 (-627 *9)) (-4 *1 (-1182 *6 *7 *8 *9)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *6)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-754)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-2 (|:| -4267 (-627 *6)) (|:| -2849 (-627 *6)))))) (-3850 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-4104 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1182 *5 *6 *7 *3)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2163 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2481 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2925 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-627 *7))) (-4 *1 (-1182 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2091 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1182 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *2 (-1042 *5 *6 *7)))) (-3238 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1182 *5 *6 *7 *8)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)))) (-1553 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4116 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-3921 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4167 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) (-2934 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1182 *4 *5 *6 *7)))) (-1764 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| -4267 *1) (|:| -2849 (-627 *7))))) (-5 *3 (-627 *7)) (-4 *1 (-1182 *4 *5 *6 *7)))) (-3340 (*1 *2 *1) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1294 (*1 *2 *1) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-3351 (*1 *1 *1) (|partial| -12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-3528 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) (-2536 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1182 *4 *5 *3 *2)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *2 (-1042 *4 *5 *3)))) (-3672 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *5 (-362)) (-5 *2 (-754))))) -(-13 (-955 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2654 ((-111) $ $)) (-15 -3981 ((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |t#4|))) "failed") (-627 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3981 ((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |t#4|))) "failed") (-627 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4122 ((-627 |t#4|) $)) (-15 -3567 ((-754) $)) (-15 -2415 ((-2 (|:| -4267 (-627 |t#4|)) (|:| -2849 (-627 |t#4|))) $)) (-15 -3850 ((-111) |t#4| $)) (-15 -3850 ((-111) $)) (-15 -4104 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -3691 ((-111) |t#4| $)) (-15 -2163 ((-111) |t#4| $)) (-15 -2481 ((-111) |t#4| $)) (-15 -2925 ((-111) $ (-1 (-111) |t#4| (-627 |t#4|)))) (-15 -3691 ((-111) $)) (-15 -2163 ((-111) $)) (-15 -2481 ((-111) $)) (-15 -2091 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3238 ((-627 |t#4|) (-627 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -1553 (|t#4| |t#4| $)) (-15 -4116 (|t#4| |t#4| $)) (-15 -3921 (|t#4| |t#4| $)) (-15 -4167 (|t#4| |t#4| $)) (-15 -2462 ($ $)) (-15 -2934 (|t#4| |t#4| $)) (-15 -1361 ((-627 $) (-627 |t#4|))) (-15 -1764 ((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |t#4|)))) (-627 |t#4|))) (-15 -3340 ((-3 |t#4| "failed") $)) (-15 -1294 ((-3 |t#4| "failed") $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -2199 ((-627 |t#3|) $)) (-15 -3528 ((-111) |t#3| $)) (-15 -2536 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3672 ((-3 $ "failed") $ |t#4|)) (-15 -4168 ($ $ |t#4|)) (IF (|has| |t#3| (-362)) (-15 -1641 ((-754) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1189) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2212 (((-931 |#1|) $ (-754)) 17) (((-931 |#1|) $ (-754) (-754)) NIL)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $ (-1152) (-754)) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) NIL)) (-1832 (($ $ (-627 (-1152)) (-627 (-523 (-1152)))) NIL) (($ $ (-1152) (-523 (-1152))) NIL) (($ |#1| (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $ (-1152)) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2315 (($ (-1 $) (-1152) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4168 (($ $ (-754)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ (-1152) $) NIL) (($ $ (-627 (-1152)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL)) (-2942 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3567 (((-523 (-1152)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-1152)) NIL) (($ (-931 |#1|)) NIL)) (-1889 ((|#1| $ (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (((-931 |#1|) $ (-754)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1183 |#1|) (-13 (-723 |#1| (-1152)) (-10 -8 (-15 -1889 ((-931 |#1|) $ (-754))) (-15 -1477 ($ (-1152))) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ (-1152) |#1|)) (-15 -2315 ($ (-1 $) (-1152) |#1|))) |%noBranch|))) (-1028)) (T -1183)) -((-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-931 *4)) (-5 *1 (-1183 *4)) (-4 *4 (-1028)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-1183 *3)))) (-2747 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)))) (-2315 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1183 *4))) (-5 *3 (-1152)) (-5 *1 (-1183 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) -(-13 (-723 |#1| (-1152)) (-10 -8 (-15 -1889 ((-931 |#1|) $ (-754))) (-15 -1477 ($ (-1152))) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ (-1152) |#1|)) (-15 -2315 ($ (-1 $) (-1152) |#1|))) |%noBranch|))) -((-2366 (($ |#1| (-627 (-627 (-922 (-220)))) (-111)) 19)) (-3898 (((-111) $ (-111)) 18)) (-4212 (((-111) $) 17)) (-3051 (((-627 (-627 (-922 (-220)))) $) 13)) (-1403 ((|#1| $) 8)) (-2691 (((-111) $) 15))) -(((-1184 |#1|) (-10 -8 (-15 -1403 (|#1| $)) (-15 -3051 ((-627 (-627 (-922 (-220)))) $)) (-15 -2691 ((-111) $)) (-15 -4212 ((-111) $)) (-15 -3898 ((-111) $ (-111))) (-15 -2366 ($ |#1| (-627 (-627 (-922 (-220)))) (-111)))) (-953)) (T -1184)) -((-2366 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-111)) (-5 *1 (-1184 *2)) (-4 *2 (-953)))) (-3898 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-1403 (*1 *2 *1) (-12 (-5 *1 (-1184 *2)) (-4 *2 (-953))))) -(-10 -8 (-15 -1403 (|#1| $)) (-15 -3051 ((-627 (-627 (-922 (-220)))) $)) (-15 -2691 ((-111) $)) (-15 -4212 ((-111) $)) (-15 -3898 ((-111) $ (-111))) (-15 -2366 ($ |#1| (-627 (-627 (-922 (-220)))) (-111)))) -((-3969 (((-922 (-220)) (-922 (-220))) 25)) (-1745 (((-922 (-220)) (-220) (-220) (-220) (-220)) 10)) (-1320 (((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220)))) 37)) (-2395 (((-220) (-922 (-220)) (-922 (-220))) 21)) (-3917 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 22)) (-2587 (((-627 (-627 (-220))) (-552)) 31)) (-2396 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 20)) (-2384 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 19)) (* (((-922 (-220)) (-220) (-922 (-220))) 18))) -(((-1185) (-10 -7 (-15 -1745 ((-922 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-922 (-220)) (-220) (-922 (-220)))) (-15 -2384 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2396 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2395 ((-220) (-922 (-220)) (-922 (-220)))) (-15 -3917 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -3969 ((-922 (-220)) (-922 (-220)))) (-15 -2587 ((-627 (-627 (-220))) (-552))) (-15 -1320 ((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220))))))) (T -1185)) -((-1320 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-627 (-627 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 (-922 *4))) (-5 *1 (-1185)) (-5 *3 (-922 *4)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-1185)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-3917 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-2395 (*1 *2 *3 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-220)) (-5 *1 (-1185)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-922 (-220))) (-5 *3 (-220)) (-5 *1 (-1185)))) (-1745 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)) (-5 *3 (-220))))) -(-10 -7 (-15 -1745 ((-922 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-922 (-220)) (-220) (-922 (-220)))) (-15 -2384 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2396 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2395 ((-220) (-922 (-220)) (-922 (-220)))) (-15 -3917 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -3969 ((-922 (-220)) (-922 (-220)))) (-15 -2587 ((-627 (-627 (-220))) (-552))) (-15 -1320 ((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220)))))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2536 ((|#1| $ (-754)) 13)) (-3593 (((-754) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1477 (((-937 |#1|) $) 10) (($ (-937 |#1|)) 9) (((-842) $) 23 (|has| |#1| (-599 (-842))))) (-2292 (((-111) $ $) 16 (|has| |#1| (-1076))))) -(((-1186 |#1|) (-13 (-599 (-937 |#1|)) (-10 -8 (-15 -1477 ($ (-937 |#1|))) (-15 -2536 (|#1| $ (-754))) (-15 -3593 ((-754) $)) (IF (|has| |#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1186)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1189)) (-5 *1 (-1186 *3)))) (-2536 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-1186 *2)) (-4 *2 (-1189)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1186 *3)) (-4 *3 (-1189))))) -(-13 (-599 (-937 |#1|)) (-10 -8 (-15 -1477 ($ (-937 |#1|))) (-15 -2536 (|#1| $ (-754))) (-15 -3593 ((-754) $)) (IF (|has| |#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) -((-3947 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)) 80)) (-2466 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|))) 74)) (-2293 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|))) 59))) -(((-1187 |#1|) (-10 -7 (-15 -2466 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -2293 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -3947 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)))) (-343)) (T -1187)) -((-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1148 (-1148 *5)))) (-5 *1 (-1187 *5)) (-5 *3 (-1148 (-1148 *5))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) -(-10 -7 (-15 -2466 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -2293 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -3947 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 9) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1188) (-1059)) (T -1188)) -NIL -(-1059) -NIL -(((-1189) (-137)) (T -1189)) -NIL -(-13 (-10 -7 (-6 -2997))) -((-2357 (((-111)) 15)) (-2805 (((-1240) (-627 |#1|) (-627 |#1|)) 19) (((-1240) (-627 |#1|)) 20)) (-1602 (((-111) |#1| |#1|) 32 (|has| |#1| (-830)))) (-3971 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-2000 ((|#1| (-627 |#1|)) 33 (|has| |#1| (-830))) ((|#1| (-627 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-4327 (((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|)))) 17))) -(((-1190 |#1|) (-10 -7 (-15 -2805 ((-1240) (-627 |#1|))) (-15 -2805 ((-1240) (-627 |#1|) (-627 |#1|))) (-15 -4327 ((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|))))) (-15 -3971 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3971 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2000 (|#1| (-627 |#1|) (-1 (-111) |#1| |#1|))) (-15 -2357 ((-111))) (IF (|has| |#1| (-830)) (PROGN (-15 -2000 (|#1| (-627 |#1|))) (-15 -1602 ((-111) |#1| |#1|))) |%noBranch|)) (-1076)) (T -1190)) -((-1602 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-830)) (-4 *3 (-1076)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-830)) (-5 *1 (-1190 *2)))) (-2357 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1190 *2)) (-4 *2 (-1076)))) (-3971 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1076)) (-5 *2 (-111)) (-5 *1 (-1190 *3)))) (-3971 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-4327 (*1 *2) (-12 (-5 *2 (-2 (|:| -1781 (-627 *3)) (|:| -3180 (-627 *3)))) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-2805 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) (-5 *1 (-1190 *4)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) (-5 *1 (-1190 *4))))) -(-10 -7 (-15 -2805 ((-1240) (-627 |#1|))) (-15 -2805 ((-1240) (-627 |#1|) (-627 |#1|))) (-15 -4327 ((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|))))) (-15 -3971 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3971 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2000 (|#1| (-627 |#1|) (-1 (-111) |#1| |#1|))) (-15 -2357 ((-111))) (IF (|has| |#1| (-830)) (PROGN (-15 -2000 (|#1| (-627 |#1|))) (-15 -1602 ((-111) |#1| |#1|))) |%noBranch|)) -((-3852 (((-1240) (-627 (-1152)) (-627 (-1152))) 13) (((-1240) (-627 (-1152))) 11)) (-3172 (((-1240)) 14)) (-2339 (((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) 18))) -(((-1191) (-10 -7 (-15 -3852 ((-1240) (-627 (-1152)))) (-15 -3852 ((-1240) (-627 (-1152)) (-627 (-1152)))) (-15 -2339 ((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152)))))) (-15 -3172 ((-1240))))) (T -1191)) -((-3172 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1191)))) (-2339 (*1 *2) (-12 (-5 *2 (-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) (-5 *1 (-1191)))) (-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191))))) -(-10 -7 (-15 -3852 ((-1240) (-627 (-1152)))) (-15 -3852 ((-1240) (-627 (-1152)) (-627 (-1152)))) (-15 -2339 ((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152)))))) (-15 -3172 ((-1240)))) -((-4014 (($ $) 17)) (-1633 (((-111) $) 24))) -(((-1192 |#1|) (-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -1633 ((-111) |#1|))) (-1193)) (T -1192)) -NIL -(-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -1633 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-1633 (((-111) $) 51)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 48)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1193) (-137)) (T -1193)) -((-1633 (*1 *2 *1) (-12 (-4 *1 (-1193)) (-5 *2 (-111)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) (-4014 (*1 *1 *1) (-4 *1 (-1193))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193))))) -(-13 (-445) (-10 -8 (-15 -1633 ((-111) $)) (-15 -2487 ((-412 $) $)) (-15 -4014 ($ $)) (-15 -1727 ((-412 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-3516 (((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)) 23))) -(((-1194 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) (-1028) (-1028) (-1152) (-1152) |#1| |#2|) (T -1194)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1152))))) -(-10 -7 (-15 -3516 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-552) $) 98) (((-552) $ (-552)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 170)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-552)) 59) (($ $ (-1058) (-552)) 74) (($ $ (-627 (-1058)) (-627 (-552))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3567 (((-552) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1195 |#1|) (-137) (-1028)) (T -1195)) -((-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1028)) (-4 *1 (-1195 *3)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1195 *3)) (-4 *3 (-1028)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) (-5 *2 (-401 (-931 *4))))) (-1281 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) (-5 *2 (-401 (-931 *4))))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) -(-13 (-1213 |t#1| (-552)) (-10 -8 (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |t#1|))))) (-15 -3045 ($ (-1 |t#1| (-552)) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -1281 ((-401 (-931 |t#1|)) $ (-552))) (-15 -1281 ((-401 (-931 |t#1|)) $ (-552) (-552)))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-552) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-552) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T)) -((-3024 (((-111) $) 12)) (-4039 (((-3 |#3| "failed") $) 17) (((-3 (-1152) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL)) (-1703 ((|#3| $) 14) (((-1152) $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL))) -(((-1196 |#1| |#2| |#3|) (-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) (-1197 |#2| |#3|) (-1028) (-1226 |#2|)) (T -1196)) -NIL -(-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 ((|#2| $) 228 (-2520 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-3086 ((|#2| $) 264)) (-3967 (((-3 |#2| "failed") $) 260)) (-1909 ((|#2| $) 261)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 237 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 234 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) 246 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 267) (((-3 (-552) "failed") $) 256 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) 254 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-1152) "failed") $) 239 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1703 ((|#2| $) 266) (((-552) $) 257 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) 255 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-1152) $) 240 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1405 (($ $) 263) (($ (-552) $) 262)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-1800 (((-671 |#2|) (-671 $)) 218 (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 217 (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 216 (-2520 (|has| |#2| (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) 215 (-2520 (|has| |#2| (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 32)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-1279 (($) 230 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2983 (((-111) $) 244 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 222 (-2520 (|has| |#2| (-865 (-373))) (|has| |#1| (-357)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 221 (-2520 (|has| |#2| (-865 (-552))) (|has| |#1| (-357))))) (-2641 (((-552) $) 98) (((-552) $ (-552)) 97)) (-2624 (((-111) $) 30)) (-3798 (($ $) 226 (|has| |#1| (-357)))) (-2918 ((|#2| $) 224 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) 258 (-2520 (|has| |#2| (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) 245 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 170)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-552)) 59) (($ $ (-1058) (-552)) 74) (($ $ (-627 (-1058)) (-627 (-552))) 73)) (-1816 (($ $ $) 248 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-4093 (($ $ $) 249 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-3516 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-357)))) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1920 (($ (-552) |#2|) 265)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-3002 (($) 259 (-2520 (|has| |#2| (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-4328 (($ $) 229 (-2520 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2060 ((|#2| $) 232 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) 235 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) 236 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) |#2|) 209 (-2520 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 |#2|)) 208 (-2520 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-288 |#2|))) 207 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) 206 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) 205 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-627 |#2|) (-627 |#2|)) 204 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1088))) (($ $ |#2|) 203 (-2520 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) 213 (|has| |#1| (-357))) (($ $ (-754)) 82 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 80 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) 87 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152) (-754)) 86 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-627 (-1152))) 85 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152)) 84 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-1583 (($ $) 227 (|has| |#1| (-357)))) (-2929 ((|#2| $) 225 (|has| |#1| (-357)))) (-3567 (((-552) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-220) $) 243 (-2520 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-373) $) 242 (-2520 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-528) $) 241 (-2520 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-871 (-373)) $) 220 (-2520 (|has| |#2| (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) 219 (-2520 (|has| |#2| (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 233 (-2520 (-2520 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#1| (-357))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1152)) 238 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357)))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 57)) (-3050 (((-3 $ "failed") $) 46 (-1559 (-2520 (-1559 (|has| |#2| (-142)) (-2520 (|has| $ (-142)) (|has| |#2| (-888)))) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-3796 ((|#2| $) 231 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) 247 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) 211 (|has| |#1| (-357))) (($ $ (-754)) 83 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 81 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) 91 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152) (-754)) 90 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-627 (-1152))) 89 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152)) 88 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2351 (((-111) $ $) 251 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2329 (((-111) $ $) 252 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 250 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2316 (((-111) $ $) 253 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357))) (($ |#2| |#2|) 223 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-357))) (($ |#2| $) 201 (|has| |#1| (-357))) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1197 |#1| |#2|) (-137) (-1028) (-1226 |t#1|)) (T -1197)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)) (-5 *2 (-552)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) (-1920 (*1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *4 (-1028)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-1226 *4)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1226 *2)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3)))) (-3967 (*1 *2 *1) (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) -(-13 (-1195 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -1920 ($ (-552) |t#2|)) (-15 -3567 ((-552) $)) (-15 -3086 (|t#2| $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)) (-15 -1477 ($ |t#2|)) (-15 -1909 (|t#2| $)) (-15 -3967 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-357)) (-6 (-971 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-357)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-357)) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-142))) (|has| |#1| (-142))) ((-144) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-600 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-600 (-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-552))))) ((-226 |#2|) |has| |#1| (-357)) ((-228) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-228))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 |#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) ((-280 $ $) |has| (-552) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-357) |has| |#1| (-357)) ((-332 |#2|) |has| |#1| (-357)) ((-371 |#2|) |has| |#1| (-357)) ((-394 |#2|) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 (-1152) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1152) |#2|))) ((-506 |#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 |#2|) |has| |#1| (-357)) ((-630 $) . T) ((-623 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-623 (-552)))) ((-623 |#2|) |has| |#1| (-357)) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 |#2|) |has| |#1| (-357)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-774) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-775) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-777) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-778) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-803) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-828) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-830) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-830))) (-12 (|has| |#1| (-357)) (|has| |#2| (-803)))) ((-879 (-1152)) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-879 (-1152)))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) ((-865 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-552)))) ((-863 |#2|) |has| |#1| (-357)) ((-888) -12 (|has| |#1| (-357)) (|has| |#2| (-888))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-971 |#2|) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1001) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-1017 (-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) ((-1017 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) ((-1017 (-1152)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-1152)))) ((-1017 |#2|) . T) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 |#2|) |has| |#1| (-357)) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) -12 (|has| |#1| (-357)) (|has| |#2| (-1127))) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1189) |has| |#1| (-357)) ((-1193) |has| |#1| (-357)) ((-1195 |#1|) . T) ((-1213 |#1| #0#) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 70)) (-3471 ((|#2| $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 88)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 97) (($ $ (-552) (-552)) 99)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 47)) (-3086 ((|#2| $) 11)) (-3967 (((-3 |#2| "failed") $) 30)) (-1909 ((|#2| $) 31)) (-1607 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 57)) (-1628 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 144) (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-1152) "failed") $) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1703 ((|#2| $) 143) (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-1152) $) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1405 (($ $) 61) (($ (-552) $) 24)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 |#2|) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 77)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 112 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 114 (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 64)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#2| (-865 (-373))) (|has| |#1| (-357)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#2| (-865 (-552))) (|has| |#1| (-357))))) (-2641 (((-552) $) 93) (((-552) $ (-552)) 95)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 ((|#2| $) 151 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) 136)) (-3045 (($ (-1 |#1| (-552)) $) 132)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 19) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-4093 (($ $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-3516 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) |#2|) 10)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 145 (|has| |#1| (-357)))) (-2747 (($ $) 214 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 219 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-3002 (($) NIL (-12 (|has| |#2| (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2060 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 126)) (-2761 (((-3 $ "failed") $ $) 116 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) |#2|) NIL (-12 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 |#2|)) NIL (-12 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 91) (($ $ $) 79 (|has| (-552) (-1088))) (($ $ |#2|) NIL (-12 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 137 (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) 140 (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 ((|#2| $) 152 (|has| |#1| (-357)))) (-3567 (((-552) $) 12)) (-1640 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-220) $) NIL (-12 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-528) $) NIL (-12 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| |#2| (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| |#2| (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888)) (|has| |#1| (-357))))) (-2890 (($ $) 124)) (-1477 (((-842) $) 245) (($ (-552)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1152)) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357)))) (($ (-401 (-552))) 155 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 74)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888)) (|has| |#1| (-357))) (-12 (|has| |#2| (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) 142)) (-3174 ((|#1| $) 90)) (-3796 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 204 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 200 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 208 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 210 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 206 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 202 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1922 (($) 13 T CONST)) (-1933 (($) 17 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2329 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2292 (((-111) $ $) 63)) (-2340 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2316 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357))) (($ |#2| |#2|) 150 (|has| |#1| (-357)))) (-2396 (($ $) 213) (($ $ $) 68)) (-2384 (($ $ $) 66)) (** (($ $ (-900)) NIL) (($ $ (-754)) 73) (($ $ (-552)) 146 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 158 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-357))) (($ |#2| $) 147 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1198 |#1| |#2|) (-1197 |#1| |#2|) (-1028) (-1226 |#1|)) (T -1198)) -NIL -(-1197 |#1| |#2|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 10)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4019 (($ $ (-552)) NIL) (($ $ (-552) (-552)) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3086 (((-1227 |#1| |#2| |#3|) $) NIL)) (-3967 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL)) (-1909 (((-1227 |#1| |#2| |#3|) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1703 (((-1227 |#1| |#2| |#3|) $) NIL) (((-1152) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-1227 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-1227 |#1| |#2| |#3|))) (|:| |vec| (-1235 (-1227 |#1| |#2| |#3|)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) NIL)) (-1281 (((-401 (-931 |#1|)) $ (-552)) NIL (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) NIL (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-865 (-552))) (|has| |#1| (-357)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-865 (-373))) (|has| |#1| (-357))))) (-2641 (((-552) $) NIL) (((-552) $ (-552)) NIL)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 17) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) (-1227 |#1| |#2| |#3|)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 25 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 26 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2060 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-288 (-1227 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1227 |#1| |#2| |#3|)) (-627 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) NIL) (($ $ $) NIL (|has| (-552) (-1088))) (($ $ (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-280 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1231 |#2|)) 24) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 23 (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-3567 (((-552) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-528) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1227 |#1| |#2| |#3|)) NIL) (($ (-1231 |#2|)) 22) (($ (-1152)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-1889 ((|#1| $ (-552)) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 11)) (-3796 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1922 (($) 19 T CONST)) (-1933 (($) 15 T CONST)) (-4251 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2316 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357))) (($ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 20)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-357))) (($ (-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1199 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1199)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1523 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)) 12)) (-1685 (((-412 |#1|) |#1|) 22)) (-1727 (((-412 |#1|) |#1|) 21))) -(((-1200 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)))) (-1211 (-552))) (T -1200)) -((-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) -(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)))) -((-3516 (((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 23 (|has| |#1| (-828))) (((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 17))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -3516 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |%noBranch|)) (-1189) (-1189)) (T -1201)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-828)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1201 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6))))) -(-10 -7 (-15 -3516 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |%noBranch|)) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4202 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3516 (((-1132 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-828)))) (-1781 ((|#1| $) 14)) (-2298 ((|#1| $) 10)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2309 (((-552) $) 18)) (-3180 ((|#1| $) 17)) (-2323 ((|#1| $) 11)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3280 (((-111) $) 16)) (-2496 (((-1132 |#1|) $) 38 (|has| |#1| (-828))) (((-1132 |#1|) (-627 $)) 37 (|has| |#1| (-828)))) (-3562 (($ |#1|) 25)) (-1477 (($ (-1070 |#1|)) 24) (((-842) $) 34 (|has| |#1| (-1076)))) (-2591 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2089 (($ $ (-552)) 13)) (-2292 (((-111) $ $) 27 (|has| |#1| (-1076))))) -(((-1202 |#1|) (-13 (-1069 |#1|) (-10 -8 (-15 -2591 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -1477 ($ (-1070 |#1|))) (-15 -3280 ((-111) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-1132 |#1|))) |%noBranch|))) (-1189)) (T -1202)) -((-2591 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189)))) (-4202 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-1189)) (-5 *1 (-1202 *3)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1202 *3)) (-4 *3 (-1189))))) -(-13 (-1069 |#1|) (-10 -8 (-15 -2591 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -1477 ($ (-1070 |#1|))) (-15 -3280 ((-111) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-1132 |#1|))) |%noBranch|))) -((-3516 (((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)) 15))) -(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) (-1152) (-1028) (-1152) (-1028)) (T -1203)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1152)) (-4 *6 (-1028)) (-4 *8 (-1028)) (-5 *2 (-1208 *7 *8)) (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1152))))) -(-10 -7 (-15 -3516 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) -((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3623 ((|#1| |#3|) 13)) (-2155 ((|#3| |#3|) 19))) -(((-1204 |#1| |#2| |#3|) (-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-971 |#1|) (-1211 |#2|)) (T -1204)) -((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-1204 *3 *4 *2)) (-4 *2 (-1211 *4)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-1204 *2 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3113 (((-3 |#2| "failed") |#2| (-754) |#1|) 29)) (-1522 (((-3 |#2| "failed") |#2| (-754)) 30)) (-2173 (((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|) 43)) (-2782 (((-627 |#2|) |#2|) 45)) (-2772 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1205 |#1| |#2|) (-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2| (-754))) (-15 -3113 ((-3 |#2| "failed") |#2| (-754) |#1|)) (-15 -2772 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2173 ((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|)) (-15 -2782 ((-627 |#2|) |#2|))) (-13 (-544) (-144)) (-1211 |#1|)) (T -1205)) -((-2782 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-627 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-2173 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-2772 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1211 *3)))) (-3113 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4)))) (-1522 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2| (-754))) (-15 -3113 ((-3 |#2| "failed") |#2| (-754) |#1|)) (-15 -2772 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2173 ((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|)) (-15 -2782 ((-627 |#2|) |#2|))) -((-1402 (((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|) 32))) -(((-1206 |#1| |#2|) (-10 -7 (-15 -1402 ((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|))) (-544) (-1211 |#1|)) (T -1206)) -((-1402 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-1206 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1402 ((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|))) -((-2833 ((|#2| |#2| |#2|) 19)) (-4129 ((|#2| |#2| |#2|) 30)) (-2698 ((|#2| |#2| |#2| (-754) (-754)) 36))) -(((-1207 |#1| |#2|) (-10 -7 (-15 -2833 (|#2| |#2| |#2|)) (-15 -4129 (|#2| |#2| |#2|)) (-15 -2698 (|#2| |#2| |#2| (-754) (-754)))) (-1028) (-1211 |#1|)) (T -1207)) -((-2698 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1211 *4)))) (-4129 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -2833 (|#2| |#2| |#2|)) (-15 -4129 (|#2| |#2| |#2|)) (-15 -2698 (|#2| |#2| |#2| (-754) (-754)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2449 (((-1235 |#2|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#2|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) NIL (|has| |#2| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-2813 (($ $ $) NIL (|has| |#2| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#2| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) NIL (|has| |#2| (-544)))) (-2148 (((-2 (|:| -3069 |#2|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#2| (-357)))) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-1058)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#2| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#2| (-1127)))) (-1842 (($ (-1148 |#2|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) 17) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1578 (((-1148 |#2|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#2| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#2| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1839 (($ $ (-754) |#2| $) NIL)) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#2|) NIL) (($ $ (-627 (-1058)) (-627 |#2|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#2| (-357)))) (-1985 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#2| (-544))) ((|#2| (-401 $) |#2|) NIL (|has| |#2| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#2| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-1058)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#2| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#2| (-544)))) (-1477 (((-842) $) 13) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1058)) NIL) (($ (-1231 |#1|)) 19) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) 14 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1208 |#1| |#2|) (-13 (-1211 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))) (-15 -1839 ($ $ (-754) |#2| $)))) (-1152) (-1028)) (T -1208)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-1208 *3 *4)) (-4 *4 (-1028)))) (-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1152)) (-4 *3 (-1028))))) -(-13 (-1211 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))) (-15 -1839 ($ $ (-754) |#2| $)))) -((-3516 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) (-1028) (-1211 |#1|) (-1028) (-1211 |#3|)) (T -1209)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) -((-2449 (((-1235 |#2|) $ (-754)) 114)) (-1853 (((-627 (-1058)) $) 15)) (-4027 (($ (-1148 |#2|)) 67)) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) 18)) (-2246 (((-412 (-1148 $)) (-1148 $)) 185)) (-4014 (($ $) 175)) (-2487 (((-412 $) $) 173)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 82)) (-1611 (($ $ (-754)) 71)) (-3123 (($ $ (-754)) 73)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4039 (((-3 |#2| "failed") $) 117) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#2| $) 115) (((-401 (-552)) $) NIL) (((-552) $) NIL) (((-1058) $) NIL)) (-3955 (($ $ $) 151)) (-2148 (((-2 (|:| -3069 |#2|) (|:| -2404 $) (|:| -3401 $)) $ $) 153)) (-2641 (((-754) $ $) 170)) (-4317 (((-3 $ "failed") $) 123)) (-1832 (($ |#2| (-754)) NIL) (($ $ (-1058) (-754)) 47) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) 42) (((-627 (-754)) $ (-627 (-1058))) 43)) (-1578 (((-1148 |#2|) $) 59)) (-2685 (((-3 (-1058) "failed") $) 40)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 70)) (-2747 (($ $) 197)) (-3002 (($) 119)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 182)) (-3676 (((-412 (-1148 $)) (-1148 $)) 88)) (-3644 (((-412 (-1148 $)) (-1148 $)) 86)) (-1727 (((-412 $) $) 107)) (-3321 (($ $ (-627 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#2|) 31) (($ $ (-627 (-1058)) (-627 |#2|)) 28) (($ $ (-1058) $) 25) (($ $ (-627 (-1058)) (-627 $)) 23)) (-2718 (((-754) $) 188)) (-1985 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) 147) ((|#2| (-401 $) |#2|) 187) (((-401 $) $ (-401 $)) 169)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 191)) (-2942 (($ $ (-1058)) 140) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) 138) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) 16) (((-627 (-754)) $ (-627 (-1058))) 20)) (-3495 ((|#2| $) NIL) (($ $ (-1058)) 125)) (-2749 (((-3 $ "failed") $ $) 161) (((-3 (-401 $) "failed") (-401 $) $) 157)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1058)) 51) (($ (-401 (-552))) NIL) (($ $) NIL))) -(((-1210 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1985 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -1985 (|#2| (-401 |#1|) |#2|)) (-15 -4194 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2148 ((-2 (|:| -3069 |#2|) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -2749 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2749 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2641 ((-754) |#1| |#1|)) (-15 -1985 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| |#1| (-754))) (-15 -1611 (|#1| |#1| (-754))) (-15 -3341 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| (-754))) (-15 -4027 (|#1| (-1148 |#2|))) (-15 -1578 ((-1148 |#2|) |#1|)) (-15 -2449 ((-1235 |#2|) |#1| (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| |#2|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2246 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3495 (|#1| |#1| (-1058))) (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -3278 ((-754) |#1| (-627 (-1058)))) (-15 -3278 ((-754) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -1832 (|#1| |#1| (-1058) (-754))) (-15 -3465 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3465 ((-754) |#1| (-1058))) (-15 -2685 ((-3 (-1058) "failed") |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3567 ((-754) |#1| (-1058))) (-15 -1703 ((-1058) |#1|)) (-15 -4039 ((-3 (-1058) "failed") |#1|)) (-15 -1477 (|#1| (-1058))) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-1058) |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1058) |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 ((-754) |#1|)) (-15 -1832 (|#1| |#2| (-754))) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3465 ((-754) |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2942 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1058) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1058)))) (-15 -2942 (|#1| |#1| (-1058))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1211 |#2|) (-1028)) (T -1210)) -NIL -(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1985 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -1985 (|#2| (-401 |#1|) |#2|)) (-15 -4194 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2148 ((-2 (|:| -3069 |#2|) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -2749 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2749 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2641 ((-754) |#1| |#1|)) (-15 -1985 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| |#1| (-754))) (-15 -1611 (|#1| |#1| (-754))) (-15 -3341 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| (-754))) (-15 -4027 (|#1| (-1148 |#2|))) (-15 -1578 ((-1148 |#2|) |#1|)) (-15 -2449 ((-1235 |#2|) |#1| (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| |#2|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2246 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3495 (|#1| |#1| (-1058))) (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -3278 ((-754) |#1| (-627 (-1058)))) (-15 -3278 ((-754) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -1832 (|#1| |#1| (-1058) (-754))) (-15 -3465 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3465 ((-754) |#1| (-1058))) (-15 -2685 ((-3 (-1058) "failed") |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3567 ((-754) |#1| (-1058))) (-15 -1703 ((-1058) |#1|)) (-15 -4039 ((-3 (-1058) "failed") |#1|)) (-15 -1477 (|#1| (-1058))) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-1058) |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1058) |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 ((-754) |#1|)) (-15 -1832 (|#1| |#2| (-754))) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3465 ((-754) |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2942 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1058) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1058)))) (-15 -2942 (|#1| |#1| (-1058))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2449 (((-1235 |#1|) $ (-754)) 236)) (-1853 (((-627 (-1058)) $) 108)) (-4027 (($ (-1148 |#1|)) 234)) (-1694 (((-1148 $) $ (-1058)) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 (-1058))) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-1340 (($ $ $) 221 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-4224 (((-111) $ $) 206 (|has| |#1| (-357)))) (-1611 (($ $ (-754)) 229)) (-3123 (($ $ (-754)) 228)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-445)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) 134)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) (((-1058) $) 133)) (-3116 (($ $ $ (-1058)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-2813 (($ $ $) 210 (|has| |#1| (-357)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 209 (|has| |#1| (-357)))) (-1419 (($ $ $) 227)) (-3955 (($ $ $) 218 (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) 217 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 204 (|has| |#1| (-357)))) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ (-1058)) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) 222 (|has| |#1| (-544)))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-4317 (((-3 $ "failed") $) 202 (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) 115) (($ (-1148 $) (-1058)) 114)) (-3322 (($ $ (-754)) 233)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 213 (|has| |#1| (-357)))) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| (-754)) 151) (($ $ (-1058) (-754)) 117) (($ $ (-627 (-1058)) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) 118) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 231)) (-3465 (((-754) $) 168) (((-754) $ (-1058)) 120) (((-627 (-754)) $ (-627 (-1058))) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-1578 (((-1148 |#1|) $) 235)) (-2685 (((-3 (-1058) "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 230)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) 111)) (-2747 (($ $) 214 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) 201 (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 211 (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 205 (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ (-1058) |#1|) 139) (($ $ (-627 (-1058)) (-627 |#1|)) 138) (($ $ (-1058) $) 137) (($ $ (-627 (-1058)) (-627 $)) 136)) (-2718 (((-754) $) 207 (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-401 $) (-401 $) (-401 $)) 223 (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) 215 (|has| |#1| (-357))) (((-401 $) $ (-401 $)) 203 (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) 232)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 208 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) 40) (($ $ (-627 (-1058))) 39) (($ $ (-1058) (-754)) 38) (($ $ (-627 (-1058)) (-627 (-754))) 37) (($ $ (-754)) 251) (($ $) 249) (($ $ (-1152)) 248 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 247 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 246 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 245 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3567 (((-754) $) 148) (((-754) $ (-1058)) 128) (((-627 (-754)) $ (-627 (-1058))) 127)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ (-1058)) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) 220 (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) 219 (|has| |#1| (-544)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ (-1058)) 135) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ (-754)) 153) (($ $ (-1058) (-754)) 126) (($ $ (-627 (-1058)) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1058)) 36) (($ $ (-627 (-1058))) 35) (($ $ (-1058) (-754)) 34) (($ $ (-627 (-1058)) (-627 (-754))) 33) (($ $ (-754)) 252) (($ $) 250) (($ $ (-1152)) 244 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 243 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 242 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 241 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1211 |#1|) (-137) (-1028)) (T -1211)) -((-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1211 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-5 *2 (-1148 *3)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1028)) (-4 *1 (-1211 *3)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-3719 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1984 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *3)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *4)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-3123 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1419 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)))) (-2942 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169)))) (-3116 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169)))) (-1985 (*1 *2 *2 *2) (-12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)))) (-2641 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)) (-5 *2 (-754)))) (-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2749 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2749 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)))) (-3955 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -3069 *3) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *3)))) (-4194 (*1 *2 *1 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1211 *3)))) (-1985 (*1 *2 *3 *2) (-12 (-5 *3 (-401 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552))))))) -(-13 (-928 |t#1| (-754) (-1058)) (-280 |t#1| |t#1|) (-280 $ $) (-228) (-226 |t#1|) (-10 -8 (-15 -2449 ((-1235 |t#1|) $ (-754))) (-15 -1578 ((-1148 |t#1|) $)) (-15 -4027 ($ (-1148 |t#1|))) (-15 -3322 ($ $ (-754))) (-15 -3719 ((-3 $ "failed") $ (-754))) (-15 -1984 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -3341 ((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754))) (-15 -1611 ($ $ (-754))) (-15 -3123 ($ $ (-754))) (-15 -1419 ($ $ $)) (-15 -2942 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1637 (|t#1| $)) (-15 -3116 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-280 (-401 $) (-401 $))) (-15 -1985 ((-401 $) (-401 $) (-401 $))) (-15 -2641 ((-754) $ $)) (-15 -1340 ($ $ $)) (-15 -2749 ((-3 $ "failed") $ $)) (-15 -2749 ((-3 (-401 $) "failed") (-401 $) $)) (-15 -3955 ($ $ $)) (-15 -2148 ((-2 (|:| -3069 |t#1|) (|:| -2404 $) (|:| -3401 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (-15 -4194 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-301)) (-6 -4362) (-15 -1985 (|t#1| (-401 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-15 -2747 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-754)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552))))) ((-226 |#1|) . T) ((-228) . T) ((-280 (-401 $) (-401 $)) |has| |#1| (-544)) ((-280 |#1| |#1|) . T) ((-280 $ $) . T) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 $) . T) ((-320 |#1| #0#) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-506 #2=(-1058) |#1|) . T) ((-506 #2# $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 #2#) . T) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) -12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373)))) ((-865 (-552)) -12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))) ((-928 |#1| #0# #2#) . T) ((-888) |has| |#1| (-888)) ((-899) |has| |#1| (-357)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 #2#) . T) ((-1017 |#1|) . T) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-1127)) ((-1193) |has| |#1| (-888))) -((-1853 (((-627 (-1058)) $) 28)) (-2014 (($ $) 25)) (-1832 (($ |#2| |#3|) NIL) (($ $ (-1058) |#3|) 22) (($ $ (-627 (-1058)) (-627 |#3|)) 21)) (-1981 (($ $) 14)) (-1993 ((|#2| $) 12)) (-3567 ((|#3| $) 10))) -(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 |#3|))) (-15 -1832 (|#1| |#1| (-1058) |#3|)) (-15 -2014 (|#1| |#1|)) (-15 -1832 (|#1| |#2| |#3|)) (-15 -3567 (|#3| |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -1993 (|#2| |#1|))) (-1213 |#2| |#3|) (-1028) (-775)) (T -1212)) -NIL -(-10 -8 (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 |#3|))) (-15 -1832 (|#1| |#1| (-1058) |#3|)) (-15 -2014 (|#1| |#1|)) (-15 -1832 (|#1| |#2| |#3|)) (-15 -3567 (|#3| |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -1993 (|#2| |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4245 (((-1132 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2391 (((-111) $) 71)) (-2641 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2624 (((-111) $) 30)) (-3322 (($ $ (-900)) 99)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59) (($ $ (-1058) |#2|) 74) (($ $ (-627 (-1058)) (-627 |#2|)) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-4168 (($ $ |#2|) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1985 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3567 ((|#2| $) 62)) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-3030 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1213 |#1| |#2|) (-137) (-1028) (-775)) (T -1213)) -((-4245 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-1132 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-1152)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-2641 (*1 *2 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-4019 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1477 (*2 (-1152)))) (-4 *2 (-1028)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3321 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1132 *3))))) -(-13 (-952 |t#1| |t#2| (-1058)) (-10 -8 (-15 -4245 ((-1132 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1985 (|t#1| $ |t#2|)) (-15 -4344 ((-1152) $)) (-15 -3174 (|t#1| $)) (-15 -3322 ($ $ (-900))) (-15 -2641 (|t#2| $)) (-15 -2641 (|t#2| $ |t#2|)) (-15 -4019 ($ $ |t#2|)) (-15 -4019 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1477 (|t#1| (-1152)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3030 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4168 ($ $ |t#2|)) (IF (|has| |t#2| (-1088)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-228)) (IF (|has| |t#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3321 ((-1132 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-280 $ $) |has| |#2| (-1088)) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| |#2| (-1058)) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-4014 ((|#2| |#2|) 12)) (-2487 (((-412 |#2|) |#2|) 14)) (-2392 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))) 30))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -2487 ((-412 |#2|) |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -2392 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) (-544) (-13 (-1211 |#1|) (-544) (-10 -8 (-15 -1323 ($ $ $))))) (T -1214)) -((-2392 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-552)))) (-4 *4 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))) (-4 *3 (-544)) (-5 *1 (-1214 *3 *4)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-1211 *4) (-544) (-10 -8 (-15 -1323 ($ $ $)))))))) -(-10 -7 (-15 -2487 ((-412 |#2|) |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -2392 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) -((-3516 (((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)) 24))) -(((-1215 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) (-1028) (-1028) (-1152) (-1152) |#1| |#2|) (T -1215)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1152))))) -(-10 -7 (-15 -3516 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99) (($ $ (-401 (-552))) 168)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-401 (-552))) 59) (($ $ (-1058) (-401 (-552))) 74) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1216 |#1|) (-137) (-1028)) (T -1216)) -((-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) (-4 *4 (-1028)) (-4 *1 (-1216 *4)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1216 *3)) (-4 *3 (-1028)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) -(-13 (-1213 |t#1| (-401 (-552))) (-10 -8 (-15 -1777 ($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |t#1|))))) (-15 -3322 ($ $ (-401 (-552)))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T)) -((-3024 (((-111) $) 12)) (-4039 (((-3 |#3| "failed") $) 17)) (-1703 ((|#3| $) 14))) -(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) (-1218 |#2| |#3|) (-1028) (-1195 |#2|)) (T -1217)) -NIL -(-10 -8 (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 180)) (-1703 ((|#2| $) 179)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-3455 (((-401 (-552)) $) 177)) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) |#2|) 178)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99) (($ $ (-401 (-552))) 168)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-401 (-552))) 59) (($ $ (-1058) (-401 (-552))) 74) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-3713 ((|#2| $) 176)) (-1977 (((-3 |#2| "failed") $) 174)) (-1920 ((|#2| $) 175)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1218 |#1| |#2|) (-137) (-1028) (-1195 |t#1|)) (T -1218)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) (-5 *2 (-401 (-552))))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1028)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1195 *4)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) (-5 *2 (-401 (-552))))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3)))) (-1977 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) -(-13 (-1216 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -1930 ($ (-401 (-552)) |t#2|)) (-15 -3455 ((-401 (-552)) $)) (-15 -3713 (|t#2| $)) (-15 -3567 ((-401 (-552)) $)) (-15 -1477 ($ |t#2|)) (-15 -1920 (|t#2| $)) (-15 -1977 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1017 |#2|) . T) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T) ((-1216 |#1|) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 96)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 106) (($ $ (-401 (-552)) (-401 (-552))) 108)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 51)) (-1607 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 156 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 152 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 61)) (-1628 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL)) (-1703 ((|#2| $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 79)) (-3455 (((-401 (-552)) $) 13)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) |#2|) 11)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) 68)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 103) (((-401 (-552)) $ (-401 (-552))) 104)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 120) (($ $ (-401 (-552))) 118)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 31) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 115)) (-4135 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 ((|#2| $) 12)) (-1977 (((-3 |#2| "failed") $) 41)) (-1920 ((|#2| $) 42)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 93 (|has| |#1| (-357)))) (-2747 (($ $) 135 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 140 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 112)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 148 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 100) (($ $ $) 86 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 127 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 16)) (-1640 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 154 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 110)) (-1477 (((-842) $) NIL) (($ (-552)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 99)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 117)) (-3174 ((|#1| $) 98)) (-1673 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 21 T CONST)) (-1933 (($) 17 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 66)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 92 (|has| |#1| (-357)))) (-2396 (($ $) 131) (($ $ $) 72)) (-2384 (($ $ $) 70)) (** (($ $ (-900)) NIL) (($ $ (-754)) 76) (($ $ (-552)) 145 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 146 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1219 |#1| |#2|) (-1218 |#1| |#2|) (-1028) (-1195 |#1|)) (T -1219)) -NIL -(-1218 |#1| |#2|) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1227 |#1| |#2| |#3|) "failed") $) 22)) (-1703 (((-1199 |#1| |#2| |#3|) $) NIL) (((-1227 |#1| |#2| |#3|) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3455 (((-401 (-552)) $) 57)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) (-1199 |#1| |#2| |#3|)) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 30) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 (((-1199 |#1| |#2| |#3|) $) 60)) (-1977 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) NIL)) (-1920 (((-1199 |#1| |#2| |#3|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 38)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 89) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1199 |#1| |#2| |#3|)) 16) (($ (-1227 |#1| |#2| |#3|)) 17) (($ (-1231 |#2|)) 36) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 32 T CONST)) (-1933 (($) 26 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1220 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1017 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1220)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1017 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 34)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 20)) (-1703 (((-552) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-2014 (($ $) 35)) (-2040 (((-3 $ "failed") $) 25)) (-1375 (($ $) NIL (|has| (-1220 |#2| |#3| |#4|) (-445)))) (-2061 (($ $ (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 11)) (-3267 (((-111) $) NIL)) (-1832 (($ (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) 23)) (-3465 (((-313 |#2| |#3| |#4|) $) NIL)) (-3813 (($ (-1 (-313 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) $) NIL)) (-3516 (($ (-1 (-1220 |#2| |#3| |#4|) (-1220 |#2| |#3| |#4|)) $) NIL)) (-1973 (((-3 (-823 |#2|) "failed") $) 75)) (-1981 (($ $) NIL)) (-1993 (((-1220 |#2| |#3| |#4|) $) 18)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 (((-1220 |#2| |#3| |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-544))) (((-3 $ "failed") $ $) NIL)) (-3138 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $) 58)) (-3567 (((-313 |#2| |#3| |#4|) $) 14)) (-3495 (((-1220 |#2| |#3| |#4|) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-1220 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552)))) (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))))) (-1493 (((-627 (-1220 |#2| |#3| |#4|)) $) NIL)) (-1889 (((-1220 |#2| |#3| |#4|) $ (-313 |#2| |#3| |#4|)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-142)))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| (-1220 |#2| |#3| |#4|) (-169)))) (-3778 (((-111) $ $) NIL)) (-1922 (($) 63 T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-1220 |#2| |#3| |#4|)) NIL) (($ (-1220 |#2| |#3| |#4|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552))))))) -(((-1221 |#1| |#2| |#3| |#4|) (-13 (-320 (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -3138 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $)))) (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -1221)) -((-1973 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-823 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4))) (-3138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 *4 *5 *6)) (|:| |%expon| (-313 *4 *5 *6)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) (|:| |%type| (-1134)))) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4)))) -(-13 (-320 (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -3138 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $)))) -((-4288 ((|#2| $) 29)) (-4155 ((|#2| $) 18)) (-1700 (($ $) 36)) (-3900 (($ $ (-552)) 64)) (-4031 (((-111) $ (-754)) 33)) (-2472 ((|#2| $ |#2|) 61)) (-2801 ((|#2| $ |#2|) 59)) (-2950 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4017 (($ $ (-627 $)) 60)) (-4143 ((|#2| $) 17)) (-3351 (($ $) NIL) (($ $ (-754)) 42)) (-2336 (((-627 $) $) 26)) (-3726 (((-111) $ $) 50)) (-1602 (((-111) $ (-754)) 32)) (-3971 (((-111) $ (-754)) 31)) (-3810 (((-111) $) 28)) (-1294 ((|#2| $) 24) (($ $ (-754)) 46)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2978 (((-111) $) 22)) (-1805 (($ $) 39)) (-3384 (($ $) 65)) (-3543 (((-754) $) 41)) (-4149 (($ $) 40)) (-2668 (($ $ $) 58) (($ |#2| $) NIL)) (-2535 (((-627 $) $) 27)) (-2292 (((-111) $ $) 48)) (-1383 (((-754) $) 35))) -(((-1222 |#1| |#2|) (-10 -8 (-15 -3900 (|#1| |#1| (-552))) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2801 (|#2| |#1| |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3384 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -1985 (|#2| |#1| "first")) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2472 (|#2| |#1| |#2|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -4017 (|#1| |#1| (-627 |#1|))) (-15 -3726 ((-111) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) (-1223 |#2|) (-1189)) (T -1222)) -NIL -(-10 -8 (-15 -3900 (|#1| |#1| (-552))) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2801 (|#2| |#1| |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3384 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -1985 (|#2| |#1| "first")) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2472 (|#2| |#1| |#2|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -4017 (|#1| |#1| (-627 |#1|))) (-15 -3726 ((-111) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1223 |#1|) (-137) (-1189)) (T -1223)) -((-2668 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-3351 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1294 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4149 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1805 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3384 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1612 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-2801 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3900 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) (-4 *3 (-1189))))) -(-13 (-989 |t#1|) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2668 ($ |t#1| $)) (-15 -3340 (|t#1| $)) (-15 -1985 (|t#1| $ "first")) (-15 -3340 ($ $ (-754))) (-15 -3351 ($ $)) (-15 -1985 ($ $ "rest")) (-15 -3351 ($ $ (-754))) (-15 -1294 (|t#1| $)) (-15 -1985 (|t#1| $ "last")) (-15 -1294 ($ $ (-754))) (-15 -1700 ($ $)) (-15 -4143 (|t#1| $)) (-15 -4155 (|t#1| $)) (-15 -4149 ($ $)) (-15 -3543 ((-754) $)) (-15 -1805 ($ $)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -3151 ($ $ $)) (-15 -3151 ($ $ |t#1|)) (-15 -3384 ($ $)) (-15 -1612 (|t#1| $ |t#1|)) (-15 -2950 (|t#1| $ "first" |t#1|)) (-15 -1474 ($ $ $)) (-15 -2950 ($ $ "rest" $)) (-15 -2801 (|t#1| $ |t#1|)) (-15 -2950 (|t#1| $ "last" |t#1|)) (-15 -3900 ($ $ (-552)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) -((-3516 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) (-1028) (-1028) (-1226 |#1|) (-1226 |#2|)) (T -1224)) -((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5))))) -(-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) -((-3024 (((-111) $) 15)) (-1607 (($ $) 92)) (-1467 (($ $) 68)) (-1584 (($ $) 88)) (-1445 (($ $) 64)) (-1628 (($ $) 96)) (-1492 (($ $) 72)) (-4135 (($ $) 62)) (-3154 (($ $) 60)) (-1640 (($ $) 98)) (-1502 (($ $) 74)) (-1615 (($ $) 94)) (-1479 (($ $) 70)) (-1596 (($ $) 90)) (-1456 (($ $) 66)) (-1477 (((-842) $) 48) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1673 (($ $) 104)) (-1534 (($ $) 80)) (-1652 (($ $) 100)) (-1513 (($ $) 76)) (-1697 (($ $) 108)) (-1561 (($ $) 84)) (-3519 (($ $) 110)) (-1575 (($ $) 86)) (-1686 (($ $) 106)) (-1547 (($ $) 82)) (-1661 (($ $) 102)) (-1524 (($ $) 78)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-401 (-552))) 58))) -(((-1225 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -3024 ((-111) |#1|)) (-15 -1477 ((-842) |#1|))) (-1226 |#2|) (-1028)) (T -1225)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -3024 ((-111) |#1|)) (-15 -1477 ((-842) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 96) (($ $ (-754) (-754)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 153) (($ (-1132 |#1|)) 151)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2872 (($ $) 150)) (-2212 (((-931 |#1|) $ (-754)) 148) (((-931 |#1|) $ (-754) (-754)) 147)) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) 98) (((-754) $ (-754)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 149)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-754)) 59) (($ $ (-1058) (-754)) 74) (($ $ (-627 (-1058)) (-627 (-754))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-2747 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 144 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-4168 (($ $ (-754)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 102) (($ $ $) 79 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-3567 (((-754) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1493 (((-1132 |#1|) $) 152)) (-1889 ((|#1| $ (-754)) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ |#1|) 146 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) -(((-1226 |#1|) (-137) (-1028)) (T -1226)) -((-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-754)) (|:| |c| *3)))) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-5 *2 (-1132 *3)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1226 *3)) (-4 *3 (-1028)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) (-5 *2 (-931 *4)))) (-2212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) (-5 *2 (-931 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) -(-13 (-1213 |t#1| (-754)) (-10 -8 (-15 -1777 ($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |t#1|))))) (-15 -1493 ((-1132 |t#1|) $)) (-15 -1777 ($ (-1132 |t#1|))) (-15 -2872 ($ $)) (-15 -3045 ($ (-1 |t#1| (-552)) $)) (-15 -2212 ((-931 |t#1|) $ (-754))) (-15 -2212 ((-931 |t#1|) $ (-754) (-754))) (IF (|has| |t#1| (-357)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-754)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-754) |#1|))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-754) (-1088)) ((-284) |has| |#1| (-544)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) |has| |#1| (-544)) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1213 |#1| #0#) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 87)) (-3017 (((-1208 |#2| |#1|) $ (-754)) 73)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) 137 (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 122) (($ $ (-754) (-754)) 124)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 42)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 53) (($ (-1132 |#1|)) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-3738 (($ $) 128)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2872 (($ $) 135)) (-2212 (((-931 |#1|) $ (-754)) 63) (((-931 |#1|) $ (-754) (-754)) 65)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) NIL) (((-754) $ (-754)) NIL)) (-2624 (((-111) $) NIL)) (-2910 (($ $) 112)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1780 (($ (-552) (-552) $) 130)) (-3322 (($ $ (-900)) 134)) (-3045 (($ (-1 |#1| (-552)) $) 106)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 15) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 94)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2525 (($ $) 110)) (-4258 (($ $) 108)) (-2956 (($ (-552) (-552) $) 132)) (-2747 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 151 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 146 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2483 (($ $ (-552) (-552)) 116)) (-4168 (($ $ (-754)) 118)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4286 (($ $) 114)) (-3321 (((-1132 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 91) (($ $ $) 126 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 103 (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $ (-1231 |#2|)) 99)) (-3567 (((-754) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 120)) (-1477 (((-842) $) NIL) (($ (-552)) 24) (($ (-401 (-552))) 143 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1208 |#2| |#1|)) 80) (($ (-1231 |#2|)) 20)) (-1493 (((-1132 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) 90)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 88)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 17 T CONST)) (-1933 (($) 13 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 102)) (-2384 (($ $ $) 18)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#1|) 140 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) -(((-1227 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (-15 -4258 ($ $)) (-15 -2525 ($ $)) (-15 -2910 ($ $)) (-15 -4286 ($ $)) (-15 -2483 ($ $ (-552) (-552))) (-15 -3738 ($ $)) (-15 -1780 ($ (-552) (-552) $)) (-15 -2956 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1227)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-4258 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2525 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2483 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-1780 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-2956 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) -(-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (-15 -4258 ($ $)) (-15 -2525 ($ $)) (-15 -2910 ($ $)) (-15 -4286 ($ $)) (-15 -2483 ($ $ (-552) (-552))) (-15 -3738 ($ $)) (-15 -1780 ($ (-552) (-552) $)) (-15 -2956 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) -((-1762 (((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|))) 24)) (-1386 (((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2808 (((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|)) 13)) (-3530 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1931 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3135 ((|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|)) 54)) (-4299 (((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))) 61)) (-2425 ((|#2| |#2| |#2|) 43))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -2808 ((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|))) (-15 -1386 ((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1762 ((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|)))) (-15 -2425 (|#2| |#2| |#2|)) (-15 -1931 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3530 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|))) (-15 -4299 ((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))))) (-38 (-401 (-552))) (-1226 |#1|)) (T -1228)) -((-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 (-1 *6 (-627 *6)))) (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1226 *5)) (-5 *2 (-627 *6)) (-5 *1 (-1228 *5 *6)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-627 *2))) (-5 *4 (-627 *5)) (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1226 *5)) (-5 *1 (-1228 *5 *2)))) (-3530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-2425 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1226 *3)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-627 *5))) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-627 (-1132 *4)))) (-5 *1 (-1228 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5))))) -(-10 -7 (-15 -2808 ((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|))) (-15 -1386 ((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1762 ((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|)))) (-15 -2425 (|#2| |#2| |#2|)) (-15 -1931 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3530 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|))) (-15 -4299 ((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))))) -((-2413 ((|#2| |#4| (-754)) 30)) (-2803 ((|#4| |#2|) 25)) (-3772 ((|#4| (-401 |#2|)) 52 (|has| |#1| (-544)))) (-2137 (((-1 |#4| (-627 |#4|)) |#3|) 46))) -(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| |#2|)) (-15 -2413 (|#2| |#4| (-754))) (-15 -2137 ((-1 |#4| (-627 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3772 (|#4| (-401 |#2|))) |%noBranch|)) (-1028) (-1211 |#1|) (-638 |#2|) (-1226 |#1|)) (T -1229)) -((-3772 (*1 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-544)) (-4 *4 (-1028)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) (-4 *6 (-638 *5)))) (-2137 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-627 *6))) (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) -(-10 -7 (-15 -2803 (|#4| |#2|)) (-15 -2413 (|#2| |#4| (-754))) (-15 -2137 ((-1 |#4| (-627 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3772 (|#4| (-401 |#2|))) |%noBranch|)) -NIL -(((-1230) (-137)) (T -1230)) -NIL -(-13 (-10 -7 (-6 -2997))) -((-1465 (((-111) $ $) NIL)) (-4344 (((-1152)) 12)) (-1595 (((-1134) $) 17)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1152) $) 8)) (-2292 (((-111) $ $) 14))) -(((-1231 |#1|) (-13 (-1076) (-599 (-1152)) (-10 -8 (-15 -1477 ((-1152) $)) (-15 -4344 ((-1152))))) (-1152)) (T -1231)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2))) (-4344 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2)))) -(-13 (-1076) (-599 (-1152)) (-10 -8 (-15 -1477 ((-1152) $)) (-15 -4344 ((-1152))))) -((-2099 (($ (-754)) 18)) (-1541 (((-671 |#2|) $ $) 40)) (-2306 ((|#2| $) 48)) (-3593 ((|#2| $) 47)) (-2395 ((|#2| $ $) 35)) (-3917 (($ $ $) 44)) (-2396 (($ $) 22) (($ $ $) 28)) (-2384 (($ $ $) 15)) (* (($ (-552) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1232 |#1| |#2|) (-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -3593 (|#2| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1541 ((-671 |#2|) |#1| |#1|)) (-15 -2395 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2099 (|#1| (-754))) (-15 -2384 (|#1| |#1| |#1|))) (-1233 |#2|) (-1189)) (T -1232)) -NIL -(-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -3593 (|#2| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1541 ((-671 |#2|) |#1| |#1|)) (-15 -2395 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2099 (|#1| (-754))) (-15 -2384 (|#1| |#1| |#1|))) -((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754)) 112 (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) 105 (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2306 ((|#1| $) 102 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-3971 (((-111) $ (-754)) 10)) (-3593 ((|#1| $) 103 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-2395 ((|#1| $ $) 106 (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-3917 (($ $ $) 104 (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-2396 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2384 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-709))) (($ $ |#1|) 107 (|has| |#1| (-709)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) -(((-1233 |#1|) (-137) (-1189)) (T -1233)) -((-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-25)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1233 *3)) (-4 *3 (-23)) (-4 *3 (-1189)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (-2395 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (-1541 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-1028)) (-5 *2 (-671 *3)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) (-4 *2 (-1028)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) (-4 *2 (-1028))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2384 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2099 ($ (-754))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2396 ($ $)) (-15 -2396 ($ $ $)) (-15 * ($ (-552) $))) |%noBranch|) (IF (|has| |t#1| (-709)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-15 -2395 (|t#1| $ $)) (-15 -1541 ((-671 |t#1|) $ $)) (-15 -3917 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-981)) (IF (|has| |t#1| (-1028)) (PROGN (-15 -3593 (|t#1| $)) (-15 -2306 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-19 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) -((-2169 (((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|) 13)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|) 15)) (-3516 (((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)) 28) (((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 18))) -(((-1234 |#1| |#2|) (-10 -7 (-15 -2169 ((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -3516 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (-15 -3516 ((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)))) (-1189) (-1189)) (T -1234)) -((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-1234 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1235 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-1235 *5)) (-5 *1 (-1234 *6 *5))))) -(-10 -7 (-15 -2169 ((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -3516 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (-15 -3516 ((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)))) -((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-2931 (($ (-627 |#1|)) 9)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 15 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 19 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 8)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1235 |#1|) (-13 (-1233 |#1|) (-10 -8 (-15 -2931 ($ (-627 |#1|))))) (-1189)) (T -1235)) -((-2931 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1235 *3))))) -(-13 (-1233 |#1|) (-10 -8 (-15 -2931 ($ (-627 |#1|))))) -((-1465 (((-111) $ $) NIL)) (-1557 (((-1134) $ (-1134)) 90) (((-1134) $ (-1134) (-1134)) 88) (((-1134) $ (-1134) (-627 (-1134))) 87)) (-2592 (($) 59)) (-2903 (((-1240) $ (-461) (-900)) 45)) (-1516 (((-1240) $ (-900) (-1134)) 73) (((-1240) $ (-900) (-853)) 74)) (-3084 (((-1240) $ (-900) (-373) (-373)) 48)) (-2320 (((-1240) $ (-1134)) 69)) (-3365 (((-1240) $ (-900) (-1134)) 78)) (-2442 (((-1240) $ (-900) (-373) (-373)) 49)) (-1719 (((-1240) $ (-900) (-900)) 46)) (-2778 (((-1240) $) 70)) (-2862 (((-1240) $ (-900) (-1134)) 77)) (-1755 (((-1240) $ (-461) (-900)) 31)) (-1432 (((-1240) $ (-900) (-1134)) 76)) (-2230 (((-627 (-257)) $) 23) (($ $ (-627 (-257))) 24)) (-2394 (((-1240) $ (-754) (-754)) 43)) (-2917 (($ $) 60) (($ (-461) (-627 (-257))) 61)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 38)) (-1498 (((-1096) $) NIL)) (-1327 (((-1235 (-3 (-461) "undefined")) $) 37)) (-3626 (((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $) 36)) (-3330 (((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552)) 68)) (-4184 (((-627 (-922 (-220))) $) NIL)) (-3214 (((-461) $ (-900)) 33)) (-1343 (((-1240) $ (-754) (-754) (-900) (-900)) 40)) (-1333 (((-1240) $ (-1134)) 79)) (-3286 (((-1240) $ (-900) (-1134)) 75)) (-1477 (((-842) $) 85)) (-4267 (((-1240) $) 80)) (-2832 (((-1240) $ (-900) (-1134)) 71) (((-1240) $ (-900) (-853)) 72)) (-2292 (((-111) $ $) NIL))) -(((-1236) (-13 (-1076) (-10 -8 (-15 -4184 ((-627 (-922 (-220))) $)) (-15 -2592 ($)) (-15 -2917 ($ $)) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2917 ($ (-461) (-627 (-257)))) (-15 -3330 ((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552))) (-15 -3626 ((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $)) (-15 -1327 ((-1235 (-3 (-461) "undefined")) $)) (-15 -2320 ((-1240) $ (-1134))) (-15 -1755 ((-1240) $ (-461) (-900))) (-15 -3214 ((-461) $ (-900))) (-15 -2832 ((-1240) $ (-900) (-1134))) (-15 -2832 ((-1240) $ (-900) (-853))) (-15 -1516 ((-1240) $ (-900) (-1134))) (-15 -1516 ((-1240) $ (-900) (-853))) (-15 -1432 ((-1240) $ (-900) (-1134))) (-15 -2862 ((-1240) $ (-900) (-1134))) (-15 -3286 ((-1240) $ (-900) (-1134))) (-15 -1333 ((-1240) $ (-1134))) (-15 -4267 ((-1240) $)) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2442 ((-1240) $ (-900) (-373) (-373))) (-15 -3084 ((-1240) $ (-900) (-373) (-373))) (-15 -3365 ((-1240) $ (-900) (-1134))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -2903 ((-1240) $ (-461) (-900))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -2778 ((-1240) $)) (-15 -3998 ((-552) $)) (-15 -1477 ((-842) $))))) (T -1236)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1236)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-627 (-922 (-220)))) (-5 *1 (-1236)))) (-2592 (*1 *1) (-5 *1 (-1236))) (-2917 (*1 *1 *1) (-5 *1 (-1236))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) (-2917 (*1 *1 *2 *3) (-12 (-5 *2 (-461)) (-5 *3 (-627 (-257))) (-5 *1 (-1236)))) (-3330 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-900)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552))))) (-5 *1 (-1236)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-1235 (-3 (-461) "undefined"))) (-5 *1 (-1236)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1755 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3214 (*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-5 *2 (-461)) (-5 *1 (-1236)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1516 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1516 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1432 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2862 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1343 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2442 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3084 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3365 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2903 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1236)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1236))))) -(-13 (-1076) (-10 -8 (-15 -4184 ((-627 (-922 (-220))) $)) (-15 -2592 ($)) (-15 -2917 ($ $)) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2917 ($ (-461) (-627 (-257)))) (-15 -3330 ((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552))) (-15 -3626 ((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $)) (-15 -1327 ((-1235 (-3 (-461) "undefined")) $)) (-15 -2320 ((-1240) $ (-1134))) (-15 -1755 ((-1240) $ (-461) (-900))) (-15 -3214 ((-461) $ (-900))) (-15 -2832 ((-1240) $ (-900) (-1134))) (-15 -2832 ((-1240) $ (-900) (-853))) (-15 -1516 ((-1240) $ (-900) (-1134))) (-15 -1516 ((-1240) $ (-900) (-853))) (-15 -1432 ((-1240) $ (-900) (-1134))) (-15 -2862 ((-1240) $ (-900) (-1134))) (-15 -3286 ((-1240) $ (-900) (-1134))) (-15 -1333 ((-1240) $ (-1134))) (-15 -4267 ((-1240) $)) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2442 ((-1240) $ (-900) (-373) (-373))) (-15 -3084 ((-1240) $ (-900) (-373) (-373))) (-15 -3365 ((-1240) $ (-900) (-1134))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -2903 ((-1240) $ (-461) (-900))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -2778 ((-1240) $)) (-15 -3998 ((-552) $)) (-15 -1477 ((-842) $)))) -((-1465 (((-111) $ $) NIL)) (-1799 (((-1240) $ (-373)) 140) (((-1240) $ (-373) (-373) (-373)) 141)) (-1557 (((-1134) $ (-1134)) 148) (((-1134) $ (-1134) (-1134)) 146) (((-1134) $ (-1134) (-627 (-1134))) 145)) (-1723 (($) 50)) (-2745 (((-1240) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $) 114) (((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 115) (((-1240) $ (-552) (-552) (-373) (-373) (-373)) 117) (((-1240) $ (-373) (-373)) 118) (((-1240) $ (-373) (-373) (-373)) 125)) (-3297 (((-373)) 97) (((-373) (-373)) 98)) (-2558 (((-373)) 92) (((-373) (-373)) 94)) (-2887 (((-373)) 95) (((-373) (-373)) 96)) (-1396 (((-373)) 101) (((-373) (-373)) 102)) (-3762 (((-373)) 99) (((-373) (-373)) 100)) (-3084 (((-1240) $ (-373) (-373)) 142)) (-2320 (((-1240) $ (-1134)) 126)) (-3757 (((-1109 (-220)) $) 51) (($ $ (-1109 (-220))) 52)) (-3204 (((-1240) $ (-1134)) 154)) (-1433 (((-1240) $ (-1134)) 155)) (-1454 (((-1240) $ (-373) (-373)) 124) (((-1240) $ (-552) (-552)) 139)) (-1719 (((-1240) $ (-900) (-900)) 132)) (-2778 (((-1240) $) 112)) (-3234 (((-1240) $ (-1134)) 153)) (-2687 (((-1240) $ (-1134)) 109)) (-2230 (((-627 (-257)) $) 53) (($ $ (-627 (-257))) 54)) (-2394 (((-1240) $ (-754) (-754)) 131)) (-2168 (((-1240) $ (-754) (-922 (-220))) 160)) (-3430 (($ $) 56) (($ (-1109 (-220)) (-1134)) 57) (($ (-1109 (-220)) (-627 (-257))) 58)) (-3023 (((-1240) $ (-373) (-373) (-373)) 106)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 103)) (-1350 (((-1240) $ (-373)) 143)) (-1766 (((-1240) $ (-373)) 158)) (-1498 (((-1096) $) NIL)) (-3480 (((-1240) $ (-373)) 157)) (-3057 (((-1240) $ (-1134)) 111)) (-1343 (((-1240) $ (-754) (-754) (-900) (-900)) 130)) (-3110 (((-1240) $ (-1134)) 108)) (-1333 (((-1240) $ (-1134)) 110)) (-3933 (((-1240) $ (-154) (-154)) 129)) (-1477 (((-842) $) 137)) (-4267 (((-1240) $) 113)) (-2839 (((-1240) $ (-1134)) 156)) (-2832 (((-1240) $ (-1134)) 107)) (-2292 (((-111) $ $) NIL))) -(((-1237) (-13 (-1076) (-10 -8 (-15 -2558 ((-373))) (-15 -2558 ((-373) (-373))) (-15 -2887 ((-373))) (-15 -2887 ((-373) (-373))) (-15 -3297 ((-373))) (-15 -3297 ((-373) (-373))) (-15 -3762 ((-373))) (-15 -3762 ((-373) (-373))) (-15 -1396 ((-373))) (-15 -1396 ((-373) (-373))) (-15 -1723 ($)) (-15 -3430 ($ $)) (-15 -3430 ($ (-1109 (-220)) (-1134))) (-15 -3430 ($ (-1109 (-220)) (-627 (-257)))) (-15 -3757 ((-1109 (-220)) $)) (-15 -3757 ($ $ (-1109 (-220)))) (-15 -2168 ((-1240) $ (-754) (-922 (-220)))) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -2320 ((-1240) $ (-1134))) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2745 ((-1240) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2745 ((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2745 ((-1240) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373) (-373))) (-15 -1333 ((-1240) $ (-1134))) (-15 -2832 ((-1240) $ (-1134))) (-15 -3110 ((-1240) $ (-1134))) (-15 -2687 ((-1240) $ (-1134))) (-15 -3057 ((-1240) $ (-1134))) (-15 -1454 ((-1240) $ (-373) (-373))) (-15 -1454 ((-1240) $ (-552) (-552))) (-15 -1799 ((-1240) $ (-373))) (-15 -1799 ((-1240) $ (-373) (-373) (-373))) (-15 -3084 ((-1240) $ (-373) (-373))) (-15 -3234 ((-1240) $ (-1134))) (-15 -3480 ((-1240) $ (-373))) (-15 -1766 ((-1240) $ (-373))) (-15 -3204 ((-1240) $ (-1134))) (-15 -1433 ((-1240) $ (-1134))) (-15 -2839 ((-1240) $ (-1134))) (-15 -3023 ((-1240) $ (-373) (-373) (-373))) (-15 -1350 ((-1240) $ (-373))) (-15 -2778 ((-1240) $)) (-15 -3933 ((-1240) $ (-154) (-154))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -4267 ((-1240) $)) (-15 -3998 ((-552) $))))) (T -1237)) -((-2558 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2887 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3297 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3297 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3762 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1396 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1723 (*1 *1) (-5 *1 (-1237))) (-3430 (*1 *1 *1) (-5 *1 (-1237))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1134)) (-5 *1 (-1237)))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-627 (-257))) (-5 *1 (-1237)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) (-2168 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1343 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2832 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2687 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3057 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1799 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1799 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3480 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1766 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3204 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2839 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3023 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3933 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1237)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1237))))) -(-13 (-1076) (-10 -8 (-15 -2558 ((-373))) (-15 -2558 ((-373) (-373))) (-15 -2887 ((-373))) (-15 -2887 ((-373) (-373))) (-15 -3297 ((-373))) (-15 -3297 ((-373) (-373))) (-15 -3762 ((-373))) (-15 -3762 ((-373) (-373))) (-15 -1396 ((-373))) (-15 -1396 ((-373) (-373))) (-15 -1723 ($)) (-15 -3430 ($ $)) (-15 -3430 ($ (-1109 (-220)) (-1134))) (-15 -3430 ($ (-1109 (-220)) (-627 (-257)))) (-15 -3757 ((-1109 (-220)) $)) (-15 -3757 ($ $ (-1109 (-220)))) (-15 -2168 ((-1240) $ (-754) (-922 (-220)))) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -2320 ((-1240) $ (-1134))) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2745 ((-1240) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2745 ((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2745 ((-1240) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373) (-373))) (-15 -1333 ((-1240) $ (-1134))) (-15 -2832 ((-1240) $ (-1134))) (-15 -3110 ((-1240) $ (-1134))) (-15 -2687 ((-1240) $ (-1134))) (-15 -3057 ((-1240) $ (-1134))) (-15 -1454 ((-1240) $ (-373) (-373))) (-15 -1454 ((-1240) $ (-552) (-552))) (-15 -1799 ((-1240) $ (-373))) (-15 -1799 ((-1240) $ (-373) (-373) (-373))) (-15 -3084 ((-1240) $ (-373) (-373))) (-15 -3234 ((-1240) $ (-1134))) (-15 -3480 ((-1240) $ (-373))) (-15 -1766 ((-1240) $ (-373))) (-15 -3204 ((-1240) $ (-1134))) (-15 -1433 ((-1240) $ (-1134))) (-15 -2839 ((-1240) $ (-1134))) (-15 -3023 ((-1240) $ (-373) (-373) (-373))) (-15 -1350 ((-1240) $ (-373))) (-15 -2778 ((-1240) $)) (-15 -3933 ((-1240) $ (-154) (-154))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -4267 ((-1240) $)) (-15 -3998 ((-552) $)))) -((-3120 (((-627 (-1134)) (-627 (-1134))) 94) (((-627 (-1134))) 90)) (-2853 (((-627 (-1134))) 88)) (-3091 (((-627 (-900)) (-627 (-900))) 63) (((-627 (-900))) 60)) (-1476 (((-627 (-754)) (-627 (-754))) 57) (((-627 (-754))) 53)) (-1613 (((-1240)) 65)) (-2784 (((-900) (-900)) 81) (((-900)) 80)) (-1369 (((-900) (-900)) 79) (((-900)) 78)) (-3723 (((-853) (-853)) 75) (((-853)) 74)) (-2935 (((-220)) 85) (((-220) (-373)) 87)) (-1365 (((-900)) 82) (((-900) (-900)) 83)) (-1830 (((-900) (-900)) 77) (((-900)) 76)) (-4059 (((-853) (-853)) 69) (((-853)) 67)) (-3573 (((-853) (-853)) 71) (((-853)) 70)) (-3178 (((-853) (-853)) 73) (((-853)) 72))) -(((-1238) (-10 -7 (-15 -4059 ((-853))) (-15 -4059 ((-853) (-853))) (-15 -3573 ((-853))) (-15 -3573 ((-853) (-853))) (-15 -3178 ((-853))) (-15 -3178 ((-853) (-853))) (-15 -3723 ((-853))) (-15 -3723 ((-853) (-853))) (-15 -1830 ((-900))) (-15 -1830 ((-900) (-900))) (-15 -1476 ((-627 (-754)))) (-15 -1476 ((-627 (-754)) (-627 (-754)))) (-15 -3091 ((-627 (-900)))) (-15 -3091 ((-627 (-900)) (-627 (-900)))) (-15 -1613 ((-1240))) (-15 -3120 ((-627 (-1134)))) (-15 -3120 ((-627 (-1134)) (-627 (-1134)))) (-15 -2853 ((-627 (-1134)))) (-15 -1369 ((-900))) (-15 -2784 ((-900))) (-15 -1369 ((-900) (-900))) (-15 -2784 ((-900) (-900))) (-15 -1365 ((-900) (-900))) (-15 -1365 ((-900))) (-15 -2935 ((-220) (-373))) (-15 -2935 ((-220))))) (T -1238)) -((-2935 (*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1238)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1238)))) (-1365 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2784 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1369 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2853 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-3120 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-1613 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1238)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) (-3091 (*1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) (-1476 (*1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1830 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3723 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3178 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3573 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-4059 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) -(-10 -7 (-15 -4059 ((-853))) (-15 -4059 ((-853) (-853))) (-15 -3573 ((-853))) (-15 -3573 ((-853) (-853))) (-15 -3178 ((-853))) (-15 -3178 ((-853) (-853))) (-15 -3723 ((-853))) (-15 -3723 ((-853) (-853))) (-15 -1830 ((-900))) (-15 -1830 ((-900) (-900))) (-15 -1476 ((-627 (-754)))) (-15 -1476 ((-627 (-754)) (-627 (-754)))) (-15 -3091 ((-627 (-900)))) (-15 -3091 ((-627 (-900)) (-627 (-900)))) (-15 -1613 ((-1240))) (-15 -3120 ((-627 (-1134)))) (-15 -3120 ((-627 (-1134)) (-627 (-1134)))) (-15 -2853 ((-627 (-1134)))) (-15 -1369 ((-900))) (-15 -2784 ((-900))) (-15 -1369 ((-900) (-900))) (-15 -2784 ((-900) (-900))) (-15 -1365 ((-900) (-900))) (-15 -1365 ((-900))) (-15 -2935 ((-220) (-373))) (-15 -2935 ((-220)))) -((-1309 (((-461) (-627 (-627 (-922 (-220)))) (-627 (-257))) 21) (((-461) (-627 (-627 (-922 (-220))))) 20) (((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257))) 19)) (-1893 (((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257))) 27) (((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257))) 26)) (-1477 (((-1236) (-461)) 38))) -(((-1239) (-10 -7 (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1477 ((-1236) (-461))))) (T -1239)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1893 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-461)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239))))) -(-10 -7 (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1477 ((-1236) (-461)))) -((-3885 (($) 7)) (-1477 (((-842) $) 10))) -(((-1240) (-10 -8 (-15 -3885 ($)) (-15 -1477 ((-842) $)))) (T -1240)) -((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1240)))) (-3885 (*1 *1) (-5 *1 (-1240)))) -(-10 -8 (-15 -3885 ($)) (-15 -1477 ((-842) $))) -((-2407 (($ $ |#2|) 10))) -(((-1241 |#1| |#2|) (-10 -8 (-15 -2407 (|#1| |#1| |#2|))) (-1242 |#2|) (-357)) (T -1241)) -NIL -(-10 -8 (-15 -2407 (|#1| |#1| |#2|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2405 (((-132)) 28)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 29)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1242 |#1|) (-137) (-357)) (T -1242)) -((-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-357)))) (-2405 (*1 *2) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) -(-13 (-700 |t#1|) (-10 -8 (-15 -2407 ($ $ |t#1|)) (-15 -2405 ((-132))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) -((-1948 (((-627 (-1183 |#1|)) (-1152) (-1183 |#1|)) 74)) (-3281 (((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|))) 53)) (-3608 (((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))) 64)) (-2096 (((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754)) 55)) (-2889 (((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152)) 29)) (-3685 (((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754)) 54))) -(((-1243 |#1|) (-10 -7 (-15 -2096 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3685 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3281 ((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|)))) (-15 -2889 ((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152))) (-15 -1948 ((-627 (-1183 |#1|)) (-1152) (-1183 |#1|))) (-15 -3608 ((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))))) (-357)) (T -1243)) -((-3608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-4 *6 (-357)) (-5 *4 (-1183 *6)) (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1243 *6)) (-5 *5 (-1132 *4)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-627 (-1183 *5))) (-5 *1 (-1243 *5)) (-5 *4 (-1183 *5)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 (-1148 (-931 *4)) (-931 *4))) (-5 *1 (-1243 *4)) (-4 *4 (-357)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-1132 (-1132 (-931 *5)))) (-5 *1 (-1243 *5)) (-5 *4 (-1132 (-931 *5))))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) (-5 *1 (-1243 *4)) (-4 *4 (-357)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) (-5 *1 (-1243 *4)) (-4 *4 (-357))))) -(-10 -7 (-15 -2096 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3685 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3281 ((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|)))) (-15 -2889 ((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152))) (-15 -1948 ((-627 (-1183 |#1|)) (-1152) (-1183 |#1|))) (-15 -3608 ((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))))) -((-2993 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 75)) (-3402 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 74))) -(((-1244 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) (-343) (-1211 |#1|) (-1211 |#2|) (-403 |#2| |#3|)) (T -1244)) -((-2993 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-1244 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-3402 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-1244 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) -((-1465 (((-111) $ $) NIL)) (-2676 (((-1111) $) 11)) (-4162 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1245) (-13 (-1059) (-10 -8 (-15 -4162 ((-1111) $)) (-15 -2676 ((-1111) $))))) (T -1245)) -((-4162 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) -(-13 (-1059) (-10 -8 (-15 -4162 ((-1111) $)) (-15 -2676 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2242 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) -(((-1246) (-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $))))) (T -1246)) -((-2242 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1246))))) -(-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 43)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 64) (($ (-552)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-3995 (((-754)) NIL)) (-1620 (((-1240) (-754)) 16)) (-1922 (($) 27 T CONST)) (-1933 (($) 67 T CONST)) (-2292 (((-111) $ $) 69)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) 71) (($ $ $) NIL)) (-2384 (($ $ $) 47)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-1247 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1477 ($ |#4|)) (-15 -1620 ((-1240) (-754))))) (-1028) (-830) (-776) (-928 |#1| |#3| |#2|) (-627 |#2|) (-627 (-754)) (-754)) (T -1247)) -((-1477 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-776)) (-14 *6 (-627 *3)) (-5 *1 (-1247 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-928 *2 *4 *3)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-928 *3 *5 *4)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-14 *8 (-627 *5)) (-5 *2 (-1240)) (-5 *1 (-1247 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-928 *4 *6 *5)) (-14 *9 (-627 *3)) (-14 *10 *3)))) -(-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1477 ($ |#4|)) (-15 -1620 ((-1240) (-754))))) -((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 88)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-4097 (((-627 |#4|) (-627 |#4|) $) 25 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 70)) (-4167 ((|#4| |#4| $) 75)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3215 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 76)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-1810 (((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-627 |#4|)) 35)) (-3463 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) NIL)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-3 |#4| "failed") $) NIL)) (-4122 (((-627 |#4|) $) 50)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) 74)) (-2654 (((-111) $ $) 85)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 69)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) NIL)) (-4168 (($ $ |#4|) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 67)) (-2373 (($) 42)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) NIL)) (-4237 (($ $ |#3|) NIL)) (-2286 (($ $ |#3|) NIL)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) NIL) (((-627 |#4|) $) 57)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3108 (((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-627 |#4|)) 41)) (-1325 (((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-627 $) (-627 |#4|)) 66)) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3528 (((-111) |#3| $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) -(((-1248 |#1| |#2| |#3| |#4|) (-13 (-1182 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1810 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-3 $ "failed") (-627 |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|))) (-15 -1325 ((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1325 ((-627 $) (-627 |#4|))))) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1248)) -((-1810 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8)))) (-1810 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1248 *3 *4 *5 *6)))) (-3108 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8)))) (-3108 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1248 *3 *4 *5 *6)))) (-1325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-627 (-1248 *6 *7 *8 *9))) (-5 *1 (-1248 *6 *7 *8 *9)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-1248 *4 *5 *6 *7))) (-5 *1 (-1248 *4 *5 *6 *7))))) -(-13 (-1182 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1810 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-3 $ "failed") (-627 |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|))) (-15 -1325 ((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1325 ((-627 $) (-627 |#4|))))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 36)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1249 |#1|) (-137) (-1028)) (T -1249)) -((-1477 (*1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1028))))) -(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) -((-1465 (((-111) $ $) 60)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 45)) (-1963 (($ $ (-754)) 39)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ (-754)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ $) 63) (($ $ (-802 |#1|)) 49) (($ $ |#1|) 53)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL)) (-2014 (($ $) 32)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) NIL)) (-3164 (($ $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) 31)) (-3627 (($ $) 33)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 12)) (-3647 (((-802 |#1|) $) NIL)) (-3190 (((-802 |#1|) $) 34)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (($ $ $) 62) (($ $ (-802 |#1|)) 51) (($ $ |#1|) 55)) (-3888 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-802 |#1|) $) 28)) (-1993 ((|#2| $) 30)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3567 (((-754) $) 36)) (-2020 (((-111) $) 40)) (-3488 ((|#2| $) NIL)) (-1477 (((-842) $) NIL) (($ (-802 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-552)) NIL)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-802 |#1|)) NIL)) (-3069 ((|#2| $ $) 65) ((|#2| $ (-802 |#1|)) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 13 T CONST)) (-1933 (($) 15 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2292 (((-111) $ $) 38)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 22)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-802 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1250 |#1| |#2|) (-13 (-376 |#2| (-802 |#1|)) (-1256 |#1| |#2|)) (-830) (-1028)) (T -1250)) -NIL -(-13 (-376 |#2| (-802 |#1|)) (-1256 |#1| |#2|)) -((-4135 ((|#3| |#3| (-754)) 23)) (-3154 ((|#3| |#3| (-754)) 27)) (-3539 ((|#3| |#3| |#3| (-754)) 28))) -(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -3154 (|#3| |#3| (-754))) (-15 -4135 (|#3| |#3| (-754))) (-15 -3539 (|#3| |#3| |#3| (-754)))) (-13 (-1028) (-700 (-401 (-552)))) (-830) (-1256 |#2| |#1|)) (T -1251)) -((-3539 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) (-4135 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4))))) -(-10 -7 (-15 -3154 (|#3| |#3| (-754))) (-15 -4135 (|#3| |#3| (-754))) (-15 -3539 (|#3| |#3| |#3| (-754)))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 38)) (-4136 (((-3 $ "failed") $ $) 19)) (-3222 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-754)) 40 (|has| |#2| (-169)))) (-3887 (($) 17 T CONST)) (-1899 (($ $ |#1|) 52) (($ $ (-802 |#1|)) 51) (($ $ $) 50)) (-4039 (((-3 (-802 |#1|) "failed") $) 62)) (-1703 (((-802 |#1|) $) 61)) (-2040 (((-3 $ "failed") $) 32)) (-2846 (((-111) $) 43)) (-3164 (($ $) 42)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 48)) (-3755 (($ (-802 |#1|) |#2|) 49)) (-3627 (($ $) 47)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 58)) (-3647 (((-802 |#1|) $) 59)) (-3516 (($ (-1 |#2| |#2|) $) 39)) (-1543 (($ $ |#1|) 55) (($ $ (-802 |#1|)) 54) (($ $ $) 53)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2020 (((-111) $) 45)) (-3488 ((|#2| $) 44)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-802 |#1|)) 63) (($ |#1|) 46)) (-3069 ((|#2| $ (-802 |#1|)) 57) ((|#2| $ $) 56)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1252 |#1| |#2|) (-137) (-830) (-1028)) (T -1252)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-802 *3)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-2 (|:| |k| (-802 *3)) (|:| |c| *4))))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-802 *4)) (-4 *1 (-1252 *4 *2)) (-4 *4 (-830)) (-4 *2 (-1028)))) (-3069 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (-1543 (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1543 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1899 (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1899 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-830)) (-4 *1 (-1252 *4 *3)) (-4 *3 (-1028)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3627 (*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)) (-4 *3 (-169)))) (-3222 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-4 *4 (-169)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-627 *3))))) -(-13 (-1028) (-1249 |t#2|) (-1017 (-802 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3647 ((-802 |t#1|) $)) (-15 -4052 ((-2 (|:| |k| (-802 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3069 (|t#2| $ (-802 |t#1|))) (-15 -3069 (|t#2| $ $)) (-15 -1543 ($ $ |t#1|)) (-15 -1543 ($ $ (-802 |t#1|))) (-15 -1543 ($ $ $)) (-15 -1899 ($ $ |t#1|)) (-15 -1899 ($ $ (-802 |t#1|))) (-15 -1899 ($ $ $)) (-15 -3755 ($ (-802 |t#1|) |t#2|)) (-15 -3267 ((-111) $)) (-15 -3627 ($ $)) (-15 -1477 ($ |t#1|)) (-15 -2020 ((-111) $)) (-15 -3488 (|t#2| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -3222 ($ $ $)) (-15 -3222 ($ $ (-754)))) |%noBranch|) (-15 -3516 ($ (-1 |t#2| |t#2|) $)) (-15 -1671 ((-627 |t#1|) $)) (IF (|has| |t#2| (-6 -4359)) (-6 -4359) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-630 $) . T) ((-700 |#2|) |has| |#2| (-169)) ((-709) . T) ((-1017 (-802 |#1|)) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1249 |#2|) . T)) -((-1991 (((-111) $) 15)) (-3528 (((-111) $) 14)) (-3406 (($ $) 19) (($ $ (-754)) 20))) -(((-1253 |#1| |#2|) (-10 -8 (-15 -3406 (|#1| |#1| (-754))) (-15 -3406 (|#1| |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|))) (-1254 |#2|) (-357)) (T -1253)) -NIL -(-10 -8 (-15 -3406 (|#1| |#1| (-754))) (-15 -3406 (|#1| |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1991 (((-111) $) 91)) (-4010 (((-754)) 87)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 98)) (-1703 ((|#1| $) 97)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-4294 (($ $ (-754)) 84 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 81 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-2249 (((-111) $) 90)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3804 (((-816 (-900))) 88)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 82 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) 96)) (-3567 (((-816 (-900)) $) 89)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3050 (((-3 $ "failed") $) 80 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3528 (((-111) $) 92)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-3406 (($ $) 86 (|has| |#1| (-362))) (($ $ (-754)) 85 (|has| |#1| (-362)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62) (($ $ |#1|) 95)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1254 |#1|) (-137) (-357)) (T -1254)) -((-3528 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) (-3804 (*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) (-4010 (*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-754)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-357)) (-4 *2 (-362)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-4 *3 (-362))))) -(-13 (-357) (-1017 |t#1|) (-1242 |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-396)) |%noBranch|) (-15 -3528 ((-111) $)) (-15 -1991 ((-111) $)) (-15 -2249 ((-111) $)) (-15 -3567 ((-816 (-900)) $)) (-15 -3804 ((-816 (-900)))) (-15 -4010 ((-754))) (IF (|has| |t#1| (-362)) (PROGN (-6 (-396)) (-15 -3406 ($ $)) (-15 -3406 ($ $ (-754)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T) ((-1242 |#1|) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 86)) (-1963 (($ $ (-754)) 89)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-754)) NIL (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ |#1|) NIL) (($ $ (-802 |#1|)) NIL) (($ $ $) NIL)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL) (((-3 (-872 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL) (((-872 |#1|) $) NIL)) (-2014 (($ $) 88)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) 77)) (-3164 (($ $) 81)) (-2735 (($ $ $ (-754)) 90)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) NIL) (($ (-872 |#1|) |#2|) 26)) (-3627 (($ $) 103)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3647 (((-802 |#1|) $) NIL)) (-3190 (((-802 |#1|) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (($ $ |#1|) NIL) (($ $ (-802 |#1|)) NIL) (($ $ $) NIL)) (-4135 (($ $ (-754)) 97 (|has| |#2| (-700 (-401 (-552)))))) (-3888 (((-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-872 |#1|) $) 70)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3154 (($ $ (-754)) 94 (|has| |#2| (-700 (-401 (-552)))))) (-3567 (((-754) $) 87)) (-2020 (((-111) $) 71)) (-3488 ((|#2| $) 75)) (-1477 (((-842) $) 57) (($ (-552)) NIL) (($ |#2|) 51) (($ (-802 |#1|)) NIL) (($ |#1|) 59) (($ (-872 |#1|)) NIL) (($ (-646 |#1| |#2|)) 43) (((-1250 |#1| |#2|) $) 64) (((-1259 |#1| |#2|) $) 69)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-872 |#1|)) NIL)) (-3069 ((|#2| $ (-802 |#1|)) NIL) ((|#2| $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 21 T CONST)) (-1933 (($) 25 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2223 (((-3 (-646 |#1| |#2|) "failed") $) 102)) (-2292 (((-111) $ $) 65)) (-2396 (($ $) 96) (($ $ $) 95)) (-2384 (($ $ $) 20)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-872 |#1|)) NIL))) -(((-1255 |#1| |#2|) (-13 (-1256 |#1| |#2|) (-376 |#2| (-872 |#1|)) (-10 -8 (-15 -1477 ($ (-646 |#1| |#2|))) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1259 |#1| |#2|) $)) (-15 -2223 ((-3 (-646 |#1| |#2|) "failed") $)) (-15 -2735 ($ $ $ (-754))) (IF (|has| |#2| (-700 (-401 (-552)))) (PROGN (-15 -3154 ($ $ (-754))) (-15 -4135 ($ $ (-754)))) |%noBranch|))) (-830) (-169)) (T -1255)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *1 (-1255 *3 *4)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-2223 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-2735 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) -(-13 (-1256 |#1| |#2|) (-376 |#2| (-872 |#1|)) (-10 -8 (-15 -1477 ($ (-646 |#1| |#2|))) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1259 |#1| |#2|) $)) (-15 -2223 ((-3 (-646 |#1| |#2|) "failed") $)) (-15 -2735 ($ $ $ (-754))) (IF (|has| |#2| (-700 (-401 (-552)))) (PROGN (-15 -3154 ($ $ (-754))) (-15 -4135 ($ $ (-754)))) |%noBranch|))) -((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 38)) (-1963 (($ $ (-754)) 71)) (-4136 (((-3 $ "failed") $ $) 19)) (-3222 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-754)) 40 (|has| |#2| (-169)))) (-3887 (($) 17 T CONST)) (-1899 (($ $ |#1|) 52) (($ $ (-802 |#1|)) 51) (($ $ $) 50)) (-4039 (((-3 (-802 |#1|) "failed") $) 62)) (-1703 (((-802 |#1|) $) 61)) (-2040 (((-3 $ "failed") $) 32)) (-2846 (((-111) $) 43)) (-3164 (($ $) 42)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 48)) (-3755 (($ (-802 |#1|) |#2|) 49)) (-3627 (($ $) 47)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 58)) (-3647 (((-802 |#1|) $) 59)) (-3190 (((-802 |#1|) $) 73)) (-3516 (($ (-1 |#2| |#2|) $) 39)) (-1543 (($ $ |#1|) 55) (($ $ (-802 |#1|)) 54) (($ $ $) 53)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 (((-754) $) 72)) (-2020 (((-111) $) 45)) (-3488 ((|#2| $) 44)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-802 |#1|)) 63) (($ |#1|) 46)) (-3069 ((|#2| $ (-802 |#1|)) 57) ((|#2| $ $) 56)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1256 |#1| |#2|) (-137) (-830) (-1028)) (T -1256)) -((-3190 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-802 *3)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-754)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) -(-13 (-1252 |t#1| |t#2|) (-10 -8 (-15 -3190 ((-802 |t#1|) $)) (-15 -3567 ((-754) $)) (-15 -1963 ($ $ (-754))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-630 $) . T) ((-700 |#2|) |has| |#2| (-169)) ((-709) . T) ((-1017 (-802 |#1|)) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1249 |#2|) . T) ((-1252 |#1| |#2|) . T)) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 (-1152)) $) NIL)) (-2420 (($ (-1250 (-1152) |#1|)) NIL)) (-1963 (($ $ (-754)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-754)) NIL (|has| |#1| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ (-1152)) NIL) (($ $ (-802 (-1152))) NIL) (($ $ $) NIL)) (-4039 (((-3 (-802 (-1152)) "failed") $) NIL)) (-1703 (((-802 (-1152)) $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) NIL)) (-3164 (($ $) NIL)) (-2624 (((-111) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 (-1152)) |#1|) NIL)) (-3627 (($ $) NIL)) (-4052 (((-2 (|:| |k| (-802 (-1152))) (|:| |c| |#1|)) $) NIL)) (-3647 (((-802 (-1152)) $) NIL)) (-3190 (((-802 (-1152)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1543 (($ $ (-1152)) NIL) (($ $ (-802 (-1152))) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2496 (((-1250 (-1152) |#1|) $) NIL)) (-3567 (((-754) $) NIL)) (-2020 (((-111) $) NIL)) (-3488 ((|#1| $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-802 (-1152))) NIL) (($ (-1152)) NIL)) (-3069 ((|#1| $ (-802 (-1152))) NIL) ((|#1| $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) NIL T CONST)) (-2873 (((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $) NIL)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1152) $) NIL))) -(((-1257 |#1|) (-13 (-1256 (-1152) |#1|) (-10 -8 (-15 -2496 ((-1250 (-1152) |#1|) $)) (-15 -2420 ($ (-1250 (-1152) |#1|))) (-15 -2873 ((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $)))) (-1028)) (T -1257)) -((-2496 (*1 *2 *1) (-12 (-5 *2 (-1250 (-1152) *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-1250 (-1152) *3)) (-4 *3 (-1028)) (-5 *1 (-1257 *3)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-1152)) (|:| |c| (-1257 *3))))) (-5 *1 (-1257 *3)) (-4 *3 (-1028))))) -(-13 (-1256 (-1152) |#1|) (-10 -8 (-15 -2496 ((-1250 (-1152) |#1|) $)) (-15 -2420 ($ (-1250 (-1152) |#1|))) (-15 -2873 ((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $)))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL)) (-1703 ((|#2| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 36)) (-2846 (((-111) $) 30)) (-3164 (($ $) 32)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ |#2| |#1|) NIL)) (-3647 ((|#2| $) 19)) (-3190 ((|#2| $) 16)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1981 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2020 (((-111) $) 27)) (-3488 ((|#1| $) 28)) (-1477 (((-842) $) 55) (($ (-552)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ |#2|) NIL)) (-3069 ((|#1| $ |#2|) 24)) (-3995 (((-754)) 14)) (-1922 (($) 25 T CONST)) (-1933 (($) 11 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2292 (((-111) $ $) 26)) (-2407 (($ $ |#1|) 57 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 44)) (** (($ $ (-900)) NIL) (($ $ (-754)) 46)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1383 (((-754) $) 15))) -(((-1258 |#1| |#2|) (-13 (-1028) (-1249 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1383 ((-754) $)) (-15 -1477 ($ |#2|)) (-15 -3190 (|#2| $)) (-15 -3647 (|#2| $)) (-15 -2014 ($ $)) (-15 -3069 (|#1| $ |#2|)) (-15 -2020 ((-111) $)) (-15 -3488 (|#1| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -2407 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4359)) (-6 -4359) |%noBranch|) (IF (|has| |#1| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028) (-826)) (T -1258)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-1258 *3 *4)) (-4 *4 (-826)))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-826)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3190 (*1 *2 *1) (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)))) (-3647 (*1 *2 *1) (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3488 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-826))))) -(-13 (-1028) (-1249 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1383 ((-754) $)) (-15 -1477 ($ |#2|)) (-15 -3190 (|#2| $)) (-15 -3647 (|#2| $)) (-15 -2014 ($ $)) (-15 -3069 (|#1| $ |#2|)) (-15 -2020 ((-111) $)) (-15 -3488 (|#1| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -2407 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4359)) (-6 -4359) |%noBranch|) (IF (|has| |#1| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) -((-1465 (((-111) $ $) 26)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 120)) (-2420 (($ (-1250 |#1| |#2|)) 44)) (-1963 (($ $ (-754)) 32)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-754)) 46 (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ |#1|) 102) (($ $ (-802 |#1|)) 103) (($ $ $) 25)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL)) (-2040 (((-3 $ "failed") $) 110)) (-2846 (((-111) $) 105)) (-3164 (($ $) 106)) (-2624 (((-111) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) 19)) (-3627 (($ $) NIL)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3647 (((-802 |#1|) $) 111)) (-3190 (((-802 |#1|) $) 114)) (-3516 (($ (-1 |#2| |#2|) $) 119)) (-1543 (($ $ |#1|) 100) (($ $ (-802 |#1|)) 101) (($ $ $) 56)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2496 (((-1250 |#1| |#2|) $) 84)) (-3567 (((-754) $) 117)) (-2020 (((-111) $) 70)) (-3488 ((|#2| $) 28)) (-1477 (((-842) $) 63) (($ (-552)) 77) (($ |#2|) 74) (($ (-802 |#1|)) 17) (($ |#1|) 73)) (-3069 ((|#2| $ (-802 |#1|)) 104) ((|#2| $ $) 27)) (-3995 (((-754)) 108)) (-1922 (($) 14 T CONST)) (-2873 (((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 13)) (-2396 (($ $) 88) (($ $ $) 91)) (-2384 (($ $ $) 55)) (** (($ $ (-900)) NIL) (($ $ (-754)) 49)) (* (($ (-900) $) NIL) (($ (-754) $) 47) (($ (-552) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1259 |#1| |#2|) (-13 (-1256 |#1| |#2|) (-10 -8 (-15 -2496 ((-1250 |#1| |#2|) $)) (-15 -2420 ($ (-1250 |#1| |#2|))) (-15 -2873 ((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-830) (-1028)) (T -1259)) -((-2496 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *1 (-1259 *3 *4)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| *3) (|:| |c| (-1259 *3 *4))))) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) -(-13 (-1256 |#1| |#2|) (-10 -8 (-15 -2496 ((-1250 |#1| |#2|) $)) (-15 -2420 ($ (-1250 |#1| |#2|))) (-15 -2873 ((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3156 (((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)) 15) (((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|))) 11))) -(((-1260 |#1|) (-10 -7 (-15 -3156 ((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|)))) (-15 -3156 ((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)))) (-1189)) (T -1260)) -((-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-627 (-1132 *5)) (-627 (-1132 *5)))) (-5 *4 (-552)) (-5 *2 (-627 (-1132 *5))) (-5 *1 (-1260 *5)) (-4 *5 (-1189)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-1 (-1132 *4) (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1260 *4)) (-4 *4 (-1189))))) -(-10 -7 (-15 -3156 ((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|)))) (-15 -3156 ((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)))) -((-3552 (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|))) 148) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111)) 147) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)) 146) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111)) 145) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|)) 130)) (-1903 (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|))) 72) (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111)) 71) (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111)) 70)) (-2487 (((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|)) 61)) (-4078 (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|))) 115) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111)) 114) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111)) 113) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111)) 112) (((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|)) 107)) (-3975 (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|))) 120) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111)) 119) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111)) 118) (((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|)) 117)) (-3562 (((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) 98) (((-1148 (-1003 (-401 |#1|))) (-1148 |#1|)) 89) (((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|))) 96) (((-931 (-1003 (-401 |#1|))) (-931 |#1|)) 94) (((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|))) 33))) -(((-1261 |#1| |#2| |#3|) (-10 -7 (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -2487 ((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|))) (-15 -3562 ((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|)))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-931 |#1|))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|)))) (-15 -3562 ((-1148 (-1003 (-401 |#1|))) (-1148 |#1|))) (-15 -3562 ((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))))) (-13 (-828) (-301) (-144) (-1001)) (-627 (-1152)) (-627 (-1152))) (T -1261)) -((-3562 (*1 *2 *3) (-12 (-5 *3 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6)))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-763 *4 (-844 *6)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-1148 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-763 *4 (-844 *6))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-763 *4 (-844 *5))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-763 *4 (-844 *6))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1261 *4 *5 *6)) (-5 *3 (-627 (-931 *4))) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *4 *5))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152)))))) -(-10 -7 (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -2487 ((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|))) (-15 -3562 ((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|)))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-931 |#1|))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|)))) (-15 -3562 ((-1148 (-1003 (-401 |#1|))) (-1148 |#1|))) (-15 -3562 ((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))))) -((-4333 (((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|) 21)) (-4192 (((-111) (-1235 |#1|)) 12)) (-2919 (((-3 (-1235 (-552)) "failed") (-1235 |#1|)) 16))) -(((-1262 |#1|) (-10 -7 (-15 -4192 ((-111) (-1235 |#1|))) (-15 -2919 ((-3 (-1235 (-552)) "failed") (-1235 |#1|))) (-15 -4333 ((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|))) (-623 (-552))) (T -1262)) -((-4333 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-1235 (-401 (-552)))) (-5 *1 (-1262 *4)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-1235 (-552))) (-5 *1 (-1262 *4)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-111)) (-5 *1 (-1262 *4))))) -(-10 -7 (-15 -4192 ((-111) (-1235 |#1|))) (-15 -2919 ((-3 (-1235 (-552)) "failed") (-1235 |#1|))) (-15 -4333 ((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|))) -((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 11)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) 8)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 43)) (-1279 (($) 36)) (-2624 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) 29)) (-2886 (((-900) $) 15)) (-1595 (((-1134) $) NIL)) (-3002 (($) 25 T CONST)) (-4153 (($ (-900)) 37)) (-1498 (((-1096) $) NIL)) (-3562 (((-552) $) 13)) (-1477 (((-842) $) 22) (($ (-552)) 19)) (-3995 (((-754)) 9)) (-1922 (($) 23 T CONST)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 27)) (-2396 (($ $) 38) (($ $ $) 35)) (-2384 (($ $ $) 26)) (** (($ $ (-900)) NIL) (($ $ (-754)) 40)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 32) (($ $ $) 31))) -(((-1263 |#1|) (-13 (-169) (-362) (-600 (-552)) (-1127)) (-900)) (T -1263)) -NIL -(-13 (-169) (-362) (-600 (-552)) (-1127)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3180888 3180893 3180898 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3180873 3180878 3180883 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3180858 3180863 3180868 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3180843 3180848 3180853 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1263 3180019 3180718 3180795 "ZMOD" 3180800 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1262 3179129 3179293 3179502 "ZLINDEP" 3179851 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1261 3168433 3170197 3172169 "ZDSOLVE" 3177259 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1260 3167679 3167820 3168009 "YSTREAM" 3168279 NIL YSTREAM (NIL T) -7 NIL NIL) (-1259 3165490 3166980 3167184 "XRPOLY" 3167522 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1258 3161982 3163265 3163849 "XPR" 3164953 NIL XPR (NIL T T) -8 NIL NIL) (-1257 3159738 3161313 3161517 "XPOLY" 3161813 NIL XPOLY (NIL T) -8 NIL NIL) (-1256 3157587 3158921 3158976 "XPOLYC" 3159264 NIL XPOLYC (NIL T T) -9 NIL 3159377) (-1255 3154005 3156104 3156492 "XPBWPOLY" 3157245 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1254 3149990 3152238 3152280 "XF" 3152901 NIL XF (NIL T) -9 NIL 3153301) (-1253 3149611 3149699 3149868 "XF-" 3149873 NIL XF- (NIL T T) -8 NIL NIL) (-1252 3145003 3146258 3146313 "XFALG" 3148485 NIL XFALG (NIL T T) -9 NIL 3149274) (-1251 3144136 3144240 3144445 "XEXPPKG" 3144895 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1250 3142280 3143986 3144082 "XDPOLY" 3144087 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1249 3141196 3141762 3141805 "XALG" 3141868 NIL XALG (NIL T) -9 NIL 3141988) (-1248 3134665 3139173 3139667 "WUTSET" 3140788 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1247 3132516 3133277 3133630 "WP" 3134446 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1246 3132145 3132338 3132408 "WHILEAST" 3132468 T WHILEAST (NIL) -8 NIL NIL) (-1245 3131644 3131862 3131956 "WHEREAST" 3132073 T WHEREAST (NIL) -8 NIL NIL) (-1244 3130530 3130728 3131023 "WFFINTBS" 3131441 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1243 3128434 3128861 3129323 "WEIER" 3130102 NIL WEIER (NIL T) -7 NIL NIL) (-1242 3127581 3128005 3128047 "VSPACE" 3128183 NIL VSPACE (NIL T) -9 NIL 3128257) (-1241 3127419 3127446 3127537 "VSPACE-" 3127542 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1240 3127165 3127208 3127279 "VOID" 3127370 T VOID (NIL) -8 NIL NIL) (-1239 3125301 3125660 3126066 "VIEW" 3126781 T VIEW (NIL) -7 NIL NIL) (-1238 3121726 3122364 3123101 "VIEWDEF" 3124586 T VIEWDEF (NIL) -7 NIL NIL) (-1237 3111064 3113274 3115447 "VIEW3D" 3119575 T VIEW3D (NIL) -8 NIL NIL) (-1236 3103346 3104975 3106554 "VIEW2D" 3109507 T VIEW2D (NIL) -8 NIL NIL) (-1235 3098750 3103116 3103208 "VECTOR" 3103289 NIL VECTOR (NIL T) -8 NIL NIL) (-1234 3097327 3097586 3097904 "VECTOR2" 3098480 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1233 3090854 3095111 3095154 "VECTCAT" 3096147 NIL VECTCAT (NIL T) -9 NIL 3096733) (-1232 3089868 3090122 3090512 "VECTCAT-" 3090517 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1231 3089349 3089519 3089639 "VARIABLE" 3089783 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1230 3089282 3089287 3089317 "UTYPE" 3089322 T UTYPE (NIL) -9 NIL NIL) (-1229 3088112 3088266 3088528 "UTSODETL" 3089108 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1228 3085552 3086012 3086536 "UTSODE" 3087653 NIL UTSODE (NIL T T) -7 NIL NIL) (-1227 3077428 3083178 3083667 "UTS" 3085121 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1226 3068801 3074120 3074163 "UTSCAT" 3075275 NIL UTSCAT (NIL T) -9 NIL 3076032) (-1225 3066155 3066871 3067860 "UTSCAT-" 3067865 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1224 3065782 3065825 3065958 "UTS2" 3066106 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1223 3060057 3062622 3062665 "URAGG" 3064735 NIL URAGG (NIL T) -9 NIL 3065457) (-1222 3056996 3057859 3058982 "URAGG-" 3058987 NIL URAGG- (NIL T T) -8 NIL NIL) (-1221 3052720 3055610 3056082 "UPXSSING" 3056660 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1220 3044690 3051835 3052117 "UPXS" 3052496 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1219 3037803 3044594 3044666 "UPXSCONS" 3044671 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1218 3028161 3034906 3034968 "UPXSCCA" 3035624 NIL UPXSCCA (NIL T T) -9 NIL 3035866) (-1217 3027799 3027884 3028058 "UPXSCCA-" 3028063 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1216 3018083 3024601 3024644 "UPXSCAT" 3025292 NIL UPXSCAT (NIL T) -9 NIL 3025900) (-1215 3017513 3017592 3017771 "UPXS2" 3017998 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1214 3016167 3016420 3016771 "UPSQFREE" 3017256 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1213 3010085 3013094 3013149 "UPSCAT" 3014310 NIL UPSCAT (NIL T T) -9 NIL 3015084) (-1212 3009289 3009496 3009823 "UPSCAT-" 3009828 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1211 2995380 3003376 3003419 "UPOLYC" 3005520 NIL UPOLYC (NIL T) -9 NIL 3006741) (-1210 2986709 2989134 2992281 "UPOLYC-" 2992286 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1209 2986336 2986379 2986512 "UPOLYC2" 2986660 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1208 2977793 2985902 2986040 "UP" 2986246 NIL UP (NIL NIL T) -8 NIL NIL) (-1207 2977132 2977239 2977403 "UPMP" 2977682 NIL UPMP (NIL T T) -7 NIL NIL) (-1206 2976685 2976766 2976905 "UPDIVP" 2977045 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1205 2975253 2975502 2975818 "UPDECOMP" 2976434 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1204 2974488 2974600 2974785 "UPCDEN" 2975137 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1203 2974007 2974076 2974225 "UP2" 2974413 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1202 2972524 2973211 2973488 "UNISEG" 2973765 NIL UNISEG (NIL T) -8 NIL NIL) (-1201 2971739 2971866 2972071 "UNISEG2" 2972367 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1200 2970799 2970979 2971205 "UNIFACT" 2971555 NIL UNIFACT (NIL T) -7 NIL NIL) (-1199 2954766 2969976 2970227 "ULS" 2970606 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1198 2942806 2954670 2954742 "ULSCONS" 2954747 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1197 2925604 2937541 2937603 "ULSCCAT" 2938323 NIL ULSCCAT (NIL T T) -9 NIL 2938620) (-1196 2924654 2924899 2925287 "ULSCCAT-" 2925292 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1195 2914715 2921147 2921190 "ULSCAT" 2922053 NIL ULSCAT (NIL T) -9 NIL 2922783) (-1194 2914145 2914224 2914403 "ULS2" 2914630 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1193 2912583 2913506 2913536 "UFD" 2913748 T UFD (NIL) -9 NIL 2913862) (-1192 2912377 2912423 2912518 "UFD-" 2912523 NIL UFD- (NIL T) -8 NIL NIL) (-1191 2911459 2911642 2911858 "UDVO" 2912183 T UDVO (NIL) -7 NIL NIL) (-1190 2909275 2909684 2910155 "UDPO" 2911023 NIL UDPO (NIL T) -7 NIL NIL) (-1189 2909208 2909213 2909243 "TYPE" 2909248 T TYPE (NIL) -9 NIL NIL) (-1188 2908995 2909163 2909194 "TYPEAST" 2909199 T TYPEAST (NIL) -8 NIL NIL) (-1187 2907966 2908168 2908408 "TWOFACT" 2908789 NIL TWOFACT (NIL T) -7 NIL NIL) (-1186 2906904 2907241 2907504 "TUPLE" 2907738 NIL TUPLE (NIL T) -8 NIL NIL) (-1185 2904595 2905114 2905653 "TUBETOOL" 2906387 T TUBETOOL (NIL) -7 NIL NIL) (-1184 2903444 2903649 2903890 "TUBE" 2904388 NIL TUBE (NIL T) -8 NIL NIL) (-1183 2898208 2902416 2902699 "TS" 2903196 NIL TS (NIL T) -8 NIL NIL) (-1182 2886875 2890967 2891064 "TSETCAT" 2896333 NIL TSETCAT (NIL T T T T) -9 NIL 2897864) (-1181 2881609 2883207 2885098 "TSETCAT-" 2885103 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1180 2875872 2876718 2877660 "TRMANIP" 2880745 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1179 2875313 2875376 2875539 "TRIMAT" 2875804 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1178 2873109 2873346 2873710 "TRIGMNIP" 2875062 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1177 2872629 2872742 2872772 "TRIGCAT" 2872985 T TRIGCAT (NIL) -9 NIL NIL) (-1176 2872298 2872377 2872518 "TRIGCAT-" 2872523 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1175 2869197 2871158 2871438 "TREE" 2872053 NIL TREE (NIL T) -8 NIL NIL) (-1174 2868471 2868999 2869029 "TRANFUN" 2869064 T TRANFUN (NIL) -9 NIL 2869130) (-1173 2867750 2867941 2868221 "TRANFUN-" 2868226 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1172 2867554 2867586 2867647 "TOPSP" 2867711 T TOPSP (NIL) -7 NIL NIL) (-1171 2866902 2867017 2867171 "TOOLSIGN" 2867435 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1170 2865563 2866079 2866318 "TEXTFILE" 2866685 T TEXTFILE (NIL) -8 NIL NIL) (-1169 2863428 2863942 2864380 "TEX" 2865147 T TEX (NIL) -8 NIL NIL) (-1168 2863209 2863240 2863312 "TEX1" 2863391 NIL TEX1 (NIL T) -7 NIL NIL) (-1167 2862857 2862920 2863010 "TEMUTL" 2863141 T TEMUTL (NIL) -7 NIL NIL) (-1166 2861011 2861291 2861616 "TBCMPPK" 2862580 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1165 2852899 2859171 2859227 "TBAGG" 2859627 NIL TBAGG (NIL T T) -9 NIL 2859838) (-1164 2847969 2849457 2851211 "TBAGG-" 2851216 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1163 2847353 2847460 2847605 "TANEXP" 2847858 NIL TANEXP (NIL T) -7 NIL NIL) (-1162 2840854 2847210 2847303 "TABLE" 2847308 NIL TABLE (NIL T T) -8 NIL NIL) (-1161 2840266 2840365 2840503 "TABLEAU" 2840751 NIL TABLEAU (NIL T) -8 NIL NIL) (-1160 2834874 2836094 2837342 "TABLBUMP" 2839052 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1159 2834302 2834402 2834530 "SYSTEM" 2834768 T SYSTEM (NIL) -7 NIL NIL) (-1158 2830765 2831460 2832243 "SYSSOLP" 2833553 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1157 2827143 2828054 2828756 "SYNTAX" 2830085 T SYNTAX (NIL) -8 NIL NIL) (-1156 2824301 2824903 2825535 "SYMTAB" 2826533 T SYMTAB (NIL) -8 NIL NIL) (-1155 2819550 2820452 2821435 "SYMS" 2823340 T SYMS (NIL) -8 NIL NIL) (-1154 2816822 2819008 2819238 "SYMPOLY" 2819355 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1153 2816339 2816414 2816537 "SYMFUNC" 2816734 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1152 2812316 2813576 2814398 "SYMBOL" 2815539 T SYMBOL (NIL) -8 NIL NIL) (-1151 2805855 2807544 2809264 "SWITCH" 2810618 T SWITCH (NIL) -8 NIL NIL) (-1150 2799125 2804676 2804979 "SUTS" 2805610 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1149 2791094 2798240 2798522 "SUPXS" 2798901 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1148 2782623 2790712 2790838 "SUP" 2791003 NIL SUP (NIL T) -8 NIL NIL) (-1147 2781782 2781909 2782126 "SUPFRACF" 2782491 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1146 2781403 2781462 2781575 "SUP2" 2781717 NIL SUP2 (NIL T T) -7 NIL NIL) (-1145 2779816 2780090 2780453 "SUMRF" 2781102 NIL SUMRF (NIL T) -7 NIL NIL) (-1144 2779130 2779196 2779395 "SUMFS" 2779737 NIL SUMFS (NIL T T) -7 NIL NIL) (-1143 2763137 2778307 2778558 "SULS" 2778937 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1142 2762766 2762959 2763029 "SUCHTAST" 2763089 T SUCHTAST (NIL) -8 NIL NIL) (-1141 2762088 2762291 2762431 "SUCH" 2762674 NIL SUCH (NIL T T) -8 NIL NIL) (-1140 2755982 2756994 2757953 "SUBSPACE" 2761176 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1139 2755412 2755502 2755666 "SUBRESP" 2755870 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1138 2748781 2750077 2751388 "STTF" 2754148 NIL STTF (NIL T) -7 NIL NIL) (-1137 2742954 2744074 2745221 "STTFNC" 2747681 NIL STTFNC (NIL T) -7 NIL NIL) (-1136 2734269 2736136 2737930 "STTAYLOR" 2741195 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1135 2727513 2734133 2734216 "STRTBL" 2734221 NIL STRTBL (NIL T) -8 NIL NIL) (-1134 2722904 2727468 2727499 "STRING" 2727504 T STRING (NIL) -8 NIL NIL) (-1133 2717792 2722277 2722307 "STRICAT" 2722366 T STRICAT (NIL) -9 NIL 2722428) (-1132 2710505 2715315 2715935 "STREAM" 2717207 NIL STREAM (NIL T) -8 NIL NIL) (-1131 2710015 2710092 2710236 "STREAM3" 2710422 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1130 2708997 2709180 2709415 "STREAM2" 2709828 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1129 2708685 2708737 2708830 "STREAM1" 2708939 NIL STREAM1 (NIL T) -7 NIL NIL) (-1128 2707701 2707882 2708113 "STINPROD" 2708501 NIL STINPROD (NIL T) -7 NIL NIL) (-1127 2707279 2707463 2707493 "STEP" 2707573 T STEP (NIL) -9 NIL 2707651) (-1126 2700822 2707178 2707255 "STBL" 2707260 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1125 2695997 2700044 2700087 "STAGG" 2700240 NIL STAGG (NIL T) -9 NIL 2700329) (-1124 2693699 2694301 2695173 "STAGG-" 2695178 NIL STAGG- (NIL T T) -8 NIL NIL) (-1123 2691894 2693469 2693561 "STACK" 2693642 NIL STACK (NIL T) -8 NIL NIL) (-1122 2684619 2690035 2690491 "SREGSET" 2691524 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1121 2677045 2678413 2679926 "SRDCMPK" 2683225 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1120 2670012 2674485 2674515 "SRAGG" 2675818 T SRAGG (NIL) -9 NIL 2676426) (-1119 2669029 2669284 2669663 "SRAGG-" 2669668 NIL SRAGG- (NIL T) -8 NIL NIL) (-1118 2663524 2667976 2668397 "SQMATRIX" 2668655 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1117 2657276 2660244 2660970 "SPLTREE" 2662870 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1116 2653266 2653932 2654578 "SPLNODE" 2656702 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1115 2652313 2652546 2652576 "SPFCAT" 2653020 T SPFCAT (NIL) -9 NIL NIL) (-1114 2651050 2651260 2651524 "SPECOUT" 2652071 T SPECOUT (NIL) -7 NIL NIL) (-1113 2642739 2644483 2644513 "SPADXPT" 2648905 T SPADXPT (NIL) -9 NIL 2650939) (-1112 2642500 2642540 2642609 "SPADPRSR" 2642692 T SPADPRSR (NIL) -7 NIL NIL) (-1111 2640683 2642455 2642486 "SPADAST" 2642491 T SPADAST (NIL) -8 NIL NIL) (-1110 2632654 2634401 2634444 "SPACEC" 2638817 NIL SPACEC (NIL T) -9 NIL 2640633) (-1109 2630825 2632586 2632635 "SPACE3" 2632640 NIL SPACE3 (NIL T) -8 NIL NIL) (-1108 2629577 2629748 2630039 "SORTPAK" 2630630 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1107 2627627 2627930 2628349 "SOLVETRA" 2629241 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1106 2626638 2626860 2627134 "SOLVESER" 2627400 NIL SOLVESER (NIL T) -7 NIL NIL) (-1105 2621858 2622739 2623741 "SOLVERAD" 2625690 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1104 2617673 2618282 2619011 "SOLVEFOR" 2621225 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1103 2611970 2617022 2617119 "SNTSCAT" 2617124 NIL SNTSCAT (NIL T T T T) -9 NIL 2617194) (-1102 2606113 2610293 2610684 "SMTS" 2611660 NIL SMTS (NIL T T T) -8 NIL NIL) (-1101 2600563 2606001 2606078 "SMP" 2606083 NIL SMP (NIL T T) -8 NIL NIL) (-1100 2598722 2599023 2599421 "SMITH" 2600260 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1099 2591705 2595860 2595963 "SMATCAT" 2597314 NIL SMATCAT (NIL NIL T T T) -9 NIL 2597864) (-1098 2588645 2589468 2590646 "SMATCAT-" 2590651 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1097 2586358 2587881 2587924 "SKAGG" 2588185 NIL SKAGG (NIL T) -9 NIL 2588320) (-1096 2582474 2585462 2585740 "SINT" 2586102 T SINT (NIL) -8 NIL NIL) (-1095 2582246 2582284 2582350 "SIMPAN" 2582430 T SIMPAN (NIL) -7 NIL NIL) (-1094 2581553 2581781 2581921 "SIG" 2582128 T SIG (NIL) -8 NIL NIL) (-1093 2580391 2580612 2580887 "SIGNRF" 2581312 NIL SIGNRF (NIL T) -7 NIL NIL) (-1092 2579196 2579347 2579638 "SIGNEF" 2580220 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1091 2578529 2578779 2578903 "SIGAST" 2579094 T SIGAST (NIL) -8 NIL NIL) (-1090 2576219 2576673 2577179 "SHP" 2578070 NIL SHP (NIL T NIL) -7 NIL NIL) (-1089 2570125 2576120 2576196 "SHDP" 2576201 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1088 2569724 2569890 2569920 "SGROUP" 2570013 T SGROUP (NIL) -9 NIL 2570075) (-1087 2569582 2569608 2569681 "SGROUP-" 2569686 NIL SGROUP- (NIL T) -8 NIL NIL) (-1086 2566418 2567115 2567838 "SGCF" 2568881 T SGCF (NIL) -7 NIL NIL) (-1085 2560813 2565865 2565962 "SFRTCAT" 2565967 NIL SFRTCAT (NIL T T T T) -9 NIL 2566006) (-1084 2554237 2555252 2556388 "SFRGCD" 2559796 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1083 2547365 2548436 2549622 "SFQCMPK" 2553170 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1082 2546987 2547076 2547186 "SFORT" 2547306 NIL SFORT (NIL T T) -8 NIL NIL) (-1081 2546132 2546827 2546948 "SEXOF" 2546953 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1080 2545266 2546013 2546081 "SEX" 2546086 T SEX (NIL) -8 NIL NIL) (-1079 2540042 2540731 2540826 "SEXCAT" 2544597 NIL SEXCAT (NIL T T T T T) -9 NIL 2545216) (-1078 2537222 2539976 2540024 "SET" 2540029 NIL SET (NIL T) -8 NIL NIL) (-1077 2535473 2535935 2536240 "SETMN" 2536963 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1076 2535079 2535205 2535235 "SETCAT" 2535352 T SETCAT (NIL) -9 NIL 2535437) (-1075 2534859 2534911 2535010 "SETCAT-" 2535015 NIL SETCAT- (NIL T) -8 NIL NIL) (-1074 2531246 2533320 2533363 "SETAGG" 2534233 NIL SETAGG (NIL T) -9 NIL 2534573) (-1073 2530704 2530820 2531057 "SETAGG-" 2531062 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1072 2530174 2530400 2530501 "SEQAST" 2530625 T SEQAST (NIL) -8 NIL NIL) (-1071 2529378 2529671 2529732 "SEGXCAT" 2530018 NIL SEGXCAT (NIL T T) -9 NIL 2530138) (-1070 2528434 2529044 2529226 "SEG" 2529231 NIL SEG (NIL T) -8 NIL NIL) (-1069 2527341 2527554 2527597 "SEGCAT" 2528179 NIL SEGCAT (NIL T) -9 NIL 2528417) (-1068 2526390 2526720 2526920 "SEGBIND" 2527176 NIL SEGBIND (NIL T) -8 NIL NIL) (-1067 2526011 2526070 2526183 "SEGBIND2" 2526325 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1066 2525612 2525812 2525889 "SEGAST" 2525956 T SEGAST (NIL) -8 NIL NIL) (-1065 2524831 2524957 2525161 "SEG2" 2525456 NIL SEG2 (NIL T T) -7 NIL NIL) (-1064 2524268 2524766 2524813 "SDVAR" 2524818 NIL SDVAR (NIL T) -8 NIL NIL) (-1063 2516558 2524038 2524168 "SDPOL" 2524173 NIL SDPOL (NIL T) -8 NIL NIL) (-1062 2515151 2515417 2515736 "SCPKG" 2516273 NIL SCPKG (NIL T) -7 NIL NIL) (-1061 2514287 2514467 2514667 "SCOPE" 2514973 T SCOPE (NIL) -8 NIL NIL) (-1060 2513508 2513641 2513820 "SCACHE" 2514142 NIL SCACHE (NIL T) -7 NIL NIL) (-1059 2513217 2513377 2513407 "SASTCAT" 2513412 T SASTCAT (NIL) -9 NIL 2513425) (-1058 2512656 2512977 2513062 "SAOS" 2513154 T SAOS (NIL) -8 NIL NIL) (-1057 2512221 2512256 2512429 "SAERFFC" 2512615 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1056 2506195 2512118 2512198 "SAE" 2512203 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1055 2505788 2505823 2505982 "SAEFACT" 2506154 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1054 2504109 2504423 2504824 "RURPK" 2505454 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1053 2502745 2503024 2503336 "RULESET" 2503943 NIL RULESET (NIL T T T) -8 NIL NIL) (-1052 2499932 2500435 2500900 "RULE" 2502426 NIL RULE (NIL T T T) -8 NIL NIL) (-1051 2499571 2499726 2499809 "RULECOLD" 2499884 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1050 2499069 2499288 2499382 "RSTRCAST" 2499499 T RSTRCAST (NIL) -8 NIL NIL) (-1049 2493918 2494712 2495632 "RSETGCD" 2498268 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1048 2483175 2488227 2488324 "RSETCAT" 2492443 NIL RSETCAT (NIL T T T T) -9 NIL 2493540) (-1047 2481102 2481641 2482465 "RSETCAT-" 2482470 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1046 2473489 2474864 2476384 "RSDCMPK" 2479701 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1045 2471494 2471935 2472009 "RRCC" 2473095 NIL RRCC (NIL T T) -9 NIL 2473439) (-1044 2470845 2471019 2471298 "RRCC-" 2471303 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1043 2470315 2470541 2470642 "RPTAST" 2470766 T RPTAST (NIL) -8 NIL NIL) (-1042 2444543 2454128 2454195 "RPOLCAT" 2464859 NIL RPOLCAT (NIL T T T) -9 NIL 2468018) (-1041 2436043 2438381 2441503 "RPOLCAT-" 2441508 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1040 2427090 2434254 2434736 "ROUTINE" 2435583 T ROUTINE (NIL) -8 NIL NIL) (-1039 2423848 2426641 2426790 "ROMAN" 2426963 T ROMAN (NIL) -8 NIL NIL) (-1038 2422123 2422708 2422968 "ROIRC" 2423653 NIL ROIRC (NIL T T) -8 NIL NIL) (-1037 2418572 2420811 2420841 "RNS" 2421145 T RNS (NIL) -9 NIL 2421418) (-1036 2417081 2417464 2417998 "RNS-" 2418073 NIL RNS- (NIL T) -8 NIL NIL) (-1035 2416530 2416912 2416942 "RNG" 2416947 T RNG (NIL) -9 NIL 2416968) (-1034 2415922 2416284 2416327 "RMODULE" 2416389 NIL RMODULE (NIL T) -9 NIL 2416431) (-1033 2414758 2414852 2415188 "RMCAT2" 2415823 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1032 2411463 2413932 2414257 "RMATRIX" 2414492 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1031 2404405 2406639 2406754 "RMATCAT" 2410113 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411095) (-1030 2403780 2403927 2404234 "RMATCAT-" 2404239 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1029 2403347 2403422 2403550 "RINTERP" 2403699 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1028 2402435 2402955 2402985 "RING" 2403097 T RING (NIL) -9 NIL 2403192) (-1027 2402227 2402271 2402368 "RING-" 2402373 NIL RING- (NIL T) -8 NIL NIL) (-1026 2401068 2401305 2401563 "RIDIST" 2401991 T RIDIST (NIL) -7 NIL NIL) (-1025 2392384 2400536 2400742 "RGCHAIN" 2400916 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1024 2391760 2392140 2392181 "RGBCSPC" 2392239 NIL RGBCSPC (NIL T) -9 NIL 2392291) (-1023 2390944 2391299 2391340 "RGBCMDL" 2391572 NIL RGBCMDL (NIL T) -9 NIL 2391686) (-1022 2387938 2388552 2389222 "RF" 2390308 NIL RF (NIL T) -7 NIL NIL) (-1021 2387584 2387647 2387750 "RFFACTOR" 2387869 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1020 2387309 2387344 2387441 "RFFACT" 2387543 NIL RFFACT (NIL T) -7 NIL NIL) (-1019 2385426 2385790 2386172 "RFDIST" 2386949 T RFDIST (NIL) -7 NIL NIL) (-1018 2384879 2384971 2385134 "RETSOL" 2385328 NIL RETSOL (NIL T T) -7 NIL NIL) (-1017 2384467 2384547 2384590 "RETRACT" 2384783 NIL RETRACT (NIL T) -9 NIL NIL) (-1016 2384316 2384341 2384428 "RETRACT-" 2384433 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1015 2383945 2384138 2384208 "RETAST" 2384268 T RETAST (NIL) -8 NIL NIL) (-1014 2376799 2383598 2383725 "RESULT" 2383840 T RESULT (NIL) -8 NIL NIL) (-1013 2375425 2376068 2376267 "RESRING" 2376702 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1012 2375061 2375110 2375208 "RESLATC" 2375362 NIL RESLATC (NIL T) -7 NIL NIL) (-1011 2374767 2374801 2374908 "REPSQ" 2375020 NIL REPSQ (NIL T) -7 NIL NIL) (-1010 2372189 2372769 2373371 "REP" 2374187 T REP (NIL) -7 NIL NIL) (-1009 2371887 2371921 2372032 "REPDB" 2372148 NIL REPDB (NIL T) -7 NIL NIL) (-1008 2365797 2367176 2368399 "REP2" 2370699 NIL REP2 (NIL T) -7 NIL NIL) (-1007 2362174 2362855 2363663 "REP1" 2365024 NIL REP1 (NIL T) -7 NIL NIL) (-1006 2354900 2360315 2360771 "REGSET" 2361804 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1005 2353713 2354048 2354298 "REF" 2354685 NIL REF (NIL T) -8 NIL NIL) (-1004 2353090 2353193 2353360 "REDORDER" 2353597 NIL REDORDER (NIL T T) -7 NIL NIL) (-1003 2349097 2352305 2352531 "RECLOS" 2352919 NIL RECLOS (NIL T) -8 NIL NIL) (-1002 2348149 2348330 2348545 "REALSOLV" 2348904 T REALSOLV (NIL) -7 NIL NIL) (-1001 2347995 2348036 2348066 "REAL" 2348071 T REAL (NIL) -9 NIL 2348106) (-1000 2344478 2345280 2346164 "REAL0Q" 2347160 NIL REAL0Q (NIL T) -7 NIL NIL) (-999 2340089 2341077 2342136 "REAL0" 2343459 NIL REAL0 (NIL T) -7 NIL NIL) (-998 2339591 2339810 2339902 "RDUCEAST" 2340017 T RDUCEAST (NIL) -8 NIL NIL) (-997 2338999 2339071 2339276 "RDIV" 2339513 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-996 2338072 2338246 2338457 "RDIST" 2338821 NIL RDIST (NIL T) -7 NIL NIL) (-995 2336673 2336960 2337330 "RDETRS" 2337780 NIL RDETRS (NIL T T) -7 NIL NIL) (-994 2334490 2334944 2335480 "RDETR" 2336215 NIL RDETR (NIL T T) -7 NIL NIL) (-993 2333104 2333382 2333784 "RDEEFS" 2334206 NIL RDEEFS (NIL T T) -7 NIL NIL) (-992 2331602 2331908 2332338 "RDEEF" 2332792 NIL RDEEF (NIL T T) -7 NIL NIL) (-991 2325939 2328810 2328838 "RCFIELD" 2330115 T RCFIELD (NIL) -9 NIL 2330845) (-990 2324008 2324512 2325205 "RCFIELD-" 2325278 NIL RCFIELD- (NIL T) -8 NIL NIL) (-989 2320339 2322124 2322165 "RCAGG" 2323236 NIL RCAGG (NIL T) -9 NIL 2323701) (-988 2319970 2320064 2320224 "RCAGG-" 2320229 NIL RCAGG- (NIL T T) -8 NIL NIL) (-987 2319310 2319422 2319585 "RATRET" 2319854 NIL RATRET (NIL T) -7 NIL NIL) (-986 2318867 2318934 2319053 "RATFACT" 2319238 NIL RATFACT (NIL T) -7 NIL NIL) (-985 2318182 2318302 2318452 "RANDSRC" 2318737 T RANDSRC (NIL) -7 NIL NIL) (-984 2317919 2317963 2318034 "RADUTIL" 2318131 T RADUTIL (NIL) -7 NIL NIL) (-983 2310982 2316662 2316979 "RADIX" 2317634 NIL RADIX (NIL NIL) -8 NIL NIL) (-982 2302638 2310826 2310954 "RADFF" 2310959 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-981 2302290 2302365 2302393 "RADCAT" 2302550 T RADCAT (NIL) -9 NIL NIL) (-980 2302075 2302123 2302220 "RADCAT-" 2302225 NIL RADCAT- (NIL T) -8 NIL NIL) (-979 2300226 2301850 2301939 "QUEUE" 2302019 NIL QUEUE (NIL T) -8 NIL NIL) (-978 2296802 2300163 2300208 "QUAT" 2300213 NIL QUAT (NIL T) -8 NIL NIL) (-977 2296440 2296483 2296610 "QUATCT2" 2296753 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-976 2290300 2293601 2293641 "QUATCAT" 2294421 NIL QUATCAT (NIL T) -9 NIL 2295187) (-975 2286444 2287481 2288868 "QUATCAT-" 2288962 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-974 2283964 2285528 2285569 "QUAGG" 2285944 NIL QUAGG (NIL T) -9 NIL 2286119) (-973 2283596 2283789 2283857 "QQUTAST" 2283916 T QQUTAST (NIL) -8 NIL NIL) (-972 2282521 2282994 2283166 "QFORM" 2283468 NIL QFORM (NIL NIL T) -8 NIL NIL) (-971 2273846 2279051 2279091 "QFCAT" 2279749 NIL QFCAT (NIL T) -9 NIL 2280750) (-970 2269418 2270619 2272210 "QFCAT-" 2272304 NIL QFCAT- (NIL T T) -8 NIL NIL) (-969 2269056 2269099 2269226 "QFCAT2" 2269369 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-968 2268516 2268626 2268756 "QEQUAT" 2268946 T QEQUAT (NIL) -8 NIL NIL) (-967 2261664 2262735 2263919 "QCMPACK" 2267449 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-966 2259240 2259661 2260089 "QALGSET" 2261319 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-965 2258485 2258659 2258891 "QALGSET2" 2259060 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-964 2257176 2257399 2257716 "PWFFINTB" 2258258 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-963 2255358 2255526 2255880 "PUSHVAR" 2256990 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-962 2251276 2252330 2252371 "PTRANFN" 2254255 NIL PTRANFN (NIL T) -9 NIL NIL) (-961 2249678 2249969 2250291 "PTPACK" 2250987 NIL PTPACK (NIL T) -7 NIL NIL) (-960 2249310 2249367 2249476 "PTFUNC2" 2249615 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-959 2243776 2248121 2248162 "PTCAT" 2248535 NIL PTCAT (NIL T) -9 NIL 2248697) (-958 2243434 2243469 2243593 "PSQFR" 2243735 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-957 2242029 2242327 2242661 "PSEUDLIN" 2243132 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-956 2228798 2231163 2233487 "PSETPK" 2239789 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-955 2221842 2224556 2224652 "PSETCAT" 2227673 NIL PSETCAT (NIL T T T T) -9 NIL 2228487) (-954 2219678 2220312 2221133 "PSETCAT-" 2221138 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-953 2219027 2219192 2219220 "PSCURVE" 2219488 T PSCURVE (NIL) -9 NIL 2219655) (-952 2215508 2216990 2217055 "PSCAT" 2217899 NIL PSCAT (NIL T T T) -9 NIL 2218139) (-951 2214571 2214787 2215187 "PSCAT-" 2215192 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-950 2213223 2213856 2214070 "PRTITION" 2214377 T PRTITION (NIL) -8 NIL NIL) (-949 2212725 2212944 2213036 "PRTDAST" 2213151 T PRTDAST (NIL) -8 NIL NIL) (-948 2201823 2204029 2206217 "PRS" 2210587 NIL PRS (NIL T T) -7 NIL NIL) (-947 2199681 2201173 2201213 "PRQAGG" 2201396 NIL PRQAGG (NIL T) -9 NIL 2201498) (-946 2199067 2199296 2199324 "PROPLOG" 2199509 T PROPLOG (NIL) -9 NIL 2199631) (-945 2196237 2196881 2197345 "PROPFRML" 2198635 NIL PROPFRML (NIL T) -8 NIL NIL) (-944 2195697 2195807 2195937 "PROPERTY" 2196127 T PROPERTY (NIL) -8 NIL NIL) (-943 2189782 2193863 2194683 "PRODUCT" 2194923 NIL PRODUCT (NIL T T) -8 NIL NIL) (-942 2187095 2189240 2189474 "PR" 2189593 NIL PR (NIL T T) -8 NIL NIL) (-941 2186891 2186923 2186982 "PRINT" 2187056 T PRINT (NIL) -7 NIL NIL) (-940 2186231 2186348 2186500 "PRIMES" 2186771 NIL PRIMES (NIL T) -7 NIL NIL) (-939 2184296 2184697 2185163 "PRIMELT" 2185810 NIL PRIMELT (NIL T) -7 NIL NIL) (-938 2184025 2184074 2184102 "PRIMCAT" 2184226 T PRIMCAT (NIL) -9 NIL NIL) (-937 2180186 2183963 2184008 "PRIMARR" 2184013 NIL PRIMARR (NIL T) -8 NIL NIL) (-936 2179193 2179371 2179599 "PRIMARR2" 2180004 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-935 2178836 2178892 2179003 "PREASSOC" 2179131 NIL PREASSOC (NIL T T) -7 NIL NIL) (-934 2178311 2178444 2178472 "PPCURVE" 2178677 T PPCURVE (NIL) -9 NIL 2178813) (-933 2177933 2178106 2178189 "PORTNUM" 2178248 T PORTNUM (NIL) -8 NIL NIL) (-932 2175292 2175691 2176283 "POLYROOT" 2177514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-931 2169237 2174896 2175056 "POLY" 2175165 NIL POLY (NIL T) -8 NIL NIL) (-930 2168620 2168678 2168912 "POLYLIFT" 2169173 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-929 2164895 2165344 2165973 "POLYCATQ" 2168165 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-928 2151934 2157290 2157355 "POLYCAT" 2160869 NIL POLYCAT (NIL T T T) -9 NIL 2162797) (-927 2145384 2147245 2149629 "POLYCAT-" 2149634 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-926 2144971 2145039 2145159 "POLY2UP" 2145310 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-925 2144603 2144660 2144769 "POLY2" 2144908 NIL POLY2 (NIL T T) -7 NIL NIL) (-924 2143288 2143527 2143803 "POLUTIL" 2144377 NIL POLUTIL (NIL T T) -7 NIL NIL) (-923 2141643 2141920 2142251 "POLTOPOL" 2143010 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-922 2137161 2141579 2141625 "POINT" 2141630 NIL POINT (NIL T) -8 NIL NIL) (-921 2135348 2135705 2136080 "PNTHEORY" 2136806 T PNTHEORY (NIL) -7 NIL NIL) (-920 2133767 2134064 2134476 "PMTOOLS" 2135046 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-919 2133360 2133438 2133555 "PMSYM" 2133683 NIL PMSYM (NIL T) -7 NIL NIL) (-918 2132870 2132939 2133113 "PMQFCAT" 2133285 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-917 2132225 2132335 2132491 "PMPRED" 2132747 NIL PMPRED (NIL T) -7 NIL NIL) (-916 2131621 2131707 2131868 "PMPREDFS" 2132126 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-915 2130264 2130472 2130857 "PMPLCAT" 2131383 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-914 2129796 2129875 2130027 "PMLSAGG" 2130179 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-913 2129271 2129347 2129528 "PMKERNEL" 2129714 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-912 2128888 2128963 2129076 "PMINS" 2129190 NIL PMINS (NIL T) -7 NIL NIL) (-911 2128316 2128385 2128601 "PMFS" 2128813 NIL PMFS (NIL T T T) -7 NIL NIL) (-910 2127544 2127662 2127867 "PMDOWN" 2128193 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-909 2126707 2126866 2127048 "PMASS" 2127382 T PMASS (NIL) -7 NIL NIL) (-908 2125981 2126092 2126255 "PMASSFS" 2126593 NIL PMASSFS (NIL T T) -7 NIL NIL) (-907 2125636 2125704 2125798 "PLOTTOOL" 2125907 T PLOTTOOL (NIL) -7 NIL NIL) (-906 2120258 2121447 2122595 "PLOT" 2124508 T PLOT (NIL) -8 NIL NIL) (-905 2116072 2117106 2118027 "PLOT3D" 2119357 T PLOT3D (NIL) -8 NIL NIL) (-904 2114984 2115161 2115396 "PLOT1" 2115876 NIL PLOT1 (NIL T) -7 NIL NIL) (-903 2090378 2095050 2099901 "PLEQN" 2110250 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-902 2089696 2089818 2089998 "PINTERP" 2090243 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-901 2089389 2089436 2089539 "PINTERPA" 2089643 NIL PINTERPA (NIL T T) -7 NIL NIL) (-900 2088674 2089195 2089282 "PI" 2089322 T PI (NIL) -8 NIL NIL) (-899 2087106 2088047 2088075 "PID" 2088257 T PID (NIL) -9 NIL 2088391) (-898 2086831 2086868 2086956 "PICOERCE" 2087063 NIL PICOERCE (NIL T) -7 NIL NIL) (-897 2086151 2086290 2086466 "PGROEB" 2086687 NIL PGROEB (NIL T) -7 NIL NIL) (-896 2081738 2082552 2083457 "PGE" 2085266 T PGE (NIL) -7 NIL NIL) (-895 2079862 2080108 2080474 "PGCD" 2081455 NIL PGCD (NIL T T T T) -7 NIL NIL) (-894 2079200 2079303 2079464 "PFRPAC" 2079746 NIL PFRPAC (NIL T) -7 NIL NIL) (-893 2075880 2077748 2078101 "PFR" 2078879 NIL PFR (NIL T) -8 NIL NIL) (-892 2074269 2074513 2074838 "PFOTOOLS" 2075627 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-891 2072802 2073041 2073392 "PFOQ" 2074026 NIL PFOQ (NIL T T T) -7 NIL NIL) (-890 2071275 2071487 2071850 "PFO" 2072586 NIL PFO (NIL T T T T T) -7 NIL NIL) (-889 2067863 2071164 2071233 "PF" 2071238 NIL PF (NIL NIL) -8 NIL NIL) (-888 2065332 2066569 2066597 "PFECAT" 2067182 T PFECAT (NIL) -9 NIL 2067566) (-887 2064777 2064931 2065145 "PFECAT-" 2065150 NIL PFECAT- (NIL T) -8 NIL NIL) (-886 2063381 2063632 2063933 "PFBRU" 2064526 NIL PFBRU (NIL T T) -7 NIL NIL) (-885 2061248 2061599 2062031 "PFBR" 2063032 NIL PFBR (NIL T T T T) -7 NIL NIL) (-884 2057164 2058624 2059300 "PERM" 2060605 NIL PERM (NIL T) -8 NIL NIL) (-883 2052430 2053371 2054241 "PERMGRP" 2056327 NIL PERMGRP (NIL T) -8 NIL NIL) (-882 2050562 2051493 2051534 "PERMCAT" 2051980 NIL PERMCAT (NIL T) -9 NIL 2052285) (-881 2050215 2050256 2050380 "PERMAN" 2050515 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-880 2047655 2049784 2049915 "PENDTREE" 2050117 NIL PENDTREE (NIL T) -8 NIL NIL) (-879 2045768 2046502 2046543 "PDRING" 2047200 NIL PDRING (NIL T) -9 NIL 2047486) (-878 2044871 2045089 2045451 "PDRING-" 2045456 NIL PDRING- (NIL T T) -8 NIL NIL) (-877 2042012 2042763 2043454 "PDEPROB" 2044200 T PDEPROB (NIL) -8 NIL NIL) (-876 2039559 2040061 2040616 "PDEPACK" 2041477 T PDEPACK (NIL) -7 NIL NIL) (-875 2038471 2038661 2038912 "PDECOMP" 2039358 NIL PDECOMP (NIL T T) -7 NIL NIL) (-874 2036076 2036893 2036921 "PDECAT" 2037708 T PDECAT (NIL) -9 NIL 2038421) (-873 2035827 2035860 2035950 "PCOMP" 2036037 NIL PCOMP (NIL T T) -7 NIL NIL) (-872 2034032 2034628 2034925 "PBWLB" 2035556 NIL PBWLB (NIL T) -8 NIL NIL) (-871 2026536 2028105 2029443 "PATTERN" 2032715 NIL PATTERN (NIL T) -8 NIL NIL) (-870 2026168 2026225 2026334 "PATTERN2" 2026473 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-869 2023925 2024313 2024770 "PATTERN1" 2025757 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-868 2021320 2021874 2022355 "PATRES" 2023490 NIL PATRES (NIL T T) -8 NIL NIL) (-867 2020884 2020951 2021083 "PATRES2" 2021247 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-866 2018767 2019172 2019579 "PATMATCH" 2020551 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-865 2018303 2018486 2018527 "PATMAB" 2018634 NIL PATMAB (NIL T) -9 NIL 2018717) (-864 2016848 2017157 2017415 "PATLRES" 2018108 NIL PATLRES (NIL T T T) -8 NIL NIL) (-863 2016394 2016517 2016558 "PATAB" 2016563 NIL PATAB (NIL T) -9 NIL 2016735) (-862 2013875 2014407 2014980 "PARTPERM" 2015841 T PARTPERM (NIL) -7 NIL NIL) (-861 2013496 2013559 2013661 "PARSURF" 2013806 NIL PARSURF (NIL T) -8 NIL NIL) (-860 2013128 2013185 2013294 "PARSU2" 2013433 NIL PARSU2 (NIL T T) -7 NIL NIL) (-859 2012892 2012932 2012999 "PARSER" 2013081 T PARSER (NIL) -7 NIL NIL) (-858 2012513 2012576 2012678 "PARSCURV" 2012823 NIL PARSCURV (NIL T) -8 NIL NIL) (-857 2012145 2012202 2012311 "PARSC2" 2012450 NIL PARSC2 (NIL T T) -7 NIL NIL) (-856 2011784 2011842 2011939 "PARPCURV" 2012081 NIL PARPCURV (NIL T) -8 NIL NIL) (-855 2011416 2011473 2011582 "PARPC2" 2011721 NIL PARPC2 (NIL T T) -7 NIL NIL) (-854 2010936 2011022 2011141 "PAN2EXPR" 2011317 T PAN2EXPR (NIL) -7 NIL NIL) (-853 2009742 2010057 2010285 "PALETTE" 2010728 T PALETTE (NIL) -8 NIL NIL) (-852 2008210 2008747 2009107 "PAIR" 2009428 NIL PAIR (NIL T T) -8 NIL NIL) (-851 2002116 2007469 2007663 "PADICRC" 2008065 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-850 1995380 2001462 2001646 "PADICRAT" 2001964 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-849 1993730 1995317 1995362 "PADIC" 1995367 NIL PADIC (NIL NIL) -8 NIL NIL) (-848 1990975 1992505 1992545 "PADICCT" 1993126 NIL PADICCT (NIL NIL) -9 NIL 1993408) (-847 1989932 1990132 1990400 "PADEPAC" 1990762 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-846 1989144 1989277 1989483 "PADE" 1989794 NIL PADE (NIL T T T) -7 NIL NIL) (-845 1987194 1987980 1988297 "OWP" 1988911 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-844 1986303 1986799 1986971 "OVAR" 1987062 NIL OVAR (NIL NIL) -8 NIL NIL) (-843 1985567 1985688 1985849 "OUT" 1986162 T OUT (NIL) -7 NIL NIL) (-842 1974474 1976676 1978876 "OUTFORM" 1983387 T OUTFORM (NIL) -8 NIL NIL) (-841 1973895 1974071 1974198 "OUTBFILE" 1974367 T OUTBFILE (NIL) -8 NIL NIL) (-840 1973532 1973615 1973643 "OUTBCON" 1973794 T OUTBCON (NIL) -9 NIL 1973879) (-839 1973372 1973407 1973483 "OUTBCON-" 1973488 NIL OUTBCON- (NIL T) -8 NIL NIL) (-838 1972780 1973101 1973190 "OSI" 1973303 T OSI (NIL) -8 NIL NIL) (-837 1972336 1972648 1972676 "OSGROUP" 1972681 T OSGROUP (NIL) -9 NIL 1972703) (-836 1971081 1971308 1971593 "ORTHPOL" 1972083 NIL ORTHPOL (NIL T) -7 NIL NIL) (-835 1968491 1970740 1970879 "OREUP" 1971024 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-834 1965929 1968182 1968309 "ORESUP" 1968433 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-833 1963457 1963957 1964518 "OREPCTO" 1965418 NIL OREPCTO (NIL T T) -7 NIL NIL) (-832 1957368 1959535 1959576 "OREPCAT" 1961924 NIL OREPCAT (NIL T) -9 NIL 1963028) (-831 1954515 1955297 1956355 "OREPCAT-" 1956360 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-830 1953692 1953964 1953992 "ORDSET" 1954301 T ORDSET (NIL) -9 NIL 1954465) (-829 1953211 1953333 1953526 "ORDSET-" 1953531 NIL ORDSET- (NIL T) -8 NIL NIL) (-828 1951865 1952622 1952650 "ORDRING" 1952852 T ORDRING (NIL) -9 NIL 1952977) (-827 1951510 1951604 1951748 "ORDRING-" 1951753 NIL ORDRING- (NIL T) -8 NIL NIL) (-826 1950916 1951353 1951381 "ORDMON" 1951386 T ORDMON (NIL) -9 NIL 1951407) (-825 1950078 1950225 1950420 "ORDFUNS" 1950765 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-824 1949589 1949948 1949976 "ORDFIN" 1949981 T ORDFIN (NIL) -9 NIL 1950002) (-823 1946181 1948175 1948584 "ORDCOMP" 1949213 NIL ORDCOMP (NIL T) -8 NIL NIL) (-822 1945447 1945574 1945760 "ORDCOMP2" 1946041 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-821 1941954 1942837 1943674 "OPTPROB" 1944630 T OPTPROB (NIL) -8 NIL NIL) (-820 1938756 1939395 1940099 "OPTPACK" 1941270 T OPTPACK (NIL) -7 NIL NIL) (-819 1936469 1937209 1937237 "OPTCAT" 1938056 T OPTCAT (NIL) -9 NIL 1938706) (-818 1936237 1936276 1936342 "OPQUERY" 1936423 T OPQUERY (NIL) -7 NIL NIL) (-817 1933403 1934548 1935052 "OP" 1935766 NIL OP (NIL T) -8 NIL NIL) (-816 1930248 1932200 1932569 "ONECOMP" 1933067 NIL ONECOMP (NIL T) -8 NIL NIL) (-815 1929553 1929668 1929842 "ONECOMP2" 1930120 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-814 1928972 1929078 1929208 "OMSERVER" 1929443 T OMSERVER (NIL) -7 NIL NIL) (-813 1925860 1928412 1928452 "OMSAGG" 1928513 NIL OMSAGG (NIL T) -9 NIL 1928577) (-812 1924483 1924746 1925028 "OMPKG" 1925598 T OMPKG (NIL) -7 NIL NIL) (-811 1923913 1924016 1924044 "OM" 1924343 T OM (NIL) -9 NIL NIL) (-810 1922495 1923462 1923631 "OMLO" 1923794 NIL OMLO (NIL T T) -8 NIL NIL) (-809 1921420 1921567 1921794 "OMEXPR" 1922321 NIL OMEXPR (NIL T) -7 NIL NIL) (-808 1920738 1920966 1921102 "OMERR" 1921304 T OMERR (NIL) -8 NIL NIL) (-807 1919916 1920159 1920319 "OMERRK" 1920598 T OMERRK (NIL) -8 NIL NIL) (-806 1919394 1919593 1919701 "OMENC" 1919828 T OMENC (NIL) -8 NIL NIL) (-805 1913289 1914474 1915645 "OMDEV" 1918243 T OMDEV (NIL) -8 NIL NIL) (-804 1912358 1912529 1912723 "OMCONN" 1913115 T OMCONN (NIL) -8 NIL NIL) (-803 1911014 1911956 1911984 "OINTDOM" 1911989 T OINTDOM (NIL) -9 NIL 1912010) (-802 1906820 1908004 1908720 "OFMONOID" 1910330 NIL OFMONOID (NIL T) -8 NIL NIL) (-801 1906258 1906757 1906802 "ODVAR" 1906807 NIL ODVAR (NIL T) -8 NIL NIL) (-800 1903468 1905755 1905940 "ODR" 1906133 NIL ODR (NIL T T NIL) -8 NIL NIL) (-799 1895812 1903244 1903370 "ODPOL" 1903375 NIL ODPOL (NIL T) -8 NIL NIL) (-798 1889688 1895684 1895789 "ODP" 1895794 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-797 1888454 1888669 1888944 "ODETOOLS" 1889462 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-796 1885423 1886079 1886795 "ODESYS" 1887787 NIL ODESYS (NIL T T) -7 NIL NIL) (-795 1880305 1881213 1882238 "ODERTRIC" 1884498 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-794 1879731 1879813 1880007 "ODERED" 1880217 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-793 1876619 1877167 1877844 "ODERAT" 1879154 NIL ODERAT (NIL T T) -7 NIL NIL) (-792 1873579 1874043 1874640 "ODEPRRIC" 1876148 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-791 1871448 1872017 1872526 "ODEPROB" 1873090 T ODEPROB (NIL) -8 NIL NIL) (-790 1867970 1868453 1869100 "ODEPRIM" 1870927 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-789 1867219 1867321 1867581 "ODEPAL" 1867862 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-788 1863381 1864172 1865036 "ODEPACK" 1866375 T ODEPACK (NIL) -7 NIL NIL) (-787 1862414 1862521 1862750 "ODEINT" 1863270 NIL ODEINT (NIL T T) -7 NIL NIL) (-786 1856515 1857940 1859387 "ODEIFTBL" 1860987 T ODEIFTBL (NIL) -8 NIL NIL) (-785 1851850 1852636 1853595 "ODEEF" 1855674 NIL ODEEF (NIL T T) -7 NIL NIL) (-784 1851185 1851274 1851504 "ODECONST" 1851755 NIL ODECONST (NIL T T T) -7 NIL NIL) (-783 1849336 1849971 1849999 "ODECAT" 1850604 T ODECAT (NIL) -9 NIL 1851135) (-782 1846243 1849048 1849167 "OCT" 1849249 NIL OCT (NIL T) -8 NIL NIL) (-781 1845881 1845924 1846051 "OCTCT2" 1846194 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-780 1840742 1843142 1843182 "OC" 1844279 NIL OC (NIL T) -9 NIL 1845137) (-779 1837969 1838717 1839707 "OC-" 1839801 NIL OC- (NIL T T) -8 NIL NIL) (-778 1837347 1837789 1837817 "OCAMON" 1837822 T OCAMON (NIL) -9 NIL 1837843) (-777 1836904 1837219 1837247 "OASGP" 1837252 T OASGP (NIL) -9 NIL 1837272) (-776 1836191 1836654 1836682 "OAMONS" 1836722 T OAMONS (NIL) -9 NIL 1836765) (-775 1835631 1836038 1836066 "OAMON" 1836071 T OAMON (NIL) -9 NIL 1836091) (-774 1834935 1835427 1835455 "OAGROUP" 1835460 T OAGROUP (NIL) -9 NIL 1835480) (-773 1834625 1834675 1834763 "NUMTUBE" 1834879 NIL NUMTUBE (NIL T) -7 NIL NIL) (-772 1828198 1829716 1831252 "NUMQUAD" 1833109 T NUMQUAD (NIL) -7 NIL NIL) (-771 1823954 1824942 1825967 "NUMODE" 1827193 T NUMODE (NIL) -7 NIL NIL) (-770 1821335 1822189 1822217 "NUMINT" 1823140 T NUMINT (NIL) -9 NIL 1823904) (-769 1820283 1820480 1820698 "NUMFMT" 1821137 T NUMFMT (NIL) -7 NIL NIL) (-768 1806642 1809587 1812119 "NUMERIC" 1817790 NIL NUMERIC (NIL T) -7 NIL NIL) (-767 1801039 1806091 1806186 "NTSCAT" 1806191 NIL NTSCAT (NIL T T T T) -9 NIL 1806230) (-766 1800233 1800398 1800591 "NTPOLFN" 1800878 NIL NTPOLFN (NIL T) -7 NIL NIL) (-765 1788073 1797058 1797870 "NSUP" 1799454 NIL NSUP (NIL T) -8 NIL NIL) (-764 1787705 1787762 1787871 "NSUP2" 1788010 NIL NSUP2 (NIL T T) -7 NIL NIL) (-763 1777702 1787479 1787612 "NSMP" 1787617 NIL NSMP (NIL T T) -8 NIL NIL) (-762 1776134 1776435 1776792 "NREP" 1777390 NIL NREP (NIL T) -7 NIL NIL) (-761 1774725 1774977 1775335 "NPCOEF" 1775877 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-760 1773791 1773906 1774122 "NORMRETR" 1774606 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-759 1771832 1772122 1772531 "NORMPK" 1773499 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-758 1771517 1771545 1771669 "NORMMA" 1771798 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-757 1771344 1771474 1771503 "NONE" 1771508 T NONE (NIL) -8 NIL NIL) (-756 1771133 1771162 1771231 "NONE1" 1771308 NIL NONE1 (NIL T) -7 NIL NIL) (-755 1770616 1770678 1770864 "NODE1" 1771065 NIL NODE1 (NIL T T) -7 NIL NIL) (-754 1768956 1769779 1770034 "NNI" 1770381 T NNI (NIL) -8 NIL NIL) (-753 1767376 1767689 1768053 "NLINSOL" 1768624 NIL NLINSOL (NIL T) -7 NIL NIL) (-752 1763543 1764511 1765433 "NIPROB" 1766474 T NIPROB (NIL) -8 NIL NIL) (-751 1762300 1762534 1762836 "NFINTBAS" 1763305 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-750 1761744 1761951 1761992 "NETCLT" 1762156 NIL NETCLT (NIL T) -9 NIL 1762245) (-749 1760452 1760683 1760964 "NCODIV" 1761512 NIL NCODIV (NIL T T) -7 NIL NIL) (-748 1760214 1760251 1760326 "NCNTFRAC" 1760409 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-747 1758394 1758758 1759178 "NCEP" 1759839 NIL NCEP (NIL T) -7 NIL NIL) (-746 1757305 1758044 1758072 "NASRING" 1758182 T NASRING (NIL) -9 NIL 1758256) (-745 1757100 1757144 1757238 "NASRING-" 1757243 NIL NASRING- (NIL T) -8 NIL NIL) (-744 1756253 1756752 1756780 "NARNG" 1756897 T NARNG (NIL) -9 NIL 1756988) (-743 1755945 1756012 1756146 "NARNG-" 1756151 NIL NARNG- (NIL T) -8 NIL NIL) (-742 1754824 1755031 1755266 "NAGSP" 1755730 T NAGSP (NIL) -7 NIL NIL) (-741 1746096 1747780 1749453 "NAGS" 1753171 T NAGS (NIL) -7 NIL NIL) (-740 1744644 1744952 1745283 "NAGF07" 1745785 T NAGF07 (NIL) -7 NIL NIL) (-739 1739182 1740473 1741780 "NAGF04" 1743357 T NAGF04 (NIL) -7 NIL NIL) (-738 1732150 1733764 1735397 "NAGF02" 1737569 T NAGF02 (NIL) -7 NIL NIL) (-737 1727374 1728474 1729591 "NAGF01" 1731053 T NAGF01 (NIL) -7 NIL NIL) (-736 1721002 1722568 1724153 "NAGE04" 1725809 T NAGE04 (NIL) -7 NIL NIL) (-735 1712171 1714292 1716422 "NAGE02" 1718892 T NAGE02 (NIL) -7 NIL NIL) (-734 1708124 1709071 1710035 "NAGE01" 1711227 T NAGE01 (NIL) -7 NIL NIL) (-733 1705919 1706453 1707011 "NAGD03" 1707586 T NAGD03 (NIL) -7 NIL NIL) (-732 1697669 1699597 1701551 "NAGD02" 1703985 T NAGD02 (NIL) -7 NIL NIL) (-731 1691480 1692905 1694345 "NAGD01" 1696249 T NAGD01 (NIL) -7 NIL NIL) (-730 1687689 1688511 1689348 "NAGC06" 1690663 T NAGC06 (NIL) -7 NIL NIL) (-729 1686154 1686486 1686842 "NAGC05" 1687353 T NAGC05 (NIL) -7 NIL NIL) (-728 1685530 1685649 1685793 "NAGC02" 1686030 T NAGC02 (NIL) -7 NIL NIL) (-727 1684590 1685147 1685187 "NAALG" 1685266 NIL NAALG (NIL T) -9 NIL 1685327) (-726 1684425 1684454 1684544 "NAALG-" 1684549 NIL NAALG- (NIL T T) -8 NIL NIL) (-725 1678375 1679483 1680670 "MULTSQFR" 1683321 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-724 1677694 1677769 1677953 "MULTFACT" 1678287 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-723 1670917 1674782 1674835 "MTSCAT" 1675905 NIL MTSCAT (NIL T T) -9 NIL 1676419) (-722 1670629 1670683 1670775 "MTHING" 1670857 NIL MTHING (NIL T) -7 NIL NIL) (-721 1670421 1670454 1670514 "MSYSCMD" 1670589 T MSYSCMD (NIL) -7 NIL NIL) (-720 1666533 1669176 1669496 "MSET" 1670134 NIL MSET (NIL T) -8 NIL NIL) (-719 1663628 1666094 1666135 "MSETAGG" 1666140 NIL MSETAGG (NIL T) -9 NIL 1666174) (-718 1659511 1661007 1661752 "MRING" 1662928 NIL MRING (NIL T T) -8 NIL NIL) (-717 1659077 1659144 1659275 "MRF2" 1659438 NIL MRF2 (NIL T T T) -7 NIL NIL) (-716 1658695 1658730 1658874 "MRATFAC" 1659036 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-715 1656307 1656602 1657033 "MPRFF" 1658400 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-714 1650367 1656161 1656258 "MPOLY" 1656263 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-713 1649857 1649892 1650100 "MPCPF" 1650326 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-712 1649371 1649414 1649598 "MPC3" 1649808 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-711 1648566 1648647 1648868 "MPC2" 1649286 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-710 1646867 1647204 1647594 "MONOTOOL" 1648226 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-709 1646118 1646409 1646437 "MONOID" 1646656 T MONOID (NIL) -9 NIL 1646803) (-708 1645664 1645783 1645964 "MONOID-" 1645969 NIL MONOID- (NIL T) -8 NIL NIL) (-707 1636714 1642620 1642679 "MONOGEN" 1643353 NIL MONOGEN (NIL T T) -9 NIL 1643809) (-706 1633932 1634667 1635667 "MONOGEN-" 1635786 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-705 1632791 1633211 1633239 "MONADWU" 1633631 T MONADWU (NIL) -9 NIL 1633869) (-704 1632163 1632322 1632570 "MONADWU-" 1632575 NIL MONADWU- (NIL T) -8 NIL NIL) (-703 1631548 1631766 1631794 "MONAD" 1632001 T MONAD (NIL) -9 NIL 1632113) (-702 1631233 1631311 1631443 "MONAD-" 1631448 NIL MONAD- (NIL T) -8 NIL NIL) (-701 1629549 1630146 1630425 "MOEBIUS" 1630986 NIL MOEBIUS (NIL T) -8 NIL NIL) (-700 1628941 1629319 1629359 "MODULE" 1629364 NIL MODULE (NIL T) -9 NIL 1629390) (-699 1628509 1628605 1628795 "MODULE-" 1628800 NIL MODULE- (NIL T T) -8 NIL NIL) (-698 1626224 1626873 1627200 "MODRING" 1628333 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-697 1623210 1624329 1624850 "MODOP" 1625753 NIL MODOP (NIL T T) -8 NIL NIL) (-696 1621397 1621849 1622190 "MODMONOM" 1623009 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-695 1611105 1619589 1620012 "MODMON" 1621025 NIL MODMON (NIL T T) -8 NIL NIL) (-694 1608296 1609949 1610225 "MODFIELD" 1610980 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1607300 1607577 1607767 "MMLFORM" 1608126 T MMLFORM (NIL) -8 NIL NIL) (-692 1606826 1606869 1607048 "MMAP" 1607251 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-691 1605095 1605828 1605869 "MLO" 1606292 NIL MLO (NIL T) -9 NIL 1606534) (-690 1602462 1602977 1603579 "MLIFT" 1604576 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-689 1601853 1601937 1602091 "MKUCFUNC" 1602373 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-688 1601452 1601522 1601645 "MKRECORD" 1601776 NIL MKRECORD (NIL T T) -7 NIL NIL) (-687 1600500 1600661 1600889 "MKFUNC" 1601263 NIL MKFUNC (NIL T) -7 NIL NIL) (-686 1599888 1599992 1600148 "MKFLCFN" 1600383 NIL MKFLCFN (NIL T) -7 NIL NIL) (-685 1599314 1599681 1599770 "MKCHSET" 1599832 NIL MKCHSET (NIL T) -8 NIL NIL) (-684 1598591 1598693 1598878 "MKBCFUNC" 1599207 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-683 1595333 1598145 1598281 "MINT" 1598475 T MINT (NIL) -8 NIL NIL) (-682 1594145 1594388 1594665 "MHROWRED" 1595088 NIL MHROWRED (NIL T) -7 NIL NIL) (-681 1589571 1592680 1593085 "MFLOAT" 1593760 T MFLOAT (NIL) -8 NIL NIL) (-680 1588928 1589004 1589175 "MFINFACT" 1589483 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-679 1585243 1586091 1586975 "MESH" 1588064 T MESH (NIL) -7 NIL NIL) (-678 1583633 1583945 1584298 "MDDFACT" 1584930 NIL MDDFACT (NIL T) -7 NIL NIL) (-677 1580475 1582792 1582833 "MDAGG" 1583088 NIL MDAGG (NIL T) -9 NIL 1583231) (-676 1570253 1579768 1579975 "MCMPLX" 1580288 T MCMPLX (NIL) -8 NIL NIL) (-675 1569394 1569540 1569740 "MCDEN" 1570102 NIL MCDEN (NIL T T) -7 NIL NIL) (-674 1567284 1567554 1567934 "MCALCFN" 1569124 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-673 1566195 1566368 1566609 "MAYBE" 1567082 NIL MAYBE (NIL T) -8 NIL NIL) (-672 1563807 1564330 1564892 "MATSTOR" 1565666 NIL MATSTOR (NIL T) -7 NIL NIL) (-671 1559813 1563179 1563427 "MATRIX" 1563592 NIL MATRIX (NIL T) -8 NIL NIL) (-670 1555582 1556286 1557022 "MATLIN" 1559170 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-669 1545736 1548874 1548951 "MATCAT" 1553831 NIL MATCAT (NIL T T T) -9 NIL 1555248) (-668 1542100 1543113 1544469 "MATCAT-" 1544474 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-667 1540694 1540847 1541180 "MATCAT2" 1541935 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-666 1538806 1539130 1539514 "MAPPKG3" 1540369 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-665 1537787 1537960 1538182 "MAPPKG2" 1538630 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-664 1536286 1536570 1536897 "MAPPKG1" 1537493 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-663 1535392 1535692 1535869 "MAPPAST" 1536129 T MAPPAST (NIL) -8 NIL NIL) (-662 1535003 1535061 1535184 "MAPHACK3" 1535328 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-661 1534595 1534656 1534770 "MAPHACK2" 1534935 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-660 1534033 1534136 1534278 "MAPHACK1" 1534486 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-659 1532139 1532733 1533037 "MAGMA" 1533761 NIL MAGMA (NIL T) -8 NIL NIL) (-658 1531645 1531863 1531954 "MACROAST" 1532068 T MACROAST (NIL) -8 NIL NIL) (-657 1528112 1529884 1530345 "M3D" 1531217 NIL M3D (NIL T) -8 NIL NIL) (-656 1522267 1526482 1526523 "LZSTAGG" 1527305 NIL LZSTAGG (NIL T) -9 NIL 1527600) (-655 1518240 1519398 1520855 "LZSTAGG-" 1520860 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-654 1515354 1516131 1516618 "LWORD" 1517785 NIL LWORD (NIL T) -8 NIL NIL) (-653 1514957 1515158 1515233 "LSTAST" 1515299 T LSTAST (NIL) -8 NIL NIL) (-652 1508158 1514728 1514862 "LSQM" 1514867 NIL LSQM (NIL NIL T) -8 NIL NIL) (-651 1507382 1507521 1507749 "LSPP" 1508013 NIL LSPP (NIL T T T T) -7 NIL NIL) (-650 1505194 1505495 1505951 "LSMP" 1507071 NIL LSMP (NIL T T T T) -7 NIL NIL) (-649 1501973 1502647 1503377 "LSMP1" 1504496 NIL LSMP1 (NIL T) -7 NIL NIL) (-648 1495899 1501141 1501182 "LSAGG" 1501244 NIL LSAGG (NIL T) -9 NIL 1501322) (-647 1492594 1493518 1494731 "LSAGG-" 1494736 NIL LSAGG- (NIL T T) -8 NIL NIL) (-646 1490220 1491738 1491987 "LPOLY" 1492389 NIL LPOLY (NIL T T) -8 NIL NIL) (-645 1489802 1489887 1490010 "LPEFRAC" 1490129 NIL LPEFRAC (NIL T) -7 NIL NIL) (-644 1488149 1488896 1489149 "LO" 1489634 NIL LO (NIL T T T) -8 NIL NIL) (-643 1487801 1487913 1487941 "LOGIC" 1488052 T LOGIC (NIL) -9 NIL 1488133) (-642 1487663 1487686 1487757 "LOGIC-" 1487762 NIL LOGIC- (NIL T) -8 NIL NIL) (-641 1486856 1486996 1487189 "LODOOPS" 1487519 NIL LODOOPS (NIL T T) -7 NIL NIL) (-640 1484314 1486772 1486838 "LODO" 1486843 NIL LODO (NIL T NIL) -8 NIL NIL) (-639 1482852 1483087 1483440 "LODOF" 1484061 NIL LODOF (NIL T T) -7 NIL NIL) (-638 1479295 1481692 1481733 "LODOCAT" 1482171 NIL LODOCAT (NIL T) -9 NIL 1482382) (-637 1479028 1479086 1479213 "LODOCAT-" 1479218 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-636 1476383 1478869 1478987 "LODO2" 1478992 NIL LODO2 (NIL T T) -8 NIL NIL) (-635 1473853 1476320 1476365 "LODO1" 1476370 NIL LODO1 (NIL T) -8 NIL NIL) (-634 1472713 1472878 1473190 "LODEEF" 1473676 NIL LODEEF (NIL T T T) -7 NIL NIL) (-633 1467999 1470843 1470884 "LNAGG" 1471831 NIL LNAGG (NIL T) -9 NIL 1472275) (-632 1467146 1467360 1467702 "LNAGG-" 1467707 NIL LNAGG- (NIL T T) -8 NIL NIL) (-631 1463309 1464071 1464710 "LMOPS" 1466561 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-630 1462704 1463066 1463107 "LMODULE" 1463168 NIL LMODULE (NIL T) -9 NIL 1463210) (-629 1459950 1462349 1462472 "LMDICT" 1462614 NIL LMDICT (NIL T) -8 NIL NIL) (-628 1459676 1459858 1459918 "LITERAL" 1459923 NIL LITERAL (NIL T) -8 NIL NIL) (-627 1452903 1458622 1458920 "LIST" 1459411 NIL LIST (NIL T) -8 NIL NIL) (-626 1452428 1452502 1452641 "LIST3" 1452823 NIL LIST3 (NIL T T T) -7 NIL NIL) (-625 1451435 1451613 1451841 "LIST2" 1452246 NIL LIST2 (NIL T T) -7 NIL NIL) (-624 1449569 1449881 1450280 "LIST2MAP" 1451082 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-623 1448319 1448955 1448996 "LINEXP" 1449251 NIL LINEXP (NIL T) -9 NIL 1449400) (-622 1446966 1447226 1447523 "LINDEP" 1448071 NIL LINDEP (NIL T T) -7 NIL NIL) (-621 1443733 1444452 1445229 "LIMITRF" 1446221 NIL LIMITRF (NIL T) -7 NIL NIL) (-620 1442009 1442304 1442720 "LIMITPS" 1443428 NIL LIMITPS (NIL T T) -7 NIL NIL) (-619 1436464 1441520 1441748 "LIE" 1441830 NIL LIE (NIL T T) -8 NIL NIL) (-618 1435513 1435956 1435996 "LIECAT" 1436136 NIL LIECAT (NIL T) -9 NIL 1436287) (-617 1435354 1435381 1435469 "LIECAT-" 1435474 NIL LIECAT- (NIL T T) -8 NIL NIL) (-616 1427966 1434803 1434968 "LIB" 1435209 T LIB (NIL) -8 NIL NIL) (-615 1423603 1424484 1425419 "LGROBP" 1427083 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-614 1421469 1421743 1422105 "LF" 1423324 NIL LF (NIL T T) -7 NIL NIL) (-613 1420309 1421001 1421029 "LFCAT" 1421236 T LFCAT (NIL) -9 NIL 1421375) (-612 1417213 1417841 1418529 "LEXTRIPK" 1419673 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-611 1413984 1414783 1415286 "LEXP" 1416793 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-610 1413487 1413705 1413797 "LETAST" 1413912 T LETAST (NIL) -8 NIL NIL) (-609 1411885 1412198 1412599 "LEADCDET" 1413169 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-608 1411075 1411149 1411378 "LAZM3PK" 1411806 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-607 1406031 1409152 1409690 "LAUPOL" 1410587 NIL LAUPOL (NIL T T) -8 NIL NIL) (-606 1405596 1405640 1405808 "LAPLACE" 1405981 NIL LAPLACE (NIL T T) -7 NIL NIL) (-605 1403570 1404697 1404948 "LA" 1405429 NIL LA (NIL T T T) -8 NIL NIL) (-604 1402671 1403221 1403262 "LALG" 1403324 NIL LALG (NIL T) -9 NIL 1403383) (-603 1402385 1402444 1402580 "LALG-" 1402585 NIL LALG- (NIL T T) -8 NIL NIL) (-602 1401185 1401602 1401831 "KTVLOGIC" 1402176 T KTVLOGIC (NIL) -8 NIL NIL) (-601 1400089 1400276 1400575 "KOVACIC" 1400985 NIL KOVACIC (NIL T T) -7 NIL NIL) (-600 1399924 1399948 1399989 "KONVERT" 1400051 NIL KONVERT (NIL T) -9 NIL NIL) (-599 1399759 1399783 1399824 "KOERCE" 1399886 NIL KOERCE (NIL T) -9 NIL NIL) (-598 1397493 1398253 1398646 "KERNEL" 1399398 NIL KERNEL (NIL T) -8 NIL NIL) (-597 1396995 1397076 1397206 "KERNEL2" 1397407 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-596 1390846 1395534 1395588 "KDAGG" 1395965 NIL KDAGG (NIL T T) -9 NIL 1396171) (-595 1390375 1390499 1390704 "KDAGG-" 1390709 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-594 1383550 1390036 1390191 "KAFILE" 1390253 NIL KAFILE (NIL T) -8 NIL NIL) (-593 1378005 1383061 1383289 "JORDAN" 1383371 NIL JORDAN (NIL T T) -8 NIL NIL) (-592 1377411 1377654 1377775 "JOINAST" 1377904 T JOINAST (NIL) -8 NIL NIL) (-591 1377140 1377199 1377286 "JAVACODE" 1377344 T JAVACODE (NIL) -8 NIL NIL) (-590 1373439 1375345 1375399 "IXAGG" 1376328 NIL IXAGG (NIL T T) -9 NIL 1376787) (-589 1372358 1372664 1373083 "IXAGG-" 1373088 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-588 1367938 1372280 1372339 "IVECTOR" 1372344 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-587 1366704 1366941 1367207 "ITUPLE" 1367705 NIL ITUPLE (NIL T) -8 NIL NIL) (-586 1365140 1365317 1365623 "ITRIGMNP" 1366526 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-585 1363885 1364089 1364372 "ITFUN3" 1364916 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-584 1363517 1363574 1363683 "ITFUN2" 1363822 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-583 1361354 1362379 1362678 "ITAYLOR" 1363251 NIL ITAYLOR (NIL T) -8 NIL NIL) (-582 1350336 1355491 1356654 "ISUPS" 1360224 NIL ISUPS (NIL T) -8 NIL NIL) (-581 1349440 1349580 1349816 "ISUMP" 1350183 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-580 1344704 1349241 1349320 "ISTRING" 1349393 NIL ISTRING (NIL NIL) -8 NIL NIL) (-579 1344207 1344425 1344517 "ISAST" 1344632 T ISAST (NIL) -8 NIL NIL) (-578 1343417 1343498 1343714 "IRURPK" 1344121 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-577 1342353 1342554 1342794 "IRSN" 1343197 T IRSN (NIL) -7 NIL NIL) (-576 1340382 1340737 1341173 "IRRF2F" 1341991 NIL IRRF2F (NIL T) -7 NIL NIL) (-575 1340129 1340167 1340243 "IRREDFFX" 1340338 NIL IRREDFFX (NIL T) -7 NIL NIL) (-574 1338744 1339003 1339302 "IROOT" 1339862 NIL IROOT (NIL T) -7 NIL NIL) (-573 1335376 1336428 1337120 "IR" 1338084 NIL IR (NIL T) -8 NIL NIL) (-572 1332989 1333484 1334050 "IR2" 1334854 NIL IR2 (NIL T T) -7 NIL NIL) (-571 1332061 1332174 1332395 "IR2F" 1332872 NIL IR2F (NIL T T) -7 NIL NIL) (-570 1331852 1331886 1331946 "IPRNTPK" 1332021 T IPRNTPK (NIL) -7 NIL NIL) (-569 1328471 1331741 1331810 "IPF" 1331815 NIL IPF (NIL NIL) -8 NIL NIL) (-568 1326834 1328396 1328453 "IPADIC" 1328458 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-567 1326165 1326392 1326529 "IP4ADDR" 1326717 T IP4ADDR (NIL) -8 NIL NIL) (-566 1325665 1325869 1325979 "IOMODE" 1326075 T IOMODE (NIL) -8 NIL NIL) (-565 1325023 1325262 1325389 "IOBFILE" 1325558 T IOBFILE (NIL) -8 NIL NIL) (-564 1324787 1324927 1324955 "IOBCON" 1324960 T IOBCON (NIL) -9 NIL 1324981) (-563 1324284 1324342 1324532 "INVLAPLA" 1324723 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1313933 1316286 1318672 "INTTR" 1321948 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1310277 1311019 1311883 "INTTOOLS" 1313118 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1309863 1309954 1310071 "INTSLPE" 1310180 T INTSLPE (NIL) -7 NIL NIL) (-559 1307858 1309786 1309845 "INTRVL" 1309850 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1305460 1305972 1306547 "INTRF" 1307343 NIL INTRF (NIL T) -7 NIL NIL) (-557 1304871 1304968 1305110 "INTRET" 1305358 NIL INTRET (NIL T) -7 NIL NIL) (-556 1302868 1303257 1303727 "INTRAT" 1304479 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1300096 1300679 1301305 "INTPM" 1302353 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1296799 1297398 1298143 "INTPAF" 1299482 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1291978 1292940 1293991 "INTPACK" 1295768 T INTPACK (NIL) -7 NIL NIL) (-552 1288890 1291707 1291834 "INT" 1291871 T INT (NIL) -8 NIL NIL) (-551 1288142 1288294 1288502 "INTHERTR" 1288732 NIL INTHERTR (NIL T T) -7 NIL NIL) (-550 1287581 1287661 1287849 "INTHERAL" 1288056 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-549 1285427 1285870 1286327 "INTHEORY" 1287144 T INTHEORY (NIL) -7 NIL NIL) (-548 1276735 1278356 1280135 "INTG0" 1283779 NIL INTG0 (NIL T T T) -7 NIL NIL) (-547 1257308 1262098 1266908 "INTFTBL" 1271945 T INTFTBL (NIL) -8 NIL NIL) (-546 1256557 1256695 1256868 "INTFACT" 1257167 NIL INTFACT (NIL T) -7 NIL NIL) (-545 1253942 1254388 1254952 "INTEF" 1256111 NIL INTEF (NIL T T) -7 NIL NIL) (-544 1252444 1253149 1253177 "INTDOM" 1253478 T INTDOM (NIL) -9 NIL 1253685) (-543 1251813 1251987 1252229 "INTDOM-" 1252234 NIL INTDOM- (NIL T) -8 NIL NIL) (-542 1248346 1250232 1250286 "INTCAT" 1251085 NIL INTCAT (NIL T) -9 NIL 1251405) (-541 1247819 1247921 1248049 "INTBIT" 1248238 T INTBIT (NIL) -7 NIL NIL) (-540 1246490 1246644 1246958 "INTALG" 1247664 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-539 1245947 1246037 1246207 "INTAF" 1246394 NIL INTAF (NIL T T) -7 NIL NIL) (-538 1239401 1245757 1245897 "INTABL" 1245902 NIL INTABL (NIL T T T) -8 NIL NIL) (-537 1234454 1237125 1237153 "INS" 1238087 T INS (NIL) -9 NIL 1238752) (-536 1231694 1232465 1233439 "INS-" 1233512 NIL INS- (NIL T) -8 NIL NIL) (-535 1230469 1230696 1230994 "INPSIGN" 1231447 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1229587 1229704 1229901 "INPRODPF" 1230349 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1228481 1228598 1228835 "INPRODFF" 1229467 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1227481 1227633 1227893 "INNMFACT" 1228317 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1226678 1226775 1226963 "INMODGCD" 1227380 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1225187 1225431 1225755 "INFSP" 1226423 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1224371 1224488 1224671 "INFPROD0" 1225067 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1221253 1222436 1222951 "INFORM" 1223864 T INFORM (NIL) -8 NIL NIL) (-527 1220863 1220923 1221021 "INFORM1" 1221188 NIL INFORM1 (NIL T) -7 NIL NIL) (-526 1220386 1220475 1220589 "INFINITY" 1220769 T INFINITY (NIL) -7 NIL NIL) (-525 1219829 1220104 1220212 "INETCLTS" 1220298 T INETCLTS (NIL) -8 NIL NIL) (-524 1218446 1218695 1219016 "INEP" 1219577 NIL INEP (NIL T T T) -7 NIL NIL) (-523 1217722 1218343 1218408 "INDE" 1218413 NIL INDE (NIL T) -8 NIL NIL) (-522 1217286 1217354 1217471 "INCRMAPS" 1217649 NIL INCRMAPS (NIL T) -7 NIL NIL) (-521 1216304 1216555 1216761 "INBFILE" 1217100 T INBFILE (NIL) -8 NIL NIL) (-520 1211615 1212540 1213484 "INBFF" 1215392 NIL INBFF (NIL T) -7 NIL NIL) (-519 1211284 1211360 1211388 "INBCON" 1211521 T INBCON (NIL) -9 NIL 1211599) (-518 1211124 1211159 1211235 "INBCON-" 1211240 NIL INBCON- (NIL T) -8 NIL NIL) (-517 1210626 1210845 1210937 "INAST" 1211052 T INAST (NIL) -8 NIL NIL) (-516 1210080 1210305 1210411 "IMPTAST" 1210540 T IMPTAST (NIL) -8 NIL NIL) (-515 1206574 1209924 1210028 "IMATRIX" 1210033 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-514 1205286 1205409 1205724 "IMATQF" 1206430 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-513 1203506 1203733 1204070 "IMATLIN" 1205042 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-512 1198132 1203430 1203488 "ILIST" 1203493 NIL ILIST (NIL T NIL) -8 NIL NIL) (-511 1196085 1197992 1198105 "IIARRAY2" 1198110 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-510 1191518 1195996 1196060 "IFF" 1196065 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-509 1190892 1191135 1191251 "IFAST" 1191422 T IFAST (NIL) -8 NIL NIL) (-508 1185935 1190184 1190372 "IFARRAY" 1190749 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-507 1185142 1185839 1185912 "IFAMON" 1185917 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-506 1184726 1184791 1184845 "IEVALAB" 1185052 NIL IEVALAB (NIL T T) -9 NIL NIL) (-505 1184401 1184469 1184629 "IEVALAB-" 1184634 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-504 1184059 1184315 1184378 "IDPO" 1184383 NIL IDPO (NIL T T) -8 NIL NIL) (-503 1183336 1183948 1184023 "IDPOAMS" 1184028 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1182670 1183225 1183300 "IDPOAM" 1183305 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1181755 1182005 1182058 "IDPC" 1182471 NIL IDPC (NIL T T) -9 NIL 1182620) (-500 1181251 1181647 1181720 "IDPAM" 1181725 NIL IDPAM (NIL T T) -8 NIL NIL) (-499 1180654 1181143 1181216 "IDPAG" 1181221 NIL IDPAG (NIL T T) -8 NIL NIL) (-498 1180384 1180569 1180619 "IDENT" 1180624 T IDENT (NIL) -8 NIL NIL) (-497 1176639 1177487 1178382 "IDECOMP" 1179541 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-496 1169512 1170562 1171609 "IDEAL" 1175675 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-495 1168676 1168788 1168987 "ICDEN" 1169396 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-494 1167775 1168156 1168303 "ICARD" 1168549 T ICARD (NIL) -8 NIL NIL) (-493 1165835 1166148 1166553 "IBPTOOLS" 1167452 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-492 1161469 1165455 1165568 "IBITS" 1165754 NIL IBITS (NIL NIL) -8 NIL NIL) (-491 1158192 1158768 1159463 "IBATOOL" 1160886 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-490 1155972 1156433 1156966 "IBACHIN" 1157727 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-489 1153849 1155818 1155921 "IARRAY2" 1155926 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-488 1150002 1153775 1153832 "IARRAY1" 1153837 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-487 1143995 1148414 1148895 "IAN" 1149541 T IAN (NIL) -8 NIL NIL) (-486 1143506 1143563 1143736 "IALGFACT" 1143932 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-485 1143034 1143147 1143175 "HYPCAT" 1143382 T HYPCAT (NIL) -9 NIL NIL) (-484 1142572 1142689 1142875 "HYPCAT-" 1142880 NIL HYPCAT- (NIL T) -8 NIL NIL) (-483 1142194 1142367 1142450 "HOSTNAME" 1142509 T HOSTNAME (NIL) -8 NIL NIL) (-482 1138873 1140204 1140245 "HOAGG" 1141226 NIL HOAGG (NIL T) -9 NIL 1141905) (-481 1137467 1137866 1138392 "HOAGG-" 1138397 NIL HOAGG- (NIL T T) -8 NIL NIL) (-480 1131353 1136908 1137074 "HEXADEC" 1137321 T HEXADEC (NIL) -8 NIL NIL) (-479 1130101 1130323 1130586 "HEUGCD" 1131130 NIL HEUGCD (NIL T) -7 NIL NIL) (-478 1129204 1129938 1130068 "HELLFDIV" 1130073 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-477 1127432 1128981 1129069 "HEAP" 1129148 NIL HEAP (NIL T) -8 NIL NIL) (-476 1126723 1126984 1127118 "HEADAST" 1127318 T HEADAST (NIL) -8 NIL NIL) (-475 1120643 1126638 1126700 "HDP" 1126705 NIL HDP (NIL NIL T) -8 NIL NIL) (-474 1114394 1120278 1120430 "HDMP" 1120544 NIL HDMP (NIL NIL T) -8 NIL NIL) (-473 1113719 1113858 1114022 "HB" 1114250 T HB (NIL) -7 NIL NIL) (-472 1107216 1113565 1113669 "HASHTBL" 1113674 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-471 1106719 1106937 1107029 "HASAST" 1107144 T HASAST (NIL) -8 NIL NIL) (-470 1104531 1106341 1106523 "HACKPI" 1106557 T HACKPI (NIL) -8 NIL NIL) (-469 1100226 1104384 1104497 "GTSET" 1104502 NIL GTSET (NIL T T T T) -8 NIL NIL) (-468 1093752 1100104 1100202 "GSTBL" 1100207 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-467 1086065 1092783 1093048 "GSERIES" 1093543 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-466 1085232 1085623 1085651 "GROUP" 1085854 T GROUP (NIL) -9 NIL 1085988) (-465 1084598 1084757 1085008 "GROUP-" 1085013 NIL GROUP- (NIL T) -8 NIL NIL) (-464 1082967 1083286 1083673 "GROEBSOL" 1084275 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-463 1081907 1082169 1082220 "GRMOD" 1082749 NIL GRMOD (NIL T T) -9 NIL 1082917) (-462 1081675 1081711 1081839 "GRMOD-" 1081844 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-461 1077000 1078029 1079029 "GRIMAGE" 1080695 T GRIMAGE (NIL) -8 NIL NIL) (-460 1075467 1075727 1076051 "GRDEF" 1076696 T GRDEF (NIL) -7 NIL NIL) (-459 1074911 1075027 1075168 "GRAY" 1075346 T GRAY (NIL) -7 NIL NIL) (-458 1074142 1074522 1074573 "GRALG" 1074726 NIL GRALG (NIL T T) -9 NIL 1074819) (-457 1073803 1073876 1074039 "GRALG-" 1074044 NIL GRALG- (NIL T T T) -8 NIL NIL) (-456 1070607 1073388 1073566 "GPOLSET" 1073710 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-455 1069961 1070018 1070276 "GOSPER" 1070544 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-454 1065720 1066399 1066925 "GMODPOL" 1069660 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-453 1064725 1064909 1065147 "GHENSEL" 1065532 NIL GHENSEL (NIL T T) -7 NIL NIL) (-452 1058776 1059619 1060646 "GENUPS" 1063809 NIL GENUPS (NIL T T) -7 NIL NIL) (-451 1058473 1058524 1058613 "GENUFACT" 1058719 NIL GENUFACT (NIL T) -7 NIL NIL) (-450 1057885 1057962 1058127 "GENPGCD" 1058391 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-449 1057359 1057394 1057607 "GENMFACT" 1057844 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-448 1055927 1056182 1056489 "GENEEZ" 1057102 NIL GENEEZ (NIL T T) -7 NIL NIL) (-447 1049840 1055538 1055700 "GDMP" 1055850 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-446 1039217 1043611 1044717 "GCNAALG" 1048823 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-445 1037679 1038507 1038535 "GCDDOM" 1038790 T GCDDOM (NIL) -9 NIL 1038947) (-444 1037149 1037276 1037491 "GCDDOM-" 1037496 NIL GCDDOM- (NIL T) -8 NIL NIL) (-443 1035821 1036006 1036310 "GB" 1036928 NIL GB (NIL T T T T) -7 NIL NIL) (-442 1024441 1026767 1029159 "GBINTERN" 1033512 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1022278 1022570 1022991 "GBF" 1024116 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1021059 1021224 1021491 "GBEUCLID" 1022094 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1020408 1020533 1020682 "GAUSSFAC" 1020930 T GAUSSFAC (NIL) -7 NIL NIL) (-438 1018775 1019077 1019391 "GALUTIL" 1020127 NIL GALUTIL (NIL T) -7 NIL NIL) (-437 1017083 1017357 1017681 "GALPOLYU" 1018502 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-436 1014448 1014738 1015145 "GALFACTU" 1016780 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-435 1006254 1007753 1009361 "GALFACT" 1012880 NIL GALFACT (NIL T) -7 NIL NIL) (-434 1003642 1004300 1004328 "FVFUN" 1005484 T FVFUN (NIL) -9 NIL 1006204) (-433 1002908 1003090 1003118 "FVC" 1003409 T FVC (NIL) -9 NIL 1003592) (-432 1002550 1002705 1002786 "FUNCTION" 1002860 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-431 1000220 1000771 1001260 "FT" 1002081 T FT (NIL) -8 NIL NIL) (-430 999038 999521 999724 "FTEM" 1000037 T FTEM (NIL) -8 NIL NIL) (-429 997294 997583 997987 "FSUPFACT" 998729 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-428 995691 995980 996312 "FST" 996982 T FST (NIL) -8 NIL NIL) (-427 994862 994968 995163 "FSRED" 995573 NIL FSRED (NIL T T) -7 NIL NIL) (-426 993541 993796 994150 "FSPRMELT" 994577 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-425 990626 991064 991563 "FSPECF" 993104 NIL FSPECF (NIL T T) -7 NIL NIL) (-424 973068 981510 981550 "FS" 985398 NIL FS (NIL T) -9 NIL 987687) (-423 961718 964708 968764 "FS-" 969061 NIL FS- (NIL T T) -8 NIL NIL) (-422 961232 961286 961463 "FSINT" 961659 NIL FSINT (NIL T T) -7 NIL NIL) (-421 959559 960225 960528 "FSERIES" 961011 NIL FSERIES (NIL T T) -8 NIL NIL) (-420 958573 958689 958920 "FSCINT" 959439 NIL FSCINT (NIL T T) -7 NIL NIL) (-419 954807 957517 957558 "FSAGG" 957928 NIL FSAGG (NIL T) -9 NIL 958187) (-418 952569 953170 953966 "FSAGG-" 954061 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 951611 951754 951981 "FSAGG2" 952422 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-416 949266 949545 950099 "FS2UPS" 951329 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-415 948848 948891 949046 "FS2" 949217 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 947705 947876 948185 "FS2EXPXP" 948673 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-413 947131 947246 947398 "FRUTIL" 947585 NIL FRUTIL (NIL T) -7 NIL NIL) (-412 938586 942626 943984 "FR" 945805 NIL FR (NIL T) -8 NIL NIL) (-411 933661 936304 936344 "FRNAALG" 937740 NIL FRNAALG (NIL T) -9 NIL 938347) (-410 929339 930410 931685 "FRNAALG-" 932435 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 928977 929020 929147 "FRNAAF2" 929290 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 927384 927831 928126 "FRMOD" 928789 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 925163 925767 926084 "FRIDEAL" 927175 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-406 924358 924445 924734 "FRIDEAL2" 925070 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-405 923600 924014 924055 "FRETRCT" 924060 NIL FRETRCT (NIL T) -9 NIL 924236) (-404 922712 922943 923294 "FRETRCT-" 923299 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 919962 921138 921197 "FRAMALG" 922079 NIL FRAMALG (NIL T T) -9 NIL 922371) (-402 918096 918551 919181 "FRAMALG-" 919404 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 912054 917571 917847 "FRAC" 917852 NIL FRAC (NIL T) -8 NIL NIL) (-400 911690 911747 911854 "FRAC2" 911991 NIL FRAC2 (NIL T T) -7 NIL NIL) (-399 911326 911383 911490 "FR2" 911627 NIL FR2 (NIL T T) -7 NIL NIL) (-398 906055 908903 908931 "FPS" 910050 T FPS (NIL) -9 NIL 910607) (-397 905504 905613 905777 "FPS-" 905923 NIL FPS- (NIL T) -8 NIL NIL) (-396 903010 904645 904673 "FPC" 904898 T FPC (NIL) -9 NIL 905040) (-395 902803 902843 902940 "FPC-" 902945 NIL FPC- (NIL T) -8 NIL NIL) (-394 901681 902291 902332 "FPATMAB" 902337 NIL FPATMAB (NIL T) -9 NIL 902489) (-393 899381 899857 900283 "FPARFRAC" 901318 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-392 894774 895273 895955 "FORTRAN" 898813 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-391 892490 892990 893529 "FORT" 894255 T FORT (NIL) -7 NIL NIL) (-390 890166 890728 890756 "FORTFN" 891816 T FORTFN (NIL) -9 NIL 892440) (-389 889930 889980 890008 "FORTCAT" 890067 T FORTCAT (NIL) -9 NIL 890129) (-388 887990 888473 888872 "FORMULA" 889551 T FORMULA (NIL) -8 NIL NIL) (-387 887778 887808 887877 "FORMULA1" 887954 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 887301 887353 887526 "FORDER" 887720 NIL FORDER (NIL T T T T) -7 NIL NIL) (-385 886397 886561 886754 "FOP" 887128 T FOP (NIL) -7 NIL NIL) (-384 885005 885677 885851 "FNLA" 886279 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-383 883673 884062 884090 "FNCAT" 884662 T FNCAT (NIL) -9 NIL 884955) (-382 883239 883632 883660 "FNAME" 883665 T FNAME (NIL) -8 NIL NIL) (-381 881937 882866 882894 "FMTC" 882899 T FMTC (NIL) -9 NIL 882935) (-380 878299 879460 880089 "FMONOID" 881341 NIL FMONOID (NIL T) -8 NIL NIL) (-379 877518 878041 878190 "FM" 878195 NIL FM (NIL T T) -8 NIL NIL) (-378 874942 875588 875616 "FMFUN" 876760 T FMFUN (NIL) -9 NIL 877468) (-377 874211 874392 874420 "FMC" 874710 T FMC (NIL) -9 NIL 874892) (-376 871423 872257 872311 "FMCAT" 873506 NIL FMCAT (NIL T T) -9 NIL 874001) (-375 870316 871189 871289 "FM1" 871368 NIL FM1 (NIL T T) -8 NIL NIL) (-374 868090 868506 869000 "FLOATRP" 869867 NIL FLOATRP (NIL T) -7 NIL NIL) (-373 861641 865746 866376 "FLOAT" 867480 T FLOAT (NIL) -8 NIL NIL) (-372 859079 859579 860157 "FLOATCP" 861108 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 857908 858712 858753 "FLINEXP" 858758 NIL FLINEXP (NIL T) -9 NIL 858851) (-370 857062 857297 857625 "FLINEXP-" 857630 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-369 856138 856282 856506 "FLASORT" 856914 NIL FLASORT (NIL T T) -7 NIL NIL) (-368 853355 854197 854249 "FLALG" 855476 NIL FLALG (NIL T T) -9 NIL 855943) (-367 847139 850841 850882 "FLAGG" 852144 NIL FLAGG (NIL T) -9 NIL 852796) (-366 845865 846204 846694 "FLAGG-" 846699 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 844907 845050 845277 "FLAGG2" 845718 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-364 841920 842894 842953 "FINRALG" 844081 NIL FINRALG (NIL T T) -9 NIL 844589) (-363 841080 841309 841648 "FINRALG-" 841653 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-362 840486 840699 840727 "FINITE" 840923 T FINITE (NIL) -9 NIL 841030) (-361 832944 835105 835145 "FINAALG" 838812 NIL FINAALG (NIL T) -9 NIL 840265) (-360 828285 829326 830470 "FINAALG-" 831849 NIL FINAALG- (NIL T T) -8 NIL NIL) (-359 827680 828040 828143 "FILE" 828215 NIL FILE (NIL T) -8 NIL NIL) (-358 826364 826676 826730 "FILECAT" 827414 NIL FILECAT (NIL T T) -9 NIL 827630) (-357 824284 825778 825806 "FIELD" 825846 T FIELD (NIL) -9 NIL 825926) (-356 822904 823289 823800 "FIELD-" 823805 NIL FIELD- (NIL T) -8 NIL NIL) (-355 820782 821539 821886 "FGROUP" 822590 NIL FGROUP (NIL T) -8 NIL NIL) (-354 819872 820036 820256 "FGLMICPK" 820614 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-353 815739 819797 819854 "FFX" 819859 NIL FFX (NIL T NIL) -8 NIL NIL) (-352 815340 815401 815536 "FFSLPE" 815672 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-351 811333 812112 812908 "FFPOLY" 814576 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 810837 810873 811082 "FFPOLY2" 811291 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 806723 810756 810819 "FFP" 810824 NIL FFP (NIL T NIL) -8 NIL NIL) (-348 802156 806634 806698 "FF" 806703 NIL FF (NIL NIL NIL) -8 NIL NIL) (-347 797317 801499 801689 "FFNBX" 802010 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 792291 796452 796710 "FFNBP" 797171 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 786959 791575 791786 "FFNB" 792124 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 785791 785989 786304 "FFINTBAS" 786756 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 782075 784250 784278 "FFIELDC" 784898 T FFIELDC (NIL) -9 NIL 785274) (-342 780738 781108 781605 "FFIELDC-" 781610 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 780308 780353 780477 "FFHOM" 780680 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 778006 778490 779007 "FFF" 779823 NIL FFF (NIL T) -7 NIL NIL) (-339 773659 777748 777849 "FFCGX" 777949 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 769326 773391 773498 "FFCGP" 773602 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 764544 769053 769161 "FFCG" 769262 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 746602 755638 755724 "FFCAT" 760889 NIL FFCAT (NIL T T T) -9 NIL 762340) (-335 741800 742847 744161 "FFCAT-" 745391 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-334 741211 741254 741489 "FFCAT2" 741751 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-333 730423 734183 735403 "FEXPR" 740063 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-332 729423 729858 729899 "FEVALAB" 729983 NIL FEVALAB (NIL T) -9 NIL 730244) (-331 728582 728792 729130 "FEVALAB-" 729135 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-330 727175 727965 728168 "FDIV" 728481 NIL FDIV (NIL T T T T) -8 NIL NIL) (-329 724241 724956 725071 "FDIVCAT" 726639 NIL FDIVCAT (NIL T T T T) -9 NIL 727076) (-328 724003 724030 724200 "FDIVCAT-" 724205 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 723223 723310 723587 "FDIV2" 723910 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 721909 722168 722457 "FCPAK1" 722954 T FCPAK1 (NIL) -7 NIL NIL) (-325 721037 721409 721550 "FCOMP" 721800 NIL FCOMP (NIL T) -8 NIL NIL) (-324 704672 708086 711647 "FC" 717496 T FC (NIL) -8 NIL NIL) (-323 697325 701306 701346 "FAXF" 703148 NIL FAXF (NIL T) -9 NIL 703840) (-322 694604 695259 696084 "FAXF-" 696549 NIL FAXF- (NIL T T) -8 NIL NIL) (-321 689704 693980 694156 "FARRAY" 694461 NIL FARRAY (NIL T) -8 NIL NIL) (-320 685111 687143 687196 "FAMR" 688219 NIL FAMR (NIL T T) -9 NIL 688679) (-319 684001 684303 684738 "FAMR-" 684743 NIL FAMR- (NIL T T T) -8 NIL NIL) (-318 683197 683923 683976 "FAMONOID" 683981 NIL FAMONOID (NIL T) -8 NIL NIL) (-317 681027 681711 681764 "FAMONC" 682705 NIL FAMONC (NIL T T) -9 NIL 683091) (-316 679719 680781 680918 "FAGROUP" 680923 NIL FAGROUP (NIL T) -8 NIL NIL) (-315 677514 677833 678236 "FACUTIL" 679400 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-314 676613 676798 677020 "FACTFUNC" 677324 NIL FACTFUNC (NIL T) -7 NIL NIL) (-313 669018 675864 676076 "EXPUPXS" 676469 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-312 666501 667041 667627 "EXPRTUBE" 668452 T EXPRTUBE (NIL) -7 NIL NIL) (-311 662695 663287 664024 "EXPRODE" 665840 NIL EXPRODE (NIL T T) -7 NIL NIL) (-310 648069 661350 661778 "EXPR" 662299 NIL EXPR (NIL T) -8 NIL NIL) (-309 642476 643063 643876 "EXPR2UPS" 647367 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 642112 642169 642276 "EXPR2" 642413 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 633517 641244 641541 "EXPEXPAN" 641949 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-306 633344 633474 633503 "EXIT" 633508 T EXIT (NIL) -8 NIL NIL) (-305 632851 633068 633159 "EXITAST" 633273 T EXITAST (NIL) -8 NIL NIL) (-304 632478 632540 632653 "EVALCYC" 632783 NIL EVALCYC (NIL T) -7 NIL NIL) (-303 632019 632137 632178 "EVALAB" 632348 NIL EVALAB (NIL T) -9 NIL 632452) (-302 631500 631622 631843 "EVALAB-" 631848 NIL EVALAB- (NIL T T) -8 NIL NIL) (-301 629003 630271 630299 "EUCDOM" 630854 T EUCDOM (NIL) -9 NIL 631204) (-300 627408 627850 628440 "EUCDOM-" 628445 NIL EUCDOM- (NIL T) -8 NIL NIL) (-299 614948 617706 620456 "ESTOOLS" 624678 T ESTOOLS (NIL) -7 NIL NIL) (-298 614580 614637 614746 "ESTOOLS2" 614885 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 614331 614373 614453 "ESTOOLS1" 614532 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 608256 609984 610012 "ES" 612780 T ES (NIL) -9 NIL 614189) (-295 603203 604490 606307 "ES-" 606471 NIL ES- (NIL T) -8 NIL NIL) (-294 599578 600338 601118 "ESCONT" 602443 T ESCONT (NIL) -7 NIL NIL) (-293 599323 599355 599437 "ESCONT1" 599540 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-292 598998 599048 599148 "ES2" 599267 NIL ES2 (NIL T T) -7 NIL NIL) (-291 598628 598686 598795 "ES1" 598934 NIL ES1 (NIL T T) -7 NIL NIL) (-290 597844 597973 598149 "ERROR" 598472 T ERROR (NIL) -7 NIL NIL) (-289 591347 597703 597794 "EQTBL" 597799 NIL EQTBL (NIL T T) -8 NIL NIL) (-288 583904 586661 588110 "EQ" 589931 NIL -3909 (NIL T) -8 NIL NIL) (-287 583536 583593 583702 "EQ2" 583841 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 578828 579874 580967 "EP" 582475 NIL EP (NIL T) -7 NIL NIL) (-285 577410 577711 578028 "ENV" 578531 T ENV (NIL) -8 NIL NIL) (-284 576609 577129 577157 "ENTIRER" 577162 T ENTIRER (NIL) -9 NIL 577208) (-283 573111 574564 574934 "EMR" 576408 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-282 572255 572440 572494 "ELTAGG" 572874 NIL ELTAGG (NIL T T) -9 NIL 573085) (-281 571974 572036 572177 "ELTAGG-" 572182 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-280 571763 571792 571846 "ELTAB" 571930 NIL ELTAB (NIL T T) -9 NIL NIL) (-279 570889 571035 571234 "ELFUTS" 571614 NIL ELFUTS (NIL T T) -7 NIL NIL) (-278 570631 570687 570715 "ELEMFUN" 570820 T ELEMFUN (NIL) -9 NIL NIL) (-277 570501 570522 570590 "ELEMFUN-" 570595 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-276 565392 568601 568642 "ELAGG" 569582 NIL ELAGG (NIL T) -9 NIL 570045) (-275 563677 564111 564774 "ELAGG-" 564779 NIL ELAGG- (NIL T T) -8 NIL NIL) (-274 562334 562614 562909 "ELABEXPR" 563402 T ELABEXPR (NIL) -8 NIL NIL) (-273 555200 557001 557828 "EFUPXS" 561610 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-272 548650 550451 551261 "EFULS" 554476 NIL EFULS (NIL T T T) -8 NIL NIL) (-271 546072 546430 546909 "EFSTRUC" 548282 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-270 535144 536709 538269 "EF" 544587 NIL EF (NIL T T) -7 NIL NIL) (-269 534245 534629 534778 "EAB" 535015 T EAB (NIL) -8 NIL NIL) (-268 533454 534204 534232 "E04UCFA" 534237 T E04UCFA (NIL) -8 NIL NIL) (-267 532663 533413 533441 "E04NAFA" 533446 T E04NAFA (NIL) -8 NIL NIL) (-266 531872 532622 532650 "E04MBFA" 532655 T E04MBFA (NIL) -8 NIL NIL) (-265 531081 531831 531859 "E04JAFA" 531864 T E04JAFA (NIL) -8 NIL NIL) (-264 530292 531040 531068 "E04GCFA" 531073 T E04GCFA (NIL) -8 NIL NIL) (-263 529503 530251 530279 "E04FDFA" 530284 T E04FDFA (NIL) -8 NIL NIL) (-262 528712 529462 529490 "E04DGFA" 529495 T E04DGFA (NIL) -8 NIL NIL) (-261 522890 524237 525601 "E04AGNT" 527368 T E04AGNT (NIL) -7 NIL NIL) (-260 521614 522094 522134 "DVARCAT" 522609 NIL DVARCAT (NIL T) -9 NIL 522808) (-259 520818 521030 521344 "DVARCAT-" 521349 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-258 513718 520617 520746 "DSMP" 520751 NIL DSMP (NIL T T T) -8 NIL NIL) (-257 508528 509663 510731 "DROPT" 512670 T DROPT (NIL) -8 NIL NIL) (-256 508193 508252 508350 "DROPT1" 508463 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 503308 504434 505571 "DROPT0" 507076 T DROPT0 (NIL) -7 NIL NIL) (-254 501653 501978 502364 "DRAWPT" 502942 T DRAWPT (NIL) -7 NIL NIL) (-253 496240 497163 498242 "DRAW" 500627 NIL DRAW (NIL T) -7 NIL NIL) (-252 495873 495926 496044 "DRAWHACK" 496181 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 494604 494873 495164 "DRAWCX" 495602 T DRAWCX (NIL) -7 NIL NIL) (-250 494120 494188 494339 "DRAWCURV" 494530 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 484591 486550 488665 "DRAWCFUN" 492025 T DRAWCFUN (NIL) -7 NIL NIL) (-248 481404 483286 483327 "DQAGG" 483956 NIL DQAGG (NIL T) -9 NIL 484229) (-247 469923 476620 476703 "DPOLCAT" 478555 NIL DPOLCAT (NIL T T T T) -9 NIL 479100) (-246 464762 466108 468066 "DPOLCAT-" 468071 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-245 457917 464623 464721 "DPMO" 464726 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-244 450975 457697 457864 "DPMM" 457869 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-243 450395 450598 450712 "DOMAIN" 450881 T DOMAIN (NIL) -8 NIL NIL) (-242 444146 450030 450182 "DMP" 450296 NIL DMP (NIL NIL T) -8 NIL NIL) (-241 443746 443802 443946 "DLP" 444084 NIL DLP (NIL T) -7 NIL NIL) (-240 437390 442847 443074 "DLIST" 443551 NIL DLIST (NIL T) -8 NIL NIL) (-239 434236 436245 436286 "DLAGG" 436836 NIL DLAGG (NIL T) -9 NIL 437065) (-238 433086 433716 433744 "DIVRING" 433836 T DIVRING (NIL) -9 NIL 433919) (-237 432323 432513 432813 "DIVRING-" 432818 NIL DIVRING- (NIL T) -8 NIL NIL) (-236 430425 430782 431188 "DISPLAY" 431937 T DISPLAY (NIL) -7 NIL NIL) (-235 424367 430339 430402 "DIRPROD" 430407 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 423215 423418 423683 "DIRPROD2" 424160 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 412753 418705 418758 "DIRPCAT" 419168 NIL DIRPCAT (NIL NIL T) -9 NIL 420008) (-232 410079 410721 411602 "DIRPCAT-" 411939 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-231 409366 409526 409712 "DIOSP" 409913 T DIOSP (NIL) -7 NIL NIL) (-230 406068 408278 408319 "DIOPS" 408753 NIL DIOPS (NIL T) -9 NIL 408982) (-229 405617 405731 405922 "DIOPS-" 405927 NIL DIOPS- (NIL T T) -8 NIL NIL) (-228 404529 405123 405151 "DIFRING" 405338 T DIFRING (NIL) -9 NIL 405448) (-227 404175 404252 404404 "DIFRING-" 404409 NIL DIFRING- (NIL T) -8 NIL NIL) (-226 402000 403238 403279 "DIFEXT" 403642 NIL DIFEXT (NIL T) -9 NIL 403936) (-225 400285 400713 401379 "DIFEXT-" 401384 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-224 397607 399817 399858 "DIAGG" 399863 NIL DIAGG (NIL T) -9 NIL 399883) (-223 396991 397148 397400 "DIAGG-" 397405 NIL DIAGG- (NIL T T) -8 NIL NIL) (-222 392456 395950 396227 "DHMATRIX" 396760 NIL DHMATRIX (NIL T) -8 NIL NIL) (-221 388068 388977 389987 "DFSFUN" 391466 T DFSFUN (NIL) -7 NIL NIL) (-220 383184 386999 387311 "DFLOAT" 387776 T DFLOAT (NIL) -8 NIL NIL) (-219 381412 381693 382089 "DFINTTLS" 382892 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-218 378477 379433 379833 "DERHAM" 381078 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-217 376326 378252 378341 "DEQUEUE" 378421 NIL DEQUEUE (NIL T) -8 NIL NIL) (-216 375541 375674 375870 "DEGRED" 376188 NIL DEGRED (NIL T T) -7 NIL NIL) (-215 371936 372681 373534 "DEFINTRF" 374769 NIL DEFINTRF (NIL T) -7 NIL NIL) (-214 369463 369932 370531 "DEFINTEF" 371455 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-213 368840 369083 369198 "DEFAST" 369368 T DEFAST (NIL) -8 NIL NIL) (-212 362726 368281 368447 "DECIMAL" 368694 T DECIMAL (NIL) -8 NIL NIL) (-211 360238 360696 361202 "DDFACT" 362270 NIL DDFACT (NIL T T) -7 NIL NIL) (-210 359834 359877 360028 "DBLRESP" 360189 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-209 357544 357878 358247 "DBASE" 359592 NIL DBASE (NIL T) -8 NIL NIL) (-208 356813 357024 357170 "DATAARY" 357443 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-207 355946 356772 356800 "D03FAFA" 356805 T D03FAFA (NIL) -8 NIL NIL) (-206 355080 355905 355933 "D03EEFA" 355938 T D03EEFA (NIL) -8 NIL NIL) (-205 353030 353496 353985 "D03AGNT" 354611 T D03AGNT (NIL) -7 NIL NIL) (-204 352346 352989 353017 "D02EJFA" 353022 T D02EJFA (NIL) -8 NIL NIL) (-203 351662 352305 352333 "D02CJFA" 352338 T D02CJFA (NIL) -8 NIL NIL) (-202 350978 351621 351649 "D02BHFA" 351654 T D02BHFA (NIL) -8 NIL NIL) (-201 350294 350937 350965 "D02BBFA" 350970 T D02BBFA (NIL) -8 NIL NIL) (-200 343492 345080 346686 "D02AGNT" 348708 T D02AGNT (NIL) -7 NIL NIL) (-199 341261 341783 342329 "D01WGTS" 342966 T D01WGTS (NIL) -7 NIL NIL) (-198 340356 341220 341248 "D01TRNS" 341253 T D01TRNS (NIL) -8 NIL NIL) (-197 339451 340315 340343 "D01GBFA" 340348 T D01GBFA (NIL) -8 NIL NIL) (-196 338546 339410 339438 "D01FCFA" 339443 T D01FCFA (NIL) -8 NIL NIL) (-195 337641 338505 338533 "D01ASFA" 338538 T D01ASFA (NIL) -8 NIL NIL) (-194 336736 337600 337628 "D01AQFA" 337633 T D01AQFA (NIL) -8 NIL NIL) (-193 335831 336695 336723 "D01APFA" 336728 T D01APFA (NIL) -8 NIL NIL) (-192 334926 335790 335818 "D01ANFA" 335823 T D01ANFA (NIL) -8 NIL NIL) (-191 334021 334885 334913 "D01AMFA" 334918 T D01AMFA (NIL) -8 NIL NIL) (-190 333116 333980 334008 "D01ALFA" 334013 T D01ALFA (NIL) -8 NIL NIL) (-189 332211 333075 333103 "D01AKFA" 333108 T D01AKFA (NIL) -8 NIL NIL) (-188 331306 332170 332198 "D01AJFA" 332203 T D01AJFA (NIL) -8 NIL NIL) (-187 324603 326154 327715 "D01AGNT" 329765 T D01AGNT (NIL) -7 NIL NIL) (-186 323940 324068 324220 "CYCLOTOM" 324471 T CYCLOTOM (NIL) -7 NIL NIL) (-185 320675 321388 322115 "CYCLES" 323233 T CYCLES (NIL) -7 NIL NIL) (-184 319987 320121 320292 "CVMP" 320536 NIL CVMP (NIL T) -7 NIL NIL) (-183 317758 318016 318392 "CTRIGMNP" 319715 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-182 317175 317381 317495 "CTOR" 317664 T CTOR (NIL) -8 NIL NIL) (-181 316711 316906 317007 "CTORKIND" 317094 T CTORKIND (NIL) -8 NIL NIL) (-180 316222 316411 316510 "CTORCALL" 316632 T CTORCALL (NIL) -8 NIL NIL) (-179 315596 315695 315848 "CSTTOOLS" 316119 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 311395 312052 312810 "CRFP" 314908 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310897 311116 311208 "CRCEAST" 311323 T CRCEAST (NIL) -8 NIL NIL) (-176 309944 310129 310357 "CRAPACK" 310701 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 309328 309429 309633 "CPMATCH" 309820 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 309053 309081 309187 "CPIMA" 309294 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 305417 306089 306807 "COORDSYS" 308388 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304801 304930 305080 "CONTOUR" 305287 T CONTOUR (NIL) -8 NIL NIL) (-171 300727 302804 303296 "CONTFRAC" 304341 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 300607 300628 300656 "CONDUIT" 300693 T CONDUIT (NIL) -9 NIL NIL) (-169 299800 300320 300348 "COMRING" 300353 T COMRING (NIL) -9 NIL 300405) (-168 298881 299158 299342 "COMPPROP" 299636 T COMPPROP (NIL) -8 NIL NIL) (-167 298542 298577 298705 "COMPLPAT" 298840 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 288599 298351 298460 "COMPLEX" 298465 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 288235 288292 288399 "COMPLEX2" 288536 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287953 287988 288086 "COMPFACT" 288194 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 272357 282575 282615 "COMPCAT" 283619 NIL COMPCAT (NIL T) -9 NIL 285004) (-162 261872 264796 268423 "COMPCAT-" 268779 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 261601 261629 261732 "COMMUPC" 261838 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 261396 261429 261488 "COMMONOP" 261562 T COMMONOP (NIL) -7 NIL NIL) (-159 260979 261147 261234 "COMM" 261329 T COMM (NIL) -8 NIL NIL) (-158 260583 260783 260858 "COMMAAST" 260924 T COMMAAST (NIL) -8 NIL NIL) (-157 259832 260026 260054 "COMBOPC" 260392 T COMBOPC (NIL) -9 NIL 260567) (-156 258728 258938 259180 "COMBINAT" 259622 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254926 255499 256139 "COMBF" 258150 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253712 254042 254277 "COLOR" 254711 T COLOR (NIL) -8 NIL NIL) (-153 253215 253433 253525 "COLONAST" 253640 T COLONAST (NIL) -8 NIL NIL) (-152 252855 252902 253027 "CMPLXRT" 253162 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 252330 252555 252654 "CLLCTAST" 252776 T CLLCTAST (NIL) -8 NIL NIL) (-150 247832 248860 249940 "CLIP" 251270 T CLIP (NIL) -7 NIL NIL) (-149 246214 246938 247177 "CLIF" 247659 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-148 242436 244360 244401 "CLAGG" 245330 NIL CLAGG (NIL T) -9 NIL 245866) (-147 240858 241315 241898 "CLAGG-" 241903 NIL CLAGG- (NIL T T) -8 NIL NIL) (-146 240402 240487 240627 "CINTSLPE" 240767 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-145 237903 238374 238922 "CHVAR" 239930 NIL CHVAR (NIL T T T) -7 NIL NIL) (-144 237166 237686 237714 "CHARZ" 237719 T CHARZ (NIL) -9 NIL 237734) (-143 236920 236960 237038 "CHARPOL" 237120 NIL CHARPOL (NIL T) -7 NIL NIL) (-142 236067 236620 236648 "CHARNZ" 236695 T CHARNZ (NIL) -9 NIL 236751) (-141 234092 234757 235092 "CHAR" 235752 T CHAR (NIL) -8 NIL NIL) (-140 233818 233879 233907 "CFCAT" 234018 T CFCAT (NIL) -9 NIL NIL) (-139 233063 233174 233356 "CDEN" 233702 NIL CDEN (NIL T T T) -7 NIL NIL) (-138 229055 232216 232496 "CCLASS" 232803 T CCLASS (NIL) -8 NIL NIL) (-137 228974 229000 229035 "CATEGORY" 229040 T -10 (NIL) -8 NIL NIL) (-136 228448 228674 228773 "CATAST" 228895 T CATAST (NIL) -8 NIL NIL) (-135 227951 228169 228261 "CASEAST" 228376 T CASEAST (NIL) -8 NIL NIL) (-134 223003 223980 224733 "CARTEN" 227254 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 222111 222259 222480 "CARTEN2" 222850 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220453 221261 221518 "CARD" 221874 T CARD (NIL) -8 NIL NIL) (-131 220056 220257 220332 "CAPSLAST" 220398 T CAPSLAST (NIL) -8 NIL NIL) (-130 219428 219756 219784 "CACHSET" 219916 T CACHSET (NIL) -9 NIL 219993) (-129 218924 219220 219248 "CABMON" 219298 T CABMON (NIL) -9 NIL 219354) (-128 217851 218279 218475 "BYTE" 218748 T BYTE (NIL) -8 NIL NIL) (-127 213260 217319 217482 "BYTEBUF" 217708 T BYTEBUF (NIL) -8 NIL NIL) (-126 210817 212952 213059 "BTREE" 213186 NIL BTREE (NIL T) -8 NIL NIL) (-125 208315 210465 210587 "BTOURN" 210727 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205733 207786 207827 "BTCAT" 207895 NIL BTCAT (NIL T) -9 NIL 207972) (-123 205400 205480 205629 "BTCAT-" 205634 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200692 204543 204571 "BTAGG" 204793 T BTAGG (NIL) -9 NIL 204954) (-121 200182 200307 200513 "BTAGG-" 200518 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197226 199460 199675 "BSTREE" 199999 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196364 196490 196674 "BRILL" 197082 NIL BRILL (NIL T) -7 NIL NIL) (-118 193065 195092 195133 "BRAGG" 195782 NIL BRAGG (NIL T) -9 NIL 196039) (-117 191594 192000 192555 "BRAGG-" 192560 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184858 190940 191124 "BPADICRT" 191442 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183208 184795 184840 "BPADIC" 184845 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182906 182936 183050 "BOUNDZRO" 183172 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178421 179512 180379 "BOP" 182059 T BOP (NIL) -8 NIL NIL) (-112 176042 176486 177006 "BOP1" 177934 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174780 175466 175659 "BOOLEAN" 175869 T BOOLEAN (NIL) -8 NIL NIL) (-110 174142 174520 174574 "BMODULE" 174579 NIL BMODULE (NIL T T) -9 NIL 174644) (-109 169972 173940 174013 "BITS" 174089 T BITS (NIL) -8 NIL NIL) (-108 169384 169506 169648 "BINDING" 169850 T BINDING (NIL) -8 NIL NIL) (-107 163274 168828 168993 "BINARY" 169239 T BINARY (NIL) -8 NIL NIL) (-106 161101 162529 162570 "BGAGG" 162830 NIL BGAGG (NIL T) -9 NIL 162967) (-105 160932 160964 161055 "BGAGG-" 161060 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160030 160316 160521 "BFUNCT" 160747 T BFUNCT (NIL) -8 NIL NIL) (-103 158720 158898 159186 "BEZOUT" 159854 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155237 157572 157902 "BBTREE" 158423 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154971 155024 155052 "BASTYPE" 155171 T BASTYPE (NIL) -9 NIL NIL) (-100 154823 154852 154925 "BASTYPE-" 154930 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154261 154337 154487 "BALFACT" 154734 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153144 153676 153862 "AUTOMOR" 154106 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152870 152875 152901 "ATTREG" 152906 T ATTREG (NIL) -9 NIL NIL) (-96 151149 151567 151919 "ATTRBUT" 152536 T ATTRBUT (NIL) -8 NIL NIL) (-95 150784 150977 151043 "ATTRAST" 151101 T ATTRAST (NIL) -8 NIL NIL) (-94 150320 150433 150459 "ATRIG" 150660 T ATRIG (NIL) -9 NIL NIL) (-93 150129 150170 150257 "ATRIG-" 150262 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149751 149911 149937 "ASTCAT" 149995 T ASTCAT (NIL) -9 NIL 150058) (-91 149478 149537 149656 "ASTCAT-" 149661 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147675 149254 149342 "ASTACK" 149421 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146180 146477 146842 "ASSOCEQ" 147357 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145212 145839 145963 "ASP9" 146087 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144976 145160 145199 "ASP8" 145204 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143845 144581 144723 "ASP80" 144865 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142744 143480 143612 "ASP7" 143744 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141698 142421 142539 "ASP78" 142657 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140667 141378 141495 "ASP77" 141612 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139579 140305 140436 "ASP74" 140567 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138479 139214 139346 "ASP73" 139478 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137434 138156 138274 "ASP6" 138392 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136382 137111 137229 "ASP55" 137347 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135332 136056 136175 "ASP50" 136294 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134420 135033 135143 "ASP4" 135253 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133508 134121 134231 "ASP49" 134341 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132293 133047 133215 "ASP42" 133397 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131070 131826 131996 "ASP41" 132180 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130020 130747 130865 "ASP35" 130983 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129785 129968 130007 "ASP34" 130012 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129522 129589 129665 "ASP33" 129740 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128417 129157 129289 "ASP31" 129421 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128182 128365 128404 "ASP30" 128409 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127917 127986 128062 "ASP29" 128137 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127682 127865 127904 "ASP28" 127909 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP27" 127674 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126531 127145 127256 "ASP24" 127367 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125447 126172 126302 "ASP20" 126432 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124535 125148 125258 "ASP1" 125368 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123479 124209 124328 "ASP19" 124447 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123216 123283 123359 "ASP12" 123434 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122068 122815 122959 "ASP10" 123103 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119967 121912 122003 "ARRAY2" 122008 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115783 119615 119729 "ARRAY1" 119884 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114815 114988 115209 "ARRAY12" 115606 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109174 111045 111120 "ARR2CAT" 113750 NIL ARR2CAT (NIL T T T) -9 NIL 114508) (-55 106608 107352 108306 "ARR2CAT-" 108311 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105356 105508 105814 "APPRULE" 106444 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105007 105055 105174 "APPLYORE" 105302 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103981 104272 104467 "ANY" 104830 T ANY (NIL) -8 NIL NIL) (-51 103259 103382 103539 "ANY1" 103855 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100824 101696 102023 "ANTISYM" 102983 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100339 100528 100625 "ANON" 100745 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99332 "AN" 99903 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-516)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-213)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-660))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-660)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1247))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1247)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-136)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-131)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1093)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-95)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-665)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-509)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1045)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1248))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1248)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-517)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-151)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-655))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-655)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-305)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1017))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1017)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-177)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-951))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-951)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1052)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1068)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1074)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-612)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1144))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1144)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-153)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-135)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-471)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-579)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-498)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1136)))) (-3285 (*1 *2 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-552))))) +(-13 (-1061) (-1232) (-10 -8 (-15 -3285 ((-111) $ (|[\|\|]| (-516)))) (-15 -1512 ((-516) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-213)))) (-15 -1512 ((-213) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-660)))) (-15 -1512 ((-660) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1247)))) (-15 -1512 ((-1247) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-136)))) (-15 -1512 ((-136) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-131)))) (-15 -1512 ((-131) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1093)))) (-15 -1512 ((-1093) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-95)))) (-15 -1512 ((-95) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-665)))) (-15 -1512 ((-665) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-509)))) (-15 -1512 ((-509) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1045)))) (-15 -1512 ((-1045) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1248)))) (-15 -1512 ((-1248) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-517)))) (-15 -1512 ((-517) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-151)))) (-15 -1512 ((-151) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-655)))) (-15 -1512 ((-655) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-305)))) (-15 -1512 ((-305) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1017)))) (-15 -1512 ((-1017) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-177)))) (-15 -1512 ((-177) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-951)))) (-15 -1512 ((-951) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1052)))) (-15 -1512 ((-1052) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1068)))) (-15 -1512 ((-1068) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1074)))) (-15 -1512 ((-1074) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-612)))) (-15 -1512 ((-612) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1144)))) (-15 -1512 ((-1144) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-153)))) (-15 -1512 ((-153) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-135)))) (-15 -1512 ((-135) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-471)))) (-15 -1512 ((-471) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-579)))) (-15 -1512 ((-579) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-498)))) (-15 -1512 ((-498) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-1136)))) (-15 -1512 ((-1136) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-552)))) (-15 -1512 ((-552) $)))) +(((-92) . T) ((-101) . T) ((-599 (-844)) . T) ((-599 (-1159)) . T) ((-1078) . T) ((-1061) . T) ((-1232) . T)) +((-2538 (((-1242) (-629 (-844))) 23) (((-1242) (-844)) 22)) (-2673 (((-1242) (-629 (-844))) 21) (((-1242) (-844)) 20)) (-2175 (((-1242) (-629 (-844))) 19) (((-1242) (-844)) 11) (((-1242) (-1136) (-844)) 17))) +(((-1116) (-10 -7 (-15 -2175 ((-1242) (-1136) (-844))) (-15 -2175 ((-1242) (-844))) (-15 -2673 ((-1242) (-844))) (-15 -2538 ((-1242) (-844))) (-15 -2175 ((-1242) (-629 (-844)))) (-15 -2673 ((-1242) (-629 (-844)))) (-15 -2538 ((-1242) (-629 (-844)))))) (T -1116)) +((-2538 (*1 *2 *3) (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116))))) +(-10 -7 (-15 -2175 ((-1242) (-1136) (-844))) (-15 -2175 ((-1242) (-844))) (-15 -2673 ((-1242) (-844))) (-15 -2538 ((-1242) (-844))) (-15 -2175 ((-1242) (-629 (-844)))) (-15 -2673 ((-1242) (-629 (-844)))) (-15 -2538 ((-1242) (-629 (-844))))) +((-1618 (($ $ $) 10)) (-4119 (($ $) 9)) (-3381 (($ $ $) 13)) (-4135 (($ $ $) 15)) (-2906 (($ $ $) 12)) (-3158 (($ $ $) 14)) (-3742 (($ $) 17)) (-1280 (($ $) 16)) (-1578 (($ $) 6)) (-3290 (($ $ $) 11) (($ $) 7)) (-1812 (($ $ $) 8))) +(((-1117) (-137)) (T -1117)) +((-3742 (*1 *1 *1) (-4 *1 (-1117))) (-1280 (*1 *1 *1) (-4 *1 (-1117))) (-4135 (*1 *1 *1 *1) (-4 *1 (-1117))) (-3158 (*1 *1 *1 *1) (-4 *1 (-1117))) (-3381 (*1 *1 *1 *1) (-4 *1 (-1117))) (-2906 (*1 *1 *1 *1) (-4 *1 (-1117))) (-3290 (*1 *1 *1 *1) (-4 *1 (-1117))) (-1618 (*1 *1 *1 *1) (-4 *1 (-1117))) (-4119 (*1 *1 *1) (-4 *1 (-1117))) (-1812 (*1 *1 *1 *1) (-4 *1 (-1117))) (-3290 (*1 *1 *1) (-4 *1 (-1117))) (-1578 (*1 *1 *1) (-4 *1 (-1117)))) +(-13 (-10 -8 (-15 -1578 ($ $)) (-15 -3290 ($ $)) (-15 -1812 ($ $ $)) (-15 -4119 ($ $)) (-15 -1618 ($ $ $)) (-15 -3290 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3381 ($ $ $)) (-15 -3158 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -1280 ($ $)) (-15 -3742 ($ $)))) +((-3202 (((-111) $ $) 41)) (-2925 ((|#1| $) 15)) (-4227 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-4063 (((-111) $) 17)) (-1314 (($ $ |#1|) 28)) (-4196 (($ $ (-111)) 30)) (-3619 (($ $) 31)) (-3597 (($ $ |#2|) 29)) (-2623 (((-1136) $) NIL)) (-1938 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-2876 (((-1098) $) NIL)) (-3435 (((-111) $) 14)) (-3430 (($) 10)) (-1487 (($ $) 27)) (-3226 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3361 |#2|))) 21) (((-629 $) (-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|)))) 24) (((-629 $) |#1| (-629 |#2|)) 26)) (-3921 ((|#2| $) 16)) (-3213 (((-844) $) 50)) (-1613 (((-111) $ $) 39))) +(((-1118 |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -3430 ($)) (-15 -3435 ((-111) $)) (-15 -2925 (|#1| $)) (-15 -3921 (|#2| $)) (-15 -4063 ((-111) $)) (-15 -3226 ($ |#1| |#2| (-111))) (-15 -3226 ($ |#1| |#2|)) (-15 -3226 ($ (-2 (|:| |val| |#1|) (|:| -3361 |#2|)))) (-15 -3226 ((-629 $) (-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|))))) (-15 -3226 ((-629 $) |#1| (-629 |#2|))) (-15 -1487 ($ $)) (-15 -1314 ($ $ |#1|)) (-15 -3597 ($ $ |#2|)) (-15 -4196 ($ $ (-111))) (-15 -3619 ($ $)) (-15 -1938 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -4227 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1078) (-34)) (-13 (-1078) (-34))) (T -1118)) +((-3430 (*1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))))) (-2925 (*1 *2 *1) (-12 (-4 *2 (-13 (-1078) (-34))) (-5 *1 (-1118 *2 *3)) (-4 *3 (-13 (-1078) (-34))))) (-3921 (*1 *2 *1) (-12 (-4 *2 (-13 (-1078) (-34))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-13 (-1078) (-34))))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3361 *4))) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1118 *3 *4)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-629 (-2 (|:| |val| *4) (|:| -3361 *5)))) (-4 *4 (-13 (-1078) (-34))) (-4 *5 (-13 (-1078) (-34))) (-5 *2 (-629 (-1118 *4 *5))) (-5 *1 (-1118 *4 *5)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-629 *5)) (-4 *5 (-13 (-1078) (-34))) (-5 *2 (-629 (-1118 *3 *5))) (-5 *1 (-1118 *3 *5)) (-4 *3 (-13 (-1078) (-34))))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-1314 (*1 *1 *1 *2) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3597 (*1 *1 *1 *2) (-12 (-5 *1 (-1118 *3 *2)) (-4 *3 (-13 (-1078) (-34))) (-4 *2 (-13 (-1078) (-34))))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))))) (-3619 (*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-1938 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1078) (-34))) (-4 *6 (-13 (-1078) (-34))) (-5 *2 (-111)) (-5 *1 (-1118 *5 *6)))) (-4227 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1078) (-34))) (-5 *2 (-111)) (-5 *1 (-1118 *4 *5)) (-4 *4 (-13 (-1078) (-34)))))) +(-13 (-1078) (-10 -8 (-15 -3430 ($)) (-15 -3435 ((-111) $)) (-15 -2925 (|#1| $)) (-15 -3921 (|#2| $)) (-15 -4063 ((-111) $)) (-15 -3226 ($ |#1| |#2| (-111))) (-15 -3226 ($ |#1| |#2|)) (-15 -3226 ($ (-2 (|:| |val| |#1|) (|:| -3361 |#2|)))) (-15 -3226 ((-629 $) (-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|))))) (-15 -3226 ((-629 $) |#1| (-629 |#2|))) (-15 -1487 ($ $)) (-15 -1314 ($ $ |#1|)) (-15 -3597 ($ $ |#2|)) (-15 -4196 ($ $ (-111))) (-15 -3619 ($ $)) (-15 -1938 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -4227 ((-111) $ $ (-1 (-111) |#2| |#2|))))) +((-3202 (((-111) $ $) NIL (|has| (-1118 |#1| |#2|) (-1078)))) (-2925 (((-1118 |#1| |#2|) $) 25)) (-1494 (($ $) 76)) (-2070 (((-111) (-1118 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3535 (($ $ $ (-629 (-1118 |#1| |#2|))) 90) (($ $ $ (-629 (-1118 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-4238 (((-111) $ (-756)) NIL)) (-3188 (((-1118 |#1| |#2|) $ (-1118 |#1| |#2|)) 43 (|has| $ (-6 -4369)))) (-1470 (((-1118 |#1| |#2|) $ "value" (-1118 |#1| |#2|)) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-1281 (((-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|))) $) 80)) (-1625 (($ (-1118 |#1| |#2|) $) 39)) (-2655 (($ (-1118 |#1| |#2|) $) 31)) (-3138 (((-629 (-1118 |#1| |#2|)) $) NIL (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 51)) (-3112 (((-111) (-1118 |#1| |#2|) $) 82)) (-4266 (((-111) $ $) NIL (|has| (-1118 |#1| |#2|) (-1078)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 (-1118 |#1| |#2|)) $) 55 (|has| $ (-6 -4368)))) (-2973 (((-111) (-1118 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-1118 |#1| |#2|) (-1078))))) (-2947 (($ (-1 (-1118 |#1| |#2|) (-1118 |#1| |#2|)) $) 47 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-1118 |#1| |#2|) (-1118 |#1| |#2|)) $) 46)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 (-1118 |#1| |#2|)) $) 53)) (-3862 (((-111) $) 42)) (-2623 (((-1136) $) NIL (|has| (-1118 |#1| |#2|) (-1078)))) (-2876 (((-1098) $) NIL (|has| (-1118 |#1| |#2|) (-1078)))) (-4146 (((-3 $ "failed") $) 75)) (-3944 (((-111) (-1 (-111) (-1118 |#1| |#2|)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-1118 |#1| |#2|)))) NIL (-12 (|has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|))) (|has| (-1118 |#1| |#2|) (-1078)))) (($ $ (-288 (-1118 |#1| |#2|))) NIL (-12 (|has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|))) (|has| (-1118 |#1| |#2|) (-1078)))) (($ $ (-1118 |#1| |#2|) (-1118 |#1| |#2|)) NIL (-12 (|has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|))) (|has| (-1118 |#1| |#2|) (-1078)))) (($ $ (-629 (-1118 |#1| |#2|)) (-629 (-1118 |#1| |#2|))) NIL (-12 (|has| (-1118 |#1| |#2|) (-303 (-1118 |#1| |#2|))) (|has| (-1118 |#1| |#2|) (-1078))))) (-2795 (((-111) $ $) 50)) (-3435 (((-111) $) 22)) (-3430 (($) 24)) (-2060 (((-1118 |#1| |#2|) $ "value") NIL)) (-3153 (((-552) $ $) NIL)) (-1289 (((-111) $) 44)) (-2885 (((-756) (-1 (-111) (-1118 |#1| |#2|)) $) NIL (|has| $ (-6 -4368))) (((-756) (-1118 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-1118 |#1| |#2|) (-1078))))) (-1487 (($ $) 49)) (-3226 (($ (-1118 |#1| |#2|)) 9) (($ |#1| |#2| (-629 $)) 12) (($ |#1| |#2| (-629 (-1118 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-629 |#2|)) 17)) (-1793 (((-629 |#2|) $) 81)) (-3213 (((-844) $) 73 (|has| (-1118 |#1| |#2|) (-599 (-844))))) (-2527 (((-629 $) $) 28)) (-4298 (((-111) $ $) NIL (|has| (-1118 |#1| |#2|) (-1078)))) (-2584 (((-111) (-1 (-111) (-1118 |#1| |#2|)) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 64 (|has| (-1118 |#1| |#2|) (-1078)))) (-2657 (((-756) $) 58 (|has| $ (-6 -4368))))) +(((-1119 |#1| |#2|) (-13 (-991 (-1118 |#1| |#2|)) (-10 -8 (-6 -4369) (-6 -4368) (-15 -4146 ((-3 $ "failed") $)) (-15 -1494 ($ $)) (-15 -3226 ($ (-1118 |#1| |#2|))) (-15 -3226 ($ |#1| |#2| (-629 $))) (-15 -3226 ($ |#1| |#2| (-629 (-1118 |#1| |#2|)))) (-15 -3226 ($ |#1| |#2| |#1| (-629 |#2|))) (-15 -1793 ((-629 |#2|) $)) (-15 -1281 ((-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|))) $)) (-15 -3112 ((-111) (-1118 |#1| |#2|) $)) (-15 -2070 ((-111) (-1118 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2655 ($ (-1118 |#1| |#2|) $)) (-15 -1625 ($ (-1118 |#1| |#2|) $)) (-15 -3535 ($ $ $ (-629 (-1118 |#1| |#2|)))) (-15 -3535 ($ $ $ (-629 (-1118 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1078) (-34)) (-13 (-1078) (-34))) (T -1119)) +((-4146 (*1 *1 *1) (|partial| -12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-1494 (*1 *1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-629 (-1119 *2 *3))) (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-629 (-1118 *2 *3))) (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))) (-5 *1 (-1119 *2 *3)))) (-3226 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-629 *3)) (-4 *3 (-13 (-1078) (-34))) (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-629 *4)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))))) (-3112 (*1 *2 *3 *1) (-12 (-5 *3 (-1118 *4 *5)) (-4 *4 (-13 (-1078) (-34))) (-4 *5 (-13 (-1078) (-34))) (-5 *2 (-111)) (-5 *1 (-1119 *4 *5)))) (-2070 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1118 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1078) (-34))) (-4 *6 (-13 (-1078) (-34))) (-5 *2 (-111)) (-5 *1 (-1119 *5 *6)))) (-2655 (*1 *1 *2 *1) (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4)))) (-3535 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-629 (-1118 *3 *4))) (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4)))) (-3535 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-1118 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1078) (-34))) (-4 *5 (-13 (-1078) (-34))) (-5 *1 (-1119 *4 *5))))) +(-13 (-991 (-1118 |#1| |#2|)) (-10 -8 (-6 -4369) (-6 -4368) (-15 -4146 ((-3 $ "failed") $)) (-15 -1494 ($ $)) (-15 -3226 ($ (-1118 |#1| |#2|))) (-15 -3226 ($ |#1| |#2| (-629 $))) (-15 -3226 ($ |#1| |#2| (-629 (-1118 |#1| |#2|)))) (-15 -3226 ($ |#1| |#2| |#1| (-629 |#2|))) (-15 -1793 ((-629 |#2|) $)) (-15 -1281 ((-629 (-2 (|:| |val| |#1|) (|:| -3361 |#2|))) $)) (-15 -3112 ((-111) (-1118 |#1| |#2|) $)) (-15 -2070 ((-111) (-1118 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2655 ($ (-1118 |#1| |#2|) $)) (-15 -1625 ($ (-1118 |#1| |#2|) $)) (-15 -3535 ($ $ $ (-629 (-1118 |#1| |#2|)))) (-15 -3535 ($ $ $ (-629 (-1118 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2289 (($ $) NIL)) (-1549 ((|#2| $) NIL)) (-4021 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1662 (($ (-673 |#2|)) 50)) (-2779 (((-111) $) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3924 (($ |#2|) 10)) (-2130 (($) NIL T CONST)) (-2810 (($ $) 63 (|has| |#2| (-301)))) (-3413 (((-235 |#1| |#2|) $ (-552)) 36)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) ((|#2| $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) 77)) (-2128 (((-756) $) 65 (|has| |#2| (-544)))) (-2892 ((|#2| $ (-552) (-552)) NIL)) (-3138 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-4065 (((-111) $) NIL)) (-1486 (((-756) $) 67 (|has| |#2| (-544)))) (-4229 (((-629 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-544)))) (-2389 (((-756) $) NIL)) (-3307 (($ |#2|) 20)) (-2401 (((-756) $) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-3427 ((|#2| $) 61 (|has| |#2| (-6 (-4370 "*"))))) (-3534 (((-552) $) NIL)) (-3966 (((-552) $) NIL)) (-3278 (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3660 (((-552) $) NIL)) (-3162 (((-552) $) NIL)) (-3516 (($ (-629 (-629 |#2|))) 31)) (-2947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-629 (-629 |#2|)) $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-4156 (((-3 $ "failed") $) 74 (|has| |#2| (-357)))) (-2876 (((-1098) $) NIL)) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3944 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) NIL)) (-3096 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3350 ((|#2| $) NIL)) (-2843 (($ (-629 |#2|)) 44)) (-1379 (((-111) $) NIL)) (-3417 (((-235 |#1| |#2|) $) NIL)) (-2021 ((|#2| $) 59 (|has| |#2| (-6 (-4370 "*"))))) (-2885 (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1487 (($ $) NIL)) (-1522 (((-528) $) 86 (|has| |#2| (-600 (-528))))) (-3041 (((-235 |#1| |#2|) $ (-552)) 38)) (-3213 (((-844) $) 41) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1019 (-401 (-552))))) (($ |#2|) NIL) (((-673 |#2|) $) 46)) (-2014 (((-756)) 18)) (-2584 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-3043 (((-111) $) NIL)) (-3297 (($) 12 T CONST)) (-3309 (($) 15 T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-756)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) 57) (($ $ (-552)) 76 (|has| |#2| (-357)))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1120 |#1| |#2|) (-13 (-1101 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-673 |#2|)) (-10 -8 (-15 -3307 ($ |#2|)) (-15 -2289 ($ $)) (-15 -1662 ($ (-673 |#2|))) (IF (|has| |#2| (-6 (-4370 "*"))) (-6 -4357) |%noBranch|) (IF (|has| |#2| (-6 (-4370 "*"))) (IF (|has| |#2| (-6 -4365)) (-6 -4365) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-756) (-1030)) (T -1120)) +((-3307 (*1 *1 *2) (-12 (-5 *1 (-1120 *3 *2)) (-14 *3 (-756)) (-4 *2 (-1030)))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-1120 *2 *3)) (-14 *2 (-756)) (-4 *3 (-1030)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-673 *4)) (-4 *4 (-1030)) (-5 *1 (-1120 *3 *4)) (-14 *3 (-756))))) +(-13 (-1101 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-673 |#2|)) (-10 -8 (-15 -3307 ($ |#2|)) (-15 -2289 ($ $)) (-15 -1662 ($ (-673 |#2|))) (IF (|has| |#2| (-6 (-4370 "*"))) (-6 -4357) |%noBranch|) (IF (|has| |#2| (-6 (-4370 "*"))) (IF (|has| |#2| (-6 -4365)) (-6 -4365) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +((-2302 (($ $) 19)) (-4013 (($ $ (-141)) 10) (($ $ (-138)) 14)) (-1291 (((-111) $ $) 24)) (-3507 (($ $) 17)) (-2060 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1204 (-552))) NIL) (($ $ $) 29)) (-3213 (($ (-141)) 27) (((-844) $) NIL))) +(((-1121 |#1|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -2060 (|#1| |#1| |#1|)) (-15 -4013 (|#1| |#1| (-138))) (-15 -4013 (|#1| |#1| (-141))) (-15 -3213 (|#1| (-141))) (-15 -1291 ((-111) |#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -2060 ((-141) |#1| (-552))) (-15 -2060 ((-141) |#1| (-552) (-141)))) (-1122)) (T -1121)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -2060 (|#1| |#1| |#1|)) (-15 -4013 (|#1| |#1| (-138))) (-15 -4013 (|#1| |#1| (-141))) (-15 -3213 (|#1| (-141))) (-15 -1291 ((-111) |#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3507 (|#1| |#1|)) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -2060 ((-141) |#1| (-552))) (-15 -2060 ((-141) |#1| (-552) (-141)))) +((-3202 (((-111) $ $) 19 (|has| (-141) (-1078)))) (-3861 (($ $) 120)) (-2302 (($ $) 121)) (-4013 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-1270 (((-111) $ $) 118)) (-4330 (((-111) $ $ (-552)) 117)) (-2483 (((-629 $) $ (-141)) 110) (((-629 $) $ (-138)) 109)) (-3717 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-832)))) (-3646 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| (-141) (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4369))) (((-141) $ (-1204 (-552)) (-141)) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2224 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-1897 (($ $ (-1204 (-552)) $) 114)) (-2738 (($ $) 78 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ (-141) $) 77 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4368)))) (-3884 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4368)))) (-2957 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4369)))) (-2892 (((-141) $ (-552)) 51)) (-1291 (((-111) $ $) 119)) (-1456 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1078))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1078))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3138 (((-629 (-141)) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) (-141)) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| (-141) (-832)))) (-1446 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-832)))) (-3278 (((-629 (-141)) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| (-141) (-832)))) (-1508 (((-111) $ $ (-141)) 115)) (-1806 (((-756) $ $ (-141)) 116)) (-2947 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3906 (($ $) 122)) (-3507 (($ $) 123)) (-1745 (((-111) $ (-756)) 10)) (-2235 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-2623 (((-1136) $) 22 (|has| (-141) (-1078)))) (-1759 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| (-141) (-1078)))) (-2702 (((-141) $) 42 (|has| (-552) (-832)))) (-3073 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1518 (($ $ (-141)) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-629 (-141)) (-629 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3627 (((-629 (-141)) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1204 (-552))) 63) (($ $ $) 102)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4368))) (((-756) (-141) $) 28 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-3226 (($ (-629 (-141))) 70)) (-4319 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (($ (-141)) 111) (((-844) $) 18 (|has| (-141) (-599 (-844))))) (-2584 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 84 (|has| (-141) (-832)))) (-1644 (((-111) $ $) 83 (|has| (-141) (-832)))) (-1613 (((-111) $ $) 20 (|has| (-141) (-1078)))) (-1655 (((-111) $ $) 85 (|has| (-141) (-832)))) (-1632 (((-111) $ $) 82 (|has| (-141) (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1122) (-137)) (T -1122)) +((-3507 (*1 *1 *1) (-4 *1 (-1122))) (-3906 (*1 *1 *1) (-4 *1 (-1122))) (-2302 (*1 *1 *1) (-4 *1 (-1122))) (-3861 (*1 *1 *1) (-4 *1 (-1122))) (-1291 (*1 *2 *1 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-111)))) (-1270 (*1 *2 *1 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-111)))) (-4330 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-552)) (-5 *2 (-111)))) (-1806 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-141)) (-5 *2 (-756)))) (-1508 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-141)) (-5 *2 (-111)))) (-1897 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1204 (-552))))) (-1456 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-552)))) (-1456 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-552)) (-5 *3 (-138)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1122)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-629 *1)) (-4 *1 (-1122)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-629 *1)) (-4 *1 (-1122)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) (-2235 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141)))) (-2235 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) (-2224 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141)))) (-2224 (*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) (-2060 (*1 *1 *1 *1) (-4 *1 (-1122)))) +(-13 (-19 (-141)) (-10 -8 (-15 -3507 ($ $)) (-15 -3906 ($ $)) (-15 -2302 ($ $)) (-15 -3861 ($ $)) (-15 -1291 ((-111) $ $)) (-15 -1270 ((-111) $ $)) (-15 -4330 ((-111) $ $ (-552))) (-15 -1806 ((-756) $ $ (-141))) (-15 -1508 ((-111) $ $ (-141))) (-15 -1897 ($ $ (-1204 (-552)) $)) (-15 -1456 ((-552) $ $ (-552))) (-15 -1456 ((-552) (-138) $ (-552))) (-15 -3213 ($ (-141))) (-15 -2483 ((-629 $) $ (-141))) (-15 -2483 ((-629 $) $ (-138))) (-15 -4013 ($ $ (-141))) (-15 -4013 ($ $ (-138))) (-15 -2235 ($ $ (-141))) (-15 -2235 ($ $ (-138))) (-15 -2224 ($ $ (-141))) (-15 -2224 ($ $ (-138))) (-15 -2060 ($ $ $)))) +(((-34) . T) ((-101) -4029 (|has| (-141) (-1078)) (|has| (-141) (-832))) ((-599 (-844)) -4029 (|has| (-141) (-1078)) (|has| (-141) (-832)) (|has| (-141) (-599 (-844)))) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))) ((-635 #0#) . T) ((-19 #0#) . T) ((-832) |has| (-141) (-832)) ((-1078) -4029 (|has| (-141) (-1078)) (|has| (-141) (-832))) ((-1191) . T)) +((-3077 (((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756)) 94)) (-2385 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756)) 54)) (-1450 (((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)) 85)) (-3859 (((-756) (-629 |#4|) (-629 |#5|)) 27)) (-3095 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756)) 56) (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111)) 58)) (-2089 (((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111)) 77)) (-1522 (((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) 80)) (-3418 (((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|) 53)) (-1630 (((-756) (-629 |#4|) (-629 |#5|)) 19))) +(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1630 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3859 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3418 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3077 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756))) (-15 -1522 ((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -1450 ((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1123)) +((-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) (-5 *4 (-756)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-1242)) (-5 *1 (-1123 *5 *6 *7 *8 *9)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1136)) (-5 *1 (-1123 *4 *5 *6 *7 *8)))) (-3077 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-629 *11)) (|:| |todo| (-629 (-2 (|:| |val| *3) (|:| -3361 *11)))))) (-5 *6 (-756)) (-5 *2 (-629 (-2 (|:| |val| (-629 *10)) (|:| -3361 *11)))) (-5 *3 (-629 *10)) (-5 *4 (-629 *11)) (-4 *10 (-1044 *7 *8 *9)) (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-778)) (-4 *9 (-832)) (-5 *1 (-1123 *7 *8 *9 *10 *11)))) (-2089 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1123 *5 *6 *7 *8 *9)))) (-2089 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1123 *5 *6 *7 *8 *9)))) (-3095 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3095 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-3095 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-756)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-778)) (-4 *9 (-832)) (-4 *3 (-1044 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *3 (-1044 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-3418 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-629 *4)) (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1123 *5 *6 *7 *8 *9)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1123 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1630 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3859 ((-756) (-629 |#4|) (-629 |#5|))) (-15 -3418 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -2385 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756) (-111))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5| (-756))) (-15 -3095 ((-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) |#4| |#5|)) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111))) (-15 -2089 ((-629 |#5|) (-629 |#4|) (-629 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3077 ((-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-629 |#4|) (-629 |#5|) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-2 (|:| |done| (-629 |#5|)) (|:| |todo| (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))))) (-756))) (-15 -1522 ((-1136) (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|)))) (-15 -1450 ((-1242) (-629 (-2 (|:| |val| (-629 |#4|)) (|:| -3361 |#5|))) (-756)))) +((-3202 (((-111) $ $) NIL)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) NIL)) (-1830 (((-629 $) (-629 |#4|)) 110) (((-629 $) (-629 |#4|) (-111)) 111) (((-629 $) (-629 |#4|) (-111) (-111)) 109) (((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3611 (((-629 |#3|) $) NIL)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2240 ((|#4| |#4| $) NIL)) (-4116 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| $) 84)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 62)) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) 26 (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3662 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) NIL)) (-2832 (($ (-629 |#4|)) NIL)) (-2715 (((-3 $ "failed") $) 39)) (-3126 ((|#4| |#4| $) 65)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2655 (($ |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) NIL)) (-2851 (((-111) |#4| $) NIL)) (-4035 (((-111) |#4| $) NIL)) (-3250 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2503 (((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111)) 124)) (-3138 (((-629 |#4|) $) 16 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2940 ((|#3| $) 33)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#4|) $) 17 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 21)) (-3420 (((-629 |#3|) $) NIL)) (-2677 (((-111) |#3| $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-1322 (((-3 |#4| (-629 $)) |#4| |#4| $) NIL)) (-2043 (((-629 (-2 (|:| |val| |#4|) (|:| -3361 $))) |#4| |#4| $) 103)) (-2680 (((-3 |#4| "failed") $) 37)) (-1999 (((-629 $) |#4| $) 88)) (-4253 (((-3 (-111) (-629 $)) |#4| $) NIL)) (-1890 (((-629 (-2 (|:| |val| (-111)) (|:| -3361 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-4011 (((-629 $) |#4| $) 107) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) 108) (((-629 $) |#4| (-629 $)) NIL)) (-2330 (((-629 $) (-629 |#4|) (-111) (-111) (-111)) 119)) (-2300 (($ |#4| $) 75) (($ (-629 |#4|) $) 76) (((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-3887 (((-629 |#4|) $) NIL)) (-3287 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2498 ((|#4| |#4| $) NIL)) (-4343 (((-111) $ $) NIL)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3848 ((|#4| |#4| $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-3 |#4| "failed") $) 35)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-1800 (((-3 $ "failed") $ |#4|) 48)) (-3136 (($ $ |#4|) NIL) (((-629 $) |#4| $) 90) (((-629 $) |#4| (-629 $)) NIL) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) 86)) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 15)) (-3430 (($) 13)) (-3299 (((-756) $) NIL)) (-2885 (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) 12)) (-1522 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 20)) (-2542 (($ $ |#3|) 42)) (-1853 (($ $ |#3|) 44)) (-3081 (($ $) NIL)) (-2387 (($ $ |#3|) NIL)) (-3213 (((-844) $) 31) (((-629 |#4|) $) 40)) (-1753 (((-756) $) NIL (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) NIL)) (-3933 (((-629 $) |#4| $) 54) (((-629 $) |#4| (-629 $)) NIL) (((-629 $) (-629 |#4|) $) NIL) (((-629 $) (-629 |#4|) (-629 $)) NIL)) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) NIL)) (-2452 (((-111) |#4| $) NIL)) (-2904 (((-111) |#3| $) 61)) (-1613 (((-111) $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1124 |#1| |#2| |#3| |#4|) (-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2300 ((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111))) (-15 -2330 ((-629 $) (-629 |#4|) (-111) (-111) (-111))) (-15 -2503 ((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111))))) (-445) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -1124)) +((-2300 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1124 *5 *6 *7 *3))) (-5 *1 (-1124 *5 *6 *7 *3)) (-4 *3 (-1044 *5 *6 *7)))) (-1830 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8)))) (-1830 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8)))) (-2330 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8)))) (-2503 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-629 *8)) (|:| |towers| (-629 (-1124 *5 *6 *7 *8))))) (-5 *1 (-1124 *5 *6 *7 *8)) (-5 *3 (-629 *8))))) +(-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2300 ((-629 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111))) (-15 -1830 ((-629 $) (-629 |#4|) (-111) (-111) (-111) (-111))) (-15 -2330 ((-629 $) (-629 |#4|) (-111) (-111) (-111))) (-15 -2503 ((-2 (|:| |val| (-629 |#4|)) (|:| |towers| (-629 $))) (-629 |#4|) (-111) (-111))))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3447 ((|#1| $) 34)) (-1657 (($ (-629 |#1|)) 39)) (-4238 (((-111) $ (-756)) NIL)) (-2130 (($) NIL T CONST)) (-3574 ((|#1| |#1| $) 36)) (-3033 ((|#1| $) 32)) (-3138 (((-629 |#1|) $) 18 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 22)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-3105 ((|#1| $) 35)) (-1580 (($ |#1| $) 37)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3995 ((|#1| $) 33)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 31)) (-3430 (($) 38)) (-3907 (((-756) $) 29)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 27)) (-3213 (((-844) $) 14 (|has| |#1| (-599 (-844))))) (-1663 (($ (-629 |#1|)) NIL)) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 17 (|has| |#1| (-1078)))) (-2657 (((-756) $) 30 (|has| $ (-6 -4368))))) +(((-1125 |#1|) (-13 (-1099 |#1|) (-10 -8 (-15 -1657 ($ (-629 |#1|))))) (-1191)) (T -1125)) +((-1657 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1125 *3))))) +(-13 (-1099 |#1|) (-10 -8 (-15 -1657 ($ (-629 |#1|))))) +((-1470 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1204 (-552)) |#2|) 44) ((|#2| $ (-552) |#2|) 41)) (-2268 (((-111) $) 12)) (-2947 (($ (-1 |#2| |#2|) $) 39)) (-2702 ((|#2| $) NIL) (($ $ (-756)) 17)) (-1518 (($ $ |#2|) 40)) (-1352 (((-111) $) 11)) (-2060 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1204 (-552))) 31) ((|#2| $ (-552)) 23) ((|#2| $ (-552) |#2|) NIL)) (-2380 (($ $ $) 47) (($ $ |#2|) NIL)) (-4319 (($ $ $) 33) (($ |#2| $) NIL) (($ (-629 $)) 36) (($ $ |#2|) NIL))) +(((-1126 |#1| |#2|) (-10 -8 (-15 -2268 ((-111) |#1|)) (-15 -1352 ((-111) |#1|)) (-15 -1470 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -1518 (|#1| |#1| |#2|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -4319 (|#1| (-629 |#1|))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -1470 (|#2| |#1| (-1204 (-552)) |#2|)) (-15 -1470 (|#2| |#1| "last" |#2|)) (-15 -1470 (|#1| |#1| "rest" |#1|)) (-15 -1470 (|#2| |#1| "first" |#2|)) (-15 -2380 (|#1| |#1| |#2|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2060 (|#2| |#1| "last")) (-15 -2060 (|#1| |#1| "rest")) (-15 -2702 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "first")) (-15 -2702 (|#2| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|))) (-1127 |#2|) (-1191)) (T -1126)) +NIL +(-10 -8 (-15 -2268 ((-111) |#1|)) (-15 -1352 ((-111) |#1|)) (-15 -1470 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552) |#2|)) (-15 -2060 (|#2| |#1| (-552))) (-15 -1518 (|#1| |#1| |#2|)) (-15 -4319 (|#1| |#1| |#2|)) (-15 -4319 (|#1| (-629 |#1|))) (-15 -2060 (|#1| |#1| (-1204 (-552)))) (-15 -1470 (|#2| |#1| (-1204 (-552)) |#2|)) (-15 -1470 (|#2| |#1| "last" |#2|)) (-15 -1470 (|#1| |#1| "rest" |#1|)) (-15 -1470 (|#2| |#1| "first" |#2|)) (-15 -2380 (|#1| |#1| |#2|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2060 (|#2| |#1| "last")) (-15 -2060 (|#1| |#1| "rest")) (-15 -2702 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "first")) (-15 -2702 (|#2| |#1|)) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2947 (|#1| (-1 |#2| |#2|) |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-2210 ((|#1| $) 65)) (-1785 (($ $) 67)) (-2660 (((-1242) $ (-552) (-552)) 97 (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 52 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-2830 (($ $ $) 56 (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) 54 (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 58 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4369))) (($ $ "rest" $) 55 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 117 (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4368)))) (-2196 ((|#1| $) 66)) (-2130 (($) 7 T CONST)) (-2715 (($ $) 73) (($ $ (-756)) 71)) (-2738 (($ $) 99 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4368))) (($ |#1| $) 100 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2957 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 87)) (-2268 (((-111) $) 83)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) 108)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 95 (|has| (-552) (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 94 (|has| (-552) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2680 ((|#1| $) 70) (($ $ (-756)) 68)) (-1759 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2190 (((-629 (-552)) $) 92)) (-1335 (((-111) (-552) $) 91)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 76) (($ $ (-756)) 74)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1518 (($ $ |#1|) 96 (|has| $ (-6 -4369)))) (-1352 (((-111) $) 84)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 90)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1204 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-3153 (((-552) $ $) 44)) (-2012 (($ $ (-1204 (-552))) 114) (($ $ (-552)) 113)) (-1289 (((-111) $) 46)) (-2760 (($ $) 62)) (-4022 (($ $) 59 (|has| $ (-6 -4369)))) (-3058 (((-756) $) 63)) (-2963 (($ $) 64)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-1522 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 107)) (-2380 (($ $ $) 61 (|has| $ (-6 -4369))) (($ $ |#1|) 60 (|has| $ (-6 -4369)))) (-4319 (($ $ $) 78) (($ |#1| $) 77) (($ (-629 $)) 110) (($ $ |#1|) 109)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1127 |#1|) (-137) (-1191)) (T -1127)) +((-1352 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(-13 (-1225 |t#1|) (-635 |t#1|) (-10 -8 (-15 -1352 ((-111) $)) (-15 -2268 ((-111) $)))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T) ((-1225 |#1|) . T)) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) NIL)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) NIL)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1128 |#1| |#2| |#3|) (-1167 |#1| |#2|) (-1078) (-1078) |#2|) (T -1128)) +NIL +(-1167 |#1| |#2|) +((-3202 (((-111) $ $) 7)) (-2032 (((-3 $ "failed") $) 13)) (-2623 (((-1136) $) 9)) (-1977 (($) 14 T CONST)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11)) (-1613 (((-111) $ $) 6))) +(((-1129) (-137)) (T -1129)) +((-1977 (*1 *1) (-4 *1 (-1129))) (-2032 (*1 *1 *1) (|partial| -4 *1 (-1129)))) +(-13 (-1078) (-10 -8 (-15 -1977 ($) -3930) (-15 -2032 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-844)) . T) ((-1078) . T)) +((-2247 (((-1134 |#1|) (-1134 |#1|)) 17)) (-2407 (((-1134 |#1|) (-1134 |#1|)) 13)) (-1948 (((-1134 |#1|) (-1134 |#1|) (-552) (-552)) 20)) (-2879 (((-1134 |#1|) (-1134 |#1|)) 15))) +(((-1130 |#1|) (-10 -7 (-15 -2407 ((-1134 |#1|) (-1134 |#1|))) (-15 -2879 ((-1134 |#1|) (-1134 |#1|))) (-15 -2247 ((-1134 |#1|) (-1134 |#1|))) (-15 -1948 ((-1134 |#1|) (-1134 |#1|) (-552) (-552)))) (-13 (-544) (-144))) (T -1130)) +((-1948 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1130 *4)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1130 *3)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1130 *3)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1130 *3))))) +(-10 -7 (-15 -2407 ((-1134 |#1|) (-1134 |#1|))) (-15 -2879 ((-1134 |#1|) (-1134 |#1|))) (-15 -2247 ((-1134 |#1|) (-1134 |#1|))) (-15 -1948 ((-1134 |#1|) (-1134 |#1|) (-552) (-552)))) +((-4319 (((-1134 |#1|) (-1134 (-1134 |#1|))) 15))) +(((-1131 |#1|) (-10 -7 (-15 -4319 ((-1134 |#1|) (-1134 (-1134 |#1|))))) (-1191)) (T -1131)) +((-4319 (*1 *2 *3) (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1131 *4)) (-4 *4 (-1191))))) +(-10 -7 (-15 -4319 ((-1134 |#1|) (-1134 (-1134 |#1|))))) +((-3215 (((-1134 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|)) 25)) (-3884 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|)) 26)) (-1477 (((-1134 |#2|) (-1 |#2| |#1|) (-1134 |#1|)) 16))) +(((-1132 |#1| |#2|) (-10 -7 (-15 -1477 ((-1134 |#2|) (-1 |#2| |#1|) (-1134 |#1|))) (-15 -3215 ((-1134 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|))) (-15 -3884 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|)))) (-1191) (-1191)) (T -1132)) +((-3884 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1134 *5)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-1132 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1134 *6)) (-4 *6 (-1191)) (-4 *3 (-1191)) (-5 *2 (-1134 *3)) (-5 *1 (-1132 *6 *3)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1134 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1134 *6)) (-5 *1 (-1132 *5 *6))))) +(-10 -7 (-15 -1477 ((-1134 |#2|) (-1 |#2| |#1|) (-1134 |#1|))) (-15 -3215 ((-1134 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|))) (-15 -3884 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1134 |#1|)))) +((-1477 (((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-1134 |#2|)) 21))) +(((-1133 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-1134 |#2|)))) (-1191) (-1191) (-1191)) (T -1133)) +((-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1134 *6)) (-5 *5 (-1134 *7)) (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) (-5 *1 (-1133 *6 *7 *8))))) +(-10 -7 (-15 -1477 ((-1134 |#3|) (-1 |#3| |#1| |#2|) (-1134 |#1|) (-1134 |#2|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) NIL)) (-2210 ((|#1| $) NIL)) (-1785 (($ $) 52)) (-2660 (((-1242) $ (-552) (-552)) 77 (|has| $ (-6 -4369)))) (-2285 (($ $ (-552)) 111 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-3385 (((-844) $) 41 (|has| |#1| (-1078)))) (-3196 (((-111)) 40 (|has| |#1| (-1078)))) (-3188 ((|#1| $ |#1|) NIL (|has| $ (-6 -4369)))) (-2830 (($ $ $) 99 (|has| $ (-6 -4369))) (($ $ (-552) $) 123)) (-3359 ((|#1| $ |#1|) 108 (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 103 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4369))) (($ $ "rest" $) 107 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 90 (|has| $ (-6 -4369))) ((|#1| $ (-552) |#1|) 56 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 59)) (-2196 ((|#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2687 (($ $) 14)) (-2715 (($ $) 29) (($ $ (-756)) 89)) (-2826 (((-111) (-629 |#1|) $) 117 (|has| |#1| (-1078)))) (-3109 (($ (-629 |#1|)) 113)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) 58)) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-2268 (((-111) $) NIL)) (-3138 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-3783 (((-1242) (-552) $) 122 (|has| |#1| (-1078)))) (-2727 (((-756) $) 119)) (-4236 (((-629 $) $) NIL)) (-4266 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-1745 (((-111) $ (-756)) NIL)) (-2604 (((-629 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-3875 (($ $) 91)) (-2609 (((-111) $) 13)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2680 ((|#1| $) NIL) (($ $ (-756)) NIL)) (-1759 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) 75)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-4340 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3286 ((|#1| $) 10)) (-2702 ((|#1| $) 28) (($ $ (-756)) 50)) (-3528 (((-2 (|:| |cycle?| (-111)) (|:| -2720 (-756)) (|:| |period| (-756))) (-756) $) 25)) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3935 (($ (-1 (-111) |#1|) $) 127)) (-3943 (($ (-1 (-111) |#1|) $) 128)) (-1518 (($ $ |#1|) 69 (|has| $ (-6 -4369)))) (-3136 (($ $ (-552)) 32)) (-1352 (((-111) $) 73)) (-1761 (((-111) $) 12)) (-2916 (((-111) $) 118)) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 20)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) 15)) (-3430 (($) 45)) (-2060 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1204 (-552))) NIL) ((|#1| $ (-552)) 55) ((|#1| $ (-552) |#1|) NIL)) (-3153 (((-552) $ $) 49)) (-2012 (($ $ (-1204 (-552))) NIL) (($ $ (-552)) NIL)) (-2447 (($ (-1 $)) 48)) (-1289 (((-111) $) 70)) (-2760 (($ $) 71)) (-4022 (($ $) 100 (|has| $ (-6 -4369)))) (-3058 (((-756) $) NIL)) (-2963 (($ $) NIL)) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 44)) (-1522 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 54)) (-2461 (($ |#1| $) 98)) (-2380 (($ $ $) 101 (|has| $ (-6 -4369))) (($ $ |#1|) 102 (|has| $ (-6 -4369)))) (-4319 (($ $ $) 79) (($ |#1| $) 46) (($ (-629 $)) 84) (($ $ |#1|) 78)) (-1680 (($ $) 51)) (-3213 (($ (-629 |#1|)) 112) (((-844) $) 42 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) NIL)) (-4298 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 115 (|has| |#1| (-1078)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1134 |#1|) (-13 (-658 |#1|) (-10 -8 (-6 -4369) (-15 -3213 ($ (-629 |#1|))) (-15 -3109 ($ (-629 |#1|))) (IF (|has| |#1| (-1078)) (-15 -2826 ((-111) (-629 |#1|) $)) |%noBranch|) (-15 -3528 ((-2 (|:| |cycle?| (-111)) (|:| -2720 (-756)) (|:| |period| (-756))) (-756) $)) (-15 -2447 ($ (-1 $))) (-15 -2461 ($ |#1| $)) (IF (|has| |#1| (-1078)) (PROGN (-15 -3783 ((-1242) (-552) $)) (-15 -3385 ((-844) $)) (-15 -3196 ((-111)))) |%noBranch|) (-15 -2830 ($ $ (-552) $)) (-15 -4340 ($ (-1 |#1|))) (-15 -4340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3935 ($ (-1 (-111) |#1|) $)) (-15 -3943 ($ (-1 (-111) |#1|) $)))) (-1191)) (T -1134)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) (-2826 (*1 *2 *3 *1) (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-4 *4 (-1191)) (-5 *2 (-111)) (-5 *1 (-1134 *4)))) (-3528 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2720 (-756)) (|:| |period| (-756)))) (-5 *1 (-1134 *4)) (-4 *4 (-1191)) (-5 *3 (-756)))) (-2447 (*1 *1 *2) (-12 (-5 *2 (-1 (-1134 *3))) (-5 *1 (-1134 *3)) (-4 *3 (-1191)))) (-2461 (*1 *1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-1191)))) (-3783 (*1 *2 *3 *1) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1134 *4)) (-4 *4 (-1078)) (-4 *4 (-1191)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1134 *3)) (-4 *3 (-1078)) (-4 *3 (-1191)))) (-3196 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1134 *3)) (-4 *3 (-1078)) (-4 *3 (-1191)))) (-2830 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1134 *3)) (-4 *3 (-1191)))) (-4340 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) (-4340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) (-3935 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) (-3943 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3))))) +(-13 (-658 |#1|) (-10 -8 (-6 -4369) (-15 -3213 ($ (-629 |#1|))) (-15 -3109 ($ (-629 |#1|))) (IF (|has| |#1| (-1078)) (-15 -2826 ((-111) (-629 |#1|) $)) |%noBranch|) (-15 -3528 ((-2 (|:| |cycle?| (-111)) (|:| -2720 (-756)) (|:| |period| (-756))) (-756) $)) (-15 -2447 ($ (-1 $))) (-15 -2461 ($ |#1| $)) (IF (|has| |#1| (-1078)) (PROGN (-15 -3783 ((-1242) (-552) $)) (-15 -3385 ((-844) $)) (-15 -3196 ((-111)))) |%noBranch|) (-15 -2830 ($ $ (-552) $)) (-15 -4340 ($ (-1 |#1|))) (-15 -4340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3935 ($ (-1 (-111) |#1|) $)) (-15 -3943 ($ (-1 (-111) |#1|) $)))) +((-3202 (((-111) $ $) 19)) (-3861 (($ $) 120)) (-2302 (($ $) 121)) (-4013 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-1270 (((-111) $ $) 118)) (-4330 (((-111) $ $ (-552)) 117)) (-3986 (($ (-552)) 127)) (-2483 (((-629 $) $ (-141)) 110) (((-629 $) $ (-138)) 109)) (-3717 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-832)))) (-3646 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| (-141) (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4369))) (((-141) $ (-1204 (-552)) (-141)) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2224 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-1897 (($ $ (-1204 (-552)) $) 114)) (-2738 (($ $) 78 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ (-141) $) 77 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4368)))) (-3884 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4368)))) (-2957 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4369)))) (-2892 (((-141) $ (-552)) 51)) (-1291 (((-111) $ $) 119)) (-1456 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1078))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1078))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3138 (((-629 (-141)) $) 30 (|has| $ (-6 -4368)))) (-3307 (($ (-756) (-141)) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| (-141) (-832)))) (-1446 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-832)))) (-3278 (((-629 (-141)) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| (-141) (-832)))) (-1508 (((-111) $ $ (-141)) 115)) (-1806 (((-756) $ $ (-141)) 116)) (-2947 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3906 (($ $) 122)) (-3507 (($ $) 123)) (-1745 (((-111) $ (-756)) 10)) (-2235 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-2623 (((-1136) $) 22)) (-1759 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21)) (-2702 (((-141) $) 42 (|has| (-552) (-832)))) (-3073 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1518 (($ $ (-141)) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-629 (-141)) (-629 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3627 (((-629 (-141)) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1204 (-552))) 63) (($ $ $) 102)) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2885 (((-756) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4368))) (((-756) (-141) $) 28 (-12 (|has| (-141) (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-3226 (($ (-629 (-141))) 70)) (-4319 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (($ (-141)) 111) (((-844) $) 18)) (-2584 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4368)))) (-3016 (((-1136) $) 131) (((-1136) $ (-111)) 130) (((-1242) (-807) $) 129) (((-1242) (-807) $ (-111)) 128)) (-1666 (((-111) $ $) 84 (|has| (-141) (-832)))) (-1644 (((-111) $ $) 83 (|has| (-141) (-832)))) (-1613 (((-111) $ $) 20)) (-1655 (((-111) $ $) 85 (|has| (-141) (-832)))) (-1632 (((-111) $ $) 82 (|has| (-141) (-832)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1135) (-137)) (T -1135)) +((-3986 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1135))))) +(-13 (-1122) (-1078) (-813) (-10 -8 (-15 -3986 ($ (-552))))) +(((-34) . T) ((-101) . T) ((-599 (-844)) . T) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))) ((-635 #0#) . T) ((-19 #0#) . T) ((-813) . T) ((-832) |has| (-141) (-832)) ((-1078) . T) ((-1122) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3861 (($ $) NIL)) (-2302 (($ $) NIL)) (-4013 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-1270 (((-111) $ $) NIL)) (-4330 (((-111) $ $ (-552)) NIL)) (-3986 (($ (-552)) 7)) (-2483 (((-629 $) $ (-141)) NIL) (((-629 $) $ (-138)) NIL)) (-3717 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-832)))) (-3646 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-832))))) (-1296 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4369))) (((-141) $ (-1204 (-552)) (-141)) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2224 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-1897 (($ $ (-1204 (-552)) $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-2655 (($ (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4368))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2957 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4369)))) (-2892 (((-141) $ (-552)) NIL)) (-1291 (((-111) $ $) NIL)) (-1456 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1078))) (((-552) (-141) $ (-552)) NIL (|has| (-141) (-1078))) (((-552) $ $ (-552)) NIL) (((-552) (-138) $ (-552)) NIL)) (-3138 (((-629 (-141)) $) NIL (|has| $ (-6 -4368)))) (-3307 (($ (-756) (-141)) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| (-141) (-832)))) (-1446 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-832)))) (-3278 (((-629 (-141)) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| (-141) (-832)))) (-1508 (((-111) $ $ (-141)) NIL)) (-1806 (((-756) $ $ (-141)) NIL)) (-2947 (($ (-1 (-141) (-141)) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3906 (($ $) NIL)) (-3507 (($ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2235 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2623 (((-1136) $) NIL)) (-1759 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-141) $) NIL (|has| (-552) (-832)))) (-3073 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1518 (($ $ (-141)) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078)))) (($ $ (-629 (-141)) (-629 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3627 (((-629 (-141)) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1204 (-552))) NIL) (($ $ $) NIL)) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2885 (((-756) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368))) (((-756) (-141) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-141) (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-3226 (($ (-629 (-141))) NIL)) (-4319 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (($ (-141)) NIL) (((-844) $) NIL)) (-2584 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4368)))) (-3016 (((-1136) $) 18) (((-1136) $ (-111)) 20) (((-1242) (-807) $) 21) (((-1242) (-807) $ (-111)) 22)) (-1666 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1644 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| (-141) (-832)))) (-1632 (((-111) $ $) NIL (|has| (-141) (-832)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1136) (-1135)) (T -1136)) +NIL +(-1135) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)) (|has| |#1| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-2660 (((-1242) $ (-1136) (-1136)) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-1136) |#1|) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#1| "failed") (-1136) $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#1| "failed") (-1136) $) NIL)) (-2655 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-1136) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-1136)) NIL)) (-3138 (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-1136) $) NIL (|has| (-1136) (-832)))) (-3278 (((-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-1136) $) NIL (|has| (-1136) (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)) (|has| |#1| (-1078))))) (-1376 (((-629 (-1136)) $) NIL)) (-2539 (((-111) (-1136) $) NIL)) (-3105 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-2190 (((-629 (-1136)) $) NIL)) (-1335 (((-111) (-1136) $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)) (|has| |#1| (-1078))))) (-2702 ((|#1| $) NIL (|has| (-1136) (-832)))) (-3073 (((-3 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) "failed") (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL (-12 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-303 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-1136)) NIL) ((|#1| $ (-1136) |#1|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-599 (-844))) (|has| |#1| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 (-1136)) (|:| -3360 |#1|)) (-1078)) (|has| |#1| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1137 |#1|) (-13 (-1167 (-1136) |#1|) (-10 -7 (-6 -4368))) (-1078)) (T -1137)) +NIL +(-13 (-1167 (-1136) |#1|) (-10 -7 (-6 -4368))) +((-1283 (((-1134 |#1|) (-1134 |#1|)) 77)) (-1293 (((-3 (-1134 |#1|) "failed") (-1134 |#1|)) 37)) (-3050 (((-1134 |#1|) (-401 (-552)) (-1134 |#1|)) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3129 (((-1134 |#1|) |#1| (-1134 |#1|)) 127 (|has| |#1| (-357)))) (-1866 (((-1134 |#1|) (-1134 |#1|)) 90)) (-3957 (((-1134 (-552)) (-552)) 57)) (-1315 (((-1134 |#1|) (-1134 (-1134 |#1|))) 109 (|has| |#1| (-38 (-401 (-552)))))) (-3734 (((-1134 |#1|) (-552) (-552) (-1134 |#1|)) 95)) (-1727 (((-1134 |#1|) |#1| (-552)) 45)) (-2376 (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 60)) (-2839 (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 124 (|has| |#1| (-357)))) (-2283 (((-1134 |#1|) |#1| (-1 (-1134 |#1|))) 108 (|has| |#1| (-38 (-401 (-552)))))) (-2168 (((-1134 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1134 |#1|))) 125 (|has| |#1| (-357)))) (-2405 (((-1134 |#1|) (-1134 |#1|)) 89)) (-2764 (((-1134 |#1|) (-1134 |#1|)) 76)) (-4189 (((-1134 |#1|) (-552) (-552) (-1134 |#1|)) 96)) (-2889 (((-1134 |#1|) |#1| (-1134 |#1|)) 105 (|has| |#1| (-38 (-401 (-552)))))) (-1667 (((-1134 (-552)) (-552)) 56)) (-2308 (((-1134 |#1|) |#1|) 59)) (-3311 (((-1134 |#1|) (-1134 |#1|) (-552) (-552)) 92)) (-3746 (((-1134 |#1|) (-1 |#1| (-552)) (-1134 |#1|)) 66)) (-3969 (((-3 (-1134 |#1|) "failed") (-1134 |#1|) (-1134 |#1|)) 35)) (-1719 (((-1134 |#1|) (-1134 |#1|)) 91)) (-2432 (((-1134 |#1|) (-1134 |#1|) |#1|) 71)) (-2567 (((-1134 |#1|) (-1134 |#1|)) 62)) (-1347 (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 72)) (-3213 (((-1134 |#1|) |#1|) 67)) (-2378 (((-1134 |#1|) (-1134 (-1134 |#1|))) 82)) (-1720 (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 36)) (-1709 (((-1134 |#1|) (-1134 |#1|)) 21) (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 23)) (-1698 (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 17)) (* (((-1134 |#1|) (-1134 |#1|) |#1|) 29) (((-1134 |#1|) |#1| (-1134 |#1|)) 26) (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 27))) +(((-1138 |#1|) (-10 -7 (-15 -1698 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1709 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1709 ((-1134 |#1|) (-1134 |#1|))) (-15 * ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 * ((-1134 |#1|) |#1| (-1134 |#1|))) (-15 * ((-1134 |#1|) (-1134 |#1|) |#1|)) (-15 -3969 ((-3 (-1134 |#1|) "failed") (-1134 |#1|) (-1134 |#1|))) (-15 -1720 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1293 ((-3 (-1134 |#1|) "failed") (-1134 |#1|))) (-15 -1727 ((-1134 |#1|) |#1| (-552))) (-15 -1667 ((-1134 (-552)) (-552))) (-15 -3957 ((-1134 (-552)) (-552))) (-15 -2308 ((-1134 |#1|) |#1|)) (-15 -2376 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2567 ((-1134 |#1|) (-1134 |#1|))) (-15 -3746 ((-1134 |#1|) (-1 |#1| (-552)) (-1134 |#1|))) (-15 -3213 ((-1134 |#1|) |#1|)) (-15 -2432 ((-1134 |#1|) (-1134 |#1|) |#1|)) (-15 -1347 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2764 ((-1134 |#1|) (-1134 |#1|))) (-15 -1283 ((-1134 |#1|) (-1134 |#1|))) (-15 -2378 ((-1134 |#1|) (-1134 (-1134 |#1|)))) (-15 -2405 ((-1134 |#1|) (-1134 |#1|))) (-15 -1866 ((-1134 |#1|) (-1134 |#1|))) (-15 -1719 ((-1134 |#1|) (-1134 |#1|))) (-15 -3311 ((-1134 |#1|) (-1134 |#1|) (-552) (-552))) (-15 -3734 ((-1134 |#1|) (-552) (-552) (-1134 |#1|))) (-15 -4189 ((-1134 |#1|) (-552) (-552) (-1134 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ((-1134 |#1|) |#1| (-1134 |#1|))) (-15 -2283 ((-1134 |#1|) |#1| (-1 (-1134 |#1|)))) (-15 -1315 ((-1134 |#1|) (-1134 (-1134 |#1|)))) (-15 -3050 ((-1134 |#1|) (-401 (-552)) (-1134 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2839 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2168 ((-1134 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1134 |#1|)))) (-15 -3129 ((-1134 |#1|) |#1| (-1134 |#1|)))) |%noBranch|)) (-1030)) (T -1138)) +((-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2168 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1134 *4))) (-4 *4 (-357)) (-4 *4 (-1030)) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-357)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-3050 (*1 *2 *3 *2) (-12 (-5 *2 (-1134 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1030)) (-5 *3 (-401 (-552))) (-5 *1 (-1138 *4)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1030)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1134 *3))) (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)))) (-2889 (*1 *2 *3 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-4189 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) (-5 *1 (-1138 *4)))) (-3734 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) (-5 *1 (-1138 *4)))) (-3311 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) (-5 *1 (-1138 *4)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2405 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4)) (-4 *4 (-1030)))) (-1283 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1347 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2432 (*1 *2 *2 *3) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-3213 (*1 *2 *3) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1030)))) (-3746 (*1 *2 *3 *2) (-12 (-5 *2 (-1134 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1030)) (-5 *1 (-1138 *4)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2376 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-2308 (*1 *2 *3) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1030)))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-1138 *4)) (-4 *4 (-1030)) (-5 *3 (-552)))) (-1667 (*1 *2 *3) (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-1138 *4)) (-4 *4 (-1030)) (-5 *3 (-552)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1030)))) (-1293 (*1 *2 *2) (|partial| -12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1720 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-3969 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1709 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) (-1698 (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(-10 -7 (-15 -1698 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1709 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1709 ((-1134 |#1|) (-1134 |#1|))) (-15 * ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 * ((-1134 |#1|) |#1| (-1134 |#1|))) (-15 * ((-1134 |#1|) (-1134 |#1|) |#1|)) (-15 -3969 ((-3 (-1134 |#1|) "failed") (-1134 |#1|) (-1134 |#1|))) (-15 -1720 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -1293 ((-3 (-1134 |#1|) "failed") (-1134 |#1|))) (-15 -1727 ((-1134 |#1|) |#1| (-552))) (-15 -1667 ((-1134 (-552)) (-552))) (-15 -3957 ((-1134 (-552)) (-552))) (-15 -2308 ((-1134 |#1|) |#1|)) (-15 -2376 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2567 ((-1134 |#1|) (-1134 |#1|))) (-15 -3746 ((-1134 |#1|) (-1 |#1| (-552)) (-1134 |#1|))) (-15 -3213 ((-1134 |#1|) |#1|)) (-15 -2432 ((-1134 |#1|) (-1134 |#1|) |#1|)) (-15 -1347 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2764 ((-1134 |#1|) (-1134 |#1|))) (-15 -1283 ((-1134 |#1|) (-1134 |#1|))) (-15 -2378 ((-1134 |#1|) (-1134 (-1134 |#1|)))) (-15 -2405 ((-1134 |#1|) (-1134 |#1|))) (-15 -1866 ((-1134 |#1|) (-1134 |#1|))) (-15 -1719 ((-1134 |#1|) (-1134 |#1|))) (-15 -3311 ((-1134 |#1|) (-1134 |#1|) (-552) (-552))) (-15 -3734 ((-1134 |#1|) (-552) (-552) (-1134 |#1|))) (-15 -4189 ((-1134 |#1|) (-552) (-552) (-1134 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ((-1134 |#1|) |#1| (-1134 |#1|))) (-15 -2283 ((-1134 |#1|) |#1| (-1 (-1134 |#1|)))) (-15 -1315 ((-1134 |#1|) (-1134 (-1134 |#1|)))) (-15 -3050 ((-1134 |#1|) (-401 (-552)) (-1134 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2839 ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2168 ((-1134 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1134 |#1|)))) (-15 -3129 ((-1134 |#1|) |#1| (-1134 |#1|)))) |%noBranch|)) +((-2478 (((-1134 |#1|) (-1134 |#1|)) 57)) (-2332 (((-1134 |#1|) (-1134 |#1|)) 39)) (-2455 (((-1134 |#1|) (-1134 |#1|)) 53)) (-2305 (((-1134 |#1|) (-1134 |#1|)) 35)) (-2506 (((-1134 |#1|) (-1134 |#1|)) 60)) (-2359 (((-1134 |#1|) (-1134 |#1|)) 42)) (-2430 (((-1134 |#1|) (-1134 |#1|)) 31)) (-2855 (((-1134 |#1|) (-1134 |#1|)) 27)) (-2518 (((-1134 |#1|) (-1134 |#1|)) 61)) (-2370 (((-1134 |#1|) (-1134 |#1|)) 43)) (-2492 (((-1134 |#1|) (-1134 |#1|)) 58)) (-2346 (((-1134 |#1|) (-1134 |#1|)) 40)) (-2467 (((-1134 |#1|) (-1134 |#1|)) 55)) (-2318 (((-1134 |#1|) (-1134 |#1|)) 37)) (-3843 (((-1134 |#1|) (-1134 |#1|)) 65)) (-2409 (((-1134 |#1|) (-1134 |#1|)) 47)) (-2530 (((-1134 |#1|) (-1134 |#1|)) 63)) (-2382 (((-1134 |#1|) (-1134 |#1|)) 45)) (-3863 (((-1134 |#1|) (-1134 |#1|)) 68)) (-2433 (((-1134 |#1|) (-1134 |#1|)) 50)) (-3013 (((-1134 |#1|) (-1134 |#1|)) 69)) (-2444 (((-1134 |#1|) (-1134 |#1|)) 51)) (-3853 (((-1134 |#1|) (-1134 |#1|)) 67)) (-2420 (((-1134 |#1|) (-1134 |#1|)) 49)) (-2543 (((-1134 |#1|) (-1134 |#1|)) 66)) (-2395 (((-1134 |#1|) (-1134 |#1|)) 48)) (** (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 33))) +(((-1139 |#1|) (-10 -7 (-15 -2855 ((-1134 |#1|) (-1134 |#1|))) (-15 -2430 ((-1134 |#1|) (-1134 |#1|))) (-15 ** ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2305 ((-1134 |#1|) (-1134 |#1|))) (-15 -2318 ((-1134 |#1|) (-1134 |#1|))) (-15 -2332 ((-1134 |#1|) (-1134 |#1|))) (-15 -2346 ((-1134 |#1|) (-1134 |#1|))) (-15 -2359 ((-1134 |#1|) (-1134 |#1|))) (-15 -2370 ((-1134 |#1|) (-1134 |#1|))) (-15 -2382 ((-1134 |#1|) (-1134 |#1|))) (-15 -2395 ((-1134 |#1|) (-1134 |#1|))) (-15 -2409 ((-1134 |#1|) (-1134 |#1|))) (-15 -2420 ((-1134 |#1|) (-1134 |#1|))) (-15 -2433 ((-1134 |#1|) (-1134 |#1|))) (-15 -2444 ((-1134 |#1|) (-1134 |#1|))) (-15 -2455 ((-1134 |#1|) (-1134 |#1|))) (-15 -2467 ((-1134 |#1|) (-1134 |#1|))) (-15 -2478 ((-1134 |#1|) (-1134 |#1|))) (-15 -2492 ((-1134 |#1|) (-1134 |#1|))) (-15 -2506 ((-1134 |#1|) (-1134 |#1|))) (-15 -2518 ((-1134 |#1|) (-1134 |#1|))) (-15 -2530 ((-1134 |#1|) (-1134 |#1|))) (-15 -2543 ((-1134 |#1|) (-1134 |#1|))) (-15 -3843 ((-1134 |#1|) (-1134 |#1|))) (-15 -3853 ((-1134 |#1|) (-1134 |#1|))) (-15 -3863 ((-1134 |#1|) (-1134 |#1|))) (-15 -3013 ((-1134 |#1|) (-1134 |#1|)))) (-38 (-401 (-552)))) (T -1139)) +((-3013 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2332 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3)))) (-2855 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1139 *3))))) +(-10 -7 (-15 -2855 ((-1134 |#1|) (-1134 |#1|))) (-15 -2430 ((-1134 |#1|) (-1134 |#1|))) (-15 ** ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -2305 ((-1134 |#1|) (-1134 |#1|))) (-15 -2318 ((-1134 |#1|) (-1134 |#1|))) (-15 -2332 ((-1134 |#1|) (-1134 |#1|))) (-15 -2346 ((-1134 |#1|) (-1134 |#1|))) (-15 -2359 ((-1134 |#1|) (-1134 |#1|))) (-15 -2370 ((-1134 |#1|) (-1134 |#1|))) (-15 -2382 ((-1134 |#1|) (-1134 |#1|))) (-15 -2395 ((-1134 |#1|) (-1134 |#1|))) (-15 -2409 ((-1134 |#1|) (-1134 |#1|))) (-15 -2420 ((-1134 |#1|) (-1134 |#1|))) (-15 -2433 ((-1134 |#1|) (-1134 |#1|))) (-15 -2444 ((-1134 |#1|) (-1134 |#1|))) (-15 -2455 ((-1134 |#1|) (-1134 |#1|))) (-15 -2467 ((-1134 |#1|) (-1134 |#1|))) (-15 -2478 ((-1134 |#1|) (-1134 |#1|))) (-15 -2492 ((-1134 |#1|) (-1134 |#1|))) (-15 -2506 ((-1134 |#1|) (-1134 |#1|))) (-15 -2518 ((-1134 |#1|) (-1134 |#1|))) (-15 -2530 ((-1134 |#1|) (-1134 |#1|))) (-15 -2543 ((-1134 |#1|) (-1134 |#1|))) (-15 -3843 ((-1134 |#1|) (-1134 |#1|))) (-15 -3853 ((-1134 |#1|) (-1134 |#1|))) (-15 -3863 ((-1134 |#1|) (-1134 |#1|))) (-15 -3013 ((-1134 |#1|) (-1134 |#1|)))) +((-2478 (((-1134 |#1|) (-1134 |#1|)) 100)) (-2332 (((-1134 |#1|) (-1134 |#1|)) 64)) (-2874 (((-2 (|:| -2455 (-1134 |#1|)) (|:| -2467 (-1134 |#1|))) (-1134 |#1|)) 96)) (-2455 (((-1134 |#1|) (-1134 |#1|)) 97)) (-3372 (((-2 (|:| -2305 (-1134 |#1|)) (|:| -2318 (-1134 |#1|))) (-1134 |#1|)) 53)) (-2305 (((-1134 |#1|) (-1134 |#1|)) 54)) (-2506 (((-1134 |#1|) (-1134 |#1|)) 102)) (-2359 (((-1134 |#1|) (-1134 |#1|)) 71)) (-2430 (((-1134 |#1|) (-1134 |#1|)) 39)) (-2855 (((-1134 |#1|) (-1134 |#1|)) 36)) (-2518 (((-1134 |#1|) (-1134 |#1|)) 103)) (-2370 (((-1134 |#1|) (-1134 |#1|)) 72)) (-2492 (((-1134 |#1|) (-1134 |#1|)) 101)) (-2346 (((-1134 |#1|) (-1134 |#1|)) 67)) (-2467 (((-1134 |#1|) (-1134 |#1|)) 98)) (-2318 (((-1134 |#1|) (-1134 |#1|)) 55)) (-3843 (((-1134 |#1|) (-1134 |#1|)) 111)) (-2409 (((-1134 |#1|) (-1134 |#1|)) 86)) (-2530 (((-1134 |#1|) (-1134 |#1|)) 105)) (-2382 (((-1134 |#1|) (-1134 |#1|)) 82)) (-3863 (((-1134 |#1|) (-1134 |#1|)) 115)) (-2433 (((-1134 |#1|) (-1134 |#1|)) 90)) (-3013 (((-1134 |#1|) (-1134 |#1|)) 117)) (-2444 (((-1134 |#1|) (-1134 |#1|)) 92)) (-3853 (((-1134 |#1|) (-1134 |#1|)) 113)) (-2420 (((-1134 |#1|) (-1134 |#1|)) 88)) (-2543 (((-1134 |#1|) (-1134 |#1|)) 107)) (-2395 (((-1134 |#1|) (-1134 |#1|)) 84)) (** (((-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) 40))) +(((-1140 |#1|) (-10 -7 (-15 -2855 ((-1134 |#1|) (-1134 |#1|))) (-15 -2430 ((-1134 |#1|) (-1134 |#1|))) (-15 ** ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -3372 ((-2 (|:| -2305 (-1134 |#1|)) (|:| -2318 (-1134 |#1|))) (-1134 |#1|))) (-15 -2305 ((-1134 |#1|) (-1134 |#1|))) (-15 -2318 ((-1134 |#1|) (-1134 |#1|))) (-15 -2332 ((-1134 |#1|) (-1134 |#1|))) (-15 -2346 ((-1134 |#1|) (-1134 |#1|))) (-15 -2359 ((-1134 |#1|) (-1134 |#1|))) (-15 -2370 ((-1134 |#1|) (-1134 |#1|))) (-15 -2382 ((-1134 |#1|) (-1134 |#1|))) (-15 -2395 ((-1134 |#1|) (-1134 |#1|))) (-15 -2409 ((-1134 |#1|) (-1134 |#1|))) (-15 -2420 ((-1134 |#1|) (-1134 |#1|))) (-15 -2433 ((-1134 |#1|) (-1134 |#1|))) (-15 -2444 ((-1134 |#1|) (-1134 |#1|))) (-15 -2874 ((-2 (|:| -2455 (-1134 |#1|)) (|:| -2467 (-1134 |#1|))) (-1134 |#1|))) (-15 -2455 ((-1134 |#1|) (-1134 |#1|))) (-15 -2467 ((-1134 |#1|) (-1134 |#1|))) (-15 -2478 ((-1134 |#1|) (-1134 |#1|))) (-15 -2492 ((-1134 |#1|) (-1134 |#1|))) (-15 -2506 ((-1134 |#1|) (-1134 |#1|))) (-15 -2518 ((-1134 |#1|) (-1134 |#1|))) (-15 -2530 ((-1134 |#1|) (-1134 |#1|))) (-15 -2543 ((-1134 |#1|) (-1134 |#1|))) (-15 -3843 ((-1134 |#1|) (-1134 |#1|))) (-15 -3853 ((-1134 |#1|) (-1134 |#1|))) (-15 -3863 ((-1134 |#1|) (-1134 |#1|))) (-15 -3013 ((-1134 |#1|) (-1134 |#1|)))) (-38 (-401 (-552)))) (T -1140)) +((-3013 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -2455 (-1134 *4)) (|:| -2467 (-1134 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-1134 *4)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2332 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -2305 (-1134 *4)) (|:| -2318 (-1134 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-1134 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3)))) (-2855 (*1 *2 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1140 *3))))) +(-10 -7 (-15 -2855 ((-1134 |#1|) (-1134 |#1|))) (-15 -2430 ((-1134 |#1|) (-1134 |#1|))) (-15 ** ((-1134 |#1|) (-1134 |#1|) (-1134 |#1|))) (-15 -3372 ((-2 (|:| -2305 (-1134 |#1|)) (|:| -2318 (-1134 |#1|))) (-1134 |#1|))) (-15 -2305 ((-1134 |#1|) (-1134 |#1|))) (-15 -2318 ((-1134 |#1|) (-1134 |#1|))) (-15 -2332 ((-1134 |#1|) (-1134 |#1|))) (-15 -2346 ((-1134 |#1|) (-1134 |#1|))) (-15 -2359 ((-1134 |#1|) (-1134 |#1|))) (-15 -2370 ((-1134 |#1|) (-1134 |#1|))) (-15 -2382 ((-1134 |#1|) (-1134 |#1|))) (-15 -2395 ((-1134 |#1|) (-1134 |#1|))) (-15 -2409 ((-1134 |#1|) (-1134 |#1|))) (-15 -2420 ((-1134 |#1|) (-1134 |#1|))) (-15 -2433 ((-1134 |#1|) (-1134 |#1|))) (-15 -2444 ((-1134 |#1|) (-1134 |#1|))) (-15 -2874 ((-2 (|:| -2455 (-1134 |#1|)) (|:| -2467 (-1134 |#1|))) (-1134 |#1|))) (-15 -2455 ((-1134 |#1|) (-1134 |#1|))) (-15 -2467 ((-1134 |#1|) (-1134 |#1|))) (-15 -2478 ((-1134 |#1|) (-1134 |#1|))) (-15 -2492 ((-1134 |#1|) (-1134 |#1|))) (-15 -2506 ((-1134 |#1|) (-1134 |#1|))) (-15 -2518 ((-1134 |#1|) (-1134 |#1|))) (-15 -2530 ((-1134 |#1|) (-1134 |#1|))) (-15 -2543 ((-1134 |#1|) (-1134 |#1|))) (-15 -3843 ((-1134 |#1|) (-1134 |#1|))) (-15 -3853 ((-1134 |#1|) (-1134 |#1|))) (-15 -3863 ((-1134 |#1|) (-1134 |#1|))) (-15 -3013 ((-1134 |#1|) (-1134 |#1|)))) +((-2820 (((-939 |#2|) |#2| |#2|) 35)) (-3471 ((|#2| |#2| |#1|) 19 (|has| |#1| (-301))))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -2820 ((-939 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -3471 (|#2| |#2| |#1|)) |%noBranch|)) (-544) (-1213 |#1|)) (T -1141)) +((-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1213 *3)))) (-2820 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-939 *3)) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -2820 ((-939 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -3471 (|#2| |#2| |#1|)) |%noBranch|)) +((-3202 (((-111) $ $) NIL)) (-2500 (($ $ (-629 (-756))) 67)) (-1426 (($) 26)) (-3316 (($ $) 42)) (-3376 (((-629 $) $) 51)) (-3780 (((-111) $) 16)) (-3478 (((-629 (-924 |#2|)) $) 74)) (-3808 (($ $) 68)) (-3382 (((-756) $) 37)) (-3307 (($) 25)) (-4215 (($ $ (-629 (-756)) (-924 |#2|)) 60) (($ $ (-629 (-756)) (-756)) 61) (($ $ (-756) (-924 |#2|)) 63)) (-1446 (($ $ $) 48) (($ (-629 $)) 50)) (-2491 (((-756) $) 75)) (-3862 (((-111) $) 15)) (-2623 (((-1136) $) NIL)) (-1421 (((-111) $) 18)) (-2876 (((-1098) $) NIL)) (-2296 (((-168) $) 73)) (-2151 (((-924 |#2|) $) 69)) (-3684 (((-756) $) 70)) (-3120 (((-111) $) 72)) (-1444 (($ $ (-629 (-756)) (-168)) 66)) (-1901 (($ $) 43)) (-3213 (((-844) $) 86)) (-1907 (($ $ (-629 (-756)) (-111)) 65)) (-2527 (((-629 $) $) 11)) (-2582 (($ $ (-756)) 36)) (-2298 (($ $) 32)) (-3241 (($ $ $ (-924 |#2|) (-756)) 56)) (-2893 (($ $ (-924 |#2|)) 55)) (-4272 (($ $ (-629 (-756)) (-924 |#2|)) 54) (($ $ (-629 (-756)) (-756)) 58) (((-756) $ (-924 |#2|)) 59)) (-1613 (((-111) $ $) 80))) +(((-1142 |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -3862 ((-111) $)) (-15 -3780 ((-111) $)) (-15 -1421 ((-111) $)) (-15 -3307 ($)) (-15 -1426 ($)) (-15 -2298 ($ $)) (-15 -2582 ($ $ (-756))) (-15 -2527 ((-629 $) $)) (-15 -3382 ((-756) $)) (-15 -3316 ($ $)) (-15 -1901 ($ $)) (-15 -1446 ($ $ $)) (-15 -1446 ($ (-629 $))) (-15 -3376 ((-629 $) $)) (-15 -4272 ($ $ (-629 (-756)) (-924 |#2|))) (-15 -2893 ($ $ (-924 |#2|))) (-15 -3241 ($ $ $ (-924 |#2|) (-756))) (-15 -4215 ($ $ (-629 (-756)) (-924 |#2|))) (-15 -4272 ($ $ (-629 (-756)) (-756))) (-15 -4215 ($ $ (-629 (-756)) (-756))) (-15 -4272 ((-756) $ (-924 |#2|))) (-15 -4215 ($ $ (-756) (-924 |#2|))) (-15 -1907 ($ $ (-629 (-756)) (-111))) (-15 -1444 ($ $ (-629 (-756)) (-168))) (-15 -2500 ($ $ (-629 (-756)))) (-15 -2151 ((-924 |#2|) $)) (-15 -3684 ((-756) $)) (-15 -3120 ((-111) $)) (-15 -2296 ((-168) $)) (-15 -2491 ((-756) $)) (-15 -3808 ($ $)) (-15 -3478 ((-629 (-924 |#2|)) $)))) (-902) (-1030)) (T -1142)) +((-3862 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3307 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-1426 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-1901 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-1446 (*1 *1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-4272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-924 *5)) (-4 *5 (-1030)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-924 *4)) (-4 *4 (-1030)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)))) (-3241 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-924 *5)) (-5 *3 (-756)) (-4 *5 (-1030)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) (-4215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-924 *5)) (-4 *5 (-1030)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) (-4272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-756)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)) (-4 *5 (-1030)))) (-4215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-756)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)) (-4 *5 (-1030)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-924 *5)) (-4 *5 (-1030)) (-5 *2 (-756)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) (-4215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-924 *5)) (-4 *5 (-1030)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) (-1907 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-111)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)) (-4 *5 (-1030)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-629 (-756))) (-5 *3 (-168)) (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)) (-4 *5 (-1030)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-924 *4)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-629 (-924 *4))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) (-4 *4 (-1030))))) +(-13 (-1078) (-10 -8 (-15 -3862 ((-111) $)) (-15 -3780 ((-111) $)) (-15 -1421 ((-111) $)) (-15 -3307 ($)) (-15 -1426 ($)) (-15 -2298 ($ $)) (-15 -2582 ($ $ (-756))) (-15 -2527 ((-629 $) $)) (-15 -3382 ((-756) $)) (-15 -3316 ($ $)) (-15 -1901 ($ $)) (-15 -1446 ($ $ $)) (-15 -1446 ($ (-629 $))) (-15 -3376 ((-629 $) $)) (-15 -4272 ($ $ (-629 (-756)) (-924 |#2|))) (-15 -2893 ($ $ (-924 |#2|))) (-15 -3241 ($ $ $ (-924 |#2|) (-756))) (-15 -4215 ($ $ (-629 (-756)) (-924 |#2|))) (-15 -4272 ($ $ (-629 (-756)) (-756))) (-15 -4215 ($ $ (-629 (-756)) (-756))) (-15 -4272 ((-756) $ (-924 |#2|))) (-15 -4215 ($ $ (-756) (-924 |#2|))) (-15 -1907 ($ $ (-629 (-756)) (-111))) (-15 -1444 ($ $ (-629 (-756)) (-168))) (-15 -2500 ($ $ (-629 (-756)))) (-15 -2151 ((-924 |#2|) $)) (-15 -3684 ((-756) $)) (-15 -3120 ((-111) $)) (-15 -2296 ((-168) $)) (-15 -2491 ((-756) $)) (-15 -3808 ($ $)) (-15 -3478 ((-629 (-924 |#2|)) $)))) +((-3202 (((-111) $ $) NIL)) (-1300 ((|#2| $) 11)) (-1286 ((|#1| $) 10)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3226 (($ |#1| |#2|) 9)) (-3213 (((-844) $) 16)) (-1613 (((-111) $ $) NIL))) +(((-1143 |#1| |#2|) (-13 (-1078) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -1286 (|#1| $)) (-15 -1300 (|#2| $)))) (-1078) (-1078)) (T -1143)) +((-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-1286 (*1 *2 *1) (-12 (-4 *2 (-1078)) (-5 *1 (-1143 *2 *3)) (-4 *3 (-1078)))) (-1300 (*1 *2 *1) (-12 (-4 *2 (-1078)) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1078))))) +(-13 (-1078) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -1286 (|#1| $)) (-15 -1300 (|#2| $)))) +((-3202 (((-111) $ $) NIL)) (-1968 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1144) (-13 (-1061) (-10 -8 (-15 -1968 ((-1113) $))))) (T -1144)) +((-1968 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1144))))) +(-13 (-1061) (-10 -8 (-15 -1968 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-1152 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 11)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3303 (($ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1334 (((-111) $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4157 (($ $ (-552)) NIL) (($ $ (-552) (-552)) 66)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3005 (((-1152 |#1| |#2| |#3|) $) 36)) (-1703 (((-3 (-1152 |#1| |#2| |#3|) "failed") $) 29)) (-3658 (((-1152 |#1| |#2| |#3|) $) 30)) (-2478 (($ $) 107 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) 103 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-3886 (((-552) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-1152 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1154) "failed") $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))))) (-2832 (((-1152 |#1| |#2| |#3|) $) 131) (((-1154) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))))) (-3398 (($ $) 34) (($ (-552) $) 35)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-1152 |#1| |#2| |#3|)) (-673 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-1152 |#1| |#2| |#3|))) (|:| |vec| (-1237 (-1152 |#1| |#2| |#3|)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-625 (-552))) (|has| |#1| (-357)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-625 (-552))) (|has| |#1| (-357))))) (-1293 (((-3 $ "failed") $) 48)) (-3469 (((-401 (-933 |#1|)) $ (-552)) 65 (|has| |#1| (-544))) (((-401 (-933 |#1|)) $ (-552) (-552)) 67 (|has| |#1| (-544)))) (-1332 (($) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-1338 (((-111) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-3593 (((-111) $) 25)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-867 (-552))) (|has| |#1| (-357)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-867 (-373))) (|has| |#1| (-357))))) (-4241 (((-552) $) NIL) (((-552) $ (-552)) 24)) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL (|has| |#1| (-357)))) (-4015 (((-1152 |#1| |#2| |#3|) $) 38 (|has| |#1| (-357)))) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2032 (((-3 $ "failed") $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1129)) (|has| |#1| (-357))))) (-3127 (((-111) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-1524 (($ $ (-902)) NIL)) (-3838 (($ (-1 |#1| (-552)) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-552)) 18) (($ $ (-1060) (-552)) NIL) (($ $ (-629 (-1060)) (-629 (-552))) NIL)) (-1772 (($ $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-2011 (($ $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-2430 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3670 (($ (-552) (-1152 |#1| |#2| |#3|)) 33)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) 70 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 71 (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1129)) (|has| |#1| (-357))) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2147 (($ $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3410 (((-1152 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-552)) 145)) (-3969 (((-3 $ "failed") $ $) 49 (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1154) (-1152 |#1| |#2| |#3|)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-506 (-1154) (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 (-1152 |#1| |#2| |#3|))) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-506 (-1154) (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-288 (-1152 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1152 |#1| |#2| |#3|))) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-1152 |#1| |#2| |#3|)) (-629 (-1152 |#1| |#2| |#3|))) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-303 (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-552)) NIL) (($ $ $) 54 (|has| (-552) (-1090))) (($ $ (-1152 |#1| |#2| |#3|)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-280 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-1 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|)) (-756)) NIL (|has| |#1| (-357))) (($ $ (-1233 |#2|)) 51) (($ $ (-756)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 50 (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-2493 (($ $) NIL (|has| |#1| (-357)))) (-4026 (((-1152 |#1| |#2| |#3|) $) 41 (|has| |#1| (-357)))) (-3299 (((-552) $) 37)) (-2518 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 105 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-1522 (((-528) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1003)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1003)) (|has| |#1| (-357)))) (((-873 (-373)) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-600 (-873 (-373)))) (|has| |#1| (-357)))) (((-873 (-552)) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-600 (-873 (-552)))) (|has| |#1| (-357))))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) 149) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1152 |#1| |#2| |#3|)) 27) (($ (-1233 |#2|)) 23) (($ (-1154)) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (($ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-2266 ((|#1| $ (-552)) 68)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 12)) (-3763 (((-1152 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3843 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 95 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-2530 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 99 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 101 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 97 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 93 (|has| |#1| (-38 (-401 (-552)))))) (-1578 (($ $) NIL (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-3297 (($) 20 T CONST)) (-3309 (($) 16 T CONST)) (-1765 (($ $ (-1 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|)) (-756)) NIL (|has| |#1| (-357))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-1666 (((-111) $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1644 (((-111) $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1632 (((-111) $ $) NIL (-4029 (-12 (|has| (-1152 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1152 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 44 (|has| |#1| (-357))) (($ (-1152 |#1| |#2| |#3|) (-1152 |#1| |#2| |#3|)) 45 (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 21)) (** (($ $ (-902)) NIL) (($ $ (-756)) 53) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) 74 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1152 |#1| |#2| |#3|)) 43 (|has| |#1| (-357))) (($ (-1152 |#1| |#2| |#3|) $) 42 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1145 |#1| |#2| |#3|) (-13 (-1199 |#1| (-1152 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1145)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1199 |#1| (-1152 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-2994 ((|#2| |#2| (-1070 |#2|)) 26) ((|#2| |#2| (-1154)) 28))) +(((-1146 |#1| |#2|) (-10 -7 (-15 -2994 (|#2| |#2| (-1154))) (-15 -2994 (|#2| |#2| (-1070 |#2|)))) (-13 (-544) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-424 |#1|) (-157) (-27) (-1176))) (T -1146)) +((-2994 (*1 *2 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1176))) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1146 *4 *2)))) (-2994 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1146 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1176)))))) +(-10 -7 (-15 -2994 (|#2| |#2| (-1154))) (-15 -2994 (|#2| |#2| (-1070 |#2|)))) +((-2994 (((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1070 (-401 (-933 |#1|)))) 31) (((-401 (-933 |#1|)) (-933 |#1|) (-1070 (-933 |#1|))) 44) (((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1154)) 33) (((-401 (-933 |#1|)) (-933 |#1|) (-1154)) 36))) +(((-1147 |#1|) (-10 -7 (-15 -2994 ((-401 (-933 |#1|)) (-933 |#1|) (-1154))) (-15 -2994 ((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1154))) (-15 -2994 ((-401 (-933 |#1|)) (-933 |#1|) (-1070 (-933 |#1|)))) (-15 -2994 ((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1070 (-401 (-933 |#1|)))))) (-13 (-544) (-832) (-1019 (-552)))) (T -1147)) +((-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1147 *5)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-933 *5))) (-5 *3 (-933 *5)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-401 *3)) (-5 *1 (-1147 *5)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-3 (-401 (-933 *5)) (-310 *5))) (-5 *1 (-1147 *5)) (-5 *3 (-401 (-933 *5))))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-401 (-933 *5))) (-5 *1 (-1147 *5)) (-5 *3 (-933 *5))))) +(-10 -7 (-15 -2994 ((-401 (-933 |#1|)) (-933 |#1|) (-1154))) (-15 -2994 ((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1154))) (-15 -2994 ((-401 (-933 |#1|)) (-933 |#1|) (-1070 (-933 |#1|)))) (-15 -2994 ((-3 (-401 (-933 |#1|)) (-310 |#1|)) (-401 (-933 |#1|)) (-1070 (-401 (-933 |#1|)))))) +((-1477 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 13))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -1477 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)))) (-1030) (-1030)) (T -1148)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6))))) +(-10 -7 (-15 -1477 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)))) +((-3343 (((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|))) 51)) (-3479 (((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|))) 52))) +(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3479 ((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|)))) (-15 -3343 ((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|))))) (-778) (-832) (-445) (-930 |#3| |#1| |#2|)) (T -1149)) +((-3343 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-445)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 (-401 *7)))) (-5 *1 (-1149 *4 *5 *6 *7)) (-5 *3 (-1150 (-401 *7))))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-445)) (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 (-401 *7)))) (-5 *1 (-1149 *4 *5 *6 *7)) (-5 *3 (-1150 (-401 *7)))))) +(-10 -7 (-15 -3479 ((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|)))) (-15 -3343 ((-412 (-1150 (-401 |#4|))) (-1150 (-401 |#4|))))) +((-3202 (((-111) $ $) 137)) (-3643 (((-111) $) 27)) (-2961 (((-1237 |#1|) $ (-756)) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-4218 (($ (-1150 |#1|)) NIL)) (-3449 (((-1150 $) $ (-1060)) 58) (((-1150 |#1|) $) 47)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) 132 (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1060))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ $) 126 (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) 71 (|has| |#1| (-890)))) (-4116 (($ $) NIL (|has| |#1| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 91 (|has| |#1| (-890)))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1496 (($ $ (-756)) 39)) (-3366 (($ $ (-756)) 40)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-1060) "failed") $) NIL)) (-2832 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-1060) $) NIL)) (-3301 (($ $ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) 56)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) NIL) (((-673 |#1|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3547 (($ $ $) 104)) (-1589 (($ $ $) NIL (|has| |#1| (-544)))) (-2997 (((-2 (|:| -4158 |#1|) (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-3471 (($ $) 133 (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-756) $) 45)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1060) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1060) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-1647 (((-844) $ (-844)) 117)) (-4241 (((-756) $ $) NIL (|has| |#1| (-544)))) (-4065 (((-111) $) 30)) (-2856 (((-756) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-3602 (($ (-1150 |#1|) (-1060)) 49) (($ (-1150 $) (-1060)) 65)) (-1524 (($ $ (-756)) 32)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) 63) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1060)) NIL) (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 121)) (-3544 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-3891 (($ (-1 (-756) (-756)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2434 (((-1150 |#1|) $) NIL)) (-3506 (((-3 (-1060) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) 52)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2623 (((-1136) $) NIL)) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) 38)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1060)) (|:| -1406 (-756))) "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) NIL (|has| |#1| (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) 31)) (-3722 ((|#1| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 79 (|has| |#1| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-445))) (($ $ $) 135 (|has| |#1| (-445)))) (-3079 (($ $ (-756) |#1| $) 99)) (-1848 (((-412 (-1150 $)) (-1150 $)) 77 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 76 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 84 (|has| |#1| (-890)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1060) |#1|) NIL) (($ $ (-629 (-1060)) (-629 |#1|)) NIL) (($ $ (-1060) $) NIL) (($ $ (-629 (-1060)) (-629 $)) NIL)) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-4212 (((-3 $ "failed") $ (-756)) 35)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 138 (|has| |#1| (-357)))) (-1721 (($ $ (-1060)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-3096 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3299 (((-756) $) 54) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1060) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) 130 (|has| |#1| (-445))) (($ $ (-1060)) NIL (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-890))))) (-2911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-3213 (((-844) $) 118) (($ (-552)) NIL) (($ |#1|) 53) (($ (-1060)) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) 25 (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 15 T CONST)) (-3309 (($) 16 T CONST)) (-1765 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) 96)) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 139 (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 66)) (** (($ $ (-902)) 14) (($ $ (-756)) 12)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1150 |#1|) (-13 (-1213 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-844))) (-15 -3079 ($ $ (-756) |#1| $)))) (-1030)) (T -1150)) +((-1647 (*1 *2 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1150 *3)) (-4 *3 (-1030)))) (-3079 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1150 *3)) (-4 *3 (-1030))))) +(-13 (-1213 |#1|) (-10 -8 (-15 -1647 ((-844) $ (-844))) (-15 -3079 ($ $ (-756) |#1| $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 11)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1152 |#1| |#2| |#3|) "failed") $) 36)) (-2832 (((-1145 |#1| |#2| |#3|) $) NIL) (((-1152 |#1| |#2| |#3|) $) NIL)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3462 (((-401 (-552)) $) 55)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3682 (($ (-401 (-552)) (-1145 |#1| |#2| |#3|)) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) NIL) (($ $ (-401 (-552))) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-401 (-552))) 20) (($ $ (-1060) (-401 (-552))) NIL) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4151 (((-1145 |#1| |#2| |#3|) $) 41)) (-1847 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) NIL)) (-3670 (((-1145 |#1| |#2| |#3|) $) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1233 |#2|)) 38)) (-3299 (((-401 (-552)) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) 58) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1145 |#1| |#2| |#3|)) 30) (($ (-1152 |#1| |#2| |#3|)) 31) (($ (-1233 |#2|)) 26) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 12)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 22 T CONST)) (-3309 (($) 16 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 24)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1151 |#1| |#2| |#3|) (-13 (-1220 |#1| (-1145 |#1| |#2| |#3|)) (-1019 (-1152 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1151)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1220 |#1| (-1145 |#1| |#2| |#3|)) (-1019 (-1152 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 125)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 116)) (-3576 (((-1210 |#2| |#1|) $ (-756)) 63)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-756)) 79) (($ $ (-756) (-756)) 76)) (-2622 (((-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|))) $) 102)) (-2478 (($ $) 169 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) 165 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|)))) 115) (($ (-1134 |#1|)) 110)) (-2506 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) 23)) (-1517 (($ $) 26)) (-2211 (((-933 |#1|) $ (-756)) 75) (((-933 |#1|) $ (-756) (-756)) 77)) (-3593 (((-111) $) 120)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $) 122) (((-756) $ (-756)) 124)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) NIL)) (-3838 (($ (-1 |#1| (-552)) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) 13) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2889 (($ $) 129 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3136 (($ $ (-756)) 15)) (-3969 (((-3 $ "failed") $ $) 24 (|has| |#1| (-544)))) (-2855 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-756)))))) (-2060 ((|#1| $ (-756)) 119) (($ $ $) 128 (|has| (-756) (-1090)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $ (-1233 |#2|)) 29)) (-3299 (((-756) $) NIL)) (-2518 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 167 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) 201) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1210 |#2| |#1|)) 51) (($ (-1233 |#2|)) 32)) (-2984 (((-1134 |#1|) $) 98)) (-2266 ((|#1| $ (-756)) 118)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 54)) (-3843 (($ $) 181 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 185 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-756)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-756)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 183 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 17 T CONST)) (-3309 (($) 19 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) 194)) (-1698 (($ $ $) 31)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ |#1|) 198 (|has| |#1| (-357))) (($ $ $) 134 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 137 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1152 |#1| |#2| |#3|) (-13 (-1228 |#1|) (-10 -8 (-15 -3213 ($ (-1210 |#2| |#1|))) (-15 -3576 ((-1210 |#2| |#1|) $ (-756))) (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1152)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1210 *4 *3)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3) (-5 *1 (-1152 *3 *4 *5)))) (-3576 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1210 *5 *4)) (-5 *1 (-1152 *4 *5 *6)) (-4 *4 (-1030)) (-14 *5 (-1154)) (-14 *6 *4))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1228 |#1|) (-10 -8 (-15 -3213 ($ (-1210 |#2| |#1|))) (-15 -3576 ((-1210 |#2| |#1|) $ (-756))) (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3213 (((-844) $) 27) (($ (-1154)) 29)) (-4029 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 40)) (-4018 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-2227 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 35)) (-2215 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 37)) (-2200 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 36)) (-2185 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 38)) (-3357 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 39))) +(((-1153) (-13 (-599 (-844)) (-10 -8 (-15 -3213 ($ (-1154))) (-15 -2227 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2200 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2215 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2185 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4029 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3357 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4018 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4018 ($ $))))) (T -1153)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153)))) (-2227 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-2200 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-2215 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-2185 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-4029 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-3357 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) (-5 *1 (-1153)))) (-4018 (*1 *1 *1) (-5 *1 (-1153)))) +(-13 (-599 (-844)) (-10 -8 (-15 -3213 ($ (-1154))) (-15 -2227 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2200 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2215 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2185 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4029 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3357 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4018 ($ (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4018 ($ $)))) +((-3202 (((-111) $ $) NIL)) (-2821 (($ $ (-629 (-844))) 59)) (-1592 (($ $ (-629 (-844))) 57)) (-3986 (((-1136) $) 84)) (-2569 (((-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844)))) $) 87)) (-2700 (((-111) $) 22)) (-2754 (($ $ (-629 (-629 (-844)))) 56) (($ $ (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844))))) 82)) (-2130 (($) 124 T CONST)) (-2213 (((-1242)) 106)) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 66) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 73)) (-3307 (($) 95) (($ $) 101)) (-4290 (($ $) 83)) (-1772 (($ $ $) NIL)) (-2011 (($ $ $) NIL)) (-2563 (((-629 $) $) 107)) (-2623 (((-1136) $) 90)) (-2876 (((-1098) $) NIL)) (-2060 (($ $ (-629 (-844))) 58)) (-1522 (((-528) $) 46) (((-1154) $) 47) (((-873 (-552)) $) 77) (((-873 (-373)) $) 75)) (-3213 (((-844) $) 53) (($ (-1136)) 48)) (-1277 (($ $ (-629 (-844))) 60)) (-3016 (((-1136) $) 33) (((-1136) $ (-111)) 34) (((-1242) (-807) $) 35) (((-1242) (-807) $ (-111)) 36)) (-1666 (((-111) $ $) NIL)) (-1644 (((-111) $ $) NIL)) (-1613 (((-111) $ $) 49)) (-1655 (((-111) $ $) NIL)) (-1632 (((-111) $ $) 50))) +(((-1154) (-13 (-832) (-600 (-528)) (-813) (-600 (-1154)) (-600 (-873 (-552))) (-600 (-873 (-373))) (-867 (-552)) (-867 (-373)) (-10 -8 (-15 -3307 ($)) (-15 -3307 ($ $)) (-15 -2213 ((-1242))) (-15 -3213 ($ (-1136))) (-15 -4290 ($ $)) (-15 -2700 ((-111) $)) (-15 -2569 ((-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844)))) $)) (-15 -2754 ($ $ (-629 (-629 (-844))))) (-15 -2754 ($ $ (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844)))))) (-15 -1592 ($ $ (-629 (-844)))) (-15 -2821 ($ $ (-629 (-844)))) (-15 -1277 ($ $ (-629 (-844)))) (-15 -2060 ($ $ (-629 (-844)))) (-15 -3986 ((-1136) $)) (-15 -2563 ((-629 $) $)) (-15 -2130 ($) -3930)))) (T -1154)) +((-3307 (*1 *1) (-5 *1 (-1154))) (-3307 (*1 *1 *1) (-5 *1 (-1154))) (-2213 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1154)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1154)))) (-4290 (*1 *1 *1) (-5 *1 (-1154))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1154)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844))))) (-5 *1 (-1154)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-629 (-844)))) (-5 *1 (-1154)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844))))) (-5 *1 (-1154)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1154)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1154)))) (-2130 (*1 *1) (-5 *1 (-1154)))) +(-13 (-832) (-600 (-528)) (-813) (-600 (-1154)) (-600 (-873 (-552))) (-600 (-873 (-373))) (-867 (-552)) (-867 (-373)) (-10 -8 (-15 -3307 ($)) (-15 -3307 ($ $)) (-15 -2213 ((-1242))) (-15 -3213 ($ (-1136))) (-15 -4290 ($ $)) (-15 -2700 ((-111) $)) (-15 -2569 ((-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844)))) $)) (-15 -2754 ($ $ (-629 (-629 (-844))))) (-15 -2754 ($ $ (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) (|:| |args| (-629 (-844)))))) (-15 -1592 ($ $ (-629 (-844)))) (-15 -2821 ($ $ (-629 (-844)))) (-15 -1277 ($ $ (-629 (-844)))) (-15 -2060 ($ $ (-629 (-844)))) (-15 -3986 ((-1136) $)) (-15 -2563 ((-629 $) $)) (-15 -2130 ($) -3930))) +((-4339 (((-1237 |#1|) |#1| (-902)) 16) (((-1237 |#1|) (-629 |#1|)) 20))) +(((-1155 |#1|) (-10 -7 (-15 -4339 ((-1237 |#1|) (-629 |#1|))) (-15 -4339 ((-1237 |#1|) |#1| (-902)))) (-1030)) (T -1155)) +((-4339 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-5 *2 (-1237 *3)) (-5 *1 (-1155 *3)) (-4 *3 (-1030)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-1030)) (-5 *2 (-1237 *4)) (-5 *1 (-1155 *4))))) +(-10 -7 (-15 -4339 ((-1237 |#1|) (-629 |#1|))) (-15 -4339 ((-1237 |#1|) |#1| (-902)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1019 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-2832 (((-552) $) NIL (|has| |#1| (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1019 (-401 (-552))))) ((|#1| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3471 (($ $) NIL (|has| |#1| (-445)))) (-3423 (($ $ |#1| (-952) $) NIL)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-952)) NIL)) (-3544 (((-952) $) NIL)) (-3891 (($ (-1 (-952) (-952)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#1| $) NIL)) (-3079 (($ $ (-952) |#1| $) NIL (-12 (|has| (-952) (-129)) (|has| |#1| (-544))))) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3299 (((-952) $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-4029 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1019 (-401 (-552))))))) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ (-952)) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#1| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3297 (($) 9 T CONST)) (-3309 (($) 14 T CONST)) (-1613 (((-111) $ $) 16)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 19)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1156 |#1|) (-13 (-320 |#1| (-952)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-952) (-129)) (-15 -3079 ($ $ (-952) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) (-1030)) (T -1156)) +((-3079 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-952)) (-4 *2 (-129)) (-5 *1 (-1156 *3)) (-4 *3 (-544)) (-4 *3 (-1030))))) +(-13 (-320 |#1| (-952)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-952) (-129)) (-15 -3079 ($ $ (-952) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) +((-3964 (((-1158) (-1154) $) 25)) (-4248 (($) 29)) (-3595 (((-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-1154) $) 22)) (-3281 (((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")) $) 41) (((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) 42) (((-1242) (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) 43)) (-3896 (((-1242) (-1154)) 58)) (-3047 (((-1242) (-1154) $) 55) (((-1242) (-1154)) 56) (((-1242)) 57)) (-1912 (((-1242) (-1154)) 37)) (-3235 (((-1154)) 36)) (-3430 (($) 34)) (-1395 (((-431) (-1154) (-431) (-1154) $) 45) (((-431) (-629 (-1154)) (-431) (-1154) $) 49) (((-431) (-1154) (-431)) 46) (((-431) (-1154) (-431) (-1154)) 50)) (-2732 (((-1154)) 35)) (-3213 (((-844) $) 28)) (-2959 (((-1242)) 30) (((-1242) (-1154)) 33)) (-3061 (((-629 (-1154)) (-1154) $) 24)) (-1330 (((-1242) (-1154) (-629 (-1154)) $) 38) (((-1242) (-1154) (-629 (-1154))) 39) (((-1242) (-629 (-1154))) 40))) +(((-1157) (-13 (-599 (-844)) (-10 -8 (-15 -4248 ($)) (-15 -2959 ((-1242))) (-15 -2959 ((-1242) (-1154))) (-15 -1395 ((-431) (-1154) (-431) (-1154) $)) (-15 -1395 ((-431) (-629 (-1154)) (-431) (-1154) $)) (-15 -1395 ((-431) (-1154) (-431))) (-15 -1395 ((-431) (-1154) (-431) (-1154))) (-15 -1912 ((-1242) (-1154))) (-15 -2732 ((-1154))) (-15 -3235 ((-1154))) (-15 -1330 ((-1242) (-1154) (-629 (-1154)) $)) (-15 -1330 ((-1242) (-1154) (-629 (-1154)))) (-15 -1330 ((-1242) (-629 (-1154)))) (-15 -3281 ((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")) $)) (-15 -3281 ((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")))) (-15 -3281 ((-1242) (-3 (|:| |fst| (-428)) (|:| -1899 "void")))) (-15 -3047 ((-1242) (-1154) $)) (-15 -3047 ((-1242) (-1154))) (-15 -3047 ((-1242))) (-15 -3896 ((-1242) (-1154))) (-15 -3430 ($)) (-15 -3595 ((-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-1154) $)) (-15 -3061 ((-629 (-1154)) (-1154) $)) (-15 -3964 ((-1158) (-1154) $))))) (T -1157)) +((-4248 (*1 *1) (-5 *1 (-1157))) (-2959 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1157)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-1395 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) (-1395 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-629 (-1154))) (-5 *4 (-1154)) (-5 *1 (-1157)))) (-1395 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) (-1395 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-2732 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1157)))) (-3235 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1330 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-1330 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3281 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1154)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3047 (*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3047 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) (-3430 (*1 *1) (-5 *1 (-1157))) (-3595 (*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *1 (-1157)))) (-3061 (*1 *2 *3 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1157)) (-5 *3 (-1154)))) (-3964 (*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-1158)) (-5 *1 (-1157))))) +(-13 (-599 (-844)) (-10 -8 (-15 -4248 ($)) (-15 -2959 ((-1242))) (-15 -2959 ((-1242) (-1154))) (-15 -1395 ((-431) (-1154) (-431) (-1154) $)) (-15 -1395 ((-431) (-629 (-1154)) (-431) (-1154) $)) (-15 -1395 ((-431) (-1154) (-431))) (-15 -1395 ((-431) (-1154) (-431) (-1154))) (-15 -1912 ((-1242) (-1154))) (-15 -2732 ((-1154))) (-15 -3235 ((-1154))) (-15 -1330 ((-1242) (-1154) (-629 (-1154)) $)) (-15 -1330 ((-1242) (-1154) (-629 (-1154)))) (-15 -1330 ((-1242) (-629 (-1154)))) (-15 -3281 ((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")) $)) (-15 -3281 ((-1242) (-1154) (-3 (|:| |fst| (-428)) (|:| -1899 "void")))) (-15 -3281 ((-1242) (-3 (|:| |fst| (-428)) (|:| -1899 "void")))) (-15 -3047 ((-1242) (-1154) $)) (-15 -3047 ((-1242) (-1154))) (-15 -3047 ((-1242))) (-15 -3896 ((-1242) (-1154))) (-15 -3430 ($)) (-15 -3595 ((-3 (|:| |fst| (-428)) (|:| -1899 "void")) (-1154) $)) (-15 -3061 ((-629 (-1154)) (-1154) $)) (-15 -3964 ((-1158) (-1154) $)))) +((-1976 (((-629 (-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552))))))))) $) 59)) (-2834 (((-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552)))))))) (-428) $) 43)) (-1710 (($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-431))))) 17)) (-3896 (((-1242) $) 67)) (-1749 (((-629 (-1154)) $) 22)) (-2883 (((-1082) $) 55)) (-2244 (((-431) (-1154) $) 27)) (-3968 (((-629 (-1154)) $) 30)) (-3430 (($) 19)) (-1395 (((-431) (-629 (-1154)) (-431) $) 25) (((-431) (-1154) (-431) $) 24)) (-3213 (((-844) $) 9) (((-1164 (-1154) (-431)) $) 13))) +(((-1158) (-13 (-599 (-844)) (-10 -8 (-15 -3213 ((-1164 (-1154) (-431)) $)) (-15 -3430 ($)) (-15 -1395 ((-431) (-629 (-1154)) (-431) $)) (-15 -1395 ((-431) (-1154) (-431) $)) (-15 -2244 ((-431) (-1154) $)) (-15 -1749 ((-629 (-1154)) $)) (-15 -2834 ((-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552)))))))) (-428) $)) (-15 -3968 ((-629 (-1154)) $)) (-15 -1976 ((-629 (-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552))))))))) $)) (-15 -2883 ((-1082) $)) (-15 -3896 ((-1242) $)) (-15 -1710 ($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-431))))))))) (T -1158)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-1164 (-1154) (-431))) (-5 *1 (-1158)))) (-3430 (*1 *1) (-5 *1 (-1158))) (-1395 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-629 (-1154))) (-5 *1 (-1158)))) (-1395 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1158)))) (-2244 (*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-431)) (-5 *1 (-1158)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1158)))) (-2834 (*1 *2 *3 *1) (-12 (-5 *3 (-428)) (-5 *2 (-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552))))))))) (-5 *1 (-1158)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1158)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552)))))))))) (-5 *1 (-1158)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1158)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1158)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-431))))) (-5 *1 (-1158))))) +(-13 (-599 (-844)) (-10 -8 (-15 -3213 ((-1164 (-1154) (-431)) $)) (-15 -3430 ($)) (-15 -1395 ((-431) (-629 (-1154)) (-431) $)) (-15 -1395 ((-431) (-1154) (-431) $)) (-15 -2244 ((-431) (-1154) $)) (-15 -1749 ((-629 (-1154)) $)) (-15 -2834 ((-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552)))))))) (-428) $)) (-15 -3968 ((-629 (-1154)) $)) (-15 -1976 ((-629 (-629 (-3 (|:| -4290 (-1154)) (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552))))))))) $)) (-15 -2883 ((-1082) $)) (-15 -3896 ((-1242) $)) (-15 -1710 ($ (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-431)))))))) +((-3202 (((-111) $ $) NIL)) (-1393 (((-3 (-552) "failed") $) 29) (((-3 (-220) "failed") $) 35) (((-3 (-1154) "failed") $) 41) (((-3 (-1136) "failed") $) 47)) (-2832 (((-552) $) 30) (((-220) $) 36) (((-1154) $) 42) (((-1136) $) 48)) (-1458 (((-111) $) 53)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2181 (((-3 (-552) (-220) (-1154) (-1136) $) $) 55)) (-3889 (((-629 $) $) 57)) (-1522 (((-1082) $) 24) (($ (-1082)) 25)) (-3008 (((-111) $) 56)) (-3213 (((-844) $) 23) (($ (-552)) 26) (($ (-220)) 32) (($ (-1154)) 38) (($ (-1136)) 44) (((-552) $) 31) (((-220) $) 37) (((-1154) $) 43) (((-1136) $) 49)) (-3285 (((-111) $ (|[\|\|]| (-552))) 10) (((-111) $ (|[\|\|]| (-220))) 13) (((-111) $ (|[\|\|]| (-1154))) 19) (((-111) $ (|[\|\|]| (-1136))) 16)) (-1569 (($ (-1154) (-629 $)) 51) (($ $ (-629 $)) 52)) (-1512 (((-552) $) 27) (((-220) $) 33) (((-1154) $) 39) (((-1136) $) 45)) (-1613 (((-111) $ $) 7))) +(((-1159) (-13 (-1232) (-1078) (-1019 (-552)) (-1019 (-220)) (-1019 (-1154)) (-1019 (-1136)) (-10 -8 (-15 -1522 ((-1082) $)) (-15 -1522 ($ (-1082))) (-15 -3213 ((-552) $)) (-15 -1512 ((-552) $)) (-15 -3213 ((-220) $)) (-15 -1512 ((-220) $)) (-15 -3213 ((-1154) $)) (-15 -1512 ((-1154) $)) (-15 -3213 ((-1136) $)) (-15 -1512 ((-1136) $)) (-15 -1569 ($ (-1154) (-629 $))) (-15 -1569 ($ $ (-629 $))) (-15 -1458 ((-111) $)) (-15 -2181 ((-3 (-552) (-220) (-1154) (-1136) $) $)) (-15 -3889 ((-629 $) $)) (-15 -3008 ((-111) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-552)))) (-15 -3285 ((-111) $ (|[\|\|]| (-220)))) (-15 -3285 ((-111) $ (|[\|\|]| (-1154)))) (-15 -3285 ((-111) $ (|[\|\|]| (-1136))))))) (T -1159)) +((-1522 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1159)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1159)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1159)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1159)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1159)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1159)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1159)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1159)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1159)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1159)))) (-1569 (*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-1159))) (-5 *1 (-1159)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1159)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1159)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-3 (-552) (-220) (-1154) (-1136) (-1159))) (-5 *1 (-1159)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1159)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1159)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1159)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1159)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1154))) (-5 *2 (-111)) (-5 *1 (-1159)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-111)) (-5 *1 (-1159))))) +(-13 (-1232) (-1078) (-1019 (-552)) (-1019 (-220)) (-1019 (-1154)) (-1019 (-1136)) (-10 -8 (-15 -1522 ((-1082) $)) (-15 -1522 ($ (-1082))) (-15 -3213 ((-552) $)) (-15 -1512 ((-552) $)) (-15 -3213 ((-220) $)) (-15 -1512 ((-220) $)) (-15 -3213 ((-1154) $)) (-15 -1512 ((-1154) $)) (-15 -3213 ((-1136) $)) (-15 -1512 ((-1136) $)) (-15 -1569 ($ (-1154) (-629 $))) (-15 -1569 ($ $ (-629 $))) (-15 -1458 ((-111) $)) (-15 -2181 ((-3 (-552) (-220) (-1154) (-1136) $) $)) (-15 -3889 ((-629 $) $)) (-15 -3008 ((-111) $)) (-15 -3285 ((-111) $ (|[\|\|]| (-552)))) (-15 -3285 ((-111) $ (|[\|\|]| (-220)))) (-15 -3285 ((-111) $ (|[\|\|]| (-1154)))) (-15 -3285 ((-111) $ (|[\|\|]| (-1136)))))) +((-3465 (((-629 (-629 (-933 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154))) 57)) (-4153 (((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|)))) 69) (((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|))) 65) (((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154)) 70) (((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154)) 64) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|))))) 93) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|)))) 92) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154))) 94) (((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|))) (-629 (-1154))) 91))) +(((-1160 |#1|) (-10 -7 (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|))))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|)))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|))))) (-15 -3465 ((-629 (-629 (-933 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154))))) (-544)) (T -1160)) +((-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-933 *5)))) (-5 *1 (-1160 *5)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *4))))) (-5 *1 (-1160 *4)) (-5 *3 (-288 (-401 (-933 *4)))))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *4))))) (-5 *1 (-1160 *4)) (-5 *3 (-401 (-933 *4))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *5))))) (-5 *1 (-1160 *5)) (-5 *3 (-288 (-401 (-933 *5)))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-1154)) (-4 *5 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *5))))) (-5 *1 (-1160 *5)) (-5 *3 (-401 (-933 *5))))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-1160 *4)) (-5 *3 (-629 (-288 (-401 (-933 *4))))))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-629 (-401 (-933 *4)))) (-4 *4 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-1160 *4)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-1154))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-1160 *5)) (-5 *3 (-629 (-288 (-401 (-933 *5))))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-1160 *5))))) +(-10 -7 (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|))) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|)))) (-629 (-1154)))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-401 (-933 |#1|))))) (-15 -4153 ((-629 (-629 (-288 (-401 (-933 |#1|))))) (-629 (-288 (-401 (-933 |#1|)))))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|)) (-1154))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|))) (-1154))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-401 (-933 |#1|)))) (-15 -4153 ((-629 (-288 (-401 (-933 |#1|)))) (-288 (-401 (-933 |#1|))))) (-15 -3465 ((-629 (-629 (-933 |#1|))) (-629 (-401 (-933 |#1|))) (-629 (-1154))))) +((-4081 (((-1136)) 7)) (-3803 (((-1136)) 9)) (-2388 (((-1242) (-1136)) 11)) (-3298 (((-1136)) 8))) +(((-1161) (-10 -7 (-15 -4081 ((-1136))) (-15 -3298 ((-1136))) (-15 -3803 ((-1136))) (-15 -2388 ((-1242) (-1136))))) (T -1161)) +((-2388 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1161)))) (-3803 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161)))) (-3298 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161)))) (-4081 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161))))) +(-10 -7 (-15 -4081 ((-1136))) (-15 -3298 ((-1136))) (-15 -3803 ((-1136))) (-15 -2388 ((-1242) (-1136)))) +((-1489 (((-629 (-629 |#1|)) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|)))) 38)) (-4095 (((-629 (-629 (-629 |#1|))) (-629 (-629 |#1|))) 24)) (-2900 (((-1163 (-629 |#1|)) (-629 |#1|)) 34)) (-2419 (((-629 (-629 |#1|)) (-629 |#1|)) 30)) (-1814 (((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 (-629 (-629 |#1|)))) 37)) (-4078 (((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 |#1|) (-629 (-629 (-629 |#1|))) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|)))) 36)) (-2429 (((-629 (-629 |#1|)) (-629 (-629 |#1|))) 28)) (-4156 (((-629 |#1|) (-629 |#1|)) 31)) (-3600 (((-629 (-629 (-629 |#1|))) (-629 |#1|) (-629 (-629 (-629 |#1|)))) 18)) (-3652 (((-629 (-629 (-629 |#1|))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 (-629 |#1|)))) 16)) (-1843 (((-2 (|:| |fs| (-111)) (|:| |sd| (-629 |#1|)) (|:| |td| (-629 (-629 |#1|)))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 |#1|))) 14)) (-1554 (((-629 (-629 |#1|)) (-629 (-629 (-629 |#1|)))) 39)) (-3914 (((-629 (-629 |#1|)) (-1163 (-629 |#1|))) 41))) +(((-1162 |#1|) (-10 -7 (-15 -1843 ((-2 (|:| |fs| (-111)) (|:| |sd| (-629 |#1|)) (|:| |td| (-629 (-629 |#1|)))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 |#1|)))) (-15 -3652 ((-629 (-629 (-629 |#1|))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 (-629 |#1|))))) (-15 -3600 ((-629 (-629 (-629 |#1|))) (-629 |#1|) (-629 (-629 (-629 |#1|))))) (-15 -1489 ((-629 (-629 |#1|)) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))))) (-15 -1554 ((-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))))) (-15 -3914 ((-629 (-629 |#1|)) (-1163 (-629 |#1|)))) (-15 -4095 ((-629 (-629 (-629 |#1|))) (-629 (-629 |#1|)))) (-15 -2900 ((-1163 (-629 |#1|)) (-629 |#1|))) (-15 -2429 ((-629 (-629 |#1|)) (-629 (-629 |#1|)))) (-15 -2419 ((-629 (-629 |#1|)) (-629 |#1|))) (-15 -4156 ((-629 |#1|) (-629 |#1|))) (-15 -4078 ((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 |#1|) (-629 (-629 (-629 |#1|))) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|))))) (-15 -1814 ((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 (-629 (-629 |#1|)))))) (-832)) (T -1162)) +((-1814 (*1 *2 *3) (-12 (-4 *4 (-832)) (-5 *2 (-2 (|:| |f1| (-629 *4)) (|:| |f2| (-629 (-629 (-629 *4)))) (|:| |f3| (-629 (-629 *4))) (|:| |f4| (-629 (-629 (-629 *4)))))) (-5 *1 (-1162 *4)) (-5 *3 (-629 (-629 (-629 *4)))))) (-4078 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-832)) (-5 *3 (-629 *6)) (-5 *5 (-629 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-629 *5)) (|:| |f3| *5) (|:| |f4| (-629 *5)))) (-5 *1 (-1162 *6)) (-5 *4 (-629 *5)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-1162 *3)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-832)) (-5 *2 (-629 (-629 *4))) (-5 *1 (-1162 *4)) (-5 *3 (-629 *4)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-832)) (-5 *1 (-1162 *3)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-832)) (-5 *2 (-1163 (-629 *4))) (-5 *1 (-1162 *4)) (-5 *3 (-629 *4)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-832)) (-5 *2 (-629 (-629 (-629 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-629 (-629 *4))))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-1163 (-629 *4))) (-4 *4 (-832)) (-5 *2 (-629 (-629 *4))) (-5 *1 (-1162 *4)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-629 (-629 (-629 *4)))) (-5 *2 (-629 (-629 *4))) (-5 *1 (-1162 *4)) (-4 *4 (-832)))) (-1489 (*1 *2 *2 *3) (-12 (-5 *3 (-629 (-629 (-629 *4)))) (-5 *2 (-629 (-629 *4))) (-4 *4 (-832)) (-5 *1 (-1162 *4)))) (-3600 (*1 *2 *3 *2) (-12 (-5 *2 (-629 (-629 (-629 *4)))) (-5 *3 (-629 *4)) (-4 *4 (-832)) (-5 *1 (-1162 *4)))) (-3652 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-629 (-629 (-629 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-629 *5)) (-4 *5 (-832)) (-5 *1 (-1162 *5)))) (-1843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-832)) (-5 *4 (-629 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-629 *4)))) (-5 *1 (-1162 *6)) (-5 *5 (-629 *4))))) +(-10 -7 (-15 -1843 ((-2 (|:| |fs| (-111)) (|:| |sd| (-629 |#1|)) (|:| |td| (-629 (-629 |#1|)))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 |#1|)))) (-15 -3652 ((-629 (-629 (-629 |#1|))) (-1 (-111) |#1| |#1|) (-629 |#1|) (-629 (-629 (-629 |#1|))))) (-15 -3600 ((-629 (-629 (-629 |#1|))) (-629 |#1|) (-629 (-629 (-629 |#1|))))) (-15 -1489 ((-629 (-629 |#1|)) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))))) (-15 -1554 ((-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))))) (-15 -3914 ((-629 (-629 |#1|)) (-1163 (-629 |#1|)))) (-15 -4095 ((-629 (-629 (-629 |#1|))) (-629 (-629 |#1|)))) (-15 -2900 ((-1163 (-629 |#1|)) (-629 |#1|))) (-15 -2429 ((-629 (-629 |#1|)) (-629 (-629 |#1|)))) (-15 -2419 ((-629 (-629 |#1|)) (-629 |#1|))) (-15 -4156 ((-629 |#1|) (-629 |#1|))) (-15 -4078 ((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 |#1|) (-629 (-629 (-629 |#1|))) (-629 (-629 |#1|)) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|))) (-629 (-629 (-629 |#1|))))) (-15 -1814 ((-2 (|:| |f1| (-629 |#1|)) (|:| |f2| (-629 (-629 (-629 |#1|)))) (|:| |f3| (-629 (-629 |#1|))) (|:| |f4| (-629 (-629 (-629 |#1|))))) (-629 (-629 (-629 |#1|)))))) +((-2788 (($ (-629 (-629 |#1|))) 10)) (-3397 (((-629 (-629 |#1|)) $) 11)) (-3213 (((-844) $) 26))) +(((-1163 |#1|) (-10 -8 (-15 -2788 ($ (-629 (-629 |#1|)))) (-15 -3397 ((-629 (-629 |#1|)) $)) (-15 -3213 ((-844) $))) (-1078)) (T -1163)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1163 *3)) (-4 *3 (-1078)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1078)))) (-2788 (*1 *1 *2) (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-1163 *3))))) +(-10 -8 (-15 -2788 ($ (-629 (-629 |#1|)))) (-15 -3397 ((-629 (-629 |#1|)) $)) (-15 -3213 ((-844) $))) +((-3202 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-3295 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2660 (((-1242) $ |#1| |#1|) NIL (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#2| $ |#1| |#2|) NIL)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) NIL)) (-2130 (($) NIL T CONST)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) NIL)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) NIL)) (-1695 ((|#1| $) NIL (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-629 |#2|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-1842 ((|#1| $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-1376 (((-629 |#1|) $) NIL)) (-2539 (((-111) |#1| $) NIL)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-2190 (((-629 |#1|) $) NIL)) (-1335 (((-111) |#1| $) NIL)) (-2876 (((-1098) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2702 ((|#2| $) NIL (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3680 (($) NIL) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) NIL (-12 (|has| $ (-6 -4368)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (((-756) |#2| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078)))) (((-756) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-3213 (((-844) $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844))) (|has| |#2| (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) NIL)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) NIL (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) NIL (-4029 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| |#2| (-1078))))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1164 |#1| |#2|) (-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) (-1078) (-1078)) (T -1164)) +NIL +(-13 (-1167 |#1| |#2|) (-10 -7 (-6 -4368))) +((-3152 ((|#1| (-629 |#1|)) 32)) (-2497 ((|#1| |#1| (-552)) 18)) (-1777 (((-1150 |#1|) |#1| (-902)) 15))) +(((-1165 |#1|) (-10 -7 (-15 -3152 (|#1| (-629 |#1|))) (-15 -1777 ((-1150 |#1|) |#1| (-902))) (-15 -2497 (|#1| |#1| (-552)))) (-357)) (T -1165)) +((-2497 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1165 *2)) (-4 *2 (-357)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-902)) (-5 *2 (-1150 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-357)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-5 *1 (-1165 *2)) (-4 *2 (-357))))) +(-10 -7 (-15 -3152 (|#1| (-629 |#1|))) (-15 -1777 ((-1150 |#1|) |#1| (-902))) (-15 -2497 (|#1| |#1| (-552)))) +((-3295 (($) 10) (($ (-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)))) 14)) (-1625 (($ (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3138 (((-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) 39) (((-629 |#3|) $) 41)) (-2947 (($ (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1477 (($ (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3105 (((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) 54)) (-1580 (($ (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) 16)) (-2190 (((-629 |#2|) $) 19)) (-1335 (((-111) |#2| $) 59)) (-3073 (((-3 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) "failed") (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) 58)) (-3995 (((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) 63)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-3627 (((-629 |#3|) $) 43)) (-2060 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) NIL) (((-756) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) $) NIL) (((-756) |#3| $) NIL) (((-756) (-1 (-111) |#3|) $) 68)) (-3213 (((-844) $) 27)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-1613 (((-111) $ $) 49))) +(((-1166 |#1| |#2| |#3|) (-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3295 (|#1| (-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))))) (-15 -3295 (|#1|)) (-15 -1477 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#3|) |#1|)) (-15 -3138 ((-629 |#3|) |#1|)) (-15 -2885 ((-756) |#3| |#1|)) (-15 -2060 (|#3| |#1| |#2| |#3|)) (-15 -2060 (|#3| |#1| |#2|)) (-15 -3627 ((-629 |#3|) |#1|)) (-15 -1335 ((-111) |#2| |#1|)) (-15 -2190 ((-629 |#2|) |#1|)) (-15 -1625 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1625 (|#1| (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -1625 (|#1| (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3073 ((-3 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) "failed") (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -3105 ((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -1580 (|#1| (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3995 ((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -2885 ((-756) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3138 ((-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2885 ((-756) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -3944 ((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2584 ((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2947 (|#1| (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -1477 (|#1| (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|))) (-1167 |#2| |#3|) (-1078) (-1078)) (T -1166)) +NIL +(-10 -8 (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -1477 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3295 (|#1| (-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))))) (-15 -3295 (|#1|)) (-15 -1477 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2584 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3944 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2885 ((-756) (-1 (-111) |#3|) |#1|)) (-15 -3138 ((-629 |#3|) |#1|)) (-15 -2885 ((-756) |#3| |#1|)) (-15 -2060 (|#3| |#1| |#2| |#3|)) (-15 -2060 (|#3| |#1| |#2|)) (-15 -3627 ((-629 |#3|) |#1|)) (-15 -1335 ((-111) |#2| |#1|)) (-15 -2190 ((-629 |#2|) |#1|)) (-15 -1625 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1625 (|#1| (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -1625 (|#1| (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3073 ((-3 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) "failed") (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -3105 ((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -1580 (|#1| (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3995 ((-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -2885 ((-756) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) |#1|)) (-15 -3138 ((-629 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2885 ((-756) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -3944 ((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2584 ((-111) (-1 (-111) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -2947 (|#1| (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|)) (-15 -1477 (|#1| (-1 (-2 (|:| -2670 |#2|) (|:| -3360 |#3|)) (-2 (|:| -2670 |#2|) (|:| -3360 |#3|))) |#1|))) +((-3202 (((-111) $ $) 19 (-4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-3295 (($) 72) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 71)) (-2660 (((-1242) $ |#1| |#1|) 99 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#2| $ |#1| |#2|) 73)) (-1740 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 45 (|has| $ (-6 -4368)))) (-3954 (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 55 (|has| $ (-6 -4368)))) (-3078 (((-3 |#2| "failed") |#1| $) 61)) (-2130 (($) 7 T CONST)) (-2738 (($ $) 58 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368))))) (-1625 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 47 (|has| $ (-6 -4368))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 46 (|has| $ (-6 -4368))) (((-3 |#2| "failed") |#1| $) 62)) (-2655 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 54 (|has| $ (-6 -4368)))) (-3884 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 56 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 53 (|has| $ (-6 -4368))) (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 52 (|has| $ (-6 -4368)))) (-2957 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4369)))) (-2892 ((|#2| $ |#1|) 88)) (-3138 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 30 (|has| $ (-6 -4368))) (((-629 |#2|) $) 79 (|has| $ (-6 -4368)))) (-1418 (((-111) $ (-756)) 9)) (-1695 ((|#1| $) 96 (|has| |#1| (-832)))) (-3278 (((-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 29 (|has| $ (-6 -4368))) (((-629 |#2|) $) 80 (|has| $ (-6 -4368)))) (-2973 (((-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368))))) (-1842 ((|#1| $) 95 (|has| |#1| (-832)))) (-2947 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 34 (|has| $ (-6 -4369))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4369)))) (-1477 (($ (-1 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1745 (((-111) $ (-756)) 10)) (-2623 (((-1136) $) 22 (-4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-1376 (((-629 |#1|) $) 63)) (-2539 (((-111) |#1| $) 64)) (-3105 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 39)) (-1580 (($ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 40)) (-2190 (((-629 |#1|) $) 93)) (-1335 (((-111) |#1| $) 92)) (-2876 (((-1098) $) 21 (-4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2702 ((|#2| $) 97 (|has| |#1| (-832)))) (-3073 (((-3 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) "failed") (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 51)) (-1518 (($ $ |#2|) 98 (|has| $ (-6 -4369)))) (-3995 (((-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 41)) (-3944 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 32 (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))))) 26 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-288 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 25 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) 24 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 23 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)))) (($ $ (-629 |#2|) (-629 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078)))) (($ $ (-629 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4368)) (|has| |#2| (-1078))))) (-3627 (((-629 |#2|) $) 91)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3680 (($) 49) (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 48)) (-2885 (((-756) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 31 (|has| $ (-6 -4368))) (((-756) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| $ (-6 -4368)))) (((-756) |#2| $) 81 (-12 (|has| |#2| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4368)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 59 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))))) (-3226 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 50)) (-3213 (((-844) $) 18 (-4029 (|has| |#2| (-599 (-844))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844)))))) (-1663 (($ (-629 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) 42)) (-2584 (((-111) (-1 (-111) (-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) $) 33 (|has| $ (-6 -4368))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (-4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1167 |#1| |#2|) (-137) (-1078) (-1078)) (T -1167)) +((-1470 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) (-3295 (*1 *1) (-12 (-4 *1 (-1167 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-629 (-2 (|:| -2670 *3) (|:| -3360 *4)))) (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *1 (-1167 *3 *4)))) (-1477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1167 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078))))) +(-13 (-596 |t#1| |t#2|) (-590 |t#1| |t#2|) (-10 -8 (-15 -1470 (|t#2| $ |t#1| |t#2|)) (-15 -3295 ($)) (-15 -3295 ($ (-629 (-2 (|:| -2670 |t#1|) (|:| -3360 |t#2|))))) (-15 -1477 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -2670 |#1|) (|:| -3360 |#2|))) . T) ((-101) -4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-599 (-844)) -4029 (|has| |#2| (-1078)) (|has| |#2| (-599 (-844))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-599 (-844)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 #0#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-482 #0#) . T) ((-482 |#2|) . T) ((-590 |#1| |#2|) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-303 (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)))) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1078))) ((-596 |#1| |#2|) . T) ((-1078) -4029 (|has| |#2| (-1078)) (|has| (-2 (|:| -2670 |#1|) (|:| -3360 |#2|)) (-1078))) ((-1191) . T)) +((-2109 (((-111)) 24)) (-1538 (((-1242) (-1136)) 26)) (-3996 (((-111)) 36)) (-2798 (((-1242)) 34)) (-4291 (((-1242) (-1136) (-1136)) 25)) (-3468 (((-111)) 37)) (-1580 (((-1242) |#1| |#2|) 44)) (-3460 (((-1242)) 20)) (-1919 (((-3 |#2| "failed") |#1|) 42)) (-2615 (((-1242)) 35))) +(((-1168 |#1| |#2|) (-10 -7 (-15 -3460 ((-1242))) (-15 -4291 ((-1242) (-1136) (-1136))) (-15 -1538 ((-1242) (-1136))) (-15 -2798 ((-1242))) (-15 -2615 ((-1242))) (-15 -2109 ((-111))) (-15 -3996 ((-111))) (-15 -3468 ((-111))) (-15 -1919 ((-3 |#2| "failed") |#1|)) (-15 -1580 ((-1242) |#1| |#2|))) (-1078) (-1078)) (T -1168)) +((-1580 (*1 *2 *3 *4) (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-1919 (*1 *2 *3) (|partial| -12 (-4 *2 (-1078)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1078)))) (-3468 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-3996 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-2109 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-2615 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-2798 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1168 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)))) (-4291 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1168 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)))) (-3460 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078))))) +(-10 -7 (-15 -3460 ((-1242))) (-15 -4291 ((-1242) (-1136) (-1136))) (-15 -1538 ((-1242) (-1136))) (-15 -2798 ((-1242))) (-15 -2615 ((-1242))) (-15 -2109 ((-111))) (-15 -3996 ((-111))) (-15 -3468 ((-111))) (-15 -1919 ((-3 |#2| "failed") |#1|)) (-15 -1580 ((-1242) |#1| |#2|))) +((-3527 (((-1136) (-1136)) 18)) (-4216 (((-52) (-1136)) 21))) +(((-1169) (-10 -7 (-15 -4216 ((-52) (-1136))) (-15 -3527 ((-1136) (-1136))))) (T -1169)) +((-3527 (*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1169)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-1169))))) +(-10 -7 (-15 -4216 ((-52) (-1136))) (-15 -3527 ((-1136) (-1136)))) +((-3213 (((-1171) |#1|) 11))) +(((-1170 |#1|) (-10 -7 (-15 -3213 ((-1171) |#1|))) (-1078)) (T -1170)) +((-3213 (*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-1170 *3)) (-4 *3 (-1078))))) +(-10 -7 (-15 -3213 ((-1171) |#1|))) +((-3202 (((-111) $ $) NIL)) (-2787 (((-629 (-1136)) $) 34)) (-2562 (((-629 (-1136)) $ (-629 (-1136))) 37)) (-1891 (((-629 (-1136)) $ (-629 (-1136))) 36)) (-3835 (((-629 (-1136)) $ (-629 (-1136))) 38)) (-3348 (((-629 (-1136)) $) 33)) (-3307 (($) 22)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4267 (((-629 (-1136)) $) 35)) (-2595 (((-1242) $ (-552)) 29) (((-1242) $) 30)) (-1522 (($ (-844) (-552)) 26) (($ (-844) (-552) (-844)) NIL)) (-3213 (((-844) $) 40) (($ (-844)) 24)) (-1613 (((-111) $ $) NIL))) +(((-1171) (-13 (-1078) (-10 -8 (-15 -3213 ($ (-844))) (-15 -1522 ($ (-844) (-552))) (-15 -1522 ($ (-844) (-552) (-844))) (-15 -2595 ((-1242) $ (-552))) (-15 -2595 ((-1242) $)) (-15 -4267 ((-629 (-1136)) $)) (-15 -2787 ((-629 (-1136)) $)) (-15 -3307 ($)) (-15 -3348 ((-629 (-1136)) $)) (-15 -3835 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -2562 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -1891 ((-629 (-1136)) $ (-629 (-1136))))))) (T -1171)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1171)))) (-1522 (*1 *1 *2 *3) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-1171)))) (-1522 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-1171)))) (-2595 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1171)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1171)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171)))) (-3307 (*1 *1) (-5 *1 (-1171))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171)))) (-3835 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171)))) (-2562 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171)))) (-1891 (*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(-13 (-1078) (-10 -8 (-15 -3213 ($ (-844))) (-15 -1522 ($ (-844) (-552))) (-15 -1522 ($ (-844) (-552) (-844))) (-15 -2595 ((-1242) $ (-552))) (-15 -2595 ((-1242) $)) (-15 -4267 ((-629 (-1136)) $)) (-15 -2787 ((-629 (-1136)) $)) (-15 -3307 ($)) (-15 -3348 ((-629 (-1136)) $)) (-15 -3835 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -2562 ((-629 (-1136)) $ (-629 (-1136)))) (-15 -1891 ((-629 (-1136)) $ (-629 (-1136)))))) +((-3202 (((-111) $ $) NIL)) (-4062 (((-1136) $ (-1136)) 17) (((-1136) $) 16)) (-4321 (((-1136) $ (-1136)) 15)) (-3018 (($ $ (-1136)) NIL)) (-3836 (((-3 (-1136) "failed") $) 11)) (-2061 (((-1136) $) 8)) (-3765 (((-3 (-1136) "failed") $) 12)) (-1997 (((-1136) $) 9)) (-3092 (($ (-382)) NIL) (($ (-382) (-1136)) NIL)) (-4290 (((-382) $) NIL)) (-2623 (((-1136) $) NIL)) (-2665 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2466 (((-111) $) 18)) (-3213 (((-844) $) NIL)) (-2469 (($ $) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1172) (-13 (-358 (-382) (-1136)) (-10 -8 (-15 -4062 ((-1136) $ (-1136))) (-15 -4062 ((-1136) $)) (-15 -2061 ((-1136) $)) (-15 -3836 ((-3 (-1136) "failed") $)) (-15 -3765 ((-3 (-1136) "failed") $)) (-15 -2466 ((-111) $))))) (T -1172)) +((-4062 (*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1172)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1172)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1172)))) (-3836 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-1172)))) (-3765 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-1172)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172))))) +(-13 (-358 (-382) (-1136)) (-10 -8 (-15 -4062 ((-1136) $ (-1136))) (-15 -4062 ((-1136) $)) (-15 -2061 ((-1136) $)) (-15 -3836 ((-3 (-1136) "failed") $)) (-15 -3765 ((-3 (-1136) "failed") $)) (-15 -2466 ((-111) $)))) +((-3886 (((-3 (-552) "failed") |#1|) 19)) (-1372 (((-3 (-552) "failed") |#1|) 14)) (-2404 (((-552) (-1136)) 28))) +(((-1173 |#1|) (-10 -7 (-15 -3886 ((-3 (-552) "failed") |#1|)) (-15 -1372 ((-3 (-552) "failed") |#1|)) (-15 -2404 ((-552) (-1136)))) (-1030)) (T -1173)) +((-2404 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-552)) (-5 *1 (-1173 *4)) (-4 *4 (-1030)))) (-1372 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1173 *3)) (-4 *3 (-1030)))) (-3886 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1173 *3)) (-4 *3 (-1030))))) +(-10 -7 (-15 -3886 ((-3 (-552) "failed") |#1|)) (-15 -1372 ((-3 (-552) "failed") |#1|)) (-15 -2404 ((-552) (-1136)))) +((-1914 (((-1111 (-220))) 9))) +(((-1174) (-10 -7 (-15 -1914 ((-1111 (-220)))))) (T -1174)) +((-1914 (*1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1174))))) +(-10 -7 (-15 -1914 ((-1111 (-220))))) +((-4043 (($) 11)) (-3843 (($ $) 35)) (-2530 (($ $) 33)) (-2382 (($ $) 25)) (-3863 (($ $) 17)) (-3013 (($ $) 15)) (-3853 (($ $) 19)) (-2420 (($ $) 30)) (-2543 (($ $) 34)) (-2395 (($ $) 29))) +(((-1175 |#1|) (-10 -8 (-15 -4043 (|#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -2395 (|#1| |#1|))) (-1176)) (T -1175)) +NIL +(-10 -8 (-15 -4043 (|#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -2395 (|#1| |#1|))) +((-2478 (($ $) 26)) (-2332 (($ $) 11)) (-2455 (($ $) 27)) (-2305 (($ $) 10)) (-2506 (($ $) 28)) (-2359 (($ $) 9)) (-4043 (($) 16)) (-2430 (($ $) 19)) (-2855 (($ $) 18)) (-2518 (($ $) 29)) (-2370 (($ $) 8)) (-2492 (($ $) 30)) (-2346 (($ $) 7)) (-2467 (($ $) 31)) (-2318 (($ $) 6)) (-3843 (($ $) 20)) (-2409 (($ $) 32)) (-2530 (($ $) 21)) (-2382 (($ $) 33)) (-3863 (($ $) 22)) (-2433 (($ $) 34)) (-3013 (($ $) 23)) (-2444 (($ $) 35)) (-3853 (($ $) 24)) (-2420 (($ $) 36)) (-2543 (($ $) 25)) (-2395 (($ $) 37)) (** (($ $ $) 17))) +(((-1176) (-137)) (T -1176)) +((-4043 (*1 *1) (-4 *1 (-1176)))) +(-13 (-1179) (-94) (-485) (-35) (-278) (-10 -8 (-15 -4043 ($)))) +(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-1179) . T)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2925 ((|#1| $) 17)) (-3172 (($ |#1| (-629 $)) 23) (($ (-629 |#1|)) 27) (($ |#1|) 25)) (-4238 (((-111) $ (-756)) 48)) (-3188 ((|#1| $ |#1|) 14 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 13 (|has| $ (-6 -4369)))) (-2130 (($) NIL T CONST)) (-3138 (((-629 |#1|) $) 52 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 43)) (-4266 (((-111) $ $) 33 (|has| |#1| (-1078)))) (-1418 (((-111) $ (-756)) 41)) (-3278 (((-629 |#1|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2947 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 22)) (-1745 (((-111) $ (-756)) 40)) (-2604 (((-629 |#1|) $) 37)) (-3862 (((-111) $) 36)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3944 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 74)) (-3435 (((-111) $) 9)) (-3430 (($) 10)) (-2060 ((|#1| $ "value") NIL)) (-3153 (((-552) $ $) 32)) (-2183 (((-629 $) $) 59)) (-2725 (((-111) $ $) 77)) (-3776 (((-629 $) $) 72)) (-3811 (($ $) 73)) (-1289 (((-111) $) 56)) (-2885 (((-756) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4368))) (((-756) |#1| $) 16 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1487 (($ $) 58)) (-3213 (((-844) $) 61 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 12)) (-4298 (((-111) $ $) 29 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 28 (|has| |#1| (-1078)))) (-2657 (((-756) $) 39 (|has| $ (-6 -4368))))) +(((-1177 |#1|) (-13 (-991 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3172 ($ |#1| (-629 $))) (-15 -3172 ($ (-629 |#1|))) (-15 -3172 ($ |#1|)) (-15 -1289 ((-111) $)) (-15 -3811 ($ $)) (-15 -3776 ((-629 $) $)) (-15 -2725 ((-111) $ $)) (-15 -2183 ((-629 $) $)))) (-1078)) (T -1177)) +((-1289 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1177 *3)) (-4 *3 (-1078)))) (-3172 (*1 *1 *2 *3) (-12 (-5 *3 (-629 (-1177 *2))) (-5 *1 (-1177 *2)) (-4 *2 (-1078)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-1177 *3)))) (-3172 (*1 *1 *2) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1078)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1078)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-629 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1078)))) (-2725 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1177 *3)) (-4 *3 (-1078)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-629 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1078))))) +(-13 (-991 |#1|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -3172 ($ |#1| (-629 $))) (-15 -3172 ($ (-629 |#1|))) (-15 -3172 ($ |#1|)) (-15 -1289 ((-111) $)) (-15 -3811 ($ $)) (-15 -3776 ((-629 $) $)) (-15 -2725 ((-111) $ $)) (-15 -2183 ((-629 $) $)))) +((-2332 (($ $) 15)) (-2359 (($ $) 12)) (-2370 (($ $) 10)) (-2346 (($ $) 17))) +(((-1178 |#1|) (-10 -8 (-15 -2346 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2332 (|#1| |#1|))) (-1179)) (T -1178)) +NIL +(-10 -8 (-15 -2346 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2332 (|#1| |#1|))) +((-2332 (($ $) 11)) (-2305 (($ $) 10)) (-2359 (($ $) 9)) (-2370 (($ $) 8)) (-2346 (($ $) 7)) (-2318 (($ $) 6))) +(((-1179) (-137)) (T -1179)) +((-2332 (*1 *1 *1) (-4 *1 (-1179))) (-2305 (*1 *1 *1) (-4 *1 (-1179))) (-2359 (*1 *1 *1) (-4 *1 (-1179))) (-2370 (*1 *1 *1) (-4 *1 (-1179))) (-2346 (*1 *1 *1) (-4 *1 (-1179))) (-2318 (*1 *1 *1) (-4 *1 (-1179)))) +(-13 (-10 -8 (-15 -2318 ($ $)) (-15 -2346 ($ $)) (-15 -2370 ($ $)) (-15 -2359 ($ $)) (-15 -2305 ($ $)) (-15 -2332 ($ $)))) +((-3645 ((|#2| |#2|) 88)) (-3805 (((-111) |#2|) 26)) (-3499 ((|#2| |#2|) 30)) (-3509 ((|#2| |#2|) 32)) (-3614 ((|#2| |#2| (-1154)) 83) ((|#2| |#2|) 84)) (-2807 (((-166 |#2|) |#2|) 28)) (-1669 ((|#2| |#2| (-1154)) 85) ((|#2| |#2|) 86))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3614 (|#2| |#2| (-1154))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1154))) (-15 -3645 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3805 ((-111) |#2|)) (-15 -2807 ((-166 |#2|) |#2|))) (-13 (-445) (-832) (-1019 (-552)) (-625 (-552))) (-13 (-27) (-1176) (-424 |#1|))) (T -1180)) +((-2807 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-166 *3)) (-5 *1 (-1180 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-111)) (-5 *1 (-1180 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *4))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) (-1669 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) (-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3)))))) +(-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3614 (|#2| |#2| (-1154))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1154))) (-15 -3645 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3805 ((-111) |#2|)) (-15 -2807 ((-166 |#2|) |#2|))) +((-3947 ((|#4| |#4| |#1|) 27)) (-2414 ((|#4| |#4| |#1|) 28))) +(((-1181 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 (|#4| |#4| |#1|)) (-15 -2414 (|#4| |#4| |#1|))) (-544) (-367 |#1|) (-367 |#1|) (-671 |#1| |#2| |#3|)) (T -1181)) +((-2414 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1181 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) (-3947 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1181 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(-10 -7 (-15 -3947 (|#4| |#4| |#1|)) (-15 -2414 (|#4| |#4| |#1|))) +((-3387 ((|#2| |#2|) 133)) (-2351 ((|#2| |#2|) 130)) (-2184 ((|#2| |#2|) 121)) (-4121 ((|#2| |#2|) 118)) (-3910 ((|#2| |#2|) 126)) (-3356 ((|#2| |#2|) 114)) (-1701 ((|#2| |#2|) 43)) (-2762 ((|#2| |#2|) 94)) (-3501 ((|#2| |#2|) 74)) (-2309 ((|#2| |#2|) 128)) (-4173 ((|#2| |#2|) 116)) (-1862 ((|#2| |#2|) 138)) (-2290 ((|#2| |#2|) 136)) (-3351 ((|#2| |#2|) 137)) (-4204 ((|#2| |#2|) 135)) (-3812 ((|#2| |#2|) 148)) (-2759 ((|#2| |#2|) 30 (-12 (|has| |#2| (-600 (-873 |#1|))) (|has| |#2| (-867 |#1|)) (|has| |#1| (-600 (-873 |#1|))) (|has| |#1| (-867 |#1|))))) (-3252 ((|#2| |#2|) 75)) (-1369 ((|#2| |#2|) 139)) (-3925 ((|#2| |#2|) 140)) (-2337 ((|#2| |#2|) 127)) (-1598 ((|#2| |#2|) 115)) (-3846 ((|#2| |#2|) 134)) (-1546 ((|#2| |#2|) 132)) (-1558 ((|#2| |#2|) 122)) (-3774 ((|#2| |#2|) 120)) (-2596 ((|#2| |#2|) 124)) (-2920 ((|#2| |#2|) 112))) +(((-1182 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -1369 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (IF (|has| |#1| (-867 |#1|)) (IF (|has| |#1| (-600 (-873 |#1|))) (IF (|has| |#2| (-600 (-873 |#1|))) (IF (|has| |#2| (-867 |#1|)) (-15 -2759 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-832) (-445)) (-13 (-424 |#1|) (-1176))) (T -1182)) +((-2759 (*1 *2 *2) (-12 (-4 *3 (-600 (-873 *3))) (-4 *3 (-867 *3)) (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-600 (-873 *3))) (-4 *2 (-867 *3)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3351 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2351 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2337 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2596 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2920 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1369 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) (-4 *2 (-13 (-424 *3) (-1176)))))) +(-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -1369 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (IF (|has| |#1| (-867 |#1|)) (IF (|has| |#1| (-600 (-873 |#1|))) (IF (|has| |#2| (-600 (-873 |#1|))) (IF (|has| |#2| (-867 |#1|)) (-15 -2759 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2007 (((-111) |#5| $) 60) (((-111) $) 102)) (-2240 ((|#5| |#5| $) 75)) (-3954 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3228 (((-629 |#5|) (-629 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-1393 (((-3 $ "failed") (-629 |#5|)) 126)) (-2715 (((-3 $ "failed") $) 112)) (-3126 ((|#5| |#5| $) 94)) (-3738 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-2081 ((|#5| |#5| $) 98)) (-3884 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-3817 (((-2 (|:| -2571 (-629 |#5|)) (|:| -3092 (-629 |#5|))) $) 55)) (-3065 (((-111) |#5| $) 58) (((-111) $) 103)) (-2940 ((|#4| $) 108)) (-2680 (((-3 |#5| "failed") $) 110)) (-3887 (((-629 |#5|) $) 49)) (-3287 (((-111) |#5| $) 67) (((-111) $) 107)) (-2498 ((|#5| |#5| $) 81)) (-4343 (((-111) $ $) 27)) (-3150 (((-111) |#5| $) 63) (((-111) $) 105)) (-3848 ((|#5| |#5| $) 78)) (-2702 (((-3 |#5| "failed") $) 109)) (-3136 (($ $ |#5|) 127)) (-3299 (((-756) $) 52)) (-3226 (($ (-629 |#5|)) 124)) (-2542 (($ $ |#4|) 122)) (-1853 (($ $ |#4|) 121)) (-3081 (($ $) 120)) (-3213 (((-844) $) NIL) (((-629 |#5|) $) 113)) (-1753 (((-756) $) 130)) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-2015 (((-111) $ (-1 (-111) |#5| (-629 |#5|))) 100)) (-2242 (((-629 |#4|) $) 115)) (-2904 (((-111) |#4| $) 118)) (-1613 (((-111) $ $) 19))) +(((-1183 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1753 ((-756) |#1|)) (-15 -3136 (|#1| |#1| |#5|)) (-15 -3954 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2904 ((-111) |#4| |#1|)) (-15 -2242 ((-629 |#4|) |#1|)) (-15 -2715 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#5| "failed") |#1|)) (-15 -2702 ((-3 |#5| "failed") |#1|)) (-15 -2081 (|#5| |#5| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3126 (|#5| |#5| |#1|)) (-15 -2498 (|#5| |#5| |#1|)) (-15 -3848 (|#5| |#5| |#1|)) (-15 -2240 (|#5| |#5| |#1|)) (-15 -3228 ((-629 |#5|) (-629 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3884 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3287 ((-111) |#1|)) (-15 -3150 ((-111) |#1|)) (-15 -2007 ((-111) |#1|)) (-15 -2015 ((-111) |#1| (-1 (-111) |#5| (-629 |#5|)))) (-15 -3287 ((-111) |#5| |#1|)) (-15 -3150 ((-111) |#5| |#1|)) (-15 -2007 ((-111) |#5| |#1|)) (-15 -3738 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3065 ((-111) |#1|)) (-15 -3065 ((-111) |#5| |#1|)) (-15 -3817 ((-2 (|:| -2571 (-629 |#5|)) (|:| -3092 (-629 |#5|))) |#1|)) (-15 -3299 ((-756) |#1|)) (-15 -3887 ((-629 |#5|) |#1|)) (-15 -1855 ((-3 (-2 (|:| |bas| |#1|) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -1855 ((-3 (-2 (|:| |bas| |#1|) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4343 ((-111) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -2940 (|#4| |#1|)) (-15 -1393 ((-3 |#1| "failed") (-629 |#5|))) (-15 -3213 ((-629 |#5|) |#1|)) (-15 -3226 (|#1| (-629 |#5|))) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3954 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) (-1184 |#2| |#3| |#4| |#5|) (-544) (-778) (-832) (-1044 |#2| |#3| |#4|)) (T -1183)) +NIL +(-10 -8 (-15 -1753 ((-756) |#1|)) (-15 -3136 (|#1| |#1| |#5|)) (-15 -3954 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2904 ((-111) |#4| |#1|)) (-15 -2242 ((-629 |#4|) |#1|)) (-15 -2715 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#5| "failed") |#1|)) (-15 -2702 ((-3 |#5| "failed") |#1|)) (-15 -2081 (|#5| |#5| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3126 (|#5| |#5| |#1|)) (-15 -2498 (|#5| |#5| |#1|)) (-15 -3848 (|#5| |#5| |#1|)) (-15 -2240 (|#5| |#5| |#1|)) (-15 -3228 ((-629 |#5|) (-629 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3884 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3287 ((-111) |#1|)) (-15 -3150 ((-111) |#1|)) (-15 -2007 ((-111) |#1|)) (-15 -2015 ((-111) |#1| (-1 (-111) |#5| (-629 |#5|)))) (-15 -3287 ((-111) |#5| |#1|)) (-15 -3150 ((-111) |#5| |#1|)) (-15 -2007 ((-111) |#5| |#1|)) (-15 -3738 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3065 ((-111) |#1|)) (-15 -3065 ((-111) |#5| |#1|)) (-15 -3817 ((-2 (|:| -2571 (-629 |#5|)) (|:| -3092 (-629 |#5|))) |#1|)) (-15 -3299 ((-756) |#1|)) (-15 -3887 ((-629 |#5|) |#1|)) (-15 -1855 ((-3 (-2 (|:| |bas| |#1|) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -1855 ((-3 (-2 (|:| |bas| |#1|) (|:| -3447 (-629 |#5|))) "failed") (-629 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4343 ((-111) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -2940 (|#4| |#1|)) (-15 -1393 ((-3 |#1| "failed") (-629 |#5|))) (-15 -3213 ((-629 |#5|) |#1|)) (-15 -3226 (|#1| (-629 |#5|))) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3954 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3884 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3213 ((-844) |#1|)) (-15 -1613 ((-111) |#1| |#1|))) +((-3202 (((-111) $ $) 7)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) 85)) (-1830 (((-629 $) (-629 |#4|)) 86)) (-3611 (((-629 |#3|) $) 33)) (-3902 (((-111) $) 26)) (-1565 (((-111) $) 17 (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) 101) (((-111) $) 97)) (-2240 ((|#4| |#4| $) 92)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) 27)) (-4238 (((-111) $ (-756)) 44)) (-3954 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) 79)) (-2130 (($) 45 T CONST)) (-3320 (((-111) $) 22 (|has| |#1| (-544)))) (-4177 (((-111) $ $) 24 (|has| |#1| (-544)))) (-3170 (((-111) $ $) 23 (|has| |#1| (-544)))) (-2797 (((-111) $) 25 (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3662 (((-629 |#4|) (-629 |#4|) $) 18 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) 19 (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) 36)) (-2832 (($ (-629 |#4|)) 35)) (-2715 (((-3 $ "failed") $) 82)) (-3126 ((|#4| |#4| $) 89)) (-2738 (($ $) 68 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#4| $) 67 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2081 ((|#4| |#4| $) 87)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) 105)) (-3138 (((-629 |#4|) $) 52 (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) 104) (((-111) $) 103)) (-2940 ((|#3| $) 34)) (-1418 (((-111) $ (-756)) 43)) (-3278 (((-629 |#4|) $) 53 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) 47)) (-3420 (((-629 |#3|) $) 32)) (-2677 (((-111) |#3| $) 31)) (-1745 (((-111) $ (-756)) 42)) (-2623 (((-1136) $) 9)) (-2680 (((-3 |#4| "failed") $) 83)) (-3887 (((-629 |#4|) $) 107)) (-3287 (((-111) |#4| $) 99) (((-111) $) 95)) (-2498 ((|#4| |#4| $) 90)) (-4343 (((-111) $ $) 110)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) 100) (((-111) $) 96)) (-3848 ((|#4| |#4| $) 91)) (-2876 (((-1098) $) 10)) (-2702 (((-3 |#4| "failed") $) 84)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-1800 (((-3 $ "failed") $ |#4|) 78)) (-3136 (($ $ |#4|) 77)) (-3944 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) 38)) (-3435 (((-111) $) 41)) (-3430 (($) 40)) (-3299 (((-756) $) 106)) (-2885 (((-756) |#4| $) 54 (-12 (|has| |#4| (-1078)) (|has| $ (-6 -4368)))) (((-756) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4368)))) (-1487 (($ $) 39)) (-1522 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) 60)) (-2542 (($ $ |#3|) 28)) (-1853 (($ $ |#3|) 30)) (-3081 (($ $) 88)) (-2387 (($ $ |#3|) 29)) (-3213 (((-844) $) 11) (((-629 |#4|) $) 37)) (-1753 (((-756) $) 76 (|has| |#3| (-362)))) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) 98)) (-2584 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) 81)) (-2904 (((-111) |#3| $) 80)) (-1613 (((-111) $ $) 6)) (-2657 (((-756) $) 46 (|has| $ (-6 -4368))))) +(((-1184 |#1| |#2| |#3| |#4|) (-137) (-544) (-778) (-832) (-1044 |t#1| |t#2| |t#3|)) (T -1184)) +((-4343 (*1 *2 *1 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-1855 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3447 (-629 *8)))) (-5 *3 (-629 *8)) (-4 *1 (-1184 *5 *6 *7 *8)))) (-1855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-778)) (-4 *8 (-832)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3447 (-629 *9)))) (-5 *3 (-629 *9)) (-4 *1 (-1184 *6 *7 *8 *9)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *6)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-756)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-2 (|:| -2571 (-629 *6)) (|:| -3092 (-629 *6)))))) (-3065 (*1 *2 *3 *1) (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-3738 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1184 *5 *6 *7 *3)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111)))) (-2007 (*1 *2 *3 *1) (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-3150 (*1 *2 *3 *1) (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-3287 (*1 *2 *3 *1) (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-629 *7))) (-4 *1 (-1184 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) (-3884 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1184 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *2 (-1044 *5 *6 *7)))) (-3228 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-629 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1184 *5 *6 *7 *8)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)))) (-2240 (*1 *2 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-3848 (*1 *2 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-2498 (*1 *2 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-3126 (*1 *2 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-1044 *2 *3 *4)))) (-2081 (*1 *2 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-1184 *4 *5 *6 *7)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-629 (-2 (|:| -2571 *1) (|:| -3092 (-629 *7))))) (-5 *3 (-629 *7)) (-4 *1 (-1184 *4 *5 *6 *7)))) (-2702 (*1 *2 *1) (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-2680 (*1 *2 *1) (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-2715 (*1 *1 *1) (|partial| -12 (-4 *1 (-1184 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-1044 *2 *3 *4)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-1184 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *3 (-832)) (-4 *6 (-1044 *4 *5 *3)) (-5 *2 (-111)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1184 *4 *5 *3 *2)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *3 (-832)) (-4 *2 (-1044 *4 *5 *3)))) (-1800 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *5 (-362)) (-5 *2 (-756))))) +(-13 (-957 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4368) (-6 -4369) (-15 -4343 ((-111) $ $)) (-15 -1855 ((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |t#4|))) "failed") (-629 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -1855 ((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |t#4|))) "failed") (-629 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3887 ((-629 |t#4|) $)) (-15 -3299 ((-756) $)) (-15 -3817 ((-2 (|:| -2571 (-629 |t#4|)) (|:| -3092 (-629 |t#4|))) $)) (-15 -3065 ((-111) |t#4| $)) (-15 -3065 ((-111) $)) (-15 -3738 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -2007 ((-111) |t#4| $)) (-15 -3150 ((-111) |t#4| $)) (-15 -3287 ((-111) |t#4| $)) (-15 -2015 ((-111) $ (-1 (-111) |t#4| (-629 |t#4|)))) (-15 -2007 ((-111) $)) (-15 -3150 ((-111) $)) (-15 -3287 ((-111) $)) (-15 -3884 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3228 ((-629 |t#4|) (-629 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2240 (|t#4| |t#4| $)) (-15 -3848 (|t#4| |t#4| $)) (-15 -2498 (|t#4| |t#4| $)) (-15 -3126 (|t#4| |t#4| $)) (-15 -3081 ($ $)) (-15 -2081 (|t#4| |t#4| $)) (-15 -1830 ((-629 $) (-629 |t#4|))) (-15 -3591 ((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |t#4|)))) (-629 |t#4|))) (-15 -2702 ((-3 |t#4| "failed") $)) (-15 -2680 ((-3 |t#4| "failed") $)) (-15 -2715 ((-3 $ "failed") $)) (-15 -2242 ((-629 |t#3|) $)) (-15 -2904 ((-111) |t#3| $)) (-15 -3954 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1800 ((-3 $ "failed") $ |t#4|)) (-15 -3136 ($ $ |t#4|)) (IF (|has| |t#3| (-362)) (-15 -1753 ((-756) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-599 (-629 |#4|)) . T) ((-599 (-844)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))) ((-957 |#1| |#2| |#3| |#4|) . T) ((-1078) . T) ((-1191) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1154)) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2211 (((-933 |#1|) $ (-756)) 17) (((-933 |#1|) $ (-756) (-756)) NIL)) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $ (-1154)) NIL) (((-756) $ (-1154) (-756)) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2231 (((-111) $) NIL)) (-3590 (($ $ (-629 (-1154)) (-629 (-523 (-1154)))) NIL) (($ $ (-1154) (-523 (-1154))) NIL) (($ |#1| (-523 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2889 (($ $ (-1154)) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-4060 (($ (-1 $) (-1154) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3136 (($ $ (-756)) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (($ $ (-1154) $) NIL) (($ $ (-629 (-1154)) (-629 $)) NIL) (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL)) (-3096 (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-3299 (((-523 (-1154)) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-1154)) NIL) (($ (-933 |#1|)) NIL)) (-2266 ((|#1| $ (-523 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (((-933 |#1|) $ (-756)) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) NIL T CONST)) (-3309 (($) NIL T CONST)) (-1765 (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1185 |#1|) (-13 (-725 |#1| (-1154)) (-10 -8 (-15 -2266 ((-933 |#1|) $ (-756))) (-15 -3213 ($ (-1154))) (-15 -3213 ($ (-933 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $ (-1154) |#1|)) (-15 -4060 ($ (-1 $) (-1154) |#1|))) |%noBranch|))) (-1030)) (T -1185)) +((-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-933 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-1030)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1185 *3)) (-4 *3 (-1030)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-5 *1 (-1185 *3)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *1 (-1185 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)))) (-4060 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1185 *4))) (-5 *3 (-1154)) (-5 *1 (-1185 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1030))))) +(-13 (-725 |#1| (-1154)) (-10 -8 (-15 -2266 ((-933 |#1|) $ (-756))) (-15 -3213 ($ (-1154))) (-15 -3213 ($ (-933 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $ (-1154) |#1|)) (-15 -4060 ($ (-1 $) (-1154) |#1|))) |%noBranch|))) +((-1396 (($ |#1| (-629 (-629 (-924 (-220)))) (-111)) 19)) (-2265 (((-111) $ (-111)) 18)) (-2259 (((-111) $) 17)) (-3888 (((-629 (-629 (-924 (-220)))) $) 13)) (-3377 ((|#1| $) 8)) (-3561 (((-111) $) 15))) +(((-1186 |#1|) (-10 -8 (-15 -3377 (|#1| $)) (-15 -3888 ((-629 (-629 (-924 (-220)))) $)) (-15 -3561 ((-111) $)) (-15 -2259 ((-111) $)) (-15 -2265 ((-111) $ (-111))) (-15 -1396 ($ |#1| (-629 (-629 (-924 (-220)))) (-111)))) (-955)) (T -1186)) +((-1396 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-111)) (-5 *1 (-1186 *2)) (-4 *2 (-955)))) (-2265 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-1186 *3)) (-4 *3 (-955)))) (-3377 (*1 *2 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-955))))) +(-10 -8 (-15 -3377 (|#1| $)) (-15 -3888 ((-629 (-629 (-924 (-220)))) $)) (-15 -3561 ((-111) $)) (-15 -2259 ((-111) $)) (-15 -2265 ((-111) $ (-111))) (-15 -1396 ($ |#1| (-629 (-629 (-924 (-220)))) (-111)))) +((-1725 (((-924 (-220)) (-924 (-220))) 25)) (-1693 (((-924 (-220)) (-220) (-220) (-220) (-220)) 10)) (-1953 (((-629 (-924 (-220))) (-924 (-220)) (-924 (-220)) (-924 (-220)) (-220) (-629 (-629 (-220)))) 37)) (-3632 (((-220) (-924 (-220)) (-924 (-220))) 21)) (-2449 (((-924 (-220)) (-924 (-220)) (-924 (-220))) 22)) (-1776 (((-629 (-629 (-220))) (-552)) 31)) (-1709 (((-924 (-220)) (-924 (-220)) (-924 (-220))) 20)) (-1698 (((-924 (-220)) (-924 (-220)) (-924 (-220))) 19)) (* (((-924 (-220)) (-220) (-924 (-220))) 18))) +(((-1187) (-10 -7 (-15 -1693 ((-924 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-924 (-220)) (-220) (-924 (-220)))) (-15 -1698 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -1709 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -3632 ((-220) (-924 (-220)) (-924 (-220)))) (-15 -2449 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -1725 ((-924 (-220)) (-924 (-220)))) (-15 -1776 ((-629 (-629 (-220))) (-552))) (-15 -1953 ((-629 (-924 (-220))) (-924 (-220)) (-924 (-220)) (-924 (-220)) (-220) (-629 (-629 (-220))))))) (T -1187)) +((-1953 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-629 (-629 (-220)))) (-5 *4 (-220)) (-5 *2 (-629 (-924 *4))) (-5 *1 (-1187)) (-5 *3 (-924 *4)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-629 (-629 (-220)))) (-5 *1 (-1187)))) (-1725 (*1 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) (-2449 (*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) (-3632 (*1 *2 *3 *3) (-12 (-5 *3 (-924 (-220))) (-5 *2 (-220)) (-5 *1 (-1187)))) (-1709 (*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) (-1698 (*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-924 (-220))) (-5 *3 (-220)) (-5 *1 (-1187)))) (-1693 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)) (-5 *3 (-220))))) +(-10 -7 (-15 -1693 ((-924 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-924 (-220)) (-220) (-924 (-220)))) (-15 -1698 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -1709 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -3632 ((-220) (-924 (-220)) (-924 (-220)))) (-15 -2449 ((-924 (-220)) (-924 (-220)) (-924 (-220)))) (-15 -1725 ((-924 (-220)) (-924 (-220)))) (-15 -1776 ((-629 (-629 (-220))) (-552))) (-15 -1953 ((-629 (-924 (-220))) (-924 (-220)) (-924 (-220)) (-924 (-220)) (-220) (-629 (-629 (-220)))))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-3954 ((|#1| $ (-756)) 13)) (-2556 (((-756) $) 12)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-3213 (((-939 |#1|) $) 10) (($ (-939 |#1|)) 9) (((-844) $) 23 (|has| |#1| (-599 (-844))))) (-1613 (((-111) $ $) 16 (|has| |#1| (-1078))))) +(((-1188 |#1|) (-13 (-599 (-939 |#1|)) (-10 -8 (-15 -3213 ($ (-939 |#1|))) (-15 -3954 (|#1| $ (-756))) (-15 -2556 ((-756) $)) (IF (|has| |#1| (-599 (-844))) (-6 (-599 (-844))) |%noBranch|) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) (-1191)) (T -1188)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1191)) (-5 *1 (-1188 *3)))) (-3954 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-1188 *2)) (-4 *2 (-1191)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1188 *3)) (-4 *3 (-1191))))) +(-13 (-599 (-939 |#1|)) (-10 -8 (-15 -3213 ($ (-939 |#1|))) (-15 -3954 (|#1| $ (-756))) (-15 -2556 ((-756) $)) (IF (|has| |#1| (-599 (-844))) (-6 (-599 (-844))) |%noBranch|) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|))) +((-1516 (((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)) (-552)) 80)) (-3124 (((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|))) 74)) (-1924 (((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|))) 59))) +(((-1189 |#1|) (-10 -7 (-15 -3124 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)))) (-15 -1924 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)))) (-15 -1516 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)) (-552)))) (-343)) (T -1189)) +((-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1150 (-1150 *5)))) (-5 *1 (-1189 *5)) (-5 *3 (-1150 (-1150 *5))))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1150 (-1150 *4)))) (-5 *1 (-1189 *4)) (-5 *3 (-1150 (-1150 *4))))) (-3124 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1150 (-1150 *4)))) (-5 *1 (-1189 *4)) (-5 *3 (-1150 (-1150 *4)))))) +(-10 -7 (-15 -3124 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)))) (-15 -1924 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)))) (-15 -1516 ((-412 (-1150 (-1150 |#1|))) (-1150 (-1150 |#1|)) (-552)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 9) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1190) (-1061)) (T -1190)) +NIL +(-1061) +NIL +(((-1191) (-137)) (T -1191)) +NIL +(-13 (-10 -7 (-6 -4283))) +((-1325 (((-111)) 15)) (-3392 (((-1242) (-629 |#1|) (-629 |#1|)) 19) (((-1242) (-629 |#1|)) 20)) (-1418 (((-111) |#1| |#1|) 32 (|has| |#1| (-832)))) (-1745 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-4007 ((|#1| (-629 |#1|)) 33 (|has| |#1| (-832))) ((|#1| (-629 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-2136 (((-2 (|:| -3744 (-629 |#1|)) (|:| -2707 (-629 |#1|)))) 17))) +(((-1192 |#1|) (-10 -7 (-15 -3392 ((-1242) (-629 |#1|))) (-15 -3392 ((-1242) (-629 |#1|) (-629 |#1|))) (-15 -2136 ((-2 (|:| -3744 (-629 |#1|)) (|:| -2707 (-629 |#1|))))) (-15 -1745 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1745 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4007 (|#1| (-629 |#1|) (-1 (-111) |#1| |#1|))) (-15 -1325 ((-111))) (IF (|has| |#1| (-832)) (PROGN (-15 -4007 (|#1| (-629 |#1|))) (-15 -1418 ((-111) |#1| |#1|))) |%noBranch|)) (-1078)) (T -1192)) +((-1418 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-832)) (-4 *3 (-1078)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-832)) (-5 *1 (-1192 *2)))) (-1325 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-1078)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1192 *2)) (-4 *2 (-1078)))) (-1745 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1078)) (-5 *2 (-111)) (-5 *1 (-1192 *3)))) (-1745 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-1078)))) (-2136 (*1 *2) (-12 (-5 *2 (-2 (|:| -3744 (-629 *3)) (|:| -2707 (-629 *3)))) (-5 *1 (-1192 *3)) (-4 *3 (-1078)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-5 *2 (-1242)) (-5 *1 (-1192 *4)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-5 *2 (-1242)) (-5 *1 (-1192 *4))))) +(-10 -7 (-15 -3392 ((-1242) (-629 |#1|))) (-15 -3392 ((-1242) (-629 |#1|) (-629 |#1|))) (-15 -2136 ((-2 (|:| -3744 (-629 |#1|)) (|:| -2707 (-629 |#1|))))) (-15 -1745 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1745 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4007 (|#1| (-629 |#1|) (-1 (-111) |#1| |#1|))) (-15 -1325 ((-111))) (IF (|has| |#1| (-832)) (PROGN (-15 -4007 (|#1| (-629 |#1|))) (-15 -1418 ((-111) |#1| |#1|))) |%noBranch|)) +((-3089 (((-1242) (-629 (-1154)) (-629 (-1154))) 13) (((-1242) (-629 (-1154))) 11)) (-2621 (((-1242)) 14)) (-4261 (((-2 (|:| -2707 (-629 (-1154))) (|:| -3744 (-629 (-1154))))) 18))) +(((-1193) (-10 -7 (-15 -3089 ((-1242) (-629 (-1154)))) (-15 -3089 ((-1242) (-629 (-1154)) (-629 (-1154)))) (-15 -4261 ((-2 (|:| -2707 (-629 (-1154))) (|:| -3744 (-629 (-1154)))))) (-15 -2621 ((-1242))))) (T -1193)) +((-2621 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1193)))) (-4261 (*1 *2) (-12 (-5 *2 (-2 (|:| -2707 (-629 (-1154))) (|:| -3744 (-629 (-1154))))) (-5 *1 (-1193)))) (-3089 (*1 *2 *3 *3) (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1193)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1193))))) +(-10 -7 (-15 -3089 ((-1242) (-629 (-1154)))) (-15 -3089 ((-1242) (-629 (-1154)) (-629 (-1154)))) (-15 -4261 ((-2 (|:| -2707 (-629 (-1154))) (|:| -3744 (-629 (-1154)))))) (-15 -2621 ((-1242)))) +((-4116 (($ $) 17)) (-1677 (((-111) $) 24))) +(((-1194 |#1|) (-10 -8 (-15 -4116 (|#1| |#1|)) (-15 -1677 ((-111) |#1|))) (-1195)) (T -1194)) +NIL +(-10 -8 (-15 -4116 (|#1| |#1|)) (-15 -1677 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 49)) (-3343 (((-412 $) $) 50)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-1677 (((-111) $) 51)) (-4065 (((-111) $) 30)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3479 (((-412 $) $) 48)) (-3969 (((-3 $ "failed") $ $) 40)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41)) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-1195) (-137)) (T -1195)) +((-1677 (*1 *2 *1) (-12 (-4 *1 (-1195)) (-5 *2 (-111)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1195)))) (-4116 (*1 *1 *1) (-4 *1 (-1195))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1195))))) +(-13 (-445) (-10 -8 (-15 -1677 ((-111) $)) (-15 -3343 ((-412 $) $)) (-15 -4116 ($ $)) (-15 -3479 ((-412 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-844)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-632 $) . T) ((-702 $) . T) ((-711) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-1477 (((-1201 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1201 |#1| |#3| |#5|)) 23))) +(((-1196 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1477 ((-1201 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1201 |#1| |#3| |#5|)))) (-1030) (-1030) (-1154) (-1154) |#1| |#2|) (T -1196)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5 *7 *9)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-14 *7 (-1154)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1201 *6 *8 *10)) (-5 *1 (-1196 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1154))))) +(-10 -7 (-15 -1477 ((-1201 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1201 |#1| |#3| |#5|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-2478 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 160 (|has| |#1| (-357)))) (-3343 (((-412 $) $) 161 (|has| |#1| (-357)))) (-3489 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) 151 (|has| |#1| (-357)))) (-2455 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-2506 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-4006 (($ $ $) 155 (|has| |#1| (-357)))) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3469 (((-401 (-933 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-933 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-3987 (($ $ $) 154 (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 149 (|has| |#1| (-357)))) (-1677 (((-111) $) 162 (|has| |#1| (-357)))) (-3593 (((-111) $) 71)) (-4043 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-552) $) 98) (((-552) $ (-552)) 97)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) 99)) (-3838 (($ (-1 |#1| (-552)) $) 170)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 158 (|has| |#1| (-357)))) (-2231 (((-111) $) 60)) (-3590 (($ |#1| (-552)) 59) (($ $ (-1060) (-552)) 74) (($ $ (-629 (-1060)) (-629 (-552))) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-2430 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2552 (($ (-629 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 163 (|has| |#1| (-357)))) (-2889 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 166 (-4029 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-940)) (|has| |#1| (-1176)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-38 (-401 (-552)))))))) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 148 (|has| |#1| (-357)))) (-2594 (($ (-629 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-3479 (((-412 $) $) 159 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 156 (|has| |#1| (-357)))) (-3136 (($ $ (-552)) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 150 (|has| |#1| (-357)))) (-2855 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-3795 (((-756) $) 152 (|has| |#1| (-357)))) (-2060 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 153 (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 87 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1154) (-756)) 86 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154))) 85 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1154)) 84 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-756)) 82 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3299 (((-552) $) 62)) (-2518 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-2266 ((|#1| $ (-552)) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3843 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-2530 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 91 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1154) (-756)) 90 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154))) 89 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1154)) 88 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-756)) 83 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1197 |#1|) (-137) (-1030)) (T -1197)) +((-1726 (*1 *1 *2) (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1030)) (-4 *1 (-1197 *3)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1197 *3)) (-4 *3 (-1030)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1197 *4)) (-4 *4 (-1030)) (-4 *4 (-544)) (-5 *2 (-401 (-933 *4))))) (-3469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1197 *4)) (-4 *4 (-1030)) (-4 *4 (-544)) (-5 *2 (-401 (-933 *4))))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) (-2889 (*1 *1 *1 *2) (-4029 (-12 (-5 *2 (-1154)) (-4 *1 (-1197 *3)) (-4 *3 (-1030)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1154)) (-4 *1 (-1197 *3)) (-4 *3 (-1030)) (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1215 |t#1| (-552)) (-10 -8 (-15 -1726 ($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |t#1|))))) (-15 -3838 ($ (-1 |t#1| (-552)) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -3469 ((-401 (-933 |t#1|)) $ (-552))) (-15 -3469 ((-401 (-933 |t#1|)) $ (-552) (-552)))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $)) (IF (|has| |t#1| (-15 -2889 (|t#1| |t#1| (-1154)))) (IF (|has| |t#1| (-15 -3611 ((-629 (-1154)) |t#1|))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1176)) (IF (|has| |t#1| (-940)) (IF (|has| |t#1| (-29 (-552))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-983)) (-6 (-1176))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-552) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-552) (-1090)) ((-284) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-632 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))) ((-954 |#1| #0# (-1060)) . T) ((-901) |has| |#1| (-357)) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1036 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552)))) ((-1195) |has| |#1| (-357)) ((-1215 |#1| #0#) . T)) +((-3643 (((-111) $) 12)) (-1393 (((-3 |#3| "failed") $) 17) (((-3 (-1154) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL)) (-2832 ((|#3| $) 14) (((-1154) $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL))) +(((-1198 |#1| |#2| |#3|) (-10 -8 (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3643 ((-111) |#1|))) (-1199 |#2| |#3|) (-1030) (-1228 |#2|)) (T -1198)) +NIL +(-10 -8 (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2832 ((-1154) |#1|)) (-15 -1393 ((-3 (-1154) "failed") |#1|)) (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3643 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3603 ((|#2| $) 228 (-3792 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-3005 ((|#2| $) 264)) (-1703 (((-3 |#2| "failed") $) 260)) (-3658 ((|#2| $) 261)) (-2478 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-1472 (((-412 (-1150 $)) (-1150 $)) 237 (-3792 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-4116 (($ $) 160 (|has| |#1| (-357)))) (-3343 (((-412 $) $) 161 (|has| |#1| (-357)))) (-3489 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 234 (-3792 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-2393 (((-111) $ $) 151 (|has| |#1| (-357)))) (-2455 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-3886 (((-552) $) 246 (-3792 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-2506 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#2| "failed") $) 267) (((-3 (-552) "failed") $) 256 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) 254 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-1154) "failed") $) 239 (-3792 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357))))) (-2832 ((|#2| $) 266) (((-552) $) 257 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) 255 (-3792 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-1154) $) 240 (-3792 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357))))) (-3398 (($ $) 263) (($ (-552) $) 262)) (-4006 (($ $ $) 155 (|has| |#1| (-357)))) (-3766 (($ $) 58)) (-2714 (((-673 |#2|) (-673 $)) 218 (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) 217 (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 216 (-3792 (|has| |#2| (-625 (-552))) (|has| |#1| (-357)))) (((-673 (-552)) (-673 $)) 215 (-3792 (|has| |#2| (-625 (-552))) (|has| |#1| (-357))))) (-1293 (((-3 $ "failed") $) 32)) (-3469 (((-401 (-933 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-933 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-1332 (($) 230 (-3792 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3987 (($ $ $) 154 (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 149 (|has| |#1| (-357)))) (-1677 (((-111) $) 162 (|has| |#1| (-357)))) (-1338 (((-111) $) 244 (-3792 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-3593 (((-111) $) 71)) (-4043 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 222 (-3792 (|has| |#2| (-867 (-373))) (|has| |#1| (-357)))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 221 (-3792 (|has| |#2| (-867 (-552))) (|has| |#1| (-357))))) (-4241 (((-552) $) 98) (((-552) $ (-552)) 97)) (-4065 (((-111) $) 30)) (-3773 (($ $) 226 (|has| |#1| (-357)))) (-4015 ((|#2| $) 224 (|has| |#1| (-357)))) (-3755 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-2032 (((-3 $ "failed") $) 258 (-3792 (|has| |#2| (-1129)) (|has| |#1| (-357))))) (-3127 (((-111) $) 245 (-3792 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-1524 (($ $ (-902)) 99)) (-3838 (($ (-1 |#1| (-552)) $) 170)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 158 (|has| |#1| (-357)))) (-2231 (((-111) $) 60)) (-3590 (($ |#1| (-552)) 59) (($ $ (-1060) (-552)) 74) (($ $ (-629 (-1060)) (-629 (-552))) 73)) (-1772 (($ $ $) 248 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-2011 (($ $ $) 249 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1477 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-357)))) (-2430 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2552 (($ (-629 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-3670 (($ (-552) |#2|) 265)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 163 (|has| |#1| (-357)))) (-2889 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 166 (-4029 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-940)) (|has| |#1| (-1176)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1977 (($) 259 (-3792 (|has| |#2| (-1129)) (|has| |#1| (-357))) CONST)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 148 (|has| |#1| (-357)))) (-2594 (($ (-629 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-2147 (($ $) 229 (-3792 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3410 ((|#2| $) 232 (-3792 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1848 (((-412 (-1150 $)) (-1150 $)) 235 (-3792 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-1528 (((-412 (-1150 $)) (-1150 $)) 236 (-3792 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-3479 (((-412 $) $) 159 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 156 (|has| |#1| (-357)))) (-3136 (($ $ (-552)) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 150 (|has| |#1| (-357)))) (-2855 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1154) |#2|) 209 (-3792 (|has| |#2| (-506 (-1154) |#2|)) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 |#2|)) 208 (-3792 (|has| |#2| (-506 (-1154) |#2|)) (|has| |#1| (-357)))) (($ $ (-629 (-288 |#2|))) 207 (-3792 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) 206 (-3792 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) 205 (-3792 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-629 |#2|) (-629 |#2|)) 204 (-3792 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-3795 (((-756) $) 152 (|has| |#1| (-357)))) (-2060 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1090))) (($ $ |#2|) 203 (-3792 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 153 (|has| |#1| (-357)))) (-3096 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-756)) 213 (|has| |#1| (-357))) (($ $ (-756)) 82 (-4029 (-3792 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 80 (-4029 (-3792 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) 87 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1154) (-756)) 86 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-629 (-1154))) 85 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1154)) 84 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2493 (($ $) 227 (|has| |#1| (-357)))) (-4026 ((|#2| $) 225 (|has| |#1| (-357)))) (-3299 (((-552) $) 62)) (-2518 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1522 (((-220) $) 243 (-3792 (|has| |#2| (-1003)) (|has| |#1| (-357)))) (((-373) $) 242 (-3792 (|has| |#2| (-1003)) (|has| |#1| (-357)))) (((-528) $) 241 (-3792 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-873 (-373)) $) 220 (-3792 (|has| |#2| (-600 (-873 (-373)))) (|has| |#1| (-357)))) (((-873 (-552)) $) 219 (-3792 (|has| |#2| (-600 (-873 (-552)))) (|has| |#1| (-357))))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 233 (-3792 (-3792 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#1| (-357))))) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1154)) 238 (-3792 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357)))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-2266 ((|#1| $ (-552)) 57)) (-3878 (((-3 $ "failed") $) 46 (-4029 (-3792 (-4029 (|has| |#2| (-142)) (-3792 (|has| $ (-142)) (|has| |#2| (-890)))) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3763 ((|#2| $) 231 (-3792 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3843 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-2530 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1578 (($ $) 247 (-3792 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-756)) 211 (|has| |#1| (-357))) (($ $ (-756)) 83 (-4029 (-3792 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 81 (-4029 (-3792 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) 91 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1154) (-756)) 90 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-629 (-1154))) 89 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1154)) 88 (-4029 (-3792 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-1666 (((-111) $ $) 251 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1644 (((-111) $ $) 252 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 250 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1632 (((-111) $ $) 253 (-3792 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357))) (($ |#2| |#2|) 223 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-357))) (($ |#2| $) 201 (|has| |#1| (-357))) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1199 |#1| |#2|) (-137) (-1030) (-1228 |t#1|)) (T -1199)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1228 *3)) (-5 *2 (-552)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *1 (-1199 *3 *2)) (-4 *2 (-1228 *3)))) (-3670 (*1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *4 (-1030)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-1228 *4)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1228 *3)))) (-3398 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1228 *2)))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1228 *3)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1228 *3)))) (-1703 (*1 *2 *1) (|partial| -12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1228 *3))))) +(-13 (-1197 |t#1|) (-1019 |t#2|) (-10 -8 (-15 -3670 ($ (-552) |t#2|)) (-15 -3299 ((-552) $)) (-15 -3005 (|t#2| $)) (-15 -3398 ($ $)) (-15 -3398 ($ (-552) $)) (-15 -3213 ($ |t#2|)) (-15 -3658 (|t#2| $)) (-15 -1703 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-357)) (-6 (-973 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-357)) ((-38 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-357)) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) -4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-142))) (|has| |#1| (-142))) ((-144) -4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1003))) ((-600 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1003))) ((-600 (-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528)))) ((-600 (-873 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-873 (-373))))) ((-600 (-873 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-873 (-552))))) ((-226 |#2|) |has| |#1| (-357)) ((-228) -4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-228))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 |#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) ((-280 $ $) |has| (-552) (-1090)) ((-284) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-357) |has| |#1| (-357)) ((-332 |#2|) |has| |#1| (-357)) ((-371 |#2|) |has| |#1| (-357)) ((-394 |#2|) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 (-1154) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1154) |#2|))) ((-506 |#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-544) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-632 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-632 |#1|) . T) ((-632 |#2|) |has| |#1| (-357)) ((-632 $) . T) ((-625 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-625 (-552)))) ((-625 |#2|) |has| |#1| (-357)) ((-702 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-702 |#1|) |has| |#1| (-169)) ((-702 |#2|) |has| |#1| (-357)) ((-702 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-711) . T) ((-776) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-777) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-779) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-780) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-805) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-830) -12 (|has| |#1| (-357)) (|has| |#2| (-805))) ((-832) -4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-832))) (-12 (|has| |#1| (-357)) (|has| |#2| (-805)))) ((-881 (-1154)) -4029 (-12 (|has| |#1| (-357)) (|has| |#2| (-881 (-1154)))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))) ((-867 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-867 (-373)))) ((-867 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-867 (-552)))) ((-865 |#2|) |has| |#1| (-357)) ((-890) -12 (|has| |#1| (-357)) (|has| |#2| (-890))) ((-954 |#1| #0# (-1060)) . T) ((-901) |has| |#1| (-357)) ((-973 |#2|) |has| |#1| (-357)) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1003) -12 (|has| |#1| (-357)) (|has| |#2| (-1003))) ((-1019 (-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-552)))) ((-1019 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-552)))) ((-1019 (-1154)) -12 (|has| |#1| (-357)) (|has| |#2| (-1019 (-1154)))) ((-1019 |#2|) . T) ((-1036 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1036 |#1|) . T) ((-1036 |#2|) |has| |#1| (-357)) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) -12 (|has| |#1| (-357)) (|has| |#2| (-1129))) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552)))) ((-1191) |has| |#1| (-357)) ((-1195) |has| |#1| (-357)) ((-1197 |#1|) . T) ((-1215 |#1| #0#) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 70)) (-3603 ((|#2| $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 88)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-552)) 97) (($ $ (-552) (-552)) 99)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 47)) (-3005 ((|#2| $) 11)) (-1703 (((-3 |#2| "failed") $) 30)) (-3658 ((|#2| $) 31)) (-2478 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-3886 (((-552) $) NIL (-12 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 57)) (-2506 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) 144) (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-1154) "failed") $) NIL (-12 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357))))) (-2832 ((|#2| $) 143) (((-552) $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1019 (-552))) (|has| |#1| (-357)))) (((-1154) $) NIL (-12 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357))))) (-3398 (($ $) 61) (($ (-552) $) 24)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-2714 (((-673 |#2|) (-673 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#1| (-357)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| |#2| (-625 (-552))) (|has| |#1| (-357))))) (-1293 (((-3 $ "failed") $) 77)) (-3469 (((-401 (-933 |#1|)) $ (-552)) 112 (|has| |#1| (-544))) (((-401 (-933 |#1|)) $ (-552) (-552)) 114 (|has| |#1| (-544)))) (-1332 (($) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-1338 (((-111) $) NIL (-12 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-3593 (((-111) $) 64)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| |#2| (-867 (-373))) (|has| |#1| (-357)))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| |#2| (-867 (-552))) (|has| |#1| (-357))))) (-4241 (((-552) $) 93) (((-552) $ (-552)) 95)) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL (|has| |#1| (-357)))) (-4015 ((|#2| $) 151 (|has| |#1| (-357)))) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2032 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1129)) (|has| |#1| (-357))))) (-3127 (((-111) $) NIL (-12 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-1524 (($ $ (-902)) 136)) (-3838 (($ (-1 |#1| (-552)) $) 132)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-552)) 19) (($ $ (-1060) (-552)) NIL) (($ $ (-629 (-1060)) (-629 (-552))) NIL)) (-1772 (($ $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-2011 (($ $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1477 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-357)))) (-2430 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3670 (($ (-552) |#2|) 10)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 145 (|has| |#1| (-357)))) (-2889 (($ $) 214 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 219 (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176)))))) (-1977 (($) NIL (-12 (|has| |#2| (-1129)) (|has| |#1| (-357))) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2147 (($ $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3410 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| |#2| (-890)) (|has| |#1| (-357))))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-552)) 126)) (-3969 (((-3 $ "failed") $ $) 116 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1154) |#2|) NIL (-12 (|has| |#2| (-506 (-1154) |#2|)) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 |#2|)) NIL (-12 (|has| |#2| (-506 (-1154) |#2|)) (|has| |#1| (-357)))) (($ $ (-629 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-629 |#2|) (-629 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-552)) 91) (($ $ $) 79 (|has| (-552) (-1090))) (($ $ |#2|) NIL (-12 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#1| (-357))) (($ $ (-756)) NIL (-4029 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 137 (-4029 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) 140 (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-2493 (($ $) NIL (|has| |#1| (-357)))) (-4026 ((|#2| $) 152 (|has| |#1| (-357)))) (-3299 (((-552) $) 12)) (-2518 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-1522 (((-220) $) NIL (-12 (|has| |#2| (-1003)) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| |#2| (-1003)) (|has| |#1| (-357)))) (((-528) $) NIL (-12 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-873 (-373)) $) NIL (-12 (|has| |#2| (-600 (-873 (-373)))) (|has| |#1| (-357)))) (((-873 (-552)) $) NIL (-12 (|has| |#2| (-600 (-873 (-552)))) (|has| |#1| (-357))))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890)) (|has| |#1| (-357))))) (-1680 (($ $) 124)) (-3213 (((-844) $) 245) (($ (-552)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1154)) NIL (-12 (|has| |#2| (-1019 (-1154))) (|has| |#1| (-357)))) (($ (-401 (-552))) 155 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-552)) 74)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890)) (|has| |#1| (-357))) (-12 (|has| |#2| (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-2014 (((-756)) 142)) (-4046 ((|#1| $) 90)) (-3763 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3843 (($ $) 204 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) 200 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 208 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-552)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 210 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 206 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 202 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-1578 (($ $) NIL (-12 (|has| |#2| (-805)) (|has| |#1| (-357))))) (-3297 (($) 13 T CONST)) (-3309 (($) 17 T CONST)) (-1765 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-756)) NIL (|has| |#1| (-357))) (($ $ (-756)) NIL (-4029 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-4029 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#2| (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-1666 (((-111) $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1644 (((-111) $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1613 (((-111) $ $) 63)) (-1655 (((-111) $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1632 (((-111) $ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-357))))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357))) (($ |#2| |#2|) 150 (|has| |#1| (-357)))) (-1709 (($ $) 213) (($ $ $) 68)) (-1698 (($ $ $) 66)) (** (($ $ (-902)) NIL) (($ $ (-756)) 73) (($ $ (-552)) 146 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 158 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-357))) (($ |#2| $) 147 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1200 |#1| |#2|) (-1199 |#1| |#2|) (-1030) (-1228 |#1|)) (T -1200)) +NIL +(-1199 |#1| |#2|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3603 (((-1229 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 10)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3303 (($ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1334 (((-111) $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4157 (($ $ (-552)) NIL) (($ $ (-552) (-552)) NIL)) (-2622 (((-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3005 (((-1229 |#1| |#2| |#3|) $) NIL)) (-1703 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) NIL)) (-3658 (((-1229 |#1| |#2| |#3|) $) NIL)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3886 (((-552) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-1726 (($ (-1134 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1154) "failed") $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))))) (-2832 (((-1229 |#1| |#2| |#3|) $) NIL) (((-1154) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))))) (-3398 (($ $) NIL) (($ (-552) $) NIL)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-1229 |#1| |#2| |#3|)) (-673 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-1229 |#1| |#2| |#3|))) (|:| |vec| (-1237 (-1229 |#1| |#2| |#3|)))) (-673 $) (-1237 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-625 (-552))) (|has| |#1| (-357)))) (((-673 (-552)) (-673 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-625 (-552))) (|has| |#1| (-357))))) (-1293 (((-3 $ "failed") $) NIL)) (-3469 (((-401 (-933 |#1|)) $ (-552)) NIL (|has| |#1| (-544))) (((-401 (-933 |#1|)) $ (-552) (-552)) NIL (|has| |#1| (-544)))) (-1332 (($) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-1338 (((-111) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2214 (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-867 (-552))) (|has| |#1| (-357)))) (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-867 (-373))) (|has| |#1| (-357))))) (-4241 (((-552) $) NIL) (((-552) $ (-552)) NIL)) (-4065 (((-111) $) NIL)) (-3773 (($ $) NIL (|has| |#1| (-357)))) (-4015 (((-1229 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2032 (((-3 $ "failed") $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1129)) (|has| |#1| (-357))))) (-3127 (((-111) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-1524 (($ $ (-902)) NIL)) (-3838 (($ (-1 |#1| (-552)) $) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-552)) 17) (($ $ (-1060) (-552)) NIL) (($ $ (-629 (-1060)) (-629 (-552))) NIL)) (-1772 (($ $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-2011 (($ $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3670 (($ (-552) (-1229 |#1| |#2| |#3|)) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) 25 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 26 (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1129)) (|has| |#1| (-357))) CONST)) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2147 (($ $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3410 (((-1229 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-552)) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1154) (-1229 |#1| |#2| |#3|)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-506 (-1154) (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-1154)) (-629 (-1229 |#1| |#2| |#3|))) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-506 (-1154) (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-288 (-1229 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1229 |#1| |#2| |#3|))) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-629 (-1229 |#1| |#2| |#3|)) (-629 (-1229 |#1| |#2| |#3|))) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-303 (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-552)) NIL) (($ $ $) NIL (|has| (-552) (-1090))) (($ $ (-1229 |#1| |#2| |#3|)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-280 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-1 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) (-756)) NIL (|has| |#1| (-357))) (($ $ (-1233 |#2|)) 24) (($ $ (-756)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 23 (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-2493 (($ $) NIL (|has| |#1| (-357)))) (-4026 (((-1229 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-3299 (((-552) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1522 (((-528) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1003)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1003)) (|has| |#1| (-357)))) (((-873 (-373)) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-600 (-873 (-373)))) (|has| |#1| (-357)))) (((-873 (-552)) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-600 (-873 (-552)))) (|has| |#1| (-357))))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1229 |#1| |#2| |#3|)) NIL) (($ (-1233 |#2|)) 22) (($ (-1154)) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-1154))) (|has| |#1| (-357)))) (($ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-1019 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-2266 ((|#1| $ (-552)) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 11)) (-3763 (((-1229 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-890)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1578 (($ $) NIL (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))))) (-3297 (($) 19 T CONST)) (-3309 (($) 15 T CONST)) (-1765 (($ $ (-1 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) (-756)) NIL (|has| |#1| (-357))) (($ $ (-756)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154) (-756)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-629 (-1154))) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154)))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-881 (-1154))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-881 (-1154))))))) (-1666 (((-111) $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1644 (((-111) $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1632 (((-111) $ $) NIL (-4029 (-12 (|has| (-1229 |#1| |#2| |#3|) (-805)) (|has| |#1| (-357))) (-12 (|has| (-1229 |#1| |#2| |#3|) (-832)) (|has| |#1| (-357)))))) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357))) (($ (-1229 |#1| |#2| |#3|) (-1229 |#1| |#2| |#3|)) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 20)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1229 |#1| |#2| |#3|)) NIL (|has| |#1| (-357))) (($ (-1229 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1201 |#1| |#2| |#3|) (-13 (-1199 |#1| (-1229 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1201)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1199 |#1| (-1229 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3258 (((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111)) 12)) (-4058 (((-412 |#1|) |#1|) 22)) (-3479 (((-412 |#1|) |#1|) 21))) +(((-1202 |#1|) (-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1|)) (-15 -3258 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111)))) (-1213 (-552))) (T -1202)) +((-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552))))) (-4058 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552))))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552)))))) +(-10 -7 (-15 -3479 ((-412 |#1|) |#1|)) (-15 -4058 ((-412 |#1|) |#1|)) (-15 -3258 ((-2 (|:| |contp| (-552)) (|:| -3772 (-629 (-2 (|:| |irr| |#1|) (|:| -2277 (-552)))))) |#1| (-111)))) +((-1477 (((-1134 |#2|) (-1 |#2| |#1|) (-1204 |#1|)) 23 (|has| |#1| (-830))) (((-1204 |#2|) (-1 |#2| |#1|) (-1204 |#1|)) 17))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -1477 ((-1204 |#2|) (-1 |#2| |#1|) (-1204 |#1|))) (IF (|has| |#1| (-830)) (-15 -1477 ((-1134 |#2|) (-1 |#2| |#1|) (-1204 |#1|))) |%noBranch|)) (-1191) (-1191)) (T -1203)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5)) (-4 *5 (-830)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1134 *6)) (-5 *1 (-1203 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1204 *6)) (-5 *1 (-1203 *5 *6))))) +(-10 -7 (-15 -1477 ((-1204 |#2|) (-1 |#2| |#1|) (-1204 |#1|))) (IF (|has| |#1| (-830)) (-15 -1477 ((-1134 |#2|) (-1 |#2| |#1|) (-1204 |#1|))) |%noBranch|)) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1463 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1477 (((-1134 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-830)))) (-3744 ((|#1| $) 14)) (-4209 ((|#1| $) 10)) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-4219 (((-552) $) 18)) (-2707 ((|#1| $) 17)) (-4230 ((|#1| $) 11)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2373 (((-111) $) 16)) (-3925 (((-1134 |#1|) $) 38 (|has| |#1| (-830))) (((-1134 |#1|) (-629 $)) 37 (|has| |#1| (-830)))) (-1522 (($ |#1|) 25)) (-3213 (($ (-1072 |#1|)) 24) (((-844) $) 34 (|has| |#1| (-1078)))) (-4268 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1420 (($ $ (-552)) 13)) (-1613 (((-111) $ $) 27 (|has| |#1| (-1078))))) +(((-1204 |#1|) (-13 (-1071 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3213 ($ (-1072 |#1|))) (-15 -2373 ((-111) $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-1073 |#1| (-1134 |#1|))) |%noBranch|))) (-1191)) (T -1204)) +((-4268 (*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1191)))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1191)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-1191)) (-5 *1 (-1204 *3)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1204 *3)) (-4 *3 (-1191))))) +(-13 (-1071 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3213 ($ (-1072 |#1|))) (-15 -2373 ((-111) $)) (IF (|has| |#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |#1| (-830)) (-6 (-1073 |#1| (-1134 |#1|))) |%noBranch|))) +((-1477 (((-1210 |#3| |#4|) (-1 |#4| |#2|) (-1210 |#1| |#2|)) 15))) +(((-1205 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 ((-1210 |#3| |#4|) (-1 |#4| |#2|) (-1210 |#1| |#2|)))) (-1154) (-1030) (-1154) (-1030)) (T -1205)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1210 *5 *6)) (-14 *5 (-1154)) (-4 *6 (-1030)) (-4 *8 (-1030)) (-5 *2 (-1210 *7 *8)) (-5 *1 (-1205 *5 *6 *7 *8)) (-14 *7 (-1154))))) +(-10 -7 (-15 -1477 ((-1210 |#3| |#4|) (-1 |#4| |#2|) (-1210 |#1| |#2|)))) +((-1774 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2592 ((|#1| |#3|) 13)) (-3075 ((|#3| |#3|) 19))) +(((-1206 |#1| |#2| |#3|) (-10 -7 (-15 -2592 (|#1| |#3|)) (-15 -3075 (|#3| |#3|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-973 |#1|) (-1213 |#2|)) (T -1206)) +((-1774 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1206 *4 *5 *3)) (-4 *3 (-1213 *5)))) (-3075 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-973 *3)) (-5 *1 (-1206 *3 *4 *2)) (-4 *2 (-1213 *4)))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-1206 *2 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -2592 (|#1| |#3|)) (-15 -3075 (|#3| |#3|)) (-15 -1774 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3267 (((-3 |#2| "failed") |#2| (-756) |#1|) 29)) (-3247 (((-3 |#2| "failed") |#2| (-756)) 30)) (-3260 (((-3 (-2 (|:| -3416 |#2|) (|:| -3428 |#2|)) "failed") |#2|) 43)) (-3185 (((-629 |#2|) |#2|) 45)) (-3121 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1207 |#1| |#2|) (-10 -7 (-15 -3247 ((-3 |#2| "failed") |#2| (-756))) (-15 -3267 ((-3 |#2| "failed") |#2| (-756) |#1|)) (-15 -3121 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3260 ((-3 (-2 (|:| -3416 |#2|) (|:| -3428 |#2|)) "failed") |#2|)) (-15 -3185 ((-629 |#2|) |#2|))) (-13 (-544) (-144)) (-1213 |#1|)) (T -1207)) +((-3185 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-629 *3)) (-5 *1 (-1207 *4 *3)) (-4 *3 (-1213 *4)))) (-3260 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-2 (|:| -3416 *3) (|:| -3428 *3))) (-5 *1 (-1207 *4 *3)) (-4 *3 (-1213 *4)))) (-3121 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1213 *3)))) (-3267 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-756)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1213 *4)))) (-3247 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-756)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1213 *4))))) +(-10 -7 (-15 -3247 ((-3 |#2| "failed") |#2| (-756))) (-15 -3267 ((-3 |#2| "failed") |#2| (-756) |#1|)) (-15 -3121 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3260 ((-3 (-2 (|:| -3416 |#2|) (|:| -3428 |#2|)) "failed") |#2|)) (-15 -3185 ((-629 |#2|) |#2|))) +((-3367 (((-3 (-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) "failed") |#2| |#2|) 32))) +(((-1208 |#1| |#2|) (-10 -7 (-15 -3367 ((-3 (-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) "failed") |#2| |#2|))) (-544) (-1213 |#1|)) (T -1208)) +((-3367 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-1208 *4 *3)) (-4 *3 (-1213 *4))))) +(-10 -7 (-15 -3367 ((-3 (-2 (|:| -3713 |#2|) (|:| -4186 |#2|)) "failed") |#2| |#2|))) +((-2375 ((|#2| |#2| |#2|) 19)) (-3959 ((|#2| |#2| |#2|) 30)) (-3620 ((|#2| |#2| |#2| (-756) (-756)) 36))) +(((-1209 |#1| |#2|) (-10 -7 (-15 -2375 (|#2| |#2| |#2|)) (-15 -3959 (|#2| |#2| |#2|)) (-15 -3620 (|#2| |#2| |#2| (-756) (-756)))) (-1030) (-1213 |#1|)) (T -1209)) +((-3620 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-756)) (-4 *4 (-1030)) (-5 *1 (-1209 *4 *2)) (-4 *2 (-1213 *4)))) (-3959 (*1 *2 *2 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-1213 *3)))) (-2375 (*1 *2 *2 *2) (-12 (-4 *3 (-1030)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-1213 *3))))) +(-10 -7 (-15 -2375 (|#2| |#2| |#2|)) (-15 -3959 (|#2| |#2| |#2|)) (-15 -3620 (|#2| |#2| |#2| (-756) (-756)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2961 (((-1237 |#2|) $ (-756)) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-4218 (($ (-1150 |#2|)) NIL)) (-3449 (((-1150 $) $ (-1060)) NIL) (((-1150 |#2|) $) NIL)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3303 (($ $) NIL (|has| |#2| (-544)))) (-1334 (((-111) $) NIL (|has| |#2| (-544)))) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1060))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ $) NIL (|has| |#2| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-4116 (($ $) NIL (|has| |#2| (-445)))) (-3343 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-2393 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1496 (($ $ (-756)) NIL)) (-3366 (($ $ (-756)) NIL)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-445)))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1019 (-552)))) (((-3 (-1060) "failed") $) NIL)) (-2832 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1019 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1019 (-552)))) (((-1060) $) NIL)) (-3301 (($ $ $ (-1060)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-4006 (($ $ $) NIL (|has| |#2| (-357)))) (-3766 (($ $) NIL)) (-2714 (((-673 (-552)) (-673 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) NIL (|has| |#2| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#2|)) (|:| |vec| (-1237 |#2|))) (-673 $) (-1237 $)) NIL) (((-673 |#2|) (-673 $)) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3987 (($ $ $) NIL (|has| |#2| (-357)))) (-3547 (($ $ $) NIL)) (-1589 (($ $ $) NIL (|has| |#2| (-544)))) (-2997 (((-2 (|:| -4158 |#2|) (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#2| (-357)))) (-3471 (($ $) NIL (|has| |#2| (-445))) (($ $ (-1060)) NIL (|has| |#2| (-445)))) (-3754 (((-629 $) $) NIL)) (-1677 (((-111) $) NIL (|has| |#2| (-890)))) (-3423 (($ $ |#2| (-756) $) NIL)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) NIL (-12 (|has| (-1060) (-867 (-373))) (|has| |#2| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) NIL (-12 (|has| (-1060) (-867 (-552))) (|has| |#2| (-867 (-552)))))) (-4241 (((-756) $ $) NIL (|has| |#2| (-544)))) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-2032 (((-3 $ "failed") $) NIL (|has| |#2| (-1129)))) (-3602 (($ (-1150 |#2|) (-1060)) NIL) (($ (-1150 $) (-1060)) NIL)) (-1524 (($ $ (-756)) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#2| (-357)))) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-3590 (($ |#2| (-756)) 17) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1060)) NIL) (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL)) (-3544 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1772 (($ $ $) NIL (|has| |#2| (-832)))) (-2011 (($ $ $) NIL (|has| |#2| (-832)))) (-3891 (($ (-1 (-756) (-756)) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-2434 (((-1150 |#2|) $) NIL)) (-3506 (((-3 (-1060) "failed") $) NIL)) (-3733 (($ $) NIL)) (-3743 ((|#2| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2623 (((-1136) $) NIL)) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) NIL)) (-4263 (((-3 (-629 $) "failed") $) NIL)) (-2878 (((-3 (-629 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1060)) (|:| -1406 (-756))) "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-38 (-401 (-552)))))) (-1977 (($) NIL (|has| |#2| (-1129)) CONST)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 ((|#2| $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#2| (-445)))) (-2594 (($ (-629 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3079 (($ $ (-756) |#2| $) NIL)) (-1848 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) NIL (|has| |#2| (-890)))) (-3479 (((-412 $) $) NIL (|has| |#2| (-890)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#2| (-357)))) (-3969 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#2| (-357)))) (-2432 (($ $ (-629 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1060) |#2|) NIL) (($ $ (-629 (-1060)) (-629 |#2|)) NIL) (($ $ (-1060) $) NIL) (($ $ (-629 (-1060)) (-629 $)) NIL)) (-3795 (((-756) $) NIL (|has| |#2| (-357)))) (-2060 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#2| (-544))) ((|#2| (-401 $) |#2|) NIL (|has| |#2| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#2| (-544)))) (-4212 (((-3 $ "failed") $ (-756)) NIL)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#2| (-357)))) (-1721 (($ $ (-1060)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-3096 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3299 (((-756) $) NIL) (((-756) $ (-1060)) NIL) (((-629 (-756)) $ (-629 (-1060))) NIL)) (-1522 (((-873 (-373)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#2| (-600 (-873 (-373)))))) (((-873 (-552)) $) NIL (-12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#2| (-600 (-873 (-552)))))) (((-528) $) NIL (-12 (|has| (-1060) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3807 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-1060)) NIL (|has| |#2| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-890))))) (-2911 (((-3 $ "failed") $ $) NIL (|has| |#2| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#2| (-544)))) (-3213 (((-844) $) 13) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1060)) NIL) (($ (-1233 |#1|)) 19) (($ (-401 (-552))) NIL (-4029 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1019 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-756)) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-3878 (((-3 $ "failed") $) NIL (-4029 (-12 (|has| $ (-142)) (|has| |#2| (-890))) (|has| |#2| (-142))))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| |#2| (-169)))) (-3589 (((-111) $ $) NIL (|has| |#2| (-544)))) (-3297 (($) NIL T CONST)) (-3309 (($) 14 T CONST)) (-1765 (($ $ (-1060)) NIL) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) NIL) (($ $ (-1154)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1154) (-756)) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) NIL (|has| |#2| (-881 (-1154)))) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1666 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1613 (((-111) $ $) NIL)) (-1655 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#2| (-832)))) (-1720 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1210 |#1| |#2|) (-13 (-1213 |#2|) (-10 -8 (-15 -3213 ($ (-1233 |#1|))) (-15 -3079 ($ $ (-756) |#2| $)))) (-1154) (-1030)) (T -1210)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *3)) (-14 *3 (-1154)) (-5 *1 (-1210 *3 *4)) (-4 *4 (-1030)))) (-3079 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1210 *4 *3)) (-14 *4 (-1154)) (-4 *3 (-1030))))) +(-13 (-1213 |#2|) (-10 -8 (-15 -3213 ($ (-1233 |#1|))) (-15 -3079 ($ $ (-756) |#2| $)))) +((-1477 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|))) (-1030) (-1213 |#1|) (-1030) (-1213 |#3|)) (T -1211)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1213 *6)) (-5 *1 (-1211 *5 *4 *6 *2)) (-4 *4 (-1213 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#3| |#1|) |#2|))) +((-2961 (((-1237 |#2|) $ (-756)) 114)) (-3611 (((-629 (-1060)) $) 15)) (-4218 (($ (-1150 |#2|)) 67)) (-2349 (((-756) $) NIL) (((-756) $ (-629 (-1060))) 18)) (-1472 (((-412 (-1150 $)) (-1150 $)) 185)) (-4116 (($ $) 175)) (-3343 (((-412 $) $) 173)) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 82)) (-1496 (($ $ (-756)) 71)) (-3366 (($ $ (-756)) 73)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1393 (((-3 |#2| "failed") $) 117) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-1060) "failed") $) NIL)) (-2832 ((|#2| $) 115) (((-401 (-552)) $) NIL) (((-552) $) NIL) (((-1060) $) NIL)) (-1589 (($ $ $) 151)) (-2997 (((-2 (|:| -4158 |#2|) (|:| -3713 $) (|:| -4186 $)) $ $) 153)) (-4241 (((-756) $ $) 170)) (-2032 (((-3 $ "failed") $) 123)) (-3590 (($ |#2| (-756)) NIL) (($ $ (-1060) (-756)) 47) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-3544 (((-756) $) NIL) (((-756) $ (-1060)) 42) (((-629 (-756)) $ (-629 (-1060))) 43)) (-2434 (((-1150 |#2|) $) 59)) (-3506 (((-3 (-1060) "failed") $) 40)) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) 70)) (-2889 (($ $) 197)) (-1977 (($) 119)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 182)) (-1848 (((-412 (-1150 $)) (-1150 $)) 88)) (-1528 (((-412 (-1150 $)) (-1150 $)) 86)) (-3479 (((-412 $) $) 107)) (-2432 (($ $ (-629 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-629 $) (-629 $)) NIL) (($ $ (-1060) |#2|) 31) (($ $ (-629 (-1060)) (-629 |#2|)) 28) (($ $ (-1060) $) 25) (($ $ (-629 (-1060)) (-629 $)) 23)) (-3795 (((-756) $) 188)) (-2060 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) 147) ((|#2| (-401 $) |#2|) 187) (((-401 $) $ (-401 $)) 169)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 191)) (-3096 (($ $ (-1060)) 140) (($ $ (-629 (-1060))) NIL) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL) (($ $ (-756)) NIL) (($ $) 138) (($ $ (-1154)) NIL) (($ $ (-629 (-1154))) NIL) (($ $ (-1154) (-756)) NIL) (($ $ (-629 (-1154)) (-629 (-756))) NIL) (($ $ (-1 |#2| |#2|) (-756)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3299 (((-756) $) NIL) (((-756) $ (-1060)) 16) (((-629 (-756)) $ (-629 (-1060))) 20)) (-3807 ((|#2| $) NIL) (($ $ (-1060)) 125)) (-2911 (((-3 $ "failed") $ $) 161) (((-3 (-401 $) "failed") (-401 $) $) 157)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1060)) 51) (($ (-401 (-552))) NIL) (($ $) NIL))) +(((-1212 |#1| |#2|) (-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -2060 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -3795 ((-756) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2060 (|#2| (-401 |#1|) |#2|)) (-15 -3376 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2997 ((-2 (|:| -4158 |#2|) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -1589 (|#1| |#1| |#1|)) (-15 -2911 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2911 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4241 ((-756) |#1| |#1|)) (-15 -2060 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3366 (|#1| |#1| (-756))) (-15 -1496 (|#1| |#1| (-756))) (-15 -1679 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| (-756))) (-15 -4218 (|#1| (-1150 |#2|))) (-15 -2434 ((-1150 |#2|) |#1|)) (-15 -2961 ((-1237 |#2|) |#1| (-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| |#1|)) (-15 -2060 (|#2| |#1| |#2|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1472 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -3807 (|#1| |#1| (-1060))) (-15 -3611 ((-629 (-1060)) |#1|)) (-15 -2349 ((-756) |#1| (-629 (-1060)))) (-15 -2349 ((-756) |#1|)) (-15 -3590 (|#1| |#1| (-629 (-1060)) (-629 (-756)))) (-15 -3590 (|#1| |#1| (-1060) (-756))) (-15 -3544 ((-629 (-756)) |#1| (-629 (-1060)))) (-15 -3544 ((-756) |#1| (-1060))) (-15 -3506 ((-3 (-1060) "failed") |#1|)) (-15 -3299 ((-629 (-756)) |#1| (-629 (-1060)))) (-15 -3299 ((-756) |#1| (-1060))) (-15 -2832 ((-1060) |#1|)) (-15 -1393 ((-3 (-1060) "failed") |#1|)) (-15 -3213 (|#1| (-1060))) (-15 -2432 (|#1| |#1| (-629 (-1060)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-1060) |#1|)) (-15 -2432 (|#1| |#1| (-629 (-1060)) (-629 |#2|))) (-15 -2432 (|#1| |#1| (-1060) |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3299 ((-756) |#1|)) (-15 -3590 (|#1| |#2| (-756))) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3544 ((-756) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3096 (|#1| |#1| (-629 (-1060)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1060) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1060)))) (-15 -3096 (|#1| |#1| (-1060))) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) (-1213 |#2|) (-1030)) (T -1212)) +NIL +(-10 -8 (-15 -3213 (|#1| |#1|)) (-15 -3408 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3343 ((-412 |#1|) |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -1977 (|#1|)) (-15 -2032 ((-3 |#1| "failed") |#1|)) (-15 -2060 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -3795 ((-756) |#1|)) (-15 -1670 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2060 (|#2| (-401 |#1|) |#2|)) (-15 -3376 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2997 ((-2 (|:| -4158 |#2|) (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| |#1|)) (-15 -1589 (|#1| |#1| |#1|)) (-15 -2911 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2911 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4241 ((-756) |#1| |#1|)) (-15 -2060 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3366 (|#1| |#1| (-756))) (-15 -1496 (|#1| |#1| (-756))) (-15 -1679 ((-2 (|:| -3713 |#1|) (|:| -4186 |#1|)) |#1| (-756))) (-15 -4218 (|#1| (-1150 |#2|))) (-15 -2434 ((-1150 |#2|) |#1|)) (-15 -2961 ((-1237 |#2|) |#1| (-756))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3096 (|#1| |#1| (-1 |#2| |#2|) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1154) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1154)))) (-15 -3096 (|#1| |#1| (-1154))) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| |#1|)) (-15 -2060 (|#2| |#1| |#2|)) (-15 -3479 ((-412 |#1|) |#1|)) (-15 -1472 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1528 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1848 ((-412 (-1150 |#1|)) (-1150 |#1|))) (-15 -1704 ((-3 (-629 (-1150 |#1|)) "failed") (-629 (-1150 |#1|)) (-1150 |#1|))) (-15 -3807 (|#1| |#1| (-1060))) (-15 -3611 ((-629 (-1060)) |#1|)) (-15 -2349 ((-756) |#1| (-629 (-1060)))) (-15 -2349 ((-756) |#1|)) (-15 -3590 (|#1| |#1| (-629 (-1060)) (-629 (-756)))) (-15 -3590 (|#1| |#1| (-1060) (-756))) (-15 -3544 ((-629 (-756)) |#1| (-629 (-1060)))) (-15 -3544 ((-756) |#1| (-1060))) (-15 -3506 ((-3 (-1060) "failed") |#1|)) (-15 -3299 ((-629 (-756)) |#1| (-629 (-1060)))) (-15 -3299 ((-756) |#1| (-1060))) (-15 -2832 ((-1060) |#1|)) (-15 -1393 ((-3 (-1060) "failed") |#1|)) (-15 -3213 (|#1| (-1060))) (-15 -2432 (|#1| |#1| (-629 (-1060)) (-629 |#1|))) (-15 -2432 (|#1| |#1| (-1060) |#1|)) (-15 -2432 (|#1| |#1| (-629 (-1060)) (-629 |#2|))) (-15 -2432 (|#1| |#1| (-1060) |#2|)) (-15 -2432 (|#1| |#1| (-629 |#1|) (-629 |#1|))) (-15 -2432 (|#1| |#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| (-288 |#1|))) (-15 -2432 (|#1| |#1| (-629 (-288 |#1|)))) (-15 -3299 ((-756) |#1|)) (-15 -3590 (|#1| |#2| (-756))) (-15 -2832 ((-552) |#1|)) (-15 -1393 ((-3 (-552) "failed") |#1|)) (-15 -2832 ((-401 (-552)) |#1|)) (-15 -1393 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3213 (|#1| |#2|)) (-15 -1393 ((-3 |#2| "failed") |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -3544 ((-756) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3096 (|#1| |#1| (-629 (-1060)) (-629 (-756)))) (-15 -3096 (|#1| |#1| (-1060) (-756))) (-15 -3096 (|#1| |#1| (-629 (-1060)))) (-15 -3096 (|#1| |#1| (-1060))) (-15 -3213 (|#1| (-552))) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2961 (((-1237 |#1|) $ (-756)) 236)) (-3611 (((-629 (-1060)) $) 108)) (-4218 (($ (-1150 |#1|)) 234)) (-3449 (((-1150 $) $ (-1060)) 123) (((-1150 |#1|) $) 122)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3303 (($ $) 86 (|has| |#1| (-544)))) (-1334 (((-111) $) 88 (|has| |#1| (-544)))) (-2349 (((-756) $) 110) (((-756) $ (-629 (-1060))) 109)) (-4012 (((-3 $ "failed") $ $) 19)) (-2134 (($ $ $) 221 (|has| |#1| (-544)))) (-1472 (((-412 (-1150 $)) (-1150 $)) 98 (|has| |#1| (-890)))) (-4116 (($ $) 96 (|has| |#1| (-445)))) (-3343 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1704 (((-3 (-629 (-1150 $)) "failed") (-629 (-1150 $)) (-1150 $)) 101 (|has| |#1| (-890)))) (-2393 (((-111) $ $) 206 (|has| |#1| (-357)))) (-1496 (($ $ (-756)) 229)) (-3366 (($ $ (-756)) 228)) (-3376 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-445)))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1019 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1019 (-552)))) (((-3 (-1060) "failed") $) 134)) (-2832 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1019 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1019 (-552)))) (((-1060) $) 133)) (-3301 (($ $ $ (-1060)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-4006 (($ $ $) 210 (|has| |#1| (-357)))) (-3766 (($ $) 152)) (-2714 (((-673 (-552)) (-673 $)) 132 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 (-552))) (|:| |vec| (-1237 (-552)))) (-673 $) (-1237 $)) 131 (|has| |#1| (-625 (-552)))) (((-2 (|:| -2325 (-673 |#1|)) (|:| |vec| (-1237 |#1|))) (-673 $) (-1237 $)) 130) (((-673 |#1|) (-673 $)) 129)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 209 (|has| |#1| (-357)))) (-3547 (($ $ $) 227)) (-1589 (($ $ $) 218 (|has| |#1| (-544)))) (-2997 (((-2 (|:| -4158 |#1|) (|:| -3713 $) (|:| -4186 $)) $ $) 217 (|has| |#1| (-544)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 204 (|has| |#1| (-357)))) (-3471 (($ $) 174 (|has| |#1| (-445))) (($ $ (-1060)) 103 (|has| |#1| (-445)))) (-3754 (((-629 $) $) 107)) (-1677 (((-111) $) 94 (|has| |#1| (-890)))) (-3423 (($ $ |#1| (-756) $) 170)) (-2214 (((-870 (-373) $) $ (-873 (-373)) (-870 (-373) $)) 82 (-12 (|has| (-1060) (-867 (-373))) (|has| |#1| (-867 (-373))))) (((-870 (-552) $) $ (-873 (-552)) (-870 (-552) $)) 81 (-12 (|has| (-1060) (-867 (-552))) (|has| |#1| (-867 (-552)))))) (-4241 (((-756) $ $) 222 (|has| |#1| (-544)))) (-4065 (((-111) $) 30)) (-2856 (((-756) $) 167)) (-2032 (((-3 $ "failed") $) 202 (|has| |#1| (-1129)))) (-3602 (($ (-1150 |#1|) (-1060)) 115) (($ (-1150 $) (-1060)) 114)) (-1524 (($ $ (-756)) 233)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 213 (|has| |#1| (-357)))) (-3939 (((-629 $) $) 124)) (-2231 (((-111) $) 150)) (-3590 (($ |#1| (-756)) 151) (($ $ (-1060) (-756)) 117) (($ $ (-629 (-1060)) (-629 (-756))) 116)) (-1916 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $ (-1060)) 118) (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 231)) (-3544 (((-756) $) 168) (((-756) $ (-1060)) 120) (((-629 (-756)) $ (-629 (-1060))) 119)) (-1772 (($ $ $) 77 (|has| |#1| (-832)))) (-2011 (($ $ $) 76 (|has| |#1| (-832)))) (-3891 (($ (-1 (-756) (-756)) $) 169)) (-1477 (($ (-1 |#1| |#1|) $) 149)) (-2434 (((-1150 |#1|) $) 235)) (-3506 (((-3 (-1060) "failed") $) 121)) (-3733 (($ $) 147)) (-3743 ((|#1| $) 146)) (-2552 (($ (-629 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2623 (((-1136) $) 9)) (-1679 (((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756)) 230)) (-4263 (((-3 (-629 $) "failed") $) 112)) (-2878 (((-3 (-629 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| (-1060)) (|:| -1406 (-756))) "failed") $) 111)) (-2889 (($ $) 214 (|has| |#1| (-38 (-401 (-552)))))) (-1977 (($) 201 (|has| |#1| (-1129)) CONST)) (-2876 (((-1098) $) 10)) (-3711 (((-111) $) 164)) (-3722 ((|#1| $) 165)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 93 (|has| |#1| (-445)))) (-2594 (($ (-629 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-1848 (((-412 (-1150 $)) (-1150 $)) 100 (|has| |#1| (-890)))) (-1528 (((-412 (-1150 $)) (-1150 $)) 99 (|has| |#1| (-890)))) (-3479 (((-412 $) $) 97 (|has| |#1| (-890)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 211 (|has| |#1| (-357)))) (-3969 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 205 (|has| |#1| (-357)))) (-2432 (($ $ (-629 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-629 $) (-629 $)) 140) (($ $ (-1060) |#1|) 139) (($ $ (-629 (-1060)) (-629 |#1|)) 138) (($ $ (-1060) $) 137) (($ $ (-629 (-1060)) (-629 $)) 136)) (-3795 (((-756) $) 207 (|has| |#1| (-357)))) (-2060 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-401 $) (-401 $) (-401 $)) 223 (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) 215 (|has| |#1| (-357))) (((-401 $) $ (-401 $)) 203 (|has| |#1| (-544)))) (-4212 (((-3 $ "failed") $ (-756)) 232)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 208 (|has| |#1| (-357)))) (-1721 (($ $ (-1060)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-3096 (($ $ (-1060)) 40) (($ $ (-629 (-1060))) 39) (($ $ (-1060) (-756)) 38) (($ $ (-629 (-1060)) (-629 (-756))) 37) (($ $ (-756)) 251) (($ $) 249) (($ $ (-1154)) 248 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 247 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 246 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 245 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3299 (((-756) $) 148) (((-756) $ (-1060)) 128) (((-629 (-756)) $ (-629 (-1060))) 127)) (-1522 (((-873 (-373)) $) 80 (-12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373)))))) (((-873 (-552)) $) 79 (-12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552)))))) (((-528) $) 78 (-12 (|has| (-1060) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3807 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ (-1060)) 104 (|has| |#1| (-445)))) (-1507 (((-3 (-1237 $) "failed") (-673 $)) 102 (-3792 (|has| $ (-142)) (|has| |#1| (-890))))) (-2911 (((-3 $ "failed") $ $) 220 (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) 219 (|has| |#1| (-544)))) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ (-1060)) 135) (($ (-401 (-552))) 70 (-4029 (|has| |#1| (-1019 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2984 (((-629 |#1|) $) 166)) (-2266 ((|#1| $ (-756)) 153) (($ $ (-1060) (-756)) 126) (($ $ (-629 (-1060)) (-629 (-756))) 125)) (-3878 (((-3 $ "failed") $) 71 (-4029 (-3792 (|has| $ (-142)) (|has| |#1| (-890))) (|has| |#1| (-142))))) (-2014 (((-756)) 28)) (-4306 (($ $ $ (-756)) 171 (|has| |#1| (-169)))) (-3589 (((-111) $ $) 87 (|has| |#1| (-544)))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-1060)) 36) (($ $ (-629 (-1060))) 35) (($ $ (-1060) (-756)) 34) (($ $ (-629 (-1060)) (-629 (-756))) 33) (($ $ (-756)) 252) (($ $) 250) (($ $ (-1154)) 244 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154))) 243 (|has| |#1| (-881 (-1154)))) (($ $ (-1154) (-756)) 242 (|has| |#1| (-881 (-1154)))) (($ $ (-629 (-1154)) (-629 (-756))) 241 (|has| |#1| (-881 (-1154)))) (($ $ (-1 |#1| |#1|) (-756)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-1666 (((-111) $ $) 74 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 73 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 6)) (-1655 (((-111) $ $) 75 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 72 (|has| |#1| (-832)))) (-1720 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1213 |#1|) (-137) (-1030)) (T -1213)) +((-2961 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-1213 *4)) (-4 *4 (-1030)) (-5 *2 (-1237 *4)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-5 *2 (-1150 *3)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1030)) (-4 *1 (-1213 *3)))) (-1524 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) (-4212 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) (-1916 (*1 *2 *1 *1) (-12 (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1213 *3)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1213 *4)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) (-3547 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)))) (-3096 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-169)))) (-3301 (*1 *2 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-169)))) (-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-401 *1)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-4 *3 (-544)))) (-4241 (*1 *2 *1 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-4 *3 (-544)) (-5 *2 (-756)))) (-2134 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544)))) (-2911 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544)))) (-2911 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-4 *3 (-544)))) (-1589 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| -4158 *3) (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1213 *3)))) (-3376 (*1 *2 *1 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1030)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1213 *3)))) (-2060 (*1 *2 *3 *2) (-12 (-5 *3 (-401 *1)) (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552))))))) +(-13 (-930 |t#1| (-756) (-1060)) (-280 |t#1| |t#1|) (-280 $ $) (-228) (-226 |t#1|) (-10 -8 (-15 -2961 ((-1237 |t#1|) $ (-756))) (-15 -2434 ((-1150 |t#1|) $)) (-15 -4218 ($ (-1150 |t#1|))) (-15 -1524 ($ $ (-756))) (-15 -4212 ((-3 $ "failed") $ (-756))) (-15 -1916 ((-2 (|:| -3713 $) (|:| -4186 $)) $ $)) (-15 -1679 ((-2 (|:| -3713 $) (|:| -4186 $)) $ (-756))) (-15 -1496 ($ $ (-756))) (-15 -3366 ($ $ (-756))) (-15 -3547 ($ $ $)) (-15 -3096 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1129)) (-6 (-1129)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1721 (|t#1| $)) (-15 -3301 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-280 (-401 $) (-401 $))) (-15 -2060 ((-401 $) (-401 $) (-401 $))) (-15 -4241 ((-756) $ $)) (-15 -2134 ($ $ $)) (-15 -2911 ((-3 $ "failed") $ $)) (-15 -2911 ((-3 (-401 $) "failed") (-401 $) $)) (-15 -1589 ($ $ $)) (-15 -2997 ((-2 (|:| -4158 |t#1|) (|:| -3713 $) (|:| -4186 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (-15 -3376 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-301)) (-6 -4364) (-15 -2060 (|t#1| (-401 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-15 -2889 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-756)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| (-1060) (-600 (-528))) (|has| |#1| (-600 (-528)))) ((-600 (-873 (-373))) -12 (|has| (-1060) (-600 (-873 (-373)))) (|has| |#1| (-600 (-873 (-373))))) ((-600 (-873 (-552))) -12 (|has| (-1060) (-600 (-873 (-552)))) (|has| |#1| (-600 (-873 (-552))))) ((-226 |#1|) . T) ((-228) . T) ((-280 (-401 $) (-401 $)) |has| |#1| (-544)) ((-280 |#1| |#1|) . T) ((-280 $ $) . T) ((-284) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 $) . T) ((-320 |#1| #0#) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -4029 (|has| |#1| (-890)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-506 #2=(-1060) |#1|) . T) ((-506 #2# $) . T) ((-506 $ $) . T) ((-544) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-632 #1#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-625 (-552)) |has| |#1| (-625 (-552))) ((-625 |#1|) . T) ((-702 #1#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-711) . T) ((-832) |has| |#1| (-832)) ((-881 #2#) . T) ((-881 (-1154)) |has| |#1| (-881 (-1154))) ((-867 (-373)) -12 (|has| (-1060) (-867 (-373))) (|has| |#1| (-867 (-373)))) ((-867 (-552)) -12 (|has| (-1060) (-867 (-552))) (|has| |#1| (-867 (-552)))) ((-930 |#1| #0# #2#) . T) ((-890) |has| |#1| (-890)) ((-901) |has| |#1| (-357)) ((-1019 (-401 (-552))) |has| |#1| (-1019 (-401 (-552)))) ((-1019 (-552)) |has| |#1| (-1019 (-552))) ((-1019 #2#) . T) ((-1019 |#1|) . T) ((-1036 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-890)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1129) |has| |#1| (-1129)) ((-1195) |has| |#1| (-890))) +((-3611 (((-629 (-1060)) $) 28)) (-3766 (($ $) 25)) (-3590 (($ |#2| |#3|) NIL) (($ $ (-1060) |#3|) 22) (($ $ (-629 (-1060)) (-629 |#3|)) 21)) (-3733 (($ $) 14)) (-3743 ((|#2| $) 12)) (-3299 ((|#3| $) 10))) +(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -3611 ((-629 (-1060)) |#1|)) (-15 -3590 (|#1| |#1| (-629 (-1060)) (-629 |#3|))) (-15 -3590 (|#1| |#1| (-1060) |#3|)) (-15 -3766 (|#1| |#1|)) (-15 -3590 (|#1| |#2| |#3|)) (-15 -3299 (|#3| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3743 (|#2| |#1|))) (-1215 |#2| |#3|) (-1030) (-777)) (T -1214)) +NIL +(-10 -8 (-15 -3611 ((-629 (-1060)) |#1|)) (-15 -3590 (|#1| |#1| (-629 (-1060)) (-629 |#3|))) (-15 -3590 (|#1| |#1| (-1060) |#3|)) (-15 -3766 (|#1| |#1|)) (-15 -3590 (|#1| |#2| |#3|)) (-15 -3299 (|#3| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3743 (|#2| |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2622 (((-1134 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3593 (((-111) $) 71)) (-4241 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-4065 (((-111) $) 30)) (-1524 (($ $ (-902)) 99)) (-2231 (((-111) $) 60)) (-3590 (($ |#1| |#2|) 59) (($ $ (-1060) |#2|) 74) (($ $ (-629 (-1060)) (-629 |#2|)) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3136 (($ $ |#2|) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2060 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1090)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 87 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1154) (-756)) 86 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-629 (-1154))) 85 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1154)) 84 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-756)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3299 ((|#2| $) 62)) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2266 ((|#1| $ |#2|) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-4311 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 91 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1154) (-756)) 90 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-629 (-1154))) 89 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1154)) 88 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-756)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1215 |#1| |#2|) (-137) (-1030) (-777)) (T -1215)) +((-2622 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-1134 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2060 (*1 *2 *1 *3) (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (-5 *2 (-1154)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) (-1524 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-4241 (*1 *2 *1 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-4157 (*1 *1 *1 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-4157 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-4311 (*1 *2 *1 *3) (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3213 (*2 (-1154)))) (-4 *2 (-1030)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) (-2432 (*1 *2 *1 *3) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1134 *3))))) +(-13 (-954 |t#1| |t#2| (-1060)) (-10 -8 (-15 -2622 ((-1134 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2060 (|t#1| $ |t#2|)) (-15 -1485 ((-1154) $)) (-15 -4046 (|t#1| $)) (-15 -1524 ($ $ (-902))) (-15 -4241 (|t#2| $)) (-15 -4241 (|t#2| $ |t#2|)) (-15 -4157 ($ $ |t#2|)) (-15 -4157 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3213 (|t#1| (-1154)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4311 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3136 ($ $ |t#2|)) (IF (|has| |t#2| (-1090)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-228)) (IF (|has| |t#1| (-881 (-1154))) (-6 (-881 (-1154))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2432 ((-1134 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-280 $ $) |has| |#2| (-1090)) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-632 #0#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-881 (-1154)))) ((-954 |#1| |#2| (-1060)) . T) ((-1036 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-4116 ((|#2| |#2|) 12)) (-3343 (((-412 |#2|) |#2|) 14)) (-3604 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))) 30))) +(((-1216 |#1| |#2|) (-10 -7 (-15 -3343 ((-412 |#2|) |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3604 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) (-544) (-13 (-1213 |#1|) (-544) (-10 -8 (-15 -2594 ($ $ $))))) (T -1216)) +((-3604 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-552)))) (-4 *4 (-13 (-1213 *3) (-544) (-10 -8 (-15 -2594 ($ $ $))))) (-4 *3 (-544)) (-5 *1 (-1216 *3 *4)))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-1213 *3) (-544) (-10 -8 (-15 -2594 ($ $ $))))))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1216 *4 *3)) (-4 *3 (-13 (-1213 *4) (-544) (-10 -8 (-15 -2594 ($ $ $)))))))) +(-10 -7 (-15 -3343 ((-412 |#2|) |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3604 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) +((-1477 (((-1222 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1222 |#1| |#3| |#5|)) 24))) +(((-1217 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1477 ((-1222 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1222 |#1| |#3| |#5|)))) (-1030) (-1030) (-1154) (-1154) |#1| |#2|) (T -1217)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1222 *5 *7 *9)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-14 *7 (-1154)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1222 *6 *8 *10)) (-5 *1 (-1217 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1154))))) +(-10 -7 (-15 -1477 ((-1222 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1222 |#1| |#3| |#5|)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-2478 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 160 (|has| |#1| (-357)))) (-3343 (((-412 $) $) 161 (|has| |#1| (-357)))) (-3489 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) 151 (|has| |#1| (-357)))) (-2455 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-2506 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-4006 (($ $ $) 155 (|has| |#1| (-357)))) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 154 (|has| |#1| (-357)))) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 149 (|has| |#1| (-357)))) (-1677 (((-111) $) 162 (|has| |#1| (-357)))) (-3593 (((-111) $) 71)) (-4043 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) 99) (($ $ (-401 (-552))) 168)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 158 (|has| |#1| (-357)))) (-2231 (((-111) $) 60)) (-3590 (($ |#1| (-401 (-552))) 59) (($ $ (-1060) (-401 (-552))) 74) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-2430 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2552 (($ (-629 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-2623 (((-1136) $) 9)) (-3701 (($ $) 163 (|has| |#1| (-357)))) (-2889 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 166 (-4029 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-940)) (|has| |#1| (-1176)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-38 (-401 (-552)))))))) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 148 (|has| |#1| (-357)))) (-2594 (($ (-629 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-3479 (((-412 $) $) 159 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 156 (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 150 (|has| |#1| (-357)))) (-2855 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) 152 (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 153 (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 87 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154) (-756)) 86 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-629 (-1154))) 85 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154)) 84 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-756)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3299 (((-401 (-552)) $) 62)) (-2518 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3843 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-2530 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 91 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154) (-756)) 90 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-629 (-1154))) 89 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154)) 88 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-756)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1218 |#1|) (-137) (-1030)) (T -1218)) +((-1726 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) (-4 *4 (-1030)) (-4 *1 (-1218 *4)))) (-1524 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1218 *3)) (-4 *3 (-1030)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) (-2889 (*1 *1 *1 *2) (-4029 (-12 (-5 *2 (-1154)) (-4 *1 (-1218 *3)) (-4 *3 (-1030)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1154)) (-4 *1 (-1218 *3)) (-4 *3 (-1030)) (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1215 |t#1| (-401 (-552))) (-10 -8 (-15 -1726 ($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |t#1|))))) (-15 -1524 ($ $ (-401 (-552)))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $)) (IF (|has| |t#1| (-15 -2889 (|t#1| |t#1| (-1154)))) (IF (|has| |t#1| (-15 -3611 ((-629 (-1154)) |t#1|))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1176)) (IF (|has| |t#1| (-940)) (IF (|has| |t#1| (-29 (-552))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-983)) (-6 (-1176))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1090)) ((-284) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-632 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154)))) ((-954 |#1| #0# (-1060)) . T) ((-901) |has| |#1| (-357)) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1036 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552)))) ((-1195) |has| |#1| (-357)) ((-1215 |#1| #0#) . T)) +((-3643 (((-111) $) 12)) (-1393 (((-3 |#3| "failed") $) 17)) (-2832 ((|#3| $) 14))) +(((-1219 |#1| |#2| |#3|) (-10 -8 (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3643 ((-111) |#1|))) (-1220 |#2| |#3|) (-1030) (-1197 |#2|)) (T -1219)) +NIL +(-10 -8 (-15 -2832 (|#3| |#1|)) (-15 -1393 ((-3 |#3| "failed") |#1|)) (-15 -3643 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-2478 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 160 (|has| |#1| (-357)))) (-3343 (((-412 $) $) 161 (|has| |#1| (-357)))) (-3489 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) 151 (|has| |#1| (-357)))) (-2455 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-2506 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#2| "failed") $) 180)) (-2832 ((|#2| $) 179)) (-4006 (($ $ $) 155 (|has| |#1| (-357)))) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-3462 (((-401 (-552)) $) 177)) (-3987 (($ $ $) 154 (|has| |#1| (-357)))) (-3682 (($ (-401 (-552)) |#2|) 178)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 149 (|has| |#1| (-357)))) (-1677 (((-111) $) 162 (|has| |#1| (-357)))) (-3593 (((-111) $) 71)) (-4043 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) 99) (($ $ (-401 (-552))) 168)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 158 (|has| |#1| (-357)))) (-2231 (((-111) $) 60)) (-3590 (($ |#1| (-401 (-552))) 59) (($ $ (-1060) (-401 (-552))) 74) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-2430 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2552 (($ (-629 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-4151 ((|#2| $) 176)) (-1847 (((-3 |#2| "failed") $) 174)) (-3670 ((|#2| $) 175)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 163 (|has| |#1| (-357)))) (-2889 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 166 (-4029 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-940)) (|has| |#1| (-1176)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-38 (-401 (-552)))))))) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 148 (|has| |#1| (-357)))) (-2594 (($ (-629 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-3479 (((-412 $) $) 159 (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 156 (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 150 (|has| |#1| (-357)))) (-2855 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) 152 (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 153 (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 87 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154) (-756)) 86 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-629 (-1154))) 85 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154)) 84 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-756)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3299 (((-401 (-552)) $) 62)) (-2518 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3843 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-2530 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 91 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154) (-756)) 90 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-629 (-1154))) 89 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1154)) 88 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-756)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1220 |#1| |#2|) (-137) (-1030) (-1197 |t#1|)) (T -1220)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1197 *3)) (-5 *2 (-401 (-552))))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *1 (-1220 *3 *2)) (-4 *2 (-1197 *3)))) (-3682 (*1 *1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1030)) (-4 *1 (-1220 *4 *3)) (-4 *3 (-1197 *4)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1197 *3)) (-5 *2 (-401 (-552))))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1197 *3)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1197 *3)))) (-1847 (*1 *2 *1) (|partial| -12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1197 *3))))) +(-13 (-1218 |t#1|) (-1019 |t#2|) (-10 -8 (-15 -3682 ($ (-401 (-552)) |t#2|)) (-15 -3462 ((-401 (-552)) $)) (-15 -4151 (|t#2| $)) (-15 -3299 ((-401 (-552)) $)) (-15 -3213 ($ |t#2|)) (-15 -3670 (|t#2| $)) (-15 -1847 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1090)) ((-284) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-632 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154)))) ((-954 |#1| #0# (-1060)) . T) ((-901) |has| |#1| (-357)) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1019 |#2|) . T) ((-1036 #1#) -4029 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552)))) ((-1195) |has| |#1| (-357)) ((-1215 |#1| #0#) . T) ((-1218 |#1|) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 96)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) 106) (($ $ (-401 (-552)) (-401 (-552))) 108)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 51)) (-2478 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 156 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 152 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 61)) (-2506 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL)) (-2832 ((|#2| $) NIL)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) 79)) (-3462 (((-401 (-552)) $) 13)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3682 (($ (-401 (-552)) |#2|) 11)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-3593 (((-111) $) 68)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) 103) (((-401 (-552)) $ (-401 (-552))) 104)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) 120) (($ $ (-401 (-552))) 118)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-401 (-552))) 31) (($ $ (-1060) (-401 (-552))) NIL) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) 115)) (-2430 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4151 ((|#2| $) 12)) (-1847 (((-3 |#2| "failed") $) 41)) (-3670 ((|#2| $) 42)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) 93 (|has| |#1| (-357)))) (-2889 (($ $) 135 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 140 (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176)))))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) 112)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) 148 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) 100) (($ $ $) 86 (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) 127 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3299 (((-401 (-552)) $) 16)) (-2518 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 154 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 110)) (-3213 (((-844) $) NIL) (($ (-552)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) 99)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) 117)) (-4046 ((|#1| $) 98)) (-3843 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 21 T CONST)) (-3309 (($) 17 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) 66)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 92 (|has| |#1| (-357)))) (-1709 (($ $) 131) (($ $ $) 72)) (-1698 (($ $ $) 70)) (** (($ $ (-902)) NIL) (($ $ (-756)) 76) (($ $ (-552)) 145 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 146 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1221 |#1| |#2|) (-1220 |#1| |#2|) (-1030) (-1197 |#1|)) (T -1221)) +NIL +(-1220 |#1| |#2|) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 11)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) NIL (|has| |#1| (-544)))) (-4157 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-2622 (((-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4116 (($ $) NIL (|has| |#1| (-357)))) (-3343 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2393 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-756) (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-1201 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1229 |#1| |#2| |#3|) "failed") $) 22)) (-2832 (((-1201 |#1| |#2| |#3|) $) NIL) (((-1229 |#1| |#2| |#3|) $) NIL)) (-4006 (($ $ $) NIL (|has| |#1| (-357)))) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-3462 (((-401 (-552)) $) 57)) (-3987 (($ $ $) NIL (|has| |#1| (-357)))) (-3682 (($ (-401 (-552)) (-1201 |#1| |#2| |#3|)) NIL)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) NIL (|has| |#1| (-357)))) (-1677 (((-111) $) NIL (|has| |#1| (-357)))) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-4065 (((-111) $) NIL)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) NIL) (($ $ (-401 (-552))) NIL)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-401 (-552))) 30) (($ $ (-1060) (-401 (-552))) NIL) (($ $ (-629 (-1060)) (-629 (-401 (-552)))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2552 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4151 (((-1201 |#1| |#2| |#3|) $) 60)) (-1847 (((-3 (-1201 |#1| |#2| |#3|) "failed") $) NIL)) (-3670 (((-1201 |#1| |#2| |#3|) $) NIL)) (-2623 (((-1136) $) NIL)) (-3701 (($ $) NIL (|has| |#1| (-357)))) (-2889 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) NIL (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) NIL (|has| |#1| (-357)))) (-2594 (($ (-629 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3479 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1734 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) NIL (|has| |#1| (-357)))) (-3136 (($ $ (-401 (-552))) NIL)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2974 (((-3 (-629 $) "failed") (-629 $) $) NIL (|has| |#1| (-357)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-3795 (((-756) $) NIL (|has| |#1| (-357)))) (-2060 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1090)))) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) NIL (|has| |#1| (-357)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1233 |#2|)) 38)) (-3299 (((-401 (-552)) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) NIL)) (-3213 (((-844) $) 89) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1201 |#1| |#2| |#3|)) 16) (($ (-1229 |#1| |#2| |#3|)) 17) (($ (-1233 |#2|)) 36) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-2266 ((|#1| $ (-401 (-552))) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 12)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-401 (-552))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 32 T CONST)) (-3309 (($) 26 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 34)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1222 |#1| |#2| |#3|) (-13 (-1220 |#1| (-1201 |#1| |#2| |#3|)) (-1019 (-1229 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1222)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1220 |#1| (-1201 |#1| |#2| |#3|)) (-1019 (-1229 |#1| |#2| |#3|)) (-10 -8 (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 34)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-1334 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 (-552) "failed") $) NIL (|has| (-1222 |#2| |#3| |#4|) (-1019 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1222 |#2| |#3| |#4|) (-1019 (-401 (-552))))) (((-3 (-1222 |#2| |#3| |#4|) "failed") $) 20)) (-2832 (((-552) $) NIL (|has| (-1222 |#2| |#3| |#4|) (-1019 (-552)))) (((-401 (-552)) $) NIL (|has| (-1222 |#2| |#3| |#4|) (-1019 (-401 (-552))))) (((-1222 |#2| |#3| |#4|) $) NIL)) (-3766 (($ $) 35)) (-1293 (((-3 $ "failed") $) 25)) (-3471 (($ $) NIL (|has| (-1222 |#2| |#3| |#4|) (-445)))) (-3423 (($ $ (-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|) $) NIL)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) 11)) (-2231 (((-111) $) NIL)) (-3590 (($ (-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) 23)) (-3544 (((-313 |#2| |#3| |#4|) $) NIL)) (-3891 (($ (-1 (-313 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) $) NIL)) (-1477 (($ (-1 (-1222 |#2| |#3| |#4|) (-1222 |#2| |#3| |#4|)) $) NIL)) (-1798 (((-3 (-825 |#2|) "failed") $) 75)) (-3733 (($ $) NIL)) (-3743 (((-1222 |#2| |#3| |#4|) $) 18)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3711 (((-111) $) NIL)) (-3722 (((-1222 |#2| |#3| |#4|) $) NIL)) (-3969 (((-3 $ "failed") $ (-1222 |#2| |#3| |#4|)) NIL (|has| (-1222 |#2| |#3| |#4|) (-544))) (((-3 $ "failed") $ $) NIL)) (-2228 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1222 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-629 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1136))) "failed") $) 58)) (-3299 (((-313 |#2| |#3| |#4|) $) 14)) (-3807 (((-1222 |#2| |#3| |#4|) $) NIL (|has| (-1222 |#2| |#3| |#4|) (-445)))) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ (-1222 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL (-4029 (|has| (-1222 |#2| |#3| |#4|) (-38 (-401 (-552)))) (|has| (-1222 |#2| |#3| |#4|) (-1019 (-401 (-552))))))) (-2984 (((-629 (-1222 |#2| |#3| |#4|)) $) NIL)) (-2266 (((-1222 |#2| |#3| |#4|) $ (-313 |#2| |#3| |#4|)) NIL)) (-3878 (((-3 $ "failed") $) NIL (|has| (-1222 |#2| |#3| |#4|) (-142)))) (-2014 (((-756)) NIL)) (-4306 (($ $ $ (-756)) NIL (|has| (-1222 |#2| |#3| |#4|) (-169)))) (-3589 (((-111) $ $) NIL)) (-3297 (($) 63 T CONST)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ (-1222 |#2| |#3| |#4|)) NIL (|has| (-1222 |#2| |#3| |#4|) (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-1222 |#2| |#3| |#4|)) NIL) (($ (-1222 |#2| |#3| |#4|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-1222 |#2| |#3| |#4|) (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| (-1222 |#2| |#3| |#4|) (-38 (-401 (-552))))))) +(((-1223 |#1| |#2| |#3| |#4|) (-13 (-320 (-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1798 ((-3 (-825 |#2|) "failed") $)) (-15 -2228 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1222 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-629 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1136))) "failed") $)))) (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445)) (-13 (-27) (-1176) (-424 |#1|)) (-1154) |#2|) (T -1223)) +((-1798 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) (-5 *2 (-825 *4)) (-5 *1 (-1223 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) (-14 *6 *4))) (-2228 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1222 *4 *5 *6)) (|:| |%expon| (-313 *4 *5 *6)) (|:| |%expTerms| (-629 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) (|:| |%type| (-1136)))) (-5 *1 (-1223 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) (-14 *6 *4)))) +(-13 (-320 (-1222 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1798 ((-3 (-825 |#2|) "failed") $)) (-15 -2228 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1222 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-629 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1136))) "failed") $)))) +((-2925 ((|#2| $) 29)) (-2210 ((|#2| $) 18)) (-1785 (($ $) 36)) (-2285 (($ $ (-552)) 64)) (-4238 (((-111) $ (-756)) 33)) (-3188 ((|#2| $ |#2|) 61)) (-3359 ((|#2| $ |#2|) 59)) (-1470 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4137 (($ $ (-629 $)) 60)) (-2196 ((|#2| $) 17)) (-2715 (($ $) NIL) (($ $ (-756)) 42)) (-4236 (((-629 $) $) 26)) (-4266 (((-111) $ $) 50)) (-1418 (((-111) $ (-756)) 32)) (-1745 (((-111) $ (-756)) 31)) (-3862 (((-111) $) 28)) (-2680 ((|#2| $) 24) (($ $ (-756)) 46)) (-2060 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1289 (((-111) $) 22)) (-2760 (($ $) 39)) (-4022 (($ $) 65)) (-3058 (((-756) $) 41)) (-2963 (($ $) 40)) (-4319 (($ $ $) 58) (($ |#2| $) NIL)) (-2527 (((-629 $) $) 27)) (-1613 (((-111) $ $) 48)) (-2657 (((-756) $) 35))) +(((-1224 |#1| |#2|) (-10 -8 (-15 -2285 (|#1| |#1| (-552))) (-15 -1470 (|#2| |#1| "last" |#2|)) (-15 -3359 (|#2| |#1| |#2|)) (-15 -1470 (|#1| |#1| "rest" |#1|)) (-15 -1470 (|#2| |#1| "first" |#2|)) (-15 -4022 (|#1| |#1|)) (-15 -2760 (|#1| |#1|)) (-15 -3058 ((-756) |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "last")) (-15 -2680 (|#2| |#1|)) (-15 -2715 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| "rest")) (-15 -2715 (|#1| |#1|)) (-15 -2060 (|#2| |#1| "first")) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3188 (|#2| |#1| |#2|)) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4137 (|#1| |#1| (-629 |#1|))) (-15 -4266 ((-111) |#1| |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756)))) (-1225 |#2|) (-1191)) (T -1224)) +NIL +(-10 -8 (-15 -2285 (|#1| |#1| (-552))) (-15 -1470 (|#2| |#1| "last" |#2|)) (-15 -3359 (|#2| |#1| |#2|)) (-15 -1470 (|#1| |#1| "rest" |#1|)) (-15 -1470 (|#2| |#1| "first" |#2|)) (-15 -4022 (|#1| |#1|)) (-15 -2760 (|#1| |#1|)) (-15 -3058 ((-756) |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -2210 (|#2| |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2680 (|#1| |#1| (-756))) (-15 -2060 (|#2| |#1| "last")) (-15 -2680 (|#2| |#1|)) (-15 -2715 (|#1| |#1| (-756))) (-15 -2060 (|#1| |#1| "rest")) (-15 -2715 (|#1| |#1|)) (-15 -2060 (|#2| |#1| "first")) (-15 -4319 (|#1| |#2| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3188 (|#2| |#1| |#2|)) (-15 -1470 (|#2| |#1| "value" |#2|)) (-15 -4137 (|#1| |#1| (-629 |#1|))) (-15 -4266 ((-111) |#1| |#1|)) (-15 -1289 ((-111) |#1|)) (-15 -2060 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -4236 ((-629 |#1|) |#1|)) (-15 -2527 ((-629 |#1|) |#1|)) (-15 -1613 ((-111) |#1| |#1|)) (-15 -2657 ((-756) |#1|)) (-15 -4238 ((-111) |#1| (-756))) (-15 -1418 ((-111) |#1| (-756))) (-15 -1745 ((-111) |#1| (-756)))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2925 ((|#1| $) 48)) (-2210 ((|#1| $) 65)) (-1785 (($ $) 67)) (-2285 (($ $ (-552)) 52 (|has| $ (-6 -4369)))) (-4238 (((-111) $ (-756)) 8)) (-3188 ((|#1| $ |#1|) 39 (|has| $ (-6 -4369)))) (-2830 (($ $ $) 56 (|has| $ (-6 -4369)))) (-3359 ((|#1| $ |#1|) 54 (|has| $ (-6 -4369)))) (-1505 ((|#1| $ |#1|) 58 (|has| $ (-6 -4369)))) (-1470 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4369))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4369))) (($ $ "rest" $) 55 (|has| $ (-6 -4369))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4369)))) (-4137 (($ $ (-629 $)) 41 (|has| $ (-6 -4369)))) (-2196 ((|#1| $) 66)) (-2130 (($) 7 T CONST)) (-2715 (($ $) 73) (($ $ (-756)) 71)) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-4236 (((-629 $) $) 50)) (-4266 (((-111) $ $) 42 (|has| |#1| (-1078)))) (-1418 (((-111) $ (-756)) 9)) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35)) (-1745 (((-111) $ (-756)) 10)) (-2604 (((-629 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-2680 ((|#1| $) 70) (($ $ (-756)) 68)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 76) (($ $ (-756)) 74)) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3153 (((-552) $ $) 44)) (-1289 (((-111) $) 46)) (-2760 (($ $) 62)) (-4022 (($ $) 59 (|has| $ (-6 -4369)))) (-3058 (((-756) $) 63)) (-2963 (($ $) 64)) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1487 (($ $) 13)) (-2380 (($ $ $) 61 (|has| $ (-6 -4369))) (($ $ |#1|) 60 (|has| $ (-6 -4369)))) (-4319 (($ $ $) 78) (($ |#1| $) 77)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2527 (((-629 $) $) 51)) (-4298 (((-111) $ $) 43 (|has| |#1| (-1078)))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1225 |#1|) (-137) (-1191)) (T -1225)) +((-4319 (*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-4319 (*1 *1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) (-2715 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) (-2760 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2380 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2380 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-4022 (*1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-1505 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-1470 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2830 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-1470 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) (-3359 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-1470 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) (-2285 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4369)) (-4 *1 (-1225 *3)) (-4 *3 (-1191))))) +(-13 (-991 |t#1|) (-10 -8 (-15 -4319 ($ $ $)) (-15 -4319 ($ |t#1| $)) (-15 -2702 (|t#1| $)) (-15 -2060 (|t#1| $ "first")) (-15 -2702 ($ $ (-756))) (-15 -2715 ($ $)) (-15 -2060 ($ $ "rest")) (-15 -2715 ($ $ (-756))) (-15 -2680 (|t#1| $)) (-15 -2060 (|t#1| $ "last")) (-15 -2680 ($ $ (-756))) (-15 -1785 ($ $)) (-15 -2196 (|t#1| $)) (-15 -2210 (|t#1| $)) (-15 -2963 ($ $)) (-15 -3058 ((-756) $)) (-15 -2760 ($ $)) (IF (|has| $ (-6 -4369)) (PROGN (-15 -2380 ($ $ $)) (-15 -2380 ($ $ |t#1|)) (-15 -4022 ($ $)) (-15 -1505 (|t#1| $ |t#1|)) (-15 -1470 (|t#1| $ "first" |t#1|)) (-15 -2830 ($ $ $)) (-15 -1470 ($ $ "rest" $)) (-15 -3359 (|t#1| $ |t#1|)) (-15 -1470 (|t#1| $ "last" |t#1|)) (-15 -2285 ($ $ (-552)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1078)) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-599 (-844)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-991 |#1|) . T) ((-1078) |has| |#1| (-1078)) ((-1191) . T)) +((-1477 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| (-1 |#2| |#1|) |#3|))) (-1030) (-1030) (-1228 |#1|) (-1228 |#2|)) (T -1226)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1228 *6)) (-5 *1 (-1226 *5 *6 *4 *2)) (-4 *4 (-1228 *5))))) +(-10 -7 (-15 -1477 (|#4| (-1 |#2| |#1|) |#3|))) +((-3643 (((-111) $) 15)) (-2478 (($ $) 92)) (-2332 (($ $) 68)) (-2455 (($ $) 88)) (-2305 (($ $) 64)) (-2506 (($ $) 96)) (-2359 (($ $) 72)) (-2430 (($ $) 62)) (-2855 (($ $) 60)) (-2518 (($ $) 98)) (-2370 (($ $) 74)) (-2492 (($ $) 94)) (-2346 (($ $) 70)) (-2467 (($ $) 90)) (-2318 (($ $) 66)) (-3213 (((-844) $) 48) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3843 (($ $) 104)) (-2409 (($ $) 80)) (-2530 (($ $) 100)) (-2382 (($ $) 76)) (-3863 (($ $) 108)) (-2433 (($ $) 84)) (-3013 (($ $) 110)) (-2444 (($ $) 86)) (-3853 (($ $) 106)) (-2420 (($ $) 82)) (-2543 (($ $) 102)) (-2395 (($ $) 78)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-401 (-552))) 58))) +(((-1227 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -2332 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2506 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902))) (-15 -3643 ((-111) |#1|)) (-15 -3213 ((-844) |#1|))) (-1228 |#2|) (-1030)) (T -1227)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -2332 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2506 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2530 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3213 (|#1| |#2|)) (-15 -3213 (|#1| |#1|)) (-15 -3213 (|#1| (-401 (-552)))) (-15 -3213 (|#1| (-552))) (-15 ** (|#1| |#1| (-756))) (-15 ** (|#1| |#1| (-902))) (-15 -3643 ((-111) |#1|)) (-15 -3213 ((-844) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-3611 (((-629 (-1060)) $) 72)) (-1485 (((-1154) $) 101)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3303 (($ $) 50 (|has| |#1| (-544)))) (-1334 (((-111) $) 52 (|has| |#1| (-544)))) (-4157 (($ $ (-756)) 96) (($ $ (-756) (-756)) 95)) (-2622 (((-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|))) $) 103)) (-2478 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) 19)) (-3489 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|)))) 153) (($ (-1134 |#1|)) 151)) (-2506 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) 17 T CONST)) (-3766 (($ $) 58)) (-1293 (((-3 $ "failed") $) 32)) (-1517 (($ $) 150)) (-2211 (((-933 |#1|) $ (-756)) 148) (((-933 |#1|) $ (-756) (-756)) 147)) (-3593 (((-111) $) 71)) (-4043 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $) 98) (((-756) $ (-756)) 97)) (-4065 (((-111) $) 30)) (-3755 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $ (-902)) 99)) (-3838 (($ (-1 |#1| (-552)) $) 149)) (-2231 (((-111) $) 60)) (-3590 (($ |#1| (-756)) 59) (($ $ (-1060) (-756)) 74) (($ $ (-629 (-1060)) (-629 (-756))) 73)) (-1477 (($ (-1 |#1| |#1|) $) 61)) (-2430 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) 63)) (-3743 ((|#1| $) 64)) (-2623 (((-1136) $) 9)) (-2889 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 144 (-4029 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-940)) (|has| |#1| (-1176)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-38 (-401 (-552)))))))) (-2876 (((-1098) $) 10)) (-3136 (($ $ (-756)) 93)) (-3969 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2855 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-2432 (((-1134 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-756)))))) (-2060 ((|#1| $ (-756)) 102) (($ $ $) 79 (|has| (-756) (-1090)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) 87 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-1154) (-756)) 86 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-629 (-1154))) 85 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-1154)) 84 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-756)) 82 (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (-3299 (((-756) $) 62)) (-2518 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 70)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2984 (((-1134 |#1|) $) 152)) (-2266 ((|#1| $ (-756)) 57)) (-3878 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-2014 (((-756)) 28)) (-4046 ((|#1| $) 100)) (-3843 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) 51 (|has| |#1| (-544)))) (-2530 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-756)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-756)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) 91 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-1154) (-756)) 90 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-629 (-1154))) 89 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-1154)) 88 (-12 (|has| |#1| (-881 (-1154))) (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (($ $ (-756)) 83 (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ |#1|) 146 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1228 |#1|) (-137) (-1030)) (T -1228)) +((-1726 (*1 *1 *2) (-12 (-5 *2 (-1134 (-2 (|:| |k| (-756)) (|:| |c| *3)))) (-4 *3 (-1030)) (-4 *1 (-1228 *3)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1030)) (-5 *2 (-1134 *3)))) (-1726 (*1 *1 *2) (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-4 *1 (-1228 *3)))) (-1517 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1228 *3)) (-4 *3 (-1030)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-1228 *4)) (-4 *4 (-1030)) (-5 *2 (-933 *4)))) (-2211 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-4 *1 (-1228 *4)) (-4 *4 (-1030)) (-5 *2 (-933 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) (-2889 (*1 *1 *1 *2) (-4029 (-12 (-5 *2 (-1154)) (-4 *1 (-1228 *3)) (-4 *3 (-1030)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1154)) (-4 *1 (-1228 *3)) (-4 *3 (-1030)) (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1215 |t#1| (-756)) (-10 -8 (-15 -1726 ($ (-1134 (-2 (|:| |k| (-756)) (|:| |c| |t#1|))))) (-15 -2984 ((-1134 |t#1|) $)) (-15 -1726 ($ (-1134 |t#1|))) (-15 -1517 ($ $)) (-15 -3838 ($ (-1 |t#1| (-552)) $)) (-15 -2211 ((-933 |t#1|) $ (-756))) (-15 -2211 ((-933 |t#1|) $ (-756) (-756))) (IF (|has| |t#1| (-357)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2889 ($ $)) (IF (|has| |t#1| (-15 -2889 (|t#1| |t#1| (-1154)))) (IF (|has| |t#1| (-15 -3611 ((-629 (-1154)) |t#1|))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1176)) (IF (|has| |t#1| (-940)) (IF (|has| |t#1| (-29 (-552))) (-15 -2889 ($ $ (-1154))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-983)) (-6 (-1176))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-756)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-756) |#1|))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-756) (-1090)) ((-284) |has| |#1| (-544)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) |has| |#1| (-544)) ((-632 #1#) |has| |#1| (-38 (-401 (-552)))) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #1#) |has| |#1| (-38 (-401 (-552)))) ((-702 |#1|) |has| |#1| (-169)) ((-702 $) |has| |#1| (-544)) ((-711) . T) ((-881 (-1154)) -12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154)))) ((-954 |#1| #0# (-1060)) . T) ((-983) |has| |#1| (-38 (-401 (-552)))) ((-1036 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1036 |#1|) . T) ((-1036 $) -4029 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1176) |has| |#1| (-38 (-401 (-552)))) ((-1179) |has| |#1| (-38 (-401 (-552)))) ((-1215 |#1| #0#) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-3611 (((-629 (-1060)) $) NIL)) (-1485 (((-1154) $) 87)) (-3576 (((-1210 |#2| |#1|) $ (-756)) 73)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3303 (($ $) NIL (|has| |#1| (-544)))) (-1334 (((-111) $) 137 (|has| |#1| (-544)))) (-4157 (($ $ (-756)) 122) (($ $ (-756) (-756)) 124)) (-2622 (((-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|))) $) 42)) (-2478 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2332 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3489 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2455 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1726 (($ (-1134 (-2 (|:| |k| (-756)) (|:| |c| |#1|)))) 53) (($ (-1134 |#1|)) NIL)) (-2506 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2359 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2130 (($) NIL T CONST)) (-1283 (($ $) 128)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-1517 (($ $) 135)) (-2211 (((-933 |#1|) $ (-756)) 63) (((-933 |#1|) $ (-756) (-756)) 65)) (-3593 (((-111) $) NIL)) (-4043 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4241 (((-756) $) NIL) (((-756) $ (-756)) NIL)) (-4065 (((-111) $) NIL)) (-1866 (($ $) 112)) (-3755 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3734 (($ (-552) (-552) $) 130)) (-1524 (($ $ (-902)) 134)) (-3838 (($ (-1 |#1| (-552)) $) 106)) (-2231 (((-111) $) NIL)) (-3590 (($ |#1| (-756)) 15) (($ $ (-1060) (-756)) NIL) (($ $ (-629 (-1060)) (-629 (-756))) NIL)) (-1477 (($ (-1 |#1| |#1|) $) 94)) (-2430 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3733 (($ $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2405 (($ $) 110)) (-2764 (($ $) 108)) (-4189 (($ (-552) (-552) $) 132)) (-2889 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1154)) 151 (-4029 (-12 (|has| |#1| (-15 -2889 (|#1| |#1| (-1154)))) (|has| |#1| (-15 -3611 ((-629 (-1154)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-940)) (|has| |#1| (-1176))))) (($ $ (-1233 |#2|)) 146 (|has| |#1| (-38 (-401 (-552)))))) (-2876 (((-1098) $) NIL)) (-3311 (($ $ (-552) (-552)) 116)) (-3136 (($ $ (-756)) 118)) (-3969 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2855 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1719 (($ $) 114)) (-2432 (((-1134 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-756)))))) (-2060 ((|#1| $ (-756)) 91) (($ $ $) 126 (|has| (-756) (-1090)))) (-3096 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) 103 (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $ (-1233 |#2|)) 99)) (-3299 (((-756) $) NIL)) (-2518 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2370 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2318 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1680 (($ $) 120)) (-3213 (((-844) $) NIL) (($ (-552)) 24) (($ (-401 (-552))) 143 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1210 |#2| |#1|)) 80) (($ (-1233 |#2|)) 20)) (-2984 (((-1134 |#1|) $) NIL)) (-2266 ((|#1| $ (-756)) 90)) (-3878 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2014 (((-756)) NIL)) (-4046 ((|#1| $) 88)) (-3843 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3589 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2530 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2382 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2433 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4311 ((|#1| $ (-756)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-756)))) (|has| |#1| (-15 -3213 (|#1| (-1154))))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2444 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2420 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2543 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2395 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3297 (($) 17 T CONST)) (-3309 (($) 13 T CONST)) (-1765 (($ $ (-629 (-1154)) (-629 (-756))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154) (-756)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-629 (-1154))) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-1154)) NIL (-12 (|has| |#1| (-15 * (|#1| (-756) |#1|))) (|has| |#1| (-881 (-1154))))) (($ $ (-756)) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-756) |#1|))))) (-1613 (((-111) $ $) NIL)) (-1720 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) 102)) (-1698 (($ $ $) 18)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL) (($ $ |#1|) 140 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1229 |#1| |#2| |#3|) (-13 (-1228 |#1|) (-10 -8 (-15 -3213 ($ (-1210 |#2| |#1|))) (-15 -3576 ((-1210 |#2| |#1|) $ (-756))) (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (-15 -2764 ($ $)) (-15 -2405 ($ $)) (-15 -1866 ($ $)) (-15 -1719 ($ $)) (-15 -3311 ($ $ (-552) (-552))) (-15 -1283 ($ $)) (-15 -3734 ($ (-552) (-552) $)) (-15 -4189 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) (-1030) (-1154) |#1|) (T -1229)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-1210 *4 *3)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3) (-5 *1 (-1229 *3 *4 *5)))) (-3576 (*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1210 *5 *4)) (-5 *1 (-1229 *4 *5 *6)) (-4 *4 (-1030)) (-14 *5 (-1154)) (-14 *6 *4))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) (-14 *5 *3))) (-2764 (*1 *1 *1) (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2))) (-2405 (*1 *1 *1) (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2))) (-1866 (*1 *1 *1) (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2))) (-1719 (*1 *1 *1) (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2))) (-3311 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3))) (-1283 (*1 *1 *1) (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2))) (-3734 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3))) (-4189 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-1154)) (-14 *5 *3))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(-13 (-1228 |#1|) (-10 -8 (-15 -3213 ($ (-1210 |#2| |#1|))) (-15 -3576 ((-1210 |#2| |#1|) $ (-756))) (-15 -3213 ($ (-1233 |#2|))) (-15 -3096 ($ $ (-1233 |#2|))) (-15 -2764 ($ $)) (-15 -2405 ($ $)) (-15 -1866 ($ $)) (-15 -1719 ($ $)) (-15 -3311 ($ $ (-552) (-552))) (-15 -1283 ($ $)) (-15 -3734 ($ (-552) (-552) $)) (-15 -4189 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2889 ($ $ (-1233 |#2|))) |%noBranch|))) +((-3572 (((-1 (-1134 |#1|) (-629 (-1134 |#1|))) (-1 |#2| (-629 |#2|))) 24)) (-3378 (((-1 (-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3426 (((-1 (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2|)) 13)) (-2927 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1435 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2186 ((|#2| (-1 |#2| (-629 |#2|)) (-629 |#1|)) 54)) (-1839 (((-629 |#2|) (-629 |#1|) (-629 (-1 |#2| (-629 |#2|)))) 61)) (-3915 ((|#2| |#2| |#2|) 43))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -3426 ((-1 (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2|))) (-15 -3378 ((-1 (-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3572 ((-1 (-1134 |#1|) (-629 (-1134 |#1|))) (-1 |#2| (-629 |#2|)))) (-15 -3915 (|#2| |#2| |#2|)) (-15 -1435 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2927 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2186 (|#2| (-1 |#2| (-629 |#2|)) (-629 |#1|))) (-15 -1839 ((-629 |#2|) (-629 |#1|) (-629 (-1 |#2| (-629 |#2|)))))) (-38 (-401 (-552))) (-1228 |#1|)) (T -1230)) +((-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 (-1 *6 (-629 *6)))) (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1228 *5)) (-5 *2 (-629 *6)) (-5 *1 (-1230 *5 *6)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-629 *2))) (-5 *4 (-629 *5)) (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1228 *5)) (-5 *1 (-1230 *5 *2)))) (-2927 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1228 *4)) (-5 *1 (-1230 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1228 *4)) (-5 *1 (-1230 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-3915 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1230 *3 *2)) (-4 *2 (-1228 *3)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-629 *5))) (-4 *5 (-1228 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1134 *4) (-629 (-1134 *4)))) (-5 *1 (-1230 *4 *5)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1228 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1134 *4) (-1134 *4) (-1134 *4))) (-5 *1 (-1230 *4 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1228 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1134 *4) (-1134 *4))) (-5 *1 (-1230 *4 *5))))) +(-10 -7 (-15 -3426 ((-1 (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2|))) (-15 -3378 ((-1 (-1134 |#1|) (-1134 |#1|) (-1134 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3572 ((-1 (-1134 |#1|) (-629 (-1134 |#1|))) (-1 |#2| (-629 |#2|)))) (-15 -3915 (|#2| |#2| |#2|)) (-15 -1435 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2927 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2186 (|#2| (-1 |#2| (-629 |#2|)) (-629 |#1|))) (-15 -1839 ((-629 |#2|) (-629 |#1|) (-629 (-1 |#2| (-629 |#2|)))))) +((-3799 ((|#2| |#4| (-756)) 30)) (-3371 ((|#4| |#2|) 25)) (-3539 ((|#4| (-401 |#2|)) 52 (|has| |#1| (-544)))) (-2887 (((-1 |#4| (-629 |#4|)) |#3|) 46))) +(((-1231 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3371 (|#4| |#2|)) (-15 -3799 (|#2| |#4| (-756))) (-15 -2887 ((-1 |#4| (-629 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3539 (|#4| (-401 |#2|))) |%noBranch|)) (-1030) (-1213 |#1|) (-640 |#2|) (-1228 |#1|)) (T -1231)) +((-3539 (*1 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-544)) (-4 *4 (-1030)) (-4 *2 (-1228 *4)) (-5 *1 (-1231 *4 *5 *6 *2)) (-4 *6 (-640 *5)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *5 (-1213 *4)) (-5 *2 (-1 *6 (-629 *6))) (-5 *1 (-1231 *4 *5 *3 *6)) (-4 *3 (-640 *5)) (-4 *6 (-1228 *4)))) (-3799 (*1 *2 *3 *4) (-12 (-5 *4 (-756)) (-4 *5 (-1030)) (-4 *2 (-1213 *5)) (-5 *1 (-1231 *5 *2 *6 *3)) (-4 *6 (-640 *2)) (-4 *3 (-1228 *5)))) (-3371 (*1 *2 *3) (-12 (-4 *4 (-1030)) (-4 *3 (-1213 *4)) (-4 *2 (-1228 *4)) (-5 *1 (-1231 *4 *3 *5 *2)) (-4 *5 (-640 *3))))) +(-10 -7 (-15 -3371 (|#4| |#2|)) (-15 -3799 (|#2| |#4| (-756))) (-15 -2887 ((-1 |#4| (-629 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3539 (|#4| (-401 |#2|))) |%noBranch|)) +NIL +(((-1232) (-137)) (T -1232)) +NIL +(-13 (-10 -7 (-6 -4283))) +((-3202 (((-111) $ $) NIL)) (-1485 (((-1154)) 12)) (-2623 (((-1136) $) 17)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 11) (((-1154) $) 8)) (-1613 (((-111) $ $) 14))) +(((-1233 |#1|) (-13 (-1078) (-599 (-1154)) (-10 -8 (-15 -3213 ((-1154) $)) (-15 -1485 ((-1154))))) (-1154)) (T -1233)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1233 *3)) (-14 *3 *2))) (-1485 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1233 *3)) (-14 *3 *2)))) +(-13 (-1078) (-599 (-1154)) (-10 -8 (-15 -3213 ((-1154) $)) (-15 -1485 ((-1154))))) +((-2306 (($ (-756)) 18)) (-1920 (((-673 |#2|) $ $) 40)) (-3994 ((|#2| $) 48)) (-2556 ((|#2| $) 47)) (-3632 ((|#2| $ $) 35)) (-2449 (($ $ $) 44)) (-1709 (($ $) 22) (($ $ $) 28)) (-1698 (($ $ $) 15)) (* (($ (-552) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1234 |#1| |#2|) (-10 -8 (-15 -3994 (|#2| |#1|)) (-15 -2556 (|#2| |#1|)) (-15 -2449 (|#1| |#1| |#1|)) (-15 -1920 ((-673 |#2|) |#1| |#1|)) (-15 -3632 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -2306 (|#1| (-756))) (-15 -1698 (|#1| |#1| |#1|))) (-1235 |#2|) (-1191)) (T -1234)) +NIL +(-10 -8 (-15 -3994 (|#2| |#1|)) (-15 -2556 (|#2| |#1|)) (-15 -2449 (|#1| |#1| |#1|)) (-15 -1920 ((-673 |#2|) |#1| |#1|)) (-15 -3632 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -2306 (|#1| (-756))) (-15 -1698 (|#1| |#1| |#1|))) +((-3202 (((-111) $ $) 19 (|has| |#1| (-1078)))) (-2306 (($ (-756)) 112 (|has| |#1| (-23)))) (-2660 (((-1242) $ (-552) (-552)) 40 (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4369))) (($ $) 88 (-12 (|has| |#1| (-832)) (|has| $ (-6 -4369))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) 8)) (-1470 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) 58 (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4368)))) (-2130 (($) 7 T CONST)) (-2366 (($ $) 90 (|has| $ (-6 -4369)))) (-3344 (($ $) 100)) (-2738 (($ $) 78 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-2655 (($ |#1| $) 77 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) 51)) (-1456 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) 30 (|has| $ (-6 -4368)))) (-1920 (((-673 |#1|) $ $) 105 (|has| |#1| (-1030)))) (-3307 (($ (-756) |#1|) 69)) (-1418 (((-111) $ (-756)) 9)) (-1695 (((-552) $) 43 (|has| (-552) (-832)))) (-1772 (($ $ $) 87 (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-1842 (((-552) $) 44 (|has| (-552) (-832)))) (-2011 (($ $ $) 86 (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3994 ((|#1| $) 102 (-12 (|has| |#1| (-1030)) (|has| |#1| (-983))))) (-1745 (((-111) $ (-756)) 10)) (-2556 ((|#1| $) 103 (-12 (|has| |#1| (-1030)) (|has| |#1| (-983))))) (-2623 (((-1136) $) 22 (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2190 (((-629 (-552)) $) 46)) (-1335 (((-111) (-552) $) 47)) (-2876 (((-1098) $) 21 (|has| |#1| (-1078)))) (-2702 ((|#1| $) 42 (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1518 (($ $ |#1|) 41 (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) 14)) (-3347 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) 48)) (-3435 (((-111) $) 11)) (-3430 (($) 12)) (-2060 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1204 (-552))) 63)) (-3632 ((|#1| $ $) 106 (|has| |#1| (-1030)))) (-2012 (($ $ (-552)) 62) (($ $ (-1204 (-552))) 61)) (-2449 (($ $ $) 104 (|has| |#1| (-1030)))) (-2885 (((-756) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4368))) (((-756) |#1| $) 28 (-12 (|has| |#1| (-1078)) (|has| $ (-6 -4368))))) (-3747 (($ $ $ (-552)) 91 (|has| $ (-6 -4369)))) (-1487 (($ $) 13)) (-1522 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 70)) (-4319 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-629 $)) 65)) (-3213 (((-844) $) 18 (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) 84 (|has| |#1| (-832)))) (-1644 (((-111) $ $) 83 (|has| |#1| (-832)))) (-1613 (((-111) $ $) 20 (|has| |#1| (-1078)))) (-1655 (((-111) $ $) 85 (|has| |#1| (-832)))) (-1632 (((-111) $ $) 82 (|has| |#1| (-832)))) (-1709 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1698 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-711))) (($ $ |#1|) 107 (|has| |#1| (-711)))) (-2657 (((-756) $) 6 (|has| $ (-6 -4368))))) +(((-1235 |#1|) (-137) (-1191)) (T -1235)) +((-1698 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-25)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1235 *3)) (-4 *3 (-23)) (-4 *3 (-1191)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-21)))) (-1709 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1235 *3)) (-4 *3 (-1191)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) (-3632 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-1030)))) (-1920 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1191)) (-4 *3 (-1030)) (-5 *2 (-673 *3)))) (-2449 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-1030)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-983)) (-4 *2 (-1030)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-983)) (-4 *2 (-1030))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1698 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2306 ($ (-756))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 * ($ (-552) $))) |%noBranch|) (IF (|has| |t#1| (-711)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1030)) (PROGN (-15 -3632 (|t#1| $ $)) (-15 -1920 ((-673 |t#1|) $ $)) (-15 -2449 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-983)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2556 (|t#1| $)) (-15 -3994 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-599 (-844)) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832)) (|has| |#1| (-599 (-844)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))) ((-635 |#1|) . T) ((-19 |#1|) . T) ((-832) |has| |#1| (-832)) ((-1078) -4029 (|has| |#1| (-1078)) (|has| |#1| (-832))) ((-1191) . T)) +((-3215 (((-1237 |#2|) (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|) 13)) (-3884 ((|#2| (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|) 15)) (-1477 (((-3 (-1237 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1237 |#1|)) 28) (((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|)) 18))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -3215 ((-1237 |#2|) (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|)) (-15 -1477 ((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) (-15 -1477 ((-3 (-1237 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1237 |#1|)))) (-1191) (-1191)) (T -1236)) +((-1477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1237 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1237 *6)) (-5 *1 (-1236 *5 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1237 *6)) (-5 *1 (-1236 *5 *6)))) (-3884 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1237 *5)) (-4 *5 (-1191)) (-4 *2 (-1191)) (-5 *1 (-1236 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1237 *6)) (-4 *6 (-1191)) (-4 *5 (-1191)) (-5 *2 (-1237 *5)) (-5 *1 (-1236 *6 *5))))) +(-10 -7 (-15 -3215 ((-1237 |#2|) (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|)) (-15 -3884 (|#2| (-1 |#2| |#1| |#2|) (-1237 |#1|) |#2|)) (-15 -1477 ((-1237 |#2|) (-1 |#2| |#1|) (-1237 |#1|))) (-15 -1477 ((-3 (-1237 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1237 |#1|)))) +((-3202 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-2306 (($ (-756)) NIL (|has| |#1| (-23)))) (-3084 (($ (-629 |#1|)) 9)) (-2660 (((-1242) $ (-552) (-552)) NIL (|has| $ (-6 -4369)))) (-3717 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-832)))) (-3646 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4369))) (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-832))))) (-1296 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-832)))) (-4238 (((-111) $ (-756)) NIL)) (-1470 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369))) ((|#1| $ (-1204 (-552)) |#1|) NIL (|has| $ (-6 -4369)))) (-3954 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2130 (($) NIL T CONST)) (-2366 (($ $) NIL (|has| $ (-6 -4369)))) (-3344 (($ $) NIL)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-2655 (($ |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-3884 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4368))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4368)))) (-2957 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4369)))) (-2892 ((|#1| $ (-552)) NIL)) (-1456 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1078))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1078)))) (-3138 (((-629 |#1|) $) 15 (|has| $ (-6 -4368)))) (-1920 (((-673 |#1|) $ $) NIL (|has| |#1| (-1030)))) (-3307 (($ (-756) |#1|) NIL)) (-1418 (((-111) $ (-756)) NIL)) (-1695 (((-552) $) NIL (|has| (-552) (-832)))) (-1772 (($ $ $) NIL (|has| |#1| (-832)))) (-1446 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-832)))) (-3278 (((-629 |#1|) $) NIL (|has| $ (-6 -4368)))) (-2973 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-1842 (((-552) $) NIL (|has| (-552) (-832)))) (-2011 (($ $ $) NIL (|has| |#1| (-832)))) (-2947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3994 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-1745 (((-111) $ (-756)) NIL)) (-2556 ((|#1| $) NIL (-12 (|has| |#1| (-983)) (|has| |#1| (-1030))))) (-2623 (((-1136) $) NIL (|has| |#1| (-1078)))) (-1759 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2190 (((-629 (-552)) $) NIL)) (-1335 (((-111) (-552) $) NIL)) (-2876 (((-1098) $) NIL (|has| |#1| (-1078)))) (-2702 ((|#1| $) NIL (|has| (-552) (-832)))) (-3073 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1518 (($ $ |#1|) NIL (|has| $ (-6 -4369)))) (-3944 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078)))) (($ $ (-629 |#1|) (-629 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3347 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3627 (((-629 |#1|) $) NIL)) (-3435 (((-111) $) NIL)) (-3430 (($) NIL)) (-2060 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-3632 ((|#1| $ $) NIL (|has| |#1| (-1030)))) (-2012 (($ $ (-552)) NIL) (($ $ (-1204 (-552))) NIL)) (-2449 (($ $ $) NIL (|has| |#1| (-1030)))) (-2885 (((-756) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368))) (((-756) |#1| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#1| (-1078))))) (-3747 (($ $ $ (-552)) NIL (|has| $ (-6 -4369)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) 19 (|has| |#1| (-600 (-528))))) (-3226 (($ (-629 |#1|)) 8)) (-4319 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-629 $)) NIL)) (-3213 (((-844) $) NIL (|has| |#1| (-599 (-844))))) (-2584 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4368)))) (-1666 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1644 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1613 (((-111) $ $) NIL (|has| |#1| (-1078)))) (-1655 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1632 (((-111) $ $) NIL (|has| |#1| (-832)))) (-1709 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1698 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-711))) (($ $ |#1|) NIL (|has| |#1| (-711)))) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1237 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -3084 ($ (-629 |#1|))))) (-1191)) (T -1237)) +((-3084 (*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1237 *3))))) +(-13 (-1235 |#1|) (-10 -8 (-15 -3084 ($ (-629 |#1|))))) +((-3202 (((-111) $ $) NIL)) (-3251 (((-1136) $ (-1136)) 90) (((-1136) $ (-1136) (-1136)) 88) (((-1136) $ (-1136) (-629 (-1136))) 87)) (-1824 (($) 59)) (-2678 (((-1242) $ (-461) (-902)) 45)) (-2097 (((-1242) $ (-902) (-1136)) 73) (((-1242) $ (-902) (-855)) 74)) (-1306 (((-1242) $ (-902) (-373) (-373)) 48)) (-4020 (((-1242) $ (-1136)) 69)) (-1531 (((-1242) $ (-902) (-1136)) 78)) (-2881 (((-1242) $ (-902) (-373) (-373)) 49)) (-4335 (((-1242) $ (-902) (-902)) 46)) (-3230 (((-1242) $) 70)) (-2713 (((-1242) $ (-902) (-1136)) 77)) (-3520 (((-1242) $ (-461) (-902)) 31)) (-3653 (((-1242) $ (-902) (-1136)) 76)) (-3960 (((-629 (-257)) $) 23) (($ $ (-629 (-257))) 24)) (-3623 (((-1242) $ (-756) (-756)) 43)) (-1950 (($ $) 60) (($ (-461) (-629 (-257))) 61)) (-2623 (((-1136) $) NIL)) (-2670 (((-552) $) 38)) (-2876 (((-1098) $) NIL)) (-2017 (((-1237 (-3 (-461) "undefined")) $) 37)) (-2631 (((-1237 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -3653 (-552)) (|:| -2436 (-552)) (|:| |spline| (-552)) (|:| -2364 (-552)) (|:| |axesColor| (-855)) (|:| -2097 (-552)) (|:| |unitsColor| (-855)) (|:| |showing| (-552)))) $) 36)) (-1587 (((-1242) $ (-902) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-855) (-552) (-855) (-552)) 68)) (-3289 (((-629 (-924 (-220))) $) NIL)) (-2976 (((-461) $ (-902)) 33)) (-2146 (((-1242) $ (-756) (-756) (-902) (-902)) 40)) (-2073 (((-1242) $ (-1136)) 79)) (-2436 (((-1242) $ (-902) (-1136)) 75)) (-3213 (((-844) $) 85)) (-2571 (((-1242) $) 80)) (-2364 (((-1242) $ (-902) (-1136)) 71) (((-1242) $ (-902) (-855)) 72)) (-1613 (((-111) $ $) NIL))) +(((-1238) (-13 (-1078) (-10 -8 (-15 -3289 ((-629 (-924 (-220))) $)) (-15 -1824 ($)) (-15 -1950 ($ $)) (-15 -3960 ((-629 (-257)) $)) (-15 -3960 ($ $ (-629 (-257)))) (-15 -1950 ($ (-461) (-629 (-257)))) (-15 -1587 ((-1242) $ (-902) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-855) (-552) (-855) (-552))) (-15 -2631 ((-1237 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -3653 (-552)) (|:| -2436 (-552)) (|:| |spline| (-552)) (|:| -2364 (-552)) (|:| |axesColor| (-855)) (|:| -2097 (-552)) (|:| |unitsColor| (-855)) (|:| |showing| (-552)))) $)) (-15 -2017 ((-1237 (-3 (-461) "undefined")) $)) (-15 -4020 ((-1242) $ (-1136))) (-15 -3520 ((-1242) $ (-461) (-902))) (-15 -2976 ((-461) $ (-902))) (-15 -2364 ((-1242) $ (-902) (-1136))) (-15 -2364 ((-1242) $ (-902) (-855))) (-15 -2097 ((-1242) $ (-902) (-1136))) (-15 -2097 ((-1242) $ (-902) (-855))) (-15 -3653 ((-1242) $ (-902) (-1136))) (-15 -2713 ((-1242) $ (-902) (-1136))) (-15 -2436 ((-1242) $ (-902) (-1136))) (-15 -2073 ((-1242) $ (-1136))) (-15 -2571 ((-1242) $)) (-15 -2146 ((-1242) $ (-756) (-756) (-902) (-902))) (-15 -2881 ((-1242) $ (-902) (-373) (-373))) (-15 -1306 ((-1242) $ (-902) (-373) (-373))) (-15 -1531 ((-1242) $ (-902) (-1136))) (-15 -3623 ((-1242) $ (-756) (-756))) (-15 -2678 ((-1242) $ (-461) (-902))) (-15 -4335 ((-1242) $ (-902) (-902))) (-15 -3251 ((-1136) $ (-1136))) (-15 -3251 ((-1136) $ (-1136) (-1136))) (-15 -3251 ((-1136) $ (-1136) (-629 (-1136)))) (-15 -3230 ((-1242) $)) (-15 -2670 ((-552) $)) (-15 -3213 ((-844) $))))) (T -1238)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1238)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-629 (-924 (-220)))) (-5 *1 (-1238)))) (-1824 (*1 *1) (-5 *1 (-1238))) (-1950 (*1 *1 *1) (-5 *1 (-1238))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1238)))) (-3960 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1238)))) (-1950 (*1 *1 *2 *3) (-12 (-5 *2 (-461)) (-5 *3 (-629 (-257))) (-5 *1 (-1238)))) (-1587 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-902)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-855)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-1237 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -3653 (-552)) (|:| -2436 (-552)) (|:| |spline| (-552)) (|:| -2364 (-552)) (|:| |axesColor| (-855)) (|:| -2097 (-552)) (|:| |unitsColor| (-855)) (|:| |showing| (-552))))) (-5 *1 (-1238)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1237 (-3 (-461) "undefined"))) (-5 *1 (-1238)))) (-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-3520 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2976 (*1 *2 *1 *3) (-12 (-5 *3 (-902)) (-5 *2 (-461)) (-5 *1 (-1238)))) (-2364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2097 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2097 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-3653 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2713 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2436 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2146 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-756)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2881 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-902)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-1306 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-902)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-1531 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-3623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2678 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-4335 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) (-3251 (*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1238)))) (-3251 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1238)))) (-3251 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-1238)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1238)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1238))))) +(-13 (-1078) (-10 -8 (-15 -3289 ((-629 (-924 (-220))) $)) (-15 -1824 ($)) (-15 -1950 ($ $)) (-15 -3960 ((-629 (-257)) $)) (-15 -3960 ($ $ (-629 (-257)))) (-15 -1950 ($ (-461) (-629 (-257)))) (-15 -1587 ((-1242) $ (-902) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-855) (-552) (-855) (-552))) (-15 -2631 ((-1237 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -3653 (-552)) (|:| -2436 (-552)) (|:| |spline| (-552)) (|:| -2364 (-552)) (|:| |axesColor| (-855)) (|:| -2097 (-552)) (|:| |unitsColor| (-855)) (|:| |showing| (-552)))) $)) (-15 -2017 ((-1237 (-3 (-461) "undefined")) $)) (-15 -4020 ((-1242) $ (-1136))) (-15 -3520 ((-1242) $ (-461) (-902))) (-15 -2976 ((-461) $ (-902))) (-15 -2364 ((-1242) $ (-902) (-1136))) (-15 -2364 ((-1242) $ (-902) (-855))) (-15 -2097 ((-1242) $ (-902) (-1136))) (-15 -2097 ((-1242) $ (-902) (-855))) (-15 -3653 ((-1242) $ (-902) (-1136))) (-15 -2713 ((-1242) $ (-902) (-1136))) (-15 -2436 ((-1242) $ (-902) (-1136))) (-15 -2073 ((-1242) $ (-1136))) (-15 -2571 ((-1242) $)) (-15 -2146 ((-1242) $ (-756) (-756) (-902) (-902))) (-15 -2881 ((-1242) $ (-902) (-373) (-373))) (-15 -1306 ((-1242) $ (-902) (-373) (-373))) (-15 -1531 ((-1242) $ (-902) (-1136))) (-15 -3623 ((-1242) $ (-756) (-756))) (-15 -2678 ((-1242) $ (-461) (-902))) (-15 -4335 ((-1242) $ (-902) (-902))) (-15 -3251 ((-1136) $ (-1136))) (-15 -3251 ((-1136) $ (-1136) (-1136))) (-15 -3251 ((-1136) $ (-1136) (-629 (-1136)))) (-15 -3230 ((-1242) $)) (-15 -2670 ((-552) $)) (-15 -3213 ((-844) $)))) +((-3202 (((-111) $ $) NIL)) (-2701 (((-1242) $ (-373)) 140) (((-1242) $ (-373) (-373) (-373)) 141)) (-3251 (((-1136) $ (-1136)) 148) (((-1136) $ (-1136) (-1136)) 146) (((-1136) $ (-1136) (-629 (-1136))) 145)) (-1298 (($) 50)) (-2865 (((-1242) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $) 114) (((-1242) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 115) (((-1242) $ (-552) (-552) (-373) (-373) (-373)) 117) (((-1242) $ (-373) (-373)) 118) (((-1242) $ (-373) (-373) (-373)) 125)) (-2560 (((-373)) 97) (((-373) (-373)) 98)) (-1484 (((-373)) 92) (((-373) (-373)) 94)) (-1650 (((-373)) 95) (((-373) (-373)) 96)) (-3314 (((-373)) 101) (((-373) (-373)) 102)) (-3446 (((-373)) 99) (((-373) (-373)) 100)) (-1306 (((-1242) $ (-373) (-373)) 142)) (-4020 (((-1242) $ (-1136)) 126)) (-1426 (((-1111 (-220)) $) 51) (($ $ (-1111 (-220))) 52)) (-2863 (((-1242) $ (-1136)) 154)) (-3663 (((-1242) $ (-1136)) 155)) (-3849 (((-1242) $ (-373) (-373)) 124) (((-1242) $ (-552) (-552)) 139)) (-4335 (((-1242) $ (-902) (-902)) 132)) (-3230 (((-1242) $) 112)) (-3183 (((-1242) $ (-1136)) 153)) (-3529 (((-1242) $ (-1136)) 109)) (-3960 (((-629 (-257)) $) 53) (($ $ (-629 (-257))) 54)) (-3623 (((-1242) $ (-756) (-756)) 131)) (-3204 (((-1242) $ (-756) (-924 (-220))) 160)) (-1309 (($ $) 56) (($ (-1111 (-220)) (-1136)) 57) (($ (-1111 (-220)) (-629 (-257))) 58)) (-3634 (((-1242) $ (-373) (-373) (-373)) 106)) (-2623 (((-1136) $) NIL)) (-2670 (((-552) $) 103)) (-2641 (((-1242) $ (-373)) 143)) (-3612 (((-1242) $ (-373)) 158)) (-2876 (((-1098) $) NIL)) (-3672 (((-1242) $ (-373)) 157)) (-3948 (((-1242) $ (-1136)) 111)) (-2146 (((-1242) $ (-756) (-756) (-902) (-902)) 130)) (-3245 (((-1242) $ (-1136)) 108)) (-2073 (((-1242) $ (-1136)) 110)) (-2649 (((-1242) $ (-154) (-154)) 129)) (-3213 (((-844) $) 137)) (-2571 (((-1242) $) 113)) (-2438 (((-1242) $ (-1136)) 156)) (-2364 (((-1242) $ (-1136)) 107)) (-1613 (((-111) $ $) NIL))) +(((-1239) (-13 (-1078) (-10 -8 (-15 -1484 ((-373))) (-15 -1484 ((-373) (-373))) (-15 -1650 ((-373))) (-15 -1650 ((-373) (-373))) (-15 -2560 ((-373))) (-15 -2560 ((-373) (-373))) (-15 -3446 ((-373))) (-15 -3446 ((-373) (-373))) (-15 -3314 ((-373))) (-15 -3314 ((-373) (-373))) (-15 -1298 ($)) (-15 -1309 ($ $)) (-15 -1309 ($ (-1111 (-220)) (-1136))) (-15 -1309 ($ (-1111 (-220)) (-629 (-257)))) (-15 -1426 ((-1111 (-220)) $)) (-15 -1426 ($ $ (-1111 (-220)))) (-15 -3204 ((-1242) $ (-756) (-924 (-220)))) (-15 -3960 ((-629 (-257)) $)) (-15 -3960 ($ $ (-629 (-257)))) (-15 -3623 ((-1242) $ (-756) (-756))) (-15 -4335 ((-1242) $ (-902) (-902))) (-15 -4020 ((-1242) $ (-1136))) (-15 -2146 ((-1242) $ (-756) (-756) (-902) (-902))) (-15 -2865 ((-1242) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2865 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2865 ((-1242) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2865 ((-1242) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2865 ((-1242) $ (-373) (-373))) (-15 -2865 ((-1242) $ (-373) (-373) (-373))) (-15 -2073 ((-1242) $ (-1136))) (-15 -2364 ((-1242) $ (-1136))) (-15 -3245 ((-1242) $ (-1136))) (-15 -3529 ((-1242) $ (-1136))) (-15 -3948 ((-1242) $ (-1136))) (-15 -3849 ((-1242) $ (-373) (-373))) (-15 -3849 ((-1242) $ (-552) (-552))) (-15 -2701 ((-1242) $ (-373))) (-15 -2701 ((-1242) $ (-373) (-373) (-373))) (-15 -1306 ((-1242) $ (-373) (-373))) (-15 -3183 ((-1242) $ (-1136))) (-15 -3672 ((-1242) $ (-373))) (-15 -3612 ((-1242) $ (-373))) (-15 -2863 ((-1242) $ (-1136))) (-15 -3663 ((-1242) $ (-1136))) (-15 -2438 ((-1242) $ (-1136))) (-15 -3634 ((-1242) $ (-373) (-373) (-373))) (-15 -2641 ((-1242) $ (-373))) (-15 -3230 ((-1242) $)) (-15 -2649 ((-1242) $ (-154) (-154))) (-15 -3251 ((-1136) $ (-1136))) (-15 -3251 ((-1136) $ (-1136) (-1136))) (-15 -3251 ((-1136) $ (-1136) (-629 (-1136)))) (-15 -2571 ((-1242) $)) (-15 -2670 ((-552) $))))) (T -1239)) +((-1484 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-1650 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-2560 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-2560 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-3446 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-3314 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) (-1298 (*1 *1) (-5 *1 (-1239))) (-1309 (*1 *1 *1) (-5 *1 (-1239))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-1136)) (-5 *1 (-1239)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-629 (-257))) (-5 *1 (-1239)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1239)))) (-1426 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1239)))) (-3204 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-924 (-220))) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1239)))) (-3960 (*1 *1 *1 *2) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1239)))) (-3623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-4335 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2146 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-756)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2865 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-1239)))) (-2865 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2865 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2865 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2865 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2364 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3849 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3849 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2701 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-1306 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3183 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3672 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2863 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3663 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3634 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2641 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2649 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1242)) (-5 *1 (-1239)))) (-3251 (*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1239)))) (-3251 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1239)))) (-3251 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-1239)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1239)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1239))))) +(-13 (-1078) (-10 -8 (-15 -1484 ((-373))) (-15 -1484 ((-373) (-373))) (-15 -1650 ((-373))) (-15 -1650 ((-373) (-373))) (-15 -2560 ((-373))) (-15 -2560 ((-373) (-373))) (-15 -3446 ((-373))) (-15 -3446 ((-373) (-373))) (-15 -3314 ((-373))) (-15 -3314 ((-373) (-373))) (-15 -1298 ($)) (-15 -1309 ($ $)) (-15 -1309 ($ (-1111 (-220)) (-1136))) (-15 -1309 ($ (-1111 (-220)) (-629 (-257)))) (-15 -1426 ((-1111 (-220)) $)) (-15 -1426 ($ $ (-1111 (-220)))) (-15 -3204 ((-1242) $ (-756) (-924 (-220)))) (-15 -3960 ((-629 (-257)) $)) (-15 -3960 ($ $ (-629 (-257)))) (-15 -3623 ((-1242) $ (-756) (-756))) (-15 -4335 ((-1242) $ (-902) (-902))) (-15 -4020 ((-1242) $ (-1136))) (-15 -2146 ((-1242) $ (-756) (-756) (-902) (-902))) (-15 -2865 ((-1242) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2865 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2865 ((-1242) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2865 ((-1242) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2865 ((-1242) $ (-373) (-373))) (-15 -2865 ((-1242) $ (-373) (-373) (-373))) (-15 -2073 ((-1242) $ (-1136))) (-15 -2364 ((-1242) $ (-1136))) (-15 -3245 ((-1242) $ (-1136))) (-15 -3529 ((-1242) $ (-1136))) (-15 -3948 ((-1242) $ (-1136))) (-15 -3849 ((-1242) $ (-373) (-373))) (-15 -3849 ((-1242) $ (-552) (-552))) (-15 -2701 ((-1242) $ (-373))) (-15 -2701 ((-1242) $ (-373) (-373) (-373))) (-15 -1306 ((-1242) $ (-373) (-373))) (-15 -3183 ((-1242) $ (-1136))) (-15 -3672 ((-1242) $ (-373))) (-15 -3612 ((-1242) $ (-373))) (-15 -2863 ((-1242) $ (-1136))) (-15 -3663 ((-1242) $ (-1136))) (-15 -2438 ((-1242) $ (-1136))) (-15 -3634 ((-1242) $ (-373) (-373) (-373))) (-15 -2641 ((-1242) $ (-373))) (-15 -3230 ((-1242) $)) (-15 -2649 ((-1242) $ (-154) (-154))) (-15 -3251 ((-1136) $ (-1136))) (-15 -3251 ((-1136) $ (-1136) (-1136))) (-15 -3251 ((-1136) $ (-1136) (-629 (-1136)))) (-15 -2571 ((-1242) $)) (-15 -2670 ((-552) $)))) +((-3345 (((-629 (-1136)) (-629 (-1136))) 94) (((-629 (-1136))) 90)) (-2600 (((-629 (-1136))) 88)) (-3049 (((-629 (-902)) (-629 (-902))) 63) (((-629 (-902))) 60)) (-2849 (((-629 (-756)) (-629 (-756))) 57) (((-629 (-756))) 53)) (-1513 (((-1242)) 65)) (-3206 (((-902) (-902)) 81) (((-902)) 80)) (-4181 (((-902) (-902)) 79) (((-902)) 78)) (-4242 (((-855) (-855)) 75) (((-855)) 74)) (-2090 (((-220)) 85) (((-220) (-373)) 87)) (-1873 (((-902)) 82) (((-902) (-902)) 83)) (-3001 (((-902) (-902)) 77) (((-902)) 76)) (-1346 (((-855) (-855)) 69) (((-855)) 67)) (-3353 (((-855) (-855)) 71) (((-855)) 70)) (-2682 (((-855) (-855)) 73) (((-855)) 72))) +(((-1240) (-10 -7 (-15 -1346 ((-855))) (-15 -1346 ((-855) (-855))) (-15 -3353 ((-855))) (-15 -3353 ((-855) (-855))) (-15 -2682 ((-855))) (-15 -2682 ((-855) (-855))) (-15 -4242 ((-855))) (-15 -4242 ((-855) (-855))) (-15 -3001 ((-902))) (-15 -3001 ((-902) (-902))) (-15 -2849 ((-629 (-756)))) (-15 -2849 ((-629 (-756)) (-629 (-756)))) (-15 -3049 ((-629 (-902)))) (-15 -3049 ((-629 (-902)) (-629 (-902)))) (-15 -1513 ((-1242))) (-15 -3345 ((-629 (-1136)))) (-15 -3345 ((-629 (-1136)) (-629 (-1136)))) (-15 -2600 ((-629 (-1136)))) (-15 -4181 ((-902))) (-15 -3206 ((-902))) (-15 -4181 ((-902) (-902))) (-15 -3206 ((-902) (-902))) (-15 -1873 ((-902) (-902))) (-15 -1873 ((-902))) (-15 -2090 ((-220) (-373))) (-15 -2090 ((-220))))) (T -1240)) +((-2090 (*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1240)))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1240)))) (-1873 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-3206 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-4181 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-3206 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-4181 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-2600 (*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240)))) (-3345 (*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240)))) (-1513 (*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1240)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1240)))) (-3049 (*1 *2) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1240)))) (-2849 (*1 *2 *2) (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1240)))) (-2849 (*1 *2) (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1240)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-3001 (*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) (-4242 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-4242 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-2682 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-3353 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-1346 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) (-1346 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240))))) +(-10 -7 (-15 -1346 ((-855))) (-15 -1346 ((-855) (-855))) (-15 -3353 ((-855))) (-15 -3353 ((-855) (-855))) (-15 -2682 ((-855))) (-15 -2682 ((-855) (-855))) (-15 -4242 ((-855))) (-15 -4242 ((-855) (-855))) (-15 -3001 ((-902))) (-15 -3001 ((-902) (-902))) (-15 -2849 ((-629 (-756)))) (-15 -2849 ((-629 (-756)) (-629 (-756)))) (-15 -3049 ((-629 (-902)))) (-15 -3049 ((-629 (-902)) (-629 (-902)))) (-15 -1513 ((-1242))) (-15 -3345 ((-629 (-1136)))) (-15 -3345 ((-629 (-1136)) (-629 (-1136)))) (-15 -2600 ((-629 (-1136)))) (-15 -4181 ((-902))) (-15 -3206 ((-902))) (-15 -4181 ((-902) (-902))) (-15 -3206 ((-902) (-902))) (-15 -1873 ((-902) (-902))) (-15 -1873 ((-902))) (-15 -2090 ((-220) (-373))) (-15 -2090 ((-220)))) +((-1857 (((-461) (-629 (-629 (-924 (-220)))) (-629 (-257))) 21) (((-461) (-629 (-629 (-924 (-220))))) 20) (((-461) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257))) 19)) (-2312 (((-1238) (-629 (-629 (-924 (-220)))) (-629 (-257))) 27) (((-1238) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257))) 26)) (-3213 (((-1238) (-461)) 38))) +(((-1241) (-10 -7 (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257)))) (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))))) (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))) (-629 (-257)))) (-15 -2312 ((-1238) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257)))) (-15 -2312 ((-1238) (-629 (-629 (-924 (-220)))) (-629 (-257)))) (-15 -3213 ((-1238) (-461))))) (T -1241)) +((-3213 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1238)) (-5 *1 (-1241)))) (-2312 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-1241)))) (-2312 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-855)) (-5 *5 (-902)) (-5 *6 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-1241)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-629 (-257))) (-5 *2 (-461)) (-5 *1 (-1241)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *2 (-461)) (-5 *1 (-1241)))) (-1857 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-855)) (-5 *5 (-902)) (-5 *6 (-629 (-257))) (-5 *2 (-461)) (-5 *1 (-1241))))) +(-10 -7 (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257)))) (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))))) (-15 -1857 ((-461) (-629 (-629 (-924 (-220)))) (-629 (-257)))) (-15 -2312 ((-1238) (-629 (-629 (-924 (-220)))) (-855) (-855) (-902) (-629 (-257)))) (-15 -2312 ((-1238) (-629 (-629 (-924 (-220)))) (-629 (-257)))) (-15 -3213 ((-1238) (-461)))) +((-1899 (($) 7)) (-3213 (((-844) $) 10))) +(((-1242) (-10 -8 (-15 -1899 ($)) (-15 -3213 ((-844) $)))) (T -1242)) +((-3213 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1242)))) (-1899 (*1 *1) (-5 *1 (-1242)))) +(-10 -8 (-15 -1899 ($)) (-15 -3213 ((-844) $))) +((-1720 (($ $ |#2|) 10))) +(((-1243 |#1| |#2|) (-10 -8 (-15 -1720 (|#1| |#1| |#2|))) (-1244 |#2|) (-357)) (T -1243)) +NIL +(-10 -8 (-15 -1720 (|#1| |#1| |#2|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3725 (((-132)) 28)) (-3213 (((-844) $) 11)) (-3297 (($) 18 T CONST)) (-1613 (((-111) $ $) 6)) (-1720 (($ $ |#1|) 29)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1244 |#1|) (-137) (-357)) (T -1244)) +((-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-357)))) (-3725 (*1 *2) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) +(-13 (-702 |t#1|) (-10 -8 (-15 -1720 ($ $ |t#1|)) (-15 -3725 ((-132))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-702 |#1|) . T) ((-1036 |#1|) . T) ((-1078) . T)) +((-1572 (((-629 (-1185 |#1|)) (-1154) (-1185 |#1|)) 74)) (-2386 (((-1134 (-1134 (-933 |#1|))) (-1154) (-1134 (-933 |#1|))) 53)) (-2417 (((-1 (-1134 (-1185 |#1|)) (-1134 (-1185 |#1|))) (-756) (-1185 |#1|) (-1134 (-1185 |#1|))) 64)) (-3740 (((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756)) 55)) (-1671 (((-1 (-1150 (-933 |#1|)) (-933 |#1|)) (-1154)) 29)) (-1955 (((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756)) 54))) +(((-1245 |#1|) (-10 -7 (-15 -3740 ((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756))) (-15 -1955 ((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756))) (-15 -2386 ((-1134 (-1134 (-933 |#1|))) (-1154) (-1134 (-933 |#1|)))) (-15 -1671 ((-1 (-1150 (-933 |#1|)) (-933 |#1|)) (-1154))) (-15 -1572 ((-629 (-1185 |#1|)) (-1154) (-1185 |#1|))) (-15 -2417 ((-1 (-1134 (-1185 |#1|)) (-1134 (-1185 |#1|))) (-756) (-1185 |#1|) (-1134 (-1185 |#1|))))) (-357)) (T -1245)) +((-2417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-756)) (-4 *6 (-357)) (-5 *4 (-1185 *6)) (-5 *2 (-1 (-1134 *4) (-1134 *4))) (-5 *1 (-1245 *6)) (-5 *5 (-1134 *4)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-4 *5 (-357)) (-5 *2 (-629 (-1185 *5))) (-5 *1 (-1245 *5)) (-5 *4 (-1185 *5)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1 (-1150 (-933 *4)) (-933 *4))) (-5 *1 (-1245 *4)) (-4 *4 (-357)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1154)) (-4 *5 (-357)) (-5 *2 (-1134 (-1134 (-933 *5)))) (-5 *1 (-1245 *5)) (-5 *4 (-1134 (-933 *5))))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-1134 (-933 *4)) (-1134 (-933 *4)))) (-5 *1 (-1245 *4)) (-4 *4 (-357)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-1134 (-933 *4)) (-1134 (-933 *4)))) (-5 *1 (-1245 *4)) (-4 *4 (-357))))) +(-10 -7 (-15 -3740 ((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756))) (-15 -1955 ((-1 (-1134 (-933 |#1|)) (-1134 (-933 |#1|))) (-756))) (-15 -2386 ((-1134 (-1134 (-933 |#1|))) (-1154) (-1134 (-933 |#1|)))) (-15 -1671 ((-1 (-1150 (-933 |#1|)) (-933 |#1|)) (-1154))) (-15 -1572 ((-629 (-1185 |#1|)) (-1154) (-1185 |#1|))) (-15 -2417 ((-1 (-1134 (-1185 |#1|)) (-1134 (-1185 |#1|))) (-756) (-1185 |#1|) (-1134 (-1185 |#1|))))) +((-1414 (((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|) 75)) (-4197 (((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|)))) 74))) +(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|))) (-343) (-1213 |#1|) (-1213 |#2|) (-403 |#2| |#3|)) (T -1246)) +((-1414 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 *3)) (-5 *2 (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-673 *3)))) (-5 *1 (-1246 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-4197 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 *4)) (-5 *2 (-2 (|:| -4199 (-673 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-673 *4)))) (-5 *1 (-1246 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) +(-10 -7 (-15 -4197 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))))) (-15 -1414 ((-2 (|:| -4199 (-673 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-673 |#2|))) |#2|))) +((-3202 (((-111) $ $) NIL)) (-1447 (((-1113) $) 11)) (-3071 (((-1113) $) 9)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 19) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1247) (-13 (-1061) (-10 -8 (-15 -3071 ((-1113) $)) (-15 -1447 ((-1113) $))))) (T -1247)) +((-3071 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1247)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1247))))) +(-13 (-1061) (-10 -8 (-15 -3071 ((-1113) $)) (-15 -1447 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3921 (((-1113) $) 9)) (-3213 (((-844) $) 17) (((-1159) $) NIL) (($ (-1159)) NIL)) (-1613 (((-111) $ $) NIL))) +(((-1248) (-13 (-1061) (-10 -8 (-15 -3921 ((-1113) $))))) (T -1248)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1248))))) +(-13 (-1061) (-10 -8 (-15 -3921 ((-1113) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 43)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) NIL)) (-4065 (((-111) $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3213 (((-844) $) 64) (($ (-552)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-2014 (((-756)) NIL)) (-1567 (((-1242) (-756)) 16)) (-3297 (($) 27 T CONST)) (-3309 (($) 67 T CONST)) (-1613 (((-111) $ $) 69)) (-1720 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1709 (($ $) 71) (($ $ $) NIL)) (-1698 (($ $ $) 47)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-1249 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1030) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3213 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -1720 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3213 ($ |#4|)) (-15 -1567 ((-1242) (-756))))) (-1030) (-832) (-778) (-930 |#1| |#3| |#2|) (-629 |#2|) (-629 (-756)) (-756)) (T -1249)) +((-3213 (*1 *2 *1) (-12 (-4 *2 (-930 *3 *5 *4)) (-5 *1 (-1249 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-778)) (-14 *6 (-629 *4)) (-14 *7 (-629 (-756))) (-14 *8 (-756)))) (-1720 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1030)) (-4 *3 (-832)) (-4 *4 (-778)) (-14 *6 (-629 *3)) (-5 *1 (-1249 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-930 *2 *4 *3)) (-14 *7 (-629 (-756))) (-14 *8 (-756)))) (-3213 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-778)) (-14 *6 (-629 *4)) (-5 *1 (-1249 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-930 *3 *5 *4)) (-14 *7 (-629 (-756))) (-14 *8 (-756)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-1030)) (-4 *5 (-832)) (-4 *6 (-778)) (-14 *8 (-629 *5)) (-5 *2 (-1242)) (-5 *1 (-1249 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-930 *4 *6 *5)) (-14 *9 (-629 *3)) (-14 *10 *3)))) +(-13 (-1030) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3213 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -1720 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3213 ($ |#4|)) (-15 -1567 ((-1242) (-756))))) +((-3202 (((-111) $ $) NIL)) (-3591 (((-629 (-2 (|:| -2571 $) (|:| -3092 (-629 |#4|)))) (-629 |#4|)) NIL)) (-1830 (((-629 $) (-629 |#4|)) 88)) (-3611 (((-629 |#3|) $) NIL)) (-3902 (((-111) $) NIL)) (-1565 (((-111) $) NIL (|has| |#1| (-544)))) (-2007 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2240 ((|#4| |#4| $) NIL)) (-1296 (((-2 (|:| |under| $) (|:| -3410 $) (|:| |upper| $)) $ |#3|) NIL)) (-4238 (((-111) $ (-756)) NIL)) (-3954 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2130 (($) NIL T CONST)) (-3320 (((-111) $) NIL (|has| |#1| (-544)))) (-4177 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3170 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2797 (((-111) $) NIL (|has| |#1| (-544)))) (-3228 (((-629 |#4|) (-629 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-3662 (((-629 |#4|) (-629 |#4|) $) 25 (|has| |#1| (-544)))) (-1468 (((-629 |#4|) (-629 |#4|) $) NIL (|has| |#1| (-544)))) (-1393 (((-3 $ "failed") (-629 |#4|)) NIL)) (-2832 (($ (-629 |#4|)) NIL)) (-2715 (((-3 $ "failed") $) 70)) (-3126 ((|#4| |#4| $) 75)) (-2738 (($ $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2655 (($ |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-4186 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3738 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3884 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4368))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4368))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3817 (((-2 (|:| -2571 (-629 |#4|)) (|:| -3092 (-629 |#4|))) $) NIL)) (-3138 (((-629 |#4|) $) NIL (|has| $ (-6 -4368)))) (-3065 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2940 ((|#3| $) 76)) (-1418 (((-111) $ (-756)) NIL)) (-3278 (((-629 |#4|) $) 29 (|has| $ (-6 -4368)))) (-2973 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078))))) (-2813 (((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-629 |#4|)) 35)) (-2947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4369)))) (-1477 (($ (-1 |#4| |#4|) $) NIL)) (-3420 (((-629 |#3|) $) NIL)) (-2677 (((-111) |#3| $) NIL)) (-1745 (((-111) $ (-756)) NIL)) (-2623 (((-1136) $) NIL)) (-2680 (((-3 |#4| "failed") $) NIL)) (-3887 (((-629 |#4|) $) 50)) (-3287 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2498 ((|#4| |#4| $) 74)) (-4343 (((-111) $ $) 85)) (-1527 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3150 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3848 ((|#4| |#4| $) NIL)) (-2876 (((-1098) $) NIL)) (-2702 (((-3 |#4| "failed") $) 69)) (-3073 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-1800 (((-3 $ "failed") $ |#4|) NIL)) (-3136 (($ $ |#4|) NIL)) (-3944 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2432 (($ $ (-629 |#4|) (-629 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078)))) (($ $ (-629 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1078))))) (-2795 (((-111) $ $) NIL)) (-3435 (((-111) $) 67)) (-3430 (($) 42)) (-3299 (((-756) $) NIL)) (-2885 (((-756) |#4| $) NIL (-12 (|has| $ (-6 -4368)) (|has| |#4| (-1078)))) (((-756) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-1487 (($ $) NIL)) (-1522 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-3226 (($ (-629 |#4|)) NIL)) (-2542 (($ $ |#3|) NIL)) (-1853 (($ $ |#3|) NIL)) (-3081 (($ $) NIL)) (-2387 (($ $ |#3|) NIL)) (-3213 (((-844) $) NIL) (((-629 |#4|) $) 57)) (-1753 (((-756) $) NIL (|has| |#3| (-362)))) (-3223 (((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-629 |#4|)) 41)) (-1995 (((-629 $) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-629 $) (-629 |#4|)) 66)) (-1855 (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3447 (-629 |#4|))) "failed") (-629 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2015 (((-111) $ (-1 (-111) |#4| (-629 |#4|))) NIL)) (-2584 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4368)))) (-2242 (((-629 |#3|) $) NIL)) (-2904 (((-111) |#3| $) NIL)) (-1613 (((-111) $ $) NIL)) (-2657 (((-756) $) NIL (|has| $ (-6 -4368))))) +(((-1250 |#1| |#2| |#3| |#4|) (-13 (-1184 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2813 ((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2813 ((-3 $ "failed") (-629 |#4|))) (-15 -3223 ((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3223 ((-3 $ "failed") (-629 |#4|))) (-15 -1995 ((-629 $) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1995 ((-629 $) (-629 |#4|))))) (-544) (-778) (-832) (-1044 |#1| |#2| |#3|)) (T -1250)) +((-2813 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1250 *5 *6 *7 *8)))) (-2813 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1250 *3 *4 *5 *6)))) (-3223 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1250 *5 *6 *7 *8)))) (-3223 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1250 *3 *4 *5 *6)))) (-1995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-778)) (-4 *8 (-832)) (-5 *2 (-629 (-1250 *6 *7 *8 *9))) (-5 *1 (-1250 *6 *7 *8 *9)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-1250 *4 *5 *6 *7))) (-5 *1 (-1250 *4 *5 *6 *7))))) +(-13 (-1184 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2813 ((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2813 ((-3 $ "failed") (-629 |#4|))) (-15 -3223 ((-3 $ "failed") (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3223 ((-3 $ "failed") (-629 |#4|))) (-15 -1995 ((-629 $) (-629 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1995 ((-629 $) (-629 |#4|))))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-4012 (((-3 $ "failed") $ $) 19)) (-2130 (($) 17 T CONST)) (-1293 (((-3 $ "failed") $) 32)) (-4065 (((-111) $) 30)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#1|) 36)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1251 |#1|) (-137) (-1030)) (T -1251)) +((-3213 (*1 *1 *2) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1030))))) +(-13 (-1030) (-110 |t#1| |t#1|) (-10 -8 (-15 -3213 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 |#1|) |has| |#1| (-169)) ((-711) . T) ((-1036 |#1|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T)) +((-3202 (((-111) $ $) 60)) (-3643 (((-111) $) NIL)) (-2814 (((-629 |#1|) $) 45)) (-1694 (($ $ (-756)) 39)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3052 (($ $ (-756)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-2130 (($) NIL T CONST)) (-2390 (($ $ $) 63) (($ $ (-804 |#1|)) 49) (($ $ |#1|) 53)) (-1393 (((-3 (-804 |#1|) "failed") $) NIL)) (-2832 (((-804 |#1|) $) NIL)) (-3766 (($ $) 32)) (-1293 (((-3 $ "failed") $) NIL)) (-2524 (((-111) $) NIL)) (-2517 (($ $) NIL)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ (-804 |#1|) |#2|) 31)) (-2643 (($ $) 33)) (-1290 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) 12)) (-1556 (((-804 |#1|) $) NIL)) (-2818 (((-804 |#1|) $) 34)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-2137 (($ $ $) 62) (($ $ (-804 |#1|)) 51) (($ $ |#1|) 55)) (-2140 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3733 (((-804 |#1|) $) 28)) (-3743 ((|#2| $) 30)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3299 (((-756) $) 36)) (-4190 (((-111) $) 40)) (-3930 ((|#2| $) NIL)) (-3213 (((-844) $) NIL) (($ (-804 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-552)) NIL)) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-804 |#1|)) NIL)) (-4158 ((|#2| $ $) 65) ((|#2| $ (-804 |#1|)) NIL)) (-2014 (((-756)) NIL)) (-3297 (($) 13 T CONST)) (-3309 (($) 15 T CONST)) (-2166 (((-629 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1613 (((-111) $ $) 38)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 22)) (** (($ $ (-756)) NIL) (($ $ (-902)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-804 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1252 |#1| |#2|) (-13 (-376 |#2| (-804 |#1|)) (-1258 |#1| |#2|)) (-832) (-1030)) (T -1252)) +NIL +(-13 (-376 |#2| (-804 |#1|)) (-1258 |#1| |#2|)) +((-2430 ((|#3| |#3| (-756)) 23)) (-2855 ((|#3| |#3| (-756)) 27)) (-3014 ((|#3| |#3| |#3| (-756)) 28))) +(((-1253 |#1| |#2| |#3|) (-10 -7 (-15 -2855 (|#3| |#3| (-756))) (-15 -2430 (|#3| |#3| (-756))) (-15 -3014 (|#3| |#3| |#3| (-756)))) (-13 (-1030) (-702 (-401 (-552)))) (-832) (-1258 |#2| |#1|)) (T -1253)) +((-3014 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4)))) (-2430 (*1 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4)))) (-2855 (*1 *2 *2 *3) (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4))))) +(-10 -7 (-15 -2855 (|#3| |#3| (-756))) (-15 -2430 (|#3| |#3| (-756))) (-15 -3014 (|#3| |#3| |#3| (-756)))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2814 (((-629 |#1|) $) 38)) (-4012 (((-3 $ "failed") $ $) 19)) (-3052 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-756)) 40 (|has| |#2| (-169)))) (-2130 (($) 17 T CONST)) (-2390 (($ $ |#1|) 52) (($ $ (-804 |#1|)) 51) (($ $ $) 50)) (-1393 (((-3 (-804 |#1|) "failed") $) 62)) (-2832 (((-804 |#1|) $) 61)) (-1293 (((-3 $ "failed") $) 32)) (-2524 (((-111) $) 43)) (-2517 (($ $) 42)) (-4065 (((-111) $) 30)) (-2231 (((-111) $) 48)) (-1727 (($ (-804 |#1|) |#2|) 49)) (-2643 (($ $) 47)) (-1290 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) 58)) (-1556 (((-804 |#1|) $) 59)) (-1477 (($ (-1 |#2| |#2|) $) 39)) (-2137 (($ $ |#1|) 55) (($ $ (-804 |#1|)) 54) (($ $ $) 53)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-4190 (((-111) $) 45)) (-3930 ((|#2| $) 44)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-804 |#1|)) 63) (($ |#1|) 46)) (-4158 ((|#2| $ (-804 |#1|)) 57) ((|#2| $ $) 56)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1254 |#1| |#2|) (-137) (-832) (-1030)) (T -1254)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-804 *3)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| |k| (-804 *3)) (|:| |c| *4))))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-804 *4)) (-4 *1 (-1254 *4 *2)) (-4 *4 (-832)) (-4 *2 (-1030)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-804 *3)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)))) (-2137 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-2390 (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-804 *3)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)))) (-2390 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *2 (-804 *4)) (-4 *4 (-832)) (-4 *1 (-1254 *4 *3)) (-4 *3 (-1030)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-111)))) (-2643 (*1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-3213 (*1 *1 *2) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-111)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-111)))) (-2517 (*1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)) (-4 *3 (-169)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-4 *4 (-169)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-629 *3))))) +(-13 (-1030) (-1251 |t#2|) (-1019 (-804 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1556 ((-804 |t#1|) $)) (-15 -1290 ((-2 (|:| |k| (-804 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4158 (|t#2| $ (-804 |t#1|))) (-15 -4158 (|t#2| $ $)) (-15 -2137 ($ $ |t#1|)) (-15 -2137 ($ $ (-804 |t#1|))) (-15 -2137 ($ $ $)) (-15 -2390 ($ $ |t#1|)) (-15 -2390 ($ $ (-804 |t#1|))) (-15 -2390 ($ $ $)) (-15 -1727 ($ (-804 |t#1|) |t#2|)) (-15 -2231 ((-111) $)) (-15 -2643 ($ $)) (-15 -3213 ($ |t#1|)) (-15 -4190 ((-111) $)) (-15 -3930 (|t#2| $)) (-15 -2524 ((-111) $)) (-15 -2517 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -3052 ($ $ $)) (-15 -3052 ($ $ (-756)))) |%noBranch|) (-15 -1477 ($ (-1 |t#2| |t#2|) $)) (-15 -2814 ((-629 |t#1|) $)) (IF (|has| |t#2| (-6 -4361)) (-6 -4361) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#2|) . T) ((-632 $) . T) ((-702 |#2|) |has| |#2| (-169)) ((-711) . T) ((-1019 (-804 |#1|)) . T) ((-1036 |#2|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1251 |#2|) . T)) +((-1986 (((-111) $) 15)) (-2904 (((-111) $) 14)) (-4237 (($ $) 19) (($ $ (-756)) 20))) +(((-1255 |#1| |#2|) (-10 -8 (-15 -4237 (|#1| |#1| (-756))) (-15 -4237 (|#1| |#1|)) (-15 -1986 ((-111) |#1|)) (-15 -2904 ((-111) |#1|))) (-1256 |#2|) (-357)) (T -1255)) +NIL +(-10 -8 (-15 -4237 (|#1| |#1| (-756))) (-15 -4237 (|#1| |#1|)) (-15 -1986 ((-111) |#1|)) (-15 -2904 ((-111) |#1|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2245 (((-2 (|:| -3784 $) (|:| -4355 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-1334 (((-111) $) 36)) (-1986 (((-111) $) 91)) (-4082 (((-756)) 87)) (-4012 (((-3 $ "failed") $ $) 19)) (-4116 (($ $) 70)) (-3343 (((-412 $) $) 69)) (-2393 (((-111) $ $) 57)) (-2130 (($) 17 T CONST)) (-1393 (((-3 |#1| "failed") $) 98)) (-2832 ((|#1| $) 97)) (-4006 (($ $ $) 53)) (-1293 (((-3 $ "failed") $) 32)) (-3987 (($ $ $) 54)) (-3493 (((-2 (|:| -4158 (-629 $)) (|:| -4126 $)) (-629 $)) 49)) (-1788 (($ $ (-756)) 84 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1677 (((-111) $) 68)) (-4241 (((-818 (-902)) $) 81 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-4065 (((-111) $) 30)) (-2751 (((-3 (-629 $) "failed") (-629 $) $) 50)) (-2552 (($ $ $) 44) (($ (-629 $)) 43)) (-2623 (((-1136) $) 9)) (-3701 (($ $) 67)) (-1498 (((-111) $) 90)) (-2876 (((-1098) $) 10)) (-3408 (((-1150 $) (-1150 $) (-1150 $)) 42)) (-2594 (($ $ $) 46) (($ (-629 $)) 45)) (-3479 (((-412 $) $) 71)) (-3823 (((-818 (-902))) 88)) (-1734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4126 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3969 (((-3 $ "failed") $ $) 40)) (-2974 (((-3 (-629 $) "failed") (-629 $) $) 48)) (-3795 (((-756) $) 56)) (-1670 (((-2 (|:| -3713 $) (|:| -4186 $)) $ $) 55)) (-4147 (((-3 (-756) "failed") $ $) 82 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3725 (((-132)) 96)) (-3299 (((-818 (-902)) $) 89)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3878 (((-3 $ "failed") $) 80 (-4029 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2014 (((-756)) 28)) (-3589 (((-111) $ $) 37)) (-2904 (((-111) $) 92)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-4237 (($ $) 86 (|has| |#1| (-362))) (($ $ (-756)) 85 (|has| |#1| (-362)))) (-1613 (((-111) $ $) 6)) (-1720 (($ $ $) 62) (($ $ |#1|) 95)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31) (($ $ (-552)) 66)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1256 |#1|) (-137) (-357)) (T -1256)) +((-2904 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-818 (-902))))) (-3823 (*1 *2) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-818 (-902))))) (-4082 (*1 *2) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-756)))) (-4237 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-357)) (-4 *2 (-362)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-4 *3 (-362))))) +(-13 (-357) (-1019 |t#1|) (-1244 |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-396)) |%noBranch|) (-15 -2904 ((-111) $)) (-15 -1986 ((-111) $)) (-15 -1498 ((-111) $)) (-15 -3299 ((-818 (-902)) $)) (-15 -3823 ((-818 (-902)))) (-15 -4082 ((-756))) (IF (|has| |t#1| (-362)) (PROGN (-6 (-396)) (-15 -4237 ($ $)) (-15 -4237 ($ $ (-756)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -4029 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-844)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) -4029 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-445) . T) ((-544) . T) ((-632 #0#) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-702 #0#) . T) ((-702 |#1|) . T) ((-702 $) . T) ((-711) . T) ((-901) . T) ((-1019 |#1|) . T) ((-1036 #0#) . T) ((-1036 |#1|) . T) ((-1036 $) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1195) . T) ((-1244 |#1|) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2814 (((-629 |#1|) $) 86)) (-1694 (($ $ (-756)) 89)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3052 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-756)) NIL (|has| |#2| (-169)))) (-2130 (($) NIL T CONST)) (-2390 (($ $ |#1|) NIL) (($ $ (-804 |#1|)) NIL) (($ $ $) NIL)) (-1393 (((-3 (-804 |#1|) "failed") $) NIL) (((-3 (-874 |#1|) "failed") $) NIL)) (-2832 (((-804 |#1|) $) NIL) (((-874 |#1|) $) NIL)) (-3766 (($ $) 88)) (-1293 (((-3 $ "failed") $) NIL)) (-2524 (((-111) $) 77)) (-2517 (($ $) 81)) (-3951 (($ $ $ (-756)) 90)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ (-804 |#1|) |#2|) NIL) (($ (-874 |#1|) |#2|) 26)) (-2643 (($ $) 103)) (-1290 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1556 (((-804 |#1|) $) NIL)) (-2818 (((-804 |#1|) $) NIL)) (-1477 (($ (-1 |#2| |#2|) $) NIL)) (-2137 (($ $ |#1|) NIL) (($ $ (-804 |#1|)) NIL) (($ $ $) NIL)) (-2430 (($ $ (-756)) 97 (|has| |#2| (-702 (-401 (-552)))))) (-2140 (((-2 (|:| |k| (-874 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3733 (((-874 |#1|) $) 70)) (-3743 ((|#2| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-2855 (($ $ (-756)) 94 (|has| |#2| (-702 (-401 (-552)))))) (-3299 (((-756) $) 87)) (-4190 (((-111) $) 71)) (-3930 ((|#2| $) 75)) (-3213 (((-844) $) 57) (($ (-552)) NIL) (($ |#2|) 51) (($ (-804 |#1|)) NIL) (($ |#1|) 59) (($ (-874 |#1|)) NIL) (($ (-648 |#1| |#2|)) 43) (((-1252 |#1| |#2|) $) 64) (((-1261 |#1| |#2|) $) 69)) (-2984 (((-629 |#2|) $) NIL)) (-2266 ((|#2| $ (-874 |#1|)) NIL)) (-4158 ((|#2| $ (-804 |#1|)) NIL) ((|#2| $ $) NIL)) (-2014 (((-756)) NIL)) (-3297 (($) 21 T CONST)) (-3309 (($) 25 T CONST)) (-2166 (((-629 (-2 (|:| |k| (-874 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2510 (((-3 (-648 |#1| |#2|) "failed") $) 102)) (-1613 (((-111) $ $) 65)) (-1709 (($ $) 96) (($ $ $) 95)) (-1698 (($ $ $) 20)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-874 |#1|)) NIL))) +(((-1257 |#1| |#2|) (-13 (-1258 |#1| |#2|) (-376 |#2| (-874 |#1|)) (-10 -8 (-15 -3213 ($ (-648 |#1| |#2|))) (-15 -3213 ((-1252 |#1| |#2|) $)) (-15 -3213 ((-1261 |#1| |#2|) $)) (-15 -2510 ((-3 (-648 |#1| |#2|) "failed") $)) (-15 -3951 ($ $ $ (-756))) (IF (|has| |#2| (-702 (-401 (-552)))) (PROGN (-15 -2855 ($ $ (-756))) (-15 -2430 ($ $ (-756)))) |%noBranch|))) (-832) (-169)) (T -1257)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) (-5 *1 (-1257 *3 *4)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-2510 (*1 *2 *1) (|partial| -12 (-5 *2 (-648 *3 *4)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-3951 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) (-4 *4 (-702 (-401 (-552)))) (-4 *3 (-832)) (-4 *4 (-169)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) (-4 *4 (-702 (-401 (-552)))) (-4 *3 (-832)) (-4 *4 (-169))))) +(-13 (-1258 |#1| |#2|) (-376 |#2| (-874 |#1|)) (-10 -8 (-15 -3213 ($ (-648 |#1| |#2|))) (-15 -3213 ((-1252 |#1| |#2|) $)) (-15 -3213 ((-1261 |#1| |#2|) $)) (-15 -2510 ((-3 (-648 |#1| |#2|) "failed") $)) (-15 -3951 ($ $ $ (-756))) (IF (|has| |#2| (-702 (-401 (-552)))) (PROGN (-15 -2855 ($ $ (-756))) (-15 -2430 ($ $ (-756)))) |%noBranch|))) +((-3202 (((-111) $ $) 7)) (-3643 (((-111) $) 16)) (-2814 (((-629 |#1|) $) 38)) (-1694 (($ $ (-756)) 71)) (-4012 (((-3 $ "failed") $ $) 19)) (-3052 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-756)) 40 (|has| |#2| (-169)))) (-2130 (($) 17 T CONST)) (-2390 (($ $ |#1|) 52) (($ $ (-804 |#1|)) 51) (($ $ $) 50)) (-1393 (((-3 (-804 |#1|) "failed") $) 62)) (-2832 (((-804 |#1|) $) 61)) (-1293 (((-3 $ "failed") $) 32)) (-2524 (((-111) $) 43)) (-2517 (($ $) 42)) (-4065 (((-111) $) 30)) (-2231 (((-111) $) 48)) (-1727 (($ (-804 |#1|) |#2|) 49)) (-2643 (($ $) 47)) (-1290 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) 58)) (-1556 (((-804 |#1|) $) 59)) (-2818 (((-804 |#1|) $) 73)) (-1477 (($ (-1 |#2| |#2|) $) 39)) (-2137 (($ $ |#1|) 55) (($ $ (-804 |#1|)) 54) (($ $ $) 53)) (-2623 (((-1136) $) 9)) (-2876 (((-1098) $) 10)) (-3299 (((-756) $) 72)) (-4190 (((-111) $) 45)) (-3930 ((|#2| $) 44)) (-3213 (((-844) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-804 |#1|)) 63) (($ |#1|) 46)) (-4158 ((|#2| $ (-804 |#1|)) 57) ((|#2| $ $) 56)) (-2014 (((-756)) 28)) (-3297 (($) 18 T CONST)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 6)) (-1709 (($ $) 22) (($ $ $) 21)) (-1698 (($ $ $) 14)) (** (($ $ (-902)) 25) (($ $ (-756)) 31)) (* (($ (-902) $) 13) (($ (-756) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1258 |#1| |#2|) (-137) (-832) (-1030)) (T -1258)) +((-2818 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-804 *3)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *2 (-756)))) (-1694 (*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030))))) +(-13 (-1254 |t#1| |t#2|) (-10 -8 (-15 -2818 ((-804 |t#1|) $)) (-15 -3299 ((-756) $)) (-15 -1694 ($ $ (-756))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-844)) . T) ((-632 |#2|) . T) ((-632 $) . T) ((-702 |#2|) |has| |#2| (-169)) ((-711) . T) ((-1019 (-804 |#1|)) . T) ((-1036 |#2|) . T) ((-1030) . T) ((-1037) . T) ((-1090) . T) ((-1078) . T) ((-1251 |#2|) . T) ((-1254 |#1| |#2|) . T)) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-2814 (((-629 (-1154)) $) NIL)) (-3867 (($ (-1252 (-1154) |#1|)) NIL)) (-1694 (($ $ (-756)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3052 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-756)) NIL (|has| |#1| (-169)))) (-2130 (($) NIL T CONST)) (-2390 (($ $ (-1154)) NIL) (($ $ (-804 (-1154))) NIL) (($ $ $) NIL)) (-1393 (((-3 (-804 (-1154)) "failed") $) NIL)) (-2832 (((-804 (-1154)) $) NIL)) (-1293 (((-3 $ "failed") $) NIL)) (-2524 (((-111) $) NIL)) (-2517 (($ $) NIL)) (-4065 (((-111) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ (-804 (-1154)) |#1|) NIL)) (-2643 (($ $) NIL)) (-1290 (((-2 (|:| |k| (-804 (-1154))) (|:| |c| |#1|)) $) NIL)) (-1556 (((-804 (-1154)) $) NIL)) (-2818 (((-804 (-1154)) $) NIL)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2137 (($ $ (-1154)) NIL) (($ $ (-804 (-1154))) NIL) (($ $ $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3925 (((-1252 (-1154) |#1|) $) NIL)) (-3299 (((-756) $) NIL)) (-4190 (((-111) $) NIL)) (-3930 ((|#1| $) NIL)) (-3213 (((-844) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-804 (-1154))) NIL) (($ (-1154)) NIL)) (-4158 ((|#1| $ (-804 (-1154))) NIL) ((|#1| $ $) NIL)) (-2014 (((-756)) NIL)) (-3297 (($) NIL T CONST)) (-1526 (((-629 (-2 (|:| |k| (-1154)) (|:| |c| $))) $) NIL)) (-3309 (($) NIL T CONST)) (-1613 (((-111) $ $) NIL)) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) NIL)) (** (($ $ (-902)) NIL) (($ $ (-756)) NIL)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1154) $) NIL))) +(((-1259 |#1|) (-13 (-1258 (-1154) |#1|) (-10 -8 (-15 -3925 ((-1252 (-1154) |#1|) $)) (-15 -3867 ($ (-1252 (-1154) |#1|))) (-15 -1526 ((-629 (-2 (|:| |k| (-1154)) (|:| |c| $))) $)))) (-1030)) (T -1259)) +((-3925 (*1 *2 *1) (-12 (-5 *2 (-1252 (-1154) *3)) (-5 *1 (-1259 *3)) (-4 *3 (-1030)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1252 (-1154) *3)) (-4 *3 (-1030)) (-5 *1 (-1259 *3)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |k| (-1154)) (|:| |c| (-1259 *3))))) (-5 *1 (-1259 *3)) (-4 *3 (-1030))))) +(-13 (-1258 (-1154) |#1|) (-10 -8 (-15 -3925 ((-1252 (-1154) |#1|) $)) (-15 -3867 ($ (-1252 (-1154) |#1|))) (-15 -1526 ((-629 (-2 (|:| |k| (-1154)) (|:| |c| $))) $)))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2130 (($) NIL T CONST)) (-1393 (((-3 |#2| "failed") $) NIL)) (-2832 ((|#2| $) NIL)) (-3766 (($ $) NIL)) (-1293 (((-3 $ "failed") $) 36)) (-2524 (((-111) $) 30)) (-2517 (($ $) 32)) (-4065 (((-111) $) NIL)) (-2856 (((-756) $) NIL)) (-3939 (((-629 $) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ |#2| |#1|) NIL)) (-1556 ((|#2| $) 19)) (-2818 ((|#2| $) 16)) (-1477 (($ (-1 |#1| |#1|) $) NIL)) (-2140 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3733 ((|#2| $) NIL)) (-3743 ((|#1| $) NIL)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-4190 (((-111) $) 27)) (-3930 ((|#1| $) 28)) (-3213 (((-844) $) 55) (($ (-552)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2984 (((-629 |#1|) $) NIL)) (-2266 ((|#1| $ |#2|) NIL)) (-4158 ((|#1| $ |#2|) 24)) (-2014 (((-756)) 14)) (-3297 (($) 25 T CONST)) (-3309 (($) 11 T CONST)) (-2166 (((-629 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1613 (((-111) $ $) 26)) (-1720 (($ $ |#1|) 57 (|has| |#1| (-357)))) (-1709 (($ $) NIL) (($ $ $) NIL)) (-1698 (($ $ $) 44)) (** (($ $ (-902)) NIL) (($ $ (-756)) 46)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2657 (((-756) $) 15))) +(((-1260 |#1| |#2|) (-13 (-1030) (-1251 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2657 ((-756) $)) (-15 -3213 ($ |#2|)) (-15 -2818 (|#2| $)) (-15 -1556 (|#2| $)) (-15 -3766 ($ $)) (-15 -4158 (|#1| $ |#2|)) (-15 -4190 ((-111) $)) (-15 -3930 (|#1| $)) (-15 -2524 ((-111) $)) (-15 -2517 ($ $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -1720 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4361)) (-6 -4361) |%noBranch|) (IF (|has| |#1| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) (-1030) (-828)) (T -1260)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-1260 *3 *4)) (-4 *4 (-828)))) (-3213 (*1 *1 *2) (-12 (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-828)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-828)))) (-2818 (*1 *2 *1) (-12 (-4 *2 (-828)) (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030)))) (-1556 (*1 *2 *1) (-12 (-4 *2 (-828)) (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030)))) (-4158 (*1 *2 *1 *3) (-12 (-4 *2 (-1030)) (-5 *1 (-1260 *2 *3)) (-4 *3 (-828)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-828)))) (-3930 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-1260 *2 *3)) (-4 *3 (-828)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-828)))) (-2517 (*1 *1 *1) (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1030)) (-4 *3 (-828))))) +(-13 (-1030) (-1251 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2657 ((-756) $)) (-15 -3213 ($ |#2|)) (-15 -2818 (|#2| $)) (-15 -1556 (|#2| $)) (-15 -3766 ($ $)) (-15 -4158 (|#1| $ |#2|)) (-15 -4190 ((-111) $)) (-15 -3930 (|#1| $)) (-15 -2524 ((-111) $)) (-15 -2517 ($ $)) (-15 -1477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -1720 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4361)) (-6 -4361) |%noBranch|) (IF (|has| |#1| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|))) +((-3202 (((-111) $ $) 26)) (-3643 (((-111) $) NIL)) (-2814 (((-629 |#1|) $) 120)) (-3867 (($ (-1252 |#1| |#2|)) 44)) (-1694 (($ $ (-756)) 32)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3052 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-756)) 46 (|has| |#2| (-169)))) (-2130 (($) NIL T CONST)) (-2390 (($ $ |#1|) 102) (($ $ (-804 |#1|)) 103) (($ $ $) 25)) (-1393 (((-3 (-804 |#1|) "failed") $) NIL)) (-2832 (((-804 |#1|) $) NIL)) (-1293 (((-3 $ "failed") $) 110)) (-2524 (((-111) $) 105)) (-2517 (($ $) 106)) (-4065 (((-111) $) NIL)) (-2231 (((-111) $) NIL)) (-1727 (($ (-804 |#1|) |#2|) 19)) (-2643 (($ $) NIL)) (-1290 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1556 (((-804 |#1|) $) 111)) (-2818 (((-804 |#1|) $) 114)) (-1477 (($ (-1 |#2| |#2|) $) 119)) (-2137 (($ $ |#1|) 100) (($ $ (-804 |#1|)) 101) (($ $ $) 56)) (-2623 (((-1136) $) NIL)) (-2876 (((-1098) $) NIL)) (-3925 (((-1252 |#1| |#2|) $) 84)) (-3299 (((-756) $) 117)) (-4190 (((-111) $) 70)) (-3930 ((|#2| $) 28)) (-3213 (((-844) $) 63) (($ (-552)) 77) (($ |#2|) 74) (($ (-804 |#1|)) 17) (($ |#1|) 73)) (-4158 ((|#2| $ (-804 |#1|)) 104) ((|#2| $ $) 27)) (-2014 (((-756)) 108)) (-3297 (($) 14 T CONST)) (-1526 (((-629 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3309 (($) 29 T CONST)) (-1613 (((-111) $ $) 13)) (-1709 (($ $) 88) (($ $ $) 91)) (-1698 (($ $ $) 55)) (** (($ $ (-902)) NIL) (($ $ (-756)) 49)) (* (($ (-902) $) NIL) (($ (-756) $) 47) (($ (-552) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1261 |#1| |#2|) (-13 (-1258 |#1| |#2|) (-10 -8 (-15 -3925 ((-1252 |#1| |#2|) $)) (-15 -3867 ($ (-1252 |#1| |#2|))) (-15 -1526 ((-629 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-832) (-1030)) (T -1261)) +((-3925 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1252 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) (-5 *1 (-1261 *3 *4)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-629 (-2 (|:| |k| *3) (|:| |c| (-1261 *3 *4))))) (-5 *1 (-1261 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030))))) +(-13 (-1258 |#1| |#2|) (-10 -8 (-15 -3925 ((-1252 |#1| |#2|) $)) (-15 -3867 ($ (-1252 |#1| |#2|))) (-15 -1526 ((-629 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4334 (((-629 (-1134 |#1|)) (-1 (-629 (-1134 |#1|)) (-629 (-1134 |#1|))) (-552)) 15) (((-1134 |#1|) (-1 (-1134 |#1|) (-1134 |#1|))) 11))) +(((-1262 |#1|) (-10 -7 (-15 -4334 ((-1134 |#1|) (-1 (-1134 |#1|) (-1134 |#1|)))) (-15 -4334 ((-629 (-1134 |#1|)) (-1 (-629 (-1134 |#1|)) (-629 (-1134 |#1|))) (-552)))) (-1191)) (T -1262)) +((-4334 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-629 (-1134 *5)) (-629 (-1134 *5)))) (-5 *4 (-552)) (-5 *2 (-629 (-1134 *5))) (-5 *1 (-1262 *5)) (-4 *5 (-1191)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1 (-1134 *4) (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1262 *4)) (-4 *4 (-1191))))) +(-10 -7 (-15 -4334 ((-1134 |#1|) (-1 (-1134 |#1|) (-1134 |#1|)))) (-15 -4334 ((-629 (-1134 |#1|)) (-1 (-629 (-1134 |#1|)) (-629 (-1134 |#1|))) (-552)))) +((-3155 (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|))) 148) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111)) 147) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111)) 146) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111) (-111)) 145) (((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-1027 |#1| |#2|)) 130)) (-2428 (((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|))) 72) (((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111)) 71) (((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111) (-111)) 70)) (-3343 (((-629 (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))) (-1027 |#1| |#2|)) 61)) (-3483 (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|))) 115) (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111)) 114) (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111)) 113) (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111) (-111)) 112) (((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|)) 107)) (-1782 (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|))) 120) (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111)) 119) (((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111)) 118) (((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|)) 117)) (-1522 (((-629 (-765 |#1| (-846 |#3|))) (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))) 98) (((-1150 (-1005 (-401 |#1|))) (-1150 |#1|)) 89) (((-933 (-1005 (-401 |#1|))) (-765 |#1| (-846 |#3|))) 96) (((-933 (-1005 (-401 |#1|))) (-933 |#1|)) 94) (((-765 |#1| (-846 |#3|)) (-765 |#1| (-846 |#2|))) 33))) +(((-1263 |#1| |#2| |#3|) (-10 -7 (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111) (-111))) (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111))) (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-1027 |#1| |#2|))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)))) (-15 -3343 ((-629 (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))) (-1027 |#1| |#2|))) (-15 -1522 ((-765 |#1| (-846 |#3|)) (-765 |#1| (-846 |#2|)))) (-15 -1522 ((-933 (-1005 (-401 |#1|))) (-933 |#1|))) (-15 -1522 ((-933 (-1005 (-401 |#1|))) (-765 |#1| (-846 |#3|)))) (-15 -1522 ((-1150 (-1005 (-401 |#1|))) (-1150 |#1|))) (-15 -1522 ((-629 (-765 |#1| (-846 |#3|))) (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))))) (-13 (-830) (-301) (-144) (-1003)) (-629 (-1154)) (-629 (-1154))) (T -1263)) +((-1522 (*1 *2 *3) (-12 (-5 *3 (-1124 *4 (-523 (-846 *6)) (-846 *6) (-765 *4 (-846 *6)))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-765 *4 (-846 *6)))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-1150 *4)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-1150 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-765 *4 (-846 *6))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *6 (-629 (-1154))) (-5 *2 (-933 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-933 *4)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-933 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-765 *4 (-846 *5))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) (-5 *2 (-765 *4 (-846 *6))) (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-1124 *4 (-523 (-846 *6)) (-846 *6) (-765 *4 (-846 *6))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-1782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3483 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) (-3155 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) (-5 *1 (-1263 *4 *5 *6)) (-5 *3 (-629 (-933 *4))) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-3155 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3155 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3155 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-1027 *4 *5))) (-5 *1 (-1263 *4 *5 *6)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) (-2428 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-1263 *5 *6 *7)) (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154)))))) +(-10 -7 (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111) (-111))) (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)) (-111))) (-15 -2428 ((-629 (-1027 |#1| |#2|)) (-629 (-933 |#1|)))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-1027 |#1| |#2|))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)) (-111))) (-15 -3155 ((-629 (-2 (|:| -1373 (-1150 |#1|)) (|:| -3464 (-629 (-933 |#1|))))) (-629 (-933 |#1|)))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111))) (-15 -3483 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-1027 |#1| |#2|))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111) (-111))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)) (-111))) (-15 -1782 ((-629 (-629 (-1005 (-401 |#1|)))) (-629 (-933 |#1|)))) (-15 -3343 ((-629 (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))) (-1027 |#1| |#2|))) (-15 -1522 ((-765 |#1| (-846 |#3|)) (-765 |#1| (-846 |#2|)))) (-15 -1522 ((-933 (-1005 (-401 |#1|))) (-933 |#1|))) (-15 -1522 ((-933 (-1005 (-401 |#1|))) (-765 |#1| (-846 |#3|)))) (-15 -1522 ((-1150 (-1005 (-401 |#1|))) (-1150 |#1|))) (-15 -1522 ((-629 (-765 |#1| (-846 |#3|))) (-1124 |#1| (-523 (-846 |#3|)) (-846 |#3|) (-765 |#1| (-846 |#3|)))))) +((-4132 (((-3 (-1237 (-401 (-552))) "failed") (-1237 |#1|) |#1|) 21)) (-3355 (((-111) (-1237 |#1|)) 12)) (-1961 (((-3 (-1237 (-552)) "failed") (-1237 |#1|)) 16))) +(((-1264 |#1|) (-10 -7 (-15 -3355 ((-111) (-1237 |#1|))) (-15 -1961 ((-3 (-1237 (-552)) "failed") (-1237 |#1|))) (-15 -4132 ((-3 (-1237 (-401 (-552))) "failed") (-1237 |#1|) |#1|))) (-625 (-552))) (T -1264)) +((-4132 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) (-5 *2 (-1237 (-401 (-552)))) (-5 *1 (-1264 *4)))) (-1961 (*1 *2 *3) (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) (-5 *2 (-1237 (-552))) (-5 *1 (-1264 *4)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) (-5 *2 (-111)) (-5 *1 (-1264 *4))))) +(-10 -7 (-15 -3355 ((-111) (-1237 |#1|))) (-15 -1961 ((-3 (-1237 (-552)) "failed") (-1237 |#1|))) (-15 -4132 ((-3 (-1237 (-401 (-552))) "failed") (-1237 |#1|) |#1|))) +((-3202 (((-111) $ $) NIL)) (-3643 (((-111) $) 11)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2663 (((-756)) 8)) (-2130 (($) NIL T CONST)) (-1293 (((-3 $ "failed") $) 43)) (-1332 (($) 36)) (-4065 (((-111) $) NIL)) (-2032 (((-3 $ "failed") $) 29)) (-1637 (((-902) $) 15)) (-2623 (((-1136) $) NIL)) (-1977 (($) 25 T CONST)) (-2840 (($ (-902)) 37)) (-2876 (((-1098) $) NIL)) (-1522 (((-552) $) 13)) (-3213 (((-844) $) 22) (($ (-552)) 19)) (-2014 (((-756)) 9)) (-3297 (($) 23 T CONST)) (-3309 (($) 24 T CONST)) (-1613 (((-111) $ $) 27)) (-1709 (($ $) 38) (($ $ $) 35)) (-1698 (($ $ $) 26)) (** (($ $ (-902)) NIL) (($ $ (-756)) 40)) (* (($ (-902) $) NIL) (($ (-756) $) NIL) (($ (-552) $) 32) (($ $ $) 31))) +(((-1265 |#1|) (-13 (-169) (-362) (-600 (-552)) (-1129)) (-902)) (T -1265)) +NIL +(-13 (-169) (-362) (-600 (-552)) (-1129)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3181230 3181235 3181240 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3181215 3181220 3181225 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3181200 3181205 3181210 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3181185 3181190 3181195 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1265 3180361 3181060 3181137 "ZMOD" 3181142 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1264 3179471 3179635 3179844 "ZLINDEP" 3180193 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1263 3168775 3170539 3172511 "ZDSOLVE" 3177601 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1262 3168021 3168162 3168351 "YSTREAM" 3168621 NIL YSTREAM (NIL T) -7 NIL NIL) (-1261 3165832 3167322 3167526 "XRPOLY" 3167864 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1260 3162324 3163607 3164191 "XPR" 3165295 NIL XPR (NIL T T) -8 NIL NIL) (-1259 3160080 3161655 3161859 "XPOLY" 3162155 NIL XPOLY (NIL T) -8 NIL NIL) (-1258 3157929 3159263 3159318 "XPOLYC" 3159606 NIL XPOLYC (NIL T T) -9 NIL 3159719) (-1257 3154347 3156446 3156834 "XPBWPOLY" 3157587 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1256 3150332 3152580 3152622 "XF" 3153243 NIL XF (NIL T) -9 NIL 3153643) (-1255 3149953 3150041 3150210 "XF-" 3150215 NIL XF- (NIL T T) -8 NIL NIL) (-1254 3145345 3146600 3146655 "XFALG" 3148827 NIL XFALG (NIL T T) -9 NIL 3149616) (-1253 3144478 3144582 3144787 "XEXPPKG" 3145237 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1252 3142622 3144328 3144424 "XDPOLY" 3144429 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1251 3141538 3142104 3142147 "XALG" 3142210 NIL XALG (NIL T) -9 NIL 3142330) (-1250 3135007 3139515 3140009 "WUTSET" 3141130 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1249 3132858 3133619 3133972 "WP" 3134788 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1248 3132487 3132680 3132750 "WHILEAST" 3132810 T WHILEAST (NIL) -8 NIL NIL) (-1247 3131986 3132204 3132298 "WHEREAST" 3132415 T WHEREAST (NIL) -8 NIL NIL) (-1246 3130872 3131070 3131365 "WFFINTBS" 3131783 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1245 3128776 3129203 3129665 "WEIER" 3130444 NIL WEIER (NIL T) -7 NIL NIL) (-1244 3127923 3128347 3128389 "VSPACE" 3128525 NIL VSPACE (NIL T) -9 NIL 3128599) (-1243 3127761 3127788 3127879 "VSPACE-" 3127884 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1242 3127507 3127550 3127621 "VOID" 3127712 T VOID (NIL) -8 NIL NIL) (-1241 3125643 3126002 3126408 "VIEW" 3127123 T VIEW (NIL) -7 NIL NIL) (-1240 3122068 3122706 3123443 "VIEWDEF" 3124928 T VIEWDEF (NIL) -7 NIL NIL) (-1239 3111406 3113616 3115789 "VIEW3D" 3119917 T VIEW3D (NIL) -8 NIL NIL) (-1238 3103688 3105317 3106896 "VIEW2D" 3109849 T VIEW2D (NIL) -8 NIL NIL) (-1237 3099092 3103458 3103550 "VECTOR" 3103631 NIL VECTOR (NIL T) -8 NIL NIL) (-1236 3097669 3097928 3098246 "VECTOR2" 3098822 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1235 3091196 3095453 3095496 "VECTCAT" 3096489 NIL VECTCAT (NIL T) -9 NIL 3097075) (-1234 3090210 3090464 3090854 "VECTCAT-" 3090859 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1233 3089691 3089861 3089981 "VARIABLE" 3090125 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1232 3089624 3089629 3089659 "UTYPE" 3089664 T UTYPE (NIL) -9 NIL NIL) (-1231 3088454 3088608 3088870 "UTSODETL" 3089450 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1230 3085894 3086354 3086878 "UTSODE" 3087995 NIL UTSODE (NIL T T) -7 NIL NIL) (-1229 3077770 3083520 3084009 "UTS" 3085463 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1228 3069143 3074462 3074505 "UTSCAT" 3075617 NIL UTSCAT (NIL T) -9 NIL 3076374) (-1227 3066497 3067213 3068202 "UTSCAT-" 3068207 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1226 3066124 3066167 3066300 "UTS2" 3066448 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1225 3060399 3062964 3063007 "URAGG" 3065077 NIL URAGG (NIL T) -9 NIL 3065799) (-1224 3057338 3058201 3059324 "URAGG-" 3059329 NIL URAGG- (NIL T T) -8 NIL NIL) (-1223 3053062 3055952 3056424 "UPXSSING" 3057002 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1222 3045032 3052177 3052459 "UPXS" 3052838 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1221 3038145 3044936 3045008 "UPXSCONS" 3045013 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1220 3028503 3035248 3035310 "UPXSCCA" 3035966 NIL UPXSCCA (NIL T T) -9 NIL 3036208) (-1219 3028141 3028226 3028400 "UPXSCCA-" 3028405 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1218 3018425 3024943 3024986 "UPXSCAT" 3025634 NIL UPXSCAT (NIL T) -9 NIL 3026242) (-1217 3017855 3017934 3018113 "UPXS2" 3018340 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1216 3016509 3016762 3017113 "UPSQFREE" 3017598 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1215 3010427 3013436 3013491 "UPSCAT" 3014652 NIL UPSCAT (NIL T T) -9 NIL 3015426) (-1214 3009631 3009838 3010165 "UPSCAT-" 3010170 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1213 2995722 3003718 3003761 "UPOLYC" 3005862 NIL UPOLYC (NIL T) -9 NIL 3007083) (-1212 2987051 2989476 2992623 "UPOLYC-" 2992628 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1211 2986678 2986721 2986854 "UPOLYC2" 2987002 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1210 2978135 2986244 2986382 "UP" 2986588 NIL UP (NIL NIL T) -8 NIL NIL) (-1209 2977474 2977581 2977745 "UPMP" 2978024 NIL UPMP (NIL T T) -7 NIL NIL) (-1208 2977027 2977108 2977247 "UPDIVP" 2977387 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1207 2975595 2975844 2976160 "UPDECOMP" 2976776 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1206 2974830 2974942 2975127 "UPCDEN" 2975479 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1205 2974349 2974418 2974567 "UP2" 2974755 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1204 2972866 2973553 2973830 "UNISEG" 2974107 NIL UNISEG (NIL T) -8 NIL NIL) (-1203 2972081 2972208 2972413 "UNISEG2" 2972709 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1202 2971141 2971321 2971547 "UNIFACT" 2971897 NIL UNIFACT (NIL T) -7 NIL NIL) (-1201 2955108 2970318 2970569 "ULS" 2970948 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1200 2943148 2955012 2955084 "ULSCONS" 2955089 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1199 2925946 2937883 2937945 "ULSCCAT" 2938665 NIL ULSCCAT (NIL T T) -9 NIL 2938962) (-1198 2924996 2925241 2925629 "ULSCCAT-" 2925634 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1197 2915057 2921489 2921532 "ULSCAT" 2922395 NIL ULSCAT (NIL T) -9 NIL 2923125) (-1196 2914487 2914566 2914745 "ULS2" 2914972 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1195 2912925 2913848 2913878 "UFD" 2914090 T UFD (NIL) -9 NIL 2914204) (-1194 2912719 2912765 2912860 "UFD-" 2912865 NIL UFD- (NIL T) -8 NIL NIL) (-1193 2911801 2911984 2912200 "UDVO" 2912525 T UDVO (NIL) -7 NIL NIL) (-1192 2909617 2910026 2910497 "UDPO" 2911365 NIL UDPO (NIL T) -7 NIL NIL) (-1191 2909550 2909555 2909585 "TYPE" 2909590 T TYPE (NIL) -9 NIL NIL) (-1190 2909337 2909505 2909536 "TYPEAST" 2909541 T TYPEAST (NIL) -8 NIL NIL) (-1189 2908308 2908510 2908750 "TWOFACT" 2909131 NIL TWOFACT (NIL T) -7 NIL NIL) (-1188 2907246 2907583 2907846 "TUPLE" 2908080 NIL TUPLE (NIL T) -8 NIL NIL) (-1187 2904937 2905456 2905995 "TUBETOOL" 2906729 T TUBETOOL (NIL) -7 NIL NIL) (-1186 2903786 2903991 2904232 "TUBE" 2904730 NIL TUBE (NIL T) -8 NIL NIL) (-1185 2898550 2902758 2903041 "TS" 2903538 NIL TS (NIL T) -8 NIL NIL) (-1184 2887217 2891309 2891406 "TSETCAT" 2896675 NIL TSETCAT (NIL T T T T) -9 NIL 2898206) (-1183 2881951 2883549 2885440 "TSETCAT-" 2885445 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1182 2876214 2877060 2878002 "TRMANIP" 2881087 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1181 2875655 2875718 2875881 "TRIMAT" 2876146 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1180 2873451 2873688 2874052 "TRIGMNIP" 2875404 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1179 2872971 2873084 2873114 "TRIGCAT" 2873327 T TRIGCAT (NIL) -9 NIL NIL) (-1178 2872640 2872719 2872860 "TRIGCAT-" 2872865 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1177 2869539 2871500 2871780 "TREE" 2872395 NIL TREE (NIL T) -8 NIL NIL) (-1176 2868813 2869341 2869371 "TRANFUN" 2869406 T TRANFUN (NIL) -9 NIL 2869472) (-1175 2868092 2868283 2868563 "TRANFUN-" 2868568 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1174 2867896 2867928 2867989 "TOPSP" 2868053 T TOPSP (NIL) -7 NIL NIL) (-1173 2867244 2867359 2867513 "TOOLSIGN" 2867777 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1172 2865905 2866421 2866660 "TEXTFILE" 2867027 T TEXTFILE (NIL) -8 NIL NIL) (-1171 2863770 2864284 2864722 "TEX" 2865489 T TEX (NIL) -8 NIL NIL) (-1170 2863551 2863582 2863654 "TEX1" 2863733 NIL TEX1 (NIL T) -7 NIL NIL) (-1169 2863199 2863262 2863352 "TEMUTL" 2863483 T TEMUTL (NIL) -7 NIL NIL) (-1168 2861353 2861633 2861958 "TBCMPPK" 2862922 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1167 2853241 2859513 2859569 "TBAGG" 2859969 NIL TBAGG (NIL T T) -9 NIL 2860180) (-1166 2848311 2849799 2851553 "TBAGG-" 2851558 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1165 2847695 2847802 2847947 "TANEXP" 2848200 NIL TANEXP (NIL T) -7 NIL NIL) (-1164 2841196 2847552 2847645 "TABLE" 2847650 NIL TABLE (NIL T T) -8 NIL NIL) (-1163 2840608 2840707 2840845 "TABLEAU" 2841093 NIL TABLEAU (NIL T) -8 NIL NIL) (-1162 2835216 2836436 2837684 "TABLBUMP" 2839394 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1161 2834644 2834744 2834872 "SYSTEM" 2835110 T SYSTEM (NIL) -7 NIL NIL) (-1160 2831107 2831802 2832585 "SYSSOLP" 2833895 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1159 2827485 2828396 2829098 "SYNTAX" 2830427 T SYNTAX (NIL) -8 NIL NIL) (-1158 2824643 2825245 2825877 "SYMTAB" 2826875 T SYMTAB (NIL) -8 NIL NIL) (-1157 2819892 2820794 2821777 "SYMS" 2823682 T SYMS (NIL) -8 NIL NIL) (-1156 2817164 2819350 2819580 "SYMPOLY" 2819697 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1155 2816681 2816756 2816879 "SYMFUNC" 2817076 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1154 2812658 2813918 2814740 "SYMBOL" 2815881 T SYMBOL (NIL) -8 NIL NIL) (-1153 2806197 2807886 2809606 "SWITCH" 2810960 T SWITCH (NIL) -8 NIL NIL) (-1152 2799467 2805018 2805321 "SUTS" 2805952 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1151 2791436 2798582 2798864 "SUPXS" 2799243 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1150 2782965 2791054 2791180 "SUP" 2791345 NIL SUP (NIL T) -8 NIL NIL) (-1149 2782124 2782251 2782468 "SUPFRACF" 2782833 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1148 2781745 2781804 2781917 "SUP2" 2782059 NIL SUP2 (NIL T T) -7 NIL NIL) (-1147 2780158 2780432 2780795 "SUMRF" 2781444 NIL SUMRF (NIL T) -7 NIL NIL) (-1146 2779472 2779538 2779737 "SUMFS" 2780079 NIL SUMFS (NIL T T) -7 NIL NIL) (-1145 2763479 2778649 2778900 "SULS" 2779279 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1144 2763108 2763301 2763371 "SUCHTAST" 2763431 T SUCHTAST (NIL) -8 NIL NIL) (-1143 2762430 2762633 2762773 "SUCH" 2763016 NIL SUCH (NIL T T) -8 NIL NIL) (-1142 2756324 2757336 2758295 "SUBSPACE" 2761518 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1141 2755754 2755844 2756008 "SUBRESP" 2756212 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1140 2749123 2750419 2751730 "STTF" 2754490 NIL STTF (NIL T) -7 NIL NIL) (-1139 2743296 2744416 2745563 "STTFNC" 2748023 NIL STTFNC (NIL T) -7 NIL NIL) (-1138 2734611 2736478 2738272 "STTAYLOR" 2741537 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1137 2727855 2734475 2734558 "STRTBL" 2734563 NIL STRTBL (NIL T) -8 NIL NIL) (-1136 2723246 2727810 2727841 "STRING" 2727846 T STRING (NIL) -8 NIL NIL) (-1135 2718134 2722619 2722649 "STRICAT" 2722708 T STRICAT (NIL) -9 NIL 2722770) (-1134 2710847 2715657 2716277 "STREAM" 2717549 NIL STREAM (NIL T) -8 NIL NIL) (-1133 2710357 2710434 2710578 "STREAM3" 2710764 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1132 2709339 2709522 2709757 "STREAM2" 2710170 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1131 2709027 2709079 2709172 "STREAM1" 2709281 NIL STREAM1 (NIL T) -7 NIL NIL) (-1130 2708043 2708224 2708455 "STINPROD" 2708843 NIL STINPROD (NIL T) -7 NIL NIL) (-1129 2707621 2707805 2707835 "STEP" 2707915 T STEP (NIL) -9 NIL 2707993) (-1128 2701164 2707520 2707597 "STBL" 2707602 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1127 2696339 2700386 2700429 "STAGG" 2700582 NIL STAGG (NIL T) -9 NIL 2700671) (-1126 2694041 2694643 2695515 "STAGG-" 2695520 NIL STAGG- (NIL T T) -8 NIL NIL) (-1125 2692236 2693811 2693903 "STACK" 2693984 NIL STACK (NIL T) -8 NIL NIL) (-1124 2684961 2690377 2690833 "SREGSET" 2691866 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1123 2677387 2678755 2680268 "SRDCMPK" 2683567 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1122 2670354 2674827 2674857 "SRAGG" 2676160 T SRAGG (NIL) -9 NIL 2676768) (-1121 2669371 2669626 2670005 "SRAGG-" 2670010 NIL SRAGG- (NIL T) -8 NIL NIL) (-1120 2663866 2668318 2668739 "SQMATRIX" 2668997 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1119 2657618 2660586 2661312 "SPLTREE" 2663212 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1118 2653608 2654274 2654920 "SPLNODE" 2657044 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1117 2652655 2652888 2652918 "SPFCAT" 2653362 T SPFCAT (NIL) -9 NIL NIL) (-1116 2651392 2651602 2651866 "SPECOUT" 2652413 T SPECOUT (NIL) -7 NIL NIL) (-1115 2643081 2644825 2644855 "SPADXPT" 2649247 T SPADXPT (NIL) -9 NIL 2651281) (-1114 2642842 2642882 2642951 "SPADPRSR" 2643034 T SPADPRSR (NIL) -7 NIL NIL) (-1113 2641025 2642797 2642828 "SPADAST" 2642833 T SPADAST (NIL) -8 NIL NIL) (-1112 2632996 2634743 2634786 "SPACEC" 2639159 NIL SPACEC (NIL T) -9 NIL 2640975) (-1111 2631167 2632928 2632977 "SPACE3" 2632982 NIL SPACE3 (NIL T) -8 NIL NIL) (-1110 2629919 2630090 2630381 "SORTPAK" 2630972 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1109 2627969 2628272 2628691 "SOLVETRA" 2629583 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1108 2626980 2627202 2627476 "SOLVESER" 2627742 NIL SOLVESER (NIL T) -7 NIL NIL) (-1107 2622200 2623081 2624083 "SOLVERAD" 2626032 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1106 2618015 2618624 2619353 "SOLVEFOR" 2621567 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1105 2612312 2617364 2617461 "SNTSCAT" 2617466 NIL SNTSCAT (NIL T T T T) -9 NIL 2617536) (-1104 2606455 2610635 2611026 "SMTS" 2612002 NIL SMTS (NIL T T T) -8 NIL NIL) (-1103 2600905 2606343 2606420 "SMP" 2606425 NIL SMP (NIL T T) -8 NIL NIL) (-1102 2599064 2599365 2599763 "SMITH" 2600602 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1101 2592047 2596202 2596305 "SMATCAT" 2597656 NIL SMATCAT (NIL NIL T T T) -9 NIL 2598206) (-1100 2588987 2589810 2590988 "SMATCAT-" 2590993 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1099 2586700 2588223 2588266 "SKAGG" 2588527 NIL SKAGG (NIL T) -9 NIL 2588662) (-1098 2582816 2585804 2586082 "SINT" 2586444 T SINT (NIL) -8 NIL NIL) (-1097 2582588 2582626 2582692 "SIMPAN" 2582772 T SIMPAN (NIL) -7 NIL NIL) (-1096 2581895 2582123 2582263 "SIG" 2582470 T SIG (NIL) -8 NIL NIL) (-1095 2580733 2580954 2581229 "SIGNRF" 2581654 NIL SIGNRF (NIL T) -7 NIL NIL) (-1094 2579538 2579689 2579980 "SIGNEF" 2580562 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1093 2578871 2579121 2579245 "SIGAST" 2579436 T SIGAST (NIL) -8 NIL NIL) (-1092 2576561 2577015 2577521 "SHP" 2578412 NIL SHP (NIL T NIL) -7 NIL NIL) (-1091 2570467 2576462 2576538 "SHDP" 2576543 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1090 2570066 2570232 2570262 "SGROUP" 2570355 T SGROUP (NIL) -9 NIL 2570417) (-1089 2569924 2569950 2570023 "SGROUP-" 2570028 NIL SGROUP- (NIL T) -8 NIL NIL) (-1088 2566760 2567457 2568180 "SGCF" 2569223 T SGCF (NIL) -7 NIL NIL) (-1087 2561155 2566207 2566304 "SFRTCAT" 2566309 NIL SFRTCAT (NIL T T T T) -9 NIL 2566348) (-1086 2554579 2555594 2556730 "SFRGCD" 2560138 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1085 2547707 2548778 2549964 "SFQCMPK" 2553512 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1084 2547329 2547418 2547528 "SFORT" 2547648 NIL SFORT (NIL T T) -8 NIL NIL) (-1083 2546474 2547169 2547290 "SEXOF" 2547295 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1082 2545608 2546355 2546423 "SEX" 2546428 T SEX (NIL) -8 NIL NIL) (-1081 2540384 2541073 2541168 "SEXCAT" 2544939 NIL SEXCAT (NIL T T T T T) -9 NIL 2545558) (-1080 2537564 2540318 2540366 "SET" 2540371 NIL SET (NIL T) -8 NIL NIL) (-1079 2535815 2536277 2536582 "SETMN" 2537305 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1078 2535421 2535547 2535577 "SETCAT" 2535694 T SETCAT (NIL) -9 NIL 2535779) (-1077 2535201 2535253 2535352 "SETCAT-" 2535357 NIL SETCAT- (NIL T) -8 NIL NIL) (-1076 2531588 2533662 2533705 "SETAGG" 2534575 NIL SETAGG (NIL T) -9 NIL 2534915) (-1075 2531046 2531162 2531399 "SETAGG-" 2531404 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1074 2530516 2530742 2530843 "SEQAST" 2530967 T SEQAST (NIL) -8 NIL NIL) (-1073 2529720 2530013 2530074 "SEGXCAT" 2530360 NIL SEGXCAT (NIL T T) -9 NIL 2530480) (-1072 2528776 2529386 2529568 "SEG" 2529573 NIL SEG (NIL T) -8 NIL NIL) (-1071 2527683 2527896 2527939 "SEGCAT" 2528521 NIL SEGCAT (NIL T) -9 NIL 2528759) (-1070 2526732 2527062 2527262 "SEGBIND" 2527518 NIL SEGBIND (NIL T) -8 NIL NIL) (-1069 2526353 2526412 2526525 "SEGBIND2" 2526667 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1068 2525954 2526154 2526231 "SEGAST" 2526298 T SEGAST (NIL) -8 NIL NIL) (-1067 2525173 2525299 2525503 "SEG2" 2525798 NIL SEG2 (NIL T T) -7 NIL NIL) (-1066 2524610 2525108 2525155 "SDVAR" 2525160 NIL SDVAR (NIL T) -8 NIL NIL) (-1065 2516900 2524380 2524510 "SDPOL" 2524515 NIL SDPOL (NIL T) -8 NIL NIL) (-1064 2515493 2515759 2516078 "SCPKG" 2516615 NIL SCPKG (NIL T) -7 NIL NIL) (-1063 2514629 2514809 2515009 "SCOPE" 2515315 T SCOPE (NIL) -8 NIL NIL) (-1062 2513850 2513983 2514162 "SCACHE" 2514484 NIL SCACHE (NIL T) -7 NIL NIL) (-1061 2513559 2513719 2513749 "SASTCAT" 2513754 T SASTCAT (NIL) -9 NIL 2513767) (-1060 2512998 2513319 2513404 "SAOS" 2513496 T SAOS (NIL) -8 NIL NIL) (-1059 2512563 2512598 2512771 "SAERFFC" 2512957 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1058 2506537 2512460 2512540 "SAE" 2512545 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1057 2506130 2506165 2506324 "SAEFACT" 2506496 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1056 2504451 2504765 2505166 "RURPK" 2505796 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1055 2503087 2503366 2503678 "RULESET" 2504285 NIL RULESET (NIL T T T) -8 NIL NIL) (-1054 2500274 2500777 2501242 "RULE" 2502768 NIL RULE (NIL T T T) -8 NIL NIL) (-1053 2499913 2500068 2500151 "RULECOLD" 2500226 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1052 2499411 2499630 2499724 "RSTRCAST" 2499841 T RSTRCAST (NIL) -8 NIL NIL) (-1051 2494260 2495054 2495974 "RSETGCD" 2498610 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1050 2483517 2488569 2488666 "RSETCAT" 2492785 NIL RSETCAT (NIL T T T T) -9 NIL 2493882) (-1049 2481444 2481983 2482807 "RSETCAT-" 2482812 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1048 2473831 2475206 2476726 "RSDCMPK" 2480043 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1047 2471836 2472277 2472351 "RRCC" 2473437 NIL RRCC (NIL T T) -9 NIL 2473781) (-1046 2471187 2471361 2471640 "RRCC-" 2471645 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1045 2470657 2470883 2470984 "RPTAST" 2471108 T RPTAST (NIL) -8 NIL NIL) (-1044 2444885 2454470 2454537 "RPOLCAT" 2465201 NIL RPOLCAT (NIL T T T) -9 NIL 2468360) (-1043 2436385 2438723 2441845 "RPOLCAT-" 2441850 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1042 2427432 2434596 2435078 "ROUTINE" 2435925 T ROUTINE (NIL) -8 NIL NIL) (-1041 2424190 2426983 2427132 "ROMAN" 2427305 T ROMAN (NIL) -8 NIL NIL) (-1040 2422465 2423050 2423310 "ROIRC" 2423995 NIL ROIRC (NIL T T) -8 NIL NIL) (-1039 2418914 2421153 2421183 "RNS" 2421487 T RNS (NIL) -9 NIL 2421760) (-1038 2417423 2417806 2418340 "RNS-" 2418415 NIL RNS- (NIL T) -8 NIL NIL) (-1037 2416872 2417254 2417284 "RNG" 2417289 T RNG (NIL) -9 NIL 2417310) (-1036 2416264 2416626 2416669 "RMODULE" 2416731 NIL RMODULE (NIL T) -9 NIL 2416773) (-1035 2415100 2415194 2415530 "RMCAT2" 2416165 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1034 2411805 2414274 2414599 "RMATRIX" 2414834 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1033 2404747 2406981 2407096 "RMATCAT" 2410455 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411437) (-1032 2404122 2404269 2404576 "RMATCAT-" 2404581 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1031 2403689 2403764 2403892 "RINTERP" 2404041 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1030 2402777 2403297 2403327 "RING" 2403439 T RING (NIL) -9 NIL 2403534) (-1029 2402569 2402613 2402710 "RING-" 2402715 NIL RING- (NIL T) -8 NIL NIL) (-1028 2401410 2401647 2401905 "RIDIST" 2402333 T RIDIST (NIL) -7 NIL NIL) (-1027 2392726 2400878 2401084 "RGCHAIN" 2401258 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1026 2392102 2392482 2392523 "RGBCSPC" 2392581 NIL RGBCSPC (NIL T) -9 NIL 2392633) (-1025 2391286 2391641 2391682 "RGBCMDL" 2391914 NIL RGBCMDL (NIL T) -9 NIL 2392028) (-1024 2388280 2388894 2389564 "RF" 2390650 NIL RF (NIL T) -7 NIL NIL) (-1023 2387926 2387989 2388092 "RFFACTOR" 2388211 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1022 2387651 2387686 2387783 "RFFACT" 2387885 NIL RFFACT (NIL T) -7 NIL NIL) (-1021 2385768 2386132 2386514 "RFDIST" 2387291 T RFDIST (NIL) -7 NIL NIL) (-1020 2385221 2385313 2385476 "RETSOL" 2385670 NIL RETSOL (NIL T T) -7 NIL NIL) (-1019 2384809 2384889 2384932 "RETRACT" 2385125 NIL RETRACT (NIL T) -9 NIL NIL) (-1018 2384658 2384683 2384770 "RETRACT-" 2384775 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1017 2384287 2384480 2384550 "RETAST" 2384610 T RETAST (NIL) -8 NIL NIL) (-1016 2377141 2383940 2384067 "RESULT" 2384182 T RESULT (NIL) -8 NIL NIL) (-1015 2375767 2376410 2376609 "RESRING" 2377044 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1014 2375403 2375452 2375550 "RESLATC" 2375704 NIL RESLATC (NIL T) -7 NIL NIL) (-1013 2375109 2375143 2375250 "REPSQ" 2375362 NIL REPSQ (NIL T) -7 NIL NIL) (-1012 2372531 2373111 2373713 "REP" 2374529 T REP (NIL) -7 NIL NIL) (-1011 2372229 2372263 2372374 "REPDB" 2372490 NIL REPDB (NIL T) -7 NIL NIL) (-1010 2366139 2367518 2368741 "REP2" 2371041 NIL REP2 (NIL T) -7 NIL NIL) (-1009 2362516 2363197 2364005 "REP1" 2365366 NIL REP1 (NIL T) -7 NIL NIL) (-1008 2355242 2360657 2361113 "REGSET" 2362146 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1007 2354055 2354390 2354640 "REF" 2355027 NIL REF (NIL T) -8 NIL NIL) (-1006 2353432 2353535 2353702 "REDORDER" 2353939 NIL REDORDER (NIL T T) -7 NIL NIL) (-1005 2349439 2352647 2352873 "RECLOS" 2353261 NIL RECLOS (NIL T) -8 NIL NIL) (-1004 2348491 2348672 2348887 "REALSOLV" 2349246 T REALSOLV (NIL) -7 NIL NIL) (-1003 2348337 2348378 2348408 "REAL" 2348413 T REAL (NIL) -9 NIL 2348448) (-1002 2344820 2345622 2346506 "REAL0Q" 2347502 NIL REAL0Q (NIL T) -7 NIL NIL) (-1001 2340421 2341409 2342470 "REAL0" 2343801 NIL REAL0 (NIL T) -7 NIL NIL) (-1000 2339919 2340138 2340232 "RDUCEAST" 2340349 T RDUCEAST (NIL) -8 NIL NIL) (-999 2339327 2339399 2339604 "RDIV" 2339841 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-998 2338400 2338574 2338785 "RDIST" 2339149 NIL RDIST (NIL T) -7 NIL NIL) (-997 2337001 2337288 2337658 "RDETRS" 2338108 NIL RDETRS (NIL T T) -7 NIL NIL) (-996 2334818 2335272 2335808 "RDETR" 2336543 NIL RDETR (NIL T T) -7 NIL NIL) (-995 2333432 2333710 2334112 "RDEEFS" 2334534 NIL RDEEFS (NIL T T) -7 NIL NIL) (-994 2331930 2332236 2332666 "RDEEF" 2333120 NIL RDEEF (NIL T T) -7 NIL NIL) (-993 2326267 2329138 2329166 "RCFIELD" 2330443 T RCFIELD (NIL) -9 NIL 2331173) (-992 2324336 2324840 2325533 "RCFIELD-" 2325606 NIL RCFIELD- (NIL T) -8 NIL NIL) (-991 2320667 2322452 2322493 "RCAGG" 2323564 NIL RCAGG (NIL T) -9 NIL 2324029) (-990 2320298 2320392 2320552 "RCAGG-" 2320557 NIL RCAGG- (NIL T T) -8 NIL NIL) (-989 2319638 2319750 2319913 "RATRET" 2320182 NIL RATRET (NIL T) -7 NIL NIL) (-988 2319195 2319262 2319381 "RATFACT" 2319566 NIL RATFACT (NIL T) -7 NIL NIL) (-987 2318510 2318630 2318780 "RANDSRC" 2319065 T RANDSRC (NIL) -7 NIL NIL) (-986 2318247 2318291 2318362 "RADUTIL" 2318459 T RADUTIL (NIL) -7 NIL NIL) (-985 2311310 2316990 2317307 "RADIX" 2317962 NIL RADIX (NIL NIL) -8 NIL NIL) (-984 2302966 2311154 2311282 "RADFF" 2311287 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-983 2302618 2302693 2302721 "RADCAT" 2302878 T RADCAT (NIL) -9 NIL NIL) (-982 2302403 2302451 2302548 "RADCAT-" 2302553 NIL RADCAT- (NIL T) -8 NIL NIL) (-981 2300554 2302178 2302267 "QUEUE" 2302347 NIL QUEUE (NIL T) -8 NIL NIL) (-980 2297130 2300491 2300536 "QUAT" 2300541 NIL QUAT (NIL T) -8 NIL NIL) (-979 2296768 2296811 2296938 "QUATCT2" 2297081 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-978 2290628 2293929 2293969 "QUATCAT" 2294749 NIL QUATCAT (NIL T) -9 NIL 2295515) (-977 2286772 2287809 2289196 "QUATCAT-" 2289290 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-976 2284292 2285856 2285897 "QUAGG" 2286272 NIL QUAGG (NIL T) -9 NIL 2286447) (-975 2283924 2284117 2284185 "QQUTAST" 2284244 T QQUTAST (NIL) -8 NIL NIL) (-974 2282849 2283322 2283494 "QFORM" 2283796 NIL QFORM (NIL NIL T) -8 NIL NIL) (-973 2274174 2279379 2279419 "QFCAT" 2280077 NIL QFCAT (NIL T) -9 NIL 2281078) (-972 2269746 2270947 2272538 "QFCAT-" 2272632 NIL QFCAT- (NIL T T) -8 NIL NIL) (-971 2269384 2269427 2269554 "QFCAT2" 2269697 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-970 2268844 2268954 2269084 "QEQUAT" 2269274 T QEQUAT (NIL) -8 NIL NIL) (-969 2261992 2263063 2264247 "QCMPACK" 2267777 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-968 2259568 2259989 2260417 "QALGSET" 2261647 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-967 2258813 2258987 2259219 "QALGSET2" 2259388 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-966 2257504 2257727 2258044 "PWFFINTB" 2258586 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-965 2255686 2255854 2256208 "PUSHVAR" 2257318 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-964 2251604 2252658 2252699 "PTRANFN" 2254583 NIL PTRANFN (NIL T) -9 NIL NIL) (-963 2250006 2250297 2250619 "PTPACK" 2251315 NIL PTPACK (NIL T) -7 NIL NIL) (-962 2249638 2249695 2249804 "PTFUNC2" 2249943 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-961 2244104 2248449 2248490 "PTCAT" 2248863 NIL PTCAT (NIL T) -9 NIL 2249025) (-960 2243762 2243797 2243921 "PSQFR" 2244063 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-959 2242357 2242655 2242989 "PSEUDLIN" 2243460 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-958 2229126 2231491 2233815 "PSETPK" 2240117 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-957 2222170 2224884 2224980 "PSETCAT" 2228001 NIL PSETCAT (NIL T T T T) -9 NIL 2228815) (-956 2220006 2220640 2221461 "PSETCAT-" 2221466 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-955 2219355 2219520 2219548 "PSCURVE" 2219816 T PSCURVE (NIL) -9 NIL 2219983) (-954 2215836 2217318 2217383 "PSCAT" 2218227 NIL PSCAT (NIL T T T) -9 NIL 2218467) (-953 2214899 2215115 2215515 "PSCAT-" 2215520 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-952 2213551 2214184 2214398 "PRTITION" 2214705 T PRTITION (NIL) -8 NIL NIL) (-951 2213053 2213272 2213364 "PRTDAST" 2213479 T PRTDAST (NIL) -8 NIL NIL) (-950 2202151 2204357 2206545 "PRS" 2210915 NIL PRS (NIL T T) -7 NIL NIL) (-949 2200009 2201501 2201541 "PRQAGG" 2201724 NIL PRQAGG (NIL T) -9 NIL 2201826) (-948 2199395 2199624 2199652 "PROPLOG" 2199837 T PROPLOG (NIL) -9 NIL 2199959) (-947 2196565 2197209 2197673 "PROPFRML" 2198963 NIL PROPFRML (NIL T) -8 NIL NIL) (-946 2196025 2196135 2196265 "PROPERTY" 2196455 T PROPERTY (NIL) -8 NIL NIL) (-945 2190110 2194191 2195011 "PRODUCT" 2195251 NIL PRODUCT (NIL T T) -8 NIL NIL) (-944 2187423 2189568 2189802 "PR" 2189921 NIL PR (NIL T T) -8 NIL NIL) (-943 2187219 2187251 2187310 "PRINT" 2187384 T PRINT (NIL) -7 NIL NIL) (-942 2186559 2186676 2186828 "PRIMES" 2187099 NIL PRIMES (NIL T) -7 NIL NIL) (-941 2184624 2185025 2185491 "PRIMELT" 2186138 NIL PRIMELT (NIL T) -7 NIL NIL) (-940 2184353 2184402 2184430 "PRIMCAT" 2184554 T PRIMCAT (NIL) -9 NIL NIL) (-939 2180514 2184291 2184336 "PRIMARR" 2184341 NIL PRIMARR (NIL T) -8 NIL NIL) (-938 2179521 2179699 2179927 "PRIMARR2" 2180332 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-937 2179164 2179220 2179331 "PREASSOC" 2179459 NIL PREASSOC (NIL T T) -7 NIL NIL) (-936 2178639 2178772 2178800 "PPCURVE" 2179005 T PPCURVE (NIL) -9 NIL 2179141) (-935 2178261 2178434 2178517 "PORTNUM" 2178576 T PORTNUM (NIL) -8 NIL NIL) (-934 2175620 2176019 2176611 "POLYROOT" 2177842 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-933 2169565 2175224 2175384 "POLY" 2175493 NIL POLY (NIL T) -8 NIL NIL) (-932 2168948 2169006 2169240 "POLYLIFT" 2169501 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-931 2165223 2165672 2166301 "POLYCATQ" 2168493 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-930 2152262 2157618 2157683 "POLYCAT" 2161197 NIL POLYCAT (NIL T T T) -9 NIL 2163125) (-929 2145712 2147573 2149957 "POLYCAT-" 2149962 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-928 2145299 2145367 2145487 "POLY2UP" 2145638 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-927 2144931 2144988 2145097 "POLY2" 2145236 NIL POLY2 (NIL T T) -7 NIL NIL) (-926 2143616 2143855 2144131 "POLUTIL" 2144705 NIL POLUTIL (NIL T T) -7 NIL NIL) (-925 2141971 2142248 2142579 "POLTOPOL" 2143338 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-924 2137489 2141907 2141953 "POINT" 2141958 NIL POINT (NIL T) -8 NIL NIL) (-923 2135676 2136033 2136408 "PNTHEORY" 2137134 T PNTHEORY (NIL) -7 NIL NIL) (-922 2134095 2134392 2134804 "PMTOOLS" 2135374 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-921 2133688 2133766 2133883 "PMSYM" 2134011 NIL PMSYM (NIL T) -7 NIL NIL) (-920 2133198 2133267 2133441 "PMQFCAT" 2133613 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-919 2132553 2132663 2132819 "PMPRED" 2133075 NIL PMPRED (NIL T) -7 NIL NIL) (-918 2131949 2132035 2132196 "PMPREDFS" 2132454 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-917 2130592 2130800 2131185 "PMPLCAT" 2131711 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-916 2130124 2130203 2130355 "PMLSAGG" 2130507 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-915 2129599 2129675 2129856 "PMKERNEL" 2130042 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-914 2129216 2129291 2129404 "PMINS" 2129518 NIL PMINS (NIL T) -7 NIL NIL) (-913 2128644 2128713 2128929 "PMFS" 2129141 NIL PMFS (NIL T T T) -7 NIL NIL) (-912 2127872 2127990 2128195 "PMDOWN" 2128521 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-911 2127035 2127194 2127376 "PMASS" 2127710 T PMASS (NIL) -7 NIL NIL) (-910 2126309 2126420 2126583 "PMASSFS" 2126921 NIL PMASSFS (NIL T T) -7 NIL NIL) (-909 2125964 2126032 2126126 "PLOTTOOL" 2126235 T PLOTTOOL (NIL) -7 NIL NIL) (-908 2120586 2121775 2122923 "PLOT" 2124836 T PLOT (NIL) -8 NIL NIL) (-907 2116400 2117434 2118355 "PLOT3D" 2119685 T PLOT3D (NIL) -8 NIL NIL) (-906 2115312 2115489 2115724 "PLOT1" 2116204 NIL PLOT1 (NIL T) -7 NIL NIL) (-905 2090706 2095378 2100229 "PLEQN" 2110578 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-904 2090024 2090146 2090326 "PINTERP" 2090571 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-903 2089717 2089764 2089867 "PINTERPA" 2089971 NIL PINTERPA (NIL T T) -7 NIL NIL) (-902 2089002 2089523 2089610 "PI" 2089650 T PI (NIL) -8 NIL NIL) (-901 2087434 2088375 2088403 "PID" 2088585 T PID (NIL) -9 NIL 2088719) (-900 2087159 2087196 2087284 "PICOERCE" 2087391 NIL PICOERCE (NIL T) -7 NIL NIL) (-899 2086479 2086618 2086794 "PGROEB" 2087015 NIL PGROEB (NIL T) -7 NIL NIL) (-898 2082066 2082880 2083785 "PGE" 2085594 T PGE (NIL) -7 NIL NIL) (-897 2080190 2080436 2080802 "PGCD" 2081783 NIL PGCD (NIL T T T T) -7 NIL NIL) (-896 2079528 2079631 2079792 "PFRPAC" 2080074 NIL PFRPAC (NIL T) -7 NIL NIL) (-895 2076208 2078076 2078429 "PFR" 2079207 NIL PFR (NIL T) -8 NIL NIL) (-894 2074597 2074841 2075166 "PFOTOOLS" 2075955 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-893 2073130 2073369 2073720 "PFOQ" 2074354 NIL PFOQ (NIL T T T) -7 NIL NIL) (-892 2071603 2071815 2072178 "PFO" 2072914 NIL PFO (NIL T T T T T) -7 NIL NIL) (-891 2068191 2071492 2071561 "PF" 2071566 NIL PF (NIL NIL) -8 NIL NIL) (-890 2065660 2066897 2066925 "PFECAT" 2067510 T PFECAT (NIL) -9 NIL 2067894) (-889 2065105 2065259 2065473 "PFECAT-" 2065478 NIL PFECAT- (NIL T) -8 NIL NIL) (-888 2063709 2063960 2064261 "PFBRU" 2064854 NIL PFBRU (NIL T T) -7 NIL NIL) (-887 2061576 2061927 2062359 "PFBR" 2063360 NIL PFBR (NIL T T T T) -7 NIL NIL) (-886 2057492 2058952 2059628 "PERM" 2060933 NIL PERM (NIL T) -8 NIL NIL) (-885 2052758 2053699 2054569 "PERMGRP" 2056655 NIL PERMGRP (NIL T) -8 NIL NIL) (-884 2050890 2051821 2051862 "PERMCAT" 2052308 NIL PERMCAT (NIL T) -9 NIL 2052613) (-883 2050543 2050584 2050708 "PERMAN" 2050843 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-882 2047983 2050112 2050243 "PENDTREE" 2050445 NIL PENDTREE (NIL T) -8 NIL NIL) (-881 2046096 2046830 2046871 "PDRING" 2047528 NIL PDRING (NIL T) -9 NIL 2047814) (-880 2045199 2045417 2045779 "PDRING-" 2045784 NIL PDRING- (NIL T T) -8 NIL NIL) (-879 2042340 2043091 2043782 "PDEPROB" 2044528 T PDEPROB (NIL) -8 NIL NIL) (-878 2039887 2040389 2040944 "PDEPACK" 2041805 T PDEPACK (NIL) -7 NIL NIL) (-877 2038799 2038989 2039240 "PDECOMP" 2039686 NIL PDECOMP (NIL T T) -7 NIL NIL) (-876 2036404 2037221 2037249 "PDECAT" 2038036 T PDECAT (NIL) -9 NIL 2038749) (-875 2036155 2036188 2036278 "PCOMP" 2036365 NIL PCOMP (NIL T T) -7 NIL NIL) (-874 2034360 2034956 2035253 "PBWLB" 2035884 NIL PBWLB (NIL T) -8 NIL NIL) (-873 2026864 2028433 2029771 "PATTERN" 2033043 NIL PATTERN (NIL T) -8 NIL NIL) (-872 2026496 2026553 2026662 "PATTERN2" 2026801 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-871 2024253 2024641 2025098 "PATTERN1" 2026085 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-870 2021648 2022202 2022683 "PATRES" 2023818 NIL PATRES (NIL T T) -8 NIL NIL) (-869 2021212 2021279 2021411 "PATRES2" 2021575 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-868 2019095 2019500 2019907 "PATMATCH" 2020879 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-867 2018631 2018814 2018855 "PATMAB" 2018962 NIL PATMAB (NIL T) -9 NIL 2019045) (-866 2017176 2017485 2017743 "PATLRES" 2018436 NIL PATLRES (NIL T T T) -8 NIL NIL) (-865 2016722 2016845 2016886 "PATAB" 2016891 NIL PATAB (NIL T) -9 NIL 2017063) (-864 2014203 2014735 2015308 "PARTPERM" 2016169 T PARTPERM (NIL) -7 NIL NIL) (-863 2013824 2013887 2013989 "PARSURF" 2014134 NIL PARSURF (NIL T) -8 NIL NIL) (-862 2013456 2013513 2013622 "PARSU2" 2013761 NIL PARSU2 (NIL T T) -7 NIL NIL) (-861 2013220 2013260 2013327 "PARSER" 2013409 T PARSER (NIL) -7 NIL NIL) (-860 2012841 2012904 2013006 "PARSCURV" 2013151 NIL PARSCURV (NIL T) -8 NIL NIL) (-859 2012473 2012530 2012639 "PARSC2" 2012778 NIL PARSC2 (NIL T T) -7 NIL NIL) (-858 2012112 2012170 2012267 "PARPCURV" 2012409 NIL PARPCURV (NIL T) -8 NIL NIL) (-857 2011744 2011801 2011910 "PARPC2" 2012049 NIL PARPC2 (NIL T T) -7 NIL NIL) (-856 2011264 2011350 2011469 "PAN2EXPR" 2011645 T PAN2EXPR (NIL) -7 NIL NIL) (-855 2010070 2010385 2010613 "PALETTE" 2011056 T PALETTE (NIL) -8 NIL NIL) (-854 2008538 2009075 2009435 "PAIR" 2009756 NIL PAIR (NIL T T) -8 NIL NIL) (-853 2002444 2007797 2007991 "PADICRC" 2008393 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-852 1995708 2001790 2001974 "PADICRAT" 2002292 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-851 1994058 1995645 1995690 "PADIC" 1995695 NIL PADIC (NIL NIL) -8 NIL NIL) (-850 1991303 1992833 1992873 "PADICCT" 1993454 NIL PADICCT (NIL NIL) -9 NIL 1993736) (-849 1990260 1990460 1990728 "PADEPAC" 1991090 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-848 1989472 1989605 1989811 "PADE" 1990122 NIL PADE (NIL T T T) -7 NIL NIL) (-847 1987522 1988308 1988625 "OWP" 1989239 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-846 1986631 1987127 1987299 "OVAR" 1987390 NIL OVAR (NIL NIL) -8 NIL NIL) (-845 1985895 1986016 1986177 "OUT" 1986490 T OUT (NIL) -7 NIL NIL) (-844 1974802 1977004 1979204 "OUTFORM" 1983715 T OUTFORM (NIL) -8 NIL NIL) (-843 1974223 1974399 1974526 "OUTBFILE" 1974695 T OUTBFILE (NIL) -8 NIL NIL) (-842 1973860 1973943 1973971 "OUTBCON" 1974122 T OUTBCON (NIL) -9 NIL 1974207) (-841 1973700 1973735 1973811 "OUTBCON-" 1973816 NIL OUTBCON- (NIL T) -8 NIL NIL) (-840 1973108 1973429 1973518 "OSI" 1973631 T OSI (NIL) -8 NIL NIL) (-839 1972664 1972976 1973004 "OSGROUP" 1973009 T OSGROUP (NIL) -9 NIL 1973031) (-838 1971409 1971636 1971921 "ORTHPOL" 1972411 NIL ORTHPOL (NIL T) -7 NIL NIL) (-837 1968819 1971068 1971207 "OREUP" 1971352 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-836 1966257 1968510 1968637 "ORESUP" 1968761 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-835 1963785 1964285 1964846 "OREPCTO" 1965746 NIL OREPCTO (NIL T T) -7 NIL NIL) (-834 1957696 1959863 1959904 "OREPCAT" 1962252 NIL OREPCAT (NIL T) -9 NIL 1963356) (-833 1954843 1955625 1956683 "OREPCAT-" 1956688 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-832 1954020 1954292 1954320 "ORDSET" 1954629 T ORDSET (NIL) -9 NIL 1954793) (-831 1953539 1953661 1953854 "ORDSET-" 1953859 NIL ORDSET- (NIL T) -8 NIL NIL) (-830 1952193 1952950 1952978 "ORDRING" 1953180 T ORDRING (NIL) -9 NIL 1953305) (-829 1951838 1951932 1952076 "ORDRING-" 1952081 NIL ORDRING- (NIL T) -8 NIL NIL) (-828 1951244 1951681 1951709 "ORDMON" 1951714 T ORDMON (NIL) -9 NIL 1951735) (-827 1950406 1950553 1950748 "ORDFUNS" 1951093 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-826 1949917 1950276 1950304 "ORDFIN" 1950309 T ORDFIN (NIL) -9 NIL 1950330) (-825 1946509 1948503 1948912 "ORDCOMP" 1949541 NIL ORDCOMP (NIL T) -8 NIL NIL) (-824 1945775 1945902 1946088 "ORDCOMP2" 1946369 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-823 1942282 1943165 1944002 "OPTPROB" 1944958 T OPTPROB (NIL) -8 NIL NIL) (-822 1939084 1939723 1940427 "OPTPACK" 1941598 T OPTPACK (NIL) -7 NIL NIL) (-821 1936797 1937537 1937565 "OPTCAT" 1938384 T OPTCAT (NIL) -9 NIL 1939034) (-820 1936565 1936604 1936670 "OPQUERY" 1936751 T OPQUERY (NIL) -7 NIL NIL) (-819 1933731 1934876 1935380 "OP" 1936094 NIL OP (NIL T) -8 NIL NIL) (-818 1930576 1932528 1932897 "ONECOMP" 1933395 NIL ONECOMP (NIL T) -8 NIL NIL) (-817 1929881 1929996 1930170 "ONECOMP2" 1930448 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-816 1929300 1929406 1929536 "OMSERVER" 1929771 T OMSERVER (NIL) -7 NIL NIL) (-815 1926188 1928740 1928780 "OMSAGG" 1928841 NIL OMSAGG (NIL T) -9 NIL 1928905) (-814 1924811 1925074 1925356 "OMPKG" 1925926 T OMPKG (NIL) -7 NIL NIL) (-813 1924241 1924344 1924372 "OM" 1924671 T OM (NIL) -9 NIL NIL) (-812 1922823 1923790 1923959 "OMLO" 1924122 NIL OMLO (NIL T T) -8 NIL NIL) (-811 1921748 1921895 1922122 "OMEXPR" 1922649 NIL OMEXPR (NIL T) -7 NIL NIL) (-810 1921066 1921294 1921430 "OMERR" 1921632 T OMERR (NIL) -8 NIL NIL) (-809 1920244 1920487 1920647 "OMERRK" 1920926 T OMERRK (NIL) -8 NIL NIL) (-808 1919722 1919921 1920029 "OMENC" 1920156 T OMENC (NIL) -8 NIL NIL) (-807 1913617 1914802 1915973 "OMDEV" 1918571 T OMDEV (NIL) -8 NIL NIL) (-806 1912686 1912857 1913051 "OMCONN" 1913443 T OMCONN (NIL) -8 NIL NIL) (-805 1911342 1912284 1912312 "OINTDOM" 1912317 T OINTDOM (NIL) -9 NIL 1912338) (-804 1907148 1908332 1909048 "OFMONOID" 1910658 NIL OFMONOID (NIL T) -8 NIL NIL) (-803 1906586 1907085 1907130 "ODVAR" 1907135 NIL ODVAR (NIL T) -8 NIL NIL) (-802 1903796 1906083 1906268 "ODR" 1906461 NIL ODR (NIL T T NIL) -8 NIL NIL) (-801 1896140 1903572 1903698 "ODPOL" 1903703 NIL ODPOL (NIL T) -8 NIL NIL) (-800 1890016 1896012 1896117 "ODP" 1896122 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-799 1888782 1888997 1889272 "ODETOOLS" 1889790 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-798 1885751 1886407 1887123 "ODESYS" 1888115 NIL ODESYS (NIL T T) -7 NIL NIL) (-797 1880633 1881541 1882566 "ODERTRIC" 1884826 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-796 1880059 1880141 1880335 "ODERED" 1880545 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-795 1876947 1877495 1878172 "ODERAT" 1879482 NIL ODERAT (NIL T T) -7 NIL NIL) (-794 1873907 1874371 1874968 "ODEPRRIC" 1876476 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-793 1871776 1872345 1872854 "ODEPROB" 1873418 T ODEPROB (NIL) -8 NIL NIL) (-792 1868298 1868781 1869428 "ODEPRIM" 1871255 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-791 1867547 1867649 1867909 "ODEPAL" 1868190 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-790 1863709 1864500 1865364 "ODEPACK" 1866703 T ODEPACK (NIL) -7 NIL NIL) (-789 1862742 1862849 1863078 "ODEINT" 1863598 NIL ODEINT (NIL T T) -7 NIL NIL) (-788 1856843 1858268 1859715 "ODEIFTBL" 1861315 T ODEIFTBL (NIL) -8 NIL NIL) (-787 1852178 1852964 1853923 "ODEEF" 1856002 NIL ODEEF (NIL T T) -7 NIL NIL) (-786 1851513 1851602 1851832 "ODECONST" 1852083 NIL ODECONST (NIL T T T) -7 NIL NIL) (-785 1849664 1850299 1850327 "ODECAT" 1850932 T ODECAT (NIL) -9 NIL 1851463) (-784 1846571 1849376 1849495 "OCT" 1849577 NIL OCT (NIL T) -8 NIL NIL) (-783 1846209 1846252 1846379 "OCTCT2" 1846522 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-782 1841070 1843470 1843510 "OC" 1844607 NIL OC (NIL T) -9 NIL 1845465) (-781 1838297 1839045 1840035 "OC-" 1840129 NIL OC- (NIL T T) -8 NIL NIL) (-780 1837675 1838117 1838145 "OCAMON" 1838150 T OCAMON (NIL) -9 NIL 1838171) (-779 1837232 1837547 1837575 "OASGP" 1837580 T OASGP (NIL) -9 NIL 1837600) (-778 1836519 1836982 1837010 "OAMONS" 1837050 T OAMONS (NIL) -9 NIL 1837093) (-777 1835959 1836366 1836394 "OAMON" 1836399 T OAMON (NIL) -9 NIL 1836419) (-776 1835263 1835755 1835783 "OAGROUP" 1835788 T OAGROUP (NIL) -9 NIL 1835808) (-775 1834953 1835003 1835091 "NUMTUBE" 1835207 NIL NUMTUBE (NIL T) -7 NIL NIL) (-774 1828526 1830044 1831580 "NUMQUAD" 1833437 T NUMQUAD (NIL) -7 NIL NIL) (-773 1824282 1825270 1826295 "NUMODE" 1827521 T NUMODE (NIL) -7 NIL NIL) (-772 1821663 1822517 1822545 "NUMINT" 1823468 T NUMINT (NIL) -9 NIL 1824232) (-771 1820611 1820808 1821026 "NUMFMT" 1821465 T NUMFMT (NIL) -7 NIL NIL) (-770 1806970 1809915 1812447 "NUMERIC" 1818118 NIL NUMERIC (NIL T) -7 NIL NIL) (-769 1801367 1806419 1806514 "NTSCAT" 1806519 NIL NTSCAT (NIL T T T T) -9 NIL 1806558) (-768 1800561 1800726 1800919 "NTPOLFN" 1801206 NIL NTPOLFN (NIL T) -7 NIL NIL) (-767 1788401 1797386 1798198 "NSUP" 1799782 NIL NSUP (NIL T) -8 NIL NIL) (-766 1788033 1788090 1788199 "NSUP2" 1788338 NIL NSUP2 (NIL T T) -7 NIL NIL) (-765 1778030 1787807 1787940 "NSMP" 1787945 NIL NSMP (NIL T T) -8 NIL NIL) (-764 1776462 1776763 1777120 "NREP" 1777718 NIL NREP (NIL T) -7 NIL NIL) (-763 1775053 1775305 1775663 "NPCOEF" 1776205 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-762 1774119 1774234 1774450 "NORMRETR" 1774934 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-761 1772160 1772450 1772859 "NORMPK" 1773827 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-760 1771845 1771873 1771997 "NORMMA" 1772126 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-759 1771672 1771802 1771831 "NONE" 1771836 T NONE (NIL) -8 NIL NIL) (-758 1771461 1771490 1771559 "NONE1" 1771636 NIL NONE1 (NIL T) -7 NIL NIL) (-757 1770944 1771006 1771192 "NODE1" 1771393 NIL NODE1 (NIL T T) -7 NIL NIL) (-756 1769284 1770107 1770362 "NNI" 1770709 T NNI (NIL) -8 NIL NIL) (-755 1767704 1768017 1768381 "NLINSOL" 1768952 NIL NLINSOL (NIL T) -7 NIL NIL) (-754 1763871 1764839 1765761 "NIPROB" 1766802 T NIPROB (NIL) -8 NIL NIL) (-753 1762628 1762862 1763164 "NFINTBAS" 1763633 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-752 1762072 1762279 1762320 "NETCLT" 1762484 NIL NETCLT (NIL T) -9 NIL 1762573) (-751 1760780 1761011 1761292 "NCODIV" 1761840 NIL NCODIV (NIL T T) -7 NIL NIL) (-750 1760542 1760579 1760654 "NCNTFRAC" 1760737 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-749 1758722 1759086 1759506 "NCEP" 1760167 NIL NCEP (NIL T) -7 NIL NIL) (-748 1757633 1758372 1758400 "NASRING" 1758510 T NASRING (NIL) -9 NIL 1758584) (-747 1757428 1757472 1757566 "NASRING-" 1757571 NIL NASRING- (NIL T) -8 NIL NIL) (-746 1756581 1757080 1757108 "NARNG" 1757225 T NARNG (NIL) -9 NIL 1757316) (-745 1756273 1756340 1756474 "NARNG-" 1756479 NIL NARNG- (NIL T) -8 NIL NIL) (-744 1755152 1755359 1755594 "NAGSP" 1756058 T NAGSP (NIL) -7 NIL NIL) (-743 1746424 1748108 1749781 "NAGS" 1753499 T NAGS (NIL) -7 NIL NIL) (-742 1744972 1745280 1745611 "NAGF07" 1746113 T NAGF07 (NIL) -7 NIL NIL) (-741 1739510 1740801 1742108 "NAGF04" 1743685 T NAGF04 (NIL) -7 NIL NIL) (-740 1732478 1734092 1735725 "NAGF02" 1737897 T NAGF02 (NIL) -7 NIL NIL) (-739 1727702 1728802 1729919 "NAGF01" 1731381 T NAGF01 (NIL) -7 NIL NIL) (-738 1721330 1722896 1724481 "NAGE04" 1726137 T NAGE04 (NIL) -7 NIL NIL) (-737 1712499 1714620 1716750 "NAGE02" 1719220 T NAGE02 (NIL) -7 NIL NIL) (-736 1708452 1709399 1710363 "NAGE01" 1711555 T NAGE01 (NIL) -7 NIL NIL) (-735 1706247 1706781 1707339 "NAGD03" 1707914 T NAGD03 (NIL) -7 NIL NIL) (-734 1697997 1699925 1701879 "NAGD02" 1704313 T NAGD02 (NIL) -7 NIL NIL) (-733 1691808 1693233 1694673 "NAGD01" 1696577 T NAGD01 (NIL) -7 NIL NIL) (-732 1688017 1688839 1689676 "NAGC06" 1690991 T NAGC06 (NIL) -7 NIL NIL) (-731 1686482 1686814 1687170 "NAGC05" 1687681 T NAGC05 (NIL) -7 NIL NIL) (-730 1685858 1685977 1686121 "NAGC02" 1686358 T NAGC02 (NIL) -7 NIL NIL) (-729 1684918 1685475 1685515 "NAALG" 1685594 NIL NAALG (NIL T) -9 NIL 1685655) (-728 1684753 1684782 1684872 "NAALG-" 1684877 NIL NAALG- (NIL T T) -8 NIL NIL) (-727 1678703 1679811 1680998 "MULTSQFR" 1683649 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-726 1678022 1678097 1678281 "MULTFACT" 1678615 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-725 1671245 1675110 1675163 "MTSCAT" 1676233 NIL MTSCAT (NIL T T) -9 NIL 1676747) (-724 1670957 1671011 1671103 "MTHING" 1671185 NIL MTHING (NIL T) -7 NIL NIL) (-723 1670749 1670782 1670842 "MSYSCMD" 1670917 T MSYSCMD (NIL) -7 NIL NIL) (-722 1666861 1669504 1669824 "MSET" 1670462 NIL MSET (NIL T) -8 NIL NIL) (-721 1663956 1666422 1666463 "MSETAGG" 1666468 NIL MSETAGG (NIL T) -9 NIL 1666502) (-720 1659839 1661335 1662080 "MRING" 1663256 NIL MRING (NIL T T) -8 NIL NIL) (-719 1659405 1659472 1659603 "MRF2" 1659766 NIL MRF2 (NIL T T T) -7 NIL NIL) (-718 1659023 1659058 1659202 "MRATFAC" 1659364 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-717 1656635 1656930 1657361 "MPRFF" 1658728 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-716 1650695 1656489 1656586 "MPOLY" 1656591 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-715 1650185 1650220 1650428 "MPCPF" 1650654 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-714 1649699 1649742 1649926 "MPC3" 1650136 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-713 1648894 1648975 1649196 "MPC2" 1649614 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-712 1647195 1647532 1647922 "MONOTOOL" 1648554 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-711 1646446 1646737 1646765 "MONOID" 1646984 T MONOID (NIL) -9 NIL 1647131) (-710 1645992 1646111 1646292 "MONOID-" 1646297 NIL MONOID- (NIL T) -8 NIL NIL) (-709 1637042 1642948 1643007 "MONOGEN" 1643681 NIL MONOGEN (NIL T T) -9 NIL 1644137) (-708 1634260 1634995 1635995 "MONOGEN-" 1636114 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-707 1633119 1633539 1633567 "MONADWU" 1633959 T MONADWU (NIL) -9 NIL 1634197) (-706 1632491 1632650 1632898 "MONADWU-" 1632903 NIL MONADWU- (NIL T) -8 NIL NIL) (-705 1631876 1632094 1632122 "MONAD" 1632329 T MONAD (NIL) -9 NIL 1632441) (-704 1631561 1631639 1631771 "MONAD-" 1631776 NIL MONAD- (NIL T) -8 NIL NIL) (-703 1629877 1630474 1630753 "MOEBIUS" 1631314 NIL MOEBIUS (NIL T) -8 NIL NIL) (-702 1629269 1629647 1629687 "MODULE" 1629692 NIL MODULE (NIL T) -9 NIL 1629718) (-701 1628837 1628933 1629123 "MODULE-" 1629128 NIL MODULE- (NIL T T) -8 NIL NIL) (-700 1626552 1627201 1627528 "MODRING" 1628661 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-699 1623538 1624657 1625178 "MODOP" 1626081 NIL MODOP (NIL T T) -8 NIL NIL) (-698 1621725 1622177 1622518 "MODMONOM" 1623337 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-697 1611433 1619917 1620340 "MODMON" 1621353 NIL MODMON (NIL T T) -8 NIL NIL) (-696 1608624 1610277 1610553 "MODFIELD" 1611308 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-695 1607628 1607905 1608095 "MMLFORM" 1608454 T MMLFORM (NIL) -8 NIL NIL) (-694 1607154 1607197 1607376 "MMAP" 1607579 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-693 1605423 1606156 1606197 "MLO" 1606620 NIL MLO (NIL T) -9 NIL 1606862) (-692 1602790 1603305 1603907 "MLIFT" 1604904 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-691 1602181 1602265 1602419 "MKUCFUNC" 1602701 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-690 1601780 1601850 1601973 "MKRECORD" 1602104 NIL MKRECORD (NIL T T) -7 NIL NIL) (-689 1600828 1600989 1601217 "MKFUNC" 1601591 NIL MKFUNC (NIL T) -7 NIL NIL) (-688 1600216 1600320 1600476 "MKFLCFN" 1600711 NIL MKFLCFN (NIL T) -7 NIL NIL) (-687 1599642 1600009 1600098 "MKCHSET" 1600160 NIL MKCHSET (NIL T) -8 NIL NIL) (-686 1598919 1599021 1599206 "MKBCFUNC" 1599535 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-685 1595661 1598473 1598609 "MINT" 1598803 T MINT (NIL) -8 NIL NIL) (-684 1594473 1594716 1594993 "MHROWRED" 1595416 NIL MHROWRED (NIL T) -7 NIL NIL) (-683 1589899 1593008 1593413 "MFLOAT" 1594088 T MFLOAT (NIL) -8 NIL NIL) (-682 1589256 1589332 1589503 "MFINFACT" 1589811 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-681 1585571 1586419 1587303 "MESH" 1588392 T MESH (NIL) -7 NIL NIL) (-680 1583961 1584273 1584626 "MDDFACT" 1585258 NIL MDDFACT (NIL T) -7 NIL NIL) (-679 1580803 1583120 1583161 "MDAGG" 1583416 NIL MDAGG (NIL T) -9 NIL 1583559) (-678 1570581 1580096 1580303 "MCMPLX" 1580616 T MCMPLX (NIL) -8 NIL NIL) (-677 1569722 1569868 1570068 "MCDEN" 1570430 NIL MCDEN (NIL T T) -7 NIL NIL) (-676 1567612 1567882 1568262 "MCALCFN" 1569452 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-675 1566523 1566696 1566937 "MAYBE" 1567410 NIL MAYBE (NIL T) -8 NIL NIL) (-674 1564135 1564658 1565220 "MATSTOR" 1565994 NIL MATSTOR (NIL T) -7 NIL NIL) (-673 1560141 1563507 1563755 "MATRIX" 1563920 NIL MATRIX (NIL T) -8 NIL NIL) (-672 1555910 1556614 1557350 "MATLIN" 1559498 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-671 1546064 1549202 1549279 "MATCAT" 1554159 NIL MATCAT (NIL T T T) -9 NIL 1555576) (-670 1542428 1543441 1544797 "MATCAT-" 1544802 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-669 1541022 1541175 1541508 "MATCAT2" 1542263 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-668 1539134 1539458 1539842 "MAPPKG3" 1540697 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-667 1538115 1538288 1538510 "MAPPKG2" 1538958 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-666 1536614 1536898 1537225 "MAPPKG1" 1537821 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-665 1535720 1536020 1536197 "MAPPAST" 1536457 T MAPPAST (NIL) -8 NIL NIL) (-664 1535331 1535389 1535512 "MAPHACK3" 1535656 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-663 1534923 1534984 1535098 "MAPHACK2" 1535263 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-662 1534361 1534464 1534606 "MAPHACK1" 1534814 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-661 1532467 1533061 1533365 "MAGMA" 1534089 NIL MAGMA (NIL T) -8 NIL NIL) (-660 1531973 1532191 1532282 "MACROAST" 1532396 T MACROAST (NIL) -8 NIL NIL) (-659 1528440 1530212 1530673 "M3D" 1531545 NIL M3D (NIL T) -8 NIL NIL) (-658 1522595 1526810 1526851 "LZSTAGG" 1527633 NIL LZSTAGG (NIL T) -9 NIL 1527928) (-657 1518568 1519726 1521183 "LZSTAGG-" 1521188 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-656 1515682 1516459 1516946 "LWORD" 1518113 NIL LWORD (NIL T) -8 NIL NIL) (-655 1515285 1515486 1515561 "LSTAST" 1515627 T LSTAST (NIL) -8 NIL NIL) (-654 1508486 1515056 1515190 "LSQM" 1515195 NIL LSQM (NIL NIL T) -8 NIL NIL) (-653 1507710 1507849 1508077 "LSPP" 1508341 NIL LSPP (NIL T T T T) -7 NIL NIL) (-652 1505522 1505823 1506279 "LSMP" 1507399 NIL LSMP (NIL T T T T) -7 NIL NIL) (-651 1502301 1502975 1503705 "LSMP1" 1504824 NIL LSMP1 (NIL T) -7 NIL NIL) (-650 1496227 1501469 1501510 "LSAGG" 1501572 NIL LSAGG (NIL T) -9 NIL 1501650) (-649 1492922 1493846 1495059 "LSAGG-" 1495064 NIL LSAGG- (NIL T T) -8 NIL NIL) (-648 1490548 1492066 1492315 "LPOLY" 1492717 NIL LPOLY (NIL T T) -8 NIL NIL) (-647 1490130 1490215 1490338 "LPEFRAC" 1490457 NIL LPEFRAC (NIL T) -7 NIL NIL) (-646 1488477 1489224 1489477 "LO" 1489962 NIL LO (NIL T T T) -8 NIL NIL) (-645 1488129 1488241 1488269 "LOGIC" 1488380 T LOGIC (NIL) -9 NIL 1488461) (-644 1487991 1488014 1488085 "LOGIC-" 1488090 NIL LOGIC- (NIL T) -8 NIL NIL) (-643 1487184 1487324 1487517 "LODOOPS" 1487847 NIL LODOOPS (NIL T T) -7 NIL NIL) (-642 1484642 1487100 1487166 "LODO" 1487171 NIL LODO (NIL T NIL) -8 NIL NIL) (-641 1483180 1483415 1483768 "LODOF" 1484389 NIL LODOF (NIL T T) -7 NIL NIL) (-640 1479623 1482020 1482061 "LODOCAT" 1482499 NIL LODOCAT (NIL T) -9 NIL 1482710) (-639 1479356 1479414 1479541 "LODOCAT-" 1479546 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-638 1476711 1479197 1479315 "LODO2" 1479320 NIL LODO2 (NIL T T) -8 NIL NIL) (-637 1474181 1476648 1476693 "LODO1" 1476698 NIL LODO1 (NIL T) -8 NIL NIL) (-636 1473041 1473206 1473518 "LODEEF" 1474004 NIL LODEEF (NIL T T T) -7 NIL NIL) (-635 1468327 1471171 1471212 "LNAGG" 1472159 NIL LNAGG (NIL T) -9 NIL 1472603) (-634 1467474 1467688 1468030 "LNAGG-" 1468035 NIL LNAGG- (NIL T T) -8 NIL NIL) (-633 1463637 1464399 1465038 "LMOPS" 1466889 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-632 1463032 1463394 1463435 "LMODULE" 1463496 NIL LMODULE (NIL T) -9 NIL 1463538) (-631 1460278 1462677 1462800 "LMDICT" 1462942 NIL LMDICT (NIL T) -8 NIL NIL) (-630 1460004 1460186 1460246 "LITERAL" 1460251 NIL LITERAL (NIL T) -8 NIL NIL) (-629 1453231 1458950 1459248 "LIST" 1459739 NIL LIST (NIL T) -8 NIL NIL) (-628 1452756 1452830 1452969 "LIST3" 1453151 NIL LIST3 (NIL T T T) -7 NIL NIL) (-627 1451763 1451941 1452169 "LIST2" 1452574 NIL LIST2 (NIL T T) -7 NIL NIL) (-626 1449897 1450209 1450608 "LIST2MAP" 1451410 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-625 1448647 1449283 1449324 "LINEXP" 1449579 NIL LINEXP (NIL T) -9 NIL 1449728) (-624 1447294 1447554 1447851 "LINDEP" 1448399 NIL LINDEP (NIL T T) -7 NIL NIL) (-623 1444061 1444780 1445557 "LIMITRF" 1446549 NIL LIMITRF (NIL T) -7 NIL NIL) (-622 1442337 1442632 1443048 "LIMITPS" 1443756 NIL LIMITPS (NIL T T) -7 NIL NIL) (-621 1436792 1441848 1442076 "LIE" 1442158 NIL LIE (NIL T T) -8 NIL NIL) (-620 1435841 1436284 1436324 "LIECAT" 1436464 NIL LIECAT (NIL T) -9 NIL 1436615) (-619 1435682 1435709 1435797 "LIECAT-" 1435802 NIL LIECAT- (NIL T T) -8 NIL NIL) (-618 1428294 1435131 1435296 "LIB" 1435537 T LIB (NIL) -8 NIL NIL) (-617 1423931 1424812 1425747 "LGROBP" 1427411 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-616 1421797 1422071 1422433 "LF" 1423652 NIL LF (NIL T T) -7 NIL NIL) (-615 1420637 1421329 1421357 "LFCAT" 1421564 T LFCAT (NIL) -9 NIL 1421703) (-614 1417541 1418169 1418857 "LEXTRIPK" 1420001 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-613 1414312 1415111 1415614 "LEXP" 1417121 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-612 1413815 1414033 1414125 "LETAST" 1414240 T LETAST (NIL) -8 NIL NIL) (-611 1412213 1412526 1412927 "LEADCDET" 1413497 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-610 1411403 1411477 1411706 "LAZM3PK" 1412134 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-609 1406359 1409480 1410018 "LAUPOL" 1410915 NIL LAUPOL (NIL T T) -8 NIL NIL) (-608 1405924 1405968 1406136 "LAPLACE" 1406309 NIL LAPLACE (NIL T T) -7 NIL NIL) (-607 1403898 1405025 1405276 "LA" 1405757 NIL LA (NIL T T T) -8 NIL NIL) (-606 1402999 1403549 1403590 "LALG" 1403652 NIL LALG (NIL T) -9 NIL 1403711) (-605 1402713 1402772 1402908 "LALG-" 1402913 NIL LALG- (NIL T T) -8 NIL NIL) (-604 1402548 1402572 1402613 "KVTFROM" 1402675 NIL KVTFROM (NIL T) -9 NIL NIL) (-603 1401348 1401765 1401994 "KTVLOGIC" 1402339 T KTVLOGIC (NIL) -8 NIL NIL) (-602 1401183 1401207 1401248 "KRCFROM" 1401310 NIL KRCFROM (NIL T) -9 NIL NIL) (-601 1400087 1400274 1400573 "KOVACIC" 1400983 NIL KOVACIC (NIL T T) -7 NIL NIL) (-600 1399922 1399946 1399987 "KONVERT" 1400049 NIL KONVERT (NIL T) -9 NIL NIL) (-599 1399757 1399781 1399822 "KOERCE" 1399884 NIL KOERCE (NIL T) -9 NIL NIL) (-598 1397491 1398251 1398644 "KERNEL" 1399396 NIL KERNEL (NIL T) -8 NIL NIL) (-597 1396993 1397074 1397204 "KERNEL2" 1397405 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-596 1390844 1395532 1395586 "KDAGG" 1395963 NIL KDAGG (NIL T T) -9 NIL 1396169) (-595 1390373 1390497 1390702 "KDAGG-" 1390707 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-594 1383548 1390034 1390189 "KAFILE" 1390251 NIL KAFILE (NIL T) -8 NIL NIL) (-593 1378003 1383059 1383287 "JORDAN" 1383369 NIL JORDAN (NIL T T) -8 NIL NIL) (-592 1377409 1377652 1377773 "JOINAST" 1377902 T JOINAST (NIL) -8 NIL NIL) (-591 1377138 1377197 1377284 "JAVACODE" 1377342 T JAVACODE (NIL) -8 NIL NIL) (-590 1373437 1375343 1375397 "IXAGG" 1376326 NIL IXAGG (NIL T T) -9 NIL 1376785) (-589 1372356 1372662 1373081 "IXAGG-" 1373086 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-588 1367936 1372278 1372337 "IVECTOR" 1372342 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-587 1366702 1366939 1367205 "ITUPLE" 1367703 NIL ITUPLE (NIL T) -8 NIL NIL) (-586 1365138 1365315 1365621 "ITRIGMNP" 1366524 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-585 1363883 1364087 1364370 "ITFUN3" 1364914 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-584 1363515 1363572 1363681 "ITFUN2" 1363820 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-583 1361352 1362377 1362676 "ITAYLOR" 1363249 NIL ITAYLOR (NIL T) -8 NIL NIL) (-582 1350334 1355489 1356652 "ISUPS" 1360222 NIL ISUPS (NIL T) -8 NIL NIL) (-581 1349438 1349578 1349814 "ISUMP" 1350181 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-580 1344702 1349239 1349318 "ISTRING" 1349391 NIL ISTRING (NIL NIL) -8 NIL NIL) (-579 1344205 1344423 1344515 "ISAST" 1344630 T ISAST (NIL) -8 NIL NIL) (-578 1343415 1343496 1343712 "IRURPK" 1344119 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-577 1342351 1342552 1342792 "IRSN" 1343195 T IRSN (NIL) -7 NIL NIL) (-576 1340380 1340735 1341171 "IRRF2F" 1341989 NIL IRRF2F (NIL T) -7 NIL NIL) (-575 1340127 1340165 1340241 "IRREDFFX" 1340336 NIL IRREDFFX (NIL T) -7 NIL NIL) (-574 1338742 1339001 1339300 "IROOT" 1339860 NIL IROOT (NIL T) -7 NIL NIL) (-573 1335374 1336426 1337118 "IR" 1338082 NIL IR (NIL T) -8 NIL NIL) (-572 1332987 1333482 1334048 "IR2" 1334852 NIL IR2 (NIL T T) -7 NIL NIL) (-571 1332059 1332172 1332393 "IR2F" 1332870 NIL IR2F (NIL T T) -7 NIL NIL) (-570 1331850 1331884 1331944 "IPRNTPK" 1332019 T IPRNTPK (NIL) -7 NIL NIL) (-569 1328469 1331739 1331808 "IPF" 1331813 NIL IPF (NIL NIL) -8 NIL NIL) (-568 1326832 1328394 1328451 "IPADIC" 1328456 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-567 1326163 1326390 1326527 "IP4ADDR" 1326715 T IP4ADDR (NIL) -8 NIL NIL) (-566 1325663 1325867 1325977 "IOMODE" 1326073 T IOMODE (NIL) -8 NIL NIL) (-565 1325021 1325260 1325387 "IOBFILE" 1325556 T IOBFILE (NIL) -8 NIL NIL) (-564 1324785 1324925 1324953 "IOBCON" 1324958 T IOBCON (NIL) -9 NIL 1324979) (-563 1324282 1324340 1324530 "INVLAPLA" 1324721 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1313931 1316284 1318670 "INTTR" 1321946 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1310275 1311017 1311881 "INTTOOLS" 1313116 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1309861 1309952 1310069 "INTSLPE" 1310178 T INTSLPE (NIL) -7 NIL NIL) (-559 1307856 1309784 1309843 "INTRVL" 1309848 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1305458 1305970 1306545 "INTRF" 1307341 NIL INTRF (NIL T) -7 NIL NIL) (-557 1304869 1304966 1305108 "INTRET" 1305356 NIL INTRET (NIL T) -7 NIL NIL) (-556 1302866 1303255 1303725 "INTRAT" 1304477 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1300094 1300677 1301303 "INTPM" 1302351 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1296797 1297396 1298141 "INTPAF" 1299480 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1291976 1292938 1293989 "INTPACK" 1295766 T INTPACK (NIL) -7 NIL NIL) (-552 1288888 1291705 1291832 "INT" 1291869 T INT (NIL) -8 NIL NIL) (-551 1288140 1288292 1288500 "INTHERTR" 1288730 NIL INTHERTR (NIL T T) -7 NIL NIL) (-550 1287579 1287659 1287847 "INTHERAL" 1288054 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-549 1285425 1285868 1286325 "INTHEORY" 1287142 T INTHEORY (NIL) -7 NIL NIL) (-548 1276733 1278354 1280133 "INTG0" 1283777 NIL INTG0 (NIL T T T) -7 NIL NIL) (-547 1257306 1262096 1266906 "INTFTBL" 1271943 T INTFTBL (NIL) -8 NIL NIL) (-546 1256555 1256693 1256866 "INTFACT" 1257165 NIL INTFACT (NIL T) -7 NIL NIL) (-545 1253940 1254386 1254950 "INTEF" 1256109 NIL INTEF (NIL T T) -7 NIL NIL) (-544 1252442 1253147 1253175 "INTDOM" 1253476 T INTDOM (NIL) -9 NIL 1253683) (-543 1251811 1251985 1252227 "INTDOM-" 1252232 NIL INTDOM- (NIL T) -8 NIL NIL) (-542 1248344 1250230 1250284 "INTCAT" 1251083 NIL INTCAT (NIL T) -9 NIL 1251403) (-541 1247817 1247919 1248047 "INTBIT" 1248236 T INTBIT (NIL) -7 NIL NIL) (-540 1246488 1246642 1246956 "INTALG" 1247662 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-539 1245945 1246035 1246205 "INTAF" 1246392 NIL INTAF (NIL T T) -7 NIL NIL) (-538 1239399 1245755 1245895 "INTABL" 1245900 NIL INTABL (NIL T T T) -8 NIL NIL) (-537 1234452 1237123 1237151 "INS" 1238085 T INS (NIL) -9 NIL 1238750) (-536 1231692 1232463 1233437 "INS-" 1233510 NIL INS- (NIL T) -8 NIL NIL) (-535 1230467 1230694 1230992 "INPSIGN" 1231445 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1229585 1229702 1229899 "INPRODPF" 1230347 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1228479 1228596 1228833 "INPRODFF" 1229465 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1227479 1227631 1227891 "INNMFACT" 1228315 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1226676 1226773 1226961 "INMODGCD" 1227378 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1225185 1225429 1225753 "INFSP" 1226421 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1224369 1224486 1224669 "INFPROD0" 1225065 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1221251 1222434 1222949 "INFORM" 1223862 T INFORM (NIL) -8 NIL NIL) (-527 1220861 1220921 1221019 "INFORM1" 1221186 NIL INFORM1 (NIL T) -7 NIL NIL) (-526 1220384 1220473 1220587 "INFINITY" 1220767 T INFINITY (NIL) -7 NIL NIL) (-525 1219829 1220102 1220210 "INETCLTS" 1220296 T INETCLTS (NIL) -8 NIL NIL) (-524 1218446 1218695 1219016 "INEP" 1219577 NIL INEP (NIL T T T) -7 NIL NIL) (-523 1217722 1218343 1218408 "INDE" 1218413 NIL INDE (NIL T) -8 NIL NIL) (-522 1217286 1217354 1217471 "INCRMAPS" 1217649 NIL INCRMAPS (NIL T) -7 NIL NIL) (-521 1216304 1216555 1216761 "INBFILE" 1217100 T INBFILE (NIL) -8 NIL NIL) (-520 1211615 1212540 1213484 "INBFF" 1215392 NIL INBFF (NIL T) -7 NIL NIL) (-519 1211284 1211360 1211388 "INBCON" 1211521 T INBCON (NIL) -9 NIL 1211599) (-518 1211124 1211159 1211235 "INBCON-" 1211240 NIL INBCON- (NIL T) -8 NIL NIL) (-517 1210626 1210845 1210937 "INAST" 1211052 T INAST (NIL) -8 NIL NIL) (-516 1210080 1210305 1210411 "IMPTAST" 1210540 T IMPTAST (NIL) -8 NIL NIL) (-515 1206574 1209924 1210028 "IMATRIX" 1210033 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-514 1205286 1205409 1205724 "IMATQF" 1206430 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-513 1203506 1203733 1204070 "IMATLIN" 1205042 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-512 1198132 1203430 1203488 "ILIST" 1203493 NIL ILIST (NIL T NIL) -8 NIL NIL) (-511 1196085 1197992 1198105 "IIARRAY2" 1198110 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-510 1191518 1195996 1196060 "IFF" 1196065 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-509 1190892 1191135 1191251 "IFAST" 1191422 T IFAST (NIL) -8 NIL NIL) (-508 1185935 1190184 1190372 "IFARRAY" 1190749 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-507 1185142 1185839 1185912 "IFAMON" 1185917 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-506 1184726 1184791 1184845 "IEVALAB" 1185052 NIL IEVALAB (NIL T T) -9 NIL NIL) (-505 1184401 1184469 1184629 "IEVALAB-" 1184634 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-504 1184059 1184315 1184378 "IDPO" 1184383 NIL IDPO (NIL T T) -8 NIL NIL) (-503 1183336 1183948 1184023 "IDPOAMS" 1184028 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1182670 1183225 1183300 "IDPOAM" 1183305 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1181755 1182005 1182058 "IDPC" 1182471 NIL IDPC (NIL T T) -9 NIL 1182620) (-500 1181251 1181647 1181720 "IDPAM" 1181725 NIL IDPAM (NIL T T) -8 NIL NIL) (-499 1180654 1181143 1181216 "IDPAG" 1181221 NIL IDPAG (NIL T T) -8 NIL NIL) (-498 1180384 1180569 1180619 "IDENT" 1180624 T IDENT (NIL) -8 NIL NIL) (-497 1176639 1177487 1178382 "IDECOMP" 1179541 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-496 1169512 1170562 1171609 "IDEAL" 1175675 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-495 1168676 1168788 1168987 "ICDEN" 1169396 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-494 1167775 1168156 1168303 "ICARD" 1168549 T ICARD (NIL) -8 NIL NIL) (-493 1165835 1166148 1166553 "IBPTOOLS" 1167452 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-492 1161469 1165455 1165568 "IBITS" 1165754 NIL IBITS (NIL NIL) -8 NIL NIL) (-491 1158192 1158768 1159463 "IBATOOL" 1160886 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-490 1155972 1156433 1156966 "IBACHIN" 1157727 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-489 1153849 1155818 1155921 "IARRAY2" 1155926 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-488 1150002 1153775 1153832 "IARRAY1" 1153837 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-487 1143995 1148414 1148895 "IAN" 1149541 T IAN (NIL) -8 NIL NIL) (-486 1143506 1143563 1143736 "IALGFACT" 1143932 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-485 1143034 1143147 1143175 "HYPCAT" 1143382 T HYPCAT (NIL) -9 NIL NIL) (-484 1142572 1142689 1142875 "HYPCAT-" 1142880 NIL HYPCAT- (NIL T) -8 NIL NIL) (-483 1142194 1142367 1142450 "HOSTNAME" 1142509 T HOSTNAME (NIL) -8 NIL NIL) (-482 1138873 1140204 1140245 "HOAGG" 1141226 NIL HOAGG (NIL T) -9 NIL 1141905) (-481 1137467 1137866 1138392 "HOAGG-" 1138397 NIL HOAGG- (NIL T T) -8 NIL NIL) (-480 1131353 1136908 1137074 "HEXADEC" 1137321 T HEXADEC (NIL) -8 NIL NIL) (-479 1130101 1130323 1130586 "HEUGCD" 1131130 NIL HEUGCD (NIL T) -7 NIL NIL) (-478 1129204 1129938 1130068 "HELLFDIV" 1130073 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-477 1127432 1128981 1129069 "HEAP" 1129148 NIL HEAP (NIL T) -8 NIL NIL) (-476 1126723 1126984 1127118 "HEADAST" 1127318 T HEADAST (NIL) -8 NIL NIL) (-475 1120643 1126638 1126700 "HDP" 1126705 NIL HDP (NIL NIL T) -8 NIL NIL) (-474 1114394 1120278 1120430 "HDMP" 1120544 NIL HDMP (NIL NIL T) -8 NIL NIL) (-473 1113719 1113858 1114022 "HB" 1114250 T HB (NIL) -7 NIL NIL) (-472 1107216 1113565 1113669 "HASHTBL" 1113674 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-471 1106719 1106937 1107029 "HASAST" 1107144 T HASAST (NIL) -8 NIL NIL) (-470 1104531 1106341 1106523 "HACKPI" 1106557 T HACKPI (NIL) -8 NIL NIL) (-469 1100226 1104384 1104497 "GTSET" 1104502 NIL GTSET (NIL T T T T) -8 NIL NIL) (-468 1093752 1100104 1100202 "GSTBL" 1100207 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-467 1086065 1092783 1093048 "GSERIES" 1093543 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-466 1085232 1085623 1085651 "GROUP" 1085854 T GROUP (NIL) -9 NIL 1085988) (-465 1084598 1084757 1085008 "GROUP-" 1085013 NIL GROUP- (NIL T) -8 NIL NIL) (-464 1082967 1083286 1083673 "GROEBSOL" 1084275 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-463 1081907 1082169 1082220 "GRMOD" 1082749 NIL GRMOD (NIL T T) -9 NIL 1082917) (-462 1081675 1081711 1081839 "GRMOD-" 1081844 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-461 1077000 1078029 1079029 "GRIMAGE" 1080695 T GRIMAGE (NIL) -8 NIL NIL) (-460 1075467 1075727 1076051 "GRDEF" 1076696 T GRDEF (NIL) -7 NIL NIL) (-459 1074911 1075027 1075168 "GRAY" 1075346 T GRAY (NIL) -7 NIL NIL) (-458 1074142 1074522 1074573 "GRALG" 1074726 NIL GRALG (NIL T T) -9 NIL 1074819) (-457 1073803 1073876 1074039 "GRALG-" 1074044 NIL GRALG- (NIL T T T) -8 NIL NIL) (-456 1070607 1073388 1073566 "GPOLSET" 1073710 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-455 1069961 1070018 1070276 "GOSPER" 1070544 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-454 1065720 1066399 1066925 "GMODPOL" 1069660 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-453 1064725 1064909 1065147 "GHENSEL" 1065532 NIL GHENSEL (NIL T T) -7 NIL NIL) (-452 1058776 1059619 1060646 "GENUPS" 1063809 NIL GENUPS (NIL T T) -7 NIL NIL) (-451 1058473 1058524 1058613 "GENUFACT" 1058719 NIL GENUFACT (NIL T) -7 NIL NIL) (-450 1057885 1057962 1058127 "GENPGCD" 1058391 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-449 1057359 1057394 1057607 "GENMFACT" 1057844 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-448 1055927 1056182 1056489 "GENEEZ" 1057102 NIL GENEEZ (NIL T T) -7 NIL NIL) (-447 1049840 1055538 1055700 "GDMP" 1055850 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-446 1039217 1043611 1044717 "GCNAALG" 1048823 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-445 1037679 1038507 1038535 "GCDDOM" 1038790 T GCDDOM (NIL) -9 NIL 1038947) (-444 1037149 1037276 1037491 "GCDDOM-" 1037496 NIL GCDDOM- (NIL T) -8 NIL NIL) (-443 1035821 1036006 1036310 "GB" 1036928 NIL GB (NIL T T T T) -7 NIL NIL) (-442 1024441 1026767 1029159 "GBINTERN" 1033512 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1022278 1022570 1022991 "GBF" 1024116 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1021059 1021224 1021491 "GBEUCLID" 1022094 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1020408 1020533 1020682 "GAUSSFAC" 1020930 T GAUSSFAC (NIL) -7 NIL NIL) (-438 1018775 1019077 1019391 "GALUTIL" 1020127 NIL GALUTIL (NIL T) -7 NIL NIL) (-437 1017083 1017357 1017681 "GALPOLYU" 1018502 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-436 1014448 1014738 1015145 "GALFACTU" 1016780 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-435 1006254 1007753 1009361 "GALFACT" 1012880 NIL GALFACT (NIL T) -7 NIL NIL) (-434 1003642 1004300 1004328 "FVFUN" 1005484 T FVFUN (NIL) -9 NIL 1006204) (-433 1002908 1003090 1003118 "FVC" 1003409 T FVC (NIL) -9 NIL 1003592) (-432 1002550 1002705 1002786 "FUNCTION" 1002860 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-431 1000220 1000771 1001260 "FT" 1002081 T FT (NIL) -8 NIL NIL) (-430 999038 999521 999724 "FTEM" 1000037 T FTEM (NIL) -8 NIL NIL) (-429 997294 997583 997987 "FSUPFACT" 998729 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-428 995691 995980 996312 "FST" 996982 T FST (NIL) -8 NIL NIL) (-427 994862 994968 995163 "FSRED" 995573 NIL FSRED (NIL T T) -7 NIL NIL) (-426 993541 993796 994150 "FSPRMELT" 994577 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-425 990626 991064 991563 "FSPECF" 993104 NIL FSPECF (NIL T T) -7 NIL NIL) (-424 973068 981510 981550 "FS" 985398 NIL FS (NIL T) -9 NIL 987687) (-423 961718 964708 968764 "FS-" 969061 NIL FS- (NIL T T) -8 NIL NIL) (-422 961232 961286 961463 "FSINT" 961659 NIL FSINT (NIL T T) -7 NIL NIL) (-421 959559 960225 960528 "FSERIES" 961011 NIL FSERIES (NIL T T) -8 NIL NIL) (-420 958573 958689 958920 "FSCINT" 959439 NIL FSCINT (NIL T T) -7 NIL NIL) (-419 954807 957517 957558 "FSAGG" 957928 NIL FSAGG (NIL T) -9 NIL 958187) (-418 952569 953170 953966 "FSAGG-" 954061 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 951611 951754 951981 "FSAGG2" 952422 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-416 949266 949545 950099 "FS2UPS" 951329 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-415 948848 948891 949046 "FS2" 949217 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 947705 947876 948185 "FS2EXPXP" 948673 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-413 947131 947246 947398 "FRUTIL" 947585 NIL FRUTIL (NIL T) -7 NIL NIL) (-412 938586 942626 943984 "FR" 945805 NIL FR (NIL T) -8 NIL NIL) (-411 933661 936304 936344 "FRNAALG" 937740 NIL FRNAALG (NIL T) -9 NIL 938347) (-410 929339 930410 931685 "FRNAALG-" 932435 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 928977 929020 929147 "FRNAAF2" 929290 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 927384 927831 928126 "FRMOD" 928789 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 925163 925767 926084 "FRIDEAL" 927175 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-406 924358 924445 924734 "FRIDEAL2" 925070 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-405 923600 924014 924055 "FRETRCT" 924060 NIL FRETRCT (NIL T) -9 NIL 924236) (-404 922712 922943 923294 "FRETRCT-" 923299 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 919962 921138 921197 "FRAMALG" 922079 NIL FRAMALG (NIL T T) -9 NIL 922371) (-402 918096 918551 919181 "FRAMALG-" 919404 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 912054 917571 917847 "FRAC" 917852 NIL FRAC (NIL T) -8 NIL NIL) (-400 911690 911747 911854 "FRAC2" 911991 NIL FRAC2 (NIL T T) -7 NIL NIL) (-399 911326 911383 911490 "FR2" 911627 NIL FR2 (NIL T T) -7 NIL NIL) (-398 906055 908903 908931 "FPS" 910050 T FPS (NIL) -9 NIL 910607) (-397 905504 905613 905777 "FPS-" 905923 NIL FPS- (NIL T) -8 NIL NIL) (-396 903010 904645 904673 "FPC" 904898 T FPC (NIL) -9 NIL 905040) (-395 902803 902843 902940 "FPC-" 902945 NIL FPC- (NIL T) -8 NIL NIL) (-394 901681 902291 902332 "FPATMAB" 902337 NIL FPATMAB (NIL T) -9 NIL 902489) (-393 899381 899857 900283 "FPARFRAC" 901318 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-392 894774 895273 895955 "FORTRAN" 898813 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-391 892490 892990 893529 "FORT" 894255 T FORT (NIL) -7 NIL NIL) (-390 890166 890728 890756 "FORTFN" 891816 T FORTFN (NIL) -9 NIL 892440) (-389 889930 889980 890008 "FORTCAT" 890067 T FORTCAT (NIL) -9 NIL 890129) (-388 887990 888473 888872 "FORMULA" 889551 T FORMULA (NIL) -8 NIL NIL) (-387 887778 887808 887877 "FORMULA1" 887954 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 887301 887353 887526 "FORDER" 887720 NIL FORDER (NIL T T T T) -7 NIL NIL) (-385 886397 886561 886754 "FOP" 887128 T FOP (NIL) -7 NIL NIL) (-384 885005 885677 885851 "FNLA" 886279 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-383 883673 884062 884090 "FNCAT" 884662 T FNCAT (NIL) -9 NIL 884955) (-382 883239 883632 883660 "FNAME" 883665 T FNAME (NIL) -8 NIL NIL) (-381 881937 882866 882894 "FMTC" 882899 T FMTC (NIL) -9 NIL 882935) (-380 878299 879460 880089 "FMONOID" 881341 NIL FMONOID (NIL T) -8 NIL NIL) (-379 877518 878041 878190 "FM" 878195 NIL FM (NIL T T) -8 NIL NIL) (-378 874942 875588 875616 "FMFUN" 876760 T FMFUN (NIL) -9 NIL 877468) (-377 874211 874392 874420 "FMC" 874710 T FMC (NIL) -9 NIL 874892) (-376 871423 872257 872311 "FMCAT" 873506 NIL FMCAT (NIL T T) -9 NIL 874001) (-375 870316 871189 871289 "FM1" 871368 NIL FM1 (NIL T T) -8 NIL NIL) (-374 868090 868506 869000 "FLOATRP" 869867 NIL FLOATRP (NIL T) -7 NIL NIL) (-373 861641 865746 866376 "FLOAT" 867480 T FLOAT (NIL) -8 NIL NIL) (-372 859079 859579 860157 "FLOATCP" 861108 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 857908 858712 858753 "FLINEXP" 858758 NIL FLINEXP (NIL T) -9 NIL 858851) (-370 857062 857297 857625 "FLINEXP-" 857630 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-369 856138 856282 856506 "FLASORT" 856914 NIL FLASORT (NIL T T) -7 NIL NIL) (-368 853355 854197 854249 "FLALG" 855476 NIL FLALG (NIL T T) -9 NIL 855943) (-367 847139 850841 850882 "FLAGG" 852144 NIL FLAGG (NIL T) -9 NIL 852796) (-366 845865 846204 846694 "FLAGG-" 846699 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 844907 845050 845277 "FLAGG2" 845718 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-364 841920 842894 842953 "FINRALG" 844081 NIL FINRALG (NIL T T) -9 NIL 844589) (-363 841080 841309 841648 "FINRALG-" 841653 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-362 840486 840699 840727 "FINITE" 840923 T FINITE (NIL) -9 NIL 841030) (-361 832944 835105 835145 "FINAALG" 838812 NIL FINAALG (NIL T) -9 NIL 840265) (-360 828285 829326 830470 "FINAALG-" 831849 NIL FINAALG- (NIL T T) -8 NIL NIL) (-359 827680 828040 828143 "FILE" 828215 NIL FILE (NIL T) -8 NIL NIL) (-358 826364 826676 826730 "FILECAT" 827414 NIL FILECAT (NIL T T) -9 NIL 827630) (-357 824284 825778 825806 "FIELD" 825846 T FIELD (NIL) -9 NIL 825926) (-356 822904 823289 823800 "FIELD-" 823805 NIL FIELD- (NIL T) -8 NIL NIL) (-355 820782 821539 821886 "FGROUP" 822590 NIL FGROUP (NIL T) -8 NIL NIL) (-354 819872 820036 820256 "FGLMICPK" 820614 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-353 815739 819797 819854 "FFX" 819859 NIL FFX (NIL T NIL) -8 NIL NIL) (-352 815340 815401 815536 "FFSLPE" 815672 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-351 811333 812112 812908 "FFPOLY" 814576 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 810837 810873 811082 "FFPOLY2" 811291 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 806723 810756 810819 "FFP" 810824 NIL FFP (NIL T NIL) -8 NIL NIL) (-348 802156 806634 806698 "FF" 806703 NIL FF (NIL NIL NIL) -8 NIL NIL) (-347 797317 801499 801689 "FFNBX" 802010 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 792291 796452 796710 "FFNBP" 797171 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 786959 791575 791786 "FFNB" 792124 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 785791 785989 786304 "FFINTBAS" 786756 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 782075 784250 784278 "FFIELDC" 784898 T FFIELDC (NIL) -9 NIL 785274) (-342 780738 781108 781605 "FFIELDC-" 781610 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 780308 780353 780477 "FFHOM" 780680 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 778006 778490 779007 "FFF" 779823 NIL FFF (NIL T) -7 NIL NIL) (-339 773659 777748 777849 "FFCGX" 777949 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 769326 773391 773498 "FFCGP" 773602 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 764544 769053 769161 "FFCG" 769262 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 746602 755638 755724 "FFCAT" 760889 NIL FFCAT (NIL T T T) -9 NIL 762340) (-335 741800 742847 744161 "FFCAT-" 745391 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-334 741211 741254 741489 "FFCAT2" 741751 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-333 730423 734183 735403 "FEXPR" 740063 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-332 729423 729858 729899 "FEVALAB" 729983 NIL FEVALAB (NIL T) -9 NIL 730244) (-331 728582 728792 729130 "FEVALAB-" 729135 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-330 727175 727965 728168 "FDIV" 728481 NIL FDIV (NIL T T T T) -8 NIL NIL) (-329 724241 724956 725071 "FDIVCAT" 726639 NIL FDIVCAT (NIL T T T T) -9 NIL 727076) (-328 724003 724030 724200 "FDIVCAT-" 724205 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 723223 723310 723587 "FDIV2" 723910 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 721909 722168 722457 "FCPAK1" 722954 T FCPAK1 (NIL) -7 NIL NIL) (-325 721037 721409 721550 "FCOMP" 721800 NIL FCOMP (NIL T) -8 NIL NIL) (-324 704672 708086 711647 "FC" 717496 T FC (NIL) -8 NIL NIL) (-323 697325 701306 701346 "FAXF" 703148 NIL FAXF (NIL T) -9 NIL 703840) (-322 694604 695259 696084 "FAXF-" 696549 NIL FAXF- (NIL T T) -8 NIL NIL) (-321 689704 693980 694156 "FARRAY" 694461 NIL FARRAY (NIL T) -8 NIL NIL) (-320 685111 687143 687196 "FAMR" 688219 NIL FAMR (NIL T T) -9 NIL 688679) (-319 684001 684303 684738 "FAMR-" 684743 NIL FAMR- (NIL T T T) -8 NIL NIL) (-318 683197 683923 683976 "FAMONOID" 683981 NIL FAMONOID (NIL T) -8 NIL NIL) (-317 681027 681711 681764 "FAMONC" 682705 NIL FAMONC (NIL T T) -9 NIL 683091) (-316 679719 680781 680918 "FAGROUP" 680923 NIL FAGROUP (NIL T) -8 NIL NIL) (-315 677514 677833 678236 "FACUTIL" 679400 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-314 676613 676798 677020 "FACTFUNC" 677324 NIL FACTFUNC (NIL T) -7 NIL NIL) (-313 669018 675864 676076 "EXPUPXS" 676469 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-312 666501 667041 667627 "EXPRTUBE" 668452 T EXPRTUBE (NIL) -7 NIL NIL) (-311 662695 663287 664024 "EXPRODE" 665840 NIL EXPRODE (NIL T T) -7 NIL NIL) (-310 648069 661350 661778 "EXPR" 662299 NIL EXPR (NIL T) -8 NIL NIL) (-309 642476 643063 643876 "EXPR2UPS" 647367 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 642112 642169 642276 "EXPR2" 642413 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 633517 641244 641541 "EXPEXPAN" 641949 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-306 633344 633474 633503 "EXIT" 633508 T EXIT (NIL) -8 NIL NIL) (-305 632851 633068 633159 "EXITAST" 633273 T EXITAST (NIL) -8 NIL NIL) (-304 632478 632540 632653 "EVALCYC" 632783 NIL EVALCYC (NIL T) -7 NIL NIL) (-303 632019 632137 632178 "EVALAB" 632348 NIL EVALAB (NIL T) -9 NIL 632452) (-302 631500 631622 631843 "EVALAB-" 631848 NIL EVALAB- (NIL T T) -8 NIL NIL) (-301 629003 630271 630299 "EUCDOM" 630854 T EUCDOM (NIL) -9 NIL 631204) (-300 627408 627850 628440 "EUCDOM-" 628445 NIL EUCDOM- (NIL T) -8 NIL NIL) (-299 614948 617706 620456 "ESTOOLS" 624678 T ESTOOLS (NIL) -7 NIL NIL) (-298 614580 614637 614746 "ESTOOLS2" 614885 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 614331 614373 614453 "ESTOOLS1" 614532 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 608256 609984 610012 "ES" 612780 T ES (NIL) -9 NIL 614189) (-295 603203 604490 606307 "ES-" 606471 NIL ES- (NIL T) -8 NIL NIL) (-294 599578 600338 601118 "ESCONT" 602443 T ESCONT (NIL) -7 NIL NIL) (-293 599323 599355 599437 "ESCONT1" 599540 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-292 598998 599048 599148 "ES2" 599267 NIL ES2 (NIL T T) -7 NIL NIL) (-291 598628 598686 598795 "ES1" 598934 NIL ES1 (NIL T T) -7 NIL NIL) (-290 597844 597973 598149 "ERROR" 598472 T ERROR (NIL) -7 NIL NIL) (-289 591347 597703 597794 "EQTBL" 597799 NIL EQTBL (NIL T T) -8 NIL NIL) (-288 583904 586661 588110 "EQ" 589931 NIL -3357 (NIL T) -8 NIL NIL) (-287 583536 583593 583702 "EQ2" 583841 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 578828 579874 580967 "EP" 582475 NIL EP (NIL T) -7 NIL NIL) (-285 577410 577711 578028 "ENV" 578531 T ENV (NIL) -8 NIL NIL) (-284 576609 577129 577157 "ENTIRER" 577162 T ENTIRER (NIL) -9 NIL 577208) (-283 573111 574564 574934 "EMR" 576408 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-282 572255 572440 572494 "ELTAGG" 572874 NIL ELTAGG (NIL T T) -9 NIL 573085) (-281 571974 572036 572177 "ELTAGG-" 572182 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-280 571763 571792 571846 "ELTAB" 571930 NIL ELTAB (NIL T T) -9 NIL NIL) (-279 570889 571035 571234 "ELFUTS" 571614 NIL ELFUTS (NIL T T) -7 NIL NIL) (-278 570631 570687 570715 "ELEMFUN" 570820 T ELEMFUN (NIL) -9 NIL NIL) (-277 570501 570522 570590 "ELEMFUN-" 570595 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-276 565392 568601 568642 "ELAGG" 569582 NIL ELAGG (NIL T) -9 NIL 570045) (-275 563677 564111 564774 "ELAGG-" 564779 NIL ELAGG- (NIL T T) -8 NIL NIL) (-274 562334 562614 562909 "ELABEXPR" 563402 T ELABEXPR (NIL) -8 NIL NIL) (-273 555200 557001 557828 "EFUPXS" 561610 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-272 548650 550451 551261 "EFULS" 554476 NIL EFULS (NIL T T T) -8 NIL NIL) (-271 546072 546430 546909 "EFSTRUC" 548282 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-270 535144 536709 538269 "EF" 544587 NIL EF (NIL T T) -7 NIL NIL) (-269 534245 534629 534778 "EAB" 535015 T EAB (NIL) -8 NIL NIL) (-268 533454 534204 534232 "E04UCFA" 534237 T E04UCFA (NIL) -8 NIL NIL) (-267 532663 533413 533441 "E04NAFA" 533446 T E04NAFA (NIL) -8 NIL NIL) (-266 531872 532622 532650 "E04MBFA" 532655 T E04MBFA (NIL) -8 NIL NIL) (-265 531081 531831 531859 "E04JAFA" 531864 T E04JAFA (NIL) -8 NIL NIL) (-264 530292 531040 531068 "E04GCFA" 531073 T E04GCFA (NIL) -8 NIL NIL) (-263 529503 530251 530279 "E04FDFA" 530284 T E04FDFA (NIL) -8 NIL NIL) (-262 528712 529462 529490 "E04DGFA" 529495 T E04DGFA (NIL) -8 NIL NIL) (-261 522890 524237 525601 "E04AGNT" 527368 T E04AGNT (NIL) -7 NIL NIL) (-260 521614 522094 522134 "DVARCAT" 522609 NIL DVARCAT (NIL T) -9 NIL 522808) (-259 520818 521030 521344 "DVARCAT-" 521349 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-258 513718 520617 520746 "DSMP" 520751 NIL DSMP (NIL T T T) -8 NIL NIL) (-257 508528 509663 510731 "DROPT" 512670 T DROPT (NIL) -8 NIL NIL) (-256 508193 508252 508350 "DROPT1" 508463 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 503308 504434 505571 "DROPT0" 507076 T DROPT0 (NIL) -7 NIL NIL) (-254 501653 501978 502364 "DRAWPT" 502942 T DRAWPT (NIL) -7 NIL NIL) (-253 496240 497163 498242 "DRAW" 500627 NIL DRAW (NIL T) -7 NIL NIL) (-252 495873 495926 496044 "DRAWHACK" 496181 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 494604 494873 495164 "DRAWCX" 495602 T DRAWCX (NIL) -7 NIL NIL) (-250 494120 494188 494339 "DRAWCURV" 494530 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 484591 486550 488665 "DRAWCFUN" 492025 T DRAWCFUN (NIL) -7 NIL NIL) (-248 481404 483286 483327 "DQAGG" 483956 NIL DQAGG (NIL T) -9 NIL 484229) (-247 469923 476620 476703 "DPOLCAT" 478555 NIL DPOLCAT (NIL T T T T) -9 NIL 479100) (-246 464762 466108 468066 "DPOLCAT-" 468071 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-245 457917 464623 464721 "DPMO" 464726 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-244 450975 457697 457864 "DPMM" 457869 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-243 450395 450598 450712 "DOMAIN" 450881 T DOMAIN (NIL) -8 NIL NIL) (-242 444146 450030 450182 "DMP" 450296 NIL DMP (NIL NIL T) -8 NIL NIL) (-241 443746 443802 443946 "DLP" 444084 NIL DLP (NIL T) -7 NIL NIL) (-240 437390 442847 443074 "DLIST" 443551 NIL DLIST (NIL T) -8 NIL NIL) (-239 434236 436245 436286 "DLAGG" 436836 NIL DLAGG (NIL T) -9 NIL 437065) (-238 433086 433716 433744 "DIVRING" 433836 T DIVRING (NIL) -9 NIL 433919) (-237 432323 432513 432813 "DIVRING-" 432818 NIL DIVRING- (NIL T) -8 NIL NIL) (-236 430425 430782 431188 "DISPLAY" 431937 T DISPLAY (NIL) -7 NIL NIL) (-235 424367 430339 430402 "DIRPROD" 430407 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 423215 423418 423683 "DIRPROD2" 424160 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 412753 418705 418758 "DIRPCAT" 419168 NIL DIRPCAT (NIL NIL T) -9 NIL 420008) (-232 410079 410721 411602 "DIRPCAT-" 411939 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-231 409366 409526 409712 "DIOSP" 409913 T DIOSP (NIL) -7 NIL NIL) (-230 406068 408278 408319 "DIOPS" 408753 NIL DIOPS (NIL T) -9 NIL 408982) (-229 405617 405731 405922 "DIOPS-" 405927 NIL DIOPS- (NIL T T) -8 NIL NIL) (-228 404529 405123 405151 "DIFRING" 405338 T DIFRING (NIL) -9 NIL 405448) (-227 404175 404252 404404 "DIFRING-" 404409 NIL DIFRING- (NIL T) -8 NIL NIL) (-226 402000 403238 403279 "DIFEXT" 403642 NIL DIFEXT (NIL T) -9 NIL 403936) (-225 400285 400713 401379 "DIFEXT-" 401384 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-224 397607 399817 399858 "DIAGG" 399863 NIL DIAGG (NIL T) -9 NIL 399883) (-223 396991 397148 397400 "DIAGG-" 397405 NIL DIAGG- (NIL T T) -8 NIL NIL) (-222 392456 395950 396227 "DHMATRIX" 396760 NIL DHMATRIX (NIL T) -8 NIL NIL) (-221 388068 388977 389987 "DFSFUN" 391466 T DFSFUN (NIL) -7 NIL NIL) (-220 383184 386999 387311 "DFLOAT" 387776 T DFLOAT (NIL) -8 NIL NIL) (-219 381412 381693 382089 "DFINTTLS" 382892 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-218 378477 379433 379833 "DERHAM" 381078 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-217 376326 378252 378341 "DEQUEUE" 378421 NIL DEQUEUE (NIL T) -8 NIL NIL) (-216 375541 375674 375870 "DEGRED" 376188 NIL DEGRED (NIL T T) -7 NIL NIL) (-215 371936 372681 373534 "DEFINTRF" 374769 NIL DEFINTRF (NIL T) -7 NIL NIL) (-214 369463 369932 370531 "DEFINTEF" 371455 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-213 368840 369083 369198 "DEFAST" 369368 T DEFAST (NIL) -8 NIL NIL) (-212 362726 368281 368447 "DECIMAL" 368694 T DECIMAL (NIL) -8 NIL NIL) (-211 360238 360696 361202 "DDFACT" 362270 NIL DDFACT (NIL T T) -7 NIL NIL) (-210 359834 359877 360028 "DBLRESP" 360189 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-209 357544 357878 358247 "DBASE" 359592 NIL DBASE (NIL T) -8 NIL NIL) (-208 356813 357024 357170 "DATAARY" 357443 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-207 355946 356772 356800 "D03FAFA" 356805 T D03FAFA (NIL) -8 NIL NIL) (-206 355080 355905 355933 "D03EEFA" 355938 T D03EEFA (NIL) -8 NIL NIL) (-205 353030 353496 353985 "D03AGNT" 354611 T D03AGNT (NIL) -7 NIL NIL) (-204 352346 352989 353017 "D02EJFA" 353022 T D02EJFA (NIL) -8 NIL NIL) (-203 351662 352305 352333 "D02CJFA" 352338 T D02CJFA (NIL) -8 NIL NIL) (-202 350978 351621 351649 "D02BHFA" 351654 T D02BHFA (NIL) -8 NIL NIL) (-201 350294 350937 350965 "D02BBFA" 350970 T D02BBFA (NIL) -8 NIL NIL) (-200 343492 345080 346686 "D02AGNT" 348708 T D02AGNT (NIL) -7 NIL NIL) (-199 341261 341783 342329 "D01WGTS" 342966 T D01WGTS (NIL) -7 NIL NIL) (-198 340356 341220 341248 "D01TRNS" 341253 T D01TRNS (NIL) -8 NIL NIL) (-197 339451 340315 340343 "D01GBFA" 340348 T D01GBFA (NIL) -8 NIL NIL) (-196 338546 339410 339438 "D01FCFA" 339443 T D01FCFA (NIL) -8 NIL NIL) (-195 337641 338505 338533 "D01ASFA" 338538 T D01ASFA (NIL) -8 NIL NIL) (-194 336736 337600 337628 "D01AQFA" 337633 T D01AQFA (NIL) -8 NIL NIL) (-193 335831 336695 336723 "D01APFA" 336728 T D01APFA (NIL) -8 NIL NIL) (-192 334926 335790 335818 "D01ANFA" 335823 T D01ANFA (NIL) -8 NIL NIL) (-191 334021 334885 334913 "D01AMFA" 334918 T D01AMFA (NIL) -8 NIL NIL) (-190 333116 333980 334008 "D01ALFA" 334013 T D01ALFA (NIL) -8 NIL NIL) (-189 332211 333075 333103 "D01AKFA" 333108 T D01AKFA (NIL) -8 NIL NIL) (-188 331306 332170 332198 "D01AJFA" 332203 T D01AJFA (NIL) -8 NIL NIL) (-187 324603 326154 327715 "D01AGNT" 329765 T D01AGNT (NIL) -7 NIL NIL) (-186 323940 324068 324220 "CYCLOTOM" 324471 T CYCLOTOM (NIL) -7 NIL NIL) (-185 320675 321388 322115 "CYCLES" 323233 T CYCLES (NIL) -7 NIL NIL) (-184 319987 320121 320292 "CVMP" 320536 NIL CVMP (NIL T) -7 NIL NIL) (-183 317758 318016 318392 "CTRIGMNP" 319715 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-182 317175 317381 317495 "CTOR" 317664 T CTOR (NIL) -8 NIL NIL) (-181 316711 316906 317007 "CTORKIND" 317094 T CTORKIND (NIL) -8 NIL NIL) (-180 316222 316411 316510 "CTORCALL" 316632 T CTORCALL (NIL) -8 NIL NIL) (-179 315596 315695 315848 "CSTTOOLS" 316119 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 311395 312052 312810 "CRFP" 314908 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310897 311116 311208 "CRCEAST" 311323 T CRCEAST (NIL) -8 NIL NIL) (-176 309944 310129 310357 "CRAPACK" 310701 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 309328 309429 309633 "CPMATCH" 309820 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 309053 309081 309187 "CPIMA" 309294 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 305417 306089 306807 "COORDSYS" 308388 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304801 304930 305080 "CONTOUR" 305287 T CONTOUR (NIL) -8 NIL NIL) (-171 300727 302804 303296 "CONTFRAC" 304341 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 300607 300628 300656 "CONDUIT" 300693 T CONDUIT (NIL) -9 NIL NIL) (-169 299800 300320 300348 "COMRING" 300353 T COMRING (NIL) -9 NIL 300405) (-168 298881 299158 299342 "COMPPROP" 299636 T COMPPROP (NIL) -8 NIL NIL) (-167 298542 298577 298705 "COMPLPAT" 298840 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 288599 298351 298460 "COMPLEX" 298465 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 288235 288292 288399 "COMPLEX2" 288536 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287953 287988 288086 "COMPFACT" 288194 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 272357 282575 282615 "COMPCAT" 283619 NIL COMPCAT (NIL T) -9 NIL 285004) (-162 261872 264796 268423 "COMPCAT-" 268779 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 261601 261629 261732 "COMMUPC" 261838 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 261396 261429 261488 "COMMONOP" 261562 T COMMONOP (NIL) -7 NIL NIL) (-159 260979 261147 261234 "COMM" 261329 T COMM (NIL) -8 NIL NIL) (-158 260583 260783 260858 "COMMAAST" 260924 T COMMAAST (NIL) -8 NIL NIL) (-157 259832 260026 260054 "COMBOPC" 260392 T COMBOPC (NIL) -9 NIL 260567) (-156 258728 258938 259180 "COMBINAT" 259622 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254926 255499 256139 "COMBF" 258150 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253712 254042 254277 "COLOR" 254711 T COLOR (NIL) -8 NIL NIL) (-153 253215 253433 253525 "COLONAST" 253640 T COLONAST (NIL) -8 NIL NIL) (-152 252855 252902 253027 "CMPLXRT" 253162 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 252330 252555 252654 "CLLCTAST" 252776 T CLLCTAST (NIL) -8 NIL NIL) (-150 247832 248860 249940 "CLIP" 251270 T CLIP (NIL) -7 NIL NIL) (-149 246214 246938 247177 "CLIF" 247659 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-148 242436 244360 244401 "CLAGG" 245330 NIL CLAGG (NIL T) -9 NIL 245866) (-147 240858 241315 241898 "CLAGG-" 241903 NIL CLAGG- (NIL T T) -8 NIL NIL) (-146 240402 240487 240627 "CINTSLPE" 240767 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-145 237903 238374 238922 "CHVAR" 239930 NIL CHVAR (NIL T T T) -7 NIL NIL) (-144 237166 237686 237714 "CHARZ" 237719 T CHARZ (NIL) -9 NIL 237734) (-143 236920 236960 237038 "CHARPOL" 237120 NIL CHARPOL (NIL T) -7 NIL NIL) (-142 236067 236620 236648 "CHARNZ" 236695 T CHARNZ (NIL) -9 NIL 236751) (-141 234092 234757 235092 "CHAR" 235752 T CHAR (NIL) -8 NIL NIL) (-140 233818 233879 233907 "CFCAT" 234018 T CFCAT (NIL) -9 NIL NIL) (-139 233063 233174 233356 "CDEN" 233702 NIL CDEN (NIL T T T) -7 NIL NIL) (-138 229055 232216 232496 "CCLASS" 232803 T CCLASS (NIL) -8 NIL NIL) (-137 228974 229000 229035 "CATEGORY" 229040 T -10 (NIL) -8 NIL NIL) (-136 228448 228674 228773 "CATAST" 228895 T CATAST (NIL) -8 NIL NIL) (-135 227951 228169 228261 "CASEAST" 228376 T CASEAST (NIL) -8 NIL NIL) (-134 223003 223980 224733 "CARTEN" 227254 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 222111 222259 222480 "CARTEN2" 222850 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220453 221261 221518 "CARD" 221874 T CARD (NIL) -8 NIL NIL) (-131 220056 220257 220332 "CAPSLAST" 220398 T CAPSLAST (NIL) -8 NIL NIL) (-130 219428 219756 219784 "CACHSET" 219916 T CACHSET (NIL) -9 NIL 219993) (-129 218924 219220 219248 "CABMON" 219298 T CABMON (NIL) -9 NIL 219354) (-128 217851 218279 218475 "BYTE" 218748 T BYTE (NIL) -8 NIL NIL) (-127 213260 217319 217482 "BYTEBUF" 217708 T BYTEBUF (NIL) -8 NIL NIL) (-126 210817 212952 213059 "BTREE" 213186 NIL BTREE (NIL T) -8 NIL NIL) (-125 208315 210465 210587 "BTOURN" 210727 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205733 207786 207827 "BTCAT" 207895 NIL BTCAT (NIL T) -9 NIL 207972) (-123 205400 205480 205629 "BTCAT-" 205634 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200692 204543 204571 "BTAGG" 204793 T BTAGG (NIL) -9 NIL 204954) (-121 200182 200307 200513 "BTAGG-" 200518 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197226 199460 199675 "BSTREE" 199999 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196364 196490 196674 "BRILL" 197082 NIL BRILL (NIL T) -7 NIL NIL) (-118 193065 195092 195133 "BRAGG" 195782 NIL BRAGG (NIL T) -9 NIL 196039) (-117 191594 192000 192555 "BRAGG-" 192560 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184858 190940 191124 "BPADICRT" 191442 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183208 184795 184840 "BPADIC" 184845 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182906 182936 183050 "BOUNDZRO" 183172 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178421 179512 180379 "BOP" 182059 T BOP (NIL) -8 NIL NIL) (-112 176042 176486 177006 "BOP1" 177934 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174780 175466 175659 "BOOLEAN" 175869 T BOOLEAN (NIL) -8 NIL NIL) (-110 174142 174520 174574 "BMODULE" 174579 NIL BMODULE (NIL T T) -9 NIL 174644) (-109 169972 173940 174013 "BITS" 174089 T BITS (NIL) -8 NIL NIL) (-108 169384 169506 169648 "BINDING" 169850 T BINDING (NIL) -8 NIL NIL) (-107 163274 168828 168993 "BINARY" 169239 T BINARY (NIL) -8 NIL NIL) (-106 161101 162529 162570 "BGAGG" 162830 NIL BGAGG (NIL T) -9 NIL 162967) (-105 160932 160964 161055 "BGAGG-" 161060 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160030 160316 160521 "BFUNCT" 160747 T BFUNCT (NIL) -8 NIL NIL) (-103 158720 158898 159186 "BEZOUT" 159854 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155237 157572 157902 "BBTREE" 158423 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154971 155024 155052 "BASTYPE" 155171 T BASTYPE (NIL) -9 NIL NIL) (-100 154823 154852 154925 "BASTYPE-" 154930 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154261 154337 154487 "BALFACT" 154734 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153144 153676 153862 "AUTOMOR" 154106 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152870 152875 152901 "ATTREG" 152906 T ATTREG (NIL) -9 NIL NIL) (-96 151149 151567 151919 "ATTRBUT" 152536 T ATTRBUT (NIL) -8 NIL NIL) (-95 150784 150977 151043 "ATTRAST" 151101 T ATTRAST (NIL) -8 NIL NIL) (-94 150320 150433 150459 "ATRIG" 150660 T ATRIG (NIL) -9 NIL NIL) (-93 150129 150170 150257 "ATRIG-" 150262 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149751 149911 149937 "ASTCAT" 149995 T ASTCAT (NIL) -9 NIL 150058) (-91 149478 149537 149656 "ASTCAT-" 149661 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147675 149254 149342 "ASTACK" 149421 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146180 146477 146842 "ASSOCEQ" 147357 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145212 145839 145963 "ASP9" 146087 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144976 145160 145199 "ASP8" 145204 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143845 144581 144723 "ASP80" 144865 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142744 143480 143612 "ASP7" 143744 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141698 142421 142539 "ASP78" 142657 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140667 141378 141495 "ASP77" 141612 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139579 140305 140436 "ASP74" 140567 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138479 139214 139346 "ASP73" 139478 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137434 138156 138274 "ASP6" 138392 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136382 137111 137229 "ASP55" 137347 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135332 136056 136175 "ASP50" 136294 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134420 135033 135143 "ASP4" 135253 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133508 134121 134231 "ASP49" 134341 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132293 133047 133215 "ASP42" 133397 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131070 131826 131996 "ASP41" 132180 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130020 130747 130865 "ASP35" 130983 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129785 129968 130007 "ASP34" 130012 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129522 129589 129665 "ASP33" 129740 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128417 129157 129289 "ASP31" 129421 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128182 128365 128404 "ASP30" 128409 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127917 127986 128062 "ASP29" 128137 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127682 127865 127904 "ASP28" 127909 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP27" 127674 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126531 127145 127256 "ASP24" 127367 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125447 126172 126302 "ASP20" 126432 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124535 125148 125258 "ASP1" 125368 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123479 124209 124328 "ASP19" 124447 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123216 123283 123359 "ASP12" 123434 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122068 122815 122959 "ASP10" 123103 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119967 121912 122003 "ARRAY2" 122008 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115783 119615 119729 "ARRAY1" 119884 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114815 114988 115209 "ARRAY12" 115606 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109174 111045 111120 "ARR2CAT" 113750 NIL ARR2CAT (NIL T T T) -9 NIL 114508) (-55 106608 107352 108306 "ARR2CAT-" 108311 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105356 105508 105814 "APPRULE" 106444 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105007 105055 105174 "APPLYORE" 105302 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103981 104272 104467 "ANY" 104830 T ANY (NIL) -8 NIL NIL) (-51 103259 103382 103539 "ANY1" 103855 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100824 101696 102023 "ANTISYM" 102983 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100339 100528 100625 "ANON" 100745 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99332 "AN" 99903 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 36cc0e44..fc2b6c4f 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3245 +1,4097 @@ -(739292 . 3433818807) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-646 *4 *5))) - (-5 *1 (-611 *4 *5 *6)) (-4 *5 (-13 (-169) (-700 (-401 (-552))))) - (-14 *6 (-900))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-844 *3)) (-14 *3 (-627 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) +(739410 . 3436147955) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-808)) (-5 *1 (-807))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 (-48))) (-5 *3 (-629 (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1213 (-166 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-902)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) ((*1 *2 *1) - (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-1152)))) - ((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2)))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) - (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) - (-4 *3 (-1189)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) - (-5 *1 (-720 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1213 *2)) (-4 *2 (-973 *3)) (-5 *1 (-407 *3 *2 *4 *5)) + (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1019 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1213 *2)) (-4 *2 (-973 *3)) + (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) + (-14 *6 (-1237 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *2 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))) + (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1213 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 (-487))) (-5 *3 (-629 (-598 (-487)))) + (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-902)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-709 *4 *2)) (-4 *2 (-1213 *4)) + (-5 *1 (-760 *4 *2 *5 *3)) (-4 *3 (-1213 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) + ((*1 *1 *1) (-4 *1 (-1039)))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-902)) (-5 *1 (-771))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) - (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) + (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1134 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-445)) (-4 *4 (-805)) + (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1237 (-629 (-552)))) (-5 *1 (-473)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) - (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *3)))) - (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) - (-4 *3 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1038 (-1003 *4) (-1148 (-1003 *4)))) (-5 *3 (-842)) - (-5 *1 (-1003 *4)) (-4 *4 (-13 (-828) (-357) (-1001)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) - ((*1 *1 *1) (|partial| -4 *1 (-705)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) - (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-888)) (-4 *5 (-776)) - (-4 *6 (-830)) (-5 *1 (-885 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) - (-4 *5 (-1211 *4)) (-4 *4 (-888)) (-5 *1 (-886 *4 *5))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) - (-5 *2 (-1235 (-401 (-552)))) (-5 *1 (-1262 *4))))) -(((*1 *1) (-5 *1 (-786)))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) - ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) - ((*1 *1 *1) (-4 *1 (-1037)))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-1030)) (-5 *2 (-1237 *4)) + (-5 *1 (-1155 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-5 *2 (-1237 *3)) (-5 *1 (-1155 *3)) + (-4 *3 (-1030))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-1 (-220) (-220) (-220) (-220))) + (-5 *2 (-1 (-924 (-220)) (-220) (-220))) (-5 *1 (-681))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -1781 (-627 *3)) (|:| -3180 (-627 *3)))) - (-5 *1 (-1190 *3)) (-4 *3 (-1076))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-5 *1 (-582 *3)) (-4 *3 (-1028))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-711) (-25)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1134 *4) (-1134 *4))) (-5 *2 (-1134 *4)) + (-5 *1 (-1262 *4)) (-4 *4 (-1191)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-629 (-1134 *5)) (-629 (-1134 *5)))) (-5 *4 (-552)) + (-5 *2 (-629 (-1134 *5))) (-5 *1 (-1262 *5)) (-4 *5 (-1191))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-673 (-552))) + (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-742))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) + (-5 *2 (-1016)) (-5 *1 (-733))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369))))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-552)) (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-736))))) +(((*1 *2 *3) + (-12 (-4 *2 (-357)) (-4 *2 (-830)) (-5 *1 (-926 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) (((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-552))) (-5 *4 (-884 (-552))) - (-5 *2 (-671 (-552))) (-5 *1 (-577)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-552))) (-5 *4 (-627 (-884 (-552)))) - (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-544)) (-4 *2 (-1028)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) - (-4 *1 (-1048 *4 *5 *6 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-1127)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *3))))) + (-12 (-5 *3 (-629 (-1237 *5))) (-5 *4 (-552)) (-5 *2 (-1237 *5)) + (-5 *1 (-1010 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030))))) (((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-943 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1030)) (-14 *3 (-629 (-1154))))) + ((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) + (-14 *3 (-629 (-1154)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-1016))) (-5 *2 (-1016)) (-5 *1 (-299)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *1) (-5 *1 (-1042))) + ((*1 *2 *3) + (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1131 *4)) + (-4 *4 (-1191)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-629 (-1154))) + (-5 *2 + (-629 (-1124 *5 (-523 (-846 *6)) (-846 *6) (-765 *5 (-846 *6))))) + (-5 *1 (-614 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1076)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1076))))) -(((*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) + (-12 (-5 *3 (-1072 (-825 (-373)))) (-5 *2 (-1072 (-825 (-220)))) + (-5 *1 (-299))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-552)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) + (|:| -4329 *6))) + (-5 *1 (-996 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) + (-4 *3 (-13 (-424 *4) (-983)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 (-1 *6 (-627 *6)))) - (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1226 *5)) (-5 *2 (-627 *6)) - (-5 *1 (-1228 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) - ((*1 *2 *2) - (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) + (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-1102 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-517))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1213 (-166 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1213 (-166 *2)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) + (-5 *3 (-552)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) - (-4 *6 (-1042 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2060 *1) (|:| |upper| *1))) - (-4 *1 (-955 *4 *5 *3 *6))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-744)))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-830)) - (-4 *5 (-776)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-754)))) - ((*1 *1 *1) (-4 *1 (-396)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-5 *2 (-1148 *3)) (-5 *1 (-1163 *3)) - (-4 *3 (-357))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) - (-4 *3 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) - (-15 -4103 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-388)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) - ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) - (-4 *3 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *2 *3)) - (-4 *3 (-13 (-1076) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1076)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) - (-5 *2 (-627 (-1152))) (-5 *1 (-1052 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-852 *4)) (-14 *4 *3) + (-5 *3 (-552)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-853 *4 *5)) + (-5 *3 (-552)) (-4 *5 (-850 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-993)) (-5 *2 (-401 (-552))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1047 *2 *3)) (-4 *2 (-13 (-830) (-357))) + (-4 *3 (-1213 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3213 (*2 (-1154)))) + (-4 *2 (-1030))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) (((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324))))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-4 *5 (-357)) - (-4 *5 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) - (-5 *2 (-111)) (-5 *1 (-1008 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-180))))) + (-12 (-5 *2 (-756)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-777)) (-4 *3 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-598 *5))) (-4 *4 (-830)) (-5 *2 (-598 *5)) - (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4))))) -(((*1 *1) (-5 *1 (-806)))) -(((*1 *2) - (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) - (-4 *4 (-1211 *3))))) + (-12 (-5 *3 (-629 (-528))) (-5 *2 (-1154)) (-5 *1 (-528))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) (((*1 *2 *3) (-12 (-5 *3 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *2 (-627 (-401 (-552)))) (-5 *1 (-999 *4)) - (-4 *4 (-1211 (-552)))))) + (-2 (|:| -2325 (-673 (-401 (-933 *4)))) + (|:| |vec| (-629 (-401 (-933 *4)))) (|:| -2128 (-756)) + (|:| |rows| (-629 (-552))) (|:| |cols| (-629 (-552))))) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) + (-5 *2 + (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *4))))))) + (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-131)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-151)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-660)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1000)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1074))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) + (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-933 (-552))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) + ((*1 *2 *3) + (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) + ((*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-993)) (-5 *2 (-629 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-552))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-401 (-552)))) (-5 *2 (-629 *1)) (-4 *1 (-993)))) + ((*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-993)) (-5 *2 (-629 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-830) (-357))) (-4 *3 (-1213 *4)) (-5 *2 (-629 *1)) + (-4 *1 (-1047 *4 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) + (-12 (-4 *3 (-13 (-357) (-830))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1213 (-166 *3)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-629 (-1150 *7))) (-5 *3 (-1150 *7)) + (-4 *7 (-930 *5 *6 *4)) (-4 *5 (-890)) (-4 *6 (-778)) + (-4 *4 (-832)) (-5 *1 (-887 *5 *6 *4 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-640 *3)) (-4 *3 (-1030)) (-4 *3 (-357)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) + (-5 *1 (-643 *5 *2)) (-4 *2 (-640 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) - (-5 *1 (-749 *3 *4)) (-4 *3 (-691 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) - (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) - (-4 *3 (-832 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) + (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1168 *4 *5)) + (-4 *4 (-1078)) (-4 *5 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) + ((*1 *2 *1) + (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1078)))) + ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-432 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1053 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1093)))) + ((*1 *1 *1) (-5 *1 (-1154)))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-629 (-756)))) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030))))) (((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-242 *5 *6))) (-4 *6 (-445)) - (-5 *2 (-242 *5 *6)) (-14 *5 (-627 (-1152))) (-5 *1 (-615 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-324))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) - (-5 *1 (-326))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) + (-12 (-4 *5 (-1078)) (-4 *6 (-867 *5)) (-5 *2 (-866 *5 *6 (-629 *6))) + (-5 *1 (-868 *5 *6 *4)) (-5 *3 (-629 *6)) (-4 *4 (-600 (-873 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-5 *2 (-629 (-288 *3))) (-5 *1 (-868 *5 *3 *4)) + (-4 *3 (-1019 (-1154))) (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-5 *2 (-629 (-288 (-933 *3)))) + (-5 *1 (-868 *5 *3 *4)) (-4 *3 (-1030)) + (-4107 (-4 *3 (-1019 (-1154)))) (-4 *3 (-867 *5)) + (-4 *4 (-600 (-873 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-5 *2 (-870 *5 *3)) (-5 *1 (-868 *5 *3 *4)) + (-4107 (-4 *3 (-1019 (-1154)))) (-4107 (-4 *3 (-1030))) + (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5)))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191))))) (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) - (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-627 (-310 (-220)))) - (|:| -3002 (-627 (-220))))))) - (-5 *2 (-627 (-1134))) (-5 *1 (-261))))) -(((*1 *2) - (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1076)) (-4 *2 (-879 *4)) (-5 *1 (-674 *4 *2 *5 *3)) - (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4366))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) - (-14 *4 *2)))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (-5 *1 (-261))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) - (-14 *4 (-900))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1134 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4235 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1016)) (-5 *1 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) - (-4 *4 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) - ((*1 *1 *1) (-4 *1 (-228))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) - (-4 *4 (-1211 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) - (-4 *3 (-1211 *2)))) - ((*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1213 *4)) (-4 *4 (-1195)) + (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1213 (-401 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1237 *1)) (-4 *4 (-169)) + (-4 *1 (-361 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1237 *1)) (-4 *4 (-169)) + (-4 *1 (-364 *4 *5)) (-4 *5 (-1213 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |k| (-656 *3)) (|:| |c| *4)))) + (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) + (-5 *2 (-629 (-756))) (-5 *1 (-763 *3 *4 *5 *6 *7)) + (-4 *3 (-1213 *6)) (-4 *7 (-930 *6 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-343)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-924 *5)) (-4 *5 (-1030)) (-5 *2 (-756)) + (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) - (-4 *4 (-1076)))) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-756)) (-5 *1 (-1142 *4 *5)) + (-14 *4 (-902)) (-4 *5 (-1030)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1) - (-12 (-4 *3 (-228)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) - (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *3 *4 *5 *6)))) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-924 *5)) (-4 *5 (-1030)) + (-5 *1 (-1142 *4 *5)) (-14 *4 (-902))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *2 (-629 (-166 *4))) + (-5 *1 (-749 *4)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) (-5 *2 (-629 (-2 (|:| -4046 *5) (|:| -3369 *5)))) + (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-640 *5)) + (-4 *6 (-640 (-401 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *4 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -4046 *4) (|:| -3369 *4)))) + (-5 *1 (-792 *5 *4 *3 *6)) (-4 *3 (-640 *4)) + (-4 *6 (-640 (-401 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) (-5 *2 (-629 (-2 (|:| -4046 *5) (|:| -3369 *5)))) + (-5 *1 (-792 *4 *5 *6 *3)) (-4 *6 (-640 *5)) + (-4 *3 (-640 (-401 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *4 (-1213 *5)) (-5 *2 (-629 (-2 (|:| -4046 *4) (|:| -3369 *4)))) + (-5 *1 (-792 *5 *4 *6 *3)) (-4 *6 (-640 *4)) + (-4 *3 (-640 (-401 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-771))))) +(((*1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) + (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1213 *5)) + (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-111)) + (-5 *1 (-892 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) - (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-260 *2)) (-4 *2 (-830))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) - (-5 *1 (-679))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) + (-5 *1 (-893 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) - (-5 *1 (-520 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) - (-5 *1 (-185))))) + (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) + (-5 *1 (-461))))) (((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) - (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))))) + (|partial| -12 (-4 *3 (-1090)) (-4 *3 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) - (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) + (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) + (-4 *3 (-1078)))) ((*1 *2 *1) - (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-1132 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) - ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) + (|partial| -12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *3)) + (-5 *1 (-931 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) + (-15 -4026 (*7 $)))))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1136)) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2707 (-629 (-1154))) (|:| -3744 (-629 (-1154))))) + (-5 *1 (-1193))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) - (-5 *2 - (-2 (|:| |dpolys| (-627 (-242 *5 *6))) - (|:| |coords| (-627 (-552))))) - (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) + (-12 (-5 *3 (-756)) (-5 *4 (-1237 *2)) (-4 *5 (-301)) + (-4 *6 (-973 *5)) (-4 *2 (-13 (-403 *6 *7) (-1019 *6))) + (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1213 *6))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1019 (-48))) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 (-412 (-1150 (-48)))) (-5 *1 (-429 *4 *5 *3)) + (-4 *3 (-1213 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-565)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) + (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3))))) (((*1 *2) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-412 *2)) (-4 *2 (-544))))) -(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96))))) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4199 (-629 *1)))) + (-4 *1 (-361 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-446 *3 *4 *5 *6)) + (|:| -4199 (-629 (-446 *3 *4 *5 *6))))) + (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-111)) (-5 *5 (-1080 (-756))) (-5 *6 (-756)) + (-5 *2 + (-2 (|:| |contp| (-552)) + (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) + (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-3 (-111) (-629 *1))) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-924 (-220)) (-220) (-220))) + (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249))))) +(((*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-678))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-685))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) + ((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-629 (-673 *6))) (-5 *4 (-111)) (-5 *5 (-552)) + (-5 *2 (-673 *6)) (-5 *1 (-1010 *6)) (-4 *6 (-357)) (-4 *6 (-1030)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-673 *4))) (-5 *2 (-673 *4)) (-5 *1 (-1010 *4)) + (-4 *4 (-357)) (-4 *4 (-1030)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-552)) (-5 *2 (-673 *5)) + (-5 *1 (-1010 *5)) (-4 *5 (-357)) (-4 *5 (-1030))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *4 *2))))) +(((*1 *1) (-5 *1 (-1157)))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-926 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-187)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-111)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240))))) (((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-756)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) + (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-832)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-902)))) + ((*1 *2 *3) + (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) + (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) + (-5 *2 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-818 (-902))))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) + (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-609 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-725 *4 *3)) (-4 *4 (-1030)) + (-4 *3 (-832)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-725 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-832)) + (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) + (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-756)) + (-5 *1 (-892 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-756)) + (-5 *1 (-893 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) + (-4 *7 (-1213 *6)) (-4 *4 (-1213 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) + (-4 *9 (-13 (-362) (-357))) (-5 *2 (-756)) + (-5 *1 (-999 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-4 *3 (-544)) + (-5 *2 (-756)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -4158 *3) (|:| |gap| (-756)) (|:| -3713 (-767 *3)) + (|:| -4186 (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) + (-5 *2 + (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -3713 *1) + (|:| -4186 *1))) + (-4 *1 (-1044 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 + (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -3713 *1) + (|:| -4186 *1))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1213 *4)) + (-5 *1 (-762 *3 *4 *5 *2 *6)) (-4 *2 (-1213 *5)) (-14 *6 (-902)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-357)) (-4 *2 (-362))))) +(((*1 *2 *1) (-12 (-4 *3 (-1191)) (-5 *2 (-629 *1)) (-4 *1 (-991 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-401 (-552))))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-832)) (-5 *2 (-629 (-648 *4 *5))) + (-5 *1 (-613 *4 *5 *6)) (-4 *5 (-13 (-169) (-702 (-401 (-552))))) + (-14 *6 (-902))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1063))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-401 (-552))) (-5 *1 (-373))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) + (-5 *2 + (-2 (|:| A (-673 *5)) + (|:| |eqs| + (-629 + (-2 (|:| C (-673 *5)) (|:| |g| (-1237 *5)) (|:| -2771 *6) + (|:| |rh| *5)))))) + (-5 *1 (-798 *5 *6)) (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) + (-4 *6 (-640 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-640 *5)) + (-5 *2 (-2 (|:| -2325 (-673 *6)) (|:| |vec| (-1237 *5)))) + (-5 *1 (-798 *5 *6)) (-5 *3 (-673 *6)) (-5 *4 (-1237 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4369)) (-4 *4 (-357)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-629 *6)) (-5 *1 (-513 *4 *5 *6 *3)) + (-4 *3 (-671 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4369)) (-4 *4 (-544)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-4 *7 (-973 *4)) (-4 *8 (-367 *7)) + (-4 *9 (-367 *7)) (-5 *2 (-629 *6)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-671 *4 *5 *6)) + (-4 *10 (-671 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-629 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-987 *3)) (-4 *3 (-1017 (-401 (-552))))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-629 *6)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-671 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-629 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1078) (-34))) + (-5 *2 (-111)) (-5 *1 (-1118 *4 *5)) (-4 *4 (-13 (-1078) (-34)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) - (-5 *3 (-627 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *5)) (-5 *1 (-864 *3 *4 *5)) - (-4 *3 (-1076)) (-4 *5 (-648 *4))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-5 *1 (-681)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-671 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-357)) (-5 *1 (-957 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) - (-5 *2 (-671 (-310 (-220)))) (-5 *1 (-200)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-4 *6 (-879 *5)) (-5 *2 (-671 *6)) - (-5 *1 (-674 *5 *6 *3 *4)) (-4 *3 (-367 *6)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1152)) (-5 *1 (-528)))) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-687 *3)) - (-4 *3 (-600 (-528)))))) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-870 *4 *5)) (-5 *3 (-870 *4 *6)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-650 *5)) (-5 *1 (-866 *4 *5 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) - (-4 *5 (-865 (-552))) - (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1152)) (-5 *4 (-823 *2)) (-4 *2 (-1115)) - (-4 *2 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) - (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) - (-5 *1 (-555 *5 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-666 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) - (-4 *5 (-445)) + (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 - (-2 (|:| |gblist| (-627 (-242 *4 *5))) - (|:| |gvlist| (-627 (-552))))) - (-5 *1 (-615 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) -(((*1 *2 *3) - (-12 (-4 *4 (-776)) - (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) - (-5 *2 (-2 (|:| -2796 (-931 *6)) (|:| -4191 (-931 *6)))) - (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) - (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) - (-4 *4 (-669 *2 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) - (-4 *3 (-163 *6)) (-4 (-931 *6) (-865 *5)) - (-4 *6 (-13 (-865 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-868 *4 *1)) (-5 *3 (-871 *4)) (-4 *1 (-865 *4)) - (-4 *4 (-1076)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) - (-4 *6 (-13 (-1076) (-1017 *3))) (-4 *3 (-865 *5)) - (-5 *1 (-910 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) - (-4 *3 (-13 (-424 *6) (-600 *4) (-865 *5) (-1017 (-598 $)))) - (-5 *4 (-871 *5)) (-4 *6 (-13 (-544) (-830) (-865 *5))) - (-5 *1 (-911 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 (-552) *3)) (-5 *4 (-871 (-552))) (-4 *3 (-537)) - (-5 *1 (-912 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1076)) - (-4 *6 (-13 (-830) (-1017 (-598 $)) (-600 *4) (-865 *5))) - (-5 *4 (-871 *5)) (-5 *1 (-913 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-864 *5 *6 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) - (-4 *6 (-865 *5)) (-4 *3 (-648 *6)) (-5 *1 (-914 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-868 *6 *3) *8 (-871 *6) (-868 *6 *3))) - (-4 *8 (-830)) (-5 *2 (-868 *6 *3)) (-5 *4 (-871 *6)) - (-4 *6 (-1076)) (-4 *3 (-13 (-928 *9 *7 *8) (-600 *4))) - (-4 *7 (-776)) (-4 *9 (-13 (-1028) (-830) (-865 *6))) - (-5 *1 (-915 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) - (-4 *3 (-13 (-928 *8 *6 *7) (-600 *4))) (-5 *4 (-871 *5)) - (-4 *7 (-865 *5)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *8 (-13 (-1028) (-830) (-865 *5))) - (-5 *1 (-915 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-971 *6)) - (-4 *6 (-13 (-544) (-865 *5) (-600 *4))) (-5 *4 (-871 *5)) - (-5 *1 (-918 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-868 *5 (-1152))) (-5 *3 (-1152)) (-5 *4 (-871 *5)) - (-4 *5 (-1076)) (-5 *1 (-919 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-627 (-871 *7))) (-5 *5 (-1 *9 (-627 *9))) - (-5 *6 (-1 (-868 *7 *9) *9 (-871 *7) (-868 *7 *9))) (-4 *7 (-1076)) - (-4 *9 (-13 (-1028) (-600 (-871 *7)) (-1017 *8))) - (-5 *2 (-868 *7 *9)) (-5 *3 (-627 *9)) (-4 *8 (-13 (-1028) (-830))) - (-5 *1 (-920 *7 *8 *9))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1211 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) + (-2 (|:| |cont| *5) + (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) + (-5 *1 (-211 *5 *3)) (-4 *3 (-1213 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) + (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1191)) (-5 *2 (-552))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1030)) (-4 *1 (-1213 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-1169))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-756)) (-5 *3 (-924 *5)) (-4 *5 (-1030)) + (-5 *1 (-1142 *4 *5)) (-14 *4 (-902)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-756)) (-5 *1 (-1142 *4 *5)) + (-14 *4 (-902)) (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-924 *5)) (-4 *5 (-1030)) + (-5 *1 (-1142 *4 *5)) (-14 *4 (-902))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030))))) +(((*1 *2 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) + (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-673 *7)) (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *1 (-905 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-744))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 (-552))) (-5 *3 (-673 (-552))) (-5 *1 (-1088))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-629 *7) *7 (-1150 *7))) (-5 *5 (-1 (-412 *7) *7)) + (-4 *7 (-1213 *6)) (-4 *6 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-5 *2 (-629 (-2 (|:| |frac| (-401 *7)) (|:| -2771 *3)))) + (-5 *1 (-794 *6 *7 *3 *8)) (-4 *3 (-640 *7)) + (-4 *8 (-640 (-401 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 + (-629 (-2 (|:| |frac| (-401 *6)) (|:| -2771 (-638 *6 (-401 *6)))))) + (-5 *1 (-797 *5 *6)) (-5 *3 (-638 *6 (-401 *6)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *2 (-1014)) (-5 *1 (-299)))) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) + (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3301 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-902)) (-5 *1 (-435 *2)) + (-4 *2 (-1213 (-552))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-902)) (-5 *4 (-756)) (-5 *1 (-435 *2)) + (-4 *2 (-1213 (-552))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *1 (-435 *2)) + (-4 *2 (-1213 (-552))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *5 (-756)) + (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-902)) (-5 *4 (-629 (-756))) (-5 *5 (-756)) + (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1213 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-412 *2)) (-4 *2 (-1213 *5)) + (-5 *1 (-437 *5 *2)) (-4 *5 (-1030))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1237 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) + (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) - (-5 *2 (-1014)) (-5 *1 (-299))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-900)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1148 *1)) + (-12 (-5 *3 (-902)) (-4 *4 (-357)) (-5 *2 (-1237 *1)) (-4 *1 (-323 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) + ((*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1237 *1)) (-4 *1 (-323 *3)))) + ((*1 *2) + (-12 (-4 *3 (-169)) (-4 *4 (-1213 *3)) (-5 *2 (-1237 *1)) + (-4 *1 (-403 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) - (-4 *2 (-1211 *3)))) + (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) + (-5 *2 (-1237 *6)) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *6 (-13 (-403 *4 *5) (-1019 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) + (-5 *2 (-1237 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-4 *6 (-403 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1237 *1)) (-4 *1 (-411 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) - (-5 *1 (-520 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-842))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-477 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-220)) - (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 *4)))) - (|:| |xValues| (-1070 *4)) (|:| |yValues| (-1070 *4)))) - (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1091)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1157))) (-5 *3 (-1157)) (-5 *1 (-1094))))) -(((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-573 *3)) (-4 *3 (-357))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-754)) (|:| -3144 *4))) (-5 *5 (-754)) - (-4 *4 (-928 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-442 *6 *7 *8 *4))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1237 (-1237 *4))) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) (((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1211 *4)) - (-5 *2 (-2 (|:| -3043 (-607 *4 *5)) (|:| -1469 (-401 *5)))) - (-5 *1 (-607 *4 *5)) (-5 *3 (-401 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) - (-14 *3 (-900)) (-4 *4 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-445)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1211 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -1317 (-412 *3)) (|:| |special| (-412 *3)))) - (-5 *1 (-710 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-111)) - (-5 *1 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1159))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *4 (-627 (-1152))) - (-5 *2 (-627 (-627 *5))) (-5 *1 (-374 *5)) - (-4 *5 (-13 (-828) (-357))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-828) (-357)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-168))))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-922 (-220)))) (-5 *1 (-1236))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-928 *7 *5 *6)) - (-5 *1 (-725 *5 *6 *7 *2)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-301))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) - (-4 *2 (-638 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805))))) -(((*1 *2 *1 *1) (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-778)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) + (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) + (-5 *2 + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1213 (-552))) + (-5 *2 + (-2 (|:| -4199 (-673 (-552))) (|:| |basisDen| (-552)) + (|:| |basisInv| (-673 (-552))))) + (-5 *1 (-753 *3 *4)) (-4 *4 (-403 (-552) *3)))) + ((*1 *2) + (-12 (-4 *3 (-343)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 *4)) + (-5 *2 + (-2 (|:| -4199 (-673 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-673 *4)))) + (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-709 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-343)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 *4)) (-5 *2 - (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) + (-2 (|:| -4199 (-673 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-673 *4)))) + (-5 *1 (-1246 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-627 (-1148 *11))) (-5 *3 (-1148 *11)) - (-5 *4 (-627 *10)) (-5 *5 (-627 *8)) (-5 *6 (-627 (-754))) - (-5 *7 (-1235 (-627 (-1148 *8)))) (-4 *10 (-830)) - (-4 *8 (-301)) (-4 *11 (-928 *8 *9 *10)) (-4 *9 (-776)) - (-5 *1 (-690 *9 *10 *8 *11))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34)))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-842)))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) + (-5 *2 (-629 (-2 (|:| |deg| (-756)) (|:| -3830 *3)))) + (-5 *1 (-211 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1078))))) +(((*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) + (-5 *2 + (-629 + (-2 (|:| |eigval| (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4)))) + (|:| |eigmult| (-756)) + (|:| |eigvec| (-629 (-673 (-401 (-933 *4)))))))) + (-5 *1 (-286 *4)) (-5 *3 (-673 (-401 (-933 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) ((*1 *2 *1) - (-12 (-5 *2 (-1118 *3 *4)) (-5 *1 (-972 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-357)))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-828))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) + (-5 *1 (-1138 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) + (-14 *4 (-1154)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) + (-5 *2 (-242 *4 *5)) (-5 *1 (-925 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) + (-5 *2 (-629 (-629 (-924 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-629 (-629 (-924 *4)))) (-5 *3 (-111)) (-4 *4 (-1030)) + (-4 *1 (-1112 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *5))) (-4 *5 (-1028)) - (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) - (-4 *7 (-233 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-671 *5))) (-4 *5 (-301)) (-4 *5 (-1028)) - (-5 *2 (-1235 (-1235 *5))) (-5 *1 (-1008 *5)) (-5 *4 (-1235 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) -(((*1 *1 *1) (-4 *1 (-613))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1039)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039))))) + (-12 (-5 *2 (-629 (-629 (-924 *3)))) (-4 *3 (-1030)) + (-4 *1 (-1112 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-629 (-629 (-629 *4)))) (-5 *3 (-111)) + (-4 *1 (-1112 *4)) (-4 *4 (-1030)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-629 (-629 (-924 *4)))) (-5 *3 (-111)) + (-4 *1 (-1112 *4)) (-4 *4 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-629 (-629 (-629 *5)))) (-5 *3 (-629 (-168))) + (-5 *4 (-168)) (-4 *1 (-1112 *5)) (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-629 (-629 (-924 *5)))) (-5 *3 (-629 (-168))) + (-5 *4 (-168)) (-4 *1 (-1112 *5)) (-4 *5 (-1030))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-957 *4 *5 *6 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1213 (-552))) (-5 *1 (-479 *3))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) + (-4 *3 (-1078))))) +(((*1 *1 *1) (-4 *1 (-1039)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1030))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-723 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-830)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *1 (-959 *3)) (-4 *3 (-1028)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-756)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) - (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) + (-12 (-5 *2 (-629 (-933 *4))) (-5 *3 (-629 (-1154))) (-4 *4 (-445)) + (-5 *1 (-899 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) ((*1 *1) (-4 *1 (-537))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) + (-5 *1 (-733))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111))))) +(((*1 *1) + (-12 (-4 *3 (-1078)) (-5 *1 (-866 *2 *3 *4)) (-4 *2 (-1078)) + (-4 *4 (-650 *3)))) + ((*1 *1) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) + (-4 *2 (-13 (-424 *5) (-27) (-1176))) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1078))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1156 (-401 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-185))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1048 *7 *8 *9 *3)))) + (-2 (|:| -3653 (-756)) (|:| |curves| (-756)) + (|:| |polygons| (-756)) (|:| |constructs| (-756))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1040 (-1005 *4) (-1150 (-1005 *4)))) (-5 *3 (-844)) + (-5 *1 (-1005 *4)) (-4 *4 (-13 (-830) (-357) (-1003)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-4 *2 (-881 *5)) (-5 *1 (-676 *5 *2 *3 *4)) + (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368))))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3301 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1261 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-832)) + (-4 *2 (-169)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-804 *4)) (-4 *1 (-1254 *4 *2)) (-4 *4 (-832)) + (-4 *2 (-1030)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1030)) (-5 *1 (-1260 *2 *3)) (-4 *3 (-828))))) +(((*1 *1 *1) (-4 *1 (-1039))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-973 *4)) (-4 *2 (-671 *7 *8 *9)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-671 *4 *5 *6)) + (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) + (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) + (-4 *2 (-671 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-673 *2)) (-4 *2 (-357)) (-4 *2 (-1030)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1101 *2 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-1162 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-1030)) (-4 *2 (-1213 *4)) + (-5 *1 (-437 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-401 (-1150 (-310 *5)))) (-5 *3 (-1237 (-310 *5))) + (-5 *4 (-552)) (-4 *5 (-13 (-544) (-832))) (-5 *1 (-1108 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-401 (-933 (-552))))) + (-5 *2 (-629 (-629 (-288 (-933 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-830) (-357))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-288 (-401 (-933 (-552)))))) + (-5 *2 (-629 (-629 (-288 (-933 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-830) (-357))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 (-552)))) (-5 *2 (-629 (-288 (-933 *4)))) + (-5 *1 (-374 *4)) (-4 *4 (-13 (-830) (-357))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-401 (-933 (-552))))) + (-5 *2 (-629 (-288 (-933 *4)))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-830) (-357))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) + (|partial| -12 (-5 *5 (-1154)) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-4 *4 (-13 (-29 *6) (-1176) (-940))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4199 (-629 *4)))) + (-5 *1 (-636 *6 *4 *3)) (-4 *3 (-640 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 *2)) + (-4 *2 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *1 (-636 *6 *2 *3)) (-4 *3 (-640 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *5)) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 (-1237 *5) "failed")) + (|:| -4199 (-629 (-1237 *5))))) + (-5 *1 (-651 *5)) (-5 *4 (-1237 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) + (-12 (-5 *3 (-629 (-629 *5))) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) - (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) + (-2 (|:| |particular| (-3 (-1237 *5) "failed")) + (|:| -4199 (-629 (-1237 *5))))) + (-5 *1 (-651 *5)) (-5 *4 (-1237 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *5)) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *7 *8 *9 *3 *4)) (-4 *4 (-1085 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) + (-629 + (-2 (|:| |particular| (-3 (-1237 *5) "failed")) + (|:| -4199 (-629 (-1237 *5)))))) + (-5 *1 (-651 *5)) (-5 *4 (-629 (-1237 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-629 *5))) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) + (-629 + (-2 (|:| |particular| (-3 (-1237 *5) "failed")) + (|:| -4199 (-629 (-1237 *5)))))) + (-5 *1 (-651 *5)) (-5 *4 (-629 (-1237 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-552)) (-5 *1 (-1086)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-627 (-552))) (-5 *4 (-552)) - (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473))))) -(((*1 *2 *2) - (-12 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) + (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 - (-966 (-401 (-552)) (-844 *3) (-235 *4 (-754)) - (-242 *3 (-401 (-552))))) - (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-965 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)) - (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-776)) - (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) - (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *3 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *6)) - (-4 *6 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) - (-4 *2 (-928 (-931 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-811) (-830) (-1028))) - (-5 *2 (-1134)) (-5 *1 (-809 *4)))) + (-629 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4199 (-629 *7))))) + (-5 *1 (-652 *5 *6 *7 *3)) (-5 *4 (-629 *7)) + (-4 *3 (-671 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) - (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) - (-5 *1 (-809 *5)))) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-755 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-755 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1154)) + (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *1 (-757 *5 *2)) (-4 *2 (-13 (-29 *5) (-1176) (-940))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-673 *7)) (-5 *5 (-1154)) + (-4 *7 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 + (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) + (-5 *1 (-787 *6 *7)) (-5 *4 (-1237 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-805)) (-5 *4 (-310 *5)) - (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) - (-5 *1 (-809 *5)))) + (|partial| -12 (-5 *3 (-673 *6)) (-5 *4 (-1154)) + (-4 *6 (-13 (-29 *5) (-1176) (-940))) + (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-1237 *6))) (-5 *1 (-787 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-805)) (-5 *4 (-310 *6)) (-5 *5 (-111)) - (-4 *6 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) - (-5 *1 (-809 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-1134)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-811)) (-5 *3 (-111)) (-5 *2 (-1134)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *2 (-1240)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *4 (-111)) (-5 *2 (-1240))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1078 (-1078 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 *2) (-4 *5 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-900)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-900)))) - ((*1 *2) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) - (-5 *2 (-900)))) + (|partial| -12 (-5 *3 (-629 (-288 *7))) (-5 *4 (-629 (-113))) + (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 + (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) + (-5 *1 (-787 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-629 *7)) (-5 *4 (-629 (-113))) + (-5 *5 (-1154)) (-4 *7 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 + (-2 (|:| |particular| (-1237 *7)) (|:| -4199 (-629 (-1237 *7))))) + (-5 *1 (-787 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1154)) + (-4 *7 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -4199 (-629 *7))) *7 "failed")) + (-5 *1 (-787 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-1154)) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -4199 (-629 *3))) *3 "failed")) + (-5 *1 (-787 *6 *3)) (-4 *3 (-13 (-29 *6) (-1176) (-940))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-629 *2)) + (-4 *2 (-13 (-29 *6) (-1176) (-940))) (-5 *1 (-787 *6 *2)) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-629 *2)) + (-4 *2 (-13 (-29 *6) (-1176) (-940))) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *1 (-787 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) + (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) + (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1237 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-629 *4)) + (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1237 (-310 *4))) (-5 *5 (-629 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1016)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -4199 (-629 *6))) "failed") + *7 *6)) + (-4 *6 (-357)) (-4 *7 (-640 *6)) + (-5 *2 (-2 (|:| |particular| (-1237 *6)) (|:| -4199 (-673 *6)))) + (-5 *1 (-798 *6 *7)) (-5 *3 (-673 *6)) (-5 *4 (-1237 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-879)) (-5 *2 (-1016)) (-5 *1 (-878)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-878)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-756)) (-5 *6 (-629 (-629 (-310 *3)))) (-5 *7 (-1136)) + (-5 *8 (-220)) (-5 *5 (-629 (-310 (-373)))) (-5 *3 (-373)) + (-5 *2 (-1016)) (-5 *1 (-878)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-756)) (-5 *6 (-629 (-629 (-310 *3)))) (-5 *7 (-1136)) + (-5 *5 (-629 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1016)) + (-5 *1 (-878)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *2 (-629 (-373))) + (-5 *1 (-1004)) (-5 *4 (-373)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-933 (-552))) (-5 *2 (-629 (-373))) (-5 *1 (-1004)) + (-5 *4 (-373)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1109 *4)) + (-5 *3 (-310 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1109 *4)) + (-5 *3 (-288 (-310 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1109 *5)) + (-5 *3 (-288 (-310 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) - (-5 *2 (-754)) (-5 *1 (-649 *5)))) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-288 (-310 *5)))) (-5 *1 (-1109 *5)) + (-5 *3 (-310 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-754)) - (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) + (-12 (-5 *4 (-629 (-1154))) + (-4 *5 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1109 *5)) + (-5 *3 (-629 (-288 (-310 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) + (-4 *5 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-1154))) (-4 *5 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-1160 *5)) + (-5 *3 (-629 (-288 (-401 (-933 *5))))))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-669 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-754))))) -(((*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-362)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) - (-4 *4 (-343)))) - ((*1 *2 *1) - (-12 (-4 *2 (-830)) (-5 *1 (-696 *2 *3 *4)) (-4 *3 (-1076)) - (-14 *4 - (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) - (-2 (|:| -4153 *2) (|:| -4067 *3))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-274))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-113)) (-5 *1 (-160)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *4)) - (-4 *4 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) - ((*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-830)) (-5 *1 (-423 *3 *4)) - (-4 *3 (-424 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *4)) - (-4 *4 (-13 (-424 *3) (-981) (-1174))))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998))))) -(((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-1042 *3 *4 *2)) (-4 *2 (-830)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830))))) -(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-805))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1094)) (-5 *1 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1189)) (-5 *1 (-852 *3 *2)) (-4 *3 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) - (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) - (-5 *1 (-868 *4 *5)) (-4 *5 (-1076)))) + (-12 (-5 *3 (-629 (-401 (-933 *4)))) (-4 *4 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-1160 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) + (-5 *1 (-1160 *4)) (-5 *3 (-629 (-288 (-401 (-933 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) - (-5 *1 (-869 *5 *3)) (-4 *3 (-1189)))) + (-12 (-5 *4 (-1154)) (-4 *5 (-544)) + (-5 *2 (-629 (-288 (-401 (-933 *5))))) (-5 *1 (-1160 *5)) + (-5 *3 (-401 (-933 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) - (-4 *6 (-1189)) (-5 *2 (-111)) (-5 *1 (-869 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) - (-4 *4 (-13 (-357) (-828))) (-4 *3 (-1211 *2))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) (-4 *1 (-278))) + (-12 (-5 *4 (-1154)) (-4 *5 (-544)) + (-5 *2 (-629 (-288 (-401 (-933 *5))))) (-5 *1 (-1160 *5)) + (-5 *3 (-288 (-401 (-933 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) - (-5 *2 (-627 (-2 (|:| -3069 (-754)) (|:| |logand| *4)))) - (-5 *1 (-314 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *1) - (-12 (-5 *2 (-646 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) - (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) - (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) + (-12 (-4 *4 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *4))))) + (-5 *1 (-1160 *4)) (-5 *3 (-401 (-933 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 (-288 (-401 (-933 *4))))) + (-5 *1 (-1160 *4)) (-5 *3 (-288 (-401 (-933 *4))))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) (|partial| -4 *1 (-707)))) (((*1 *2 *1) - (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156))))) + (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1197 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1190))) (-5 *3 (-1190)) (-5 *1 (-665))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) + (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-756)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-756))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-810))))) +(((*1 *1) (-5 *1 (-1060)))) +(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) - (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-754)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) - (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-412 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-1028)) (-5 *2 (-627 *6)) (-5 *1 (-437 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (|partial| -12 (-5 *2 (-629 (-1150 *7))) (-5 *3 (-1150 *7)) + (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-890)) (-4 *5 (-778)) + (-4 *6 (-832)) (-5 *1 (-887 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 (-1150 *5))) (-5 *3 (-1150 *5)) + (-4 *5 (-1213 *4)) (-4 *4 (-890)) (-5 *1 (-888 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *4 (-1152)) - (-5 *1 (-1155)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1156)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *1 (-1156))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-1098)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) - (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *1 *1) (-4 *1 (-537)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) + (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1111 (-220))) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-860 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-860 *5)) (-5 *4 (-1070 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-5 *2 (-1111 (-220))) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1111 (-220))) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-863 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-863 *5)) (-5 *4 (-1070 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1111 (-220))) + (-5 *1 (-253 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-762 *4)) - (-4 *4 (-13 (-357) (-828)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1) (-5 *1 (-220))) ((*1 *1) (-5 *1 (-373)))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) - (-4 *3 (-1189))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1182 *5 *6 *7 *3)) - (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-209 *4)) - (-4 *4 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) - (-15 -4103 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) + (-12 (-4 *4 (-544)) (-5 *2 (-1150 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) - (-15 -4103 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-864 *3 *4 *5)) - (-4 *3 (-1076)) (-4 *5 (-648 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-4 *3 (-544))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111))))) -(((*1 *1) - (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) - (-1681 (|has| *1 (-6 -4349))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (-4 *1 (-830))) - ((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) - ((*1 *1) (-5 *1 (-1096)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-900)) - (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1152)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-627 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1174) (-27) (-424 *8))) - (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) - (-5 *3 (-552)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111)))) - (-5 *1 (-992 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1193)) - (-4 *6 (-1211 (-401 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-336 *4 *5 *6))))) + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) + (-15 -4026 ((-1103 *4 (-598 $)) $)) + (-15 -3213 ($ (-1103 *4 (-598 $)))))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 *1)) (|has| *1 (-6 -4369)) (-4 *1 (-991 *3)) + (-4 *3 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1) (-5 *1 (-1042)))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) - (-5 *2 (-671 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-740))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) + (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) + (-5 *2 (-1237 (-401 (-552)))) (-5 *1 (-1264 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-756)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-902)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-154)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176))) + (-5 *1 (-222 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-754) (-754))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 - (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) - (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-14 *6 (-1152)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-552)))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-1090)) (-4 *2 (-1191)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-1090)) (-4 *2 (-1191)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-832)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1078)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) + (-4 *6 (-233 (-2657 *3) (-756))) + (-14 *7 + (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) + (-2 (|:| -2840 *5) (|:| -1406 *6)))) + (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-832)) + (-4 *2 (-930 *4 *6 (-846 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-528))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1030)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1030)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1037)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-668 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-671 *3 *2 *4)) (-4 *3 (-1030)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-671 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-705))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-544)) + (-5 *1 (-950 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1037)))) + ((*1 *1 *1 *1) (-4 *1 (-1090))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1101 *3 *4 *2 *5)) (-4 *4 (-1030)) (-4 *2 (-233 *3 *4)) + (-4 *5 (-233 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) + (-4 *2 (-233 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-5 *1 (-1104 *3 *4 *2)) + (-4 *2 (-930 *3 (-523 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-924 (-220))) (-5 *3 (-220)) (-5 *1 (-1187)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-711)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-1235 *3)) (-4 *3 (-1191)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *2) + (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-629 (-2 (|:| |totdeg| (-756)) (|:| -2291 *3)))) + (-5 *4 (-756)) (-4 *3 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *1 (-442 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))))) + ((*1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) + (-14 *4 (-629 (-1154))))) + ((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754))))) + (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) + (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-4 *2 (-336 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) + ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-709 *2 *3)) (-4 *3 (-1213 *2))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) + (-4 *3 (-1078))))) +(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1237 *1)) (-4 *1 (-361 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) - (-4 *4 (-1211 (-552))) (-5 *2 (-720 (-754))) (-5 *1 (-435 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-412 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1028)) - (-5 *2 (-720 (-754))) (-5 *1 (-437 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-627 (-1152))) - (-5 *2 (-627 (-627 (-373)))) (-5 *1 (-1002)) (-5 *5 (-373)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) - (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *1 (-670 *4 *5 *6 *2)) - (-4 *2 (-669 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-828) (-357))) (-5 *2 (-111)) (-5 *1 (-1038 *4 *3)) - (-4 *3 (-1211 *4))))) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-983) (-1176))) + (-4 *4 (-13 (-544) (-832))) + (-4 *2 (-13 (-424 (-166 *4)) (-983) (-1176))) + (-5 *1 (-586 *4 *5 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) - (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-956 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144))) - (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) - (-5 *1 (-1105 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144))) - (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) - (-5 *1 (-1105 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-168)) (-5 *1 (-1140 *4 *5)) - (-14 *4 (-900)) (-4 *5 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1235 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) - (-4 *1 (-707 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1211 *5)) - (-5 *2 (-671 *5))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1) (-5 *1 (-788)))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-430))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1) + (-12 (-4 *1 (-930 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *1)))) + (-4 *1 (-1050 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1195))) + ((*1 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-1216 *3 *2)) + (-4 *2 (-13 (-1213 *3) (-544) (-10 -8 (-15 -2594 ($ $ $)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 *7)) (-5 *3 (-552)) (-4 *7 (-930 *6 *4 *5)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-5 *1 (-315 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-632 *3)) (-4 *3 (-1030)) + (-5 *1 (-699 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-819 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-627 *3)) (|:| |image| (-627 *3)))) - (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) - (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1076)) (-5 *1 (-696 *3 *2 *4)) (-4 *3 (-830)) - (-14 *4 - (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *2)) - (-2 (|:| -4153 *3) (|:| -4067 *2))))))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) - (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *1 *1) (-5 *1 (-111)))) -(((*1 *2 *1) - (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) - (-14 *4 (-754)) (-4 *5 (-169))))) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) + (-4 *3 (-13 (-1176) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-1019 (-552)) (-144))) + (-5 *2 (-573 (-401 (-933 *5)))) (-5 *1 (-558 *5)) + (-5 *3 (-401 (-933 *5)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1030) (-832))) + (-5 *1 (-218 *3 *4)) (-14 *4 (-629 (-1154)))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1088))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-942 *3)) (-4 *3 (-537))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1) (-4 *1 (-948))) ((*1 *1 *1) (-5 *1 (-1098)))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *4 *5 *6 *7)) - (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) - (-4 *7 (-1189))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1028))))) -(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-108))) (-5 *1 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-900)) (-5 *1 (-1009 *2)) - (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-2 (|:| |k| (-802 *3)) (|:| |c| *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) + (-629 + (-2 (|:| |eqzro| (-629 *7)) (|:| |neqzro| (-629 *7)) + (|:| |wcond| (-629 (-933 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *4)))))))))) + (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-756)) (-5 *2 (-1242))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) + (-4 *5 (-1213 *4)) (-5 *2 (-629 (-401 *5))) (-5 *1 (-997 *4 *5)) + (-5 *3 (-401 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-807)) (-5 *2 (-52)) (-5 *1 (-814))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)) - (-5 *1 (-1153 *4)))) + (-12 (-5 *3 (-933 *5)) (-4 *5 (-1030)) (-5 *2 (-474 *4 *5)) + (-5 *1 (-925 *4 *5)) (-14 *4 (-629 (-1154)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-5 *2 (-1235 *3)) (-5 *1 (-1153 *3)) - (-4 *3 (-1028))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-734))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-627 (-1152))) - (-5 *2 - (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) - (-5 *1 (-612 *5 *6))))) + (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1238)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1238)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1238)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-860 (-1 (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-924 (-220)) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *5 (-629 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-863 (-1 (-220) (-220) (-220)))) (-5 *4 (-1072 (-373))) + (-5 *2 (-1239)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-1154)) (-5 *5 (-629 (-257))) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *2 (-1238)) (-5 *1 (-250 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1238)) + (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1238)) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-858 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1238)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1070 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1238)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-860 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-860 *5)) (-5 *4 (-1070 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) (-5 *2 (-1239)) + (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1070 (-373))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1078))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-863 *6)) (-5 *4 (-1070 (-373))) (-5 *5 (-629 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-863 *5)) (-5 *4 (-1070 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1078))) (-5 *2 (-1239)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1238)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-629 (-220))) (-5 *4 (-629 (-257))) (-5 *2 (-1238)) + (-5 *1 (-254)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *2 (-1238)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *4 (-629 (-257))) + (-5 *2 (-1238)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1239)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-629 (-220))) (-5 *4 (-629 (-257))) (-5 *2 (-1239)) + (-5 *1 (-254))))) (((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) - (-4 *4 (-1076)) (-4 *5 (-1076))))) + (-12 (-4 *4 (-832)) (-5 *2 (-629 (-629 (-629 *4)))) + (-5 *1 (-1162 *4)) (-5 *3 (-629 (-629 *4)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) - (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) + (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) + ((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) - (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-760 *4 *5 *6 *3 *7)) - (-4 *3 (-1211 *6)) (-14 *7 (-900)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *1 (-955 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) - (|partial| -1559 - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) - (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))) - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) - (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))) - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) - (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))))) - ((*1 *1 *2) - (|partial| -1559 - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1) (-5 *1 (-618)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-814))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) -(((*1 *1 *2 *2) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2 *3) (-12 (-5 *3 (-952)) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-592))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 *1)) (-4 *1 (-296)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-113)) (-5 *3 (-629 *5)) (-5 *4 (-756)) (-4 *5 (-832)) + (-5 *1 (-598 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1019 *2))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) +(((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *2 (-754)) - (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) - (-14 *4 (-900)) (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) - (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) + (-2 (|:| |mval| (-673 *3)) (|:| |invmval| (-673 *3)) + (|:| |genIdeal| (-496 *3 *4 *5 *6)))) + (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-756)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-756))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-629 (-673 *3))) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-1009 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-629 (-673 *3))) (-4 *3 (-1030)) (-5 *1 (-1009 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) + (-4 *4 (-343)) (-5 *2 (-673 *4)) (-5 *1 (-340 *4))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-832)) (-5 *3 (-629 *6)) (-5 *5 (-629 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-629 *5)) (|:| |f3| *5) + (|:| |f4| (-629 *5)))) + (-5 *1 (-1162 *6)) (-5 *4 (-629 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) + (-5 *2 (-1016)) (-5 *1 (-741))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-673 (-220))) (-5 *6 (-673 (-552))) (-5 *3 (-552)) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-288 (-818 *3))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-818 *3)) (-5 *1 (-622 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-818 (-933 *5)))) (-4 *5 (-445)) + (-5 *2 (-818 (-401 (-933 *5)))) (-5 *1 (-623 *5)) + (-5 *3 (-401 (-933 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) + (-4 *5 (-445)) (-5 *2 (-818 *3)) (-5 *1 (-623 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-424 *3)))) + (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-832)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1406 (-552)))) (-4 *1 (-424 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) - (-4 *3 (-1076)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-873 *3)) (|:| -1406 (-873 *3)))) + (-5 *1 (-873 *3)) (-4 *3 (-1078)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) - (-5 *1 (-929 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1406 (-552)))) + (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) - (-15 -2929 (*7 $)))))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) - (-4 *1 (-361 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-446 *3 *4 *5 *6)) - (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) - (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-776)) (-4 *2 (-260 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1028)) (-4 *1 (-1211 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *7)) (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111))))) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) + (-15 -4026 (*7 $)))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) - (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *2 *3) - (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) - (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1) (-4 *1 (-1037))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-754)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-754))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *1)) (|has| *1 (-6 -4367)) (-4 *1 (-989 *3)) - (-4 *3 (-1189))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) - (-4 *3 (-1076))))) -(((*1 *1 *1) - (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) - (-4 *1 (-1048 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1193))) - ((*1 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-1214 *3 *2)) - (-4 *2 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) + (-2 (|:| |glbase| (-629 (-242 *4 *5))) (|:| |glval| (-629 (-552))))) + (-5 *1 (-617 *4 *5)) (-5 *3 (-629 (-242 *4 *5)))))) +(((*1 *1 *1) (-5 *1 (-220))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-285)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1213 (-401 (-552)))) (-5 *1 (-894 *3 *2)) + (-4 *2 (-1213 (-401 *3)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-711)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832))) (-5 *2 (-166 *5)) + (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-983) (-1176))) + (-4 *3 (-13 (-424 (-166 *4)) (-983) (-1176)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) + (-5 *2 (-111)) (-5 *1 (-968 *3 *4 *5 *6)) + (-4 *6 (-930 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1172)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1104 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) + (-4 *4 (-1030)) (-4 *3 (-832)) (-5 *1 (-1104 *4 *3 *5)) + (-4 *5 (-930 *4 (-523 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1185 *4))) (-5 *3 (-1154)) (-5 *1 (-1185 *4)) + (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) - (|:| |wcond| (-627 (-931 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) - (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) + (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) + (|:| |polypart| *6))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 (-627 *4)))) - (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 *4)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) + (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1213 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-756))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *2 (-412 *3)) + (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-988 *3)) + (-4 *3 (-1213 (-401 (-552)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-673 (-1150 *8))) (-4 *5 (-1030)) (-4 *8 (-1030)) + (-4 *6 (-1213 *5)) (-5 *2 (-673 *6)) (-5 *1 (-493 *5 *6 *7 *8)) + (-4 *7 (-1213 *6))))) (((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-754))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1170))))) + (-12 (-4 *1 (-343)) + (-5 *2 (-629 (-2 (|:| -3479 (-552)) (|:| -1406 (-552)))))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-950 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *2) (-12 (-5 *2 (-818 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1078))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-776)) - (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) - (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) + (-12 (-4 *4 (-778)) + (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *5 (-544)) + (-5 *1 (-717 *4 *3 *5 *2)) (-4 *2 (-930 (-401 (-933 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-5 *1 (-965 *4 *5 *3 *2)) (-4 *2 (-930 (-933 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *6)) + (-12 (-5 *3 (-629 *6)) (-4 *6 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) - (-4 *2 (-928 (-931 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-636 *2 (-401 *2))) (-4 *2 (-1211 *4)) - (-5 *1 (-793 *4 *2)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-828)) (-5 *1 (-297 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2618 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1317 (-401 *6)) - (|:| |special| (-401 *6)))) - (-5 *1 (-710 *5 *6)) (-5 *3 (-401 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-875 *3 *4)) - (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-754)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-875 *3 *5)) - (-4 *3 (-1211 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) - (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) - (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) - (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) - (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-552)) (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1116 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) - (-5 *2 (-111)) (-5 *1 (-1117 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-627 (-401 *6))) (-5 *3 (-401 *6)) - (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-556 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) - (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) - ((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 (-754)))))) + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-4 *4 (-1030)) (-4 *5 (-778)) (-5 *1 (-965 *4 *5 *6 *2)) + (-4 *2 (-930 (-933 *4) *5 *6))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + (-12 (-5 *2 (-673 (-891 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) + (-14 *4 (-902)))) ((*1 *2) - (-12 (-4 *4 (-830)) (-5 *2 (-754)) (-5 *1 (-423 *3 *4)) - (-4 *3 (-424 *4)))) - ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-536 *3)) (-4 *3 (-537)))) - ((*1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-754)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-779 *3 *4)) - (-4 *3 (-780 *4)))) - ((*1 *2) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-970 *3 *4)) - (-4 *3 (-971 *4)))) + (-12 (-5 *2 (-673 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1150 *3) + (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098))))))))) ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-975 *3 *4)) - (-4 *3 (-976 *4)))) - ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-990 *3)) (-4 *3 (-991)))) - ((*1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-754)))) - ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) -(((*1 *2 *3) + (-12 (-5 *2 (-673 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-902))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4) + (-2 (|:| |polnum| (-767 *3)) (|:| |polden| *3) (|:| -3129 (-756)))) + (-5 *1 (-767 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3129 (-756)))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-902)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-357)) (-14 *5 (-974 *3 *4))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-236)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-629 (-1136))) (-5 *3 (-552)) (-5 *4 (-1136)) + (-5 *1 (-236)))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-832) (-544))))) + ((*1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1) (-5 *1 (-470))) ((*1 *1) (-4 *1 (-1176)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) - (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) - ((*1 *2 *3 *4) + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-846 *5))) (-14 *5 (-629 (-1154))) (-4 *6 (-445)) + (-5 *2 (-629 (-629 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) + (-5 *3 (-629 (-242 *5 *6))) (-4 *7 (-445))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-629 (-552))) + (|:| |cols| (-629 (-552))))) + (-5 *4 (-673 *12)) (-5 *5 (-629 (-401 (-933 *9)))) + (-5 *6 (-629 (-629 *12))) (-5 *7 (-756)) (-5 *8 (-552)) + (-4 *9 (-13 (-301) (-144))) (-4 *12 (-930 *9 *11 *10)) + (-4 *10 (-13 (-832) (-600 (-1154)))) (-4 *11 (-778)) (-5 *2 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-401 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-401 (-552))) - (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-999 *3)) - (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) - ((*1 *2 *3) + (-2 (|:| |eqzro| (-629 *12)) (|:| |neqzro| (-629 *12)) + (|:| |wcond| (-629 (-933 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *9)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *9))))))))) + (-5 *1 (-905 *9 *10 *11 *12))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) + (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) + (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *8))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) + (-5 *1 (-99 *4 *3)) (-4 *3 (-1213 *4)))) ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-13 (-445) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-973 *2)) (-4 *4 (-1213 *3)) (-4 *2 (-301)) + (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1019 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-832)) (-5 *2 (-1103 *3 (-598 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-711) *4)) + (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-711) *4)) + (-5 *1 (-646 *3 *4 *2)) (-4 *3 (-702 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) + (-4 *4 (-13 (-357) (-830))) (-4 *3 (-1213 *2))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1136)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809))))) +(((*1 *1 *1) (-5 *1 (-1153))) + ((*1 *1 *2) (-12 (-5 *2 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))) - (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-401 (-552))) - (-5 *2 (-627 (-2 (|:| -2776 *4) (|:| -2791 *4)))) (-5 *1 (-1000 *3)) - (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-401 (-552))) - (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-1000 *3)) - (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-52)) (-5 *1 (-814))))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4))))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) - (-5 *2 (-111)) (-5 *1 (-1116 *5 *6))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1172))))) -(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *1)))) - (-4 *1 (-1048 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-754) *2)) (-5 *4 (-754)) (-4 *2 (-1076)) - (-5 *1 (-660 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-754) *3)) (-4 *3 (-1076)) (-5 *1 (-664 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) - (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) - (-4 *8 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *9)))) - (-5 *3 (-627 *9)) (-4 *1 (-1182 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *8)))) - (-5 *3 (-627 *8)) (-4 *1 (-1182 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-905)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-905)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906))))) + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-412 *4)) (-4 *4 (-544))))) + (-12 (-5 *3 (-629 (-924 *4))) (-4 *1 (-1112 *4)) (-4 *4 (-1030)) + (-5 *2 (-756))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-301)) (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) + (-5 *2 (-1237 *6)) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *6 (-13 (-403 *4 *5) (-1019 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *3 (-832)) (-5 *2 (-1103 *3 (-598 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-607 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-711) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-702 *3)) (-5 *1 (-646 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-711) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) (((*1 *2 *3) - (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) - (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) + (-12 (-4 *1 (-785)) + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) - (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) - (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *9)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) - (-4 *8 (-1028)) (-4 *2 (-928 *9 *7 *5)) - (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) - (-4 *4 (-928 *8 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) -(((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1076)) (-5 *2 (-111)) - (-5 *1 (-1190 *3))))) -(((*1 *1 *1) (-5 *1 (-220))) ((*1 *1 *1) (-5 *1 (-373))) - ((*1 *1) (-5 *1 (-373)))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-690 *3 *4)) (-4 *3 (-1191)) (-4 *4 (-1191))))) (((*1 *1 *2) - (-12 (-5 *2 (-900)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1028)) - (-4 *4 (-1189)))) - ((*1 *1 *2) - (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) - (-4 *5 (-233 (-1383 *3) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) - (-2 (|:| -4153 *2) (|:| -4067 *5)))) - (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-830)) - (-4 *7 (-928 *4 *5 (-844 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-786))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) - (-4 *2 (-1226 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1118 *4 *2)) (-14 *4 (-900)) - (-4 *2 (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) - (-5 *1 (-881 *4 *2))))) + (|partial| -12 (-5 *2 (-804 *3)) (-4 *3 (-832)) (-5 *1 (-656 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1192 *2)) + (-4 *2 (-1078)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-832)) + (-5 *1 (-1192 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-756))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) (((*1 *2 *1) - (-12 (-5 *2 (-627 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 (-754)) (-4 *5 (-169))))) + (-12 (-5 *2 (-1080 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1080 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))) + (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-633 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2594 *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) - (-5 *2 (-900))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-301)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) - (-5 *1 (-380 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2404 (-754)) (|:| -3401 (-754)))) - (-5 *1 (-754)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *2 (-1184 (-905))) - (-5 *1 (-312)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *7 (-1134)) - (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) - (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1134)) - (-5 *2 (-1184 (-905))) (-5 *1 (-312))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-754)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-166 (-220))) (-5 *3 (-754)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-2 - (|:| -3998 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -2162 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1707 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-547)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-677 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2) - (-12 + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *1) (-4 *1 (-343))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-424 *4)) + (-4 *4 (-13 (-544) (-832) (-144))) (-5 *2 - (-2 - (|:| -3998 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (|:| -2162 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))))) - (-5 *1 (-786)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) - (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) -(((*1 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-629 (-1150 *5))) + (|:| |prim| (-1150 *5)))) + (-5 *1 (-426 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-627 (-598 *6))) (-5 *4 (-1152)) (-5 *2 (-598 *6)) - (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *1 (-561 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1148 (-1148 *5)))) - (-5 *1 (-1187 *5)) (-5 *3 (-1148 (-1148 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) + (-12 (-4 *4 (-13 (-544) (-832) (-144))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1150 *3)) + (|:| |pol2| (-1150 *3)) (|:| |prim| (-1150 *3)))) + (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-933 *5)) (-5 *4 (-1154)) (-4 *5 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) + (|:| |prim| (-1150 *5)))) + (-5 *1 (-941 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) + (-4 *5 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 *5))) + (|:| |prim| (-1150 *5)))) + (-5 *1 (-941 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) (-5 *5 (-1154)) + (-4 *6 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| -4158 (-629 (-552))) (|:| |poly| (-629 (-1150 *6))) + (|:| |prim| (-1150 *6)))) + (-5 *1 (-941 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-220)) (-5 *2 (-1016)) (-5 *1 (-737))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) - (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) - (-4 *3 (-336 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) - (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191))))) (((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-983)) + (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1136)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) + (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1136)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) + (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-958 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-756))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *1 *1) (-5 *1 (-844))) ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)) - (-5 *1 (-797 *4 *5)) (-4 *5 (-638 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-357)) - (-5 *2 (-671 *5)) (-5 *1 (-797 *5 *6)) (-4 *6 (-638 *5))))) + (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1154))))) (((*1 *2 *2) - (-12 (-4 *3 (-600 (-871 *3))) (-4 *3 (-865 *3)) - (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-600 (-871 *3))) (-4 *2 (-865 *3)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) - (-5 *4 (-627 (-900))) (-5 *5 (-627 (-257))) (-5 *1 (-461)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) - (-5 *4 (-627 (-900))) (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) - ((*1 *1 *1) (-5 *1 (-461)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) - (-5 *1 (-413 *4)))) - ((*1 *1 *1) (-5 *1 (-905))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) - ((*1 *1 *1) (-5 *1 (-906))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) - (-5 *4 (-401 (-552))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) - (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) - (-5 *4 (-401 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) - (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2))))) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) - (-4 *3 (-1076))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-844 *4)) - (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-967 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-627 (-1152))) (-4 *2 (-169)) - (-4 *3 (-233 (-1383 *4) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *3)) - (-2 (|:| -4153 *5) (|:| -4067 *3)))) - (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-830)) - (-4 *7 (-928 *2 *3 (-844 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-154)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) - (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) - (-5 *1 (-679)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1 (-922 (-220)) (-220) (-220))) - (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *1 (-679))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) - (-5 *1 (-883 *4))))) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) (((*1 *2 *3) - (-12 (-14 *4 (-627 (-1152))) (-14 *5 (-754)) - (-5 *2 - (-627 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552)))))) - (-5 *1 (-497 *4 *5)) - (-5 *3 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552)))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-128)) (-5 *2 (-1096))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-869 *4 *3)) - (-4 *3 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1152)) (-5 *6 (-627 (-598 *3))) - (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) - (-5 *1 (-545 *7 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1028)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1211 *9)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-301)) - (-4 *10 (-928 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-627 (-1148 *10))) - (|:| |dterm| - (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-627 *6)) (|:| |nlead| (-627 *10)))) - (-5 *1 (-761 *6 *7 *8 *9 *10)) (-5 *3 (-1148 *10)) (-5 *4 (-627 *6)) - (-5 *5 (-627 *10))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-754)) (-4 *2 (-1076)) - (-5 *1 (-660 *2))))) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *3 (-1213 *4)) (-5 *1 (-794 *4 *3 *2 *5)) (-4 *2 (-640 *3)) + (-4 *5 (-640 (-401 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-401 *5)) + (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-1213 *4)) + (-5 *1 (-794 *4 *5 *2 *6)) (-4 *2 (-640 *5)) (-4 *6 (-640 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *6 (-600 (-1152))) - (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *2 (-1141 (-627 (-931 *4)) (-627 (-288 (-931 *4))))) - (-5 *1 (-496 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) - (-4 *7 (-828)) - (-4 *8 - (-13 (-1213 *3 *7) (-357) (-1174) - (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) - (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) - (-14 *10 (-1152))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-629 (-474 *4 *5))) (-14 *4 (-629 (-1154))) + (-4 *5 (-445)) (-5 *2 (-629 (-242 *4 *5))) (-5 *1 (-617 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-804 *3)) (|:| |rm| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-736))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) - (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-734))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1076)) (-4 *6 (-1076)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *5 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *2)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) - (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) - (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) - (-4 *6 (-544))))) -(((*1 *1 *1) (-4 *1 (-613))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-663)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1094))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) - (-4 *3 (-1189))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-171 *6)) - (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1235 (-1152))) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) - (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) - (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) - (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) - (-14 *6 (-627 *2)) (-14 *7 (-1235 (-671 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) - (-14 *6 (-1235 (-671 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-1152))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) - (-14 *6 (-1235 (-671 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-900)) (-14 *5 (-627 *2)) (-14 *6 (-1235 (-671 *3))))) - ((*1 *1) - (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-900)) - (-14 *4 (-627 (-1152))) (-14 *5 (-1235 (-671 *2)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-431)) (-5 *1 (-1156))))) -(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-242 *3 *4)) - (-14 *3 (-627 (-1152))) (-4 *4 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-14 *3 (-627 (-1152))) - (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1028)) - (-4 *5 (-233 (-1383 *3) (-754))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-474 *3 *4)) - (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) -(((*1 *2 *1) - (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) - (-5 *2 (-627 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1037)) (-4 *3 (-1174)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-128))) - ((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169)))) - ((*1 *1) (-4 *1 (-709))) ((*1 *1) (-5 *1 (-1152)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1148 *7)) - (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) - (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) -(((*1 *1) (-5 *1 (-1240)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1189)) - (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *2 *7)) (-4 *6 (-1028)) - (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1017 (-552))) - (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-132))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) - (-4 *5 (-1226 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) - (-4 *5 (-1195 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) - (-4 *6 (-962 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-278))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *1) (-5 *1 (-373))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-1088)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) + (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) - (-5 *1 (-520 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-528)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *4 (-1076)) - (-5 *1 (-664 *4)))) + (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) + (-4 *2 (-544)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-544))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357)))) + (|partial| -12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) + (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-756))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) - (-5 *1 (-672 *4)))) + (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-544)) + (-5 *1 (-950 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)) - (-4 *4 (-630 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1028)) - (-5 *1 (-697 *4 *5)) (-4 *5 (-630 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-754)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-817 *3)) (-4 *3 (-1028)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-817 *4)) (-4 *4 (-1028)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-401 (-552))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1088)) (-5 *2 (-900)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) + (|partial| -12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *2 (-1030)) + (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) + (|partial| -12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1158))))) (((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-627 (-2 (|:| |func| *2) (|:| |pole| (-111))))) - (-4 *2 (-13 (-424 *4) (-981))) (-4 *4 (-13 (-830) (-544))) - (-5 *1 (-270 *4 *2))))) + (-12 (-4 *3 (-357)) (-5 *1 (-1006 *3 *2)) (-4 *2 (-640 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -2771 *3) (|:| -1443 (-629 *5)))) + (-5 *1 (-1006 *5 *3)) (-5 *4 (-629 *5)) (-4 *3 (-640 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *1) (-5 *1 (-806)))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) ((*1 *2 *1) - (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (-4 *2 (-1028))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3))))) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) (((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-1237 *6)) (-5 *1 (-330 *3 *4 *5 *6)) + (-4 *6 (-336 *3 *4 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-1158)) (-5 *1 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-296)))) + ((*1 *1 *1) (-4 *1 (-296))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *1 *1) (-5 *1 (-844)))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1154)) (-5 *1 (-659 *3)) (-4 *3 (-1078))))) +(((*1 *2) (-12 (-5 *2 (-1125 (-1136))) (-5 *1 (-385))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-257))) (-5 *1 (-1239))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) + (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-930 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *6 *4 *5)) + (-5 *1 (-897 *4 *5 *6 *2)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-301))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-1138 *4)) (-4 *4 (-1030)) + (-5 *3 (-552))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) (-5 *2 - (-627 - (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *3)) - (|:| |logand| (-1148 *3))))) - (-5 *1 (-573 *3)) (-4 *3 (-357))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 (-627 *6))) (-4 *6 (-928 *3 *5 *4)) - (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) - (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544))))) -(((*1 *1) (-5 *1 (-138)))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-187))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *3)) + (-4 *3 (-1191)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1184 *4 *5 *3 *2)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *3 (-832)) (-4 *2 (-1044 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *1 (-1188 *2)) (-4 *2 (-1191))))) (((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) - (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(((*1 *2 *1) - (-12 (-4 *2 (-691 *3)) (-5 *1 (-810 *2 *3)) (-4 *3 (-1028))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1193)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1134)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1014)) - (-5 *1 (-733))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-1040))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)) (-5 *3 (-1134)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) + (-12 (-4 *3 (-1195)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-873 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1078)) + (-4 *5 (-1191)) (-5 *1 (-871 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-873 *4)) (-5 *3 (-629 (-1 (-111) *5))) (-4 *4 (-1078)) + (-4 *5 (-1191)) (-5 *1 (-871 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-873 *5)) (-5 *3 (-629 (-1154))) + (-5 *4 (-1 (-111) (-629 *6))) (-4 *5 (-1078)) (-4 *6 (-1191)) + (-5 *1 (-871 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1191)) (-4 *4 (-832)) + (-5 *1 (-918 *4 *2 *5)) (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-1 (-111) *5))) (-4 *5 (-1191)) (-4 *4 (-832)) + (-5 *1 (-918 *4 *2 *5)) (-4 *2 (-424 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1191)) + (-5 *2 (-310 (-552))) (-5 *1 (-919 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-629 (-1 (-111) *5))) (-4 *5 (-1191)) + (-5 *2 (-310 (-552))) (-5 *1 (-919 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-1 (-111) (-629 *6))) + (-4 *6 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-5 *1 (-1054 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-357)) (-5 *2 (-627 (-1132 *4))) (-5 *1 (-279 *4 *5)) - (-5 *3 (-1132 *4)) (-4 *5 (-1226 *4))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1181 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *6)))) + (-5 *4 (-1007 (-825 (-552)))) (-5 *5 (-1154)) (-5 *7 (-401 (-552))) + (-4 *6 (-1030)) (-5 *2 (-844)) (-5 *1 (-582 *6))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3428 *6) (|:| |sol?| (-111))) (-552) + *6)) + (-4 *6 (-357)) (-4 *7 (-1213 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) + (-2 (|:| -1411 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) + (-4 *4 (-1191)) (-5 *2 (-111))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-711)) (-4 *2 (-1191))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-844))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111)))) + (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1213 *4)) + (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-1078)) (-5 *2 (-629 *1)) + (-4 *1 (-376 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-711)))) ((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-930 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) + (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-373)) (-5 *1 (-1042))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-629 (-1154))) (-4 *2 (-169)) + (-4 *4 (-233 (-2657 *5) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *3) (|:| -1406 *4)) + (-2 (|:| -2840 *3) (|:| -1406 *4)))) + (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-832)) + (-4 *7 (-930 *2 *4 (-846 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1191)) + (-4 *5 (-367 *4)) (-4 *3 (-367 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-445)) (-4 *3 (-832)) (-4 *4 (-778)) + (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1078)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-667 *4 *5)) (-4 *4 (-1078)))) + ((*1 *2 *2) + (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911)))) ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 (-1235 *4))) (-4 *4 (-1028)) (-5 *2 (-671 *4)) - (-5 *1 (-1008 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1076)) (-4 *4 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *5 *4 *6))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1211 (-166 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) - (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) - (-5 *2 (-671 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) -(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-269))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1030)) (-5 *1 (-1260 *2 *3)) (-4 *3 (-828))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-756)) (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) + (-4 *2 (-1213 *3))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-629 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-552))))) + (-4 *2 (-544)) (-5 *1 (-412 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-552)) + (|:| -3772 (-629 (-2 (|:| |irr| *4) (|:| -2277 (-552))))))) + (-4 *4 (-1213 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-166 (-220)))) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) - (-4 *6 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) - (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 *5)) (-4 *6 (-1076)) - (-4 *5 (-1189)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) - (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) - (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-624 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-754))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040))))) -(((*1 *2 *3) - (-12 (-4 *4 (-830)) (-5 *2 (-1161 (-627 *4))) (-5 *1 (-1160 *4)) - (-5 *3 (-627 *4))))) + (-12 (-5 *4 (-902)) (-4 *6 (-13 (-544) (-832))) + (-5 *2 (-629 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) + (-4 *5 (-1030)))) + ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) + ((*1 *2 *3) + (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1176))) + (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *2 (-629 *5)) (-5 *1 (-571 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-573 (-401 (-933 *4)))) + (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *2 (-629 (-310 *4))) (-5 *1 (-576 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1073 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1127 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-1073 *4 *2)) (-4 *4 (-830)) + (-4 *2 (-1127 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1252 (-1154) *3)) (-5 *1 (-1259 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-756)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1030)) (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-1054 *3 *4 *5))) (-4 *3 (-1078)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) + (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) + (-5 *1 (-1055 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1078) (-34))) (-5 *1 (-1118 *3 *2)) + (-4 *3 (-13 (-1078) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1248))))) +(((*1 *2) + (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *2) + (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-933 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1213 *2)) (-4 *2 (-1195)) (-5 *1 (-145 *2 *4 *3)) + (-4 *3 (-1213 (-401 *4)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1230 *3 *2)) + (-4 *2 (-1228 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) - (-5 *2 (-401 (-552))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552)))))) + (-12 (-5 *3 (-1163 (-629 *4))) (-4 *4 (-832)) + (-5 *2 (-629 (-629 *4))) (-5 *1 (-1162 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-844))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-843)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-843))))) (((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-711) (-25)))))) (((*1 *2 *2) - (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) - (-4 *3 (-630 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1152)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-627 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1174) (-27) (-424 *8))) - (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) - (-5 *3 (-552)) (-5 *2 (-627 *4)) (-5 *1 (-993 *8 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-428)) - (-5 *2 - (-627 - (-3 (|:| -3112 (-1152)) - (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) - (-5 *1 (-1156))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 *4)) (-5 *1 (-1117 *3 *4)) - (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-807)) (-5 *3 (-627 (-1152))) (-5 *1 (-808))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) - (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *3 (-1211 *4)) (-5 *1 (-792 *4 *3 *2 *5)) (-4 *2 (-638 *3)) - (-4 *5 (-638 (-401 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 *5)) - (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) - (-5 *1 (-792 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) - ((*1 *1 *1) (-4 *1 (-296))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1211 *4)) - (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) - (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-1028)) (-4 *4 (-830)) - (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (|partial| -12 (-5 *3 (-1154)) (-4 *4 (-1030)) (-4 *4 (-832)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1028)) (-4 *4 (-830)) - (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1030)) (-4 *4 (-832)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) - (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (|partial| -12 (-4 *3 (-1090)) (-4 *3 (-832)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -1406 (-552)))) (-4 *1 (-424 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-754)))) - (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-873 *3)) (|:| -1406 (-756)))) + (-5 *1 (-873 *3)) (-4 *3 (-1078)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-754)))))) + (|partial| -12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-2 (|:| |var| *5) (|:| -1406 (-756)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-552)))) - (-5 *1 (-929 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1406 (-552)))) + (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) - (-15 -2929 (*7 $)))))))) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) + (-15 -4026 (*7 $)))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) + (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) + (-5 *2 (-2 (|:| -4241 (-756)) (|:| -2403 *8))) + (-5 *1 (-892 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1213 (-401 (-552)))) (-4 *5 (-1213 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) + (-5 *2 (-2 (|:| -4241 (-756)) (|:| -2403 *6))) + (-5 *1 (-893 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1191)) (-5 *2 (-756))))) +(((*1 *1 *1) (-4 *1 (-1122)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-412 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-1030)) (-5 *2 (-629 *6)) (-5 *1 (-437 *5 *6))))) +(((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-483)) (-5 *3 (-935)) (-5 *1 (-525)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-935)) (-4 *1 (-752 *2)) (-4 *2 (-1078))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1237 *5)) (-4 *5 (-625 *4)) (-4 *4 (-544)) + (-5 *2 (-1237 *4)) (-5 *1 (-624 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111))))) (((*1 *2) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-627 (-627 *4))) (-5 *1 (-335 *3 *4 *5 *6)) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-629 (-629 *4))) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-627 (-627 *3)))))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-629 (-629 *3)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1158))))) +(((*1 *2 *3) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) + (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 *1)) (-4 *1 (-424 *4)) + (-4 *4 (-832)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) (-14 *4 *2)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-775))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-777))))) +(((*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-629 (-629 (-924 (-220))))))) + ((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-629 (-629 (-924 (-220)))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-629 (-274))) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1159))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-1186 *3)) + (-4 *3 (-955))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) + (-4 *3 (-1213 *4)) (-5 *2 (-552)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1094 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-825 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1094 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-1136)) + (-4 *6 (-13 (-544) (-832) (-1019 *2) (-625 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1094 *6 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-445)) (-5 *2 (-552)) + (-5 *1 (-1095 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-825 (-401 (-933 *6)))) + (-5 *3 (-401 (-933 *6))) (-4 *6 (-445)) (-5 *2 (-552)) + (-5 *1 (-1095 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-401 (-933 *6))) (-5 *4 (-1154)) + (-5 *5 (-1136)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1095 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1173 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1191)) + (-4 *2 (-1191)) (-5 *1 (-57 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1078)) (|has| *1 (-6 -4368)) + (-4 *1 (-148 *2)) (-4 *2 (-1191)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) + (-4 *2 (-1191)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) + (-4 *2 (-1191)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1030)) + (-5 *2 (-2 (|:| -2291 (-1150 *4)) (|:| |deg| (-902)))) + (-5 *1 (-216 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-13 (-544) (-832))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-756)) + (-4 *6 (-1191)) (-4 *2 (-1191)) (-5 *1 (-234 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1213 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-832)))) + ((*1 *1 *1) + (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1213 *2)) + (-4 *4 (-1213 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1191)) (-4 *2 (-1191)) + (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1078)) (-4 *2 (-1078)) + (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) + ((*1 *1 *1) (-5 *1 (-487))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-629 *5)) (-4 *5 (-1191)) + (-4 *2 (-1191)) (-5 *1 (-627 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030)) + (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) + (-4 *9 (-367 *2)) (-5 *1 (-669 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-671 *5 *6 *7)) (-4 *10 (-671 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-357)) + (-4 *3 (-169)) (-4 *1 (-709 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-4 *1 (-709 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-939 *5)) (-4 *5 (-1191)) + (-4 *2 (-1191)) (-5 *1 (-938 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *2 (-930 *3 *4 *5)) + (-14 *6 (-629 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1030)) (-4 *2 (-1030)) + (-14 *5 (-756)) (-14 *6 (-756)) (-4 *8 (-233 *6 *7)) + (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) + (-5 *1 (-1035 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1033 *5 *6 *7 *8 *9)) (-4 *12 (-1033 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1134 *5)) (-4 *5 (-1191)) + (-4 *2 (-1191)) (-5 *1 (-1132 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) + (-4 *1 (-1184 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-778)) + (-4 *7 (-832)) (-4 *2 (-1044 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1237 *5)) (-4 *5 (-1191)) + (-4 *2 (-1191)) (-5 *1 (-1236 *5 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1411 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-357)) (-4 *7 (-1213 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-832)) (-5 *1 (-910 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-310 (-552))) (-5 *1 (-911))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-756)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-756)) (-4 *5 (-169)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552))))) + (-5 *3 (-629 (-846 *4))) (-14 *4 (-629 (-1154))) (-14 *5 (-756)) + (-5 *1 (-497 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-629 (-673 (-552)))) + (-5 *1 (-1088))))) +(((*1 *1 *1) (|partial| -4 *1 (-142))) ((*1 *1 *1) (-4 *1 (-343))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-890))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-111)) + (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) + (-5 *2 (-1016)) (-5 *1 (-741))))) +(((*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1176))) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-1150 (-401 (-1150 *6)))) (-5 *1 (-548 *5 *6 *7)) + (-5 *3 (-1150 *6)) (-4 *7 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1213 *3)) (-5 *1 (-697 *3 *2)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *1 (-709 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1150 *11)) (-5 *6 (-629 *10)) + (-5 *7 (-629 (-756))) (-5 *8 (-629 *11)) (-4 *10 (-832)) + (-4 *11 (-301)) (-4 *9 (-778)) (-4 *5 (-930 *11 *9 *10)) + (-5 *2 (-629 (-1150 *5))) (-5 *1 (-727 *9 *10 *11 *5)) + (-5 *3 (-1150 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-930 *3 *4 *5)) (-5 *1 (-1015 *3 *4 *5 *2 *6)) + (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-14 *6 (-629 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1136)) (-5 *1 (-299))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1154)) + (-4 *6 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-4 *4 (-13 (-29 *6) (-1176) (-940))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4199 (-629 *4)))) + (-5 *1 (-786 *6 *4 *3)) (-4 *3 (-640 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1213 (-552)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) + (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *2 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))) + (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1213 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1252 (-1154) *3)) (-4 *3 (-1030)) (-5 *1 (-1259 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1252 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *1 (-1261 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) + (-5 *2 (-2 (|:| -4158 (-401 *5)) (|:| |poly| *3))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-483))))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *1 *1) (-4 *1 (-1122)))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) - (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) - (-5 *1 (-1046 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) - (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) - (-5 *1 (-1121 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1123 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-952)) (-5 *1 (-886 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-1150 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) - ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) + ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1239)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-673 (-166 (-220)))) + (-5 *2 (-1016)) (-5 *1 (-740))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-528)) (-5 *1 (-527 *4)) + (-4 *4 (-1191))))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-629 *11)) (-5 *5 (-629 (-1150 *9))) + (-5 *6 (-629 *9)) (-5 *7 (-629 *12)) (-5 *8 (-629 (-756))) + (-4 *11 (-832)) (-4 *9 (-301)) (-4 *12 (-930 *9 *10 *11)) + (-4 *10 (-778)) (-5 *2 (-629 (-1150 *12))) + (-5 *1 (-692 *10 *11 *9 *12)) (-5 *3 (-1150 *12))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) - (-4 *4 (-13 (-544) (-1017 (-552)) (-144))) (-5 *1 (-558 *4))))) + (|partial| -12 (-5 *2 (-401 (-933 *4))) (-5 *3 (-1154)) + (-4 *4 (-13 (-544) (-1019 (-552)) (-144))) (-5 *1 (-558 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1154)) + (-4 *5 (-13 (-544) (-1019 (-552)) (-144))) + (-5 *2 + (-2 (|:| -1411 (-401 (-933 *5))) (|:| |coeff| (-401 (-933 *5))))) + (-5 *1 (-558 *5)) (-5 *3 (-401 (-933 *5)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-673 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1030)) (-5 *1 (-582 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1197 *3)) (-4 *3 (-1030)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1228 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-1172))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1213 *6)) + (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) (-4 *8 (-1213 (-401 *7))) + (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) + (-4 *3 (-336 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-807))))) (((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1070 (-823 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) + (-12 (-5 *4 (-1072 (-825 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-299)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1) (-5 *1 (-844)))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3461 (-552)) (|:| -3772 (-629 *3)))) + (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *1) (-5 *1 (-285)))) (((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-900)) (-5 *1 (-322 *3 *4)) + (-12 (-4 *4 (-357)) (-5 *2 (-902)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-816 (-900))) (-5 *1 (-322 *3 *4)) + (-12 (-4 *4 (-357)) (-5 *2 (-818 (-902))) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) - ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) + ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-902)))) ((*1 *2) - (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) - (-4 *2 (-656 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-111)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-111)) (-5 *1 (-1178 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) - (-4 *2 (-638 *4))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-1028)))) - ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) - ((*1 *1 *1) (-4 *1 (-1037)))) -(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-627 (-113)))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-2 (|:| -3354 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-607 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111))) - (-552) *4)) - (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *1 (-562 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) - (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) - (-5 *2 (-1014)) (-5 *1 (-737))))) + (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-818 (-902)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-756))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1154)) + (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-563 *4 *2)) + (-4 *2 (-13 (-1176) (-940) (-1117) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *7)) (-4 *7 (-830)) - (-4 *8 (-928 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1235 (-401 *8)) "failed")) - (|:| -2957 (-627 (-1235 (-401 *8)))))) - (-5 *1 (-651 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *5)))) - (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *2 (-627 *5)) - (-5 *1 (-211 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-2 (|:| -1727 *5) (|:| -3567 (-552))))) - (-5 *4 (-552)) (-4 *5 (-1211 *4)) (-5 *2 (-627 *5)) - (-5 *1 (-678 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) - (-5 *1 (-326)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-1068 (-931 (-552)))) (-5 *2 (-324)) - (-5 *1 (-326)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) - (-4 *3 (-1076))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-978 *3)) (-4 *3 (-169)) (-5 *1 (-782 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-324))))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-528))) (-5 *1 (-528))))) -(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) - (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) - (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) - (-4 *2 (-669 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1211 *4)) (-5 *1 (-792 *4 *2 *3 *5)) - (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) - (-4 *5 (-638 (-401 *2)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-737))))) + (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *2 (-629 *4)) (-5 *1 (-764 *4)) + (-4 *4 (-13 (-357) (-830)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1076)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) - (-5 *2 (-627 (-1052 *3 *4 *5))) (-5 *1 (-1053 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-401 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-544)) - (-4 *4 (-1028)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) - (-4 *6 (-638 *5))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754)))) - (-5 *1 (-1132 *4)) (-4 *4 (-1189)) (-5 *3 (-754))))) + (-12 (-4 *2 (-1213 *3)) (-5 *1 (-393 *3 *2)) + (-4 *3 (-13 (-357) (-144)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-5 *2 (-2 (|:| -2571 (-629 *6)) (|:| -3092 (-629 *6))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) - ((*1 *1 *1) (-4 *1 (-1120)))) -(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1134)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-665 *4 *3)) (-4 *4 (-1076)) - (-4 *3 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) - (-5 *2 (-2 (|:| -3767 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1213 (-552))) (-5 *1 (-479 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-740)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1140 3 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) - ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 *2))) - (-5 *2 (-871 *3)) (-5 *1 (-1052 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-865 *3) (-600 *2)))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-4 *3 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) - (-14 *3 (-900)) (-4 *4 (-1028)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1003 *3)) - (-4 *3 (-13 (-828) (-357) (-1001))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) - (-4 *3 (-1211 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-1140 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237))))) + (|partial| -12 (-4 *3 (-1191)) (-5 *1 (-179 *3 *2)) + (-4 *2 (-658 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1078))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) - (-4 *3 (-1028)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-802 *4)) (-4 *4 (-830)) (-4 *1 (-1252 *4 *3)) - (-4 *3 (-1028))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1202 (-552)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) - (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) - (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-981))))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296)))) - ((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) + (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)) + (-4 *2 (-445)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) - (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-1213 (-552))) (-5 *2 (-629 (-552))) + (-5 *1 (-479 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-445)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *3 (-445))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-111)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) - (-5 *1 (-614 *4 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-111)) (-5 *1 (-1180 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161))))) +(((*1 *2 *2) + (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1) (-5 *1 (-220))) ((*1 *1) (-5 *1 (-373)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2101 (-627 (-2 (|:| |irr| *10) (|:| -3594 (-552))))))) - (-5 *6 (-627 *3)) (-5 *7 (-627 *8)) (-4 *8 (-830)) (-4 *3 (-301)) - (-4 *10 (-928 *3 *9 *8)) (-4 *9 (-776)) - (-5 *2 - (-2 (|:| |polfac| (-627 *10)) (|:| |correct| *3) - (|:| |corrfact| (-627 (-1148 *3))))) - (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-627 (-1148 *3)))))) + (-12 (-5 *4 (-756)) (-4 *5 (-1030)) (-4 *2 (-1213 *5)) + (-5 *1 (-1231 *5 *2 *6 *3)) (-4 *6 (-640 *2)) (-4 *3 (-1228 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) + (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) + (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-643 *4 *2)) + (-4 *2 (-640 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-756))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1237 *5)) (-5 *3 (-756)) (-5 *4 (-1098)) (-4 *5 (-343)) + (-5 *1 (-520 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) (-4 *1 (-948)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-629 (-767 *3))) (-5 *1 (-767 *3)) (-4 *3 (-544)) + (-4 *3 (-1030))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-373)) (-5 *1 (-1021))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1136)) (-5 *1 (-299))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))) - (-5 *2 (-1014)) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-496 (-401 (-552)) (-235 *4 (-754)) (-844 *3) - (-242 *3 (-401 (-552))))) - (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-497 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1155)))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-236)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1242)) (-5 *1 (-236))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-257)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *1) (-5 *1 (-566))) + ((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-845)))) + ((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-845)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) - (-5 *1 (-1155)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) - (-5 *1 (-1155))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) - (-5 *2 - (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) - (|:| |genIdeal| (-496 *4 *5 *6 *7)))) - (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-544)) + (-12 (-5 *3 (-1136)) (-5 *4 (-844)) (-5 *2 (-1242)) (-5 *1 (-845)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1134 *4)) + (-4 *4 (-1078)) (-4 *4 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-637 *4)) (-4 *4 (-336 *5 *6 *7)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) - (-14 *4 *2)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-791 *5 *6 *7 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-445)) (-4 *4 (-830)) - (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-27) (-424 *4))) + (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) + (-4 *7 (-1213 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) + (-4 *2 (-336 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-5 *2 (-373)) (-5 *1 (-768 *3)) - (-4 *3 (-600 *2)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-4 *3 (-881 *5)) (-5 *2 (-673 *3)) + (-5 *1 (-676 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-673 *4)) (-5 *3 (-902)) (|has| *4 (-6 (-4370 "*"))) + (-4 *4 (-1030)) (-5 *1 (-1009 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 (-673 *4))) (-5 *3 (-902)) + (|has| *4 (-6 (-4370 "*"))) (-4 *4 (-1030)) (-5 *1 (-1009 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) + (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-818 *3)) (-4 *3 (-537)) + (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-825 *3)) (-4 *3 (-537)) + (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-989 *3)) (-4 *3 (-1019 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1078))))) +(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-1030)))) + ((*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-552))))) + (-5 *1 (-355 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-756))))) + (-5 *1 (-380 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| -3479 *3) (|:| -1406 (-552))))) + (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 (-756))))) + (-5 *1 (-804 *3)) (-4 *3 (-832))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1154)) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-187)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1154)) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-294))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3301 *3) (|:| |coef2| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-673 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) - (-5 *2 (-373)) (-5 *1 (-768 *4)))) + (-12 (-4 *4 (-169)) (-4 *2 (-1213 *4)) (-5 *1 (-174 *4 *2 *3)) + (-4 *3 (-709 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-673 (-401 (-933 *5)))) (-5 *4 (-1154)) + (-5 *2 (-933 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445)))) ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) - (-5 *2 (-373)) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-673 (-401 (-933 *4)))) (-5 *2 (-933 *4)) + (-5 *1 (-286 *4)) (-4 *4 (-445)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 (-166 (-401 (-552))))) + (-5 *2 (-933 (-166 (-401 (-552))))) (-5 *1 (-749 *4)) + (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-673 (-166 (-401 (-552))))) (-5 *4 (-1154)) + (-5 *2 (-933 (-166 (-401 (-552))))) (-5 *1 (-749 *5)) + (-4 *5 (-13 (-357) (-830))))) ((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *2 (-933 (-401 (-552)))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) - (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) - (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-740))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) + (-12 (-5 *3 (-673 (-401 (-552)))) (-5 *4 (-1154)) + (-5 *2 (-933 (-401 (-552)))) (-5 *1 (-764 *5)) + (-4 *5 (-13 (-357) (-830)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) ((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) - (-14 *3 (-627 (-1152)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-830)) (-5 *1 (-908 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-1134)) (-5 *2 (-310 (-552))) - (-5 *1 (-909))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-517))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1030)) (-14 *3 (-629 (-1154))))) + ((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) + (-14 *3 (-629 (-1154))))) + ((*1 *1 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1078)))) + ((*1 *1 *1) + (-12 (-14 *2 (-629 (-1154))) (-4 *3 (-169)) + (-4 *5 (-233 (-2657 *2) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *4) (|:| -1406 *5)) + (-2 (|:| -2840 *4) (|:| -1406 *5)))) + (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-832)) + (-4 *7 (-930 *3 *5 (-846 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-832)))) + ((*1 *1 *1) + (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1) + (-12 (-5 *1 (-720 *2 *3)) (-4 *3 (-832)) (-4 *2 (-1030)) + (-4 *3 (-711)))) + ((*1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1078)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-1172))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) - (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-565)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1134))) (-5 *3 (-1134)) (-5 *2 (-306)) - (-5 *1 (-290))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1061))))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) + (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1039)))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-516))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-740))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-343)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) - (-5 *1 (-211 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-902)) (-4 *5 (-832)) + (-5 *2 (-58 (-629 (-656 *5)))) (-5 *1 (-656 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-1 *6 *5)) (-5 *1 (-668 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) (-5 *2 - (-627 - (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) - (|:| |eigmult| (-754)) - (|:| |eigvec| (-627 (-671 (-401 (-931 *4)))))))) - (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-2 (|:| -1406 (-756)) (|:| -4158 *5) (|:| |radicand| (-629 *5)))) + (-5 *1 (-314 *5)) (-5 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-552))))) (((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-930 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) + (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357))))) +(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-629 (-113)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-673 (-220))) (-5 *6 (-111)) (-5 *7 (-673 (-552))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) + (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + (-12 (-4 *2 (-1078)) (-5 *1 (-945 *3 *2)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-552)) (|has| *1 (-6 -4369)) (-4 *1 (-367 *3)) + (-4 *3 (-1191))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1030)) + (-5 *1 (-1138 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-629 *4)) (-4 *4 (-357)) (-5 *2 (-1237 *4)) + (-5 *1 (-799 *4 *3)) (-4 *3 (-640 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1030)) (-5 *1 (-50 *2 *3)) (-14 *3 (-629 (-1154))))) + ((*1 *2 *1) + (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) + (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-14 *3 (-629 (-1154))) (-4 *5 (-233 (-2657 *3) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *4) (|:| -1406 *5)) + (-2 (|:| -2840 *4) (|:| -1406 *5)))) + (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-832)) + (-4 *7 (-930 *2 *5 (-846 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-832)) (-4 *2 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1030)) (-5 *1 (-720 *2 *3)) (-4 *3 (-832)) + (-4 *3 (-711)))) + ((*1 *2 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *3 (-777)) (-4 *4 (-832)) + (-4 *2 (-1030)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832))))) (((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1 *2) + (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) + (-4 *3 (-13 (-398) (-1176))))) + ((*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) - (-5 *2 (-1014)) (-5 *1 (-739))))) + (-12 (-5 *3 (-756)) (-5 *2 (-1 (-1134 (-933 *4)) (-1134 (-933 *4)))) + (-5 *1 (-1245 *4)) (-4 *4 (-357))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1150 *1)) (-4 *1 (-993))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1184 *5 *6 *7 *3)) + (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) +(((*1 *1) (-5 *1 (-808)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-629 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) + (-4 *7 (-1213 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) + (-5 *1 (-1138 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) + (-14 *4 (-1154)) (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1078)))) + ((*1 *2 *1) + (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) + (-4 *6 (-233 (-2657 *3) (-756))) + (-14 *7 + (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) + (-2 (|:| -2840 *5) (|:| -1406 *6)))) + (-5 *2 (-698 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-832)) (-4 *8 (-930 *4 *6 (-846 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-711)) (-4 *2 (-832)) (-5 *1 (-720 *3 *2)) + (-4 *3 (-1030)))) + ((*1 *1 *1) + (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-777)) + (-4 *4 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030)))) + ((*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-2 (|:| -1443 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-187)))) + ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1136)) (-5 *1 (-299))))) (((*1 *2 *2) - (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *1 (-892 *3 *2)) - (-4 *2 (-1211 (-401 *3)))))) + (-12 + (-5 *2 + (-496 (-401 (-552)) (-235 *4 (-756)) (-846 *3) + (-242 *3 (-401 (-552))))) + (-14 *3 (-629 (-1154))) (-14 *4 (-756)) (-5 *1 (-497 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1150 *7)) (-4 *5 (-1030)) + (-4 *7 (-1030)) (-4 *2 (-1213 *5)) (-5 *1 (-493 *5 *2 *6 *7)) + (-4 *6 (-1213 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1030)) (-4 *7 (-1030)) + (-4 *4 (-1213 *5)) (-5 *2 (-1150 *7)) (-5 *1 (-493 *5 *4 *6 *7)) + (-4 *6 (-1213 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-930 *4 *6 *5)) (-4 *4 (-445)) + (-4 *5 (-832)) (-4 *6 (-778)) (-5 *1 (-968 *4 *5 *6 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-1242)) (-5 *1 (-209 *4)) + (-4 *4 + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) + (-15 -3726 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242)) (-5 *1 (-209 *3)) + (-4 *3 + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) + (-15 -3726 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-494))))) (((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552)))))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) + (-12 (-14 *4 (-756)) (-4 *5 (-1191)) (-5 *2 (-132)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) + ((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-552)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) + (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *3)) (-4 *3 (-1030)) (-5 *2 (-902)))) + ((*1 *2) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) (((*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)) - (-5 *3 (-552))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-1211 (-401 *3))) (-5 *2 (-900)) - (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-217 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-248 *3)))) - ((*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) + (-12 (-5 *3 (-756)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-886 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-825 (-220)))) (-5 *4 (-220)) (-5 *2 (-629 *4)) + (-5 *1 (-261))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-770 *3)) (-4 *3 (-600 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-5 *2 (-373)) (-5 *1 (-770 *3)) + (-4 *3 (-600 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1191)) (-4 *3 (-832)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1123 *3))))) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1191)) + (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-357)) (-5 *1 (-877 *2 *4)) + (-4 *2 (-1213 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) + (-12 (-4 *4 (-1078)) (-5 *2 (-111)) (-5 *1 (-866 *3 *4 *5)) + (-4 *3 (-1078)) (-4 *5 (-650 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1213 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1213 *3)) (-5 *1 (-697 *3 *2)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-700 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1016)) + (-5 *1 (-731))))) +(((*1 *2 *1) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-832)) (-5 *2 (-111))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-609 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3428 *4) (|:| |sol?| (-111))) + (-552) *4)) + (-4 *4 (-357)) (-4 *5 (-1213 *4)) (-5 *1 (-562 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-832)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-629 (-756))) + (-5 *1 (-885 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-637 (-401 *7))) (-5 *4 (-1 (-629 *6) *7)) + (-5 *5 (-1 (-412 *7) *7)) + (-4 *6 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *7 (-1213 *6)) (-5 *2 (-629 (-401 *7))) (-5 *1 (-797 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-638 *7 (-401 *7))) (-5 *4 (-1 (-629 *6) *7)) + (-5 *5 (-1 (-412 *7) *7)) + (-4 *6 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *7 (-1213 *6)) (-5 *2 (-629 (-401 *7))) (-5 *1 (-797 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-637 (-401 *5))) (-4 *5 (-1213 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-629 (-401 *5))) (-5 *1 (-797 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) + (-4 *6 (-1213 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-638 *5 (-401 *5))) (-4 *5 (-1213 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-629 (-401 *5))) (-5 *1 (-797 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) + (-4 *6 (-1213 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-629 (-401 *6))) (-5 *1 (-797 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908))))) +(((*1 *1 *1) (-4 *1 (-238))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-4029 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1191))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1191))))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) - (-5 *1 (-1243 *4)) (-4 *4 (-357))))) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) + (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *2)) - (-4 *2 (-630 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) + (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23))))) +(((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4055 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-166 (-220)))) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-832))))) +(((*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-130))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-629 (-111))) (-5 *5 (-673 (-220))) + (-5 *6 (-673 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1016)) + (-5 *1 (-739))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-1017 (-401 *2)))) (-5 *2 (-552)) - (-5 *1 (-114 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373))))) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-401 (-552))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) + (-5 *5 (-1204 (-401 (-552)))) (-5 *6 (-401 (-552))) + (-4 *8 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-401 (-552)))) + (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *8))) + (-4 *8 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1030)) (-4 *1 (-1220 *4 *3)) + (-4 *3 (-1197 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-673 (-401 (-552)))) + (-5 *2 + (-629 + (-2 (|:| |outval| *4) (|:| |outmult| (-552)) + (|:| |outvect| (-629 (-673 *4)))))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-230 *3)))) + ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1078))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *7)) (-4 *7 (-832)) + (-4 *8 (-930 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1237 (-401 *8)) "failed")) + (|:| -4199 (-629 (-1237 (-401 *8)))))) + (-5 *1 (-653 *5 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-180))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-141))) (-5 *1 (-138)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-138))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) + (-4 *6 (-1030)) (-5 *2 (-629 (-629 (-673 *6)))) (-5 *1 (-1010 *6)) + (-5 *3 (-629 (-673 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1030)) + (-5 *2 (-629 (-629 (-673 *4)))) (-5 *1 (-1010 *4)) + (-5 *3 (-629 (-673 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030)) + (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) + (-5 *3 (-629 (-673 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1030)) + (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) + (-5 *3 (-629 (-673 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) + (-5 *2 (-629 (-2 (|:| |deg| (-756)) (|:| -2771 *5)))) + (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-640 *5)) + (-4 *6 (-640 (-401 *5)))))) (((*1 *2 *3) - (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-832) (-1019 *4) (-625 *4))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 *5) (-625 *5))) (-5 *5 (-552)) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-552))) + (-4 *7 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-552))) + (-4 *3 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *4 (-1030)) (-4 *1 (-1199 *4 *3)) + (-4 *3 (-1228 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1197 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-629 (-1150 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-2 (|:| |deg| (-756)) (|:| -3830 *5)))) + (-4 *5 (-1213 *4)) (-4 *4 (-343)) (-5 *2 (-629 *5)) + (-5 *1 (-211 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-2 (|:| -3479 *5) (|:| -3299 (-552))))) + (-5 *4 (-552)) (-4 *5 (-1213 *4)) (-5 *2 (-629 *5)) + (-5 *1 (-680 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-629 *6)) (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-4 *3 (-544))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-570))))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) + (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-756)) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-756)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) + (-4 *6 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-756))) + (-4 *7 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-756))) + (-4 *3 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1228 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1213 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-966 *4 *2 *3 *5)) + (-4 *4 (-343)) (-4 *5 (-709 *2 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) + (-5 *1 (-326)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-1070 (-933 (-552)))) (-5 *2 (-324)) + (-5 *1 (-326)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-659 *3)) (-4 *3 (-1030)) + (-4 *3 (-1078))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-629 (-629 (-629 *5)))) (-5 *3 (-1 (-111) *5 *5)) + (-5 *4 (-629 *5)) (-4 *5 (-832)) (-5 *1 (-1162 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-756)) + (-4 *3 (-13 (-711) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) + (-5 *1 (-241 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1040)) (-5 *3 (-1134))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) + (-12 (-5 *3 (-924 (-220))) (-5 *2 (-1242)) (-5 *1 (-461))))) (((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-367 *2)) (-4 *2 (-1191)) + (-4 *2 (-832)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4369)) + (-4 *1 (-367 *3)) (-4 *3 (-1191))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) + (-4 *3 (-1213 *4)) (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-832) (-544)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 (-933 *4))) (-5 *3 (-629 (-1154))) (-4 *4 (-445)) + (-5 *1 (-899 *4))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-895 *3)) (-4 *3 (-301))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-683)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-807))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1154)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1191)) (-4 *2 (-1030)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-924 (-220))) (-5 *2 (-220)) (-5 *1 (-1187)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-832))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-980 *3)) (-4 *3 (-169)) (-5 *1 (-784 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 - (-627 + (-629 (-2 - (|:| -3998 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| -2670 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (|:| -2162 + (|:| -3360 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3252,10 +4104,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) + (-3 (|:| |str| (-1134 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1707 + (|:| -4235 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -3263,15181 +4115,14331 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-547))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1) (-12 (-4 *1 (-750 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) - (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) -(((*1 *2 *1) - (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) - (-4 *2 (-830))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) -(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) - (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -3268 *6))) - (-5 *1 (-995 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) - (-5 *1 (-984))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-357)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) - (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1211 *2)) - (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) - (-4 *6 (-336 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) - (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) - (-4 *1 (-329 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1061))) (-5 *1 (-285))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1152)) (-5 *6 (-111)) - (-4 *7 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-4 *3 (-13 (-1174) (-938) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *7 *3)) (-5 *5 (-823 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-802 *3)))) + (-5 *1 (-547)))) ((*1 *2 *1) - (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-627 - (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) - (|:| |wcond| (-627 (-931 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) - (-5 *4 (-1134)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-928 *5 *7 *6)) - (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) - (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) - ((*1 *2 *3) - (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) - (-5 *2 (-1014)) (-5 *1 (-729))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1211 (-166 *2)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) + (-5 *2 (-629 *4))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-166 (-220)))) (-5 *2 (-1016)) (-5 *1 (-739))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-627 *3)) (-5 *1 (-903 *4 *5 *6 *3)) - (-4 *3 (-928 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-802 *3)) (-4 *3 (-830))))) -(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) - (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *7 (-1211 *5)) (-4 *4 (-707 *5 *7)) - (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) - (-5 *1 (-794 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) + (|partial| -12 (-5 *3 (-902)) + (-5 *2 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *1) (-5 *1 (-461)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-1030)) (-5 *1 (-1209 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1088))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) - (-5 *1 (-256 *2)) (-4 *2 (-1189)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-52)) - (-5 *1 (-257))))) -(((*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) - ((*1 *1 *1) - (-12 (-5 *1 (-611 *2 *3 *4)) (-4 *2 (-830)) - (-4 *3 (-13 (-169) (-700 (-401 (-552))))) (-14 *4 (-900)))) - ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) + (-12 (-5 *4 (-629 (-629 *8))) (-5 *3 (-629 *8)) + (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *2 (-111)) (-5 *1 (-958 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1154)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-629 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1176) (-27) (-424 *8))) + (-4 *8 (-13 (-445) (-832) (-144) (-1019 *3) (-625 *3))) + (-5 *3 (-552)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3428 *4) (|:| |sol?| (-111)))) + (-5 *1 (-994 *8 *4))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1235 - (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) - (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) - (|:| |axesColor| (-853)) (|:| -1516 (-552)) - (|:| |unitsColor| (-853)) (|:| |showing| (-552))))) - (-5 *1 (-1236))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-166 (-401 (-552))))) - (-5 *2 - (-627 - (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) - (|:| |outvect| (-627 (-671 (-166 *4))))))) - (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-90 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) - (-4 *3 (-367 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) - (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 *4)) (-4 *4 (-971 *2)) (-4 *2 (-544)) - (-5 *1 (-675 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-1204 *2 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-385))))) + (-12 (-5 *2 (-2 (|:| |var| (-629 (-1154))) (|:| |pred| (-52)))) + (-5 *1 (-873 *3)) (-4 *3 (-1078))))) (((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *5)) (-4 *5 (-357)) (-5 *2 (-627 *6)) - (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (-4 *4 (-1028)) - (-5 *1 (-1007 *4)))) + (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (-4 *4 (-1028)) - (-5 *1 (-1007 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-874)) - (-5 *3 - (-2 (|:| |pde| (-627 (-310 (-220)))) - (|:| |constraints| - (-627 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-754)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) - (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) - (|:| |tol| (-220)))) - (-5 *2 (-1014))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-882 *3))))) -(((*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-754)) (-4 *6 (-357)) (-5 *4 (-1183 *6)) - (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1243 *6)) - (-5 *5 (-1132 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-1171 *4)) - (-4 *4 (-1028))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) - (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) - (|:| |args| (-627 (-842))))) - (-5 *1 (-1152))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) - (-4 *4 (-1028))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1152)) - (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-776)) (-4 *2 (-928 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) - (-4 *4 (-445)) (-4 *6 (-830))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) -(((*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-754)) (-4 *5 (-169)))) - ((*1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169)))) - ((*1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-367 *3)) - (-4 *4 (-367 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1118 *2 *3)) (-14 *2 (-754)) (-4 *3 (-1028))))) -(((*1 *2) - (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) - (-4 *4 (-1211 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) - ((*1 *1 *1) (-4 *1 (-537))) - ((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1186 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) - (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1226 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) - (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1226 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) - (-5 *1 (-1128 *3))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-931 (-552))) (-5 *3 (-1152)) - (-5 *4 (-1070 (-401 (-552)))) (-5 *1 (-30))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) - (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) - (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367))))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) - (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) - (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-401 (-552))))) - (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1132 *4))) (-4 *4 (-357)) - (-4 *4 (-1028)) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-111)) - (-5 *1 (-354 *4 *5)) (-14 *5 (-627 (-1152))))) + (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) + (-5 *2 (-629 (-1154))) (-5 *1 (-261)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-763 *4 (-844 *5)))) (-4 *4 (-445)) - (-14 *5 (-627 (-1152))) (-5 *2 (-111)) (-5 *1 (-612 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) - (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-111)) (-5 *1 (-109)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-627 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-776)) (-4 *3 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) - (-5 *1 (-442 *4 *5 *6 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) -(((*1 *2 *1) - (-12 (-5 *2 (-842)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) - (-4 *3 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-653)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) - (-14 *4 (-900))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-754)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) - (-4 *1 (-832 *3))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) - ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))))) - ((*1 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) - (-14 *4 (-627 (-1152))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) - (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-269)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *8)) (-5 *4 (-627 *6)) (-4 *6 (-830)) - (-4 *8 (-928 *7 *5 *6)) (-4 *5 (-776)) (-4 *7 (-1028)) - (-5 *2 (-627 (-754))) (-5 *1 (-315 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) + (-12 (-5 *3 (-1150 *7)) (-4 *7 (-930 *6 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1030)) (-5 *2 (-629 *5)) + (-5 *1 (-315 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) - (-4 *4 (-1211 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *3 (-830)) (-5 *2 (-754)))) + (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-381)))) ((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *2 *4)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *2 (-775)))) + (-12 (-4 *1 (-424 *3)) (-4 *3 (-832)) (-5 *2 (-629 (-1154))))) ((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-754)))) + (-12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) ((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)) - (-5 *2 (-552)))) + (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-629 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *5)) + (-5 *1 (-931 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) - (-5 *2 (-401 (-552))))) + (-12 (-5 *2 (-1080 (-1154))) (-5 *1 (-947 *3)) (-4 *3 (-948)))) ((*1 *2 *1) - (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) + (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-4 *5 (-832)) (-5 *2 (-629 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-754))))) -(((*1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-5 *2 (-629 (-1154))) + (-5 *1 (-1024 *4))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-528))) (-5 *1 (-528))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-902)) (-4 *5 (-301)) (-4 *3 (-1213 *5)) + (-5 *2 (-2 (|:| |plist| (-629 *3)) (|:| |modulo| *5))) + (-5 *1 (-453 *5 *3)) (-5 *4 (-629 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-673 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-1195)) + (-4 *6 (-1213 (-401 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-336 *4 *5 *6))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) - (-4 *2 (-669 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-552)))) + (-4 *4 (-13 (-1213 *3) (-544) (-10 -8 (-15 -2594 ($ $ $))))) + (-4 *3 (-544)) (-5 *1 (-1216 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-552))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1150 (-401 (-1150 *2)))) (-5 *4 (-598 *2)) + (-4 *2 (-13 (-424 *5) (-27) (-1176))) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1078)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1150 *1)) (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *3 (-832)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1150 *4)) (-4 *4 (-1030)) (-4 *1 (-930 *4 *5 *3)) + (-4 *5 (-778)) (-4 *3 (-832)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-1150 *2))) (-4 *5 (-778)) (-4 *4 (-832)) + (-4 *6 (-1030)) + (-4 *2 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))) + (-5 *1 (-931 *5 *4 *6 *7 *2)) (-4 *7 (-930 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-1150 (-401 (-933 *5))))) (-5 *4 (-1154)) + (-5 *2 (-401 (-933 *5))) (-5 *1 (-1024 *5)) (-4 *5 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-562 *5 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-629 (-629 (-629 *4)))) (-5 *3 (-629 *4)) (-4 *4 (-832)) + (-5 *1 (-1162 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-873 *3)) (|:| |den| (-873 *3)))) + (-5 *1 (-873 *3)) (-4 *3 (-1078))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-58 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-58 *3))))) + (-12 (-5 *1 (-1118 *3 *2)) (-4 *3 (-13 (-1078) (-34))) + (-4 *2 (-13 (-1078) (-34)))))) +(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-952))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1154)) + (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *1 (-1157))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-871 *4)) - (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1076)) (-4 *3 (-163 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1070 (-823 (-373))))) - (-5 *2 (-627 (-1070 (-823 (-220))))) (-5 *1 (-299)))) - ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-388)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1211 *3)))) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) - (-5 *2 (-1235 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) - (-4 *3 (-830)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-456 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) - ((*1 *1 *2) - (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) - (-4 *5 (-600 (-1152))) (-4 *4 (-776)) (-4 *5 (-830)))) - ((*1 *1 *2) - (-1559 - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) - ((*1 *1 *2) - (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) - (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) - (-5 *1 (-1046 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1058)))) - ((*1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *2 (-1076)) (-4 *6 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *2 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *2 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) - (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1085 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) - (-5 *1 (-1121 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) - ((*1 *2 *3) - (-12 (-5 *3 (-763 *4 (-844 *5))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) - (-5 *2 (-763 *4 (-844 *6))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *6 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-763 *4 (-844 *6))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) - (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-1148 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6)))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) - (-5 *2 (-627 (-763 *4 (-844 *6)))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152)))))) + (-12 (-4 *1 (-954 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-4 *5 (-832)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-740))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-629 (-2 (|:| -2571 *1) (|:| -3092 (-629 *7))))) + (-5 *3 (-629 *7)) (-4 *1 (-1184 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-629 (-902))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-902)) + (-4 *2 (-357)) (-14 *5 (-974 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-698 *5 *6 *7)) (-4 *5 (-832)) + (-4 *6 (-233 (-2657 *4) (-756))) + (-14 *7 + (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *6)) + (-2 (|:| -2840 *5) (|:| -1406 *6)))) + (-14 *4 (-629 (-1154))) (-4 *2 (-169)) + (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-930 *2 *6 (-846 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-832)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-609 *2 *4)) + (-4 *4 (-1213 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-693 *2)) (-4 *2 (-1030)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-720 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-711)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *5)) (-5 *3 (-629 (-756))) (-4 *1 (-725 *4 *5)) + (-4 *4 (-1030)) (-4 *5 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *2)) (-4 *4 (-1030)) + (-4 *2 (-832)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-834 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 (-756))) (-4 *1 (-930 *4 *5 *6)) + (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-930 *4 *5 *2)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *2 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 *5)) (-4 *1 (-954 *4 *5 *6)) + (-4 *4 (-1030)) (-4 *5 (-777)) (-4 *6 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-954 *4 *3 *2)) (-4 *4 (-1030)) (-4 *3 (-777)) + (-4 *2 (-832))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) +(((*1 *1) (-5 *1 (-138)))) (((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) + (-12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *2 (-629 *6)) + (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-673 (-310 (-220)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-200))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-754)))) + (-12 (-4 *3 (-1030)) (-5 *2 (-1237 *3)) (-5 *1 (-697 *3 *4)) + (-4 *4 (-1213 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754))))) -(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) + (-5 *2 (-673 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1411 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-629 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1213 *7)) + (-5 *3 (-401 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-562 *7 *8))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-600 (-873 (-552)))) + (-4 *5 (-867 (-552))) + (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-555 *5 *3)) (-4 *3 (-615)) + (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *1 (-789 *4 *2)) (-4 *2 (-13 (-29 *4) (-1176) (-940)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-778)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) + (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-1063)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-629 (-1 *4 (-629 *4)))) (-4 *4 (-1078)) + (-5 *1 (-112 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1078)) + (-5 *1 (-112 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-629 (-1 *4 (-629 *4)))) + (-5 *1 (-112 *4)) (-4 *4 (-1078))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1210 *5 *4)) (-5 *1 (-1152 *4 *5 *6)) + (-4 *4 (-1030)) (-14 *5 (-1154)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1210 *5 *4)) (-5 *1 (-1229 *4 *5 *6)) + (-4 *4 (-1030)) (-14 *5 (-1154)) (-14 *6 *4)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-742))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-832))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-900))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) + (-12 (-5 *3 (-1 *5 (-629 *5))) (-4 *5 (-1228 *4)) + (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-1 (-1134 *4) (-629 (-1134 *4)))) (-5 *1 (-1230 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) - (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) - (-4 *3 (-832 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *1) (-5 *1 (-547)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-5 *4 (-754)) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) - (-5 *2 - (-627 - (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) - (|:| |cols| (-627 (-552)))))) - (-5 *1 (-903 *5 *6 *7 *8))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) + (-12 (-5 *2 (-2 (|:| -2594 (-767 *3)) (|:| |coef1| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| -2594 *1) (|:| |coef1| *1))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) + (-4 *6 (-367 *3)) (-5 *1 (-672 *3 *5 *6 *2)) + (-4 *2 (-671 *3 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-118 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-756) (-756))) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-952))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-629 (-111))) (-5 *7 (-673 (-220))) + (-5 *8 (-673 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1019 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *2 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955))))) (((*1 *2 *3) - (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-14 *5 (-627 (-1152))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) - (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) - (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) - (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) - (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) - (-5 *1 (-1261 *4 *5 *6)) (-5 *3 (-627 (-931 *4))) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1211 *5)) - (-5 *1 (-790 *5 *2 *3 *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *3 (-638 *2)) (-4 *6 (-638 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-401 *2))) (-4 *2 (-1211 *5)) - (-5 *1 (-790 *5 *2 *3 *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) - (-4 *6 (-638 (-401 *2)))))) -(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1076)) (-5 *2 (-754))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1076)) - (-4 *2 (-129))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-627 *3)) (-5 *5 (-900)) (-4 *3 (-1211 *4)) - (-4 *4 (-301)) (-5 *1 (-453 *4 *3))))) + (-12 (-4 *2 (-1213 *4)) (-5 *1 (-794 *4 *2 *3 *5)) + (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) + (-4 *5 (-640 (-401 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *3 (-544))))) (((*1 *2 *3) - (-12 + (-12 (-4 *1 (-821)) (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-627 (-1152))) - (-4 *2 (-13 (-424 (-166 *5)) (-981) (-1174))) - (-4 *5 (-13 (-544) (-830))) (-5 *1 (-586 *5 *6 *2)) - (-4 *6 (-13 (-424 *5) (-981) (-1174)))))) + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (-5 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *1 (-821)) + (-5 *3 + (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) + (-5 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) - (-4 *6 (-13 (-544) (-1017 *5))) (-4 *5 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *6)))))) (-5 *1 (-1018 *5 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1030)) (-4 *7 (-1030)) + (-4 *6 (-1213 *5)) (-5 *2 (-1150 (-1150 *7))) + (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1213 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-305)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-951)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-975)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1017)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 *4)))) + (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) + (-4 *7 (-1078)) (-5 *2 (-629 *1)) (-4 *1 (-1081 *3 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-906)) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 (-401 *2))) + (-4 *2 (-1213 *4)) (-5 *1 (-335 *3 *4 *2 *5)) + (-4 *3 (-336 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1195)) + (-4 *4 (-1213 (-401 *2))) (-4 *2 (-1213 *3))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-739))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-722 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-722 *2)) (-4 *2 (-1078)))) + ((*1 *1) (-12 (-5 *1 (-722 *2)) (-4 *2 (-1078))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-629 (-1054 *4 *5 *2))) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-629 (-1054 *5 *6 *2))) (-5 *4 (-902)) (-4 *5 (-1078)) + (-4 *6 (-13 (-1030) (-867 *5) (-832) (-600 (-873 *5)))) + (-4 *2 (-13 (-424 *6) (-867 *5) (-600 (-873 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) + (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) + (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-14 *6 (-1154)) (-14 *7 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-4 *1 (-368 *3 *4)) + (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-756))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *3 (-832)) (-5 *2 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *2 *4 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-1076 *3)))) + ((*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3) - (-12 + (-629 + (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) + (|:| |radvect| (-629 (-673 (-310 (-552)))))))) + (-5 *1 (-1012))))) +(((*1 *2 *3) + (-12 (-5 *3 (-401 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-544)) + (-4 *4 (-1030)) (-4 *2 (-1228 *4)) (-5 *1 (-1231 *4 *5 *6 *2)) + (-4 *6 (-640 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-933 (-552)))) (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150)) (-5 *3 (-627 (-922 (-220)))))) - ((*1 *2 *3) - (-12 + (-2 (|:| |varOrder| (-629 (-1154))) + (|:| |inhom| (-3 (-629 (-1237 (-756))) "failed")) + (|:| |hom| (-629 (-1237 (-756)))))) + (-5 *1 (-231))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 (-220))))))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) - (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) - (-5 *1 (-731))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1066))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-742))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) - (-5 *3 (-627 (-552)))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-2 (|:| |func| *3) (|:| |kers| (-629 (-598 *3))) + (|:| |vals| (-629 *3)))) + (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1118 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) + (-4 *4 (-13 (-1078) (-34))) (-4 *5 (-13 (-1078) (-34))) + (-5 *1 (-1119 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-629 (-1118 *3 *4))) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *3) + (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-814)) (-5 *3 (-1136))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 (-401 (-933 *6)))) + (-5 *3 (-401 (-933 *6))) + (-4 *6 (-13 (-544) (-1019 (-552)) (-144))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1076))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) - (-4 *4 (-38 (-401 (-552))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) - ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) + (-4 *4 (-343)) (-5 *2 (-1242)) (-5 *1 (-520 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-310 (-220)))) (-5 *1 (-261))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1182 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-922 *4)) (-4 *4 (-1028)) (-5 *1 (-1140 *3 *4)) - (-14 *3 (-900))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-12 (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152))))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-754)))) + (-2 (|:| |cycle?| (-111)) (|:| -2720 (-756)) (|:| |period| (-756)))) + (-5 *1 (-1134 *4)) (-4 *4 (-1191)) (-5 *3 (-756))))) +(((*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1169))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1028))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-4 *7 (-930 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-111)) (|:| |z0| (-629 *7)) (|:| |n0| (-629 *7)))) + (-5 *1 (-905 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1191)) (-5 *1 (-179 *3 *2)) (-4 *2 (-658 *3))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-629 (-498))) (-5 *2 (-498)) (-5 *1 (-476))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1019 (-552))) (-4 *3 (-13 (-832) (-544))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1150 *4)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1030)) (-4 *1 (-296)))) + ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1150 *3)))) + ((*1 *2) (-12 (-4 *1 (-709 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1213 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) - (-5 *2 (-754)))) + (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-13 (-830) (-357))) + (-4 *2 (-1213 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-461)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-4 *4 (-1191)) (-4 *1 (-233 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1072 (-220))) + (-5 *2 (-1239)) (-5 *1 (-251))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-844)))) (-5 *1 (-844)))) ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-709))))) -(((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) - (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) + (-12 (-5 *2 (-1120 *3 *4)) (-5 *1 (-974 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-357)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-629 *5))) (-4 *5 (-1030)) + (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) + (-4 *7 (-233 *3 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-111)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1154)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-832)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-832)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-5 *2 (-111)) (-5 *1 (-868 *5 *3 *4)) + (-4 *3 (-867 *5)) (-4 *4 (-600 (-873 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *6)) (-4 *6 (-867 *5)) (-4 *5 (-1078)) + (-5 *2 (-111)) (-5 *1 (-868 *5 *6 *4)) (-4 *4 (-600 (-873 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324))))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) - (-4 *3 (-357))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-310 *4)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) + ((*1 *1 *1) (-4 *1 (-1122)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-778)) (-4 *5 (-1030)) (-4 *6 (-930 *5 *4 *2)) + (-4 *2 (-832)) (-5 *1 (-931 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *6)) (-15 -4015 (*6 $)) + (-15 -4026 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) + (-5 *2 (-1154)) (-5 *1 (-1024 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-544)) (-5 *1 (-950 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-351 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-756)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-756))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1191))))) +(((*1 *1 *1) + (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-832)) + (-4 *4 (-778)) (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1097)))) ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) + (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-310 *4)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)))) ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)) - (-5 *1 (-1132 *4))))) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-825 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-870 *4 *3)) + (-4 *3 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1136)) (-5 *1 (-52))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) (((*1 *2 *3) - (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-627 *5)) - (-5 *1 (-869 *4 *5)) (-4 *5 (-1189))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-775)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-627 (-1152))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) - (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) - (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) - (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1028) (-830))) - (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-5 *2 (-235 *5 *7)) - (-5 *1 (-234 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1134)) (-5 *5 (-598 *6)) - (-4 *6 (-296)) (-4 *2 (-1189)) (-5 *1 (-291 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) - (-4 *2 (-296)) (-5 *1 (-292 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-5 *2 (-671 *6)) (-5 *1 (-298 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-830)) - (-4 *6 (-830)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) - (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) - (-4 *9 (-357)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-401 *10))) - (-5 *2 (-330 *9 *10 *11 *12)) - (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-336 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1193)) (-4 *8 (-1193)) - (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *9 (-1211 *8)) - (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1211 (-401 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) - (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) - (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) - (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) - (-4 *6 (-971 *5)) (-4 *7 (-1211 *6)) - (-4 *8 (-13 (-403 *6 *7) (-1017 *6))) (-4 *9 (-301)) - (-4 *10 (-971 *9)) (-4 *11 (-1211 *10)) - (-5 *2 (-407 *9 *10 *11 *12)) - (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-403 *10 *11) (-1017 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1028) (-830))) - (-4 *6 (-13 (-1028) (-830))) (-4 *2 (-424 *6)) - (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) - (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-830)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) - (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3446 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-357)) (-4 *6 (-357)) - (-5 *2 (-2 (|:| -3446 *6) (|:| |coeff| *6))) - (-5 *1 (-572 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-357)) (-4 *6 (-357)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-572 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-587 *8)) - (-5 *1 (-585 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-587 *7)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) - (-5 *1 (-585 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1132 *7)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) - (-5 *1 (-585 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-625 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-627 *6)) (-5 *5 (-627 *7)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-627 *8)) - (-5 *1 (-626 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) - (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) - (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) - (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1028)) - (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) - (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) - (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-401 *8))) - (-5 *1 (-692 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-401 *6))) - (-4 *8 (-1211 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1028)) (-4 *9 (-1028)) - (-4 *5 (-830)) (-4 *6 (-776)) (-4 *2 (-928 *9 *7 *5)) - (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) - (-4 *4 (-928 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-4 *7 (-776)) - (-4 *9 (-1028)) (-4 *2 (-928 *9 *8 *6)) - (-5 *1 (-712 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-776)) - (-4 *4 (-928 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5 *7)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-4 *7 (-709)) (-5 *2 (-718 *6 *7)) - (-5 *1 (-717 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-718 *3 *4)) - (-4 *4 (-709)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-780 *6)) (-5 *1 (-781 *4 *5 *2 *6)) (-4 *4 (-780 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-815 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-823 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6)))) + (-12 (-5 *3 (-756)) (-4 *4 (-357)) (-4 *5 (-1213 *4)) (-5 *2 (-1242)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1213 (-401 *5))) (-14 *7 *6)))) +(((*1 *2 *3) + (-12 (-4 *1 (-901)) (-5 *2 (-2 (|:| -4158 (-629 *1)) (|:| -4126 *1))) + (-5 *3 (-629 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-2 (|:| -3479 *4) (|:| -3299 (-552))))) + (-4 *4 (-1213 (-552))) (-5 *2 (-722 (-756))) (-5 *1 (-435 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-412 *5)) (-4 *5 (-1213 *4)) (-4 *4 (-1030)) + (-5 *2 (-722 (-756))) (-5 *1 (-437 *4 *5))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-220)) + (-5 *7 (-673 (-552))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) +(((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) + ((*1 *1 *1) (-4 *1 (-983))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-993)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-993)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-902)))) + ((*1 *1 *1) (-4 *1 (-993)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 *7)) (-4 *7 (-930 *6 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1030)) (-5 *2 (-1150 *6)) + (-5 *1 (-315 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-667 *4 *3)) (-4 *4 (-1078)) + (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-629 (-629 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-629 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-868 *5 *6)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-868 *5 *7)) - (-5 *1 (-867 *5 *6 *7)))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) + (-4 *7 (-832)) (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-629 (-629 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-629 *8))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) + (-5 *2 (-1016)) (-5 *1 (-734)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) + (-5 *8 (-382)) (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *2 (-629 (-220))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-629 (-1154))) + (-5 *2 (-629 (-629 (-373)))) (-5 *1 (-1004)) (-5 *5 (-373)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) + (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-933 *4))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) + (-4 *1 (-834 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-629 + (-2 (|:| -2128 (-756)) + (|:| |eqns| + (-629 + (-2 (|:| |det| *7) (|:| |rows| (-629 (-552))) + (|:| |cols| (-629 (-552)))))) + (|:| |fgb| (-629 *7))))) + (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-756)) + (-5 *1 (-905 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1213 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-871 *6)) (-5 *1 (-870 *5 *6)))) + (-12 (-5 *4 (-629 (-48))) (-4 *5 (-832)) (-4 *6 (-778)) + (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-930 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-5 *2 (-931 *6)) (-5 *1 (-925 *5 *6)))) + (-12 (-5 *4 (-629 (-48))) (-4 *5 (-832)) (-4 *6 (-778)) + (-4 *7 (-930 (-48) *6 *5)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1150 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) + (-4 *3 (-1213 (-166 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-830)) - (-4 *8 (-1028)) (-4 *6 (-776)) - (-4 *2 - (-13 (-1076) - (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) - (-5 *1 (-930 *6 *7 *8 *5 *2)) (-4 *5 (-928 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-937 *6)) (-5 *1 (-936 *5 *6)))) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-5 *2 (-922 *6)) (-5 *1 (-960 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-931 *4))) (-4 *4 (-1028)) - (-4 *2 (-928 (-931 *4) *5 *6)) (-4 *5 (-776)) - (-4 *6 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-5 *1 (-963 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) - (-4 *2 (-971 *6)) (-5 *1 (-969 *5 *6 *4 *2)) (-4 *4 (-971 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-976 *6)) (-5 *1 (-977 *4 *5 *2 *6)) (-4 *4 (-976 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) - (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) - (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1028)) (-4 *10 (-1028)) - (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) - (-4 *9 (-233 *5 *7)) (-4 *2 (-1031 *5 *6 *10 *11 *12)) - (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) - (-4 *12 (-233 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-1070 *6)) (-5 *1 (-1065 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-828)) - (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) - (-5 *1 (-1065 *5 *6)))) + (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1213 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-1068 *6)) (-5 *1 (-1067 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) - (-4 *2 (-1125 *4)))) + (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6)))) + (-12 (-5 *4 (-629 (-756))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-1132 *7)) - (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) - (-5 *1 (-1131 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1165 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1152)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-828)) - (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) - (-5 *1 (-1201 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1152)) - (-4 *6 (-1028)) (-4 *8 (-1028)) (-5 *2 (-1208 *7 *8)) - (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1152)))) + (-12 (-5 *4 (-629 (-756))) (-5 *5 (-756)) (-5 *2 (-412 *3)) + (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-756)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1213 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) + (-5 *3 (-166 (-552))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-4 *5 (-778)) (-4 *7 (-544)) (-5 *2 (-412 *3)) + (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) + (-4 *3 (-930 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1150 *4))) (-5 *1 (-451 *4)) + (-5 *3 (-1150 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) - (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5)))) + (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) + (-4 *7 (-13 (-357) (-144) (-709 *5 *6))) (-5 *2 (-412 *3)) + (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1213 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1028)) - (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1152)))) + (-12 (-5 *4 (-1 (-412 (-1150 *7)) (-1150 *7))) + (-4 *7 (-13 (-301) (-144))) (-4 *5 (-832)) (-4 *6 (-778)) + (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) + (-4 *3 (-930 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) - (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5)))) + (-12 (-5 *4 (-1 (-412 (-1150 *7)) (-1150 *7))) + (-4 *7 (-13 (-301) (-144))) (-4 *5 (-832)) (-4 *6 (-778)) + (-4 *8 (-930 *7 *6 *5)) (-5 *2 (-412 (-1150 *8))) + (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1150 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) - (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) + (-12 (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) (-5 *2 (-629 (-637 (-401 *6)))) + (-5 *1 (-641 *5 *6)) (-5 *3 (-637 (-401 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) (-5 *2 (-629 (-637 (-401 *5)))) + (-5 *1 (-641 *4 *5)) (-5 *3 (-637 (-401 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-804 *4)) (-4 *4 (-832)) (-5 *2 (-629 (-656 *4))) + (-5 *1 (-656 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1235 *5)) - (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) - (-5 *1 (-1234 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-1258 *3 *4)) - (-4 *4 (-826))))) + (-12 (-5 *4 (-552)) (-5 *2 (-629 *3)) (-5 *1 (-680 *3)) + (-4 *3 (-1213 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-343)) (-5 *2 (-412 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-930 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-343)) + (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) + (-4 *5 + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) + (-4 *3 (-930 (-933 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) + (-4 *5 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *6 (-544)) + (-5 *2 (-412 *3)) (-5 *1 (-717 *4 *5 *6 *3)) + (-4 *3 (-930 (-401 (-933 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-13 (-301) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-718 *4 *5 *6 *3)) + (-4 *3 (-930 (-401 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-13 (-301) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-726 *4 *5 *6 *3)) + (-4 *3 (-930 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-726 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-988 *3)) + (-4 *3 (-1213 (-401 (-552)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1022 *3)) + (-4 *3 (-1213 (-401 (-933 (-552))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1213 (-401 (-552)))) + (-4 *5 (-13 (-357) (-144) (-709 (-401 (-552)) *4))) + (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1213 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1213 (-401 (-933 (-552))))) + (-4 *5 (-13 (-357) (-144) (-709 (-401 (-933 (-552))) *4))) + (-5 *2 (-412 *3)) (-5 *1 (-1059 *4 *5 *3)) (-4 *3 (-1213 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-445)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 (-401 *7)))) + (-5 *1 (-1149 *4 *5 *6 *7)) (-5 *3 (-1150 (-401 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1195)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) + (-12 (-5 *2 (-629 (-924 *4))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) - (-5 *2 - (-627 - (-2 (|:| -4154 (-754)) - (|:| |eqns| - (-627 - (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) - (|:| |cols| (-627 (-552)))))) - (|:| |fgb| (-627 *8))))) - (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-754))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) - (-4 *4 (-1189)) (-5 *2 (-111))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) - (-5 *2 (-1014)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161 (-627 *4))) (-4 *4 (-830)) - (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) - (-5 *2 (-1235 *4)) (-5 *1 (-622 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1156))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) - (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) - (-5 *2 (-1014)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) - (-5 *2 (-2 (|:| -3069 (-401 *5)) (|:| |poly| *3))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-528)) (-5 *1 (-527 *4)) - (-4 *4 (-1189))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2376 (-552)) (|:| -2101 (-627 *3)))) - (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) + (-5 *2 (-2 (|:| -3487 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1150 *1)) (-5 *3 (-1154)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-933 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1154)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-832) (-544))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-832) (-544)))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *1) + (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) (-4 *2 (-445)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-1211 (-552))) (-5 *2 (-627 (-552))) - (-5 *1 (-479 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) + ((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-1213 *2)) + (-4 *4 (-1213 (-401 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-445)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *3 (-445))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) - (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) + (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *3 (-445)))) + ((*1 *1 *1) + (-12 (-4 *1 (-930 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) - (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef2| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-665 *4 *5)) (-4 *4 (-1076)))) - ((*1 *2 *2) - (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1028)) - (-5 *1 (-1136 *4))))) -(((*1 *1) (-5 *1 (-806)))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) - (-5 *5 (-1 (-412 *7) *7)) - (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-636 *7 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) - (-5 *5 (-1 (-412 *7) *7)) - (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) - (-4 *6 (-1211 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-636 *5 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) - (-4 *6 (-1211 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-627 (-111))) (-5 *5 (-671 (-220))) - (-5 *6 (-671 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) - (-5 *1 (-737))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) + (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1141 *3 *2)) + (-4 *2 (-1213 *3))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1197 *4)) (-4 *4 (-1030)) (-4 *4 (-544)) + (-5 *2 (-401 (-933 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1197 *4)) (-4 *4 (-1030)) (-4 *4 (-544)) + (-5 *2 (-401 (-933 *4)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-830) (-544)))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-754)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2 *3) - (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-830))))) -(((*1 *1) (-5 *1 (-461)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) - (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) - (-4 *2 (-1189))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-552))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-738))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3446 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) - (-5 *3 (-401 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-562 *7 *8))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-950))))) -(((*1 *2 *3) - (-12 (-4 *1 (-819)) - (-5 *3 - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (-5 *2 (-1014)))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-987))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) + (-4 *5 (-544)) (-5 *2 (-629 (-629 (-933 *5)))) (-5 *1 (-1160 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *1 (-257)))) ((*1 *2 *3) - (-12 (-4 *1 (-819)) - (-5 *3 - (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) - (-5 *2 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) - ((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) + (-5 *2 (-673 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1237 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-1237 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *3 (-830)) (-5 *2 (-754))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 (-401 (-931 *6)))) - (-5 *3 (-401 (-931 *6))) - (-4 *6 (-13 (-544) (-1017 (-552)) (-144))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-482 *3)) - (-4 *3 (-1189))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169))))) -(((*1 *2 *1) - (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) - (-4 *3 (-946))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) - (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1213 *4)) (-5 *2 (-1237 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) + (-5 *2 (-1237 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-673 *5))) (-5 *3 (-673 *5)) (-4 *5 (-357)) + (-5 *2 (-1237 *5)) (-5 *1 (-1064 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-844))))) (((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) + (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1197 *3)) (-5 *2 (-401 (-552)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) + ((*1 *1 *1) (-5 *1 (-844)))) +(((*1 *2) + (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-517))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1142 3 *3)) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) + ((*1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-895 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-896 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-412 (-933 *6))) (-5 *5 (-1154)) (-5 *3 (-933 *6)) + (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-896 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-729 *3)) (-4 *3 (-169))))) +(((*1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-477 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-1030)) (-5 *2 (-552)) + (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1213 *5)) + (-4 *6 (-13 (-398) (-1019 *5) (-357) (-1176) (-278))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1213 *4)) + (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-1235 (-310 (-373)))) + (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *2 (-1237 (-310 (-373)))) (-5 *1 (-299))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-544)) - (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 (-627 (-900)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-832)) + (-4 *4 (-544)) (-5 *2 (-401 (-1150 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-1150 (-401 (-1150 *3)))) (-5 *1 (-548 *6 *3 *7)) + (-5 *5 (-1150 *3)) (-4 *7 (-1078)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-1235 (-671 *4))))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 (-671 *3))))) + (-12 (-5 *4 (-1233 *5)) (-14 *5 (-1154)) (-4 *6 (-1030)) + (-5 *2 (-1210 *5 (-933 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-933 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-1150 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) (-5 *2 (-1150 *1)) + (-4 *1 (-930 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) - (-5 *2 (-1235 (-671 (-401 (-931 *5))))) (-5 *1 (-1062 *5)) - (-5 *4 (-671 (-401 (-931 *5)))))) + (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *5 *4)) (-5 *2 (-401 (-1150 *3))) + (-5 *1 (-931 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1150 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) (-15 -4026 (*7 $))))) + (-4 *7 (-930 *6 *5 *4)) (-4 *5 (-778)) (-4 *4 (-832)) + (-4 *6 (-1030)) (-5 *1 (-931 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-4 *5 (-544)) + (-5 *2 (-401 (-1150 (-401 (-933 *5))))) (-5 *1 (-1024 *5)) + (-5 *3 (-401 (-933 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) + (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) - (-5 *2 (-1235 (-671 (-931 *5)))) (-5 *1 (-1062 *5)) - (-5 *4 (-671 (-931 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) - (-5 *2 (-1235 (-671 *4))) (-5 *1 (-1062 *4))))) + (-12 (-5 *4 (-1154)) (-5 *2 (-908)) (-5 *1 (-906 *3)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-908)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908))))) (((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-301)) - (-5 *2 (-401 (-412 (-931 *4)))) (-5 *1 (-1021 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) - ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) -(((*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357))))) -(((*1 *1 *1) (-4 *1 (-537)))) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *1) (-4 *1 (-343)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) - ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) -(((*1 *1) (-5 *1 (-566)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1028))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) - ((*1 *1 *1) (-4 *1 (-157)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) + (-12 (-4 *1 (-679 *3)) (-4 *3 (-1078)) + (-5 *2 (-629 (-2 (|:| -3360 *3) (|:| -2885 (-756)))))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-673 (-552))) (-5 *3 (-629 (-552))) (-5 *1 (-1088))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-900)) (-4 *5 (-544)) (-5 *2 (-671 *5)) - (-5 *1 (-935 *5 *3)) (-4 *3 (-638 *5))))) + (-12 (-4 *5 (-544)) + (-5 *2 (-2 (|:| -2325 (-673 *5)) (|:| |vec| (-1237 (-629 (-902)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-902)) (-4 *3 (-640 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-598 *1))) (-4 *1 (-296))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1707 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-547))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-627 (-257))) (-5 *1 (-1237)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1134)) (-5 *1 (-1237)))) - ((*1 *1 *1) (-5 *1 (-1237)))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-754)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-324))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-871 *3)) (|:| |den| (-871 *3)))) - (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)) - (-4 *2 (-1076))))) -(((*1 *2 *3) - (-12 (-4 *2 (-357)) (-4 *2 (-828)) (-5 *1 (-924 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-757)) (-5 *1 (-52))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) - (|:| -3268 *6))) - (-5 *1 (-994 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-775)) (-4 *3 (-169))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-627 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-830)) - (-5 *1 (-561 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) - (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) - (-4 *5 (-367 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *2 (-1076)) (-5 *1 (-208 *4 *2)) - (-14 *4 (-900)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) - (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) - (-5 *1 (-790 *4 *5 *3 *6)) (-4 *3 (-638 *5)) - (-4 *6 (-638 (-401 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) - (-5 *1 (-790 *5 *4 *3 *6)) (-4 *3 (-638 *4)) - (-4 *6 (-638 (-401 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) - (-5 *1 (-790 *4 *5 *6 *3)) (-4 *6 (-638 *5)) - (-4 *3 (-638 (-401 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) - (-5 *1 (-790 *5 *4 *6 *3)) (-4 *6 (-638 *4)) - (-4 *3 (-638 (-401 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-1235 *2)) (-4 *5 (-301)) - (-4 *6 (-971 *5)) (-4 *2 (-13 (-403 *6 *7) (-1017 *6))) - (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-922 (-220)) (-220) (-220))) - (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-111)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-243))))) -(((*1 *2 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1211 *4)) - (-5 *1 (-760 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-900)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-357)) (-4 *2 (-362))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-754)) (-5 *3 (-922 *5)) (-4 *5 (-1028)) - (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) - (-14 *4 (-900)) (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) - (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-627 *7) *7 (-1148 *7))) (-5 *5 (-1 (-412 *7) *7)) - (-4 *7 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-5 *2 (-627 (-2 (|:| |frac| (-401 *7)) (|:| -1651 *3)))) - (-5 *1 (-792 *6 *7 *3 *8)) (-4 *3 (-638 *7)) - (-4 *8 (-638 (-401 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 - (-627 (-2 (|:| |frac| (-401 *6)) (|:| -1651 (-636 *6 (-401 *6)))))) - (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6)))))) -(((*1 *2) - (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) - (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1211 (-552))) - (-5 *2 - (-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) - (|:| |basisInv| (-671 (-552))))) - (-5 *1 (-751 *3 *4)) (-4 *4 (-403 (-552) *3)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) - (-5 *2 - (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-671 *4)))) - (-5 *1 (-964 *3 *4 *5 *6)) (-4 *6 (-707 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) - (-5 *2 - (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-671 *4)))) - (-5 *1 (-1244 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) - (-5 *1 (-897 *4))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-598 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) - (-4 *2 (-13 (-424 *5) (-27) (-1174))) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1076))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778)) (-5 *2 (-111)) + (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34)))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3) - (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) - (-4 *4 (-13 (-544) (-830))) - (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) - (-5 *1 (-586 *4 *5 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) - (-4 *3 (-13 (-1174) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) - (-5 *2 (-573 (-401 (-931 *5)))) (-5 *1 (-558 *5)) - (-5 *3 (-401 (-931 *5)))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) - (-4 *5 (-1211 *4)) (-5 *2 (-627 (-401 *5))) (-5 *1 (-995 *4 *5)) - (-5 *3 (-401 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-220)) (-5 *2 - (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) - (|:| |polypart| *6))) - (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) + (-2 (|:| |brans| (-629 (-629 (-924 *4)))) + (|:| |xValues| (-1072 *4)) (|:| |yValues| (-1072 *4)))) + (-5 *1 (-150)) (-5 *3 (-629 (-629 (-924 *4))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *1 (-102 *3)) (-4 *3 (-1078))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-285))) + ((*1 *1) (-5 *1 (-844))) + ((*1 *1) + (-12 (-4 *2 (-445)) (-4 *3 (-832)) (-4 *4 (-778)) + (-5 *1 (-968 *2 *3 *4 *5)) (-4 *5 (-930 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1063))) + ((*1 *1) + (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34))))) + ((*1 *1) (-5 *1 (-1157))) ((*1 *1) (-5 *1 (-1158)))) +(((*1 *2 *1) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) - (-5 *1 (-520 *4)))) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) + ((*1 *2 *3) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) + (-5 *1 (-672 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (-4 *2 (-1028))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1323 *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-552)) - (-5 *6 - (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) - (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-552)) - (-5 *6 - (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) - (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) -(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-324))))) -(((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) - (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-5 *1 (-875 *2 *3)) - (-4 *2 (-1211 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) - (-4 *2 (-1226 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) - (-4 *5 (-1211 *4)) (-4 *6 (-707 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) - (-4 *2 (-1226 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) - (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) - (-5 *1 (-1128 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) - (-4 *2 (-1076))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1228 *4)) + (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1134 *4) (-1134 *4))) + (-5 *1 (-1230 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1150 *7)) + (-4 *5 (-1030)) (-4 *7 (-1030)) (-4 *2 (-1213 *5)) + (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1213 *2))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-664 *2)) (-4 *2 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-627 *5) (-627 *5))) (-5 *4 (-552)) - (-5 *2 (-627 *5)) (-5 *1 (-664 *5)) (-4 *5 (-1076))))) + (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1102 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5))))) +(((*1 *1) (-5 *1 (-181)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-412 (-1148 *6)) (-1148 *6))) - (-4 *6 (-357)) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) (-5 *2 - (-627 - (-2 (|:| |outval| *7) (|:| |outmult| (-552)) - (|:| |outvect| (-627 (-671 *7)))))) - (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-828)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155))))) + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1101 *3 *4 *2 *5)) (-4 *4 (-1030)) (-4 *5 (-233 *3 *4)) + (-4 *2 (-233 *3 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-958 *4 *5 *6 *7))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *2 (-166 (-373))) (-5 *1 (-770 *3)) (-4 *3 (-600 (-373))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + (-12 (-5 *4 (-902)) (-5 *2 (-166 (-373))) (-5 *1 (-770 *3)) + (-4 *3 (-600 (-373))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-166 *5)) (-5 *4 (-902)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-933 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-933 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) - (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-768 *5)))) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-401 (-933 (-166 *4)))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-768 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1076))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-401 (-552))) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-4 *2 (-1076)) (-5 *1 (-662 *5 *6 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + (-12 (-5 *3 (-401 (-933 (-166 *5)))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-545 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-401 (-931 *4))) (-5 *1 (-903 *4 *5 *6 *3)) - (-4 *3 (-928 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-671 (-401 (-931 *4)))) - (-5 *1 (-903 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) - (-5 *1 (-903 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-810 *2 *3)) (-4 *2 (-691 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1118 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)) - (-5 *1 (-972 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) - (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) - (-5 *2 (-627 (-654 *5))) (-5 *1 (-654 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) (-4 *5 (-832)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *2)) (-5 *4 (-1152)) (-4 *2 (-424 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-830) (-544))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-4 *1 (-991)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-5 *4 (-842)) - (-4 *1 (-991)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-900)) (-4 *4 (-13 (-828) (-357))) - (-4 *1 (-1045 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-301)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) - (-4 *1 (-301))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *2 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) - ((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) - (-5 *2 (-1148 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182))))) + (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-770 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-1028)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *3 (-830)) - (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1189)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1191)) + (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *6 *2 *7)) (-4 *6 (-1030)) + (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1039)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1136) (-759))) (-5 *1 (-113))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-445)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *5 (-890)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-890))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1) (-5 *1 (-181)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-1154)) (-4 *6 (-424 *5)) + (-4 *5 (-832)) (-5 *2 (-629 (-598 *6))) (-5 *1 (-561 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2594 *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1176) (-424 *3))) + (-14 *4 (-1154)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189))))) -(((*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-236)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1240)) (-5 *1 (-236))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1134)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *4 (-1042 *6 *7 *8)) (-5 *2 (-1240)) - (-5 *1 (-759 *6 *7 *8 *4 *5)) (-4 *5 (-1048 *6 *7 *8 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-627 (-288 *4))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1323 *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-627 (-310 (-220)))) - (|:| |constraints| - (-627 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-754)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) - (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) - (|:| |tol| (-220)))) - (-5 *2 (-111)) (-5 *1 (-205))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-900)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-853)) - (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-4 *2 (-13 (-27) (-1176) (-424 *3) (-10 -8 (-15 -3213 ($ *4))))) + (-4 *4 (-830)) + (-4 *5 + (-13 (-1215 *2 *4) (-357) (-1176) + (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) + (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-964 *5)) (-14 *7 (-1154))))) +(((*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -1411 (-401 *6)) (|:| |coeff| (-401 *6)))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-852 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-14 *2 (-552)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-853 *3 *4)) + (-4 *4 (-850 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) - ((*1 *1 *1) (-4 *1 (-828))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) - ((*1 *1 *1) (-4 *1 (-1037))) ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-1157))) (-5 *1 (-1157))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) - (-5 *1 (-200))))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-573 *3) *3 (-1152))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1152))) - (-4 *3 (-278)) (-4 *3 (-613)) (-4 *3 (-1017 *4)) (-4 *3 (-424 *7)) - (-5 *4 (-1152)) (-4 *7 (-600 (-871 (-552)))) (-4 *7 (-445)) - (-4 *7 (-865 (-552))) (-4 *7 (-830)) (-5 *2 (-573 *3)) - (-5 *1 (-561 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-900)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-775)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1216 *3)) (-4 *3 (-1028))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-401 *5)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) - (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1211 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) - (-5 *1 (-185)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-671 (-310 (-220)))) (-5 *3 (-627 (-1152))) - (-5 *4 (-1235 (-310 (-220)))) (-5 *1 (-200)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1076)) - (-4 *3 (-1189)) (-5 *1 (-288 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-303 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)) - (-5 *1 (-288 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 (-627 *1)))) - (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 (-627 *1)))) - (-4 *1 (-296)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1154 (-401 (-552)))) - (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *1)) (-4 *1 (-368 *4 *5)) - (-4 *4 (-830)) (-4 *5 (-169)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 (-627 *1))) - (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) - (-5 *4 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-830)) - (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) - (-5 *4 (-627 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) - (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 *1)) (-5 *4 (-1152)) - (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-600 (-528))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1152)) (-4 *1 (-424 *4)) (-4 *4 (-830)) - (-4 *4 (-600 (-528))))) + (-12 (-14 *2 (-552)) (-5 *1 (-853 *2 *3)) (-4 *3 (-850 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-1228 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-600 (-528))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-1152))) (-4 *1 (-424 *3)) (-4 *3 (-830)) - (-4 *3 (-600 (-528))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)) - (-4 *3 (-600 (-528))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *5)) (-4 *1 (-506 *4 *5)) - (-4 *4 (-1076)) (-4 *5 (-1189)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-816 *3)) (-4 *3 (-357)) (-5 *1 (-701 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-544)) - (-5 *1 (-1022 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-627 (-1152))) (-5 *4 (-627 (-401 (-931 *5)))) - (-5 *2 (-401 (-931 *5))) (-4 *5 (-544)) (-5 *1 (-1022 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-5 *2 (-401 (-931 *4))) - (-4 *4 (-544)) (-5 *1 (-1022 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-5 *2 (-401 (-931 *4))) - (-4 *4 (-544)) (-5 *1 (-1022 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1132 *3))))) + (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1228 *2))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-343)) (-5 *2 (-1235 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-142)) (-4 *1 (-888)) - (-5 *2 (-1235 *1))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-552)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) - (-5 *1 (-442 *5 *6 *7 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3116 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1014)) - (-5 *1 (-729))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-52))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1235 *4)) (-5 *3 (-671 *4)) (-4 *4 (-357)) - (-5 *1 (-649 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-357)) - (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4367)))) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))) - (-5 *1 (-650 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-627 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) - (-5 *1 (-797 *2 *3)) (-4 *3 (-638 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-1152)) - (-4 *2 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-629 (-629 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) - (-5 *2 (-754)))) - ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) - ((*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) - ((*1 *2) - (-12 (-4 *4 (-1076)) (-5 *2 (-754)) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-629 (-629 *5))))) ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-754)) - (-5 *1 (-706 *3 *4 *5)) (-4 *3 (-707 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) + (-12 (-5 *2 (-629 (-629 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-902)) (-4 *1 (-398)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1189)) (-5 *2 (-1240))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1211 (-401 (-552)))) - (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) - (-5 *1 (-892 *3 *4)) (-4 *4 (-1211 (-401 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) - (-4 *3 (-1211 (-401 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) + (-12 (-4 *1 (-1081 *3 *4 *5 *2 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-573 *3)) (-4 *3 (-357))))) +(((*1 *1) (-5 *1 (-181)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-724 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-5 *2 (-1242)) + (-5 *1 (-1192 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-5 *2 (-1242)) + (-5 *1 (-1192 *4))))) +(((*1 *2 *2 *3) (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))) - (-5 *1 (-786))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) - (-4 *4 (-1189)) (-5 *2 (-111))))) + (-5 *3 (-629 (-2 (|:| |func| *2) (|:| |pole| (-111))))) + (-4 *2 (-13 (-424 *4) (-983))) (-4 *4 (-13 (-832) (-544))) + (-5 *1 (-270 *4 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-629 *2) *2 *2 *2)) (-4 *2 (-1078)) + (-5 *1 (-102 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1078)) (-5 *1 (-102 *2))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-830)) (-4 *3 (-1076))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) + (-12 (-5 *3 (-1150 *6)) (-4 *6 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-1150 *7)) (-5 *1 (-315 *4 *5 *6 *7)) + (-4 *7 (-930 *6 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *3 (-627 (-552))) - (-5 *1 (-862))))) -(((*1 *1) (-5 *1 (-1061)))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) - (-4 *3 (-1189))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) - (-5 *2 - (-3 (|:| |overq| (-1148 (-401 (-552)))) - (|:| |overan| (-1148 (-48))) (|:| -2953 (-111)))) - (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 *8)) - (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *9 (-928 *8 *6 *7)) - (-4 *6 (-776)) (-5 *2 (-1148 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-630 *5)) (-4 *5 (-1028)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-832 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-671 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1028)) - (-5 *1 (-833 *2 *3)) (-4 *3 (-832 *2))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) - (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) - (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *2 *3) - (-12 + (-12 (-5 *3 (-2 (|:| |totdeg| (-756)) (|:| -2291 *4))) (-5 *5 (-756)) + (-4 *4 (-930 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) (-5 *2 - (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) - (-5 *3 (-627 *7)) (-4 *4 (-13 (-301) (-144))) - (-4 *7 (-928 *4 *6 *5)) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) - ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) - (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) - (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) - (-4 *3 (-336 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) - (-4 *4 (-1211 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-1132 (-1132 (-931 *5)))) - (-5 *1 (-1243 *5)) (-5 *4 (-1132 (-931 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1202 *3)) (-4 *3 (-1189))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) - (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-627 *7) (-627 *7))) (-5 *2 (-627 *7)) - (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)))) - ((*1 *2 *1) - (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-754))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) - (-15 -2929 ((-1101 *4 (-598 $)) $)) - (-15 -1477 ($ (-1101 *4 (-598 $))))))) - (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-598 *2))) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) - (-15 -2929 ((-1101 *4 (-598 $)) $)) - (-15 -1477 ($ (-1101 *4 (-598 $))))))) - (-4 *4 (-544)) (-5 *1 (-41 *4 *2))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-442 *6 *7 *8 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-844)) (-5 *1 (-1134 *3)) (-4 *3 (-1078)) + (-4 *3 (-1191))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-732))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *3) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-4 *5 (-357)) - (-4 *5 (-544)) (-5 *2 (-1235 *5)) (-5 *1 (-622 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) - (-1681 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1235 (-401 *5))) - (-5 *1 (-622 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1132 *3))) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-547))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) + (|partial| -12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-607 *3 *4)) - (-4 *4 (-1211 *3)))) + (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1228 *4)) + (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-1 (-1134 *4) (-1134 *4) (-1134 *4))) (-5 *1 (-1230 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1213 *4)) + (-5 *2 (-2 (|:| -3818 (-609 *4 *5)) (|:| -2774 (-401 *5)))) + (-5 *1 (-609 *4 *5)) (-5 *3 (-401 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-709)))) + (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) + (-14 *3 (-902)) (-4 *4 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-445)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1213 *3))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-655)))) ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1134)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1174) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-544)) - (-4 *7 (-928 *3 *5 *6)) - (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *8) (|:| |radicand| *8))) - (-5 *1 (-932 *5 *6 *3 *7 *8)) (-5 *4 (-754)) - (-4 *8 - (-13 (-357) - (-10 -8 (-15 -2918 (*7 $)) (-15 -2929 (*7 $)) (-15 -1477 ($ *7)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) + (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-902)) + (-14 *4 (-902))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-828)) (-4 *4 (-357)) (-5 *2 (-754)) - (-5 *1 (-924 *4 *5)) (-4 *5 (-1211 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-968)))) + (-12 (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-2 (|:| -2305 (-1134 *4)) (|:| -2318 (-1134 *4)))) + (-5 *1 (-1140 *4)) (-5 *3 (-1134 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) (-4 *3 (-1213 *4)) (-4 *2 (-1228 *4)) + (-5 *1 (-1231 *4 *3 *5 *2)) (-4 *5 (-640 *3))))) +(((*1 *1) (-5 *1 (-808)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1136)) (-5 *1 (-970)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1070 *4)) (-4 *4 (-1189)) - (-5 *1 (-1068 *4))))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1072 *4)) (-4 *4 (-1191)) + (-5 *1 (-1070 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) - (-4 *3 (-928 *7 *5 *6)) - (-5 *2 - (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| (-627 *3)))) - (-5 *1 (-932 *5 *6 *7 *3 *8)) (-5 *4 (-754)) - (-4 *8 - (-13 (-357) - (-10 -8 (-15 -2918 (*3 $)) (-15 -2929 (*3 $)) (-15 -1477 ($ *3)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) + (-12 (-4 *2 (-1213 *4)) (-5 *1 (-792 *4 *2 *3 *5)) + (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) + (-4 *5 (-640 (-401 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1213 *4)) (-5 *1 (-792 *4 *2 *5 *3)) + (-4 *4 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *5 (-640 *2)) + (-4 *3 (-640 (-401 *2)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-1208 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -1681 (-412 *3)) (|:| |special| (-412 *3)))) + (-5 *1 (-712 *5 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1080 *4)) (-4 *4 (-1078)) (-5 *2 (-1 *4)) + (-5 *1 (-998 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1072 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-598 *1))) (-4 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552))))) - (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) - (-5 *1 (-497 *4 *5))))) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1134 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4235 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-547))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) (((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-633 *2)) (-4 *2 (-1189))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) - (-4 *2 - (-13 (-396) - (-10 -7 (-15 -1477 (*2 *4)) (-15 -2886 ((-900) *2)) - (-15 -2957 ((-1235 *2) (-900))) (-15 -3406 (*2 *2))))) - (-5 *1 (-350 *2 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *3 (-931 (-552))) - (-5 *1 (-324)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *1 (-324))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) -(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) - (-5 *2 (-1014)) (-5 *1 (-820))))) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) (-5 *2 (-111)) + (-5 *1 (-1264 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-900)) (-5 *1 (-1011 *2)) - (-4 *2 (-13 (-1076) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) - (-4 *4 (-343)) (-5 *2 (-754)) (-5 *1 (-340 *4)))) - ((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) - (-14 *4 (-900)))) - ((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1148 *3) - (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) - ((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-900))))) -(((*1 *1 *1) (-4 *1 (-544)))) + (|partial| -12 (-5 *3 (-756)) (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-828))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2101 (-412 *3)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261))))) -(((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) - (-14 *3 (-627 (-1152)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) - (-4 *5 (-233 (-1383 *3) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) - (-2 (|:| -4153 *2) (|:| -4067 *5)))) - (-4 *2 (-830)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-928 *4 *5 (-844 *3)))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1182 *5 *6 *7 *8)) (-4 *5 (-544)) - (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-1240)) (-5 *1 (-814))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-629 (-220))) (-5 *1 (-199))))) (((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-671 *4)) (-4 *5 (-638 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *1 (-1136 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-733))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-754))) - (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-169)))) + (-12 (-5 *3 (-673 *2)) (-4 *4 (-1213 *2)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-1078)) (-4 *3 (-881 *6)) + (-5 *2 (-673 *3)) (-5 *1 (-676 *6 *3 *7 *4)) (-4 *7 (-367 *3)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4368))))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1078)) + (-4 *3 (-1191)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-858 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-860 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-5 *1 (-863 *2)) (-4 *2 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-905))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028)) (-4 *4 (-169)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)) - (-4 *3 (-169))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))))) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-930 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1189)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) - (-14 *4 (-627 (-1152))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-872 *3)) (-4 *3 (-830))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) - (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) - (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-111)) - (-5 *1 (-654 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)) - (-4 *3 (-775))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) - (-4 *3 (-13 (-1174) (-29 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-627 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) - (-5 *2 (-627 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-5 *2 (-461)) (-5 *1 (-1236))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) - (-5 *2 (-627 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) - (-4 *1 (-29 *4)))) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-727 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *2 *3) - (-12 (-5 *3 (-906)) - (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) + (-12 (-4 *3 (-445)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-412 *1)) (-4 *1 (-930 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-832)) (-4 *5 (-778)) (-4 *6 (-445)) (-5 *2 (-412 *3)) + (-5 *1 (-960 *4 *5 *6 *3)) (-4 *3 (-930 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-445)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-412 (-1150 (-401 *7)))) + (-5 *1 (-1149 *4 *5 *6 *7)) (-5 *3 (-1150 (-401 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1195)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1216 *4 *3)) + (-4 *3 (-13 (-1213 *4) (-544) (-10 -8 (-15 -2594 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-14 *5 (-629 (-1154))) (-5 *2 - (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) - (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) - (-5 *1 (-150))))) -(((*1 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *1)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-671 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *4)) (-4 *4 (-1028)) (-4 *1 (-1099 *3 *4 *5 *6)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) - (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-754)))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-937 *3)) (-5 *1 (-1139 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-770)) (-5 *2 (-1014)) - (-5 *3 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-770)) (-5 *2 (-1014)) - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) - (-5 *1 (-326))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-629 (-1124 *4 (-523 (-846 *6)) (-846 *6) (-765 *4 (-846 *6))))) + (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) + (-4 *1 (-834 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-141))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) (-4 *6 (-445)) + (-5 *2 (-629 (-629 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) + (-4 *5 (-13 (-357) (-830)))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1016)) (-5 *1 (-822)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-310 (-373)))) (-5 *4 (-629 (-373))) + (-5 *2 (-1016)) (-5 *1 (-822))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) + (-5 *1 (-774)) (-5 *5 (-552))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2 *3) (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1019 (-552))) + (-4 *4 (-13 (-832) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) + (-4 *5 (-1228 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1199 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) + (-4 *5 (-1197 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1220 *4 *5)) + (-4 *6 (-964 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-278))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-424 *3)) (-4 *3 (-832)) (-4 *3 (-1090)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-552)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-528)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *4 (-1078)) + (-5 *1 (-666 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-673 *4)) (-5 *3 (-756)) (-4 *4 (-1030)) + (-5 *1 (-674 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *3 (-1030)) (-5 *1 (-699 *3 *4)) + (-4 *4 (-632 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1030)) + (-5 *1 (-699 *4 *5)) (-4 *5 (-632 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-756)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-819 *3)) (-4 *3 (-1030)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-819 *4)) (-4 *4 (-1030)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-401 (-552))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1090)) (-5 *2 (-902)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) (((*1 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *2 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *1 (-610 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *2 (-1087 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1150 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-902)) (-5 *1 (-1013 *2)) + (-4 *2 (-13 (-1078) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1154)) (-5 *3 (-1082)) (-5 *1 (-285))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) + (-5 *1 (-733))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-401 (-933 (-552))))) (-5 *4 (-629 (-1154))) + (-5 *2 (-629 (-629 *5))) (-5 *1 (-374 *5)) + (-4 *5 (-13 (-830) (-357))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 (-552)))) (-5 *2 (-629 *4)) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-830) (-357)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 - (-627 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) - (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *1 (-1136 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-802 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028))))) + (-629 + (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 *3)) + (|:| |logand| (-1150 *3))))) + (-5 *1 (-573 *3)) (-4 *3 (-357))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) + (-12 (-5 *2 (-855)) (-5 *3 (-629 (-257))) (-5 *1 (-255))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) + (-4 *4 (-343)) (-5 *2 (-756)) (-5 *1 (-340 *4)))) + ((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) + (-14 *4 (-902)))) + ((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1150 *3) + (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098))))))))) + ((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-902))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239))))) (((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) - (-4 *2 (-169))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) - (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) - (-5 *2 (-1014)) (-5 *1 (-728))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-754)) (-5 *1 (-549))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-321 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-508 *3 *4)) - (-14 *4 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) + (-12 (-4 *3 (-1030)) (-5 *2 (-629 *1)) (-4 *1 (-1112 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-4 *3 (-881 *5)) (-5 *2 (-1237 *3)) + (-5 *1 (-676 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368))))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-627 *5)) (-14 *4 (-1152)) - (-4 *5 (-357)) (-5 *1 (-902 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-357)) (-5 *2 (-1148 *5)) - (-5 *1 (-902 *4 *5)) (-14 *4 (-1152)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-754)) (-4 *6 (-357)) - (-5 *2 (-401 (-931 *6))) (-5 *1 (-1029 *5 *6)) (-14 *5 (-1152))))) -(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) - (-5 *7 (-671 (-552))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) - (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-627 (-1134))) (-5 *3 (-552)) (-5 *4 (-1134)) - (-5 *1 (-236)))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1191))))) + (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-1030)) + (-5 *1 (-1138 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1030)) + (-14 *4 (-1154)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-528))) ((*1 *1) (-4 *1 (-707))) + ((*1 *1) (-4 *1 (-711))) + ((*1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1136)) (-5 *5 (-673 (-220))) (-5 *6 (-220)) + (-5 *7 (-673 (-552))) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-756)) (-4 *3 (-1191)) (-4 *1 (-56 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1) (-5 *1 (-168))) + ((*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1078)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383)))) + ((*1 *1) (-5 *1 (-388))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) + ((*1 *1) + (-12 (-4 *3 (-1078)) (-5 *1 (-866 *2 *3 *4)) (-4 *2 (-1078)) + (-4 *4 (-650 *3)))) + ((*1 *1) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1120 *3 *2)) (-14 *3 (-756)) (-4 *2 (-1030)))) + ((*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) + ((*1 *1 *1) (-5 *1 (-1154))) ((*1 *1) (-5 *1 (-1154))) + ((*1 *1) (-5 *1 (-1171)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-373)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1096))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) + (-12 (-5 *2 (-629 (-629 *6))) (-4 *6 (-930 *3 *5 *4)) + (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-832) (-600 (-1154)))) + (-4 *5 (-778)) (-5 *1 (-905 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176))))) + ((*1 *1 *1 *1) (-4 *1 (-778)))) (((*1 *1 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *3 (-169)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) - (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *2 (-928 *3 *5 *4))))) + (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-169))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1211 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-830) (-544))) - (-5 *2 (-842)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1132 *4) (-1132 *4))) (-5 *2 (-1132 *4)) - (-5 *1 (-1260 *4)) (-4 *4 (-1189)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-627 (-1132 *5)) (-627 (-1132 *5)))) (-5 *4 (-552)) - (-5 *2 (-627 (-1132 *5))) (-5 *1 (-1260 *5)) (-4 *5 (-1189))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) - (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *9 (-1042 *6 *7 *8)) - (-5 *2 - (-627 - (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) - (-5 *1 (-967 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) - (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *9 (-1042 *6 *7 *8)) - (-5 *2 - (-627 - (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) - (-5 *1 (-1083 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9))))) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-629 (-168))))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777)))) + ((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) + (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-269)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 *8)) (-5 *4 (-629 *6)) (-4 *6 (-832)) + (-4 *8 (-930 *7 *5 *6)) (-4 *5 (-778)) (-4 *7 (-1030)) + (-5 *2 (-629 (-756))) (-5 *1 (-315 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-902)))) + ((*1 *2 *1) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-609 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-756))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-930 *4 *5 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *3 (-832)) (-5 *2 (-756)))) + ((*1 *2 *1) + (-12 (-4 *1 (-954 *3 *2 *4)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-756)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1228 *3)) + (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1197 *3)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-818 (-902))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-756))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1161))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-528))) + ((*1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) (-4 *1 (-278))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *2) - (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-5 *1 (-611 *3 *4 *5)) - (-14 *5 (-900)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) + (-12 (-5 *2 (-629 (-2 (|:| -2670 *3) (|:| -3360 *4)))) + (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *1 (-1167 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1167 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-108)) (-5 *1 (-172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-108)) (-5 *1 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-830))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3772 (-412 *3)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) +(((*1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) - (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) - (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1117))) ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-924 (-220)))) (-5 *1 (-1238))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1226 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) - (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1226 *3)))) + (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-5 *1 (-969 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) - (-5 *1 (-1128 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) -(((*1 *1) (-5 *1 (-431)))) + (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-5 *1 (-1085 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3775)) (-5 *2 (-111)) (-5 *1 (-603)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2800)) (-5 *2 (-111)) (-5 *1 (-603)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2608)) (-5 *2 (-111)) (-5 *1 (-603)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3691)) (-5 *2 (-111)) (-5 *1 (-675 *4)) + (-4 *4 (-599 (-844))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-844))) (-5 *2 (-111)) + (-5 *1 (-675 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1144))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-951))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1017))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-655))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1248))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-1247))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-660))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1115)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-111)) (-5 *1 (-1159)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1154))) (-5 *2 (-111)) (-5 *1 (-1159)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1159)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1159))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) + (-12 (-4 *3 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-1242)) + (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-5 *2 (-1242)) (-5 *1 (-1157)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) + (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *2 (-1242)) + (-5 *1 (-1157)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1154)) + (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) (-5 *2 (-1242)) + (-5 *1 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *4 (-754)) - (-5 *2 (-671 (-220))) (-5 *1 (-261))))) + (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-930 *7 *5 *6)) + (-5 *1 (-727 *5 *6 *7 *2)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-301))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) + (-5 *2 (-629 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-722 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) + (-5 *2 (-552)) (-5 *1 (-1092 *4 *5))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) + (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1191))))) +(((*1 *2 *2) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1078))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-842)) (-5 *3 (-127)) (-5 *2 (-1098))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-756)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1207 *4 *2)) (-4 *2 (-1213 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-643 *4 *2)) + (-4 *2 (-640 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-102 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) + (-4 *2 (-1078)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1078)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-1078)) (-5 *1 (-633 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-804 *2)) (-4 *2 (-832))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) - (-5 *1 (-520 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-808))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (|partial| -12 (-4 *4 (-13 (-544) (-144))) + (-5 *2 (-2 (|:| -3416 *3) (|:| -3428 *3))) (-5 *1 (-1207 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *2 *1) + (-2 (|:| |contp| (-552)) + (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) + (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-552)) + (|:| -3772 (-629 (-2 (|:| |irr| *3) (|:| -2277 (-552))))))) + (-5 *1 (-1202 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1030) (-832))) + (-14 *3 (-629 (-1154)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1030)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4199 (-629 *1)))) + (-4 *1 (-361 *3)))) + ((*1 *2) (|partial| -12 - (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1220 *4 *5 *6)) - (|:| |%expon| (-313 *4 *5 *6)) - (|:| |%expTerms| - (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) - (|:| |%type| (-1134)))) - (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) - (-14 *5 (-1152)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) + (-2 (|:| |particular| (-446 *3 *4 *5 *6)) + (|:| -4199 (-629 (-446 *3 *4 *5 *6))))) + (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *1 (-58 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-58 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-1238)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1238)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1238)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-1136)) (-5 *1 (-1239)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1239)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1239))))) (((*1 *2 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-627 *2))) (-5 *4 (-627 *5)) - (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1226 *5)) - (-5 *1 (-1228 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) - ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-658)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) - (-5 *2 (-671 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1235 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-1235 *4)))) + (-12 (-4 *1 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1211 *4)) (-5 *2 (-1235 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) - (-5 *2 (-1235 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-357)) - (-5 *2 (-1235 *5)) (-5 *1 (-1062 *5))))) -(((*1 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (-12 (-4 *1 (-677 *3)) (-4 *3 (-1076)) - (-5 *2 (-627 (-2 (|:| -2162 *3) (|:| -1509 (-754)))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-102 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-445)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *5 (-888)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-888))))) -(((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-627 (-627 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-627 (-627 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-627 *3))) (-5 *1 (-1161 *3)) (-4 *3 (-1076))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-131)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-151)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-658)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1043)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1072))))) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-754)) (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) + (|partial| -12 (-5 *3 (-756)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1207 *4 *2)) (-4 *2 (-1213 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-807))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1154)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-686 *3 *5 *6 *7)) + (-4 *3 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191)) + (-4 *7 (-1191)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-691 *3 *5 *6)) + (-4 *3 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-924 *5)) (-5 *3 (-756)) (-4 *5 (-1030)) + (-5 *1 (-1142 *4 *5)) (-14 *4 (-902))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-1235 *3)) - (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *3 (-169)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-5 *1 (-967 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-5 *1 (-1083 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-756)) (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *3 (-544))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) - (-5 *2 (-627 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-720 *3)) (-4 *3 (-1076))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) - (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1076)))) - ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-432 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1051 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1091)))) - ((*1 *1 *1) (-5 *1 (-1152)))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155))))) + (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) + (-4 *5 (-233 (-2657 *3) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *5)) + (-2 (|:| -2840 *2) (|:| -1406 *5)))) + (-4 *2 (-832)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-930 *4 *5 (-846 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1157))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3301 *3) (|:| |coef1| (-767 *3)) (|:| |coef2| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030))))) +(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-1248 *3 *4 *5 *6)))) + (-12 + (-5 *2 + (-629 + (-2 + (|:| -2670 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) + (|:| |yinit| (-629 (-220))) (|:| |intvals| (-629 (-220))) + (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -3360 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373))))))) + (-5 *1 (-788))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-629 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1184 *5 *6 *7 *8)) (-4 *5 (-544)) + (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1019 (-552))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-148 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-629 (-2 (|:| -1406 (-756)) (|:| -4046 *4) (|:| |num| *4)))) + (-4 *4 (-1213 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) - (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) - (-4 *3 (-832 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 (-474 *3 *4))) (-14 *3 (-627 (-1152))) - (-4 *4 (-445)) (-5 *1 (-615 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) - (-5 *2 (-1014)) (-5 *1 (-739))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) - (-5 *2 (-407 *4 (-401 *4) *5 *6)))) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-5 *3 (-629 (-1154))) (-5 *4 (-111)) (-5 *1 (-431)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1134 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) + (-4 *4 (-169)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) + (-4 *4 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-832)) (-5 *1 (-648 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))) - (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) - (-5 *1 (-407 *3 *4 *5 *6)))) + (-12 (-5 *2 (-629 (-629 (-629 *3)))) (-4 *3 (-1078)) + (-5 *1 (-659 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-698 *2 *3 *4)) (-4 *2 (-832)) (-4 *3 (-1078)) + (-14 *4 + (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *3)) + (-2 (|:| -2840 *2) (|:| -1406 *3)))))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-854 *2 *3)) (-4 *2 (-1191)) (-4 *3 (-1191)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) - (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) + (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 *4)))) + (-4 *4 (-1078)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1078)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) - (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) + (-12 (-5 *4 (-629 *5)) (-4 *5 (-13 (-1078) (-34))) + (-5 *2 (-629 (-1118 *3 *5))) (-5 *1 (-1118 *3 *5)) + (-4 *3 (-13 (-1078) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-2 (|:| |val| *4) (|:| -3361 *5)))) + (-4 *4 (-13 (-1078) (-34))) (-4 *5 (-13 (-1078) (-34))) + (-5 *2 (-629 (-1118 *4 *5))) (-5 *1 (-1118 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3361 *4))) + (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34))) + (-5 *1 (-1118 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-13 (-1078) (-34))) + (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-629 (-1118 *2 *3))) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34))) (-5 *1 (-1119 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-629 (-1119 *2 *3))) (-5 *1 (-1119 *2 *3)) + (-4 *2 (-13 (-1078) (-34))) (-4 *3 (-13 (-1078) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) (((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) - (-5 *2 (-627 (-627 (-627 (-754)))))))) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) + (-5 *2 (-629 (-629 (-629 (-924 *3)))))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-1250 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1250 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) + (-12 (-5 *3 (-629 (-902))) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-627 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-301)) - (-5 *1 (-176 *4)))) + (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) (-5 *5 (-1150 *2)) + (-4 *2 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1078)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1154))) + (-5 *5 (-401 (-1150 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1078))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1191)) + (-4 *5 (-1191)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *8)) - (-5 *4 - (-627 - (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-671 *7))))) - (-5 *5 (-754)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-343)) - (-5 *2 - (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-671 *7)))) - (-5 *1 (-490 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-756)) + (-4 *7 (-1191)) (-4 *5 (-1191)) (-5 *2 (-235 *6 *5)) + (-5 *1 (-234 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1191)) (-4 *5 (-1191)) + (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1078)) (-4 *5 (-1078)) + (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-629 *6)) (-4 *6 (-1191)) + (-4 *5 (-1191)) (-5 *2 (-629 *5)) (-5 *1 (-627 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-939 *6)) (-4 *6 (-1191)) + (-4 *5 (-1191)) (-5 *2 (-939 *5)) (-5 *1 (-938 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1134 *6)) (-4 *6 (-1191)) + (-4 *3 (-1191)) (-5 *2 (-1134 *3)) (-5 *1 (-1132 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1237 *6)) (-4 *6 (-1191)) + (-4 *5 (-1191)) (-5 *2 (-1237 *5)) (-5 *1 (-1236 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-111)) - (-5 *1 (-257))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *1 (-573 *2)) (-4 *2 (-1017 *3)) - (-4 *2 (-357)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)) - (-4 *2 (-13 (-424 *4) (-981) (-1174))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))) - (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-1152)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-938))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-948 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) - (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) - ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-357)) (-14 *6 (-1237 (-673 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))))) + ((*1 *1 *2) (-12 (-5 *2 (-1103 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'JINT 'X 'ELAM) (-3226) (-683)))) + (-5 *1 (-60 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 'XC) (-683)))) + (-5 *1 (-62 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-333 (-3226 'X) (-3226) (-683))) (-5 *1 (-63 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-673 (-333 (-3226) (-3226 'X 'HESS) (-683)))) + (-5 *1 (-64 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-333 (-3226) (-3226 'XC) (-683))) (-5 *1 (-65 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'X) (-3226 '-4334) (-683)))) + (-5 *1 (-70 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 'X) (-683)))) + (-5 *1 (-73 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'X 'EPS) (-3226 '-4334) (-683)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1154)) (-14 *4 (-1154)) + (-14 *5 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'EPS) (-3226 'YA 'YB) (-683)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1154)) (-14 *4 (-1154)) + (-14 *5 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-333 (-3226) (-3226 'X) (-683))) (-5 *1 (-76 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-333 (-3226) (-3226 'X) (-683))) (-5 *1 (-77 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 'XC) (-683)))) + (-5 *1 (-78 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 'X) (-683)))) + (-5 *1 (-79 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226) (-3226 'X) (-683)))) + (-5 *1 (-80 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'X '-4334) (-3226) (-683)))) + (-5 *1 (-81 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-673 (-333 (-3226 'X '-4334) (-3226) (-683)))) + (-5 *1 (-82 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-673 (-333 (-3226 'X) (-3226) (-683)))) (-5 *1 (-83 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'X) (-3226) (-683)))) + (-5 *1 (-84 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-333 (-3226 'X) (-3226 '-4334) (-683)))) + (-5 *1 (-85 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-673 (-333 (-3226 'XL 'XR 'ELAM) (-3226) (-683)))) + (-5 *1 (-86 *3)) (-14 *3 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 (-333 (-3226 'X) (-3226 '-4334) (-683))) (-5 *1 (-88 *3)) + (-14 *3 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-1159)) (-4 *1 (-92)))) + ((*1 *2 *1) (-12 (-5 *2 (-985 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) + ((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-128)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-756)) (-4 *5 (-169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-756)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1120 *4 *5)) (-14 *4 (-756)) (-4 *5 (-169)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) + ((*1 *1 *2) + (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-756)) (-4 *5 (-169)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 (-673 *4))) (-4 *4 (-169)) + (-5 *2 (-1237 (-673 (-401 (-933 *4))))) (-5 *1 (-184 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) + (-4 *3 + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) + (-15 -3726 ((-1242) $))))) + (-5 *1 (-209 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-985 10)) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-240 *3)) (-4 *3 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-310 *4))) + (-4 *4 (-13 (-832) (-544) (-600 (-373)))) (-5 *2 (-1070 (-373))) + (-5 *1 (-252 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-269)))) ((*1 *2 *1) - (-12 (-4 *3 (-1076)) - (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) - (-5 *1 (-1052 *3 *4 *2)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) + (-12 (-4 *2 (-1213 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1222 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) + (-14 *5 (-1154)) (-14 *6 *4) + (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) + (-5 *1 (-307 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-324)))) ((*1 *2 *1) - (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1076))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-671 (-931 *4))) (-5 *1 (-1007 *4)) - (-4 *4 (-1028))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) - ((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) - (-14 *4 (-552))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) - (-4 *3 (-1076)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) - (-5 *1 (-883 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-900)) (-5 *2 (-111)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) - ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-1132 (-552)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) + (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) + (-4 *3 (-323 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) + (-4 *3 (-323 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-1076)) - (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) - (-5 *1 (-1052 *3 *4 *2)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *2 (-1261 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *2 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1156))))) -(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528))))) -(((*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842)))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-944))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1259 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-830)) - (-4 *2 (-169)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-802 *4)) (-4 *1 (-1252 *4 *2)) (-4 *4 (-830)) - (-4 *2 (-1028)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-430))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1174) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *2 (-310 *5)) (-5 *1 (-576 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) - (-5 *2 (-627 (-627 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) - (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) -(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1076))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) - (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-734))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-1004 *3 *2)) (-4 *2 (-638 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -1651 *3) (|:| -3354 (-627 *5)))) - (-5 *1 (-1004 *5 *3)) (-5 *4 (-627 *5)) (-4 *3 (-638 *5))))) -(((*1 *2 *3) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *2 (-1252 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-683))) (-4 *1 (-377)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-378)))) + ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383)))) + ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-388)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-678)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-310 (-685)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-678))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-685))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) + (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1154)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1154)) + (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-14 *5 (-629 (-1154))) (-14 *6 (-1158)))) + ((*1 *1 *2) + (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-832) (-21))) + (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) + (-4 *3 (-13 (-832) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-401 (-933 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-832)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-832)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-832)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1103 *3 (-598 *1))) (-4 *3 (-1030)) (-4 *3 (-832)) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-428)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-431)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-683))) (-4 *1 (-433)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1158)) (|:| -2149 (-629 (-324))))) + (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-4 *1 (-434)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-401 (-933 *3)))) (-4 *3 (-169)) + (-14 *6 (-1237 (-673 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-14 *4 (-902)) (-14 *5 (-629 (-1154))))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-461)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1222 *3 *4 *5)) (-4 *3 (-1030)) (-14 *4 (-1154)) + (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-985 16)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-1103 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-494)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-516)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-592)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-729 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1030)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-5 *1 (-621 *3 *2)) (-4 *2 (-729 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-939 (-939 (-939 *3)))) (-5 *1 (-659 *3)) + (-4 *3 (-1078)))) + ((*1 *1 *2) + (-12 (-5 *2 (-939 (-939 (-939 *3)))) (-4 *3 (-1078)) + (-5 *1 (-659 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-665)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-666 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *2)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) + ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-678)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-685))) (-5 *1 (-678)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-678)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-678)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-678)))) + ((*1 *1 *2) (-12 (-5 *2 (-685)) (-5 *1 (-683)))) + ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-683)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-685))) (-5 *1 (-685)))) + ((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1078)))) + ((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695)))) + ((*1 *2 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-697 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2840 *3) (|:| -1406 *4))) + (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-832)) (-4 *4 (-1078)) + (-14 *5 (-1 (-111) *2 *2)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| -2840 *3) (|:| -1406 *4))) (-4 *3 (-832)) + (-4 *4 (-1078)) (-5 *1 (-698 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-2 (|:| -4158 *3) (|:| -1727 *4)))) + (-4 *3 (-1030)) (-4 *4 (-711)) (-5 *1 (-720 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-748)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| |mdnia| + (-2 (|:| |fn| (-310 (-220))) + (|:| -4235 (-629 (-1072 (-825 (-220))))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) + (-5 *1 (-754)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-310 (-220))) + (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *1 (-754)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-187))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *1)) - (-4 *1 (-376 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-709)))) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *1 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-754)))) + ((*1 *2 *3) (-12 (-5 *2 (-759)) (-5 *1 (-758 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *1 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-793)))) ((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-928 *3 *4 *5))))) -(((*1 *1 *2 *3) + (-12 (-4 *2 (-881 *3)) (-5 *1 (-802 *3 *2 *4)) (-4 *3 (-1078)) + (-14 *4 *3))) + ((*1 *1 *2) + (-12 (-4 *3 (-1078)) (-14 *4 *3) (-5 *1 (-802 *3 *2 *4)) + (-4 *2 (-881 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-809)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-627 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-552))))) - (-4 *2 (-544)) (-5 *1 (-412 *2)))) + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) + (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-629 (-310 (-220)))) + (|:| -1977 (-629 (-220))))))) + (-5 *1 (-823)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) + (-5 *1 (-823)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (-5 *1 (-823)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-823)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *3)) (-14 *3 (-1154)) (-5 *1 (-837 *3 *4 *5 *6)) + (-4 *4 (-1030)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-840)))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-5 *1 (-847 *3 *4 *5 *6)) + (-14 *4 (-629 (-1154))) (-14 *5 (-629 (-756))) (-14 *6 (-756)))) + ((*1 *2 *1) + (-12 (-5 *2 (-933 *3)) (-5 *1 (-847 *3 *4 *5 *6)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))) (-14 *5 (-629 (-756))) (-14 *6 (-756)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855)))) + ((*1 *2 *3) + (-12 (-5 *3 (-933 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-856)))) ((*1 *2 *3) + (-12 (-5 *3 (-401 (-933 (-48)))) (-5 *2 (-310 (-552))) + (-5 *1 (-856)))) + ((*1 *1 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-804 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |contp| (-552)) - (|:| -2101 (-627 (-2 (|:| |irr| *4) (|:| -3594 (-552))))))) - (-4 *4 (-1211 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1193)) (-5 *1 (-145 *2 *4 *3)) - (-4 *3 (-1211 (-401 *4)))))) -(((*1 *1 *1) (-4 *1 (-1120)))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96))))) + (-5 *2 + (-2 (|:| |pde| (-629 (-310 (-220)))) + (|:| |constraints| + (-629 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-756)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) + (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) + (|:| |tol| (-220)))) + (-5 *1 (-879)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-879)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1177 *3)) (-5 *1 (-882 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-886 *3))) (-4 *3 (-1078)) (-5 *1 (-885 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-895 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-900 *4)) + (-4 *4 (-13 (-832) (-544))))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) + ((*1 *1 *2) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-952)))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) + ((*1 *2 *3) (-12 (-5 *2 (-1242)) (-5 *1 (-1014 *3)) (-4 *3 (-1191)))) + ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1014 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *2 (-930 *3 *4 *5)) + (-14 *6 (-629 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1191)))) + ((*1 *2 *3) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-1024 *3)) (-4 *3 (-544)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1030)))) + ((*1 *2 *1) + (-12 (-5 *2 (-673 *5)) (-5 *1 (-1034 *3 *4 *5)) (-14 *3 (-756)) + (-14 *4 (-756)) (-4 *5 (-1030)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-5 *1 (-1104 *3 *4 *2)) + (-4 *2 (-930 *3 (-523 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *2 (-832)) (-5 *1 (-1104 *3 *2 *4)) + (-4 *4 (-930 *3 (-523 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1122)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1030)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1210 *4 *3)) (-4 *3 (-1030)) (-14 *4 (-1154)) + (-14 *5 *3) (-5 *1 (-1152 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1164 (-1154) (-431))) (-5 *1 (-1158)))) + ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1163 *3)) (-4 *3 (-1078)))) + ((*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-1170 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1171)))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-5 *1 (-1185 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1185 *3)) (-4 *3 (-1030)))) + ((*1 *1 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-1191)) (-5 *1 (-1188 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *1 (-1199 *3 *2)) (-4 *2 (-1228 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1072 *3)) (-4 *3 (-1191)) (-5 *1 (-1204 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *3)) (-14 *3 (-1154)) (-5 *1 (-1210 *3 *4)) + (-4 *4 (-1030)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *1 (-1220 *3 *2)) (-4 *2 (-1197 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1210 *4 *3)) (-4 *3 (-1030)) (-14 *4 (-1154)) + (-14 *5 *3) (-5 *1 (-1229 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1233 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1238)))) + ((*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1238)) (-5 *1 (-1241)))) + ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-1242)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-778)) (-14 *6 (-629 *4)) + (-5 *1 (-1249 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-930 *3 *5 *4)) + (-14 *7 (-629 (-756))) (-14 *8 (-756)))) + ((*1 *2 *1) + (-12 (-4 *2 (-930 *3 *5 *4)) (-5 *1 (-1249 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-778)) (-14 *6 (-629 *4)) + (-14 *7 (-629 (-756))) (-14 *8 (-756)))) + ((*1 *1 *2) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1030)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *1 (-1257 *3 *4)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-528))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1030)) + (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) + (-4 *3 (-834 *5))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-629 (-1150 *11))) (-5 *3 (-1150 *11)) + (-5 *4 (-629 *10)) (-5 *5 (-629 *8)) (-5 *6 (-629 (-756))) + (-5 *7 (-1237 (-629 (-1150 *8)))) (-4 *10 (-832)) + (-4 *8 (-301)) (-4 *11 (-930 *8 *9 *10)) (-4 *9 (-778)) + (-5 *1 (-692 *9 *10 *8 *11))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) + (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) + (-4 *3 (-834 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) + (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-756)) (-5 *3 (-924 *4)) (-4 *1 (-1112 *4)) + (-4 *4 (-1030)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-924 (-220))) (-5 *2 (-1242)) + (-5 *1 (-1239))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1242)) (-5 *1 (-816))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832))) + (-4 *2 (-13 (-424 (-166 *4)) (-983) (-1176))) + (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-983) (-1176)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-673 *5))) (-4 *5 (-301)) (-4 *5 (-1030)) + (-5 *2 (-1237 (-1237 *5))) (-5 *1 (-1010 *5)) (-5 *4 (-1237 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 (-474 *3 *4))) (-14 *3 (-629 (-1154))) + (-4 *4 (-445)) (-5 *1 (-617 *3 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1134 *3)) (-4 *3 (-1078)) + (-4 *3 (-1191))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-1184 *3)) - (-4 *3 (-953))))) -(((*1 *1 *1) (|partial| -4 *1 (-142))) ((*1 *1 *1) (-4 *1 (-343))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-888))))) + (-12 (-4 *2 (-693 *3)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1030))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-166 (-220)))) - (-5 *2 (-1014)) (-5 *1 (-738))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1237 (-1237 (-552)))) (-5 *1 (-459))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-895 *3)) (-4 *3 (-301))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-991 *2)) (-4 *2 (-1191))))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-629 *3)) + (-5 *1 (-1207 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1195)) (-4 *5 (-1213 *3)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) - (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-600 (-528)) (-1076))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-600 (-528)) (-1076))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) - (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) - (-5 *1 (-253 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1195 *3)) (-4 *3 (-1028)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1226 *3)) (-4 *3 (-1028))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1211 *3)) (-5 *1 (-393 *3 *2)) - (-4 *3 (-13 (-357) (-144)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-627 (-765 *3))) (-5 *1 (-765 *3)) (-4 *3 (-544)) - (-4 *3 (-1028))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-4 *2 (-1078)) (-5 *1 (-664 *5 *6 *2))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) + (-5 *2 (-1016)) (-5 *1 (-741))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-671 *3)) - (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-673 *8)) (-5 *4 (-756)) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) + (-5 *2 + (-629 + (-2 (|:| |det| *8) (|:| |rows| (-629 (-552))) + (|:| |cols| (-629 (-552)))))) + (-5 *1 (-905 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) - (-5 *2 (-58 (-627 (-654 *5)))) (-5 *1 (-654 *5))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-445)) + (-5 *2 (-474 *4 *5)) (-5 *1 (-617 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-1177 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-1177 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-629 (-1177 *2))) (-5 *1 (-1177 *2)) (-4 *2 (-1078))))) (((*1 *2 *1) - (-12 (-4 *2 (-1076)) (-5 *1 (-943 *3 *2)) (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-928 *4 *6 *5)) (-4 *4 (-445)) - (-4 *5 (-830)) (-4 *6 (-776)) (-5 *1 (-966 *4 *5 *6 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-5 *1 (-875 *2 *4)) - (-4 *2 (-1211 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) - (-5 *3 (-552)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-850 *4)) (-14 *4 *3) - (-5 *3 (-552)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-851 *4 *5)) - (-5 *3 (-552)) (-4 *5 (-848 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-991)) (-5 *2 (-401 (-552))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) - (-4 *3 (-1211 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1477 (*2 (-1152)))) - (-4 *2 (-1028))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-230 *3)))) - ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1076))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) - (-4 *6 (-1028)) (-5 *2 (-627 (-627 (-671 *6)))) (-5 *1 (-1008 *6)) - (-5 *3 (-627 (-671 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1028)) - (-5 *2 (-627 (-627 (-671 *4)))) (-5 *1 (-1008 *4)) - (-5 *3 (-627 (-671 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) - (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) - (-5 *3 (-627 (-671 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) - (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) - (-5 *3 (-627 (-671 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-570))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-1 (-111) *5 *5)) - (-5 *4 (-627 *5)) (-4 *5 (-830)) (-5 *1 (-1160 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) - (-4 *3 (-1211 *4)) (-5 *2 (-111))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))) + (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1041)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1041))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) (-4 *1 (-948)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52)))) - (-5 *1 (-871 *3)) (-4 *3 (-1076))))) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) + (-5 *2 (-407 *4 (-401 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 *6)) (-4 *6 (-13 (-403 *4 *5) (-1019 *4))) + (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-4 *3 (-301)) + (-5 *1 (-407 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1152)) - (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-1155))))) + (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $)))))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) - (-4 *4 (-1211 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) - (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) - (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1148 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-4 *1 (-368 *3 *4)) - (-4 *4 (-169))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1116 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) - (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) - (-5 *1 (-1117 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-627 (-1116 *3 *4))) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-4 *7 (-928 *4 *6 *5)) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *8)) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) (-5 *2 - (-2 (|:| |sysok| (-111)) (|:| |z0| (-627 *7)) (|:| |n0| (-627 *7)))) - (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189))))) -(((*1 *2 *3) - (-12 (-4 *1 (-899)) (-5 *2 (-2 (|:| -3069 (-627 *1)) (|:| -2220 *1))) - (-5 *3 (-627 *1))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) - (-4 *1 (-832 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-498)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-579)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-471)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-153)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1142)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-610)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1066)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1050)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-949)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-177)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1015)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-305)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-653)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-151)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1246)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1043)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-663)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1245)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-658)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-213)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157))))) -(((*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1236)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) + (-629 + (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) + (|:| |wcond| (-629 (-933 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) + (-5 *1 (-905 *5 *6 *7 *8)) (-5 *4 (-629 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1236)) (-5 *1 (-249)))) + (-12 (-5 *3 (-673 *8)) (-5 *4 (-629 (-1154))) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) + (-5 *2 + (-629 + (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) + (|:| |wcond| (-629 (-933 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) + (-5 *1 (-905 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 *7)) (-4 *7 (-930 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) + (-5 *2 + (-629 + (-2 (|:| |eqzro| (-629 *7)) (|:| |neqzro| (-629 *7)) + (|:| |wcond| (-629 (-933 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *4)))))))))) + (-5 *1 (-905 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1237)) (-5 *1 (-249)))) + (-12 (-5 *3 (-673 *9)) (-5 *5 (-902)) (-4 *9 (-930 *6 *8 *7)) + (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-832) (-600 (-1154)))) + (-4 *8 (-778)) + (-5 *2 + (-629 + (-2 (|:| |eqzro| (-629 *9)) (|:| |neqzro| (-629 *9)) + (|:| |wcond| (-629 (-933 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *6)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *6)))))))))) + (-5 *1 (-905 *6 *7 *8 *9)) (-5 *4 (-629 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 (-1154))) (-5 *5 (-902)) + (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) + (-5 *2 + (-629 + (-2 (|:| |eqzro| (-629 *9)) (|:| |neqzro| (-629 *9)) + (|:| |wcond| (-629 (-933 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *6)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *6)))))))))) + (-5 *1 (-905 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) - (-5 *2 (-1237)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-1152)) (-5 *5 (-627 (-257))) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *2 (-1236)) (-5 *1 (-250 *6 *7)))) + (-12 (-5 *3 (-673 *8)) (-5 *4 (-902)) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) + (-5 *2 + (-629 + (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) + (|:| |wcond| (-629 (-933 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) + (-5 *1 (-905 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) - (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-600 (-528)) (-1076))))) + (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 *9)) (-5 *5 (-1136)) + (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-856 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1068 (-373))) - (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) - (-5 *1 (-253 *5)))) + (-12 (-5 *3 (-673 *9)) (-5 *4 (-629 (-1154))) (-5 *5 (-1136)) + (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *8)) (-5 *4 (-1136)) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) (-5 *2 (-552)) (-5 *1 (-905 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-673 *10)) (-5 *4 (-629 *10)) (-5 *5 (-902)) + (-5 *6 (-1136)) (-4 *10 (-930 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) + (-4 *8 (-13 (-832) (-600 (-1154)))) (-4 *9 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-673 *10)) (-5 *4 (-629 (-1154))) (-5 *5 (-902)) + (-5 *6 (-1136)) (-4 *10 (-930 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) + (-4 *8 (-13 (-832) (-600 (-1154)))) (-4 *9 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) - (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) - (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-600 (-528)) (-1076))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) - (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) - (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1236)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) - (-5 *1 (-254)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *2 (-1236)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-627 (-257))) - (-5 *2 (-1236)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1237)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1237)) - (-5 *1 (-254))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) - (-5 *5 (-111)) (-5 *2 (-1237)) (-5 *1 (-251))))) -(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-804))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)))) - ((*1 *1) (-4 *1 (-1127)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) - (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-627 *3)) - (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1085 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) - (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) - (-14 *6 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) - (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) - (-5 *1 (-1054 *4 *5)) (-5 *3 (-627 (-931 *4))) - (-14 *5 (-627 (-1152))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-12 (-5 *3 (-673 *9)) (-5 *4 (-902)) (-5 *5 (-1136)) + (-4 *9 (-930 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-832) (-600 (-1154)))) (-4 *8 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) - (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) - (-14 *6 (-627 (-1152)))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-739))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-111))))) + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) - (-5 *2 (-111)) (-5 *1 (-622 *4 *5))))) -(((*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-754)) (-4 *4 (-343)) - (-5 *1 (-520 *4))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) + (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-14 *5 (-629 (-1154))) (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-1211 *3)) + (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) + (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-5 *1 (-751 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) + (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) + (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 + (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) + (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-5 *1 (-964 *4 *3 *5 *6)) (-4 *6 (-707 *3 *5)))) + (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) + (-5 *1 (-1263 *5 *6 *7)) (-5 *3 (-629 (-933 *5))) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) + (-12 (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-5 *1 (-1244 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *4)) (-5 *1 (-864 *3 *4 *5)) - (-4 *3 (-1076)) (-4 *5 (-648 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-830)) - (-5 *1 (-598 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-740))))) + (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) + (-5 *1 (-1263 *4 *5 *6)) (-5 *3 (-629 (-933 *4))) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154)))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-552))))) +(((*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-5 *1 (-1165 *2)) (-4 *2 (-357))))) +(((*1 *2 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-401 (-552))) - (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4)))) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-993)) (-5 *2 (-844))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 *5)) (-4 *5 (-445)) (-5 *2 (-629 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) - (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) - (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-427 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-805))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-627 - (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *2)) - (|:| |logand| (-1148 *2))))) - (-5 *4 (-627 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-357)) (-5 *1 (-573 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3))))) + (-12 (-5 *3 (-933 *5)) (-4 *5 (-445)) (-5 *2 (-629 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1213 *5)) + (-5 *1 (-792 *5 *2 *3 *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *3 (-640 *2)) (-4 *6 (-640 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-401 *2))) (-4 *2 (-1213 *5)) + (-5 *1 (-792 *5 *2 *3 *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *3 (-640 *2)) + (-4 *6 (-640 (-401 *2)))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-736))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) + (-12 (-4 *4 (-13 (-544) (-832))) + (-4 *2 (-13 (-424 *4) (-983) (-1176))) (-5 *1 (-586 *4 *2 *3)) + (-4 *3 (-13 (-424 (-166 *4)) (-983) (-1176)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1136)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1016)) + (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1019 *4)) (-4 *3 (-13 (-832) (-544)))))) +(((*1 *2) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-756)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) + (-12 (-4 *4 (-544)) (-5 *2 (-1237 (-673 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-673 *4)) (-4 *5 (-640 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-629 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) + (-5 *2 (-629 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-725 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-961 *3)) (-4 *3 (-1030)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-5 *3 (-629 *7)) (-4 *1 (-1050 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) - (-4 *3 (-1211 *4)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| -4288 *4) (|:| -2671 (-552))))) - (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) - (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) - (-4 *4 (-669 *2 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) - (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-859))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-1 (-220) (-220) (-220) (-220))) - (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *1 (-679))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-537))) - ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34)))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-777))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) + (-5 *2 (-629 (-629 (-629 (-756)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) + (-5 *2 (-629 (-2 (|:| C (-673 *5)) (|:| |g| (-1237 *5))))) + (-5 *1 (-959 *5)) (-5 *3 (-673 *5)) (-5 *4 (-1237 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1078)) (-5 *2 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-373)))) (-5 *2 (-1070 (-823 (-220)))) - (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) + (-12 (-5 *2 (-629 (-629 (-552)))) (-5 *1 (-952)) + (-5 *3 (-629 (-552)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-168)))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-1042))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *1 (-1138 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1211 (-166 *3)))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-627 (-754)))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-754)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1189)) - (-4 *3 (-1076)))) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) - (-5 *2 (-552)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) - (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-521)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)) (-5 *3 (-138)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552))))) + (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) + (-4 *3 (-1213 *4)) (-5 *2 (-111))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1150 (-1150 *4)))) + (-5 *1 (-1189 *4)) (-5 *3 (-1150 (-1150 *4)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-445)) (-4 *3 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-930 *4 *3 *5))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1207 *3 *2)) + (-4 *2 (-1213 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-629 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-301)) + (-5 *1 (-176 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *8)) + (-5 *4 + (-629 + (-2 (|:| -4199 (-673 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-673 *7))))) + (-5 *5 (-756)) (-4 *8 (-1213 *7)) (-4 *7 (-1213 *6)) (-4 *6 (-343)) + (-5 *2 + (-2 (|:| -4199 (-673 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-673 *7)))) + (-5 *1 (-490 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-324))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1118 *4 *5)) (-4 *4 (-13 (-1078) (-34))) + (-4 *5 (-13 (-1078) (-34))) (-5 *2 (-111)) (-5 *1 (-1119 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1134 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-171 (-552))) (-5 *1 (-750 *3)) (-4 *3 (-398)))) + ((*1 *2 *1) + (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-852 *3)) (-14 *3 (-552)))) + ((*1 *2 *1) + (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) + (-5 *1 (-853 *3 *4)) (-4 *4 (-850 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1134 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-735))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-807))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-166 *4))) - (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1134)) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-111)) (-5 *5 (-1078 (-754))) (-5 *6 (-754)) + (-12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) (-5 *2 (-111)) + (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1078)) + (-4 *2 (-129))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) - (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) -(((*1 *2) (-12 (-5 *2 (-816 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1 *1) - (-12 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) + (-5 *1 (-553)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-1042)) (-5 *2 - (-2 (|:| -3069 *3) (|:| |gap| (-754)) (|:| -2404 (-765 *3)) - (|:| -3401 (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) + (-5 *1 (-553)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-772)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |fn| (-310 (-220))) + (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) (-5 *2 - (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) - (|:| -3401 *1))) - (-4 *1 (-1042 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) + (|:| |extra| (-1016)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-772)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) (-5 *2 - (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) - (|:| -3401 *1))) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4367)) (-4 *4 (-357)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-513 *4 *5 *6 *3)) - (-4 *3 (-669 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4367)) (-4 *4 (-544)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *8 (-367 *7)) - (-4 *9 (-367 *7)) (-5 *2 (-627 *6)) - (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) - (-4 *10 (-669 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-627 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-669 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-627 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-742))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1235 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) - (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) + (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)) + (|:| |extra| (-1016)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-785)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) ((*1 *2 *3) - (-12 (-5 *3 (-900)) (-4 *4 (-357)) (-5 *2 (-1235 *1)) - (-4 *1 (-323 *4)))) - ((*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *3)))) - ((*1 *2) - (-12 (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *1)) - (-4 *1 (-403 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) - (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) - (-5 *2 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) - (-4 *6 (-403 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-411 *3)))) + (-12 (-5 *3 (-793)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-790)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-1042)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-790)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-821)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) + (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-821)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) ((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 *4))) (-5 *1 (-520 *4)) - (-4 *4 (-343))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) - (-5 *1 (-1136 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) - (-14 *4 (-1152)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) - (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1) - (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) - (-4 *4 (-648 *3)))) - ((*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) + (-12 (-5 *3 (-823)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-822)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-823)) (-5 *4 (-1042)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-822)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-876)) (-5 *3 (-1042)) + (-5 *4 + (-2 (|:| |pde| (-629 (-310 (-220)))) + (|:| |constraints| + (-629 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-756)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) + (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) + (|:| |tol| (-220)))) + (-5 *2 (-2 (|:| -3102 (-373)) (|:| |explanations| (-1136)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) - (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) - (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) - (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) - (-4 *2 (-669 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-357)) (-4 *2 (-1028)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-1160 *3))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-830) (-544))))) - ((*1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1) (-5 *1 (-470))) ((*1 *1) (-4 *1 (-1174)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) - (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) - (-4 *3 (-1189)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) - (-4 *3 (-1189)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) - (-4 *2 (-1189)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1152)) (-5 *1 (-616)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1202 (-552))) (|has| *1 (-6 -4367)) (-4 *1 (-633 *2)) - (-4 *2 (-1189)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) - (-4 *2 (-1189)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) - (-4 *2 (-1189)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) - (-4 *3 (-1189)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) - (-4 *2 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) -(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-361 *3))))) + (-12 (-5 *3 (-879)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-878)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879)) (-5 *4 (-1042)) + (-5 *2 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *1 (-878))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-357)) (-5 *2 (-629 (-1134 *4))) (-5 *1 (-279 *4 *5)) + (-5 *3 (-1134 *4)) (-4 *5 (-1228 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-1 (-111) *8))) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) + (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 *7)) (-5 *3 (-552)) (-4 *7 (-928 *6 *4 *5)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-5 *1 (-315 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-754)) (-5 *2 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) - ((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) + (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-756))) + (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1213 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) + (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) - (-4 *4 (-1028)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *1 (-226 *4)) + (-4 *4 (-1030)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-756)))) ((*1 *1 *1) (-4 *1 (-228))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-260 *3)) (-4 *3 (-830)))) - ((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-4 *1 (-260 *3)) (-4 *3 (-832)))) + ((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) - (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) - (-4 *4 (-1211 *3)))) + (-12 (-5 *2 (-756)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) + (-4 *4 (-1213 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) - (-4 *3 (-1211 *2)))) + (-4 *3 (-1213 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-357)) (-4 *2 (-879 *3)) (-5 *1 (-573 *2)) - (-5 *3 (-1152)))) + (-12 (-4 *2 (-357)) (-4 *2 (-881 *3)) (-5 *1 (-573 *2)) + (-5 *3 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-573 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-844)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) - (-4 *4 (-1076)))) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 (-756))) (-4 *1 (-881 *4)) + (-4 *4 (-1078)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) + (-12 (-5 *3 (-756)) (-4 *1 (-881 *2)) (-4 *2 (-1078)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-881 *3)) (-4 *3 (-1078)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *2)) (-4 *2 (-1078)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3)))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) -(((*1 *2 *3) - (-12 (-14 *4 (-627 (-1152))) (-4 *5 (-445)) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-1030)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-756)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-778)) + (-4 *9 (-832)) (-4 *3 (-1044 *7 *8 *9)) (-5 *2 - (-2 (|:| |glbase| (-627 (-242 *4 *5))) (|:| |glval| (-627 (-552))))) - (-5 *1 (-615 *4 *5)) (-5 *3 (-627 (-242 *4 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *2) - (-12 (-5 *2 (-671 (-889 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) - (-14 *4 (-900)))) - ((*1 *2) - (-12 (-5 *2 (-671 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1148 *3) - (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) - ((*1 *2) - (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-900))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-5 *1 (-967 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-5 *1 (-1083 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1238)))) - ((*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1238))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) - (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-828))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-288 (-401 (-931 (-166 (-552))))))) - (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-828))))) + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *7 *8 *9 *3 *4)) (-4 *4 (-1050 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 (-166 (-552))))) - (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-828))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-756)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-778)) + (-4 *9 (-832)) (-4 *3 (-1044 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-931 (-166 (-552)))))) - (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-828)))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *1 (-573 *2)) (-4 *2 (-1019 *3)) + (-4 *2 (-357)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-616 *4 *2)) + (-4 *2 (-13 (-424 *4) (-983) (-1176))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070 *2)) (-4 *2 (-13 (-424 *4) (-983) (-1176))) + (-4 *4 (-13 (-832) (-544))) (-5 *1 (-616 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-940))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1136)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1078)) + (-4 *4 (-1078)))) + ((*1 *1 *2) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) + (-4 *3 (-13 (-357) (-832))) (-14 *4 (-1154)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1193)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1193))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-673 (-220))) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-740))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-756)) (-5 *5 (-629 *3)) (-4 *3 (-301)) (-4 *6 (-832)) + (-4 *7 (-778)) (-5 *2 (-111)) (-5 *1 (-611 *6 *7 *3 *8)) + (-4 *8 (-930 *3 *7 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-741))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1235 *3))))) -(((*1 *2 *1 *1) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1237 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1237 (-552))) (-5 *3 (-552)) (-5 *1 (-1088)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1237 (-552))) (-5 *3 (-629 (-552))) (-5 *4 (-552)) + (-5 *1 (-1088))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-950 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1184 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *5 (-1044 *2 *3 *4))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-629 *3)) (-5 *5 (-902)) (-4 *3 (-1213 *4)) + (-4 *4 (-301)) (-5 *1 (-453 *4 *3))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-767 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-944 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) + (-4 *3 (-1030)) (-4 *2 (-777)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-1150 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-952)) (-4 *2 (-129)) (-5 *1 (-1156 *3)) (-4 *3 (-544)) + (-4 *3 (-1030)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-1210 *4 *3)) (-14 *4 (-1154)) + (-4 *3 (-1030))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *2 - (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) - (-5 *1 (-380 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1 *1) + (-5 *5 + (-2 (|:| |done| (-629 *11)) + (|:| |todo| (-629 (-2 (|:| |val| *3) (|:| -3361 *11)))))) + (-5 *6 (-756)) + (-5 *2 (-629 (-2 (|:| |val| (-629 *10)) (|:| -3361 *11)))) + (-5 *3 (-629 *10)) (-5 *4 (-629 *11)) (-4 *10 (-1044 *7 *8 *9)) + (-4 *11 (-1050 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-778)) + (-4 *9 (-832)) (-5 *1 (-1048 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *2 - (-2 (|:| |lm| (-802 *3)) (|:| |mm| (-802 *3)) (|:| |rm| (-802 *3)))) - (-5 *1 (-802 *3)) (-4 *3 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-301)) - (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) - (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) - (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-310 (-552)))) - (-5 *1 (-1010))))) + (-5 *5 + (-2 (|:| |done| (-629 *11)) + (|:| |todo| (-629 (-2 (|:| |val| *3) (|:| -3361 *11)))))) + (-5 *6 (-756)) + (-5 *2 (-629 (-2 (|:| |val| (-629 *10)) (|:| -3361 *11)))) + (-5 *3 (-629 *10)) (-5 *4 (-629 *11)) (-4 *10 (-1044 *7 *8 *9)) + (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-778)) + (-4 *9 (-832)) (-5 *1 (-1123 *7 *8 *9 *10 *11))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021))))) (((*1 *2 *2) - (-12 (-4 *3 (-1028)) (-4 *4 (-1211 *3)) (-5 *1 (-161 *3 *4 *2)) - (-4 *2 (-1211 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-754)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-182))))) + (-12 (-4 *3 (-544)) (-4 *4 (-973 *3)) (-5 *1 (-139 *3 *4 *2)) + (-4 *2 (-367 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) (-4 *2 (-367 *4)) + (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 *5)) (-4 *5 (-973 *4)) (-4 *4 (-544)) + (-5 *2 (-673 *4)) (-5 *1 (-677 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-544)) (-4 *4 (-973 *3)) (-5 *1 (-1206 *3 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) + (-4 *2 (-1191))))) +(((*1 *1 *1) (-4 *1 (-645))) ((*1 *1 *1) (-5 *1 (-1098)))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1247))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *2 (-629 *3)) (-5 *1 (-958 *4 *5 *6 *3)) + (-4 *3 (-1044 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-128))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-111) *7 (-627 *7))) (-4 *1 (-1182 *4 *5 *6 *7)) - (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) -(((*1 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 (-1235 (-552)))) (-5 *3 (-900)) (-5 *1 (-459))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-305)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-973)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1050))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) - (-5 *2 (-1235 (-552))) (-5 *1 (-1262 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) - (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) - ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-605 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-709) *3)))) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-1044 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-700 *3)) (-5 *1 (-644 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-709) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-337 *3 *4)) (-14 *3 (-902)) + (-14 *4 (-902)))) + ((*1 *2) + (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-1150 *3)))) + ((*1 *2) + (-12 (-5 *2 (-939 (-1098))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-902))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-220)))) (-5 *1 (-907))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-629 + (-2 (|:| -2128 (-756)) + (|:| |eqns| + (-629 + (-2 (|:| |det| *7) (|:| |rows| (-629 (-552))) + (|:| |cols| (-629 (-552)))))) + (|:| |fgb| (-629 *7))))) + (-4 *7 (-930 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-756)) + (-5 *1 (-905 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1157)) (-5 *3 (-1154))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-461)) (-5 *3 (-627 (-257))) (-5 *1 (-1236)))) - ((*1 *1 *1) (-5 *1 (-1236)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1213 *4)) (-4 *4 (-1195)) + (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1213 (-401 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-1191)) (-5 *2 (-756))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-807))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1235 (-627 *3))) (-4 *4 (-301)) - (-5 *2 (-627 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-730))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) - (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-4 *1 (-296)))) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-629 (-401 *7))) + (-4 *7 (-1213 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-673 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030)) (-4 *4 (-169)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)) + (-4 *3 (-169))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-946))) (-5 *1 (-108))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1030)) + (-5 *3 (-401 (-552))) (-5 *1 (-1138 *4))))) +(((*1 *2) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1240))))) (((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) - (-14 *4 *2)))) + (-12 + (-5 *2 + (-968 (-401 (-552)) (-846 *3) (-235 *4 (-756)) + (-242 *3 (-401 (-552))))) + (-14 *3 (-629 (-1154))) (-14 *4 (-756)) (-5 *1 (-967 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1157)))) + ((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-629 (-598 *2))) (-5 *4 (-629 (-1154))) + (-4 *2 (-13 (-424 (-166 *5)) (-983) (-1176))) + (-4 *5 (-13 (-544) (-832))) (-5 *1 (-586 *5 *6 *2)) + (-4 *6 (-13 (-424 *5) (-983) (-1176)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) + (-5 *2 (-629 (-2 (|:| |poly| *6) (|:| -2771 *3)))) + (-5 *1 (-794 *5 *6 *3 *7)) (-4 *3 (-640 *6)) + (-4 *7 (-640 (-401 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) + (-5 *2 (-629 (-2 (|:| |poly| *6) (|:| -2771 (-638 *6 (-401 *6)))))) + (-5 *1 (-797 *5 *6)) (-5 *3 (-638 *6 (-401 *6)))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-296)))) + ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-5 *1 (-844)))) (((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1098))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-1078 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-627 *4))) (-5 *1 (-883 *4)) - (-5 *3 (-627 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-883 *4)) - (-5 *3 (-1078 *4)))) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1191)) + (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-552)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) - (-5 *1 (-442 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) + (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *6 *7 *2)) (-4 *6 (-1030)) + (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1191)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-832))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-725 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef2| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| -1323 *1) (|:| |coef2| *1))) - (-4 *1 (-1042 *3 *4 *5))))) + (-12 (-4 *7 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-544)) + (-4 *8 (-930 *7 *5 *6)) + (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| *3))) + (-5 *1 (-934 *5 *6 *7 *8 *3)) (-5 *4 (-756)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -4015 (*8 $)) (-15 -4026 (*8 $)) (-15 -3213 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-691 *4 *5 *6)) + (-4 *4 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-1235 *5)) (-4 *5 (-301)) - (-4 *5 (-1028)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-956 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544))))) -(((*1 *1) (-5 *1 (-1040)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *2 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-871 *6))) - (-5 *5 (-1 (-868 *6 *8) *8 (-871 *6) (-868 *6 *8))) (-4 *6 (-1076)) - (-4 *8 (-13 (-1028) (-600 (-871 *6)) (-1017 *7))) - (-5 *2 (-868 *6 *8)) (-4 *7 (-13 (-1028) (-830))) - (-5 *1 (-920 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) - ((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1) (-4 *1 (-848 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) - (-4 *4 (-830))))) + (-12 (-5 *3 (-629 (-933 *6))) (-5 *4 (-629 (-1154))) + (-4 *6 (-13 (-544) (-1019 *5))) (-4 *5 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *6)))))) (-5 *1 (-1020 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1191))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-52)) (-5 *1 (-873 *4)) + (-4 *4 (-1078))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-1 (-1148 (-931 *4)) (-931 *4))) - (-5 *1 (-1243 *4)) (-4 *4 (-357))))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + (-12 (-5 *3 (-629 (-2 (|:| -3479 (-1150 *6)) (|:| -1406 (-552))))) + (-4 *6 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-552)) + (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-5 *2 (-629 (-2 (|:| -3479 *3) (|:| -3299 *4)))) + (-5 *1 (-680 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *1) (-4 *1 (-850 *2)))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-902)) (-5 *1 (-1079 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-778)) + (-4 *3 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *5 (-544)) + (-5 *1 (-717 *4 *3 *5 *2)) (-4 *2 (-930 (-401 (-933 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *3 + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-5 *1 (-965 *4 *5 *3 *2)) (-4 *2 (-930 (-933 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *6)) + (-4 *6 + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-4 *4 (-1030)) (-4 *5 (-778)) (-5 *1 (-965 *4 *5 *6 *2)) + (-4 *2 (-930 (-933 *4) *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-552)) (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-301)) + (-4 *9 (-930 *8 *6 *7)) + (-5 *2 (-2 (|:| -2291 (-1150 *9)) (|:| |polval| (-1150 *8)))) + (-5 *1 (-727 *6 *7 *8 *9)) (-5 *3 (-1150 *9)) (-5 *4 (-1150 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-908)) + (-5 *2 + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-908)) (-5 *4 (-401 (-552))) + (-5 *2 + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-900)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150)) (-5 *3 (-629 (-924 (-220)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-900)) - (-5 *1 (-520 *4))))) -(((*1 *1 *1) (-5 *1 (-220))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 (-310 (-220)))) + (-12 (-5 *2 - (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) - (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) - (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) - (-4 *6 (-336 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150)) (-5 *3 (-629 (-629 (-924 (-220))))))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1150 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) + (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1150 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) + (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 (-1237 *4))) (-4 *4 (-1030)) (-5 *2 (-673 *4)) + (-5 *1 (-1010 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-343)) (-4 *2 (-1030)) (-5 *1 (-697 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) - (|:| |c2| (-401 *5)) (|:| |deg| (-754)))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-4 *7 (-830)) - (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-4 *8 (-301)) - (-5 *2 (-627 (-754))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *5 (-754))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-737))))) + (-629 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-756)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-778)) (-4 *6 (-930 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-832)) + (-5 *1 (-442 *4 *3 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *3 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-930 *4 *3 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1030)) (-5 *1 (-697 *3 *4)) + (-4 *4 (-1213 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1136)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *1 *1) + (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1030)) (-4 *3 (-832)) + (-4 *4 (-260 *3)) (-4 *5 (-778))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) - (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) - (-14 *4 (-627 (-1152))))) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-813) (-832) (-1030))) + (-5 *2 (-1136)) (-5 *1 (-811 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) + (-4 *5 (-13 (-813) (-832) (-1030))) (-5 *2 (-1136)) + (-5 *1 (-811 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-807)) (-5 *4 (-310 *5)) + (-4 *5 (-13 (-813) (-832) (-1030))) (-5 *2 (-1242)) + (-5 *1 (-811 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-807)) (-5 *4 (-310 *6)) (-5 *5 (-111)) + (-4 *6 (-13 (-813) (-832) (-1030))) (-5 *2 (-1242)) + (-5 *1 (-811 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-813)) (-5 *2 (-1136)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-813)) (-5 *3 (-111)) (-5 *2 (-1136)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-813)) (-5 *3 (-807)) (-5 *2 (-1242)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-813)) (-5 *3 (-807)) (-5 *4 (-111)) (-5 *2 (-1242))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) + (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-443 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-443 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-443 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) ((*1 *2 *2) - (-12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) - (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-685)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-685))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1030)) + (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1213 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1030)) + (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1030)) + (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 (-552))) (-5 *3 (-111)) (-5 *1 (-1088))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1078)) (-4 *4 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-1 *6 *5)) (-5 *1 (-668 *5 *4 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1159))))) +(((*1 *2 *3) + (-12 (-5 *3 (-804 *4)) (-4 *4 (-832)) (-5 *2 (-111)) + (-5 *1 (-656 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) + (-5 *2 (-933 *5)) (-5 *1 (-925 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |k| (-1152)) (|:| |c| (-1257 *3))))) - (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |k| *3) (|:| |c| (-1259 *3 *4))))) - (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) -(((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) + (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1228 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-627 (-52))) (-5 *2 (-1240)) (-5 *1 (-843))))) + (-12 (-5 *2 (-1080 (-1080 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1213 *6)) + (-4 *6 (-13 (-357) (-144) (-1019 *4))) (-5 *4 (-552)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) + (|:| -2771 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-996 *6 *3))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) + (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) (-5 *2 (-629 (-637 (-401 *5)))) + (-5 *1 (-641 *4 *5)) (-5 *3 (-637 (-401 *5)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-552)) (-5 *5 (-1136)) (-5 *6 (-673 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 (-474 *4 *5))) (-5 *3 (-629 (-846 *4))) + (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) + (-4 *6 (-445))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) - (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-682 *3)) - (-4 *3 (-301))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1235 (-754))) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| -4158 *4) (|:| -3713 *3) (|:| -4186 *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1044 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| -4158 *3) (|:| -3713 *1) (|:| -4186 *1))) + (-4 *1 (-1213 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-129)) + (-4 *3 (-777))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-13 (-301) (-144))) + (-4 *2 (-930 *4 *6 *5)) (-5 *1 (-905 *4 *5 *6 *2)) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1072 *3)) (-4 *3 (-930 *7 *6 *4)) (-4 *6 (-778)) + (-4 *4 (-832)) (-4 *7 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) + (-5 *1 (-581 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) + (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-930 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1146 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1176))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1176))) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1146 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *2 (-401 (-933 *5))) (-5 *1 (-1147 *5)) (-5 *3 (-933 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *2 (-3 (-401 (-933 *5)) (-310 *5))) (-5 *1 (-1147 *5)) + (-5 *3 (-401 (-933 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1070 (-933 *5))) (-5 *3 (-933 *5)) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-401 *3)) + (-5 *1 (-1147 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1070 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)))) (-5 *2 (-3 *3 (-310 *5))) + (-5 *1 (-1147 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-673 (-933 *4))) (-5 *1 (-1009 *4)) + (-4 *4 (-1030))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-274))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 (-598 *5))) (-5 *3 (-1154)) (-4 *5 (-424 *4)) + (-4 *4 (-832)) (-5 *1 (-561 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431))))) +(((*1 *2) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1152))))) -(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) + (-12 (-4 *3 (-13 (-357) (-830))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1213 (-166 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-544)) (-4 *4 (-832)) + (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) + (-4 *3 (-13 (-1176) (-29 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) - (-4 *3 (-544)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-629 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) + (-5 *2 (-629 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) - (-4 *3 (-1076)))) + (-12 (-5 *2 (-1134 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1030)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) - (-4 *3 (-1076)))) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-711)))) + ((*1 *2 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1030)) (-5 *2 (-629 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) - (-4 *3 (-1017 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-830))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) - (-5 *2 (-1148 (-931 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-823 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) - (-4 *4 (-13 (-1174) (-29 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-219 *6 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) - (-5 *2 (-627 (-1070 (-220)))) (-5 *1 (-907))))) -(((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1134)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1076)) - (-4 *4 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-111)) (-5 *1 (-294))))) + (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1030)) (-5 *2 (-1134 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) - (-4 *3 (-13 (-357) (-144) (-1017 (-552)))) (-5 *1 (-556 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-826))))) -(((*1 *2 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)) - (-4 *4 (-343))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) - (-5 *1 (-120 *3)) (-4 *3 (-830)))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1191)))) ((*1 *2 *2) - (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1174))) - (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *1 (-571 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-573 (-401 (-931 *3)))) - (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *1 (-576 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -1317 *3) (|:| |special| *3))) (-5 *1 (-710 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) - (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) - (-5 *3 (-627 (-671 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1235 (-1235 *5))) (-4 *5 (-357)) (-4 *5 (-1028)) - (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) - (-5 *3 (-627 (-671 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-627 *1)) (-4 *1 (-1120))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) + (-14 *4 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *3)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1014)) - (-5 *1 (-732))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-301)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-440 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) - (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-440 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) - (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-440 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-180))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1) (-5 *1 (-1096)))) -(((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-730))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-187))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) - (-5 *2 (-1235 (-671 (-931 *4)))) (-5 *1 (-184 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-754)) (-5 *1 (-577))))) -(((*1 *2) - (-12 - (-5 *2 - (-1235 (-627 (-2 (|:| -4288 (-889 *3)) (|:| -4153 (-1096)))))) - (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)))) ((*1 *2) - (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) - (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) *2)))) + (-12 (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-673 *4)) + (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) - (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) - ((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-663)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1050)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1094))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) - (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *5)) - (-4 *5 (-1211 (-401 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-754))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-498))) (-5 *1 (-476))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) - (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4))) - (-5 *1 (-1228 *4 *5))))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) + (-5 *2 (-673 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-902)) (-5 *2 (-461)) (-5 *1 (-1238))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-357)) + (-5 *2 (-111)) (-5 *1 (-651 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-111)) + (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-629 *1)) (-4 *1 (-901))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) + (-4 *3 (-1078)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-111)) + (-5 *1 (-885 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-902)) (-5 *2 (-111)) (-5 *1 (-1079 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) + (-5 *2 (-1016)) (-5 *1 (-733))))) (((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-902)) (-5 *1 (-1079 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-373))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) - (-5 *1 (-1190 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) - (-5 *1 (-1190 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) + (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 *1)) (-5 *4 (-1154)) (-4 *1 (-27)) + (-5 *2 (-629 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-629 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-629 (-1154))) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294))))) (((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) - (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-61 *3)) (-14 *3 (-1152)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-68 *3)) (-14 *3 (-1152)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-71 *3)) (-14 *3 (-1152)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1240)))) - ((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-391)))) + (|partial| -12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) + (|partial| -12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *3 (-879 *6)) - (-5 *2 (-671 *3)) (-5 *1 (-674 *6 *3 *7 *4)) (-4 *7 (-367 *3)) - (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366))))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-445)) - (-5 *2 (-627 (-627 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) - (-4 *5 (-13 (-357) (-828)))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) - ((*1 *1 *1 *1) (-4 *1 (-776)))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1240)) - (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1189))))) + (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-770 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-832)) (-4 *5 (-600 *2)) (-5 *2 (-373)) + (-5 *1 (-770 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) - (-4 *2 (-1076)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-1076)) (-5 *1 (-631 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-802 *2)) (-4 *2 (-830))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2))))) + (-12 (-5 *3 (-756)) (-4 *1 (-1213 *4)) (-4 *4 (-1030)) + (-5 *2 (-1237 *4))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1157))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-659 *2)) (-4 *2 (-1030)) (-4 *2 (-1078))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) + (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) + (-4 *2 (-1191))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-754))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-598 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-1148 *2)) - (-4 *2 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-598 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) - (-5 *5 (-401 (-1148 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-385))))) -(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) + (-12 (-4 *2 (-1078)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-269))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-814))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-629 *7)) (-5 *5 (-629 (-629 *8))) (-4 *7 (-832)) + (-4 *8 (-301)) (-4 *6 (-778)) (-4 *9 (-930 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-629 (-2 (|:| -3479 (-1150 *9)) (|:| -1406 (-552))))))) + (-5 *1 (-727 *6 *7 *8 *9)) (-5 *3 (-1150 *9))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-666 *3)) (-4 *3 (-1078))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-113)) (-5 *1 (-160)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *4)) + (-4 *4 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) + ((*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *4 (-832)) (-5 *1 (-423 *3 *4)) + (-4 *3 (-424 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *4)) + (-4 *4 (-13 (-424 *3) (-983) (-1176))))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1000))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) + ((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) + ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-1134 (-552)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) + (-5 *3 (-629 (-552)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) + (-4 *3 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-438 *3)) (-4 *3 (-1030))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-627 *3)) - (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4))))) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 (-756)) (-4 *5 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) - (-5 *2 (-474 *4 *5)) (-5 *1 (-615 *4 *5))))) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) + (-5 *2 (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098)))))) + (-5 *1 (-340 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) + (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-1044 *3 *4 *2)) (-4 *2 (-832)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1017 *4)) (-4 *3 (-13 (-830) (-544)))))) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-102 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) + (-4 *5 (-1213 *4)) + (-5 *2 (-2 (|:| -1411 (-401 *5)) (|:| |coeff| (-401 *5)))) + (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-168)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |rm| (-802 *3)))) - (-5 *1 (-802 *3)) (-4 *3 (-830)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) + (-12 (-4 *2 (-544)) (-5 *1 (-609 *2 *3)) (-4 *3 (-1213 *2))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1078))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-1211 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-171 (-552))) (-5 *1 (-748 *3)) (-4 *3 (-398)))) - ((*1 *2 *1) - (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-850 *3)) (-14 *3 (-552)))) + (-12 (-5 *2 (-756)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552))))) +(((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-127))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1228 *4)) (-5 *1 (-1230 *4 *2)) + (-4 *4 (-38 (-401 (-552))))))) +(((*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-1072 (-220))))) + ((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220)))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-840)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1191)))) ((*1 *2 *1) - (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) - (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) -(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-385)))) - ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-385))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-627 *11)) - (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) - (-5 *6 (-754)) - (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) - (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) - (-4 *11 (-1048 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) - (-4 *9 (-830)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-627 *11)) - (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) - (-5 *6 (-754)) - (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) - (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) - (-4 *11 (-1085 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) - (-4 *9 (-830)) (-5 *1 (-1121 *7 *8 *9 *10 *11))))) + (-12 (-4 *2 (-13 (-1078) (-34))) (-5 *1 (-1118 *2 *3)) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *5)) (-4 *5 (-1213 *3)) (-4 *3 (-301)) + (-5 *2 (-111)) (-5 *1 (-448 *3 *5))))) (((*1 *2) - (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-337 *3 *4)) (-14 *3 (-900)) - (-14 *4 (-900)))) - ((*1 *2) - (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-1148 *3)))) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1228 *3))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-936)) (-5 *2 (-1072 (-220))))) + ((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1072 (-220)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) + ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *2) + (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-890)) + (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-930 *2 *3 *4)))) ((*1 *2) - (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-900))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-627 (-401 *7))) - (-4 *7 (-1211 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-562 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1096))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-52)) (-5 *1 (-871 *4)) - (-4 *4 (-1076))))) + (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *2 (-890)) + (-5 *1 (-887 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-890)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1213 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-830)) - (-5 *2 - (-2 (|:| |f1| (-627 *4)) (|:| |f2| (-627 (-627 (-627 *4)))) - (|:| |f3| (-627 (-627 *4))) (|:| |f4| (-627 (-627 (-627 *4)))))) - (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 (-627 *4))))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) - (-4 *2 (-544)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-544))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) - (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-754))) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-299))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)) + (-4 *3 (-544)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-373)) (-5 *1 (-1042))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) - (-5 *1 (-948 *3 *4)))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) - (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) + (-12 (-5 *2 (-629 (-924 *3))) (-4 *1 (-1112 *3)) (-4 *3 (-1030))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-825 *3))) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 + (-3 (-825 *3) + (-2 (|:| |leftHandLimit| (-3 (-825 *3) "failed")) + (|:| |rightHandLimit| (-3 (-825 *3) "failed"))) + "failed")) + (-5 *1 (-622 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1136)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-825 *3)) (-5 *1 (-622 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-825 (-933 *5)))) (-4 *5 (-445)) + (-5 *2 + (-3 (-825 (-401 (-933 *5))) + (-2 (|:| |leftHandLimit| (-3 (-825 (-401 (-933 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-825 (-401 (-933 *5))) "failed"))) + "failed")) + (-5 *1 (-623 *5)) (-5 *3 (-401 (-933 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-401 (-933 *5)))) (-5 *3 (-401 (-933 *5))) + (-4 *5 (-445)) + (-5 *2 + (-3 (-825 *3) + (-2 (|:| |leftHandLimit| (-3 (-825 *3) "failed")) + (|:| |rightHandLimit| (-3 (-825 *3) "failed"))) + "failed")) + (-5 *1 (-623 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-288 (-401 (-933 *6)))) (-5 *5 (-1136)) + (-5 *3 (-401 (-933 *6))) (-4 *6 (-445)) (-5 *2 (-825 *3)) + (-5 *1 (-623 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-343)) (-4 *2 (-1028)) (-5 *1 (-695 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-627 (-552))) (-5 *3 (-111)) (-5 *1 (-1086))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-627 (-844 *4))) - (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) - (-4 *6 (-445))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1096)) (-5 *1 (-1093))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1184 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *3 (-832)) (-4 *6 (-1044 *4 *5 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-129))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-756)) (-5 *1 (-208 *4 *2)) (-14 *4 (-902)) + (-4 *2 (-1078))))) +(((*1 *2 *3) + (-12 (-4 *4 (-832)) (-5 *2 (-1163 (-629 *4))) (-5 *1 (-1162 *4)) + (-5 *3 (-629 *4))))) (((*1 *2) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) + (-12 (-5 *2 (-1237 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) + (-14 *3 (-902)) (-14 *4 (-902))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-908)) + (-5 *2 + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-908)) (-5 *4 (-401 (-552))) + (-5 *2 + (-2 (|:| |brans| (-629 (-629 (-924 (-220))))) + (|:| |xValues| (-1072 (-220))) (|:| |yValues| (-1072 (-220))))) + (-5 *1 (-150))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-496 *3 *4 *5 *6))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-924 *4)) (-4 *4 (-1030)) (-5 *1 (-1142 *3 *4)) + (-14 *3 (-902))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *2 (-1078)) (-5 *1 (-208 *4 *2)) + (-14 *4 (-902)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) + (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1030))))) (((*1 *2 *1) - (-12 (-4 *2 (-1076)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1076))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-754)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) - (-5 *1 (-1156))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) - (-4 *3 (-544)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) (((*1 *2) - (-12 (-5 *2 (-1235 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) - (-14 *3 (-900)) (-14 *4 (-900))))) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1068 (-823 *3))) (-4 *3 (-13 (-1174) (-938) (-29 *5))) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1070 (-825 *3))) (-4 *3 (-13 (-1176) (-940) (-29 *5))) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) + (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1068 (-823 *3))) (-5 *5 (-1134)) - (-4 *3 (-13 (-1174) (-938) (-29 *6))) - (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1070 (-825 *3))) (-5 *5 (-1136)) + (-4 *3 (-13 (-1176) (-940) (-29 *6))) + (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) + (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1068 (-823 (-310 *5)))) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1070 (-825 (-310 *5)))) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) + (-3 (|:| |f1| (-825 (-310 *5))) (|:| |f2| (-629 (-825 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1068 (-823 (-310 *6)))) - (-5 *5 (-1134)) - (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *3 (-401 (-933 *6))) (-5 *4 (-1070 (-825 (-310 *6)))) + (-5 *5 (-1136)) + (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) + (-3 (|:| |f1| (-825 (-310 *6))) (|:| |f2| (-629 (-825 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1068 (-823 (-401 (-931 *5))))) (-5 *3 (-401 (-931 *5))) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1070 (-825 (-401 (-933 *5))))) (-5 *3 (-401 (-933 *5))) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) + (-3 (|:| |f1| (-825 (-310 *5))) (|:| |f2| (-629 (-825 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1068 (-823 (-401 (-931 *6))))) (-5 *5 (-1134)) - (-5 *3 (-401 (-931 *6))) - (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1070 (-825 (-401 (-933 *6))))) (-5 *5 (-1136)) + (-5 *3 (-401 (-933 *6))) + (-4 *6 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) (-5 *2 - (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) + (-3 (|:| |f1| (-825 (-310 *6))) (|:| |f2| (-629 (-825 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-3 *3 (-627 *3))) (-5 *1 (-422 *5 *3)) - (-4 *3 (-13 (-1174) (-938) (-29 *5))))) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-3 *3 (-629 *3))) (-5 *1 (-422 *5 *3)) + (-4 *3 (-13 (-1176) (-940) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) - (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) - ((*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) + (-5 *5 (-373)) (-5 *6 (-1042)) (-5 *2 (-1016)) (-5 *1 (-553)))) + ((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) - (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) + (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) - (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) + (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) - (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1072 (-825 (-373)))) + (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) - (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) + (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) - (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) - (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) - (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-1072 (-825 (-373))))) + (-5 *5 (-373)) (-5 *6 (-1042)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) - (-5 *5 (-1134)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-825 (-373)))) + (-5 *5 (-1136)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) - (-5 *5 (-1152)) (-5 *2 (-1014)) (-5 *1 (-553)))) + (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-825 (-373)))) + (-5 *5 (-1154)) (-5 *2 (-1016)) (-5 *1 (-553)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) (-5 *2 (-573 (-401 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *2 (-3 (-310 *5) (-627 (-310 *5)))) (-5 *1 (-576 *5)))) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-144)) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *2 (-3 (-310 *5) (-629 (-310 *5)))) (-5 *1 (-576 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-723 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)) + (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-832)) (-4 *3 (-38 (-401 (-552)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-931 *3)) (-4 *3 (-38 (-401 (-552)))) - (-4 *3 (-1028)))) + (-12 (-5 *2 (-1154)) (-5 *1 (-933 *3)) (-4 *3 (-38 (-401 (-552)))) + (-4 *3 (-1030)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-4 *2 (-830)) - (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-4 *2 (-832)) + (-5 *1 (-1104 *3 *2 *4)) (-4 *4 (-930 *3 (-523 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) - (-5 *1 (-1136 *3)))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) + (-5 *1 (-1138 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1145 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1151 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1152 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-38 (-401 (-552)))) - (-4 *3 (-1028)))) + (-12 (-5 *2 (-1154)) (-5 *1 (-1185 *3)) (-4 *3 (-38 (-401 (-552)))) + (-4 *3 (-1030)))) ((*1 *1 *1 *2) - (-1559 - (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4029 + (-12 (-5 *2 (-1154)) (-4 *1 (-1197 *3)) (-4 *3 (-1030)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) - (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) - (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) - (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + (-12 (-5 *2 (-1154)) (-4 *1 (-1197 *3)) (-4 *3 (-1030)) + (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) + (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + (-12 (-4 *1 (-1197 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1201 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1) - (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) ((*1 *1 *1 *2) - (-1559 - (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4029 + (-12 (-5 *2 (-1154)) (-4 *1 (-1218 *3)) (-4 *3 (-1030)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) - (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) - (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) - (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + (-12 (-5 *2 (-1154)) (-4 *1 (-1218 *3)) (-4 *3 (-1030)) + (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) + (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1222 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-1559 - (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4029 + (-12 (-5 *2 (-1154)) (-4 *1 (-1228 *3)) (-4 *3 (-1030)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-940)) (-4 *3 (-1176)) (-4 *3 (-38 (-401 (-552)))))) - (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) - (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) - (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + (-12 (-5 *2 (-1154)) (-4 *1 (-1228 *3)) (-4 *3 (-1030)) + (-12 (|has| *3 (-15 -3611 ((-629 *2) *3))) + (|has| *3 (-15 -2889 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030)) (-4 *2 (-38 (-401 (-552)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) + (-12 (-5 *2 (-1233 *4)) (-14 *4 (-1154)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) + (-5 *2 (-401 (-552))) (-5 *1 (-1001 *4)) (-4 *4 (-1213 (-552)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-1213 *4)) (-5 *2 (-1 *6 (-629 *6))) + (-5 *1 (-1231 *4 *5 *3 *6)) (-4 *3 (-640 *5)) (-4 *6 (-1228 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-482 *3)) (-4 *3 (-1191)) + (-4 *3 (-1078)) (-5 *2 (-756)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) + (-4 *4 (-1191)) (-5 *2 (-756))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-830))) + (-5 *2 (-629 (-2 (|:| -3772 (-629 *3)) (|:| -1825 *5)))) + (-5 *1 (-178 *5 *3)) (-4 *3 (-1213 (-166 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-357) (-830))) + (-5 *2 (-629 (-2 (|:| -3772 (-629 *3)) (|:| -1825 *4)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1158))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) + (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1130 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-627 *1)) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-832)) (-5 *2 (-629 *1)) (-4 *1 (-424 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) - (-4 *3 (-1076)))) + (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) + (-4 *3 (-1078)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-629 *1)) (-4 *1 (-930 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) - (-5 *1 (-929 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1030)) + (-4 *7 (-930 *6 *4 *5)) (-5 *2 (-629 *3)) + (-5 *1 (-931 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) - (-15 -2929 (*7 $)))))))) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) + (-15 -4026 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-1098))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 (-552))) (-5 *2 (-552)) (-5 *1 (-923))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-2 (|:| -2455 (-1134 *4)) (|:| -2467 (-1134 *4)))) + (-5 *1 (-1140 *4)) (-5 *3 (-1134 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-854 *2 *3)) (-4 *2 (-1191)) (-4 *3 (-1191))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-528))) (-5 *1 (-528))))) +(((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-52))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) + (-5 *2 (-552)) (-5 *1 (-1092 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-430))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-805)) (-14 *5 (-1154)) + (-5 *2 (-629 *4)) (-5 *1 (-1092 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) + (-5 *2 (-629 (-401 (-933 *4)))) (-5 *1 (-905 *4 *5 *6 *7)) + (-4 *7 (-930 *4 *6 *5))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + (-5 *3 (-629 (-257))) (-5 *1 (-255)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-257)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *2 (-1240)) (-5 *1 (-1237)))) + (-5 *2 (-1242)) (-5 *1 (-1239)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2881 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *1 (-1237)))) + (-5 *1 (-1239)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *2) + (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) + (-4 *3 (-632 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-823)) (-5 *4 (-1042)) (-5 *2 (-1016)) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1016)) (-5 *1 (-822)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-629 (-373))) (-5 *5 (-629 (-825 (-373)))) + (-5 *6 (-629 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1016)) + (-5 *1 (-822)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-373))) + (-5 *5 (-629 (-825 (-373)))) (-5 *2 (-1016)) (-5 *1 (-822)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-629 (-373))) (-5 *2 (-1016)) + (-5 *1 (-822)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-310 (-373)))) (-5 *4 (-629 (-373))) + (-5 *2 (-1016)) (-5 *1 (-822))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-111)) + (-5 *1 (-870 *4 *5)) (-4 *5 (-1078)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-873 *5)) (-4 *5 (-1078)) (-5 *2 (-111)) + (-5 *1 (-871 *5 *3)) (-4 *3 (-1191)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) + (-4 *6 (-1191)) (-5 *2 (-111)) (-5 *1 (-871 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1176) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) (-4 *5 (-144)) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *2 (-310 *5)) (-5 *1 (-576 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-806))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *1 *1 *1) (-4 *1 (-744)))) -(((*1 *1 *1) (-5 *1 (-1040)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-756)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) + (-5 *2 (-756)))) + ((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-711))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) (-4 *1 (-278))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-5 *1 (-613 *3 *4 *5)) + (-14 *5 (-902)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) + (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) + (-4 *4 (-702 (-401 (-552)))) (-4 *3 (-832)) (-4 *4 (-169))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1019 (-552)))) (-4 *5 (-1213 *4)) + (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) + (-5 *1 (-996 *4 *5)) (-5 *3 (-401 *5))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1154)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-629 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1176) (-27) (-424 *8))) + (-4 *8 (-13 (-445) (-832) (-144) (-1019 *3) (-625 *3))) + (-5 *3 (-552)) (-5 *2 (-629 *4)) (-5 *1 (-995 *8 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) - (-4 *4 (-1211 *3))))) -(((*1 *1) (-4 *1 (-343))) + (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) +(((*1 *2) (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1240))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-111)) + (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-1213 *4)) + (-4 *5 (-1213 (-401 *3))) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) - (-4 *4 (-13 (-544) (-830) (-144))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-627 (-1148 *5))) - (|:| |prim| (-1148 *5)))) - (-5 *1 (-426 *4 *5)))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *1 *1 *1) (-4 *1 (-746)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *1)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-1030)) (-5 *1 (-673 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *4)) (-4 *4 (-1030)) (-4 *1 (-1101 *3 *4 *5 *6)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-373))) (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *1 *2) (-12 (-5 *2 (-902)) (-4 *1 (-362)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-144))) + (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343)))) + ((*1 *2 *1) + (-12 (-4 *2 (-832)) (-5 *1 (-698 *2 *3 *4)) (-4 *3 (-1078)) + (-14 *4 + (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *3)) + (-2 (|:| -2840 *2) (|:| -1406 *3))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *2 (-1044 *4 *5 *6)) (-5 *1 (-761 *4 *5 *6 *2 *3)) + (-4 *3 (-1050 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) + (-4 *3 (-357))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-428)) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1148 *3)) - (|:| |pol2| (-1148 *3)) (|:| |prim| (-1148 *3)))) - (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-931 *5)) (-5 *4 (-1152)) (-4 *5 (-13 (-357) (-144))) + (-629 + (-3 (|:| -4290 (-1154)) + (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552))))))))) + (-5 *1 (-1158))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-401 (-933 (-373)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-401 (-933 (-552)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1154)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 *2)) + (-14 *4 (-629 *2)) (-4 *5 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-1154))))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-401 (-933 (-552))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-401 (-933 (-373))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-933 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-933 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-310 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-673 (-310 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-552)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-933 (-373)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-933 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-933 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-401 (-933 (-552))))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-401 (-933 (-373))))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-933 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-933 (-373)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-310 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 (-310 (-373)))) (-4 *1 (-434)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) - (|:| |prim| (-1148 *5)))) - (-5 *1 (-939 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) - (-4 *5 (-13 (-357) (-144))) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| |mdnia| + (-2 (|:| |fn| (-310 (-220))) + (|:| -4235 (-629 (-1072 (-825 (-220))))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) + (-5 *1 (-754)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *5))) - (|:| |prim| (-1148 *5)))) - (-5 *1 (-939 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-5 *5 (-1152)) - (-4 *6 (-13 (-357) (-144))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *1 (-793)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *6))) - (|:| |prim| (-1148 *6)))) - (-5 *1 (-939 *6))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) - (-4 *5 (-445)) (-5 *2 (-627 (-242 *4 *5))) (-5 *1 (-615 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) + (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-629 (-310 (-220)))) + (|:| -1977 (-629 (-220))))))) + (-5 *1 (-823)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1152)) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *4 *5 *6 *3))))) -(((*1 *2) - (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *2) - (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) + (-2 (|:| |pde| (-629 (-310 (-220)))) + (|:| |constraints| + (-629 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-756)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) + (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) + (|:| |tol| (-220)))) + (-5 *1 (-879)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *1 (-957 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) + (-4029 + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) + (-4107 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))) + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-537))) (-4107 (-4 *3 (-38 (-401 (-552))))) + (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))) + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-973 (-552)))) (-4 *3 (-38 (-401 (-552)))) + (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))))) + ((*1 *1 *2) + (-4029 + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) + ((*1 *1 *2) + (-12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1134 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) + (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-756)))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-1078)) (-4 *4 (-1191)) (-5 *2 (-111)) + (-5 *1 (-1134 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-629 (-629 (-552)))) + (-5 *1 (-905 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-930 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-578 *5 *6 *7 *8 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-809)) (-5 *3 (-629 (-1154))) (-5 *1 (-810))))) (((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 *2)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-754)) (-4 *5 (-169)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-754)) (-4 *5 (-169)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552))))) - (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) - (-5 *1 (-497 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *1) (-4 *1 (-1120)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-627 *11)) (-5 *5 (-627 (-1148 *9))) - (-5 *6 (-627 *9)) (-5 *7 (-627 *12)) (-5 *8 (-627 (-754))) - (-4 *11 (-830)) (-4 *9 (-301)) (-4 *12 (-928 *9 *10 *11)) - (-4 *10 (-776)) (-5 *2 (-627 (-1148 *12))) - (-5 *1 (-690 *10 *11 *9 *12)) (-5 *3 (-1148 *12))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-805))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) + (-12 (-4 *3 (-1030)) (-5 *2 (-1237 *3)) (-5 *1 (-697 *3 *4)) + (-4 *4 (-1213 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-754))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-257)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) + (-12 (-4 *4 (-544)) (-5 *2 (-939 *3)) (-5 *1 (-1141 *4 *3)) + (-4 *3 (-1213 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6))))) + (-12 + (-5 *2 + (-629 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-756)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-778)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-832)) + (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-804 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-828)) (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) (((*1 *2 *3) - (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1142))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357))))) -(((*1 *1 *2) - (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) - (-4 *3 (-13 (-398) (-1174))))) - ((*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) -(((*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) - ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) + (-12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-629 *5)) + (-5 *1 (-871 *4 *5)) (-4 *5 (-1191))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-733))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-823 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 *4)) - (-5 *1 (-261))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1070 *3)) (-4 *3 (-928 *7 *6 *4)) (-4 *6 (-776)) - (-4 *4 (-830)) (-4 *7 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) - (-5 *1 (-581 *6 *4 *7 *3)))) + (-12 (-5 *4 (-756)) (-5 *2 (-629 (-1154))) (-5 *1 (-205)) + (-5 *3 (-1154)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) - (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))))) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-756)) (-5 *2 (-629 (-1154))) + (-5 *1 (-261)))) + ((*1 *2 *1) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *2 (-629 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-629 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-1250 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1250 *5 *6 *7 *8))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-973 *4)) (-4 *2 (-671 *7 *8 *9)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-671 *4 *5 *6)) + (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-301)))) + ((*1 *2 *2) + (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) + (-4 *2 (-671 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1144 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *2 (-401 (-931 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-931 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *2 (-3 (-401 (-931 *5)) (-310 *5))) (-5 *1 (-1145 *5)) - (-5 *3 (-401 (-931 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1068 (-931 *5))) (-5 *3 (-931 *5)) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 *3)) - (-5 *1 (-1145 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1068 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 *3 (-310 *5))) - (-5 *1 (-1145 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) ((*1 *1) (-4 *1 (-537))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301))))) (((*1 *2 *3) - (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-964 *4 *2 *3 *5)) - (-4 *4 (-343)) (-4 *5 (-707 *2 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)) - (-4 *2 (-830)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4367)) - (-4 *1 (-367 *3)) (-4 *3 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-1207 *4 *2)) - (-4 *2 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) + (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-629 (-310 (-220)))) + (|:| -1977 (-629 (-220))))))) + (-5 *2 (-629 (-1136))) (-5 *1 (-261))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-627 *4)) (-4 *4 (-830)) - (-5 *1 (-1160 *4))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1))) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) - (-5 *2 - (-2 (|:| -1432 (-754)) (|:| |curves| (-754)) - (|:| |polygons| (-754)) (|:| |constructs| (-754))))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-720 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) - ((*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076))))) + (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257))))) (((*1 *2 *3) - (-12 (-5 *3 (-288 (-931 (-552)))) - (-5 *2 - (-2 (|:| |varOrder| (-627 (-1152))) - (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) - (|:| |hom| (-627 (-1235 (-754)))))) - (-5 *1 (-231))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) - (-5 *2 (-1237)) (-5 *1 (-251))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-776)) (-4 *5 (-1028)) (-4 *6 (-928 *5 *4 *2)) - (-4 *2 (-830)) (-5 *1 (-929 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *6)) (-15 -2918 (*6 $)) - (-15 -2929 (*6 $))))))) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 (-166 *4)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) - (-5 *2 (-1152)) (-5 *1 (-1022 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) - (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) - (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544)))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-893 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-412 (-931 *6))) (-5 *5 (-1152)) (-5 *3 (-931 *6)) - (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-166 *3)) (-5 *1 (-1180 *4 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-362)) - (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) - (-5 *1 (-739))))) + (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) (((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) - (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) - (-4 *3 (-946))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-740))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) - (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) - ((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) - (-4 *7 (-828)) - (-4 *8 - (-13 (-1213 *3 *7) (-357) (-1174) - (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) - (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) - (-14 *10 (-1152))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-401 (-931 *6)) (-1141 (-1152) (-931 *6)))) - (-5 *5 (-754)) (-4 *6 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *6))))) - (-5 *1 (-286 *6)) (-5 *4 (-671 (-401 (-931 *6)))))) - ((*1 *2 *3 *4) - (-12 + (-12 (-4 *2 (-301)) (-4 *3 (-973 *2)) (-4 *4 (-1213 *3)) + (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1019 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-772)) (-5 *2 (-1016)) (-5 *3 - (-2 (|:| |eigval| (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) - (|:| |eigmult| (-754)) (|:| |eigvec| (-627 *4)))) - (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) - (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1014))) (-5 *2 (-1014)) (-5 *1 (-299)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *1) (-5 *1 (-1040))) - ((*1 *2 *3) - (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1129 *4)) - (-4 *4 (-1189)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-166 *4))) - (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) - (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-166 *5)))) - (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-828)))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-125 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1235 *6)) (-5 *4 (-1235 (-552))) (-5 *5 (-552)) - (-4 *6 (-1076)) (-5 *2 (-1 *6)) (-5 *1 (-996 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) - (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) + (-2 (|:| |fn| (-310 (-220))) + (|:| -4235 (-629 (-1072 (-825 (-220))))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-772)) (-5 *2 (-1016)) + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-5 *2 - (-2 (|:| |upol| (-1148 *8)) (|:| |Lval| (-627 *8)) - (|:| |Lfact| - (-627 (-2 (|:| -1727 (-1148 *8)) (|:| -4067 (-552))))) - (|:| |ctpol| *8))) - (-5 *1 (-725 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-521)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 *3 (-627 *1))) - (-4 *1 (-1048 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34)))))) + (-629 + (-2 (|:| |eigval| (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4)))) + (|:| |geneigvec| (-629 (-673 (-401 (-933 *4)))))))) + (-5 *1 (-286 *4)) (-5 *3 (-673 (-401 (-933 *4))))))) +(((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3))))) (((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) + (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1038 (-1003 *3) (-1148 (-1003 *3)))) - (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-754)) (-4 *3 (-1189)) (-4 *1 (-56 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1) (-5 *1 (-168))) - ((*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1076)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) - ((*1 *1) (-5 *1 (-388))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) - ((*1 *1) - (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) - (-4 *4 (-648 *3)))) - ((*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1118 *3 *2)) (-14 *3 (-754)) (-4 *2 (-1028)))) - ((*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) - ((*1 *1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1152))) - ((*1 *1) (-5 *1 (-1169)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-1235 *5))) (-5 *4 (-552)) (-5 *2 (-1235 *5)) - (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1211 (-166 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1211 (-166 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) - (-4 *7 (-928 *5 *6 *4)) (-4 *5 (-888)) (-4 *6 (-776)) - (-4 *4 (-830)) (-5 *1 (-885 *5 *6 *4 *7))))) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-5 *2 (-864 *5 *6 (-627 *6))) - (-5 *1 (-866 *5 *6 *4)) (-5 *3 (-627 *6)) (-4 *4 (-600 (-871 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 *3))) (-5 *1 (-866 *5 *3 *4)) - (-4 *3 (-1017 (-1152))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 (-931 *3)))) - (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1028)) - (-1681 (-4 *3 (-1017 (-1152)))) (-4 *3 (-865 *5)) - (-4 *4 (-600 (-871 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-5 *2 (-868 *5 *3)) (-5 *1 (-866 *5 *3 *4)) - (-1681 (-4 *3 (-1017 (-1152)))) (-1681 (-4 *3 (-1028))) - (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5)))))) + (-12 (-5 *3 (-673 *8)) (-4 *8 (-930 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-832) (-600 (-1154)))) + (-4 *7 (-778)) + (-5 *2 + (-629 + (-2 (|:| -2128 (-756)) + (|:| |eqns| + (-629 + (-2 (|:| |det| *8) (|:| |rows| (-629 (-552))) + (|:| |cols| (-629 (-552)))))) + (|:| |fgb| (-629 *8))))) + (-5 *1 (-905 *5 *6 *7 *8)) (-5 *4 (-756))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1078)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) + (-5 *2 (-629 (-1054 *3 *4 *5))) (-5 *1 (-1055 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3))))))) (((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) - (-5 *2 (-627 (-754))) (-5 *1 (-761 *3 *4 *5 *6 *7)) - (-4 *3 (-1211 *6)) (-4 *7 (-928 *6 *4 *5))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-575 *4)) + (-4 *4 (-343))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1195)) (-4 *5 (-1213 (-401 *2))) + (-4 *2 (-1213 *4)) (-5 *1 (-335 *3 *4 *2 *5)) + (-4 *3 (-336 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1195)) + (-4 *4 (-1213 (-401 *2))) (-4 *2 (-1213 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) - (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-111)) - (-5 *1 (-890 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) - (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) - (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) - (-5 *1 (-891 *4 *5 *6))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1078)) (-4 *5 (-1078)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-667 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-627 (-671 *6))) (-5 *4 (-111)) (-5 *5 (-552)) - (-5 *2 (-671 *6)) (-5 *1 (-1008 *6)) (-4 *6 (-357)) (-4 *6 (-1028)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4)) - (-4 *4 (-357)) (-4 *4 (-1028)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-5 *2 (-671 *5)) - (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) + (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 (-2 (|:| -3998 *3) (|:| -2162 *4)))) - (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *1 (-1165 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1165 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-1163 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) + (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-617 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-756)) (-4 *2 (-1078)) + (-5 *1 (-662 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) - (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-900)))) - ((*1 *2 *3) - (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) - (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) - (-5 *2 (-754)) (-5 *1 (-386 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-816 (-900))))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) - (-4 *4 (-1211 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) - (-4 *3 (-830)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)) - (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) - (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-754)) - (-5 *1 (-890 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) - (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) - (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-754)) - (-5 *1 (-891 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) - (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) - (-4 *9 (-13 (-362) (-357))) (-5 *2 (-754)) - (-5 *1 (-997 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)) - (-5 *2 (-754)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-868 *4 *5)) (-5 *3 (-868 *4 *6)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-648 *5)) (-5 *1 (-864 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-981 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-528))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-357) (-144))) + (-5 *2 (-629 (-2 (|:| -1406 (-756)) (|:| -4046 *4) (|:| |num| *4)))) + (-5 *1 (-393 *3 *4)) (-4 *4 (-1213 *3))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-900)) (-5 *1 (-435 *2)) - (-4 *2 (-1211 (-552))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-900)) (-5 *4 (-754)) (-5 *1 (-435 *2)) - (-4 *2 (-1211 (-552))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *1 (-435 *2)) - (-4 *2 (-1211 (-552))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) - (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) - (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-412 *2)) (-4 *2 (-1211 *5)) - (-5 *1 (-437 *5 *2)) (-4 *5 (-1028))))) -(((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) -(((*1 *1 *1) (-4 *1 (-1037)))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-756)) (-5 *1 (-768 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1078)) (-4 *2 (-881 *4)) (-5 *1 (-676 *4 *2 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4368))))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-4 *2 (-879 *5)) (-5 *1 (-674 *5 *2 *3 *4)) - (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1188))) (-5 *3 (-1188)) (-5 *1 (-663))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1096)) (-4 *4 (-343)) - (-5 *1 (-520 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-627 *3)) (-5 *1 (-940 *3)) (-4 *3 (-537))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) + (-12 (-5 *2 (-629 (-166 *4))) (-5 *1 (-152 *3 *4)) + (-4 *3 (-1213 (-166 (-552)))) (-4 *4 (-13 (-357) (-830))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-629 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-629 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *3 (-552)) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-671 (-1148 *8))) (-4 *5 (-1028)) (-4 *8 (-1028)) - (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-493 *5 *6 *7 *8)) - (-4 *7 (-1211 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1189)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-598 *1))) (-5 *3 (-627 *1)) (-4 *1 (-296)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) - (-5 *1 (-99 *4 *3)) (-4 *3 (-1211 *4)))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-357)) (-5 *2 (-673 *4)) + (-5 *1 (-799 *4 *5)) (-4 *5 (-640 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-445) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-664 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 (-922 *4))) (-4 *1 (-1110 *4)) (-4 *4 (-1028)) - (-5 *2 (-754))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *1 *1 *1) (-4 *1 (-466))) - ((*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-950))) - ((*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1076) (-1017 *5))) - (-4 *5 (-865 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-910 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) - ((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) - (-4 *4 (-343))))) -(((*1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-756)) (-4 *5 (-357)) + (-5 *2 (-673 *5)) (-5 *1 (-799 *5 *6)) (-4 *6 (-640 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) + (-5 *1 (-672 *3 *4 *5 *6)) (-4 *6 (-671 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-684 *3)) + (-4 *3 (-301))))) (((*1 *2 *1) - (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-966 *3 *4 *5 *2)) - (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) + (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1030)) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1030) (-832))) + (-14 *4 (-629 (-1154)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) + (-14 *4 *2)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-274))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2) + (-12 (-4 *3 (-600 (-873 *3))) (-4 *3 (-867 *3)) + (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-600 (-873 *3))) (-4 *2 (-867 *3)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *1) + (-12 (-5 *2 (-1237 (-756))) (-5 *1 (-659 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-673 (-401 (-933 (-552))))) + (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *1 *2) (-12 (-5 *2 - (-627 - (-627 - (-3 (|:| -3112 (-1152)) - (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))))) - (-5 *1 (-1156))))) -(((*1 *1 *1 *2) + (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) + (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) + (|:| |args| (-629 (-844))))) + (-5 *1 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-629 (-844)))) (-5 *1 (-1154))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-2 (|:| -3479 (-1150 *6)) (|:| -1406 (-552))))) + (-4 *6 (-301)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-804 *3)) (-4 *3 (-832))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-629 *1)) (-4 *1 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) - (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) - (|:| |args| (-627 (-842))))) - (-5 *1 (-1152)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-1152))))) + (-2 (|:| |fn| (-310 (-220))) (|:| -1977 (-629 (-220))) + (|:| |lb| (-629 (-825 (-220)))) (|:| |cf| (-629 (-310 (-220)))) + (|:| |ub| (-629 (-825 (-220)))))) + (-5 *1 (-261))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-688 *3 *4)) (-4 *3 (-1189)) (-4 *4 (-1189))))) -(((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) + (-5 *4 (-629 (-902))) (-5 *5 (-629 (-257))) (-5 *1 (-461)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *3 (-629 (-855))) + (-5 *4 (-629 (-902))) (-5 *1 (-461)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461)))) + ((*1 *1 *1) (-5 *1 (-461)))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1017 (-552))) - (-4 *4 (-13 (-830) (-544))) (-5 *2 (-1148 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1028)) (-4 *1 (-296)) - (-5 *2 (-1148 *1))))) -(((*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) (-5 *2 (-1148 (-401 *5))) (-5 *1 (-601 *4 *5)) - (-5 *3 (-401 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-1148 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-754))) (-5 *3 (-111)) (-5 *1 (-1140 *4 *5)) - (-14 *4 (-900)) (-4 *5 (-1028))))) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-629 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-756)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-778)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-832)) + (-5 *1 (-442 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-991)) (-5 *2 (-842))))) + (-12 (-4 *4 (-1030)) + (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1176))) + (-5 *1 (-571 *4 *2)) + (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-573 (-401 (-933 *4)))) + (-4 *4 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *2 (-310 *4)) (-5 *1 (-576 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) - (-5 *1 (-393 *3 *4))))) + (-12 (-5 *2 (-629 (-902))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-902)) + (-14 *4 (-902))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) + (-5 *2 (-1016)) (-5 *1 (-730))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-343)) (-4 *6 (-1213 *5)) + (-5 *2 + (-629 + (-2 (|:| -4199 (-673 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-673 *6))))) + (-5 *1 (-490 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4199 (-673 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-673 *6)))) + (-4 *7 (-1213 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205))))) (((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1211 *4)) - (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) -(((*1 *1) (-5 *1 (-1236)))) -(((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) + (-12 (-5 *3 (-629 (-220))) (-5 *2 (-1237 (-683))) (-5 *1 (-299))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)) + (-4 *2 (-1078))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) (((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) (-5 *1 (-173 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-537))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-756)) (-5 *1 (-549))))) +(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) + (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-1185))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1005 (-823 (-552)))) - (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1028)) - (-5 *1 (-582 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) - (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) - (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-741))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-756))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1177 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-741))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) - (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-106 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-686 *3)) - (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220) (-220))) - (-5 *1 (-686 *3)) (-4 *3 (-600 (-528)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1134)) (|:| -3112 (-1134)))) - (-5 *1 (-805))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) + (-12 (-5 *3 (-1136)) (-5 *2 (-629 (-1159))) (-5 *1 (-1114))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 (-2 (|:| |val| (-629 *6)) (|:| -3361 *7)))) + (-4 *6 (-1044 *3 *4 *5)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-969 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-629 (-2 (|:| |val| (-629 *6)) (|:| -3361 *7)))) + (-4 *6 (-1044 *3 *4 *5)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-1085 *3 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-4 *2 (-1211 *4)) - (-5 *1 (-901 *4 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) + (-12 (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-629 (-1210 *5 *4))) + (-5 *1 (-1092 *4 *5)) (-5 *3 (-1210 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-321 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-508 *3 *4)) + (-14 *4 (-552))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-673 *2)) (-5 *4 (-756)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *5 (-1213 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) +(((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1184 *2 *3 *4 *5)) (-4 *2 (-544)) + (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-1044 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) - (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) - (-4 *1 (-1042 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-4 *2 (-1076)) - (-5 *1 (-868 *4 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-357)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-443 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) - (-5 *2 - (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) - (-5 *1 (-957 *6)) (-5 *3 (-671 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) + (-12 (-5 *3 (-673 *1)) (-5 *4 (-1237 *1)) (-4 *1 (-625 *5)) + (-4 *5 (-1030)) + (-5 *2 (-2 (|:| -2325 (-673 *5)) (|:| |vec| (-1237 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 *1)) (-4 *1 (-625 *4)) (-4 *4 (-1030)) + (-5 *2 (-673 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) + (-5 *1 (-413 *4)))) + ((*1 *1 *1) (-5 *1 (-907))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) + ((*1 *1 *1) (-5 *1 (-908))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) + (-5 *4 (-401 (-552))) (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) + (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) + (-5 *4 (-401 (-552))) (-5 *1 (-1002 *3)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))) + (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-629 (-598 *2))) (-5 *4 (-1154)) + (-4 *2 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-552)) (-4 *7 (-930 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191))))) (((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) - (-4 *4 (-1076)) (-4 *5 (-1076))))) + (-12 (-4 *4 (-1030)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) + (-4 *3 (-1213 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) + (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) + (-5 *1 (-681))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-657 (-220))) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-733))))) + (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1078)) (-4 *3 (-832)) + (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *2 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1191)) (-5 *1 (-854 *2 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1154))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) + (-4 *3 (-1078))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1213 *5)) + (-5 *2 (-629 *3)) (-5 *1 (-762 *4 *5 *6 *3 *7)) (-4 *3 (-1213 *6)) + (-14 *7 (-902))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-756)) (-5 *1 (-1079 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-806)) (-5 *4 (-52)) (-5 *2 (-1242)) (-5 *1 (-816))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-383))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1210 *4 *5)) (-5 *3 (-629 *5)) (-14 *4 (-1154)) + (-4 *5 (-357)) (-5 *1 (-904 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-357)) (-5 *2 (-1150 *5)) + (-5 *1 (-904 *4 *5)) (-14 *4 (-1154)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-756)) (-4 *6 (-357)) + (-5 *2 (-401 (-933 *6))) (-5 *1 (-1031 *5 *6)) (-14 *5 (-1154))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-5 *2 (-2 (|:| -2670 *3) (|:| -3360 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-629 (-474 *4 *5))) (-5 *3 (-846 *4)) + (-14 *4 (-629 (-1154))) (-4 *5 (-445)) (-5 *1 (-617 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-301))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-343)) (-4 *6 (-1211 *5)) - (-5 *2 - (-627 - (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-671 *6))))) - (-5 *1 (-490 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-671 *6)))) - (-4 *7 (-1211 *6))))) -(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155))))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-2 (|:| |num| (-1237 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240))))) +(((*1 *2 *1) + (-12 (-4 *3 (-228)) (-4 *3 (-1030)) (-4 *4 (-832)) (-4 *5 (-260 *4)) + (-4 *6 (-778)) (-5 *2 (-1 *1 (-756))) (-4 *1 (-247 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1030)) (-4 *3 (-832)) (-4 *5 (-260 *3)) (-4 *6 (-778)) + (-5 *2 (-1 *1 (-756))) (-4 *1 (-247 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-756)) (-4 *1 (-260 *2)) (-4 *2 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1074)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-461)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-957 *4 *5 *3 *6)) (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *3 (-832)) (-4 *6 (-1044 *4 *5 *3)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-969 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) + (-4 *3 (-544)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-818 *3)) (-4 *3 (-537)) + (-4 *3 (-1078)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-825 *3)) (-4 *3 (-537)) + (-4 *3 (-1078)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-989 *3)) + (-4 *3 (-1019 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) - (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) - (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) - (-5 *1 (-679))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(((*1 *1 *1) (-5 *1 (-111)))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1239))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) + (-5 *1 (-681))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-631 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-5 *2 (-1136))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) (((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-12 (-14 *4 *2) (-4 *5 (-1191)) (-5 *2 (-756)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)) + (-5 *2 (-756)))) + ((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-756)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) + ((*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-380 *3)) (-4 *3 (-1078)))) + ((*1 *2) + (-12 (-4 *4 (-1078)) (-5 *2 (-756)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-4 *5 (-1213 *4)) (-5 *2 (-756)) + (-5 *1 (-708 *3 *4 *5)) (-4 *3 (-709 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-926 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-629 (-1154))) (-4 *2 (-169)) + (-4 *3 (-233 (-2657 *4) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *3)) + (-2 (|:| -2840 *5) (|:| -1406 *3)))) + (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-832)) + (-4 *7 (-930 *2 *3 (-846 *4)))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1191)) (-5 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-924 *3) (-924 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1176) (-983)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-629 (-310 (-220)))) (|:| -1977 (-629 (-220))))) + (-5 *2 (-373)) (-5 *1 (-261)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4368)) (-4 *1 (-34)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-127)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-828))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) + (-5 *7 (-673 (-552))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) + (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-148 *2)) (-4 *2 (-1191)) + (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-148 *3)) + (-4 *3 (-1191)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-658 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1078)) + (-5 *1 (-722 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-722 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *7 (-1213 *5)) (-4 *4 (-709 *5 *7)) + (-5 *2 (-2 (|:| -2325 (-673 *6)) (|:| |vec| (-1237 *5)))) + (-5 *1 (-796 *5 *6 *7 *4 *3)) (-4 *6 (-640 *5)) (-4 *3 (-640 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) (((*1 *1 *1) - (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) - (-4 *4 (-260 *3)) (-4 *5 (-776))))) -(((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-5 *2 (-1134))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-711)) (-4 *2 (-1191))))) (((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-154)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-832))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-673 *4)) (-5 *3 (-756)) (-4 *4 (-1030)) + (-5 *1 (-674 *4))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-552)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-613 *2 *3 *4)) (-4 *2 (-832)) + (-4 *3 (-13 (-169) (-702 (-401 (-552))))) (-14 *4 (-902)))) + ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) - (-5 *1 (-612 *5 *6))))) + (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) + (-5 *1 (-614 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-598 *3)) + (-4 *3 (-13 (-424 *5) (-27) (-1176))) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) + (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1078))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-632 *5)) (-4 *5 (-1030)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-834 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-673 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1030)) + (-5 *1 (-835 *2 *3)) (-4 *3 (-834 *2))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) + (-5 *5 (-1072 (-220))) (-5 *6 (-629 (-257))) (-5 *2 (-1111 (-220))) + (-5 *1 (-681)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-924 (-220)) (-220) (-220))) (-5 *4 (-1072 (-220))) + (-5 *5 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-681)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-1 (-924 (-220)) (-220) (-220))) + (-5 *4 (-1072 (-220))) (-5 *5 (-629 (-257))) (-5 *1 (-681))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1150 (-933 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) + (-5 *2 (-1150 (-933 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1030)) (-4 *2 (-671 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1213 *4)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-1156 (-401 (-552)))) + (-5 *1 (-185))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) - (-5 *2 (-2 (|:| -3069 (-552)) (|:| |var| (-598 *1)))) + (-12 + (-5 *2 + (-1237 + (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -3653 (-552)) + (|:| -2436 (-552)) (|:| |spline| (-552)) (|:| -2364 (-552)) + (|:| |axesColor| (-855)) (|:| -2097 (-552)) + (|:| |unitsColor| (-855)) (|:| |showing| (-552))))) + (-5 *1 (-1238))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-832)) + (-5 *2 (-2 (|:| -4158 (-552)) (|:| |var| (-598 *1)))) (-4 *1 (-424 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-1078)) (-5 *2 (-629 (-756))) + (-5 *1 (-885 *4))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-825 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) + (-4 *4 (-13 (-1176) (-29 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-219 *6 *4))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1213 (-401 (-552)))) + (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) + (-5 *1 (-894 *3 *4)) (-4 *4 (-1213 (-401 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *3)) + (-4 *3 (-1213 (-401 *4)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-629 (-1150 *13))) (-5 *3 (-1150 *13)) + (-5 *4 (-629 *12)) (-5 *5 (-629 *10)) (-5 *6 (-629 *13)) + (-5 *7 (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| *13))))) + (-5 *8 (-629 (-756))) (-5 *9 (-1237 (-629 (-1150 *10)))) + (-4 *12 (-832)) (-4 *10 (-301)) (-4 *13 (-930 *10 *11 *12)) + (-4 *11 (-778)) (-5 *1 (-692 *11 *12 *10 *13))))) +(((*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-1136))))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) - (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) - ((*1 *1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-521))))) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-129)) + (-5 *2 (-629 (-2 (|:| |gen| *3) (|:| -2855 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| -4158 *3) (|:| -1727 *4)))) + (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-711)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-1134 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1193))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-673 (-166 (-401 (-552))))) + (-5 *2 + (-629 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) + (|:| |outvect| (-629 (-673 (-166 *4))))))) + (-5 *1 (-749 *4)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-629 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) + (-5 *1 (-1107 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-13 (-301) (-832) (-144))) + (-5 *2 (-629 (-288 (-310 *4)))) (-5 *1 (-1107 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-401 (-933 *5)))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *5)))) + (-5 *1 (-1107 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 (-401 (-933 *4)))) + (-4 *4 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-288 (-310 *4)))) + (-5 *1 (-1107 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) + (-4 *5 (-13 (-301) (-832) (-144))) + (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-401 (-933 *4)))) + (-4 *4 (-13 (-301) (-832) (-144))) + (-5 *2 (-629 (-629 (-288 (-310 *4))))) (-5 *1 (-1107 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-288 (-401 (-933 *5))))) (-5 *4 (-629 (-1154))) + (-4 *5 (-13 (-301) (-832) (-144))) + (-5 *2 (-629 (-629 (-288 (-310 *5))))) (-5 *1 (-1107 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-288 (-401 (-933 *4))))) + (-4 *4 (-13 (-301) (-832) (-144))) + (-5 *2 (-629 (-629 (-288 (-310 *4))))) (-5 *1 (-1107 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) + (-14 *6 (-756)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *9)) (-4 *9 (-1030)) (-4 *5 (-832)) (-4 *6 (-778)) + (-4 *8 (-1030)) (-4 *2 (-930 *9 *7 *5)) + (-5 *1 (-713 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-778)) + (-4 *4 (-930 *8 *6 *5))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191))))) +(((*1 *2) + (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *2 *3) + (-12 (-14 *4 (-629 (-1154))) (-14 *5 (-756)) + (-5 *2 + (-629 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552)))))) + (-5 *1 (-497 *4 *5)) + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552)))))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1154)) (-5 *3 (-428)) (-4 *5 (-832)) + (-5 *1 (-1084 *5 *4)) (-4 *4 (-424 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-521))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-886 (-552))) (-5 *4 (-552)) (-5 *2 (-673 *4)) + (-5 *1 (-1009 *5)) (-4 *5 (-1030)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1009 *4)) + (-4 *4 (-1030)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-886 (-552)))) (-5 *4 (-552)) + (-5 *2 (-629 (-673 *4))) (-5 *1 (-1009 *5)) (-4 *5 (-1030)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-629 (-552)))) (-5 *2 (-629 (-673 (-552)))) + (-5 *1 (-1009 *4)) (-4 *4 (-1030))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-629 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-629 *2)) (-4 *2 (-1078)) (-4 *2 (-1191))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 (-756)) (-4 *5 (-169))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-90 *3))))) +(((*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1240))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-832))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *1 (-788))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-844) (-844))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-844) (-629 (-844)))) (-5 *1 (-113)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-844) (-629 (-844)))) (-5 *1 (-113)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1242)) (-5 *1 (-209 *3)) + (-4 *3 + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 (*2 $)) + (-15 -3726 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-388)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-494)))) + ((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-1171))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-445)))) + ((*1 *1 *1 *1) (-4 *1 (-445))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1213 (-552))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-756))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-778)) (-4 *4 (-832)) (-4 *5 (-301)) + (-5 *1 (-897 *3 *4 *5 *2)) (-4 *2 (-930 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *6 *4 *5)) + (-5 *1 (-897 *4 *5 *6 *2)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-301)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *6)) (-4 *6 (-930 *5 *3 *4)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *5 (-301)) (-5 *1 (-897 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-1150 *7))) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-301)) (-5 *2 (-1150 *7)) (-5 *1 (-897 *4 *5 *6 *7)) + (-4 *7 (-930 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-902))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) + (-4 *2 (-1213 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-846 *5))) (-14 *5 (-629 (-1154))) (-4 *6 (-445)) + (-5 *2 + (-2 (|:| |dpolys| (-629 (-242 *5 *6))) + (|:| |coords| (-629 (-552))))) + (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-629 (-242 *5 *6))) (-4 *7 (-445))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) + (-4 *3 (-367 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 *4)) (-4 *4 (-973 *2)) (-4 *2 (-544)) + (-5 *1 (-677 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973 *2)) (-4 *2 (-544)) (-5 *1 (-1206 *2 *4 *3)) + (-4 *3 (-1213 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136)) (-5 *2 (-209 (-494))) (-5 *1 (-820))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) + (-5 *2 (-629 (-1072 (-220)))) (-5 *1 (-909))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-842)) (-5 *3 (-128)) (-5 *2 (-1098))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4368)) (-4 *1 (-482 *4)) + (-4 *4 (-1191)) (-5 *2 (-111))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) (|partial| -4 *1 (-707)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-552)) (-5 *5 (-1136)) (-5 *6 (-673 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-734))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-671 *11)) (-5 *4 (-627 (-401 (-931 *8)))) - (-5 *5 (-754)) (-5 *6 (-1134)) (-4 *8 (-13 (-301) (-144))) - (-4 *11 (-928 *8 *10 *9)) (-4 *9 (-13 (-830) (-600 (-1152)))) - (-4 *10 (-776)) + (-12 (-5 *3 (-673 *11)) (-5 *4 (-629 (-401 (-933 *8)))) + (-5 *5 (-756)) (-5 *6 (-1136)) (-4 *8 (-13 (-301) (-144))) + (-4 *11 (-930 *8 *10 *9)) (-4 *9 (-13 (-832) (-600 (-1154)))) + (-4 *10 (-778)) (-5 *2 (-2 (|:| |rgl| - (-627 - (-2 (|:| |eqzro| (-627 *11)) (|:| |neqzro| (-627 *11)) - (|:| |wcond| (-627 (-931 *8))) + (-629 + (-2 (|:| |eqzro| (-629 *11)) (|:| |neqzro| (-629 *11)) + (|:| |wcond| (-629 (-933 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *8)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *8)))))))))) + (-2 (|:| |partsol| (-1237 (-401 (-933 *8)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *8)))))))))) (|:| |rgsz| (-552)))) - (-5 *1 (-903 *8 *9 *10 *11)) (-5 *7 (-552))))) + (-5 *1 (-905 *8 *9 *10 *11)) (-5 *7 (-552))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-544)) (-4 *2 (-930 *3 *5 *4)) + (-5 *1 (-717 *5 *4 *6 *2)) (-5 *3 (-401 (-933 *6))) (-4 *5 (-778)) + (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)))))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-385))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078))))) +(((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3428 *6) (|:| |sol?| (-111))) (-552) + *6)) + (-4 *6 (-357)) (-4 *7 (-1213 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-627 (-931 *4))))) + (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-832)) (-4 *3 (-1078))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-629 (-924 (-220))))) (-5 *1 (-461))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -3193 (-629 (-844))) (|:| -3305 (-629 (-844))) + (|:| |presup| (-629 (-844))) (|:| -1382 (-629 (-844))) + (|:| |args| (-629 (-844))))) + (-5 *1 (-1154))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-373)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-629 (-933 *4))))) ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))) (-5 *1 (-410 *3 *4)) + (-12 (-4 *4 (-169)) (-5 *2 (-629 (-933 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-627 (-931 *3))))) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-629 (-933 *3))))) ((*1 *2) - (-12 (-5 *2 (-627 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) + (-12 (-5 *2 (-629 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *2 (-627 (-931 *4))) + (-12 (-5 *3 (-1237 (-446 *4 *5 *6 *7))) (-5 *2 (-629 (-933 *4))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-169)) - (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4)))))) + (-14 *5 (-902)) (-14 *6 (-629 (-1154))) (-14 *7 (-1237 (-673 *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-439)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(((*1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1154))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-756)) (-4 *4 (-301)) (-4 *6 (-1213 *4)) + (-5 *2 (-1237 (-629 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-629 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) + (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) + ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-656 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-661 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-804 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-874 *3)) (-4 *3 (-832)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-1188 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-983)) + (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 *5)) (-4 *5 (-357)) (-5 *2 (-629 *6)) + (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *1)) (-4 *1 (-445)))) + ((*1 *1 *1 *1) (-4 *1 (-445)))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5))))) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) + (-4 *5 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-629 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-629 (-288 *7))) (-5 *4 (-629 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 (-288 *8))) (-5 *4 (-629 (-113))) (-5 *5 (-288 *8)) + (-5 *6 (-629 *8)) (-4 *8 (-424 *7)) + (-4 *7 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-629 *7)) (-5 *4 (-629 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-832) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 (-113))) (-5 *6 (-629 (-288 *8))) + (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) + (-4 *7 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) + (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-832) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-629 *3)) + (-4 *3 (-424 *7)) (-4 *7 (-13 (-832) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-873 *4)) (-4 *4 (-1078)) (-5 *1 (-871 *4 *3)) + (-4 *3 (-1191)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-111)) (-5 *1 (-294))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) + (-5 *1 (-743))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-1150 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1150 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1176))) + (-4 *6 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1078))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3) + (-12 (-5 *3 (-825 (-373))) (-5 *2 (-825 (-220))) (-5 *1 (-299))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) - (-4 *3 (-1189)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1182 *4 *5 *3 *2)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *3 (-830)) (-4 *2 (-1042 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *1 (-1186 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1190))) (-5 *1 (-665)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1096))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) + (-4 *3 (-13 (-357) (-144) (-1019 (-552)))) (-5 *1 (-556 *3 *4))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-1150 *4)) + (-4 *4 (-13 (-424 *7) (-27) (-1176))) + (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1150 *4))) + (-4 *4 (-13 (-424 *7) (-27) (-1176))) + (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *2 (-544)) (-5 *1 (-950 *2 *4)) + (-4 *4 (-1213 *2))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-4 *3 (-1191)) (-5 *2 (-629 *1)) (-4 *1 (-991 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) - (-14 *3 (-900)) (-4 *4 (-1028))))) + (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) + (-14 *3 (-902)) (-4 *4 (-1030))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1242)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1260 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-828))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-756)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-832)) (-4 *2 (-832)) + (-5 *1 (-597 *2 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) + ((*1 *1 *1 *1) (-5 *1 (-1098)))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-828))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-412 *2)) (-4 *2 (-544))))) (((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 (-871 *3))))) - (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + (-5 *2 (-2 (|:| -1443 (-113)) (|:| |arg| (-629 (-873 *3))))) + (-5 *1 (-873 *3)) (-4 *3 (-1078)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-871 *4))) - (-5 *1 (-871 *4)) (-4 *4 (-1076))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-629 (-873 *4))) + (-5 *1 (-873 *4)) (-4 *4 (-1078))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1154)) (-5 *6 (-629 (-598 *3))) + (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) + (-5 *1 (-545 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1150 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1252 *3 *4)) (-4 *3 (-832)) (-4 *4 (-169)) + (-5 *1 (-648 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-648 *3 *4)) (-5 *1 (-1257 *3 *4)) + (-4 *3 (-832)) (-4 *4 (-169))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *3 (-629 (-552))) + (-5 *1 (-864))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) (-5 *6 (-1150 *3)) + (-4 *3 (-13 (-424 *7) (-27) (-1176))) + (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1078)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-629 *3)) + (-5 *6 (-401 (-1150 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1176))) + (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-778)) (-4 *2 (-260 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) (-5 *3 (-552))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *8 (-1042 *5 *6 *7)) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *8 (-1044 *5 *6 *7)) (-5 *2 - (-2 (|:| |val| (-627 *8)) - (|:| |towers| (-627 (-1006 *5 *6 *7 *8))))) - (-5 *1 (-1006 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) + (-2 (|:| |val| (-629 *8)) + (|:| |towers| (-629 (-1008 *5 *6 *7 *8))))) + (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *3 (-629 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *8 (-1042 *5 *6 *7)) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *8 (-1044 *5 *6 *7)) (-5 *2 - (-2 (|:| |val| (-627 *8)) - (|:| |towers| (-627 (-1122 *5 *6 *7 *8))))) - (-5 *1 (-1122 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) + (-2 (|:| |val| (-629 *8)) + (|:| |towers| (-629 (-1124 *5 *6 *7 *8))))) + (-5 *1 (-1124 *5 *6 *7 *8)) (-5 *3 (-629 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-673 *4)) (-5 *3 (-902)) (-4 *4 (-1030)) + (-5 *1 (-1009 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 (-673 *4))) (-5 *3 (-902)) (-4 *4 (-1030)) + (-5 *1 (-1009 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1721 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-756))) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1165 *2)) (-4 *2 (-357))))) +(((*1 *1) (-5 *1 (-1063)))) +(((*1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-132))))) +(((*1 *1 *1 *1) (-4 *1 (-948)))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-544)))) + ((*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305)))) + ((*1 *2 *1) + (-12 (-5 *2 (-756)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-671 (-401 (-931 (-552))))) - (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010))))) + (|partial| -12 (-5 *3 (-673 (-401 (-933 (-552))))) + (-5 *2 (-673 (-310 (-552)))) (-5 *1 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) - (-5 *2 (-900))))) + (-12 (-4 *1 (-876)) + (-5 *3 + (-2 (|:| |pde| (-629 (-310 (-220)))) + (|:| |constraints| + (-629 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-756)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) + (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) + (|:| |tol| (-220)))) + (-5 *2 (-1016))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-756)) (-5 *1 (-659 *2)) (-4 *2 (-1078))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-832)) (-4 *5 (-778)) + (-4 *6 (-544)) (-4 *7 (-930 *6 *5 *3)) + (-5 *1 (-455 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1019 (-401 (-552))) (-357) + (-10 -8 (-15 -3213 ($ *7)) (-15 -4015 (*7 $)) + (-15 -4026 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1213 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) + (-5 *1 (-120 *3)) (-4 *3 (-832)))) + ((*1 *2 *2) + (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1176))) + (-4 *3 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *1 (-571 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-573 (-401 (-933 *3)))) + (-4 *3 (-13 (-445) (-1019 (-552)) (-832) (-625 (-552)))) + (-5 *1 (-576 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -1681 *3) (|:| |special| *3))) (-5 *1 (-712 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1237 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) + (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) + (-5 *3 (-629 (-673 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1237 (-1237 *5))) (-4 *5 (-357)) (-4 *5 (-1030)) + (-5 *2 (-629 (-629 (-673 *5)))) (-5 *1 (-1010 *5)) + (-5 *3 (-629 (-673 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-629 *1)) (-4 *1 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-629 *1)) (-4 *1 (-1122))))) +(((*1 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-832)) (-4 *3 (-1019 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $)))))))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) + (-4 *6 (-367 *3)) (-5 *1 (-672 *3 *5 *6 *2)) + (-4 *2 (-671 *3 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) + (-4 *3 (-1191))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-756)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4174 *3) (|:| -1406 (-756)))) (-5 *1 (-574 *3)) + (-4 *3 (-537))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-832) (-600 (-1154)))) + (-4 *5 (-778)) (-5 *1 (-905 *3 *4 *5 *2)) (-4 *2 (-930 *3 *5 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (|has| *1 (-6 -4359)) (-4 *1 (-398)) + (-5 *2 (-902))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 + (-3 (|:| |overq| (-1150 (-401 (-552)))) + (|:| |overan| (-1150 (-48))) (|:| -4169 (-111)))) + (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5))))) +(((*1 *1 *1) (-4 *1 (-170))) + ((*1 *1 *1) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) + (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) - (-5 *1 (-710 *5 *2)) (-4 *5 (-357))))) + (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1213 *5)) + (-5 *1 (-712 *5 *2)) (-4 *5 (-357))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-5 *5 (-629 *8)) + (-4 *7 (-832)) (-4 *8 (-1030)) (-4 *9 (-930 *8 *6 *7)) + (-4 *6 (-778)) (-5 *2 (-1150 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1134 (-220))) (-5 *2 (-629 (-1136))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1136)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1136)) (-5 *1 (-96))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 (-673 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) + (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *3 (-552)) (-4 *1 (-850 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1030)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-1030))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1016)) + (-5 *1 (-734))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1134 *3))) (-5 *1 (-1134 *3)) (-4 *3 (-1191))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-629 (-933 *3))) (-4 *3 (-445)) + (-5 *1 (-354 *3 *4)) (-14 *4 (-629 (-1154))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-629 (-765 *3 (-846 *4)))) (-4 *3 (-445)) + (-14 *4 (-629 (-1154))) (-5 *1 (-614 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-933 (-401 (-552)))) (-5 *4 (-1154)) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-629 (-220))) (-5 *1 (-294))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-782 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-537)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *1 (-978 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-989 *3)) (-4 *3 (-1019 (-401 (-552))))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-884 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1213 *9)) (-4 *7 (-778)) (-4 *8 (-832)) (-4 *9 (-301)) + (-4 *10 (-930 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-629 (-1150 *10))) + (|:| |dterm| + (-629 (-629 (-2 (|:| -3325 (-756)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-629 *6)) (|:| |nlead| (-629 *10)))) + (-5 *1 (-763 *6 *7 *8 *9 *10)) (-5 *3 (-1150 *10)) (-5 *4 (-629 *6)) + (-5 *5 (-629 *10))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-5 *2 (-1150 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-401 *5)) (-4 *4 (-1195)) (-4 *5 (-1213 *4)) + (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1213 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1156 (-401 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-185)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-673 (-310 (-220)))) (-5 *3 (-629 (-1154))) + (-5 *4 (-1237 (-310 (-220)))) (-5 *1 (-200)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1078)) + (-4 *3 (-1191)) (-5 *1 (-288 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-303 *2)) (-4 *2 (-1078)) (-4 *2 (-1191)) + (-5 *1 (-288 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-629 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 (-1 *1 (-629 *1)))) + (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 (-1 *1 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-1 *1 (-629 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-1 *1 (-629 *1)))) + (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-1 *1 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1078)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1078)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1156 (-401 (-552)))) + (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 *1)) (-4 *1 (-368 *4 *5)) + (-4 *4 (-832)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-832)) (-4 *3 (-169)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1154)) (-5 *3 (-756)) (-5 *4 (-1 *1 (-629 *1))) + (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-756))) + (-5 *4 (-629 (-1 *1 (-629 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-832)) + (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-629 (-756))) + (-5 *4 (-629 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-832)) + (-4 *5 (-1030)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-629 (-113))) (-5 *3 (-629 *1)) (-5 *4 (-1154)) + (-4 *1 (-424 *5)) (-4 *5 (-832)) (-4 *5 (-600 (-528))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1154)) (-4 *1 (-424 *4)) (-4 *4 (-832)) + (-4 *4 (-600 (-528))))) + ((*1 *1 *1) + (-12 (-4 *1 (-424 *2)) (-4 *2 (-832)) (-4 *2 (-600 (-528))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-1154))) (-4 *1 (-424 *3)) (-4 *3 (-832)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1154)) (-4 *1 (-424 *3)) (-4 *3 (-832)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 *5)) (-4 *1 (-506 *4 *5)) + (-4 *4 (-1078)) (-4 *5 (-1191)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-818 *3)) (-4 *3 (-357)) (-5 *1 (-703 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-884 *2)) (-4 *2 (-1078)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-401 (-933 *4))) (-5 *3 (-1154)) (-4 *4 (-544)) + (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-629 (-1154))) (-5 *4 (-629 (-401 (-933 *5)))) + (-5 *2 (-401 (-933 *5))) (-4 *5 (-544)) (-5 *1 (-1024 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-288 (-401 (-933 *4)))) (-5 *2 (-401 (-933 *4))) + (-4 *4 (-544)) (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-288 (-401 (-933 *4))))) (-5 *2 (-401 (-933 *4))) + (-4 *4 (-544)) (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1134 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) (-4 *1 (-278))) + ((*1 *2 *3) + (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) + (-5 *2 (-629 (-2 (|:| -4158 (-756)) (|:| |logand| *4)))) + (-5 *1 (-314 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *1) + (-12 (-5 *2 (-648 *3 *4)) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-13 (-1030) (-702 (-401 (-552))))) + (-4 *5 (-832)) (-5 *1 (-1253 *4 *5 *2)) (-4 *2 (-1258 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-1257 *3 *4)) + (-4 *4 (-702 (-401 (-552)))) (-4 *3 (-832)) (-4 *4 (-169))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-830)) (-5 *1 (-1160 *3))))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-832)) (-5 *1 (-1162 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-1027 *5 *6))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-933 *4))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-1027 *4 *5))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-832) (-544))) + (-5 *2 (-844)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *5 *6)) (-4 *6 (-600 (-1154))) + (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *2 (-1143 (-629 (-933 *4)) (-629 (-288 (-933 *4))))) + (-5 *1 (-496 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1237 (-401 (-933 *4)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *4))))))) + (-5 *3 (-629 *7)) (-4 *4 (-13 (-301) (-144))) + (-4 *7 (-930 *4 *6 *5)) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *1 (-905 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-673 (-401 (-933 *4)))) (-4 *4 (-445)) + (-5 *2 (-629 (-3 (-401 (-933 *4)) (-1143 (-1154) (-933 *4))))) + (-5 *1 (-286 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-832)) (-5 *2 (-629 (-629 *4))) (-5 *1 (-1162 *4)) + (-5 *3 (-629 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-629 *10)) (-5 *5 (-111)) (-4 *10 (-1050 *6 *7 *8 *9)) + (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *9 (-1044 *6 *7 *8)) + (-5 *2 + (-629 + (-2 (|:| -2771 (-629 *9)) (|:| -3361 *10) (|:| |ineq| (-629 *9))))) + (-5 *1 (-969 *6 *7 *8 *9 *10)) (-5 *3 (-629 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-629 *10)) (-5 *5 (-111)) (-4 *10 (-1050 *6 *7 *8 *9)) + (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *9 (-1044 *6 *7 *8)) + (-5 *2 + (-629 + (-2 (|:| -2771 (-629 *9)) (|:| -3361 *10) (|:| |ineq| (-629 *9))))) + (-5 *1 (-1085 *6 *7 *8 *9 *10)) (-5 *3 (-629 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-756)) (-4 *6 (-357)) (-5 *4 (-1185 *6)) + (-5 *2 (-1 (-1134 *4) (-1134 *4))) (-5 *1 (-1245 *6)) + (-5 *5 (-1134 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1181 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1213 *6)) + (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) (-4 *8 (-1213 (-401 *7))) + (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) + (-4 *3 (-336 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) + (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1130 *3))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) (((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) (-14 *4 *2)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136)) (-5 *2 (-552)) (-5 *1 (-1173 *4)) + (-4 *4 (-1030))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1154))) (-5 *3 (-1154)) (-5 *1 (-528)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1154)) (-5 *1 (-689 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-629 (-1154))) (-5 *2 (-1154)) (-5 *1 (-689 *3)) + (-4 *3 (-600 (-528)))))) +(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-362))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) - (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) - (-4 *6 (-928 *3 *5 *4)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-756)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34)))))) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-756))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-4 *3 (-13 (-27) (-1176) (-424 *6) (-10 -8 (-15 -3213 ($ *7))))) + (-4 *7 (-830)) + (-4 *8 + (-13 (-1215 *3 *7) (-357) (-1176) + (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) + (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1136)) (-4 *9 (-964 *8)) + (-14 *10 (-1154))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1078)) (-4 *5 (-1078)) + (-5 *2 (-1 *5)) (-5 *1 (-667 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) + (-4 *4 (-1213 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-310 *5))) + (-5 *1 (-1107 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-401 (-933 *5)))) (-5 *4 (-629 (-1154))) + (-4 *5 (-13 (-301) (-832) (-144))) (-5 *2 (-629 (-629 (-310 *5)))) + (-5 *1 (-1107 *5))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1016)) (-5 *1 (-733))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-373))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-552))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-166 (-373))))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-166 (-373))))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-373)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-552)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-552)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-166 (-373))))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-166 (-373))))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-373)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-552)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-552)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) - (-5 *4 (-310 (-676))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) - (-5 *4 (-310 (-681))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) + (-5 *4 (-310 (-678))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) (-5 *4 (-310 (-683))) (-5 *1 (-324)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-933 (-552)))) + (-5 *4 (-310 (-685))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-676)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-678)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-681)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-683)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-683)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-310 (-685)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-676)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-678)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-681)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-683)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-683)))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-310 (-685)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-676))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-678))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-681))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-683))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-685))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-676))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-678))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-681))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-683))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-673 (-685))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-676))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-678))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-681))) (-5 *1 (-324)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-324)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) (-4 *1 (-946)))) -(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) + (-12 (-5 *2 (-1154)) (-5 *3 (-310 (-685))) (-5 *1 (-324)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1136)) (-5 *1 (-324)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1261 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-804 *3)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-756)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1161))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-4 *5 (-357)) (-5 *2 (-1134 (-1134 (-933 *5)))) + (-5 *1 (-1245 *5)) (-5 *4 (-1134 (-933 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1048 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-629 *4)) + (|:| |todo| (-629 (-2 (|:| |val| (-629 *3)) (|:| -3361 *4)))))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1191)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-756)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1030)) + (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-598 *3)) (-4 *3 (-832)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) + (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2771 (-629 *9)) (|:| -3361 *4) (|:| |ineq| (-629 *9)))) + (-5 *1 (-969 *6 *7 *8 *9 *4)) (-5 *3 (-629 *9)) + (-4 *4 (-1050 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) + (-4 *8 (-832)) (-4 *9 (-1044 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2771 (-629 *9)) (|:| -3361 *4) (|:| |ineq| (-629 *9)))) + (-5 *1 (-1085 *6 *7 *8 *9 *4)) (-5 *3 (-629 *9)) + (-4 *4 (-1050 *6 *7 *8 *9))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-301)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-440 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) + (-4 *4 (-301)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-440 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) + (-4 *4 (-301)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-239 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4)) + (-4 *4 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-1213 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1204 *3)) (-4 *3 (-1191))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1222 *3 *4 *5)) (-4 *3 (-13 (-357) (-832))) + (-14 *4 (-1154)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373))))) +(((*1 *2 *3) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-902)) (-5 *1 (-683)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-673 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-357)) (-5 *1 (-959 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-734))))) +(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191)))) ((*1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)))) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-367 *2)) (-4 *2 (-1191)))) ((*1 *1 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-931 *6)) (-5 *4 (-1152)) - (-5 *5 (-823 *7)) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-4 *7 (-13 (-1174) (-29 *6))) (-5 *1 (-219 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1148 *6)) (-5 *4 (-823 *6)) - (-4 *6 (-13 (-1174) (-29 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-219 *5 *6))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) -(((*1 *1 *1 *1) (-4 *1 (-946)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-220))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) - (-5 *1 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *4 (-1076))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) + (-12 (-5 *3 (-673 *4)) (-4 *4 (-357)) (-5 *2 (-1150 *4)) + (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-830)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *6 (-220)) + (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-736))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-373)) (-5 *1 (-1042))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-236)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-552)) (-5 *1 (-236))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-671 *5)) (-4 *5 (-1028)) (-5 *1 (-1032 *3 *4 *5)) - (-14 *3 (-754)) (-14 *4 (-754))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1152))))) -(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-602)))) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *3)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-629 *7) (-629 *7))) (-5 *2 (-629 *7)) + (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *6 (-832)) (-5 *1 (-958 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) + (-5 *2 (-1016)) (-5 *1 (-738))))) (((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) -(((*1 *1 *1) (-4 *1 (-613))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-4 *6 (-13 (-544) (-830))) - (-5 *2 (-627 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) - (-4 *5 (-1028)))) - ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) - ((*1 *2 *3) - (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1174))) - (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *2 (-627 *5)) (-5 *1 (-571 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-573 (-401 (-931 *4)))) - (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *2 (-627 (-310 *4))) (-5 *1 (-576 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-828)) (-4 *2 (-1125 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) - (-4 *2 (-1125 *4)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1250 (-1152) *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1028)) - (-5 *1 (-1008 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) -(((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *1 *1 *1) (-4 *1 (-744)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) +(((*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1) (-5 *1 (-1098)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-673 (-552))) (-5 *1 (-1088))))) +(((*1 *1 *1) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948))))) (((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-351 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-520 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-730))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-627 (-220))) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-725 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-412 *1)) (-4 *1 (-928 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-445)) (-5 *2 (-412 *3)) - (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) - (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1214 *4 *3)) - (-4 *3 (-13 (-1211 *4) (-544) (-10 -8 (-15 -1323 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-14 *5 (-627 (-1152))) - (-5 *2 - (-627 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6))))) - (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152)))))) + (-12 (-4 *3 (-1078)) (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 *2))) + (-5 *2 (-873 *3)) (-5 *1 (-1054 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-867 *3) (-600 *2)))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1136)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-257))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-933 *6)) (-5 *4 (-1154)) + (-5 *5 (-825 *7)) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-4 *7 (-13 (-1176) (-29 *6))) (-5 *1 (-219 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1150 *6)) (-5 *4 (-825 *6)) + (-4 *6 (-13 (-1176) (-29 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-219 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *2 (-1085 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) - (-5 *1 (-1136 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) - (-14 *4 (-1152)) (-14 *5 *3)))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *1) (-5 *1 (-844)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111)))) + (-12 (-5 *3 (-629 *6)) (-4 *1 (-930 *4 *5 *6)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) - (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) - (-4 *1 (-361 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-446 *3 *4 *5 *6)) - (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) - (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *3 *5 *6 *7)) - (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) - (-4 *7 (-1189)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *3 *5 *6)) - (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-627 - (-2 - (|:| -3998 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) - (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) - (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -2162 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373))))))) - (-5 *1 (-786))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-4 *1 (-930 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-756))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1016)) + (-5 *1 (-733))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1191)) + (-4 *3 (-367 *4)) (-4 *5 (-367 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-734))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1 *1) (-5 *1 (-1098)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) - (-5 *2 (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5))))) - (-5 *1 (-957 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) - (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-324))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) - (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) - (-4 *3 (-1042 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1152)) (-5 *3 (-428)) (-4 *5 (-830)) - (-5 *1 (-1082 *5 *4)) (-4 *4 (-424 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1235 (-627 (-552)))) (-5 *1 (-473)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) - ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155))))) -(((*1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-552)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-301)) - (-4 *9 (-928 *8 *6 *7)) - (-5 *2 (-2 (|:| -3144 (-1148 *9)) (|:| |polval| (-1148 *8)))) - (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)) (-5 *4 (-1148 *8))))) -(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) - (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-598 *5))) (-5 *3 (-1152)) (-4 *5 (-424 *4)) - (-4 *4 (-830)) (-5 *1 (-561 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) - (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-1211 *4)) (-4 *4 (-1028)) - (-5 *2 (-1235 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) - (-4 *5 (-1211 *4)) - (-5 *2 (-2 (|:| -3446 (-401 *5)) (|:| |coeff| (-401 *5)))) - (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) + (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *4 (-629 (-1154))) + (-5 *2 (-673 (-310 (-220)))) (-5 *1 (-200)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1078)) (-4 *6 (-881 *5)) (-5 *2 (-673 *6)) + (-5 *1 (-676 *5 *6 *3 *4)) (-4 *3 (-367 *6)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4368))))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1136)) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-301)) - (-5 *2 (-111)) (-5 *1 (-448 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) - (-5 *2 (-627 *4)) (-5 *1 (-1090 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-804))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) - (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *2) - (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *2 (-1042 *4 *5 *6)) (-5 *1 (-759 *4 *5 *6 *2 *3)) - (-4 *3 (-1048 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-627 (-627 (-552)))) - (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *6 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) - (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-166 *3)) (-5 *1 (-1178 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) - (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) - (-4 *6 (-336 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) - (-5 *3 (-552))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) - *6)) - (-4 *6 (-357)) (-4 *7 (-1211 *6)) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 - (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) - (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) - (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-627 (-1152))) (-4 *2 (-169)) - (-4 *4 (-233 (-1383 *5) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *4)) - (-2 (|:| -4153 *3) (|:| -4067 *4)))) - (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-830)) - (-4 *7 (-928 *2 *4 (-844 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-1226 *3))))) -(((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-483)) (-5 *3 (-933)) (-5 *1 (-525)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-933)) (-4 *1 (-750 *2)) (-4 *2 (-1076))))) + (-2 (|:| |solns| (-629 *5)) + (|:| |maps| (-629 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1106 *3 *5)) (-4 *3 (-1213 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-759)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) - (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) - (-4 *3 (-1211 *4)) (-5 *2 (-552)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) - (-5 *2 (-552)) (-5 *1 (-1092 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) - (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-1134)) - (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) - (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-552)) - (-5 *1 (-1093 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 (-401 (-931 *6)))) - (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-552)) - (-5 *1 (-1093 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1152)) - (-5 *5 (-1134)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) -(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1078)) (-4 *6 (-1078)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-668 *4 *5 *6)) (-4 *5 (-1078))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-886 *3)) (-4 *3 (-1078))))) (((*1 *1 *2) - (-12 (-5 *2 (-1250 (-1152) *3)) (-4 *3 (-1028)) (-5 *1 (-1257 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *1 (-1259 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-5 *1 (-886 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) - (-5 *2 (-2 (|:| -4267 (-627 *6)) (|:| -2849 (-627 *6))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-4 *2 (-1211 *5)) - (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-373)) (-5 *1 (-1019))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) - (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) - ((*1 *2 *1) - (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) - (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) - (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) - (-5 *2 (-401 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1 *1) (-5 *1 (-1098)))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-683))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1154)) + (-4 *5 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-2 (|:| -1411 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-671 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-169)) (-4 *2 (-1211 *4)) (-5 *1 (-174 *4 *2 *3)) - (-4 *3 (-707 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-401 (-931 *5)))) (-5 *4 (-1152)) - (-5 *2 (-931 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-5 *2 (-931 *4)) - (-5 *1 (-286 *4)) (-4 *4 (-445)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 (-166 (-401 (-552))))) - (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *4)) - (-4 *4 (-13 (-357) (-828))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *4 (-1152)) - (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *5)) - (-4 *5 (-13 (-357) (-828))))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-931 (-401 (-552)))) - (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *4 (-1152)) - (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *5)) - (-4 *5 (-13 (-357) (-828)))))) + (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *3 (-629 (-257))) + (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-257)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1072 (-373)))) (-5 *1 (-461))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-1235 *4)) - (-5 *1 (-797 *4 *3)) (-4 *3 (-638 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) - (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) - ((*1 *1 *1 *1) - (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) - ((*1 *1 *1 *1) (-4 *1 (-357))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-830)) - (-4 *1 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-528))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-709) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-169)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-709) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)) (-4 *2 (-357)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-700 *4)) - (-4 *3 (|SubsetCategory| (-709) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-169)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)) - (-4 *2 (|SubsetCategory| (-709) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-357)) - (-4 *2 (-1028)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-754))) - (-14 *5 (-754)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) + (-12 (-5 *3 (-629 (-220))) (-5 *4 (-756)) (-5 *2 (-673 (-220))) + (-5 *1 (-299))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-930 (-401 (-933 *6)) *5 *4)) + (-5 *1 (-717 *5 *4 *6 *2)) (-4 *5 (-778)) + (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) + (-4 *6 (-544))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -3447 (-629 *7)))) + (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(((*1 *1) (-5 *1 (-324)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) + (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-930 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) - (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-930 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $))))))))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-830)) - (-4 *4 (-776)) (-14 *6 (-627 *3)) - (-5 *1 (-1247 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-928 *2 *4 *3)) - (-14 *7 (-627 (-754))) (-14 *8 (-754)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1028)) - (-4 *3 (-826))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-627 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) - (-4 *7 (-1211 *6)) - (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *2) - (-12 (-14 *4 (-754)) (-4 *5 (-1189)) (-5 *2 (-132)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-169)))) - ((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) - (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-959 *3)) (-4 *3 (-1028)) (-5 *2 (-900)))) - ((*1 *2) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) - (-5 *1 (-883 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) -(((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) - (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1651 *5)))) - (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-638 *5)) - (-4 *6 (-638 (-401 *5)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) - (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-754)) - (-4 *3 (-13 (-709) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) - (-5 *1 (-241 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-132))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-209 *2)) + (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) - (-15 -4103 ((-1240) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *3 (-598 $)) $)) + (-15 -4026 ((-1103 *3 (-598 $)) $)) + (-15 -3213 ($ (-1103 *3 (-598 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) + (-15 -4026 ((-1103 *4 (-598 $)) $)) + (-15 -3213 ($ (-1103 *4 (-598 $))))))) + (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-598 *2))) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *4 (-598 $)) $)) + (-15 -4026 ((-1103 *4 (-598 $)) $)) + (-15 -3213 ($ (-1103 *4 (-598 $))))))) + (-4 *4 (-544)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832)))) ((*1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-922 (-220))) (-5 *2 (-220)) (-5 *1 (-1185)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-552)))) - (-4 *4 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))) - (-4 *3 (-544)) (-5 *1 (-1214 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-4 *5 (-830)) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-528))) (-5 *1 (-528))))) + (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) - (-4 *5 (-865 (-552))) - (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) + (|partial| -12 (-5 *4 (-1154)) (-4 *5 (-600 (-873 (-552)))) + (-4 *5 (-867 (-552))) + (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) - (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-627 (-111))) (-5 *7 (-671 (-220))) - (-5 *8 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) - (-5 *2 (-1014)) (-5 *1 (-737))))) + (-5 *1 (-555 *5 *3)) (-4 *3 (-615)) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1154)) (-5 *4 (-825 *2)) (-4 *2 (-1117)) + (-4 *2 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-600 (-873 (-552)))) (-4 *5 (-867 (-552))) + (-4 *5 (-13 (-832) (-1019 (-552)) (-445) (-625 (-552)))) + (-5 *1 (-555 *5 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) - (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *7))) - (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1211 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-209 *2)) - (-4 *2 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) - (-15 -4103 ((-1240) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) - (-4 *2 (-1211 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-528))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-25))))) + (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *4 (-756)) + (-5 *2 (-673 (-220))) (-5 *1 (-261))))) (((*1 *2 *3) - (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)) (-5 *3 (-1134))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-627 (-498))) (-5 *2 (-498)) (-5 *1 (-476))))) -(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) -(((*1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-830)) - (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1095)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-668 *4 *5 *6)) (-4 *4 (-1078))))) (((*1 *2 *3) (-12 (-5 *3 - (-627 - (-2 (|:| -4154 (-754)) - (|:| |eqns| - (-627 - (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) - (|:| |cols| (-627 (-552)))))) - (|:| |fgb| (-627 *7))))) - (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) - (-5 *1 (-903 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-5 *2 (-552)) - (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1211 *5)) - (-4 *6 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1211 *4)) - (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-671 (-552))) (-5 *3 (-627 (-552))) (-5 *1 (-1086))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-285))) - ((*1 *1) (-5 *1 (-842))) - ((*1 *1) - (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) - (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1061))) - ((*1 *1) - (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34))))) - ((*1 *1) (-5 *1 (-1155))) ((*1 *1) (-5 *1 (-1156)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) - (-4 *2 (-233 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-1152)) (-4 *6 (-424 *5)) - (-4 *5 (-830)) (-5 *2 (-627 (-598 *6))) (-5 *1 (-561 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) - (-4 *7 (-1211 (-401 *6))) (-5 *2 (-627 (-931 *5))) - (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) - (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *4 (-357)) - (-5 *2 (-627 (-931 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-883 *4)) - (-4 *4 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1184 *3)) - (-5 *1 (-773 *3)) (-4 *3 (-953)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-111)) - (-5 *1 (-1184 *2)) (-4 *2 (-953))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2791 *7) (|:| |sol?| (-111))) - (-552) *7)) - (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) - (-5 *3 (-401 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-562 *7 *8))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-778)) (-4 *2 (-930 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) + (-4 *4 (-445)) (-4 *6 (-832))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-855)) + (-5 *5 (-902)) (-5 *6 (-629 (-257))) (-5 *2 (-1238)) + (-5 *1 (-1241)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-629 (-257))) + (-5 *2 (-1238)) (-5 *1 (-1241))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-732))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946))))) -(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) - (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) - (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-129)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-355 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-380 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-631 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-301)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *1 *2) - (-12 (-5 *2 (-900)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-357)) (-14 *5 (-972 *3 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-627 (-598 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1211 (-166 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-407 *3 *2 *4 *5)) - (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1017 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) - (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) - (-14 *6 (-1235 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) - (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-487)))) (-5 *1 (-487)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-627 (-598 (-487)))) - (-5 *1 (-487)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) - (-5 *1 (-520 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-707 *4 *2)) (-4 *2 (-1211 *4)) - (-5 *1 (-758 *4 *2 *5 *3)) (-4 *3 (-1211 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) - ((*1 *1 *1) (-4 *1 (-1037)))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) - (-4 *3 (-13 (-424 *4) (-981)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) - (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) - (-4 *1 (-361 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) - (-4 *1 (-364 *4 *5)) (-4 *5 (-1211 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1211 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) - (-5 *1 (-1191))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 (-111) (-627 *1))) - (-4 *1 (-1048 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-187)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) -(((*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1076) (-34))) - (-5 *2 (-111)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-1167))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-627 (-552))) (-5 *3 (-671 (-552))) (-5 *1 (-1086))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) - (-5 *2 (-627 (-627 (-922 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *4 (-1028)) - (-4 *1 (-1110 *4)))) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *1 (-789 *4 *2)) (-4 *2 (-13 (-29 *4) (-1176) (-940))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *3) + (-12 (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1030))))) +(((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-154))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-756)) (-4 *3 (-1030)) (-4 *1 (-671 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 (-922 *3)))) (-4 *3 (-1028)) - (-4 *1 (-1110 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-111)) - (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) - (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-627 (-168))) - (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-627 (-627 (-922 *5)))) (-5 *3 (-627 (-168))) - (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-111))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) + (-12 (-5 *2 (-756)) (-4 *1 (-1235 *3)) (-4 *3 (-23)) (-4 *3 (-1191))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 *4)) (-4 *4 (-1028)) (-4 *2 (-1211 *4)) - (-5 *1 (-437 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-401 (-1148 (-310 *5)))) (-5 *3 (-1235 (-310 *5))) - (-5 *4 (-552)) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-1106 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-808))))) -(((*1 *1) (-5 *1 (-1040)))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1228 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1199 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1197 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1220 *3 *4)) (-4 *5 (-964 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1139 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1140 *3)))) + ((*1 *1 *1) (-4 *1 (-1179)))) (((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) - (-5 *1 (-697 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-52)) (-5 *1 (-812))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1) (-5 *1 (-616)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) - (-4 *4 (-343)) (-5 *2 (-671 *4)) (-5 *1 (-340 *4))))) -(((*1 *1) (-5 *1 (-285)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1102 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) - (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *1 (-1102 *4 *3 *5)) - (-4 *5 (-928 *4 (-523 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1183 *4))) (-5 *3 (-1152)) (-5 *1 (-1183 *4)) - (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-627 (-552))) - (|:| |cols| (-627 (-552))))) - (-5 *4 (-671 *12)) (-5 *5 (-627 (-401 (-931 *9)))) - (-5 *6 (-627 (-627 *12))) (-5 *7 (-754)) (-5 *8 (-552)) - (-4 *9 (-13 (-301) (-144))) (-4 *12 (-928 *9 *11 *10)) - (-4 *10 (-13 (-830) (-600 (-1152)))) (-4 *11 (-776)) - (-5 *2 - (-2 (|:| |eqzro| (-627 *12)) (|:| |neqzro| (-627 *12)) - (|:| |wcond| (-627 (-931 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *9)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *9))))))))) - (-5 *1 (-903 *9 *10 *11 *12))))) -(((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1189)) (-5 *2 (-552))))) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544))))) (((*1 *2 *3) - (-12 (-4 *1 (-783)) - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) - (-4 *2 (-1028))))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) + ((*1 *1 *1) (-4 *1 (-1122)))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-907))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1008 *5 *6 *7 *3))) (-5 *1 (-1008 *5 *6 *7 *3)) + (-4 *3 (-1044 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-629 *6)) (-4 *1 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1050 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1124 *5 *6 *7 *3))) (-5 *1 (-1124 *5 *6 *7 *3)) + (-4 *3 (-1044 *5 *6 *7))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) (((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) - (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-627 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) - (-5 *1 (-205))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) -(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-754)) (-4 *5 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 *4))) (-5 *3 (-1148 *4)) - (-4 *4 (-888)) (-5 *1 (-645 *4))))) + (-12 (-5 *2 (-168)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 *5)) (-4 *5 (-357)) + (-4 *5 (-544)) (-5 *2 (-1237 *5)) (-5 *1 (-624 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 *5)) + (-4107 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1237 (-401 *5))) + (-5 *1 (-624 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) - (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5))))) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1721 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) (((*1 *2 *3) - (-12 (-5 *3 (-931 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1078)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-668 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) - (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1005 *3)) (-4 *3 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-853)))) - ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *5 (-900)) - (-5 *2 (-1240)) (-5 *1 (-461)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-853)) (-5 *5 (-900)) - (-5 *2 (-1240)) (-5 *1 (-461))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-627 (-944))) (-5 *1 (-285))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) - (-4 *2 (-830))))) -(((*1 *2) - (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *2) - (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) - (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) - (-5 *1 (-391)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) - (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) - (-5 *1 (-391)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-627 (-1152))) (-5 *5 (-1155)) (-5 *3 (-1152)) - (-5 *2 (-1080)) (-5 *1 (-391))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 (-754))) (-5 *1 (-948 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52))))) -(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) - (-4 *3 (-630 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) - (-4 *3 (-630 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) - ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028))))) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-1150 *4)) + (-5 *1 (-520 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-756)) (-4 *5 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169)))) + ((*1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-4 *1 (-671 *3 *2 *4)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1120 *2 *3)) (-14 *2 (-756)) (-4 *3 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-236))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-629 (-924 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (|has| *1 (-6 -4369)) (-4 *1 (-1225 *3)) + (-4 *3 (-1191))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-552)) (-5 *1 (-199))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-757)) (-5 *1 (-113))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1148 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-357)) (-4 *7 (-1211 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) - (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) - (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) + (-5 *2 (-373)) (-5 *1 (-187))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1134 *3))) (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1030))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) - (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-1134 *7))) (-4 *6 (-832)) + (-4 *7 (-930 *5 (-523 *6) *6)) (-4 *5 (-1030)) + (-5 *2 (-1 (-1134 *7) *7)) (-5 *1 (-1104 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *2) + (-12 (-4 *3 (-1030)) (-5 *2 (-939 (-697 *3 *4))) (-5 *1 (-697 *3 *4)) + (-4 *4 (-1213 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-793 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-401 *6))) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) - (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-12 (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-793 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-636 *6 (-401 *6))) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) - (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6)))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-5 *1 (-1052 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1076)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) - (-5 *1 (-1052 *3 *4 *2)) - (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) + (-2 (|:| |minor| (-629 (-902))) (|:| -2771 *3) + (|:| |minors| (-629 (-629 (-902)))) (|:| |ops| (-629 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-902)) (-4 *3 (-640 *5))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-401 *6)) - (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) - (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) - (-5 *1 (-847 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) - (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) - (-5 *1 (-847 *5 *6 *7))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-552)) (-5 *2 (-842)) - (-5 *1 (-631 *5 *6 *7)) (-4 *5 (-1076)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-842)) (-5 *1 (-834 *3 *4 *5)) (-4 *3 (-1028)) - (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-842)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-842)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-842)) (-5 *1 (-1148 *3)) (-4 *3 (-1028))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) - (-4 *3 (-1076)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-230 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) - (-5 *1 (-720 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) + (|partial| -12 (-5 *3 (-756)) (-4 *5 (-357)) (-5 *2 (-171 *6)) + (-5 *1 (-848 *5 *4 *6)) (-4 *4 (-1228 *5)) (-4 *6 (-1213 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-220))) - (-5 *1 (-461))))) -(((*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1148 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1148 *3))))) -(((*1 *1 *1) (-5 *1 (-842))) - ((*1 *2 *1) - (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1152))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) -(((*1 *1 *1) - (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) - (-4 *4 (-260 *3)) (-4 *5 (-776))))) + (-12 (-5 *3 (-1237 (-673 *4))) (-4 *4 (-169)) + (-5 *2 (-1237 (-673 (-933 *4)))) (-5 *1 (-184 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 (-931 *6))) (-4 *6 (-544)) - (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) - (-4 *5 (-776)) - (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1189)) (-5 *2 (-754)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-656 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) - (-4 *4 (-830)) (-5 *1 (-1160 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) - (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-956 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) - (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) - ((*1 *2 *3) - (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *2)) - (-4 *3 (-13 (-1076) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1246))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) - (-5 *2 (-627 *3)) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) - (-14 *7 (-900))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-269))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1899 "void"))) + (-5 *1 (-431))))) +(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-810))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) - (-5 *1 (-672 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-627 (-1148 *13))) (-5 *3 (-1148 *13)) - (-5 *4 (-627 *12)) (-5 *5 (-627 *10)) (-5 *6 (-627 *13)) - (-5 *7 (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *13))))) - (-5 *8 (-627 (-754))) (-5 *9 (-1235 (-627 (-1148 *10)))) - (-4 *12 (-830)) (-4 *10 (-301)) (-4 *13 (-928 *10 *11 *12)) - (-4 *11 (-776)) (-5 *1 (-690 *11 *12 *10 *13))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) - *6)) - (-4 *6 (-357)) (-4 *7 (-1211 *6)) - (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) - (-5 *1 (-741))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-598 *4)) (-5 *6 (-1148 *4)) - (-4 *4 (-13 (-424 *7) (-27) (-1174))) - (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1148 *4))) - (-4 *4 (-13 (-424 *7) (-27) (-1174))) - (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-12 (-5 *3 (-629 (-474 *4 *5))) (-14 *4 (-629 (-1154))) + (-4 *5 (-445)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-830)) (-4 *2 (-830)) - (-5 *1 (-597 *2 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *1 (-646 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-646 *3 *4)) (-5 *1 (-1255 *3 *4)) - (-4 *3 (-830)) (-4 *4 (-169))))) -(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-132))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) - (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) - (-4 *2 (-669 *3 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))))) - ((*1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) - (-14 *4 (-627 (-1152))))) - ((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) - (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-4 *2 (-336 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-169)))) - ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-707 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *1 *1) (-4 *1 (-170))) - ((*1 *1 *1) - (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) + (-2 (|:| |gblist| (-629 (-242 *4 *5))) + (|:| |gvlist| (-629 (-552))))) + (-5 *1 (-617 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-552)) (-5 *1 (-236)))) ((*1 *2 *3) - (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1132 *3))) (-5 *1 (-1132 *3)) (-4 *3 (-1189))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-4 *4 (-445)) - (-5 *2 (-627 (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4))))) - (-5 *1 (-286 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) - (-5 *2 (-1 *5)) (-5 *1 (-665 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) - (-4 *5 (-830)) (-5 *2 (-931 *4)))) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-552)) (-5 *1 (-236))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1030)) (-5 *1 (-50 *2 *3)) (-14 *3 (-629 (-1154))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) - (-4 *5 (-830)) (-5 *2 (-931 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) - (-5 *2 (-931 *4)))) + (-12 (-5 *3 (-629 (-902))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) + (-14 *4 (-902)) (-14 *5 (-974 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) + (-4 *3 (-13 (-1030) (-832))) (-14 *4 (-629 (-1154))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-129)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) - (-5 *2 (-931 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-627 *4)) - (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) - (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-373)) (-5 *1 (-1040))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) - (-5 *1 (-731))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -2240 (-627 *7)))) - (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-168)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269))))) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1078)) (-4 *2 (-1030)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-609 *2 *4)) + (-4 *4 (-1213 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-693 *2)) (-4 *2 (-1030)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1030)) (-5 *1 (-720 *2 *3)) (-4 *3 (-711)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *5)) (-5 *3 (-629 (-756))) (-4 *1 (-725 *4 *5)) + (-4 *4 (-1030)) (-4 *5 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *2)) (-4 *4 (-1030)) + (-4 *2 (-832)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-756)) (-4 *1 (-834 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 *6)) (-5 *3 (-629 (-756))) (-4 *1 (-930 *4 *5 *6)) + (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *6 (-832)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-930 *4 *5 *2)) (-4 *4 (-1030)) + (-4 *5 (-778)) (-4 *2 (-832)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *2 (-930 *4 (-523 *5) *5)) + (-5 *1 (-1104 *4 *5 *2)) (-4 *4 (-1030)) (-4 *5 (-832)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-933 *4)) (-5 *1 (-1185 *4)) + (-4 *4 (-1030))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-629 (-552))) (-5 *2 (-756)) (-5 *1 (-577))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-627 *2)) (-5 *1 (-112 *2)) - (-4 *2 (-1076)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-629 *2)) (-5 *1 (-112 *2)) + (-4 *2 (-1078)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-627 *4))) (-4 *4 (-1076)) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-629 *4))) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1078)) (-5 *1 (-112 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-627 *4))) - (-5 *1 (-112 *4)) (-4 *4 (-1076)))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-629 *4))) + (-5 *1 (-112 *4)) (-4 *4 (-1078)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) - (-5 *1 (-697 *3 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-632 *3)) (-4 *3 (-1030)) + (-5 *1 (-699 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-819 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1186 *3)) (-4 *3 (-955))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-855)) (-5 *3 (-629 (-257))) (-5 *1 (-255))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-1044 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1237 (-1154))) (-5 *3 (-1237 (-446 *4 *5 *6 *7))) + (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-902)) + (-14 *6 (-629 (-1154))) (-14 *7 (-1237 (-673 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-1237 (-446 *4 *5 *6 *7))) + (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-902)) + (-14 *6 (-629 *2)) (-14 *7 (-1237 (-673 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) + (-14 *6 (-1237 (-673 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 (-1154))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-902)) (-14 *5 (-629 (-1154))) + (-14 *6 (-1237 (-673 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1154)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-902)) (-14 *5 (-629 *2)) (-14 *6 (-1237 (-673 *3))))) + ((*1 *1) + (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-902)) + (-14 *4 (-629 (-1154))) (-14 *5 (-1237 (-673 *2)))))) +(((*1 *2) + (-12 + (-5 *2 + (-1237 (-629 (-2 (|:| -2925 (-891 *3)) (|:| -2840 (-1098)))))) + (-5 *1 (-345 *3 *4)) (-14 *3 (-902)) (-14 *4 (-902)))) + ((*1 *2) + (-12 (-5 *2 (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098)))))) + (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1150 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1237 (-629 (-2 (|:| -2925 *3) (|:| -2840 (-1098)))))) + (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-902))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-430))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-120 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3) + (-12 (-4 *4 (-778)) + (-4 *5 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $))))) (-4 *6 (-544)) + (-5 *2 (-2 (|:| -3305 (-933 *6)) (|:| -3341 (-933 *6)))) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-930 (-401 (-933 *6)) *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1213 *3)) + (-4 *5 (-709 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1228 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1228 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1130 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1030))))) (((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5))))) + (-12 (-5 *2 (-2 (|:| -3784 *1) (|:| -4355 *1) (|:| |associate| *1))) + (-4 *1 (-544))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1154)) (-5 *2 (-431)) (-5 *1 (-1158))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) - (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) - (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) - (-5 *2 (-1014)) (-5 *1 (-737))))) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-629 *5))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-547))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-774)) (-5 *5 (-552))))) (((*1 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-933 (-552))) (-5 *3 (-1154)) + (-5 *4 (-1072 (-401 (-552)))) (-5 *1 (-30))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-172))) (-5 *1 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-814))))) +(((*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-1078)))) + ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-609 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-720 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-711)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) + (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) + ((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1222 *4 *5 *6)) + (|:| |%expon| (-313 *4 *5 *6)) + (|:| |%expTerms| + (-629 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) + (|:| |%type| (-1136)))) + (-5 *1 (-1223 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1176) (-424 *3))) + (-14 *5 (-1154)) (-14 *6 *4)))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) +(((*1 *1 *2) + (-12 (-5 *2 (-673 *5)) (-4 *5 (-1030)) (-5 *1 (-1034 *3 *4 *5)) + (-14 *3 (-756)) (-14 *4 (-756))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-141))))) +(((*1 *2 *1) + (-12 (-5 *2 (-844)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-756)) + (-14 *4 (-756)) (-4 *5 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1136))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4370 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1030)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1213 *2)) + (-4 *4 (-671 *2 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) (((*1 *2 *1) - (-12 (-5 *2 (-922 *4)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) + (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1176) (-29 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-804 *3)) (-4 *3 (-832)) (-5 *1 (-656 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *3)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) + (-4 *3 (-163 *6)) (-4 (-933 *6) (-867 *5)) + (-4 *6 (-13 (-867 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-870 *4 *1)) (-5 *3 (-873 *4)) (-4 *1 (-867 *4)) + (-4 *4 (-1078)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *6)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) + (-4 *6 (-13 (-1078) (-1019 *3))) (-4 *3 (-867 *5)) + (-5 *1 (-912 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) + (-4 *3 (-13 (-424 *6) (-600 *4) (-867 *5) (-1019 (-598 $)))) + (-5 *4 (-873 *5)) (-4 *6 (-13 (-544) (-832) (-867 *5))) + (-5 *1 (-913 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 (-552) *3)) (-5 *4 (-873 (-552))) (-4 *3 (-537)) + (-5 *1 (-914 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1078)) + (-4 *6 (-13 (-832) (-1019 (-598 $)) (-600 *4) (-867 *5))) + (-5 *4 (-873 *5)) (-5 *1 (-915 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-866 *5 *6 *3)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) + (-4 *6 (-867 *5)) (-4 *3 (-650 *6)) (-5 *1 (-916 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-870 *6 *3) *8 (-873 *6) (-870 *6 *3))) + (-4 *8 (-832)) (-5 *2 (-870 *6 *3)) (-5 *4 (-873 *6)) + (-4 *6 (-1078)) (-4 *3 (-13 (-930 *9 *7 *8) (-600 *4))) + (-4 *7 (-778)) (-4 *9 (-13 (-1030) (-832) (-867 *6))) + (-5 *1 (-917 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) + (-4 *3 (-13 (-930 *8 *6 *7) (-600 *4))) (-5 *4 (-873 *5)) + (-4 *7 (-867 *5)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *8 (-13 (-1030) (-832) (-867 *5))) + (-5 *1 (-917 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *3)) (-4 *5 (-1078)) (-4 *3 (-973 *6)) + (-4 *6 (-13 (-544) (-867 *5) (-600 *4))) (-5 *4 (-873 *5)) + (-5 *1 (-920 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 (-1154))) (-5 *3 (-1154)) (-5 *4 (-873 *5)) + (-4 *5 (-1078)) (-5 *1 (-921 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-629 (-873 *7))) (-5 *5 (-1 *9 (-629 *9))) + (-5 *6 (-1 (-870 *7 *9) *9 (-873 *7) (-870 *7 *9))) (-4 *7 (-1078)) + (-4 *9 (-13 (-1030) (-600 (-873 *7)) (-1019 *8))) + (-5 *2 (-870 *7 *9)) (-5 *3 (-629 *9)) (-4 *8 (-13 (-1030) (-832))) + (-5 *1 (-922 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1154))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-1110 *4 *2)) + (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4368) (-6 -4369)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-832)) (-4 *3 (-1191)) (-5 *1 (-1110 *3 *2)) + (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4368) (-6 -4369))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) + (-4 *5 (-832)) (-5 *2 (-933 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-725 *4 *5)) (-4 *4 (-1030)) + (-4 *5 (-832)) (-5 *2 (-933 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-1228 *4)) (-4 *4 (-1030)) + (-5 *2 (-933 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-1228 *4)) (-4 *4 (-1030)) + (-5 *2 (-933 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-242 *3 *4)) + (-14 *3 (-629 (-1154))) (-4 *4 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-14 *3 (-629 (-1154))) + (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1030)) + (-4 *5 (-233 (-2657 *3) (-756))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-474 *3 *4)) + (-14 *3 (-629 (-1154))) (-4 *4 (-1030))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1078)) (-5 *2 (-870 *3 *5)) (-5 *1 (-866 *3 *4 *5)) + (-4 *3 (-1078)) (-4 *5 (-650 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-805)) (-14 *5 (-1154)) (-5 *2 (-629 (-1210 *5 *4))) + (-5 *1 (-1092 *4 *5)) (-5 *3 (-1210 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-778)) (-4 *6 (-832)) (-4 *3 (-544)) + (-4 *7 (-930 *3 *5 *6)) + (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *8) (|:| |radicand| *8))) + (-5 *1 (-934 *5 *6 *3 *7 *8)) (-5 *4 (-756)) + (-4 *8 + (-13 (-357) + (-10 -8 (-15 -4015 (*7 $)) (-15 -4026 (*7 $)) (-15 -3213 ($ *7)))))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-1213 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-756)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) - (-5 *2 (-627 (-2 (|:| -3488 *5) (|:| -1651 *3)))) - (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) - (-4 *7 (-638 (-401 *6)))))) + (|partial| -12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) + (-5 *1 (-256 *2)) (-4 *2 (-1191)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-629 (-257))) (-5 *4 (-1154)) (-5 *2 (-52)) + (-5 *1 (-257))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-756)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1213 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) + (-5 *5 (-111)) (-4 *8 (-1044 *6 *7 *4)) (-4 *9 (-1050 *6 *7 *4 *8)) + (-4 *6 (-445)) (-4 *7 (-778)) (-4 *4 (-832)) + (-5 *2 (-629 (-2 (|:| |val| *8) (|:| -3361 *9)))) + (-5 *1 (-1086 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *6 (-220)) + (-5 *3 (-552)) (-5 *2 (-1016)) (-5 *1 (-737))))) (((*1 *2 *1) - (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) + (-12 (-4 *2 (-1191)) (-5 *1 (-854 *3 *2)) (-4 *3 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-673 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) + (-5 *4 (-220)) (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) + (-12 (-5 *2 (-1150 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *1 (-727 *4 *5 *6 *7)) (-4 *7 (-930 *6 *4 *5))))) (((*1 *2 *1) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) + (-5 *2 (-629 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-629 *2))) (-5 *4 (-629 *5)) + (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1228 *5)) + (-5 *1 (-1230 *5 *2))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-627 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-552))))) - (-5 *1 (-412 *3)) (-4 *3 (-544)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-754)) (-4 *3 (-343)) (-4 *5 (-1211 *3)) - (-5 *2 (-627 (-1148 *3))) (-5 *1 (-490 *3 *5 *6)) - (-4 *6 (-1211 *5))))) + (-3 (|:| I (-310 (-552))) (|:| -3220 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1153)))) + (-5 *1 (-1153))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *1 *1) (-5 *1 (-159))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-1177 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1078))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *3 *3 *3) + (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) - ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1076)) - (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-285))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-172)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-1061))))) + (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-274)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-552) (-220) (-1154) (-1136) (-1159))) + (-5 *1 (-1159))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683)))) + ((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-683))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-5 *2 (-1240)) (-5 *1 (-1155)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) - (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) - (-5 *1 (-1155)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1152)) - (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) - (-5 *1 (-1155))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) + (|partial| -12 (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) + (-4 *5 (-424 *4)) (-5 *2 (-412 (-1150 (-401 (-552))))) + (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1213 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-544) (-144))) - (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-1205 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + (-12 + (-5 *3 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))))) + (-5 *2 (-1016)) (-5 *1 (-299)))) ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1017 (-552))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1189)) - (-4 *5 (-1189)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-754)) - (-4 *7 (-1189)) (-4 *5 (-1189)) (-5 *2 (-235 *6 *5)) - (-5 *1 (-234 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1189)) (-4 *5 (-1189)) - (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1076)) (-4 *5 (-1076)) - (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-627 *6)) (-4 *6 (-1189)) - (-4 *5 (-1189)) (-5 *2 (-627 *5)) (-5 *1 (-625 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-937 *6)) (-4 *6 (-1189)) - (-4 *5 (-1189)) (-5 *2 (-937 *5)) (-5 *1 (-936 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1132 *6)) (-4 *6 (-1189)) - (-4 *3 (-1189)) (-5 *2 (-1132 *3)) (-5 *1 (-1130 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1235 *6)) (-4 *6 (-1189)) - (-4 *5 (-1189)) (-5 *2 (-1235 *5)) (-5 *1 (-1234 *6 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-754)) (-5 *3 (-922 *4)) (-4 *1 (-1110 *4)) - (-4 *4 (-1028)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-922 (-220))) (-5 *2 (-1240)) - (-5 *1 (-1237))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) + (-12 + (-5 *3 + (-2 (|:| -3102 (-373)) (|:| -4290 (-1136)) + (|:| |explanations| (-629 (-1136))) (|:| |extra| (-1016)))) + (-5 *2 (-1016)) (-5 *1 (-299))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) - (|:| |wcond| (-627 (-931 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) - (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) + (-12 (-5 *2 (-111)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-1078)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1176)))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-61 *3)) (-14 *3 (-1154)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-68 *3)) (-14 *3 (-1154)))) + ((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-71 *3)) (-14 *3 (-1154)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1242)))) + ((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1242)) (-5 *1 (-391)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-5 *4 (-627 (-1152))) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) - (|:| |wcond| (-627 (-931 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) - (-5 *1 (-903 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1136)) (-5 *4 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) + ((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-1116)))) ((*1 *2 *3) - (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) - (|:| |wcond| (-627 (-931 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) - (-5 *1 (-903 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *9)) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) - (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) - (-4 *8 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) - (|:| |wcond| (-627 (-931 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) - (-5 *1 (-903 *6 *7 *8 *9)) (-5 *4 (-627 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) - (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) - (|:| |wcond| (-627 (-931 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) - (-5 *1 (-903 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-5 *4 (-900)) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) - (-5 *2 - (-627 - (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) - (|:| |wcond| (-627 (-931 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) - (-5 *1 (-903 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 *9)) (-5 *5 (-1134)) - (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-1134)) - (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *8)) (-5 *4 (-1134)) (-4 *8 (-928 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) - (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 *10)) (-5 *5 (-900)) - (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) - (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) - (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) - (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *9)) (-5 *4 (-900)) (-5 *5 (-1134)) - (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) - (-5 *1 (-903 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) + (-12 (-5 *3 (-629 (-844))) (-5 *2 (-1242)) (-5 *1 (-1116))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1707 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-547))))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-830)) (-4 *4 (-357)) (-5 *2 (-756)) + (-5 *1 (-926 *4 *5)) (-4 *5 (-1213 *4))))) (((*1 *2) - (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + (-12 (-4 *4 (-169)) (-5 *2 (-1150 (-933 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) - (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-754)) (-5 *5 (-627 *3)) (-4 *3 (-301)) (-4 *6 (-830)) - (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-609 *6 *7 *3 *8)) - (-4 *8 (-928 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-139 *3 *4 *2)) - (-4 *2 (-367 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-4 *2 (-367 *4)) - (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) - (-5 *2 (-671 *4)) (-5 *1 (-675 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-1204 *3 *4 *2)) - (-4 *2 (-1211 *4))))) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) + (-5 *2 (-1150 (-933 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1191)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-598 *1))) (-5 *3 (-629 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-288 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-627 - (-2 (|:| -4154 (-754)) - (|:| |eqns| - (-627 - (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) - (|:| |cols| (-627 (-552)))))) - (|:| |fgb| (-627 *7))))) - (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) - (-5 *1 (-903 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-108))))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) + ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-660)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1189)) - (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *7 *2)) (-4 *6 (-1028)) - (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -3567 *4)))) - (-5 *1 (-678 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-627 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-754)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-776)) (-4 *6 (-928 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-830)) - (-5 *1 (-442 *4 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| -3069 *4) (|:| -2404 *3) (|:| -3401 *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| -3069 *3) (|:| -2404 *1) (|:| -3401 *1))) - (-4 *1 (-1211 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-544)) (-4 *4 (-830)) - (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) - (-5 *2 (-111)) (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-111)) - (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) - (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) + (-12 (-5 *3 (-902)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1150 *1)) + (-4 *1 (-323 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1150 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) + (-4 *2 (-1213 *3)))) ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-1150 *4)) + (-5 *1 (-520 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) - (-4 *8 (-301)) (-4 *6 (-776)) (-4 *9 (-928 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-627 (-2 (|:| -1727 (-1148 *9)) (|:| -4067 (-552))))))) - (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 (-754)) (-4 *5 (-169))))) -(((*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) - ((*1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-627 *6))) - (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-552)) (-5 *1 (-921))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) -(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-373))) (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) - ((*1 *1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) - (-5 *2 - (-627 - (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) - (|:| |geneigvec| (-627 (-671 (-401 (-931 *4)))))))) - (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-979 *3))))) + (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1134 *4))) (-4 *4 (-357)) + (-4 *4 (-1030)) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4))))) +(((*1 *1) (-5 *1 (-141))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-257))) (-5 *2 (-1111 (-220))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-257))))) (((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) + (-5 *2 (-629 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) - (-14 *4 (-627 (-1152)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-931 (-552))))) - (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4))))) -(((*1 *1) (-5 *1 (-181)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) - ((*1 *1 *1 *1) (-5 *1 (-1096)))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-324))))) + (-12 (-5 *2 (-629 (-2 (|:| |k| (-874 *3)) (|:| |c| *4)))) + (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-656 *3))) (-5 *1 (-874 *3)) (-4 *3 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) - (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) - (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *8))) - (-5 *1 (-890 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-629 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) + (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *5)) + (-4 *5 (-1213 (-401 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1039)) (-4 *3 (-1176)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-778)) (-4 *6 (-832)) (-4 *7 (-544)) + (-4 *3 (-930 *7 *5 *6)) + (-5 *2 + (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| (-629 *3)))) + (-5 *1 (-934 *5 *6 *7 *3 *8)) (-5 *4 (-756)) + (-4 *8 + (-13 (-357) + (-10 -8 (-15 -4015 (*3 $)) (-15 -4026 (*3 $)) (-15 -3213 ($ *3)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-832)) (-4 *5 (-890)) (-4 *6 (-778)) + (-4 *8 (-930 *5 *6 *7)) (-5 *2 (-412 (-1150 *8))) + (-5 *1 (-887 *5 *6 *7 *8)) (-5 *4 (-1150 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) - (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) - (-4 *6 (-336 (-401 (-552)) *4 *5)) - (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *6))) - (-5 *1 (-891 *4 *5 *6))))) + (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) + (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-385))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552))))) - (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) - (-5 *1 (-497 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-627 (-627 (-922 (-220))))))) - ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-627 (-627 (-922 (-220)))))))) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *1 *1) (-4 *1 (-615))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-616 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983) (-1176)))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) - (-5 *1 (-1086))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1152)) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-4 *4 (-13 (-29 *6) (-1174) (-938))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) - (-5 *1 (-784 *6 *4 *3)) (-4 *3 (-638 *4))))) + (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-445)) (-5 *2 (-111)) + (-5 *1 (-354 *4 *5)) (-14 *5 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-765 *4 (-846 *5)))) (-4 *4 (-445)) + (-14 *5 (-629 (-1154))) (-5 *2 (-111)) (-5 *1 (-614 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-357)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-673 *2)) (-5 *4 (-552)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *5 (-1213 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) + (-12 (-5 *2 (-924 *4)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *1) (-5 *1 (-285)))) -(((*1 *1) (-5 *1 (-181)))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1152)) - (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) - (-5 *2 - (-2 (|:| -3446 (-401 (-931 *5))) (|:| |coeff| (-401 (-931 *5))))) - (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1154)) + (|:| |arrayIndex| (-629 (-933 (-552)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1154)) (|:| |rand| (-844)) + (|:| |ints2Floats?| (-111)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1153)) (|:| |thenClause| (-324)) + (|:| |elseClause| (-324)))) + (|:| |returnBranch| + (-2 (|:| -3435 (-111)) + (|:| -2925 + (-2 (|:| |ints2Floats?| (-111)) (|:| -1452 (-844)))))) + (|:| |blockBranch| (-629 (-324))) + (|:| |commentBranch| (-629 (-1136))) (|:| |callBranch| (-1136)) + (|:| |forBranch| + (-2 (|:| -4235 (-1070 (-933 (-552)))) + (|:| |span| (-933 (-552))) (|:| -4300 (-324)))) + (|:| |labelBranch| (-1098)) + (|:| |loopBranch| (-2 (|:| |switch| (-1153)) (|:| -4300 (-324)))) + (|:| |commonBranch| + (-2 (|:| -4290 (-1154)) (|:| |contents| (-629 (-1154))))) + (|:| |printBranch| (-629 (-844))))) + (-5 *1 (-324))))) (((*1 *1 *2) - (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-4 *1 (-398)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) + (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) + ((*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) ((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552)))) + ((*1 *1 *1) (-4 *1 (-1039)))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-902)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1210 *5 *4)) (-4 *4 (-445)) (-4 *4 (-805)) + (-14 *5 (-1154)) (-5 *2 (-552)) (-5 *1 (-1092 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1078)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-806))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-336 *5 *6 *7)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-789 *5 *6 *7 *4))))) + (-12 (-5 *4 (-1 (-629 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) (-4 *6 (-1213 *5)) + (-5 *2 (-629 (-2 (|:| -3930 *5) (|:| -2771 *3)))) + (-5 *1 (-794 *5 *6 *3 *7)) (-4 *3 (-640 *6)) + (-4 *7 (-640 (-401 *6)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1261 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-804 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-804 *3)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-832)) (-4 *3 (-1030))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3744 (-629 *3)) (|:| -2707 (-629 *3)))) + (-5 *1 (-1192 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-808)) (-5 *1 (-807))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-128))) + ((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-756)) + (-4 *4 (-169)))) + ((*1 *1) (-4 *1 (-711))) ((*1 *1) (-5 *1 (-1154)))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) + (-5 *1 (-740))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-552))))) - (-5 *1 (-355 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) - (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + (-12 (-5 *2 (-756)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 *2) (-4 *5 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-902)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-902)))) + ((*1 *2) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) + (-5 *2 (-902)))) + ((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-756)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-673 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-357)) + (-5 *2 (-756)) (-5 *1 (-651 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4369)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))) (-5 *2 (-756)) + (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-671 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -4067 (-552))))) - (-5 *1 (-412 *3)) (-4 *3 (-544)))) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-756)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-671 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) - (-5 *1 (-802 *3)) (-4 *3 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1233 *3)) (-4 *3 (-23)) (-4 *3 (-1189))))) -(((*1 *1) (-5 *1 (-181)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-671 (-220))) (-5 *6 (-111)) (-5 *7 (-671 (-552))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) - (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) - (-5 *1 (-1243 *4)) (-4 *4 (-357))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-187)))) - ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-299))))) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-756))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-933 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1134 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-629 (-673 *4))) (-5 *2 (-673 *4)) (-4 *4 (-1030)) + (-5 *1 (-1010 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-111)) (-5 *1 (-109)))) + ((*1 *2 *2) (-12 (-5 *2 (-902)) (|has| *1 (-6 -4359)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-902))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-673 (-220))) (-5 *5 (-673 (-552))) (-5 *3 (-552)) + (-5 *2 (-1016)) (-5 *1 (-741))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1016)) (-5 *3 (-1154)) (-5 *1 (-187))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) - (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) - (-4 *2 (-1189)) (-5 *1 (-57 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (|has| *1 (-6 -4366)) - (-4 *1 (-148 *2)) (-4 *2 (-1189)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) - (-4 *2 (-1189)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) - (-4 *2 (-1189)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1028)) - (-5 *2 (-2 (|:| -3144 (-1148 *4)) (|:| |deg| (-900)))) - (-5 *1 (-216 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-13 (-544) (-830))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) - (-4 *6 (-1189)) (-4 *2 (-1189)) (-5 *1 (-234 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-830)))) - ((*1 *1 *1) - (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1211 *2)) - (-4 *4 (-1211 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1189)) (-4 *2 (-1189)) - (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1076)) (-4 *2 (-1076)) - (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) - ((*1 *1 *1) (-5 *1 (-487))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) - (-4 *2 (-1189)) (-5 *1 (-625 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1028)) (-4 *2 (-1028)) - (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) - (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) + (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1154)) (-5 *5 (-1072 (-220))) (-5 *2 (-908)) + (-5 *1 (-906 *3)) (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-907)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-907)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-907)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072 (-220))) (-5 *1 (-908)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-629 (-1 (-220) (-220)))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) + (-12 (-5 *2 (-629 (-1 (-220) (-220)))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-357)) - (-4 *3 (-169)) (-4 *1 (-707 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) - (-4 *2 (-1189)) (-5 *1 (-936 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) - (-14 *6 (-627 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1028)) (-4 *2 (-1028)) - (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) - (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) - (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *12 (-1031 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) - (-4 *2 (-1189)) (-5 *1 (-1130 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) - (-4 *1 (-1182 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-776)) - (-4 *7 (-830)) (-4 *2 (-1042 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) - (-4 *2 (-1189)) (-5 *1 (-1234 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1069 *3)) (-4 *3 (-1189))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185))))) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-1051 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-814))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-629 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-756)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-778)) (-4 *3 (-930 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-832)) + (-5 *1 (-442 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-127))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-96))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) + (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-5 *1 (-969 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-681)) (-5 *1 (-299))))) + (-12 (-5 *2 (-629 *7)) (-4 *7 (-1050 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-5 *1 (-1085 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-637 (-401 *2))) (-4 *2 (-1213 *4)) (-5 *1 (-795 *4 *2)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-638 *2 (-401 *2))) (-4 *2 (-1213 *4)) + (-5 *1 (-795 *4 *2)) + (-4 *4 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552)))))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-756)) (-4 *6 (-1078)) (-4 *7 (-881 *6)) + (-5 *2 (-673 *7)) (-5 *1 (-676 *6 *7 *3 *4)) (-4 *3 (-367 *7)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4368))))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *1 *1 *1) (-4 *1 (-746)))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) + (-5 *3 (-629 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1134 (-629 (-552)))) (-5 *1 (-864)) + (-5 *3 (-629 (-552)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) + ((*1 *2) (-12 (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-830)) (-5 *1 (-297 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 - (-627 - (-2 - (|:| -3998 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -2162 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1707 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-547)))) - ((*1 *2 *1) - (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) - (-5 *2 (-627 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1086))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-900)) (-4 *5 (-301)) (-4 *3 (-1211 *5)) - (-5 *2 (-2 (|:| |plist| (-627 *3)) (|:| |modulo| *5))) - (-5 *1 (-453 *5 *3)) (-5 *4 (-627 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))) - (-4 *2 (-13 (-1076) (-34)))))) + (-629 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-552))))) + (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-756)) (-4 *3 (-343)) (-4 *5 (-1213 *3)) + (-5 *2 (-629 (-1150 *3))) (-5 *1 (-490 *3 *5 *6)) + (-4 *6 (-1213 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-629 (-373))) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-373))) (-5 *1 (-461)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1030)) + (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-930 *2 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-5 *1 (-582 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1174))) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-1148 (-401 (-1148 *6)))) (-5 *1 (-548 *5 *6 *7)) - (-5 *3 (-1148 *6)) (-4 *7 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1148 *11)) (-5 *6 (-627 *10)) - (-5 *7 (-627 (-754))) (-5 *8 (-627 *11)) (-4 *10 (-830)) - (-4 *11 (-301)) (-4 *9 (-776)) (-4 *5 (-928 *11 *9 *10)) - (-5 *2 (-627 (-1148 *5))) (-5 *1 (-725 *9 *10 *11 *5)) - (-5 *3 (-1148 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-928 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) - (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-14 *6 (-627 *2))))) + (-12 (-5 *4 (-1154)) + (-4 *5 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *5)))))) (((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-627 *6)) - (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4))))) -(((*1 *1) (-5 *1 (-1061)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-351 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-520 *4))))) +(((*1 *2) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-104))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1240)))) + ((*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1240))))) (((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-627 (-1052 *4 *5 *2))) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-627 (-1052 *5 *6 *2))) (-5 *4 (-900)) (-4 *5 (-1076)) - (-4 *6 (-13 (-1028) (-865 *5) (-830) (-600 (-871 *5)))) - (-4 *2 (-13 (-424 *6) (-865 *5) (-600 (-871 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-627 (-598 *3))) - (|:| |vals| (-627 *3)))) - (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305)))) - ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *3 *4)) - (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) + (-2 (|:| -3273 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *6)) (-4 *6 (-865 *5)) (-4 *5 (-1076)) - (-5 *2 (-111)) (-5 *1 (-866 *5 *6 *4)) (-4 *4 (-600 (-871 *5)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) - (-4 *2 (-1211 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) - (-5 *2 (-1014)) (-5 *1 (-732)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) - (-5 *8 (-382)) (-5 *2 (-1014)) (-5 *1 (-732))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-985))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) - (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-5 *2 (-906)) (-5 *1 (-904 *3)) - (-4 *3 (-600 (-528))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-906)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) - ((*1 *1 *1) (-4 *1 (-1037)))) -(((*1 *1 *1) (-4 *1 (-613))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -3446 (-401 *6)) (|:| |coeff| (-401 *6)))) - (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -1681 (-401 *6)) + (|:| |special| (-401 *6)))) + (-5 *1 (-712 *5 *6)) (-5 *3 (-401 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-629 *3)) (-5 *1 (-877 *3 *4)) + (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-756)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -3416 *3) (|:| -3428 *3))) (-5 *1 (-877 *3 *5)) + (-4 *3 (-1213 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) + (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) + (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) + (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1123 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-629 *9)) (-5 *3 (-629 *8)) (-5 *4 (-111)) + (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-1123 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) + ((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) (((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-1082)) (-5 *1 (-285))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357))))) +(((*1 *1 *1 *1) (-5 *1 (-159))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159))))) +(((*1 *2 *1) + (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) + (-4 *3 (-948))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *3 *5)) - (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) - (-4 *5 (-638 (-401 *2))))) + (-12 (-5 *3 (-629 (-552))) (-5 *4 (-886 (-552))) + (-5 *2 (-673 (-552))) (-5 *1 (-577)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-629 (-673 (-552)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *5 *3)) - (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-638 *2)) - (-4 *3 (-638 (-401 *2)))))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-141))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) - (-5 *1 (-185))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3)))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) - (-4 *3 (-1076))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-873 *2 *3)) (-4 *2 (-1211 *3)))) + (-12 (-5 *3 (-629 (-552))) (-5 *4 (-629 (-886 (-552)))) + (-5 *2 (-629 (-673 (-552)))) (-5 *1 (-577))))) +(((*1 *1 *1 *1) (-4 *1 (-140))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-141))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1076)) (-4 *2 (-830)) - (-5 *1 (-112 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-598 *4)) (-5 *6 (-1152)) - (-4 *4 (-13 (-424 *7) (-27) (-1174))) - (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1040))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-900)) (-4 *3 (-357)) - (-14 *4 (-972 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *1 *1) (|partial| -4 *1 (-705))) - ((*1 *1 *1) (|partial| -4 *1 (-709))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) - (-4 *2 (-1211 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3) - (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1162 (-900) (-754)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) - (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2515 (-671 (-401 (-931 *4)))) - (|:| |vec| (-627 (-401 (-931 *4)))) (|:| -4154 (-754)) - (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) - (-5 *2 - (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) - (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) - (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-638 *3)) (-4 *3 (-1028)) (-4 *3 (-357)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) - (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5))))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028)) + (-5 *3 (-552))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *1) (-4 *1 (-466))) + ((*1 *1 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 (-552))) (-5 *1 (-864)))) + ((*1 *1 *1) (-5 *1 (-952))) + ((*1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1132 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1707 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1014)) (-5 *1 (-299))))) -(((*1 *1 *2) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-1175 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-627 (-1175 *2))) (-5 *1 (-1175 *2)) (-4 *2 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) - (-5 *1 (-461))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3))))) -(((*1 *1) (-5 *1 (-1155)))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-1134 (-220))) (-5 *1 (-187)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-629 (-1154))) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1237 (-310 (-220)))) (-5 *4 (-629 (-1154))) + (-5 *5 (-1072 (-825 (-220)))) (-5 *2 (-1134 (-220))) (-5 *1 (-294))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1118 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1078) (-34))) (-4 *6 (-13 (-1078) (-34))) + (-5 *2 (-111)) (-5 *1 (-1119 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) - (-5 *2 - (-2 (|:| A (-671 *5)) - (|:| |eqs| - (-627 - (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5)) (|:| -1651 *6) - (|:| |rh| *5)))))) - (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) - (-4 *6 (-638 *5)))) + (-12 (-5 *3 (-629 (-401 (-933 (-166 (-552)))))) + (-5 *2 (-629 (-629 (-288 (-933 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-638 *5)) - (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) - (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) - (-4 *3 (-946))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) - (-4 *3 (-1076))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-826))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028))))) -(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-1148 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) - (-15 -2929 ((-1101 *4 (-598 $)) $)) - (-15 -1477 ($ (-1101 *4 (-598 $)))))))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) - ((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) - (-14 *3 (-627 (-1152))))) - ((*1 *1 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) - ((*1 *1 *1) - (-12 (-14 *2 (-627 (-1152))) (-4 *3 (-169)) - (-4 *5 (-233 (-1383 *2) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) - (-2 (|:| -4153 *4) (|:| -4067 *5)))) - (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-830)) - (-4 *7 (-928 *3 *5 (-844 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) - ((*1 *1 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1) - (-12 (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1028)) - (-4 *3 (-709)))) - ((*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 *3)))) - (-5 *4 (-754)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) - (|:| |genIdeal| (-496 *3 *4 *5 *6)))) - (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-288 (-816 *3))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-816 *3)) (-5 *1 (-620 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + (-12 (-5 *3 (-629 (-288 (-401 (-933 (-166 (-552))))))) + (-5 *2 (-629 (-629 (-288 (-933 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-816 (-931 *5)))) (-4 *5 (-445)) - (-5 *2 (-816 (-401 (-931 *5)))) (-5 *1 (-621 *5)) - (-5 *3 (-401 (-931 *5))))) + (-12 (-5 *3 (-401 (-933 (-166 (-552))))) + (-5 *2 (-629 (-288 (-933 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-830))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) - (-4 *5 (-445)) (-5 *2 (-816 *3)) (-5 *1 (-621 *5))))) + (-12 (-5 *3 (-288 (-401 (-933 (-166 (-552)))))) + (-5 *2 (-629 (-288 (-933 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-830)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830))) (-5 *2 (-166 *5)) - (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) - (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174)))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-948 *2 *3)) - (-4 *3 (-1211 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-928 *3 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1211 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1190 *2)) - (-4 *2 (-1076)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-830)) - (-5 *1 (-1190 *2))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-735))))) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-956 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) -(((*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) - ((*1 *2 *1) - (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) - (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-14 *3 (-627 (-1152))) (-4 *5 (-233 (-1383 *3) (-754))) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) - (-2 (|:| -4153 *4) (|:| -4067 *5)))) - (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-830)) - (-4 *7 (-928 *2 *5 (-844 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) - (-4 *3 (-709)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *3 (-775)) (-4 *4 (-830)) - (-4 *2 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) - (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) - (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-111)) - (-5 *1 (-903 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1211 (-401 *2))) - (-4 *2 (-1211 *5)) (-5 *1 (-210 *5 *2 *6 *3)) - (-4 *3 (-336 *5 *2 *6))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) - (-5 *2 (-1014)) (-5 *1 (-728))))) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) + (-4 *2 + (-13 (-396) + (-10 -7 (-15 -3213 (*2 *4)) (-15 -1637 ((-902) *2)) + (-15 -4199 ((-1237 *2) (-902))) (-15 -4237 (*2 *2))))) + (-5 *1 (-350 *2 *4))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-759)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-1082)) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1078) (-1019 *5))) + (-4 *5 (-867 *4)) (-4 *4 (-1078)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-912 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-1213 (-401 *3))) (-5 *2 (-902)) + (-5 *1 (-894 *4 *5)) (-4 *5 (-1213 (-401 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) - (-4 *5 (-367 *2)) (-4 *2 (-1189)))) + (-4 *5 (-367 *2)) (-4 *2 (-1191)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) + (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1191)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 (-552)) (-14 *5 (-754)))) + (-12 (-5 *3 (-629 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 (-552)) (-14 *5 (-756)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-754)))) + (-14 *4 *3) (-14 *5 (-756)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-754)))) + (-14 *4 *3) (-14 *5 (-756)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-754)))) + (-14 *4 *3) (-14 *5 (-756)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-754)))) + (-14 *4 *3) (-14 *5 (-756)))) ((*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-552)) - (-14 *4 (-754)))) + (-14 *4 (-756)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-240 (-1134))) (-5 *1 (-209 *4)) + (-12 (-5 *3 (-1154)) (-5 *2 (-240 (-1136))) (-5 *1 (-209 *4)) (-4 *4 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ *3)) (-15 -4291 ((-1240) $)) - (-15 -4103 ((-1240) $))))))) + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ *3)) (-15 -2595 ((-1242) $)) + (-15 -3726 ((-1242) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-968)) (-5 *1 (-209 *3)) + (-12 (-5 *2 (-970)) (-5 *1 (-209 *3)) (-4 *3 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) - (-15 -4103 ((-1240) $))))))) + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) + (-15 -3726 ((-1242) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-754)) (-5 *1 (-240 *4)) (-4 *4 (-830)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-830)))) + (-12 (-5 *3 "count") (-5 *2 (-756)) (-5 *1 (-240 *4)) (-4 *4 (-832)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-830)))) + (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-832)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) + (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) + (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1191)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-4 *2 (-1213 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-629 *1)) (-4 *1 (-296)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) - (-4 *4 (-1211 (-401 *3))))) + (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-1213 *2)) + (-4 *4 (-1213 (-401 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1134)) (-5 *1 (-494)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-616)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1136)) (-5 *1 (-494)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-52)) (-5 *1 (-618)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) + (-12 (-5 *3 (-756)) (-5 *1 (-659 *2)) (-4 *2 (-1078)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-12 (-5 *2 (-629 (-552))) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-627 (-871 *4))) (-5 *1 (-871 *4)) - (-4 *4 (-1076)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) + (-12 (-5 *2 (-113)) (-5 *3 (-629 (-873 *4))) (-5 *1 (-873 *4)) + (-4 *4 (-1078)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-884 *2)) (-4 *2 (-1078)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) - (-4 *4 (-1076)))) + (-12 (-5 *3 (-756)) (-5 *2 (-886 *4)) (-5 *1 (-885 *4)) + (-4 *4 (-1078)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-900)) (-4 *2 (-357)) - (-5 *1 (-972 *4 *2)))) + (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-902)) (-4 *2 (-357)) + (-5 *1 (-974 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-989 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) + (-12 (-5 *3 "value") (-4 *1 (-991 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *2 (-1028)) + (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) (-4 *2 (-1030)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) - (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) + (-12 (-5 *3 (-552)) (-4 *1 (-1033 *4 *5 *2 *6 *7)) + (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1030)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-900)) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-5 *1 (-1052 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) + (-12 (-5 *3 (-902)) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-5 *1 (-1054 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-900)) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-5 *1 (-1053 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) + (-12 (-5 *3 (-902)) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-5 *1 (-1055 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-552))) (-4 *1 (-1079 *3 *4 *5 *6 *7)) - (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) - (-4 *7 (-1076)))) + (-12 (-5 *2 (-629 (-552))) (-4 *1 (-1081 *3 *4 *5 *6 *7)) + (-4 *3 (-1078)) (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) + (-4 *7 (-1078)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) - ((*1 *1 *1 *1) (-4 *1 (-1120))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) + (-12 (-5 *2 (-552)) (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)))) + ((*1 *1 *1 *1) (-4 *1 (-1122))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-401 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1028)) + (-12 (-5 *3 (-401 *1)) (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-357)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) + (-12 (-5 *2 (-401 *1)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)) (-4 *3 (-544)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) + (-12 (-4 *1 (-1215 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1030)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) + (-12 (-5 *3 "last") (-4 *1 (-1225 *2)) (-4 *2 (-1191)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) + (-12 (-5 *2 "rest") (-4 *1 (-1225 *3)) (-4 *3 (-1191)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-928 *4 *5 *3)))) + (-12 (-5 *3 "first") (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-391))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) + (-5 *1 (-380 *3)) (-4 *3 (-1078)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) - (-4 *1 (-1211 *3))))) + (-12 + (-5 *2 + (-2 (|:| |lm| (-804 *3)) (|:| |mm| (-804 *3)) (|:| |rm| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-832))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1030))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-498))) (-5 *1 (-476))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) - (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) - (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) - ((*1 *2 *1) - (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) - (-4 *6 (-233 (-1383 *3) (-754))) - (-14 *7 - (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) - (-2 (|:| -4153 *5) (|:| -4067 *6)))) - (-5 *2 (-696 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-830)) (-4 *8 (-928 *4 *6 (-844 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-709)) (-4 *2 (-830)) (-5 *1 (-718 *3 *2)) - (-4 *3 (-1028)))) - ((*1 *1 *1) - (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) - (-4 *4 (-830))))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1148 *3))))) -(((*1 *1) (-5 *1 (-806)))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) - (-4 *2 (-1195 *3))))) + (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1062 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1062 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-285))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) -(((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1070 (-933 (-552)))) (-5 *3 (-933 (-552))) + (-5 *1 (-324)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1070 (-933 (-552)))) (-5 *1 (-324))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-886 *3))) (-4 *3 (-1078)) (-5 *1 (-885 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-969 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *3)) (-4 *3 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-1085 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-140))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) - (-5 *2 (-823 *4)) (-5 *1 (-307 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) - (-5 *2 (-823 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) - (-14 *6 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) - (-4 *3 (-367 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) - (-5 *1 (-675 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) - (-5 *2 (-2 (|:| -1651 *7) (|:| |rh| (-627 (-401 *6))))) - (-5 *1 (-790 *5 *6 *7 *3)) (-5 *4 (-627 (-401 *6))) - (-4 *7 (-638 *6)) (-4 *3 (-638 (-401 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) - (-4 *3 (-1211 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) + (-12 (-5 *3 (-673 (-401 (-933 (-552))))) (-5 *2 (-629 (-310 (-552)))) + (-5 *1 (-1012))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) - (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) - (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) - (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 *3)) (-4 *3 (-1211 *5)) - (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 (-552)))) (-5 *3 (-1148 (-552))) - (-5 *1 (-560)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-627 (-1148 *1))) (-5 *3 (-1148 *1)) - (-4 *1 (-888))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1028)) (-5 *1 (-697 *2 *4)) - (-4 *4 (-630 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-355 (-113))) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-111))))) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *1 *1) (-4 *1 (-537)))) (((*1 *1 *2) - (-12 (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1118 *3 *4)) - (-14 *3 (-754))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-754)) (-4 *5 (-445)) (-4 *5 (-830)) - (-4 *5 (-1017 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-424 *5)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *5 (-598 $)) $)) - (-15 -2929 ((-1101 *5 (-598 $)) $)) - (-15 -1477 ($ (-1101 *5 (-598 $)))))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-567))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-1096)) (-5 *2 (-111)) (-5 *1 (-804))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) - (-4 *2 (-1211 *4))))) -(((*1 *1 *1) (-4 *1 (-238))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) - (-4 *2 (-669 *3 *4 *5))))) + (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1019 *4)) (-4 *3 (-301)) + (-4 *4 (-973 *3)) (-4 *5 (-1213 *4)) (-4 *6 (-403 *4 *5)) + (-14 *7 (-1237 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1237 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-973 *3)) + (-4 *5 (-1213 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-544)) (-4 *2 (-1030)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-950 *3 *2)) (-4 *2 (-1213 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *1)))) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) + (-4 *2 (-13 (-832) (-21)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-627 (-1183 *5))) - (-5 *1 (-1243 *5)) (-5 *4 (-1183 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) - (-5 *1 (-1160 *4)) (-4 *4 (-830))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-671 (-552))) (-5 *5 (-111)) (-5 *7 (-671 (-220))) - (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-737))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1189)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) - (-4 *2 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) - (-5 *2 - (-3 (-1148 *4) - (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096))))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-930 *5 *6 *7)) (-4 *5 (-445)) + (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-442 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-645))) ((*1 *1 *1 *1) (-5 *1 (-1098)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) - (-4 *4 (-1211 (-552))) (-5 *2 (-754)) (-5 *1 (-435 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113))))) + (|partial| -12 (-5 *4 (-629 (-401 *6))) (-5 *3 (-401 *6)) + (-4 *6 (-1213 *5)) (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1030)) (-4 *4 (-1213 *3)) (-5 *1 (-161 *3 *4 *2)) + (-4 *2 (-1213 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991))))) -(((*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-528))) ((*1 *1) (-4 *1 (-705))) - ((*1 *1) (-4 *1 (-709))) - ((*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) - (-4 *4 (-38 (-401 (-552))))))) + (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) + (-5 *1 (-827 *4 *5)) (-14 *4 (-756))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-552)) + (-5 *6 + (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373)))) + (-5 *7 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-552)) + (-5 *6 + (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2135 (-373)))) + (-5 *7 (-1 (-1242) (-1237 *5) (-1237 *5) (-373))) + (-5 *3 (-1237 (-373))) (-5 *5 (-373)) (-5 *2 (-1242)) + (-5 *1 (-773))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *1 *1) (|partial| -4 *1 (-1129)))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-180))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-5 *1 (-217 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-248 *3)))) + ((*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-629 *9)) (-5 *3 (-1 (-111) *9)) + (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-778)) + (-4 *8 (-832)) (-5 *1 (-958 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1) (-4 *1 (-645))) ((*1 *1 *1 *1) (-5 *1 (-1098)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) + (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-629 (-756))))) + ((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-629 (-756)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-756)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-182))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-401 (-552))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) - (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) - (-4 *8 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) - (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) - (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1028)) (-4 *1 (-1218 *4 *3)) - (-4 *3 (-1195 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-830) (-544)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-955 *4 *5 *3 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) - (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-598 *3)) - (-4 *3 (-13 (-424 *5) (-27) (-1174))) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) - (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-528))) - ((*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) - (-5 *1 (-1105 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-13 (-301) (-830) (-144))) - (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) - (-5 *1 (-1105 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-288 (-401 (-931 *4)))) - (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) - (-5 *1 (-1105 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) - (-4 *5 (-13 (-301) (-830) (-144))) - (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) + (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-401 (-931 *4)))) - (-4 *4 (-13 (-301) (-830) (-144))) - (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-288 (-401 (-931 *5))))) (-5 *4 (-627 (-1152))) - (-4 *5 (-13 (-301) (-830) (-144))) - (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) + (-5 *1 (-672 *2 *4 *5 *3)) (-4 *3 (-671 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4370 "*"))) (-4 *2 (-1030))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4055 *4))) (-5 *1 (-950 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) - (-4 *4 (-13 (-301) (-830) (-144))) - (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-830) (-1017 *4) (-623 *4))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 *5) (-623 *5))) (-5 *5 (-552)) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) - (-4 *7 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) - (-4 *3 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *4 (-1028)) (-4 *1 (-1197 *4 *3)) - (-4 *3 (-1226 *4)))) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) + (-12 (-5 *2 (-1237 (-3 (-461) "undefined"))) (-5 *1 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-111) *7 (-629 *7))) (-4 *1 (-1184 *4 *5 *6 *7)) + (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1191)) (-5 *2 (-756)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-832)) (-5 *2 (-756)) (-5 *1 (-423 *3 *4)) + (-4 *3 (-424 *4)))) + ((*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-536 *3)) (-4 *3 (-537)))) + ((*1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-756)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-781 *3 *4)) + (-4 *3 (-782 *4)))) + ((*1 *2) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-972 *3 *4)) + (-4 *3 (-973 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-756)) (-5 *1 (-977 *3 *4)) + (-4 *3 (-978 *4)))) + ((*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-992 *3)) (-4 *3 (-993)))) + ((*1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-756)))) + ((*1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-1038 *3)) (-4 *3 (-1039))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-884 (-552))) (-5 *4 (-552)) (-5 *2 (-671 *4)) - (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1007 *4)) - (-4 *4 (-1028)))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1204 (-552))) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-635 *3)) (-4 *3 (-1191))))) +(((*1 *1) + (-12 (-4 *1 (-398)) (-4107 (|has| *1 (-6 -4359))) + (-4107 (|has| *1 (-6 -4351))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (-4 *1 (-832))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832)))) + ((*1 *1) (-5 *1 (-1098)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-629 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) + (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-930 *6 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-301)) (-5 *1 (-684 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1184 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *1) (-4 *1 (-140))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-629 (-474 *5 *6))) (-5 *4 (-846 *5)) + (-14 *5 (-629 (-1154))) (-5 *2 (-474 *5 *6)) (-5 *1 (-617 *5 *6)) + (-4 *6 (-445)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-884 (-552)))) (-5 *4 (-552)) - (-5 *2 (-627 (-671 *4))) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-627 (-552)))) (-5 *2 (-627 (-671 (-552)))) - (-5 *1 (-1007 *4)) (-4 *4 (-1028))))) + (-12 (-5 *3 (-629 (-474 *5 *6))) (-5 *4 (-846 *5)) + (-14 *5 (-629 (-1154))) (-5 *2 (-474 *5 *6)) (-5 *1 (-617 *5 *6)) + (-4 *6 (-445))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-902)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-257))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-209 (-494))) (-5 *1 (-818))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-544)) (-4 *2 (-928 *3 *5 *4)) - (-5 *1 (-715 *5 *4 *6 *2)) (-5 *3 (-401 (-931 *6))) (-4 *5 (-776)) - (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-439)) (-5 *3 (-552))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) - (-4 *5 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-627 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-627 (-288 *8))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *8)) - (-5 *6 (-627 *8)) (-4 *8 (-424 *7)) - (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-113))) (-5 *6 (-627 (-288 *8))) - (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) - (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) - (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-627 *3)) - (-4 *3 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) - (-5 *2 (-52)) (-5 *1 (-311 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) - (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2503)) (-5 *2 (-111)) (-5 *1 (-602)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1645)) (-5 *2 (-111)) (-5 *1 (-602)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1336)) (-5 *2 (-111)) (-5 *1 (-602)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3071)) (-5 *2 (-111)) (-5 *1 (-673 *4)) - (-4 *4 (-599 (-842))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-842))) (-5 *2 (-111)) - (-5 *1 (-673 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1050))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1015))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-653))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1246))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-663))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1245))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-658))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)) (-5 *1 (-1157)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-111)) (-5 *1 (-1157)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1157)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1157))))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) (((*1 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-832) (-301) (-1019 (-552)) (-625 (-552)) (-144))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-789 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1176) (-940)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-930 *3 *5 *4)) (-5 *1 (-968 *3 *4 *5 *2)) + (-4 *3 (-445)) (-4 *4 (-832)) (-4 *5 (-778))))) +(((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1637 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3301 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 (-1250 *4 *5 *6 *7))) + (-5 *1 (-1250 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-1 (-111) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) + (-4 *7 (-778)) (-4 *8 (-832)) (-5 *2 (-629 (-1250 *6 *7 *8 *9))) + (-5 *1 (-1250 *6 *7 *8 *9))))) +(((*1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + (-12 + (-5 *2 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))) + (-5 *4 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + (-12 + (-5 *2 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *1 (-1001 *3)) (-4 *3 (-1213 (-552))) (-5 *4 (-401 (-552))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-5 *5 (-754)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + (-12 (-5 *5 (-401 (-552))) + (-5 *2 (-629 (-2 (|:| -3416 *5) (|:| -3428 *5)))) (-5 *1 (-1001 *3)) + (-4 *3 (-1213 (-552))) (-5 *4 (-2 (|:| -3416 *5) (|:| -3428 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) - (-4 *6 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) + (-12 + (-5 *2 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *1 (-1002 *3)) (-4 *3 (-1213 (-401 (-552)))) + (-5 *4 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-401 (-552))) + (-5 *2 (-629 (-2 (|:| -3416 *4) (|:| -3428 *4)))) (-5 *1 (-1002 *3)) + (-4 *3 (-1213 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-754))) - (-4 *7 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-754))) - (-4 *3 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-5 *5 (-401 (-552))) + (-5 *2 (-629 (-2 (|:| -3416 *5) (|:| -3428 *5)))) (-5 *1 (-1002 *3)) + (-4 *3 (-1213 *5)) (-5 *4 (-2 (|:| -3416 *5) (|:| -3428 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-509))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) + (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) (((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *3 (-552)) (-4 *1 (-848 *4))))) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552)))) + ((*1 *2 *2) + (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1102 *3 *4 *5 *2)) (-4 *2 (-671 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-52)) (-5 *1 (-816))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 (-1237 (-552)))) (-5 *3 (-902)) (-5 *1 (-459))))) +(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-324))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-324))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) (((*1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) - (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) - (-4 *4 (-13 (-828) (-301) (-144) (-1001))) - (-5 *2 (-627 (-1025 *4 *5))) (-5 *1 (-1261 *4 *5 *6)) - (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) -(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-362))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-627 *3)) (-4 *3 (-1189))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)))) + ((*1 *1) (-4 *1 (-1129)))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-629 + (-629 + (-3 (|:| -4290 (-1154)) + (|:| -2981 (-629 (-3 (|:| S (-1154)) (|:| P (-933 (-552)))))))))) + (-5 *1 (-1158))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-5 *2 (-629 *1)) (-4 *1 (-1112 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) + (-5 *2 (-933 *5)) (-5 *1 (-925 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-871 *4 *5)) (-4 *5 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1144))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1134 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4235 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-547))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-629 *1)) (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 (-629 *8))) (-5 *3 (-629 *8)) + (-4 *8 (-930 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) + (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-111)) + (-5 *1 (-905 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1237 *4)) (-4 *4 (-625 (-552))) + (-5 *2 (-1237 (-552))) (-5 *1 (-1264 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1213 (-552)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) + (|partial| -12 (-4 *3 (-357)) (-5 *1 (-877 *2 *3)) + (-4 *2 (-1213 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 (-1150 *4))) (-5 *3 (-1150 *4)) + (-4 *4 (-890)) (-5 *1 (-647 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *2 (-1148 *4)) - (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-828)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257))))) + (-12 (-4 *4 (-890)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-887 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) + (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1 (-1134 (-933 *4)) (-1134 (-933 *4)))) + (-5 *1 (-1245 *4)) (-4 *4 (-357))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-744))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-629 (-629 (-220)))) (-5 *4 (-220)) + (-5 *2 (-629 (-924 *4))) (-5 *1 (-1187)) (-5 *3 (-924 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-461)) (-5 *3 (-629 (-257))) (-5 *1 (-1238)))) + ((*1 *1 *1) (-5 *1 (-1238)))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-243))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) + (-4 *2 (-1228 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) + (-4 *5 (-1213 *4)) (-4 *6 (-709 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) + (-4 *2 (-1228 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) + (-5 *1 (-534 *4 *2)) (-4 *2 (-1228 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1134 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1130 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-629 (-1154))) (-4 *5 (-1030)) + (-5 *2 (-474 *4 *5)) (-5 *1 (-925 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-629 (-1154))) (-4 *5 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *5)))))) (-5 *1 (-755 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-544)) + (-5 *2 (-629 (-629 (-288 (-401 (-933 *4)))))) (-5 *1 (-755 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-673 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4199 (-629 *6))) + *7 *6)) + (-4 *6 (-357)) (-4 *7 (-640 *6)) (-5 *2 - (-2 (|:| |solns| (-627 *5)) - (|:| |maps| (-627 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1104 *3 *5)) (-4 *3 (-1211 *5))))) + (-2 (|:| |particular| (-3 (-1237 *6) "failed")) + (|:| -4199 (-629 (-1237 *6))))) + (-5 *1 (-798 *6 *7)) (-5 *4 (-1237 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-343)) (-5 *2 (-939 (-1098))) + (-5 *1 (-340 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4))))))) +(((*1 *1) (-5 *1 (-154)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *3 (-627 (-257))) - (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) - (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-1236)) - (-5 *1 (-1239)))) + (-12 (-5 *3 (-113)) (-4 *4 (-1030)) (-5 *1 (-699 *4 *2)) + (-4 *2 (-632 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-819 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1019 (-552))) + (-4 *4 (-13 (-832) (-544))) (-5 *2 (-1150 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 *1)) (-4 *1 (-1030)) (-4 *1 (-296)) + (-5 *2 (-1150 *1))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4))))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) - (-5 *2 (-1236)) (-5 *1 (-1239))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1006 *5 *6 *7 *3))) (-5 *1 (-1006 *5 *6 *7 *3)) - (-4 *3 (-1042 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-627 *6)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1122 *5 *6 *7 *3))) (-5 *1 (-1122 *5 *6 *7 *3)) - (-4 *3 (-1042 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| |minor| (-627 (-900))) (|:| -1651 *3) - (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-627 (-900))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) - (-14 *4 (-900)) (-14 *5 (-972 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) - (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) - (-4 *4 (-1211 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1213 (-401 *2))) + (-4 *2 (-1213 *5)) (-5 *1 (-210 *5 *2 *6 *3)) + (-4 *3 (-336 *5 *2 *6))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1078) (-34))) (-4 *6 (-13 (-1078) (-34))) + (-5 *2 (-111)) (-5 *1 (-1118 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-236)) (-5 *3 (-1136)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1078)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-709)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) - (-4 *4 (-1028)) (-4 *5 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) - (-4 *2 (-830)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) - (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *2 (-830)))) + (-12 (-5 *3 (-552)) (-5 *2 (-756)) (-5 *1 (-380 *4)) (-4 *4 (-1078)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-4 *2 (-928 *4 (-523 *5) *5)) - (-5 *1 (-1102 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-830)))) + (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-633 *4 *2 *5)) + (-4 *4 (-1078)) (-14 *5 *2))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-931 *4)) (-5 *1 (-1183 *4)) - (-4 *4 (-1028))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-735))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2717 *1) (|:| -4353 *1) (|:| |associate| *1))) - (-4 *1 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-172))) (-5 *1 (-1061))))) -(((*1 *2 *1) - (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) - (-14 *4 (-754)) (-4 *5 (-169))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-956 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-552) (-220) (-1152) (-1134) (-1157))) - (-5 *1 (-1157))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) (-4 *1 (-946)))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) - (-5 *2 (-627 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |k| (-872 *3)) (|:| |c| *4)))) - (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-654 *3))) (-5 *1 (-872 *3)) (-4 *3 (-830))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-671 *2)) (-5 *4 (-552)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) - (-5 *2 (-1014)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-96))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) - (-5 *3 (-627 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) - (-5 *3 (-627 (-552)))))) -(((*1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-104))))) -(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) + (-12 (-5 *3 (-552)) (-5 *2 (-756)) (-5 *1 (-804 *4)) (-4 *4 (-832))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-552))) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-544)) (-4 *8 (-930 *7 *5 *6)) + (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *9) (|:| |radicand| *9))) + (-5 *1 (-934 *5 *6 *7 *8 *9)) (-5 *4 (-756)) + (-4 *9 + (-13 (-357) + (-10 -8 (-15 -4015 (*8 $)) (-15 -4026 (*8 $)) (-15 -3213 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-666 *2)) (-4 *2 (-1078)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-629 *5) (-629 *5))) (-5 *4 (-552)) + (-5 *2 (-629 *5)) (-5 *1 (-666 *5)) (-4 *5 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-933 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-945 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2) (-12 (-5 *2 (-1125 (-1136))) (-5 *1 (-385))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) + (-5 *2 (-1016)) (-5 *1 (-730))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-1132 (-220))) (-5 *1 (-187)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-391))))) -(((*1 *1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-187))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1237 (-629 *3))) (-4 *4 (-301)) + (-5 *2 (-629 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1150 (-1150 *4)))) + (-5 *1 (-1189 *4)) (-5 *3 (-1150 (-1150 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-442 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) - (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) -(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) -(((*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-922 *5)) (-5 *3 (-754)) (-4 *5 (-1028)) - (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) - (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-673 *6)) (-5 *5 (-1 (-412 (-1150 *6)) (-1150 *6))) + (-4 *6 (-357)) + (-5 *2 + (-629 + (-2 (|:| |outval| *7) (|:| |outmult| (-552)) + (|:| |outvect| (-629 (-673 *7)))))) + (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-830)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-629 *3)) (-4 *3 (-1213 *5)) (-4 *5 (-301)) + (-5 *2 (-756)) (-5 *1 (-448 *5 *3))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1191)) (-4 *3 (-1030)) + (-5 *2 (-673 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) - (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-627 *5)) - (-5 *1 (-315 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-381)))) - ((*1 *2 *1) - (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-627 (-1152))))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-627 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *5)) - (-5 *1 (-929 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1078 (-1152))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) - ((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-4 *5 (-830)) (-5 *2 (-627 *5)))) + (|partial| -12 (-4 *2 (-1078)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-144) (-27) (-1019 (-552)) (-1019 (-401 (-552))))) + (-4 *5 (-1213 *4)) (-5 *2 (-1150 (-401 *5))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-401 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-144) (-27) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-1150 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-930 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1030)) (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) + (-4 *1 (-1213 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-673 (-401 (-933 (-552))))) + (-5 *2 (-629 (-673 (-310 (-552))))) (-5 *1 (-1012)) + (-5 *3 (-310 (-552)))))) +(((*1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1174))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-445))))) +(((*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-1242)) (-5 *1 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-855)))) + ((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-321 *3)) (-4 *3 (-1191)))) ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-1152))) - (-5 *1 (-1022 *4))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) - (-4 *3 (-1189))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-552))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830))) - (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-5 *1 (-586 *4 *2 *3)) - (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-950)) - (-5 *3 (-627 (-552)))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1028)) - (-5 *1 (-833 *5 *2)) (-4 *2 (-832 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34))) - (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *4 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1148 (-401 (-1148 *2)))) (-5 *4 (-598 *2)) - (-4 *2 (-13 (-424 *5) (-27) (-1174))) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1076)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *3 (-830)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1028)) (-4 *1 (-928 *4 *5 *3)) - (-4 *5 (-776)) (-4 *3 (-830)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-1148 *2))) (-4 *5 (-776)) (-4 *4 (-830)) - (-4 *6 (-1028)) - (-4 *2 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) - (-5 *1 (-929 *5 *4 *6 *7 *2)) (-4 *7 (-928 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-1148 (-401 (-931 *5))))) (-5 *4 (-1152)) - (-5 *2 (-401 (-931 *5))) (-5 *1 (-1022 *5)) (-4 *5 (-544))))) + (-12 (-5 *2 (-756)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1191)) + (-14 *4 (-552))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) + (-4 *2 (-13 (-832) (-21)))))) +(((*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-111)) (-5 *1 (-1142 *4 *5)) + (-14 *4 (-902)) (-4 *5 (-1030))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1136)) (-5 *1 (-771))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-1110 *4 *2)) + (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4368) (-6 -4369)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-832)) (-4 *3 (-1191)) (-5 *1 (-1110 *3 *2)) + (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4368) (-6 -4369))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-608 *4 *2)) (-4 *2 (-13 (-1176) (-940) (-29 *4)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-732))))) +(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-752)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) - (-5 *1 (-553)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-752)) (-5 *4 (-1040)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) - (-5 *1 (-553)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-770)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) - (|:| |extra| (-1014)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-770)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) - (|:| |extra| (-1014)))))) + (|partial| -12 (-5 *3 (-933 (-166 *4))) (-4 *4 (-169)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-783)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + (|partial| -12 (-5 *3 (-933 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-791)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-788)))) + (|partial| -12 (-5 *3 (-933 *4)) (-4 *4 (-1030)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-1040)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-788)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-819)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) - (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-819)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + (|partial| -12 (-5 *3 (-933 *5)) (-5 *4 (-902)) (-4 *5 (-1030)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-821)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-820)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-821)) (-5 *4 (-1040)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-820)))) + (|partial| -12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-874)) (-5 *3 (-1040)) - (-5 *4 - (-2 (|:| |pde| (-627 (-310 (-220)))) - (|:| |constraints| - (-627 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-754)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) - (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) - (|:| |tol| (-220)))) - (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + (|partial| -12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-877)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-876)))) + (|partial| -12 (-5 *3 (-401 (-933 (-166 *4)))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877)) (-5 *4 (-1040)) - (-5 *2 - (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) - (|:| |explanations| (-627 (-1134))))) - (-5 *1 (-876))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-942 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) - (-4 *3 (-1028)) (-4 *2 (-775)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1148 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-950)) (-4 *2 (-129)) (-5 *1 (-1154 *3)) (-4 *3 (-544)) - (-4 *3 (-1028)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1152)) - (-4 *3 (-1028))))) -(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) - (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 *3)))) - (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) - (-4 *7 (-638 (-401 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) - (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 (-636 *6 (-401 *6)))))) - (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-820)))) - ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) - (-5 *6 (-627 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1014)) - (-5 *1 (-820)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) - (-5 *5 (-627 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-820)))) + (|partial| -12 (-5 *3 (-401 (-933 (-166 *5)))) (-5 *4 (-902)) + (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) - (-5 *1 (-820)))) + (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-770 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-832)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) - (-5 *2 (-1014)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) - (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) - (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-627 (-900))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) - (-4 *2 (-357)) (-14 *5 (-972 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-696 *5 *6 *7)) (-4 *5 (-830)) - (-4 *6 (-233 (-1383 *4) (-754))) - (-14 *7 - (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) - (-2 (|:| -4153 *5) (|:| -4067 *6)))) - (-14 *4 (-627 (-1152))) (-4 *2 (-169)) - (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-928 *2 *6 (-844 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) - (-4 *4 (-1211 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-718 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-709)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) - (-4 *4 (-1028)) (-4 *5 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) - (-4 *2 (-830)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) - (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) - (-4 *5 (-776)) (-4 *2 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 *5)) (-4 *1 (-952 *4 *5 *6)) - (-4 *4 (-1028)) (-4 *5 (-775)) (-4 *6 (-830)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-952 *4 *3 *2)) (-4 *4 (-1028)) (-4 *3 (-775)) - (-4 *2 (-830))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1028)) - (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1211 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) - (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) - (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) - ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) + (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-902)) (-4 *5 (-544)) + (-4 *5 (-832)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-770 *5))))) +(((*1 *1) (-5 *1 (-1242)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1204 (-552)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-939 (-1150 *4))) (-5 *1 (-351 *4)) + (-5 *3 (-1150 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3))))) + (-12 (-5 *2 (-1150 (-401 (-933 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-902)) + (-14 *5 (-629 (-1154))) (-14 *6 (-1237 (-673 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) + (-4 *2 (-13 (-398) (-1019 *4) (-357) (-1176) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-1019 (-401 *2)))) (-5 *2 (-552)) + (-5 *1 (-114 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1171))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1050 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *1)))) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1237 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) (((*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) - (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-928 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) - (-5 *1 (-885 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-888)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-129))))) +(((*1 *1 *1 *1) (-4 *1 (-948)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-993)) (-5 *2 (-844))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-373))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1213 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-894 *4 *3)) + (-4 *3 (-1213 (-401 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1150 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-908))))) +(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-4 *1 (-296)))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-924 (-220))) (-5 *4 (-855)) (-5 *5 (-902)) + (-5 *2 (-1242)) (-5 *1 (-461)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-924 (-220))) (-5 *2 (-1242)) (-5 *1 (-461)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-629 (-924 (-220)))) (-5 *4 (-855)) (-5 *5 (-902)) + (-5 *2 (-1242)) (-5 *1 (-461))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296))))) +(((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240)))) + ((*1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-1240))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-844)))) + ((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1242)) (-5 *1 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2) + (-12 (-5 *2 (-401 *4)) (-4 *4 (-1213 *3)) (-4 *3 (-13 (-357) (-144))) + (-5 *1 (-393 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261))))) +(((*1 *1) (-5 *1 (-808)))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-855))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-756) *2)) (-5 *4 (-756)) (-4 *2 (-1078)) + (-5 *1 (-662 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-756) *3)) (-4 *3 (-1078)) (-5 *1 (-666 *3))))) (((*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1226 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) - (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1226 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) - (-5 *1 (-1128 *3))))) -(((*1 *1) - (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) - (-1681 (|has| *1 (-6 -4349))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (-4 *1 (-830))) ((*1 *1) (-5 *1 (-1096)))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) - (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)) - (-4 *7 (-928 *4 *6 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) - (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) - (-5 *1 (-994 *4 *5)) (-5 *3 (-401 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1154)) (-5 *2 (-629 (-946))) (-5 *1 (-285))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1136)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-732))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-1085 *5 *6 *7 *8)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-578 *5 *6 *7 *8 *3))))) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-552)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-930 *4 *5 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1030)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1213 *4)) + (-4 *5 (-13 (-398) (-1019 *4) (-357) (-1176) (-278)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-855)) + (-5 *5 (-902)) (-5 *6 (-629 (-257))) (-5 *2 (-461)) (-5 *1 (-1241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *2 (-461)) + (-5 *1 (-1241)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-629 (-257))) + (-5 *2 (-461)) (-5 *1 (-1241))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) + (-4 *9 (-1044 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-778)) + (-4 *8 (-832)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3447 (-629 *9)))) + (-5 *3 (-629 *9)) (-4 *1 (-1184 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3447 (-629 *8)))) + (-5 *3 (-629 *8)) (-4 *1 (-1184 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-884 *3)) (-4 *3 (-1078)) (-5 *2 (-1080 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1078)) (-5 *2 (-1080 (-629 *4))) (-5 *1 (-885 *4)) + (-5 *3 (-629 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1078)) (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-885 *4)) + (-5 *3 (-1080 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1080 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-957 *3 *4 *2 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *5 (-1044 *3 *4 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-401 (-552))) + (-4 *4 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4)))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) - (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-1248 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8))))) -(((*1 *1 *1) - (-12 (-4 *2 (-301)) (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) - (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3)))))) + (-12 (-5 *2 (-629 (-629 *3))) (-4 *3 (-1078)) (-4 *1 (-884 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-895 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-575 *4)) - (-4 *4 (-343))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771))))) + (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1220 *3 *2)) (-4 *3 (-1030)) + (-4 *2 (-1197 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-627 (-166 *4))) (-5 *1 (-152 *3 *4)) - (-4 *3 (-1211 (-166 (-552)))) (-4 *4 (-13 (-357) (-828))))) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-552)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-756)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-778)) (-4 *4 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-832)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-832)) (-5 *4 (-629 *6)) + (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-629 *4)))) + (-5 *1 (-1162 *6)) (-5 *5 (-629 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1191)) (-4 *2 (-1078)) + (-4 *2 (-832))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-357) (-830))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1213 (-166 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 (-1 *6 (-629 *6)))) + (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1228 *5)) (-5 *2 (-629 *6)) + (-5 *1 (-1230 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-113)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-832)) (-5 *1 (-910 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-5 *4 (-1136)) (-5 *2 (-310 (-552))) + (-5 *1 (-911))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1176))) + (-4 *5 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1078))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-946))) (-5 *1 (-285))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-683))))) +(((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 *10)) + (-5 *1 (-610 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1050 *5 *6 *7 *8)) + (-4 *10 (-1087 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) + (-5 *1 (-614 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-629 (-1154))) + (-5 *2 + (-629 (-1124 *5 (-523 (-846 *6)) (-846 *6) (-765 *5 (-846 *6))))) + (-5 *1 (-614 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1008 *5 *6 *7 *8))) (-5 *1 (-1008 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 (-765 *5 (-846 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-629 (-1154))) (-5 *2 (-629 (-1027 *5 *6))) + (-5 *1 (-1027 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1050 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-111)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-629 (-1124 *5 *6 *7 *8))) (-5 *1 (-1124 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1184 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1154)) (-5 *5 (-629 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-545 *6 *3))))) +(((*1 *2) + (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552))))) + ((*1 *2 *2) + (-12 (-5 *2 (-902)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-746)))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-290)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + (-12 (-5 *3 (-629 (-1136))) (-5 *2 (-306)) (-5 *1 (-290)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-306)) (-5 *1 (-290)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) + (-12 (-5 *4 (-629 (-1136))) (-5 *3 (-1136)) (-5 *2 (-306)) + (-5 *1 (-290))))) +(((*1 *1) (-5 *1 (-1238)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) + (-12 (-5 *3 (-1150 *1)) (-5 *4 (-1154)) (-4 *1 (-27)) + (-5 *2 (-629 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1150 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-933 *1)) (-4 *1 (-27)) (-5 *2 (-629 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-629 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *2 (-629 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-778)) (-4 *4 (-832)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-727 *5 *4 *6 *3)) (-4 *3 (-930 *6 *5 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1134 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-629 (-629 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-629 (-3 (|:| |array| (-629 *3)) (|:| |scalar| (-1154))))) + (-5 *6 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1082)) + (-5 *1 (-391)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-629 (-629 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-629 (-3 (|:| |array| (-629 *3)) (|:| |scalar| (-1154))))) + (-5 *6 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1082)) + (-5 *1 (-391)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-629 (-1154))) (-5 *5 (-1157)) (-5 *3 (-1154)) + (-5 *2 (-1082)) (-5 *1 (-391))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-1088)) (-5 *3 (-552))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *2 (-1016)) (-5 *1 (-737))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1235 (-681))) (-5 *1 (-299))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-739))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-657 *2)) (-4 *2 (-1028)) (-4 *2 (-1076))))) + (-12 (-4 *4 (-832)) + (-5 *2 + (-2 (|:| |f1| (-629 *4)) (|:| |f2| (-629 (-629 (-629 *4)))) + (|:| |f3| (-629 (-629 *4))) (|:| |f4| (-629 (-629 (-629 *4)))))) + (-5 *1 (-1162 *4)) (-5 *3 (-629 (-629 (-629 *4))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-544)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-756)) (-5 *2 (-1 (-373))) (-5 *1 (-1021)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-629 (-1154))) (-4 *4 (-1078)) + (-4 *5 (-13 (-1030) (-867 *4) (-832) (-600 (-873 *4)))) + (-5 *1 (-1054 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-867 *4) (-600 (-873 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1078)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) + (-5 *1 (-1054 *3 *4 *2)) + (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3))))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2594 (-767 *3)) (|:| |coef1| (-767 *3)) + (|:| |coef2| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| -2594 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2594 (-767 *3)) (|:| |coef2| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| -2594 *1) (|:| |coef2| *1))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-907)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-907)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-924 (-220)) (-220))) (-5 *3 (-1072 (-220))) + (-5 *1 (-908))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *1)) (-5 *4 (-1235 *1)) (-4 *1 (-623 *5)) - (-4 *5 (-1028)) - (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-671 *1)) (-4 *1 (-623 *4)) (-4 *4 (-1028)) - (-5 *2 (-671 *4))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *6)) (-4 *5 (-1078)) + (-4 *6 (-1191)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-4 *5 (-1078)) + (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 *5)) (-4 *6 (-1078)) + (-4 *5 (-1191)) (-5 *2 (-1 *5 *6)) (-5 *1 (-626 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-4 *5 (-1078)) + (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-629 *5)) (-5 *4 (-629 *6)) + (-4 *5 (-1078)) (-4 *6 (-1191)) (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-629 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1078)) (-4 *2 (-1191)) (-5 *1 (-626 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-141)) (-5 *2 (-756))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 (-756))) (-5 *1 (-950 *4 *3)) + (-4 *3 (-1213 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-401 (-933 *4))) (-5 *1 (-905 *4 *5 *6 *3)) + (-4 *3 (-930 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) + (-12 (-5 *3 (-673 *7)) (-4 *7 (-930 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-673 (-401 (-933 *4)))) + (-5 *1 (-905 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-357)) (-4 *7 (-1211 *6)) - (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-629 (-401 (-933 *4)))) + (-5 *1 (-905 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-483))))) + (-12 (-5 *3 (-1154)) + (-5 *2 + (-2 (|:| |zeros| (-1134 (-220))) (|:| |ones| (-1134 (-220))) + (|:| |singularities| (-1134 (-220))))) + (-5 *1 (-104))))) +(((*1 *1 *1) (-5 *1 (-528)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-832)) + (-4 *5 (-778)) (-5 *1 (-968 *3 *4 *5 *6)) (-4 *6 (-930 *3 *5 *4))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1184 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *2 (-1044 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-629 (-52))) (-5 *2 (-1242)) (-5 *1 (-845))))) (((*1 *2 *1) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) - (-5 *2 (-1148 *3))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-871 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1076)) - (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-871 *4)) (-5 *3 (-627 (-1 (-111) *5))) (-4 *4 (-1076)) - (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-871 *5)) (-5 *3 (-627 (-1152))) - (-5 *4 (-1 (-111) (-627 *6))) (-4 *5 (-1076)) (-4 *6 (-1189)) - (-5 *1 (-869 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1189)) (-4 *4 (-830)) - (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-4 *4 (-830)) - (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) + (|partial| -12 + (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) + (-5 *2 (-825 *4)) (-5 *1 (-307 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-832) (-1019 (-552)) (-625 (-552)) (-445))) + (-5 *2 (-825 *4)) (-5 *1 (-1223 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1176) (-424 *3))) (-14 *5 (-1154)) + (-14 *6 *4)))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-1237 *5)) (-4 *5 (-301)) + (-4 *5 (-1030)) (-5 *2 (-673 *5)) (-5 *1 (-1010 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-412 *4)) (-4 *4 (-544))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 *4)) (-5 *1 (-1119 *3 *4)) + (-4 *3 (-13 (-1078) (-34))) (-4 *4 (-13 (-1078) (-34)))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) + (-4 *7 (-1213 (-401 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3318 *3))) + (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1189)) - (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) (-4 *5 (-357)) + (-5 *2 + (-2 (|:| |answer| (-401 *6)) (|:| -3318 (-401 *6)) + (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) + (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-240 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-756)))) + ((*1 *1 *1) (-4 *1 (-396)))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-629 (-1136))) (-5 *1 (-1042)) (-5 *3 (-1136))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)))) + ((*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-111)) (-5 *1 (-873 *4)) + (-4 *4 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1136)) (-5 *1 (-695))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1027 *4 *5)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-14 *5 (-629 (-1154))) (-5 *2 (-629 (-629 (-1005 (-401 *4))))) + (-5 *1 (-1263 *4 *5 *6)) (-14 *6 (-629 (-1154))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-933 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *5))))) (-5 *1 (-1263 *5 *6 *7)) + (-14 *6 (-629 (-1154))) (-14 *7 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-933 *4))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-629 (-629 (-1005 (-401 *4))))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-629 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1044 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-778)) (-4 *7 (-832)) (-5 *1 (-958 *5 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1120 *3 *4)) (-14 *3 (-902)) (-4 *4 (-357)) + (-5 *1 (-974 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1150 *3) (-1150 *3))) + (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-832) (-544))) + (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-902)) (-5 *2 (-1150 *3)) (-5 *1 (-1165 *3)) + (-4 *3 (-357))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-629 (-629 (-220)))) (-5 *1 (-1187))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) + (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-673 *5)) (-4 *5 (-973 *4)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |num| (-673 *4)) (|:| |den| *4))) + (-5 *1 (-677 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) - (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) + (-12 (-4 *5 (-13 (-357) (-144) (-1019 (-401 (-552))))) + (-4 *6 (-1213 *5)) + (-5 *2 (-2 (|:| -2771 *7) (|:| |rh| (-629 (-401 *6))))) + (-5 *1 (-792 *5 *6 *7 *3)) (-5 *4 (-629 (-401 *6))) + (-4 *7 (-640 *6)) (-4 *3 (-640 (-401 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-973 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1206 *4 *5 *3)) + (-4 *3 (-1213 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-843))))) +(((*1 *1) + (-12 (-4 *1 (-398)) (-4107 (|has| *1 (-6 -4359))) + (-4107 (|has| *1 (-6 -4351))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1078)) (-4 *2 (-832)))) + ((*1 *2 *1) (-12 (-4 *1 (-815 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (-4 *1 (-832))) ((*1 *1) (-5 *1 (-1098)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832)) (-4 *2 (-544))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) + (-4 *3 (-632 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1030)) (-5 *1 (-699 *2 *3)) + (-4 *3 (-632 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030)))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-169)) (-4 *2 (-1030))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-663 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-629 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-756)) (-4 *1 (-226 *4)) + (-4 *4 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-756)))) + ((*1 *1 *1) (-4 *1 (-228))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) + (-4 *3 (-1213 *2)))) + ((*1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1 (-111) (-627 *6))) - (-4 *6 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-4 *4 (-1076)) - (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) - (-5 *1 (-1052 *4 *5 *6))))) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-629 (-756))) (-4 *1 (-881 *4)) + (-4 *4 (-1078)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-881 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-881 *3)) (-4 *3 (-1078)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1007 (-825 (-552)))) + (-5 *3 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1030)) + (-5 *1 (-582 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-635 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1154)) (-5 *1 (-324))))) +(((*1 *1) (-5 *1 (-1042)))) +(((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-663 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) - (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) - (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) - (-4 *3 (-336 *6 *7 *8))))) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-902)) (-4 *5 (-832)) + (-5 *2 (-629 (-656 *5))) (-5 *1 (-656 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) - (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) - (-4 *7 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-738)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) - (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) - (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) + (-12 (-4 *1 (-1184 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *5 (-362)) + (-5 *2 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1242)) (-5 *1 (-385)))) + ((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-385))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1154))) (-5 *1 (-1158))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-629 + (-2 + (|:| -2670 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -3360 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1134 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4235 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-547))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) + (-12 (-5 *3 (-1072 (-825 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-1078)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1078)) (-5 *2 (-111)) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1150 *1)) (-5 *3 (-1154)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-933 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1154)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-832) (-544))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-832) (-544))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) - (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) + (-12 (-5 *3 (-1150 *2)) (-5 *4 (-1154)) (-4 *2 (-424 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-832) (-544))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1150 *1)) (-5 *3 (-902)) (-4 *1 (-993)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1150 *1)) (-5 *3 (-902)) (-5 *4 (-844)) + (-4 *1 (-993)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-902)) (-4 *4 (-13 (-830) (-357))) + (-4 *1 (-1047 *4 *2)) (-4 *2 (-1213 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *1)) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-230 *3)) + (-4 *3 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-902)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-756))))) +(((*1 *1 *1) (-5 *1 (-220))) ((*1 *1 *1) (-5 *1 (-373))) + ((*1 *1) (-5 *1 (-373)))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-301)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4126 *1))) + (-4 *1 (-301))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-552)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1076)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) - (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) - (-5 *1 (-1136 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) - (-14 *4 (-1152)) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1014)) - (-5 *1 (-729))))) + (-12 (-4 *3 (-1078)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))) + (-5 *2 (-629 (-1154))) (-5 *1 (-1054 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-867 *3) (-600 (-873 *3))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-629 *7)) (|:| |badPols| (-629 *7)))) + (-5 *1 (-958 *4 *5 *6 *7)) (-5 *3 (-629 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-752 *3)) (-4 *3 (-1078)) (-5 *2 (-111))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1078)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-5 *2 (-1134 *3)) (-5 *1 (-1138 *3)) + (-4 *3 (-1030)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-804 *4)) (-4 *4 (-832)) (-4 *1 (-1254 *4 *3)) + (-4 *3 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1174) (-424 *4))))) + (-4 *5 (-13 (-27) (-1176) (-424 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + (-4 *3 (-13 (-27) (-1176) (-424 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + (-4 *3 (-13 (-27) (-1176) (-424 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) - (-4 *6 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *6 (-13 (-27) (-1176) (-424 *5))) + (-4 *5 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) + (-4 *3 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) - (-4 *7 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1204 (-552))) + (-4 *7 (-13 (-27) (-1176) (-424 *6))) + (-4 *6 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) - (-4 *3 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-552))) + (-4 *3 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) - (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) - (-4 *8 (-13 (-27) (-1174) (-424 *7))) - (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *5 (-1204 (-401 (-552)))) (-5 *6 (-401 (-552))) + (-4 *8 (-13 (-27) (-1176) (-424 *7))) + (-4 *7 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) - (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) - (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-12 (-5 *4 (-1154)) (-5 *5 (-288 *3)) (-5 *6 (-1204 (-401 (-552)))) + (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1176) (-424 *8))) + (-4 *8 (-13 (-544) (-832) (-1019 (-552)) (-625 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-4 *3 (-1028)) (-5 *1 (-582 *3)))) + (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-4 *3 (-1030)) (-5 *1 (-582 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-583 *3)))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-583 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-4 *3 (-1028)) (-4 *1 (-1195 *3)))) + (-12 (-5 *2 (-1134 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-4 *3 (-1030)) (-4 *1 (-1197 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-754)) - (-5 *3 (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) - (-4 *4 (-1028)) (-4 *1 (-1216 *4)))) + (-12 (-5 *2 (-756)) + (-5 *3 (-1134 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) + (-4 *4 (-1030)) (-4 *1 (-1218 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-4 *1 (-1228 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 (-2 (|:| |k| (-754)) (|:| |c| *3)))) - (-4 *3 (-1028)) (-4 *1 (-1226 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) + (-12 (-5 *2 (-1134 (-2 (|:| |k| (-756)) (|:| |c| *3)))) + (-4 *3 (-1030)) (-4 *1 (-1228 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-902)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1030)) + (-4 *4 (-1191)))) + ((*1 *1 *2) + (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) + (-4 *5 (-233 (-2657 *3) (-756))) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *2) (|:| -1406 *5)) + (-2 (|:| -2840 *2) (|:| -1406 *5)))) + (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-832)) + (-4 *7 (-930 *4 *5 (-846 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *2 (-673 (-310 (-552)))) (-5 *1 (-1012))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-759)) (-5 *1 (-113))))) +(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1213 *2)) + (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-1213 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) + (-4 *3 (-403 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *3 (-1213 *2)) (-5 *2 (-552)) (-5 *1 (-753 *3 *4)) + (-4 *4 (-403 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-930 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)) (-4 *3 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-544)) (-5 *1 (-950 *2 *3)) (-4 *3 (-1213 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-169))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-777)) + (-4 *2 (-357)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) + ((*1 *1 *1 *1) + (-4029 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1191))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1191))))) + ((*1 *1 *1 *1) (-4 *1 (-357))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1103 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-832)) + (-4 *1 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-528))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-169)) (-5 *1 (-607 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-711) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-169)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-711) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-169)) (-4 *2 (-357)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-169)) (-5 *1 (-646 *2 *4 *3)) (-4 *2 (-702 *4)) + (-4 *3 (|SubsetCategory| (-711) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-169)) (-5 *1 (-646 *3 *4 *2)) (-4 *3 (-702 *4)) + (-4 *2 (|SubsetCategory| (-711) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-847 *2 *3 *4 *5)) (-4 *2 (-357)) + (-4 *2 (-1030)) (-14 *3 (-629 (-1154))) (-14 *4 (-629 (-756))) + (-14 *5 (-756)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-544)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *2 (-1030)) + (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1030)) (-4 *3 (-832)) + (-4 *4 (-778)) (-14 *6 (-629 *3)) + (-5 *1 (-1249 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-930 *2 *4 *3)) + (-14 *7 (-629 (-756))) (-14 *8 (-756)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1260 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1030)) + (-4 *3 (-828))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-832))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-671 (-401 (-552)))) - (-5 *2 - (-627 - (-2 (|:| |outval| *4) (|:| |outmult| (-552)) - (|:| |outvect| (-627 (-671 *4)))))) - (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-627 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) + (-12 (-5 *3 (-3 (-401 (-933 *5)) (-1143 (-1154) (-933 *5)))) + (-4 *5 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *5))))) + (-5 *1 (-286 *5)) (-5 *4 (-673 (-401 (-933 *5))))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-788))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030)))) + ((*1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 (-2 (|:| -2670 (-1154)) (|:| -3360 (-431))))) + (-5 *1 (-1158))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-132))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-209 *2)) (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) - (-15 -2929 ((-1101 *3 (-598 $)) $)) - (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) + (-15 -3726 ((-1242) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1) (-5 *1 (-844))) ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-21))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-38 (-401 (-552)))) - (-4 *2 (-169))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) - (-5 *1 (-897 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) - (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) - (-5 *1 (-771))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1189)) (-4 *1 (-233 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-562 *5 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) - (-5 *2 (-627 (-2 (|:| -4267 *1) (|:| -2849 (-627 *7))))) - (-5 *3 (-627 *7)) (-4 *1 (-1182 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-832) (-544))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-740))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) + (-5 *1 (-827 *4 *5)) (-14 *4 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-96))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-627 *5))) (-4 *5 (-1226 *4)) - (-4 *4 (-38 (-401 (-552)))) - (-5 *2 (-1 (-1132 *4) (-627 (-1132 *4)))) (-5 *1 (-1228 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-1052 *3 *4 *5))) (-4 *3 (-1076)) - (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) - (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) - (-5 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) - (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) - (-4 *3 (-336 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) - (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 (-401 (-931 (-552))))) + (|partial| -12 (-5 *2 (-629 (-1150 *5))) (-5 *3 (-1150 *5)) + (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 *3)) (-4 *3 (-1213 *5)) + (-4 *5 (-1213 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 (-1150 (-552)))) (-5 *3 (-1150 (-552))) + (-5 *1 (-560)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 (-1150 *1))) (-5 *3 (-1150 *1)) + (-4 *1 (-890))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1030)) + (-4 *2 (-1228 *3))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 (-873 *6))) + (-5 *5 (-1 (-870 *6 *8) *8 (-873 *6) (-870 *6 *8))) (-4 *6 (-1078)) + (-4 *8 (-13 (-1030) (-600 (-873 *6)) (-1019 *7))) + (-5 *2 (-870 *6 *8)) (-4 *7 (-13 (-1030) (-832))) + (-5 *1 (-922 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1411 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-357)) (-4 *7 (-1213 *6)) (-5 *2 - (-627 - (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) - (|:| |radvect| (-627 (-671 (-310 (-552)))))))) - (-5 *1 (-1010))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) - (-5 *1 (-315 *4 *5 *6 *7))))) + (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) + (-2 (|:| -1411 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *3 (-1044 *6 *7 *8)) + (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1051 *6 *7 *8 *3 *4)) (-4 *4 (-1050 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) + (-5 *5 (-111)) (-4 *8 (-1044 *6 *7 *4)) (-4 *9 (-1050 *6 *7 *4 *8)) + (-4 *6 (-445)) (-4 *7 (-778)) (-4 *4 (-832)) + (-5 *2 (-629 (-2 (|:| |val| *8) (|:| -3361 *9)))) + (-5 *1 (-1051 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-209 *2)) + (-4 *2 + (-13 (-832) + (-10 -8 (-15 -2060 ((-1136) $ (-1154))) (-15 -2595 ((-1242) $)) + (-15 -3726 ((-1242) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-129)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) + (-4 *2 (-1213 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-528))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-671 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1191)) (-4 *2 (-25))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1044 *3 *4 *2)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *2 (-832)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1044 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-778)) + (-4 *4 (-832))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-1051 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1136)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-1044 *4 *5 *6)) (-5 *2 (-1242)) + (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-922 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) + (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1191)) (-4 *2 (-1078)) + (-4 *2 (-832))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-368 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-169)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *2 (-1240)) + (-12 (-5 *3 (-924 (-220))) (-5 *4 (-855)) (-5 *2 (-1242)) (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-961 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-922 *3)))) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-924 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-1030)) (-4 *1 (-1112 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + (-12 (-5 *2 (-756)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-922 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + (-12 (-5 *2 (-924 *3)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)) (-5 *3 (-220))))) + (-12 (-5 *2 (-924 (-220))) (-5 *1 (-1187)) (-5 *3 (-220))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1062 *3)) (-4 *3 (-130))))) +(((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1120 *4 *2)) (-14 *4 (-902)) + (-4 *2 (-13 (-1030) (-10 -7 (-6 (-4370 "*"))))) + (-5 *1 (-883 *4 *2))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169))))) (((*1 *2 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) - (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) - ((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) - (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-956 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1323 *3))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-722 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1152)) - (-4 *4 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-401 (-552)))) - (-5 *2 (-2 (|:| -1445 (-1132 *4)) (|:| -1456 (-1132 *4)))) - (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4))))) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-1150 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-814))))) +(((*1 *2 *3) (-12 (-5 *3 (-924 *2)) (-5 *1 (-963 *2)) (-4 *2 (-1030))))) (((*1 *2 *3) - (-12 (-5 *3 (-1078 *4)) (-4 *4 (-1076)) (-5 *2 (-1 *4)) - (-5 *1 (-996 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) -(((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) - ((*1 *1 *1) (-4 *1 (-981))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-991)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-991)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-900)))) - ((*1 *1 *1) (-4 *1 (-991)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1174)))) - ((*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-598 *3)) (-4 *3 (-830))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299))))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1242)) + (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-627 *1)) (-4 *1 (-424 *4)) - (-4 *4 (-830)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830))))) + (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1030)) (-5 *1 (-699 *2 *4)) + (-4 *4 (-632 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-355 (-113))) (-5 *1 (-819 *2)) (-4 *2 (-1030))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1030)) + (-5 *1 (-835 *5 *2)) (-4 *2 (-834 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4))))) + (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1021)) (-5 *3 (-373))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) + ((*1 *1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1191)))) + ((*1 *1 *1) (-4 *1 (-850 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-954 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-777)) + (-4 *4 (-832))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-1030)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-1213 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1211 (-48))))) + (-12 (-5 *3 (-629 (-1 (-111) *8))) (-4 *8 (-1044 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-778)) (-4 *7 (-832)) + (-5 *2 (-2 (|:| |goodPols| (-629 *8)) (|:| |badPols| (-629 *8)))) + (-5 *1 (-958 *5 *6 *7 *8)) (-5 *4 (-629 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) + (-12 + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-756)) (-846 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-629 (-1154))) (-14 *5 (-756)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-942 *3)) (-4 *3 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1195)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (|has| *1 (-6 -4359)) (-4 *1 (-398)) + (-5 *2 (-902))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-1 (-1150 (-933 *4)) (-933 *4))) + (-5 *1 (-1245 *4)) (-4 *4 (-357))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-301)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) + (-5 *1 (-380 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3713 (-756)) (|:| -4186 (-756)))) + (-5 *1 (-756)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-832) (-1019 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1176) (-424 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-544) (-832) (-1019 (-552)))) + (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 (-166 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) + (-4 *4 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-27) (-1176) (-424 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-637 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-795 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) - (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-928 (-48) *6 *5)))) + (-12 (-5 *3 (-637 (-401 *6))) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-2 (|:| -4199 (-629 (-401 *6))) (|:| -2325 (-673 *5)))) + (-5 *1 (-795 *5 *6)) (-5 *4 (-629 (-401 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) - (-4 *7 (-928 (-48) *6 *5)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) - (-4 *3 (-1211 (-166 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + (-12 (-5 *3 (-638 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-795 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + (-12 (-5 *3 (-638 *6 (-401 *6))) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)) (-1019 (-401 (-552))))) + (-5 *2 (-2 (|:| -4199 (-629 (-401 *6))) (|:| -2325 (-673 *5)))) + (-5 *1 (-795 *5 *6)) (-5 *4 (-629 (-401 *6)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1134 (-552))) (-5 *1 (-1138 *4)) (-4 *4 (-1030)) + (-5 *3 (-552))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-673 *5))) (-5 *4 (-552)) (-4 *5 (-357)) + (-4 *5 (-1030)) (-5 *2 (-111)) (-5 *1 (-1010 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1211 *4)))) + (-12 (-5 *3 (-629 (-673 *4))) (-4 *4 (-357)) (-4 *4 (-1030)) + (-5 *2 (-111)) (-5 *1 (-1010 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-4 *1 (-106 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-673 *4)) (-4 *4 (-1030)) (-5 *1 (-1120 *3 *4)) + (-14 *3 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) - (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-756)) (-4 *5 (-357)) (-5 *2 (-401 *6)) + (-5 *1 (-848 *5 *4 *6)) (-4 *4 (-1228 *5)) (-4 *6 (-1213 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-756)) (-5 *4 (-1229 *5 *6 *7)) (-4 *5 (-357)) + (-14 *6 (-1154)) (-14 *7 *5) (-5 *2 (-401 (-1210 *6 *5))) + (-5 *1 (-849 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-756)) (-5 *4 (-1229 *5 *6 *7)) (-4 *5 (-357)) + (-14 *6 (-1154)) (-14 *7 *5) (-5 *2 (-401 (-1210 *6 *5))) + (-5 *1 (-849 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1191))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1191)) (-5 *1 (-1125 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-324))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-598 *5))) (-4 *4 (-832)) (-5 *2 (-598 *5)) + (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1213 *5)) + (-4 *5 (-13 (-357) (-144) (-1019 (-552)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) + (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -4329 *6))) + (-5 *1 (-997 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-113)) (-5 *4 (-756)) (-4 *5 (-445)) (-4 *5 (-832)) + (-4 *5 (-1019 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-424 *5)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -4015 ((-1103 *5 (-598 $)) $)) + (-15 -4026 ((-1103 *5 (-598 $)) $)) + (-15 -3213 ($ (-1103 *5 (-598 $)))))))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-825 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-844) (-844) (-844))) (-5 *4 (-552)) (-5 *2 (-844)) + (-5 *1 (-633 *5 *6 *7)) (-4 *5 (-1078)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-844)) (-5 *1 (-836 *3 *4 *5)) (-4 *3 (-1030)) + (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-844)) (-5 *1 (-1150 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-723))))) +(((*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1016)) (-5 *3 (-1154)) (-5 *1 (-261))))) +(((*1 *1) (-5 *1 (-808)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1154)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-688 *3)) + (-4 *3 (-600 (-528))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) - (-5 *3 (-166 (-552))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-4 *5 (-776)) (-4 *7 (-544)) (-5 *2 (-412 *3)) - (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) - (-4 *3 (-928 *7 *5 *4)))) + (-12 (-5 *4 (-1154)) (-5 *2 (-1 (-220) (-220) (-220))) + (-5 *1 (-688 *3)) (-4 *3 (-600 (-528)))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-567))))) +(((*1 *2) (-12 (-5 *2 (-825 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-902)))) ((*1 *2 *3) - (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1148 *4))) (-5 *1 (-451 *4)) - (-5 *3 (-1148 *4)))) + (-12 (-5 *3 (-1237 *4)) (-4 *4 (-343)) (-5 *2 (-902)) + (-5 *1 (-520 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-552))) (-5 *1 (-985 *3)) (-14 *3 (-552))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1191))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-832)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-884 *3)) (-4 *3 (-1078)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2) + (-12 (-4 *3 (-1030)) (-5 *2 (-939 (-697 *3 *4))) (-5 *1 (-697 *3 *4)) + (-4 *4 (-1213 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *9 (-1050 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1048 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) - (-4 *7 (-13 (-357) (-144) (-707 *5 *6))) (-5 *2 (-412 *3)) - (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1211 *7)))) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-629 *9)) (-4 *8 (-1044 *5 *6 *7)) + (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-778)) + (-4 *7 (-832)) (-5 *2 (-756)) (-5 *1 (-1123 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) + (-5 *1 (-986))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1072 (-220))) (-5 *6 (-552)) (-5 *2 (-1186 (-907))) + (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1072 (-220))) (-5 *6 (-552)) (-5 *7 (-1136)) + (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1072 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) + (-5 *2 (-1186 (-907))) (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1072 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1136)) + (-5 *2 (-1186 (-907))) (-5 *1 (-312))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 (-310 (-220)))) + (-5 *2 + (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) + (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) + (-5 *1 (-299))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4368)) (-4 *1 (-230 *3)) + (-4 *3 (-1078)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4368)) (-4 *1 (-230 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-276 *2)) (-4 *2 (-1191)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1078)) + (-5 *1 (-722 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-722 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1118 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34))) (-5 *1 (-1119 *3 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1136)) (-4 *6 (-445)) (-4 *7 (-778)) (-4 *8 (-832)) + (-4 *4 (-1044 *6 *7 *8)) (-5 *2 (-1242)) + (-5 *1 (-761 *6 *7 *8 *4 *5)) (-4 *5 (-1050 *6 *7 *8 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-907))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-629 (-2 (|:| -3416 (-401 (-552))) (|:| -3428 (-401 (-552)))))) + (-5 *2 (-629 (-401 (-552)))) (-5 *1 (-1001 *4)) + (-4 *4 (-1213 (-552)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1136)) (|:| -4290 (-1136)))) + (-5 *1 (-807))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-357)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 (-401 *3))) + (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1213 *2)) + (-4 *5 (-1213 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) + (-4 *6 (-336 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-357)) (-4 *3 (-1213 *2)) (-4 *4 (-1213 (-401 *3))) + (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) + (-4 *1 (-329 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-1098)) (-5 *2 (-111)) (-5 *1 (-806))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-756)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-166 (-220))) (-5 *3 (-756)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-1213 *3)) (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-1237 *6)) (-5 *1 (-330 *3 *4 *5 *6)) + (-4 *6 (-336 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-629 (-288 *4))) (-5 *1 (-613 *3 *4 *5)) (-4 *3 (-832)) + (-4 *4 (-13 (-169) (-702 (-401 (-552))))) (-14 *5 (-902))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *2 (-629 (-220))) + (-5 *1 (-461))))) +(((*1 *2 *2) + (-12 (-5 *2 (-924 *3)) (-4 *3 (-13 (-357) (-1176) (-983))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + ((*1 *1 *1 *1) (-5 *1 (-844))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1007 *3)) (-4 *3 (-1191))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *4)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1213 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-629 *3)) (-5 *1 (-1106 *4 *3)) (-4 *4 (-1213 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1195)) (-4 *5 (-1213 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) + (|:| |c2| (-401 *5)) (|:| |deg| (-756)))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1213 (-401 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2594 *3))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-373)) (-5 *1 (-771))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) + ((*1 *1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-756))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) + (-5 *1 (-751 *3 *4)) (-4 *3 (-693 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1030)) + (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) + (-4 *3 (-834 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-357)) (-4 *2 (-1213 *4)) + (-5 *1 (-903 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1063))) (-5 *1 (-285))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-544)) (-5 *1 (-950 *4 *2)) + (-4 *2 (-1213 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1102 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-629 (-310 (-220)))) + (|:| |constraints| + (-629 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-756)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-673 (-220))) (|:| |dFinish| (-673 (-220)))))) + (|:| |f| (-629 (-629 (-310 (-220))))) (|:| |st| (-1136)) + (|:| |tol| (-220)))) + (-5 *2 (-111)) (-5 *1 (-205))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *3 (-629 (-257))) + (-5 *1 (-255)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-924 (-220)) (-924 (-220)))) (-5 *1 (-257)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) - (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) - (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) - (-4 *3 (-928 *7 *6 *5)))) + (-12 (-5 *4 (-629 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) + (-14 *5 (-629 (-1154))) (-4 *6 (-445)) (-5 *2 (-1237 *6)) + (-5 *1 (-617 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1016)) (-5 *1 (-733))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1030)) (-4 *2 (-544))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-4 *7 (-832)) + (-4 *9 (-930 *8 *6 *7)) (-4 *6 (-778)) (-4 *8 (-301)) + (-5 *2 (-629 (-756))) (-5 *1 (-727 *6 *7 *8 *9)) (-5 *5 (-756))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-902)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-855)) + (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-947 *3)) (-4 *3 (-948))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-933 (-552)))) (-5 *1 (-431)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) - (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) - (-4 *8 (-928 *7 *6 *5)) (-5 *2 (-412 (-1148 *8))) - (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1148 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) + (-12 (-5 *3 (-1154)) (-5 *4 (-673 (-220))) (-5 *2 (-1082)) + (-5 *1 (-744)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-627 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *6 (-1211 *5)) (-5 *2 (-627 (-635 (-401 *6)))) - (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-401 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) - (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) - (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) + (-12 (-5 *3 (-1154)) (-5 *4 (-673 (-552))) (-5 *2 (-1082)) + (-5 *1 (-744))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-756)) (-5 *1 (-838 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-654 *4))) - (-5 *1 (-654 *4)))) + (-12 (-5 *2 (-1150 (-552))) (-5 *1 (-923)) (-5 *3 (-552))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-672 *3 *4 *5 *2)) + (-4 *2 (-671 *3 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-832)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -2670 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -3360 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1134 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4235 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-547)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-756)) (-4 *1 (-679 *2)) (-4 *2 (-1078)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -2670 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (|:| -3360 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))))) + (-5 *1 (-788)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-627 *3)) (-5 *1 (-678 *3)) - (-4 *3 (-1211 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-5 *2 (-412 *3)) - (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) - (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) - (-4 *5 - (-13 (-830) - (-10 -8 (-15 -3562 ((-1152) $)) - (-15 -4344 ((-3 $ "failed") (-1152)))))) - (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-713 *4 *5 *6 *3)) - (-4 *3 (-928 (-931 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) - (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) - (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) - (-4 *3 (-928 (-401 (-931 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-13 (-301) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) - (-4 *3 (-928 (-401 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-724 *4 *5 *6 *3)) - (-4 *3 (-928 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) - (-4 *3 (-1211 (-401 (-552)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1020 *3)) - (-4 *3 (-1211 (-401 (-931 (-552))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1211 (-401 (-552)))) - (-4 *5 (-13 (-357) (-144) (-707 (-401 (-552)) *4))) - (-5 *2 (-412 *3)) (-5 *1 (-1055 *4 *5 *3)) (-4 *3 (-1211 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1211 (-401 (-931 (-552))))) - (-4 *5 (-13 (-357) (-144) (-707 (-401 (-931 (-552))) *4))) - (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1211 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) - (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) - (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) + (-12 (-5 *2 (-1242)) (-5 *1 (-1168 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *3 (-552)) (-5 *1 (-236))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-629 (-1154))) + (-14 *3 (-629 (-1154))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-782 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) + ((*1 *1 *1) (-4 *1 (-830))) + ((*1 *2 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-169)) (-4 *2 (-1039)))) + ((*1 *1 *1) (-4 *1 (-1039))) ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1150 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1150 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) + (-12 (-5 *3 (-1154)) (-5 *4 (-933 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-629 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) + (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -4186 *1))) + (-4 *1 (-1044 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *2 (-2 (|:| -4158 *1) (|:| |gap| (-756)) (|:| -4186 *1))) + (-4 *1 (-1044 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1154)) (-5 *6 (-111)) + (-4 *7 (-13 (-301) (-832) (-144) (-1019 (-552)) (-625 (-552)))) + (-4 *3 (-13 (-1176) (-940) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-825 *3)) (|:| |f2| (-629 (-825 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *7 *3)) (-5 *5 (-825 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154)) (-4 *5 (-357)) (-5 *2 (-629 (-1185 *5))) + (-5 *1 (-1245 *5)) (-5 *4 (-1185 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5)) (-4 *5 (-777)) (-5 *2 (-111)) + (-5 *1 (-827 *4 *5)) (-14 *4 (-756))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-1159))) (-5 *1 (-1159)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154)) (-5 *3 (-629 (-1159))) (-5 *1 (-1159))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) - (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) + (-12 (-5 *3 (-756)) (-5 *2 (-1242)) (-5 *1 (-847 *4 *5 *6 *7)) + (-4 *4 (-1030)) (-14 *5 (-629 (-1154))) (-14 *6 (-629 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-756)) (-4 *4 (-1030)) (-4 *5 (-832)) (-4 *6 (-778)) + (-14 *8 (-629 *5)) (-5 *2 (-1242)) + (-5 *1 (-1249 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-930 *4 *6 *5)) + (-14 *9 (-629 *3)) (-14 *10 *3)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-242 *5 *6))) (-4 *6 (-445)) + (-5 *2 (-242 *5 *6)) (-14 *5 (-629 (-1154))) (-5 *1 (-617 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-778)) + (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-873 *4)) (-4 *4 (-1078)) (-4 *2 (-1078)) + (-5 *1 (-870 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-814))))) +(((*1 *1) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-1078)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-673 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-673 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-673 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-200))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *1) (-5 *1 (-1237)))) -(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-933))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-324))) (-5 *1 (-324))))) (((*1 *2 *1) - (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) - (-14 *6 - (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *2)) - (-2 (|:| -4153 *5) (|:| -4067 *2)))) - (-4 *2 (-233 (-1383 *3) (-754))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-830)) (-4 *7 (-928 *4 *2 (-844 *3)))))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-804 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-828)) (-5 *1 (-1260 *3 *2)) (-4 *3 (-1030))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-357)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-443 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) + (-5 *2 + (-2 (|:| R (-673 *6)) (|:| A (-673 *6)) (|:| |Ainv| (-673 *6)))) + (-5 *1 (-959 *6)) (-5 *3 (-673 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237))))) + (-12 (-5 *3 (-629 (-629 (-629 *4)))) (-5 *2 (-629 (-629 *4))) + (-5 *1 (-1162 *4)) (-4 *4 (-832))))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *6 (-1044 *3 *4 *5)) (-5 *2 (-1242)) + (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1050 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-885 (-552))) (-5 *1 (-898)))) ((*1 *2 *3) - (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-885 (-552))) (-5 *1 (-898))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844)))) + ((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-902)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1213 *2)) (-4 *2 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-902)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1101 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) + (-5 *2 (-629 (-2 (|:| |val| (-111)) (|:| -3361 *4)))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-357)) (-5 *1 (-751 *2 *3)) (-4 *2 (-693 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-834 *2)) (-4 *2 (-1030)) (-4 *2 (-357))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-1100 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) + (-12 + (-5 *3 + (-629 + (-2 (|:| |eqzro| (-629 *8)) (|:| |neqzro| (-629 *8)) + (|:| |wcond| (-629 (-933 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1237 (-401 (-933 *5)))) + (|:| -4199 (-629 (-1237 (-401 (-933 *5)))))))))) + (-5 *4 (-1136)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-930 *5 *7 *6)) + (-4 *6 (-13 (-832) (-600 (-1154)))) (-4 *7 (-778)) (-5 *2 (-552)) + (-5 *1 (-905 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-673 (-552))) (-5 *5 (-111)) (-5 *7 (-673 (-220))) + (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1016)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 (-933 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) + (-14 *4 (-629 (-1154))))) + ((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-930 *3 *4 *5)) (-4 *3 (-445)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-443 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-443 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-1136)) (-4 *7 (-930 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-443 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-778)) (-4 *4 (-832)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-930 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-629 (-765 *3 (-846 *4)))) (-4 *3 (-445)) + (-14 *4 (-629 (-1154))) (-5 *1 (-614 *3 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-756)) (-5 *1 (-574 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1191)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369))))))) (((*1 *2 *3) - (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) - ((*1 *2 *3) - (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) - ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-930 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-111)) (-5 *1 (-905 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) - ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) + (-12 (-5 *3 (-629 (-933 *4))) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-832) (-600 (-1154)))) (-4 *6 (-778)) (-5 *2 (-111)) + (-5 *1 (-905 *4 *5 *6 *7)) (-4 *7 (-930 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1168 *4 *5)) + (-4 *4 (-1078)) (-4 *5 (-1078))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3301 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-969 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-1044 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-111)) + (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1050 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-737))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-573 *3) *3 (-1154))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1154))) + (-4 *3 (-278)) (-4 *3 (-615)) (-4 *3 (-1019 *4)) (-4 *3 (-424 *7)) + (-5 *4 (-1154)) (-4 *7 (-600 (-873 (-552)))) (-4 *7 (-445)) + (-4 *7 (-867 (-552))) (-4 *7 (-832)) (-5 *2 (-573 *3)) + (-5 *1 (-561 *7 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-1136)) (-5 *2 (-1242)) (-5 *1 (-1238))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *2 (-412 (-1150 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1150 *1)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-832)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-627 *1)) - (-4 *1 (-1045 *4 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028))))) + (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-957 *4 *5 *6 *3)) (-4 *4 (-1030)) (-4 *5 (-778)) + (-4 *6 (-832)) (-4 *3 (-1044 *4 *5 *6)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |k| (-654 *3)) (|:| |c| *4)))) - (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1017 (-48))) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) - (-5 *2 (-412 (-1148 (-48)))) (-5 *1 (-429 *4 *5 *3)) - (-4 *3 (-1211 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-324)))) - ((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-401 (-552))))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257))))) + (-12 (-5 *2 (-629 (-2 (|:| |k| (-1154)) (|:| |c| (-1259 *3))))) + (-5 *1 (-1259 *3)) (-4 *3 (-1030)))) + ((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |k| *3) (|:| |c| (-1261 *3 *4))))) + (-5 *1 (-1261 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-629 (-598 *6))) (-5 *4 (-1154)) (-5 *2 (-598 *6)) + (-4 *6 (-424 *5)) (-4 *5 (-832)) (-5 *1 (-561 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-902)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-777)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1218 *3)) (-4 *3 (-1030))))) +(((*1 *1 *1) + (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1030)) (-4 *3 (-832)) + (-4 *4 (-260 *3)) (-4 *5 (-778))))) (((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) - (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) + (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-873 *4)) + (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1078)) (-4 *3 (-163 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-1072 (-825 (-373))))) + (-5 *2 (-629 (-1072 (-825 (-220))))) (-5 *1 (-299)))) + ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-388)))) ((*1 *1 *2) - (-12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1213 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1213 *3)) + (-5 *2 (-1237 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1237 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) + (-4 *3 (-832)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-456 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1191)))) ((*1 *1 *2) - (-12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-4 *3 (-169)) (-4 *1 (-709 *3 *2)) (-4 *2 (-1213 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-5 *2 (-629 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1078)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-1030)) (-4 *1 (-961 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1041)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) - (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + (-12 (-5 *2 (-933 *3)) (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) + (-4 *5 (-600 (-1154))) (-4 *4 (-778)) (-4 *5 (-832)))) ((*1 *1 *2) - (-12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) - (-14 *4 (-627 *2)) (-4 *5 (-381)))) + (-4029 + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) ((*1 *1 *2) - (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| |mdnia| - (-2 (|:| |fn| (-310 (-220))) - (|:| -1707 (-627 (-1070 (-823 (-220))))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) - (-5 *1 (-752)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *1 (-791)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) - (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-627 (-310 (-220)))) - (|:| -3002 (-627 (-220))))))) - (-5 *1 (-821)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-627 (-310 (-220)))) - (|:| |constraints| - (-627 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-754)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) - (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) - (|:| |tol| (-220)))) - (-5 *1 (-877)))) + (-12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) + (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1050 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1136)) + (-5 *1 (-1048 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1060)))) + ((*1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *2)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078)))) ((*1 *1 *2) - (-1559 - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) - (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))) - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) - (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))) - (-12 (-5 *2 (-931 *3)) - (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) - (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) - (-4 *5 (-830))))) + (-12 (-4 *1 (-1081 *3 *4 *5 *2 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *2 (-1078)) (-4 *6 (-1078)))) ((*1 *1 *2) - (-1559 - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) - (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) - (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) + (-12 (-4 *1 (-1081 *3 *4 *2 *5 *6)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *2 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) ((*1 *1 *2) - (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) - (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) + (-12 (-4 *1 (-1081 *3 *2 *4 *5 *6)) (-4 *3 (-1078)) (-4 *2 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1081 *2 *3 *4 *5 *6)) (-4 *2 (-1078)) (-4 *3 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) + (-4 *4 (-1078)) (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-629 *7)) (|:| -3361 *8))) + (-4 *7 (-1044 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *2 (-1136)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1159)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-1171)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-844)) (-5 *3 (-552)) (-5 *1 (-1171)))) + ((*1 *2 *3) + (-12 (-5 *3 (-765 *4 (-846 *5))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *5 (-629 (-1154))) + (-5 *2 (-765 *4 (-846 *6))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *6 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-933 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-765 *4 (-846 *6))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *6 (-629 (-1154))) + (-5 *2 (-933 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 *4)) (-4 *4 (-13 (-830) (-301) (-144) (-1003))) + (-5 *2 (-1150 (-1005 (-401 *4)))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154))) (-14 *6 (-629 (-1154))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1124 *4 (-523 (-846 *6)) (-846 *6) (-765 *4 (-846 *6)))) + (-4 *4 (-13 (-830) (-301) (-144) (-1003))) (-14 *6 (-629 (-1154))) + (-5 *2 (-629 (-765 *4 (-846 *6)))) (-5 *1 (-1263 *4 *5 *6)) + (-14 *5 (-629 (-1154)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-552)) (-4 *5 (-830)) (-4 *5 (-357)) + (-5 *2 (-756)) (-5 *1 (-926 *5 *6)) (-4 *6 (-1213 *5))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) (-5 *6 (-659 (-220))) + (-5 *3 (-220)) (-5 *2 (-1016)) (-5 *1 (-735))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) + (-5 *2 (-1016)) (-5 *1 (-731))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1078)) + (-4 *2 (-1191))))) +(((*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1030))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1150 (-1150 *5)))) + (-5 *1 (-1189 *5)) (-5 *3 (-1150 (-1150 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1150 (-933 *6))) (-4 *6 (-544)) + (-4 *2 (-930 (-401 (-933 *6)) *5 *4)) (-5 *1 (-717 *5 *4 *6 *2)) + (-4 *5 (-778)) + (-4 *4 (-13 (-832) (-10 -8 (-15 -1522 ((-1154) $)))))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-598 *3)) (-4 *3 (-832))))) +(((*1 *2) (-12 (-5 *2 (-1242)) (-5 *1 (-1240))))) +(((*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-599 (-844))))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-498)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-579)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-471)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-135)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-153)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1144)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-612)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-951)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-177)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1017)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-305)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-655)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-151)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1248)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-509)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-95)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1093)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-660)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-213)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1159))))) (((*1 *2 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)))) - ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) + (-12 (-4 *2 (-13 (-357) (-830))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1213 (-166 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-756)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-902)) + (-5 *2 + (-3 (-1150 *4) + (-1237 (-629 (-2 (|:| -2925 *4) (|:| -2840 (-1098))))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1122)) (-5 *3 (-141)) (-5 *2 (-111))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-673 *1)) (-4 *1 (-343)) (-5 *2 (-1237 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-673 *1)) (-4 *1 (-142)) (-4 *1 (-890)) + (-5 *2 (-1237 *1))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1191)) (-5 *2 (-756)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-658 *4))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) (-4 *2 (-1191))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1028))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-673 (-220))) (-5 *4 (-552)) (-5 *2 (-1016)) + (-5 *1 (-741))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-832)) + (-5 *1 (-561 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1078)) (-4 *3 (-1078)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) +(((*1 *2 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-537))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *2 (-1242)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-151)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 (-1113))) (-5 *1 (-1045))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-756)) (-4 *1 (-1213 *3)) (-4 *3 (-1030))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-552)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-756)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-778)) (-4 *4 (-930 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-832)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) + (-5 *2 (-2 (|:| |num| (-1237 *4)) (|:| |den| *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *1 (-672 *4 *5 *6 *2)) + (-4 *2 (-671 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1072 (-220))) + (-5 *5 (-111)) (-5 *2 (-1239)) (-5 *1 (-251))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 (-629 (-629 *4)))) (-5 *2 (-629 (-629 *4))) + (-4 *4 (-832)) (-5 *1 (-1162 *4))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) - (-5 *1 (-185))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 (-552))))) - (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-828) (-357))))) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3301 *4))) + (-5 *1 (-950 *4 *3)) (-4 *3 (-1213 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) + ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1078)))) + ((*1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-756)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-671 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-756)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-756)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-671 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-832)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-846 *3)) (-14 *3 (-629 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-947 *3)) (-4 *3 (-948)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1070 *3)) (-4 *3 (-1191)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-777)) + (-5 *2 (-1154)))) + ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1233 *3)) (-14 *3 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1239))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-832) (-600 (-1154)))) + (-4 *6 (-778)) (-5 *2 (-629 *3)) (-5 *1 (-905 *4 *5 *6 *3)) + (-4 *3 (-930 *4 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-528))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-830) (-357))) (-5 *2 (-111)) (-5 *1 (-1040 *4 *3)) + (-4 *3 (-1213 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-806))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *1 (-958 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-111)) (-4 *7 (-1044 *4 *5 *6)) + (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-958 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-777)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-629 (-1154))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1191)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) + (-14 *6 (-756)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-288 (-401 (-931 (-552)))))) - (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-828) (-357))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) + (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1030) (-832))) + (-5 *1 (-218 *3 *4)) (-14 *4 (-629 (-1154))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 (-288 (-931 *4)))) - (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-756)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-5 *2 (-235 *5 *7)) + (-5 *1 (-234 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-931 (-552))))) - (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-828) (-357))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-288 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1152)) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-4 *4 (-13 (-29 *6) (-1174) (-938))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) - (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *2)) - (-4 *2 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1136)) (-5 *5 (-598 *6)) + (-4 *6 (-296)) (-4 *2 (-1191)) (-5 *1 (-291 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1235 *5) "failed")) - (|:| -2957 (-627 (-1235 *5))))) - (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) + (-4 *2 (-296)) (-5 *1 (-292 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1235 *5) "failed")) - (|:| -2957 (-627 (-1235 *5))))) - (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-5 *2 (-673 *6)) (-5 *1 (-298 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) - (-5 *2 - (-627 - (-2 (|:| |particular| (-3 (-1235 *5) "failed")) - (|:| -2957 (-627 (-1235 *5)))))) - (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-832)) + (-4 *6 (-832)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) - (-5 *2 - (-627 - (-2 (|:| |particular| (-3 (-1235 *5) "failed")) - (|:| -2957 (-627 (-1235 *5)))))) - (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) + (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) + (-4 *9 (-357)) (-4 *10 (-1213 *9)) (-4 *11 (-1213 (-401 *10))) + (-5 *2 (-330 *9 *10 *11 *12)) + (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-336 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1078)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) - (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1195)) (-4 *8 (-1195)) + (-4 *6 (-1213 *5)) (-4 *7 (-1213 (-401 *6))) (-4 *9 (-1213 *8)) + (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1213 (-401 *9))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4367)))) - (-5 *2 - (-627 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2957 (-627 *7))))) - (-5 *1 (-650 *5 *6 *7 *3)) (-5 *4 (-627 *7)) - (-4 *3 (-669 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1191)) (-4 *6 (-1191)) + (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1030)) + (-4 *4 (-1078)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1152)) - (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *1 (-755 *5 *2)) (-4 *2 (-13 (-29 *5) (-1174) (-938))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1152)) - (-4 *7 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 - (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) - (-5 *1 (-785 *6 *7)) (-5 *4 (-1235 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) + (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1152)) - (-4 *6 (-13 (-29 *5) (-1174) (-938))) - (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-1235 *6))) (-5 *1 (-785 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) - (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) + (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) + (-4 *6 (-973 *5)) (-4 *7 (-1213 *6)) + (-4 *8 (-13 (-403 *6 *7) (-1019 *6))) (-4 *9 (-301)) + (-4 *10 (-973 *9)) (-4 *11 (-1213 *10)) + (-5 *2 (-407 *9 *10 *11 *12)) + (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-403 *10 *11) (-1019 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1030) (-832))) + (-4 *6 (-13 (-1030) (-832))) (-4 *2 (-424 *6)) + (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1078)) (-4 *6 (-1078)) + (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-832)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) + (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -1411 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-357)) (-4 *6 (-357)) + (-5 *2 (-2 (|:| -1411 *6) (|:| |coeff| *6))) + (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 - (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) - (-5 *1 (-785 *6 *7)))) + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) - (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 - (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) - (-5 *1 (-785 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-587 *8)) + (-5 *1 (-585 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1152)) - (-4 *7 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2957 (-627 *7))) *7 "failed")) - (-5 *1 (-785 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1134 *6)) (-5 *5 (-587 *7)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) + (-5 *1 (-585 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1152)) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2957 (-627 *3))) *3 "failed")) - (-5 *1 (-785 *6 *3)) (-4 *3 (-13 (-29 *6) (-1174) (-938))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-627 *2)) - (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-5 *1 (-785 *6 *2)) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-627 *2)) - (-4 *2 (-13 (-29 *6) (-1174) (-938))) - (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *1 (-785 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1014)) (-5 *1 (-788)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1134 *7)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) + (-5 *1 (-585 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1191)) (-5 *1 (-587 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) - (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) - (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) - (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-629 *6)) (-5 *1 (-627 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2957 (-627 *6))) "failed") - *7 *6)) - (-4 *6 (-357)) (-4 *7 (-638 *6)) - (-5 *2 (-2 (|:| |particular| (-1235 *6)) (|:| -2957 (-671 *6)))) - (-5 *1 (-796 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1014)) (-5 *1 (-876)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-629 *6)) (-5 *5 (-629 *7)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-629 *8)) + (-5 *1 (-628 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-635 *3)) (-4 *3 (-1191)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-876)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) - (-5 *8 (-220)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) - (-5 *2 (-1014)) (-5 *1 (-876)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) - (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) - (-5 *1 (-876)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1030)) (-4 *8 (-1030)) + (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-671 *8 *9 *10)) + (-5 *1 (-669 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-671 *5 *6 *7)) + (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 (-373))) - (-5 *1 (-1002)) (-5 *4 (-373)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1030)) + (-4 *8 (-1030)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) + (-4 *2 (-671 *8 *9 *10)) (-5 *1 (-669 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-671 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) - (-5 *4 (-373)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) - (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) - (-5 *3 (-310 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) - (-5 *3 (-288 (-310 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) + (-4 *6 (-1213 *5)) (-4 *2 (-1213 (-401 *8))) + (-5 *1 (-694 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1213 (-401 *6))) + (-4 *8 (-1213 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1030)) (-4 *9 (-1030)) + (-4 *5 (-832)) (-4 *6 (-778)) (-4 *2 (-930 *9 *7 *5)) + (-5 *1 (-713 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-778)) + (-4 *4 (-930 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-832)) (-4 *6 (-832)) (-4 *7 (-778)) + (-4 *9 (-1030)) (-4 *2 (-930 *9 *8 *6)) + (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-778)) + (-4 *4 (-930 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-720 *5 *7)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-4 *7 (-711)) (-5 *2 (-720 *6 *7)) + (-5 *1 (-719 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-720 *3 *4)) + (-4 *4 (-711)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) - (-5 *3 (-288 (-310 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-767 *5)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-5 *2 (-767 *6)) (-5 *1 (-766 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) - (-5 *3 (-310 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-782 *6)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *4 (-782 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1152))) - (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1107 *5)) - (-5 *3 (-627 (-288 (-310 *5)))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-818 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *1 (-817 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) - (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) - (-5 *1 (-1158 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-825 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-5 *1 (-824 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5)) - (-5 *3 (-627 (-288 (-401 (-931 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) - (-5 *1 (-1158 *4)) (-5 *3 (-627 (-288 (-401 (-931 *4))))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-544)) - (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) - (-5 *3 (-401 (-931 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-860 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-860 *6)) (-5 *1 (-859 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-544)) - (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) - (-5 *3 (-288 (-401 (-931 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) - (-5 *1 (-1158 *4)) (-5 *3 (-401 (-931 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) - (-5 *1 (-1158 *4)) (-5 *3 (-288 (-401 (-931 *4))))))) -(((*1 *1) (-5 *1 (-1058)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)) - (-4 *4 (-544)) (-5 *2 (-401 (-1148 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) - (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-1148 (-401 (-1148 *3)))) (-5 *1 (-548 *6 *3 *7)) - (-5 *5 (-1148 *3)) (-4 *7 (-1076)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1231 *5)) (-14 *5 (-1152)) (-4 *6 (-1028)) - (-5 *2 (-1208 *5 (-931 *6))) (-5 *1 (-926 *5 *6)) (-5 *3 (-931 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-1148 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-1148 *1)) - (-4 *1 (-928 *4 *5 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-870 *5 *6)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-870 *5 *7)) + (-5 *1 (-869 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-401 (-1148 *3))) - (-5 *1 (-929 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1148 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) - (-4 *7 (-928 *6 *5 *4)) (-4 *5 (-776)) (-4 *4 (-830)) - (-4 *6 (-1028)) (-5 *1 (-929 *5 *4 *6 *7 *3)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1078)) + (-4 *6 (-1078)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) (-4 *5 (-544)) - (-5 *2 (-401 (-1148 (-401 (-931 *5))))) (-5 *1 (-1022 *5)) - (-5 *3 (-401 (-931 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1028) (-830))) - (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) - (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-830)) (-5 *3 (-627 *6)) (-5 *5 (-627 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-627 *5)) (|:| |f3| *5) - (|:| |f4| (-627 *5)))) - (-5 *1 (-1160 *6)) (-5 *4 (-627 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1211 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-5 *2 (-933 *6)) (-5 *1 (-927 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-832)) + (-4 *8 (-1030)) (-4 *6 (-778)) + (-4 *2 + (-13 (-1078) + (-10 -8 (-15 -1698 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-756)))))) + (-5 *1 (-932 *6 *7 *8 *5 *2)) (-4 *5 (-930 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-939 *6)) (-5 *1 (-938 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) - (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1211 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) - (-4 *3 (-1211 (-401 (-552)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-765 *3)) (|:| |polden| *3) (|:| -3229 (-754)))) - (-5 *1 (-765 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3229 (-754)))) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1) (-4 *1 (-946))) ((*1 *1 *1) (-5 *1 (-1096)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) - (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) - (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-671 *3)))) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-754)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-900)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) - (-4 *4 (-169)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174))) - (-5 *1 (-222 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) - (-4 *6 (-233 (-1383 *3) (-754))) - (-14 *7 - (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) - (-2 (|:| -4153 *5) (|:| -4067 *6)))) - (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-830)) - (-4 *2 (-928 *4 *6 (-844 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) - (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-528))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1035)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) - (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-666 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1028)) (-4 *2 (-367 *3)) - (-4 *4 (-367 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *2 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-703))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) - (-5 *1 (-948 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1035)))) - ((*1 *1 *1 *1) (-4 *1 (-1088))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *2 (-233 *3 *4)) - (-4 *5 (-233 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) - (-4 *2 (-233 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) - (-4 *2 (-928 *3 (-523 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-924 *5)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-5 *2 (-924 *6)) (-5 *1 (-962 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-922 (-220))) (-5 *3 (-220)) (-5 *1 (-1185)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-21)))) + (-12 (-5 *3 (-1 *2 (-933 *4))) (-4 *4 (-1030)) + (-4 *2 (-930 (-933 *4) *5 *6)) (-4 *5 (-778)) + (-4 *6 + (-13 (-832) + (-10 -8 (-15 -1522 ((-1154) $)) + (-15 -1485 ((-3 $ "failed") (-1154)))))) + (-5 *1 (-965 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) + (-4 *2 (-973 *6)) (-5 *1 (-971 *5 *6 *4 *2)) (-4 *4 (-973 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-978 *6)) (-5 *1 (-979 *4 *5 *2 *6)) (-4 *4 (-978 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) + (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-205)) - (-5 *3 (-1152)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) + (-4 *5 (-1030)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1030)) (-4 *10 (-1030)) + (-14 *5 (-756)) (-14 *6 (-756)) (-4 *8 (-233 *6 *7)) + (-4 *9 (-233 *5 *7)) (-4 *2 (-1033 *5 *6 *10 *11 *12)) + (-5 *1 (-1035 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1033 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) + (-4 *12 (-233 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-754)) (-5 *2 (-627 (-1152))) - (-5 *1 (-261)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *2 (-627 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 *3)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) - (-5 *2 (-627 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1156)) (-5 *1 (-1155))))) -(((*1 *2) - (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) - (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1189)) - (-4 *5 (-367 *4)) (-4 *3 (-367 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1028)) (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-841)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) - (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) - (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) - (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-1072 *6)) (-5 *1 (-1067 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-830)) + (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-629 *6)) + (-5 *1 (-1067 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-1070 *6)) (-5 *1 (-1069 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1073 *4 *2)) (-4 *4 (-830)) + (-4 *2 (-1127 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1134 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-1134 *6)) (-5 *1 (-1132 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-671 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2957 (-627 *6))) - *7 *6)) - (-4 *6 (-357)) (-4 *7 (-638 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1235 *6) "failed")) - (|:| -2957 (-627 (-1235 *6))))) - (-5 *1 (-796 *6 *7)) (-5 *4 (-1235 *6))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-552))) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) - (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *9) (|:| |radicand| *9))) - (-5 *1 (-932 *5 *6 *7 *8 *9)) (-5 *4 (-754)) - (-4 *9 - (-13 (-357) - (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1134 *6)) (-5 *5 (-1134 *7)) + (-4 *6 (-1191)) (-4 *7 (-1191)) (-4 *8 (-1191)) (-5 *2 (-1134 *8)) + (-5 *1 (-1133 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-900)) (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) - (-4 *3 (-600 (-373))))) - ((*1 *2 *3) - (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1167 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-1078)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-166 *5)) (-5 *4 (-900)) (-4 *5 (-169)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5 *7 *9)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-14 *7 (-1154)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1201 *6 *8 *10)) (-5 *1 (-1196 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1154)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-1204 *6)) (-5 *1 (-1203 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5)) (-4 *5 (-830)) + (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1134 *6)) + (-5 *1 (-1203 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1210 *5 *6)) (-14 *5 (-1154)) + (-4 *6 (-1030)) (-4 *8 (-1030)) (-5 *2 (-1210 *7 *8)) + (-5 *1 (-1205 *5 *6 *7 *8)) (-14 *7 (-1154)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) + (-4 *2 (-1213 *6)) (-5 *1 (-1211 *5 *4 *6 *2)) (-4 *4 (-1213 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) - (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1222 *5 *7 *9)) (-4 *5 (-1030)) + (-4 *6 (-1030)) (-14 *7 (-1154)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1222 *6 *8 *10)) (-5 *1 (-1217 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1154)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-768 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-301)) - (-5 *2 (-754)) (-5 *1 (-448 *5 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) - (-4 *2 (-13 (-830) (-21)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *1 *1 *1) (-4 *1 (-946)))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-730))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-4 *1 (-882 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-5 *2 - (-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) - (|:| |singularities| (-1132 (-220))))) - (-5 *1 (-104))))) -(((*1 *1) (-5 *1 (-602)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) + (-4 *2 (-1228 *6)) (-5 *1 (-1226 *5 *6 *4 *2)) (-4 *4 (-1228 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5)) (-4 *5 (-1191)) + (-4 *6 (-1191)) (-5 *2 (-1237 *6)) (-5 *1 (-1236 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1237 *5)) + (-4 *5 (-1191)) (-4 *6 (-1191)) (-5 *2 (-1237 *6)) + (-5 *1 (-1236 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) + (-4 *4 (-1030)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-1260 *3 *4)) + (-4 *4 (-828))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-401 (-1150 (-310 *3)))) (-4 *3 (-13 (-544) (-832))) + (-5 *1 (-1108 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-2 (|:| -3479 *4) (|:| -3299 (-552))))) + (-4 *4 (-1213 (-552))) (-5 *2 (-756)) (-5 *1 (-435 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) - (-4 *7 (-1211 (-401 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3874 *3))) - (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7)))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-778)) + (-4 *7 (-832)) (-4 *8 (-1044 *5 *6 *7)) (-5 *2 (-629 *3)) + (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1087 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 - (-2 (|:| |answer| (-401 *6)) (|:| -3874 (-401 *6)) - (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) - (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1148 *3) (-1148 *3))) - (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-830) (-544))) - (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) + (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) + (-5 *1 (-1056 *5 *6)) (-5 *3 (-629 (-933 *5))) + (-14 *6 (-629 (-1154))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) + (-5 *2 + (-629 (-2 (|:| -1373 (-1150 *4)) (|:| -3464 (-629 (-933 *4)))))) + (-5 *1 (-1056 *4 *5)) (-5 *3 (-629 (-933 *4))) + (-14 *5 (-629 (-1154))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-5 *2 + (-629 (-2 (|:| -1373 (-1150 *5)) (|:| -3464 (-629 (-933 *5)))))) + (-5 *1 (-1056 *5 *6)) (-5 *3 (-629 (-933 *5))) + (-14 *6 (-629 (-1154)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-778)) (-4 *5 (-832)) + (-5 *1 (-958 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-111)) (-4 *7 (-1044 *4 *5 *6)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-778)) (-4 *6 (-832)) + (-5 *1 (-958 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) + (-12 (-5 *2 (-412 (-1150 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1150 *1)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-832)))) + ((*1 *2 *3) + (-12 (-4 *1 (-890)) (-5 *2 (-412 (-1150 *1))) (-5 *3 (-1150 *1))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1016)) + (-5 *1 (-731))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1191)) + (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4369)) (-4 *1 (-118 *3)) + (-4 *3 (-1191)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4369)) (-4 *1 (-118 *3)) + (-4 *3 (-1191)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1078)) + (-4 *2 (-1191)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1154)) (-5 *1 (-618)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1204 (-552))) (|has| *1 (-6 -4369)) (-4 *1 (-635 *2)) + (-4 *2 (-1191)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-629 (-552))) (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4369)) (-4 *1 (-991 *2)) + (-4 *2 (-1191)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1007 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-1078)) (-4 *2 (-1078)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) + (-4 *2 (-1191)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *3)) + (-4 *3 (-1191)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4369)) (-4 *1 (-1225 *2)) + (-4 *2 (-1191))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1150 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-629 *6)) (-4 *1 (-957 *3 *4 *5 *6)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-4 *6 (-1044 *3 *4 *5)) + (-4 *3 (-544))))) (((*1 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *5 (-362)) - (-5 *2 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) + (-12 (-5 *2 (-1080 *3)) (-5 *1 (-886 *3)) (-4 *3 (-362)) + (-4 *3 (-1078))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-113))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-741))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1211 *2)) - (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-1211 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) - (-4 *3 (-403 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *3 (-1211 *2)) (-5 *2 (-552)) (-5 *1 (-751 *3 *4)) - (-4 *4 (-403 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *3 (-169)))) - ((*1 *2 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) - (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) - (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) - (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) - (-5 *1 (-1049 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812))))) -(((*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) + (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-1191)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1191)))) + ((*1 *1 *2) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-1191))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-324))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1237 *4)) (-5 *3 (-673 *4)) (-4 *4 (-357)) + (-5 *1 (-651 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-357)) + (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4369)))) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4369)))) + (-5 *1 (-652 *4 *5 *2 *3)) (-4 *3 (-671 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-629 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) + (-5 *1 (-799 *2 *3)) (-4 *3 (-640 *2)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) - (-242 *4 (-401 (-552))))) - (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) - (-5 *1 (-497 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-940 *3)) (-4 *3 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1193)) (-5 *2 (-111))))) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1106 *3 *2)) (-4 *3 (-1213 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) (((*1 *2 *3) - (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) - (-5 *3 (-552))))) -(((*1 *2 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-261))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) -(((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *3 (-627 (-257))) - (-5 *1 (-255)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) - (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-1235 *6)) - (-5 *1 (-615 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-931 (-552)))) (-5 *1 (-431)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-220))) (-5 *2 (-1080)) - (-5 *1 (-742)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-552))) (-5 *2 (-1080)) - (-5 *1 (-742))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1195)) + (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) + (-5 *2 (-2 (|:| |num| (-673 *5)) (|:| |den| *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1159))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) + (-5 *2 (-1016)) (-5 *1 (-741))))) +(((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-756)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1191)) + (-4 *3 (-1078)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1191)) (-4 *3 (-1078)) + (-5 *2 (-552)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1191)) + (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-521)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-552)) (-5 *3 (-138)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1122)) (-5 *2 (-552))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1150 *1)) (-4 *1 (-993))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) - (-5 *1 (-326))))) + (-12 (-5 *3 (-288 (-401 (-933 *5)))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144))) + (-5 *2 (-1143 (-629 (-310 *5)) (-629 (-288 (-310 *5))))) + (-5 *1 (-1107 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-933 *5))) (-5 *4 (-1154)) + (-4 *5 (-13 (-301) (-832) (-144))) + (-5 *2 (-1143 (-629 (-310 *5)) (-629 (-288 (-310 *5))))) + (-5 *1 (-1107 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *5)) (-4 *5 (-625 *4)) (-4 *4 (-544)) + (-5 *2 (-111)) (-5 *1 (-624 *4 *5))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-324))))) -(((*1 *2 *3) - (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-845 *4 *5 *6 *7)) - (-4 *4 (-1028)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) - (-14 *8 (-627 *5)) (-5 *2 (-1240)) - (-5 *1 (-1247 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-928 *4 *6 *5)) - (-14 *9 (-627 *3)) (-14 *10 *3)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *2)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *2 (-1078))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3301 *3) (|:| |coef1| (-767 *3)))) + (-5 *1 (-767 *3)) (-4 *3 (-544)) (-4 *3 (-1030))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) - (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) - (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 *5)) (-5 *4 (-552)) (-4 *5 (-828)) (-4 *5 (-357)) - (-5 *2 (-754)) (-5 *1 (-924 *5 *6)) (-4 *6 (-1211 *5))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1238))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-669 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-754))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-401 (-1148 (-310 *3)))) (-4 *3 (-13 (-544) (-830))) - (-5 *1 (-1106 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) - (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) - (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261))))) + (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) + (-5 *4 (-756)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1050 *5 *6 *7 *8)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-1242)) + (-5 *1 (-1048 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-2 (|:| |val| (-629 *8)) (|:| -3361 *9)))) + (-5 *4 (-756)) (-4 *8 (-1044 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) + (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) (-5 *2 (-1242)) + (-5 *1 (-1123 *5 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-744))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-310 (-220)))) (-5 *1 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1247))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)) (-4 *2 (-832)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-832)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1030)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *1)) (-4 *1 (-1112 *3)) (-4 *3 (-1030)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 (-1142 *3 *4))) (-5 *1 (-1142 *3 *4)) + (-14 *3 (-902)) (-4 *4 (-1030)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-818 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-825 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-629 (-756))) (-5 *3 (-168)) (-5 *1 (-1142 *4 *5)) + (-14 *4 (-902)) (-4 *5 (-1030))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-812 *2 *3)) (-4 *2 (-693 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1237 *4)) (-5 *3 (-756)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-324))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-1078)) (-4 *1 (-1076 *3)))) + ((*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1078))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (-2 (|:| -2925 *4) (|:| -1825 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-830)) - (-4 *3 (-1076))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *3 (-220)) - (-5 *2 (-1014)) (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 *6)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) - (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *6))) - (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-754)) (-4 *7 (-1211 *3))))) + (-5 *1 (-774)) (-5 *5 (-552))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1134))))) -(((*1 *2 *3) - (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) - ((*1 *1 *1) (|partial| -4 *1 (-705)))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-754)) (-4 *2 (-544)) (-5 *1 (-948 *2 *4)) - (-4 *4 (-1211 *2))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-1148 *3)) - (-4 *3 (-13 (-424 *7) (-27) (-1174))) - (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) - (-5 *6 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1174))) - (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-544)))) - ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2705 *3) (|:| -4067 (-754)))) (-5 *1 (-574 *3)) - (-4 *3 (-537))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) - (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *4 (-1152)) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-5 *2 (-1148 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1152)) - (|:| |arrayIndex| (-627 (-931 (-552)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) - (|:| |ints2Floats?| (-111)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1151)) (|:| |thenClause| (-324)) - (|:| |elseClause| (-324)))) - (|:| |returnBranch| - (-2 (|:| -1275 (-111)) - (|:| -4288 - (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) - (|:| |blockBranch| (-627 (-324))) - (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) - (|:| |forBranch| - (-2 (|:| -1707 (-1068 (-931 (-552)))) - (|:| |span| (-931 (-552))) (|:| -3122 (-324)))) - (|:| |labelBranch| (-1096)) - (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 (-324)))) - (|:| |commonBranch| - (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) - (|:| |printBranch| (-627 (-842))))) - (-5 *1 (-324))))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134))))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1005 *3)) + (-4 *3 (-13 (-830) (-357) (-1003))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-830) (-357))) (-5 *1 (-1040 *2 *3)) + (-4 *3 (-1213 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1047 *2 *3)) (-4 *2 (-13 (-830) (-357))) + (-4 *3 (-1213 *2))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-166 (-220)))) (-5 *2 (-1016)) + (-5 *1 (-741))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) - (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-310 *5))) - (-5 *1 (-1105 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) - (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-310 *5)))) - (-5 *1 (-1105 *5))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) - (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) - (-5 *1 (-967 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) - (-4 *4 (-1048 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) - (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) - (-5 *2 - (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) - (-5 *1 (-1083 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) - (-4 *4 (-1048 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) - (-5 *2 (-1014)) (-5 *1 (-736))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1189)) - (-4 *3 (-367 *4)) (-4 *5 (-367 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) - (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-928 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-154))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1637 *4))) - (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1228 *4)) (-5 *1 (-1230 *4 *2)) + (-4 *4 (-38 (-401 (-552))))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-736))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1132 *7))) (-4 *6 (-830)) - (-4 *7 (-928 *5 (-523 *6) *6)) (-4 *5 (-1028)) - (-5 *2 (-1 (-1132 *7) *7)) (-5 *1 (-1102 *5 *6 *7))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-5 *1 (-431))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1236)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1237)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-528))) (-5 *2 (-1152)) (-5 *1 (-528))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-120 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) - (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) - ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) -(((*1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3))))) + (-12 (-5 *3 (-1237 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) + (-4 *1 (-709 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1213 *5)) + (-5 *2 (-673 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) - (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) + (-12 (-5 *3 (-1237 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-1237 (-673 *4))))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) - (-5 *2 (-1148 (-931 *3))))) + (-12 (-4 *4 (-169)) (-5 *2 (-1237 (-673 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) ((*1 *2) - (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1237 (-673 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-1154))) (-4 *5 (-357)) + (-5 *2 (-1237 (-673 (-401 (-933 *5))))) (-5 *1 (-1064 *5)) + (-5 *4 (-673 (-401 (-933 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-1154))) (-4 *5 (-357)) + (-5 *2 (-1237 (-673 (-933 *5)))) (-5 *1 (-1064 *5)) + (-5 *4 (-673 (-933 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-673 *4))) (-4 *4 (-357)) + (-5 *2 (-1237 (-673 *4))) (-5 *1 (-1064 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-830)) (-4 *5 (-888)) (-4 *6 (-776)) - (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-412 (-1148 *8))) - (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-1148 *8)))) + (-12 (-5 *3 (-629 *6)) (-5 *4 (-629 (-1154))) (-4 *6 (-357)) + (-5 *2 (-629 (-288 (-933 *6)))) (-5 *1 (-530 *5 *6 *7)) + (-4 *5 (-445)) (-4 *7 (-13 (-357) (-830)))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-629 (-1237 *4))) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-629 (-1237 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *5 (-1195)) (-4 *6 (-1213 *5)) + (-4 *7 (-1213 (-401 *6))) (-5 *2 (-629 (-933 *5))) + (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) - (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) -(((*1 *1 *1) (-5 *1 (-1151))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) - (-5 *1 (-1151))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-1028)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) + (-12 (-5 *3 (-1154)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1195)) + (-4 *5 (-1213 *4)) (-4 *6 (-1213 (-401 *5))) (-4 *4 (-357)) + (-5 *2 (-629 (-933 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-902)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182))))) (((*1 *2 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-1028)) - (-5 *2 (-671 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) - (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) - (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-905)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-905)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) - (-5 *1 (-906))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *7 (-879 *6)) - (-5 *2 (-671 *7)) (-5 *1 (-674 *6 *7 *3 *4)) (-4 *3 (-367 *7)) - (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366))))))) + (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-1142 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-902)) (-4 *3 (-1030)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111 (-220))) (-5 *1 (-1239))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1030))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-629 *4)) + (-5 *1 (-1051 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) (-5 *2 (-1016)) + (-5 *1 (-732))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-902)) + (-4 *4 (-1030))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-1071 *3)) (-4 *3 (-1191))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1028)) - (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-928 *2 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) + (-12 (-5 *3 (-401 (-933 *4))) (-4 *4 (-301)) + (-5 *2 (-401 (-412 (-933 *4)))) (-5 *1 (-1023 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-756)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-832)) + (-4 *3 (-1078))))) (((*1 *2 *1) - (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) - (-4 *3 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *1 *1 *1) (-5 *1 (-373))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1017 *4)) (-4 *3 (-301)) - (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-403 *4 *5)) - (-14 *7 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-971 *3)) - (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-113))))) + (-12 (-5 *2 (-854 (-947 *3) (-947 *3))) (-5 *1 (-947 *3)) + (-4 *3 (-948))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-52))) (-5 *1 (-873 *3)) (-4 *3 (-1078))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-983))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-832) (-544)))))) (((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) - (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) - (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) + (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -3343 ((-412 $) $))))) + (-4 *4 (-1213 *3)) + (-5 *2 + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) - (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028))))) -(((*1 *2 *3) - (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-787 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1174) (-938)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-754))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-127)) (-5 *2 (-1096))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) + (-12 (-5 *3 (-552)) (-4 *4 (-1213 *3)) (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) - (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-5 *1 (-753 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 *3)) (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) - (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) - (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) - ((*1 *2 *2) - (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) - (-5 *2 (-627 (-627 (-627 (-922 *3)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-528))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830))) - (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) - (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-981) (-1174)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 (-552)))) (-5 *1 (-459))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-627 (-373))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) - (-5 *2 (-1014)) (-5 *1 (-735))))) + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-5 *1 (-966 *4 *3 *5 *6)) (-4 *6 (-709 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *3 (-1213 *4)) (-4 *5 (-1213 *3)) + (-5 *2 + (-2 (|:| -4199 (-673 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-673 *3)))) + (-5 *1 (-1246 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) - (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) -(((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) - (-4 *3 (-1076)) (-5 *2 (-754)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) - (-4 *4 (-1189)) (-5 *2 (-754))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-629 *3)) (|:| |image| (-629 *3)))) + (-5 *1 (-886 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-885 *4)) + (-4 *4 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) (-5 *3 (-220)) + (-5 *2 (-1016)) (-5 *1 (-733))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-742))))) (((*1 *2 *1) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) - (-4 *3 (-1211 *4)) (-5 *2 (-111))))) + (-12 (-4 *4 (-1078)) (-5 *2 (-870 *3 *4)) (-5 *1 (-866 *3 *4 *5)) + (-4 *3 (-1078)) (-4 *5 (-650 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) - (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) + (-12 (-5 *2 (-1222 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) + (-4 *3 (-13 (-357) (-832))) (-14 *4 (-1154)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-683)))) ((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-739))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) - (-4 *2 (-1189))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1155)) (-5 *3 (-1152))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1132 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1028)) - (-5 *3 (-401 (-552))) (-5 *1 (-1136 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) - (-4 *8 (-928 *7 *5 *6)) - (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *3))) - (-5 *1 (-932 *5 *6 *7 *8 *3)) (-5 *4 (-754)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1096))))) -(((*1 *1 *1) (-4 *1 (-848 *2)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1134)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) - (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-301) (-144))) - (-4 *2 (-928 *4 *6 *5)) (-5 *1 (-903 *4 *5 *6 *2)) - (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776))))) + (-12 (-4 *2 (-1078)) (-5 *1 (-698 *3 *2 *4)) (-4 *3 (-832)) + (-14 *4 + (-1 (-111) (-2 (|:| -2840 *3) (|:| -1406 *2)) + (-2 (|:| -2840 *3) (|:| -1406 *2))))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) - (-5 *2 (-627 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) - (-5 *2 (-627 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 *3)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-709)))) - ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-627 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-5 *2 (-1132 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-899))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-148 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) - (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-5 *3 (-627 (-1152))) (-5 *4 (-111)) (-5 *1 (-431)))) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-127))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-809))))) +(((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-618))))) +(((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-5 *2 (-552))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-756)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1030)) (-4 *3 (-832)) + (-4 *5 (-260 *3)) (-4 *6 (-778)) (-5 *2 (-756)))) ((*1 *2 *1) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-169)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-169)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 (-627 *3)))) (-4 *3 (-1076)) - (-5 *1 (-657 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-696 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-1076)) - (-14 *4 - (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) - (-2 (|:| -4153 *2) (|:| -4067 *3)))))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) - (-4 *4 (-1076)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *5)) (-4 *5 (-13 (-1076) (-34))) - (-5 *2 (-627 (-1116 *3 *5))) (-5 *1 (-1116 *3 *5)) - (-4 *3 (-13 (-1076) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-2 (|:| |val| *4) (|:| -3443 *5)))) - (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) - (-5 *2 (-627 (-1116 *4 *5))) (-5 *1 (-1116 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3443 *4))) - (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) - (-5 *1 (-1116 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-1076) (-34))) - (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1116 *2 *3))) (-4 *2 (-13 (-1076) (-34))) - (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)))) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-832)) + (-4 *5 (-260 *4)) (-4 *6 (-778)) (-5 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-832)) (-5 *2 (-756))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1021))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1136)) (-5 *4 (-552)) (-5 *5 (-673 (-220))) + (-5 *2 (-1016)) (-5 *1 (-742))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1186 *3)) + (-5 *1 (-775 *3)) (-4 *3 (-955)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-627 (-1117 *2 *3))) (-5 *1 (-1117 *2 *3)) - (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) - (-5 *2 (-373)) (-5 *1 (-768 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) - (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) - (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) - (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) - (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) - (-5 *1 (-768 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) - (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) - (-5 *1 (-340 *4))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) - (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-823 *3))) (-4 *3 (-13 (-27) (-1174) (-424 *5))) - (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 - (-3 (-823 *3) - (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) - (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) - "failed")) - (-5 *1 (-620 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1134)) - (-4 *3 (-13 (-27) (-1174) (-424 *6))) - (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-823 *3)) (-5 *1 (-620 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-823 (-931 *5)))) (-4 *5 (-445)) - (-5 *2 - (-3 (-823 (-401 (-931 *5))) - (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-823 (-401 (-931 *5))) "failed"))) - "failed")) - (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) - (-4 *5 (-445)) - (-5 *2 - (-3 (-823 *3) - (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) - (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) - "failed")) - (-5 *1 (-621 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-288 (-401 (-931 *6)))) (-5 *5 (-1134)) - (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-823 *3)) - (-5 *1 (-621 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-828))) - (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *5)))) - (-5 *1 (-178 *5 *3)) (-4 *3 (-1211 (-166 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-357) (-828))) - (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *4)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-757)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-944))))) + (-12 (-5 *3 (-629 (-629 (-924 (-220))))) (-5 *4 (-111)) + (-5 *1 (-1186 *2)) (-4 *2 (-955))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-629 (-1154))) (-5 *4 (-1154)) + (-5 *1 (-1157)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1157)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-1154)) (-5 *1 (-1158)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-629 (-1154))) (-5 *1 (-1158))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-401 (-552)))) - (-5 *2 (-2 (|:| -1584 (-1132 *4)) (|:| -1596 (-1132 *4)))) - (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) -(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-14 *6 (-1235 (-671 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) - ((*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'JINT 'X 'ELAM) (-1490) (-681)))) - (-5 *1 (-60 *3)) (-14 *3 (-1152)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'XC) (-681)))) - (-5 *1 (-62 *3)) (-14 *3 (-1152)))) - ((*1 *1 *2) - (-12 (-5 *2 (-333 (-1490 'X) (-1490) (-681))) (-5 *1 (-63 *3)) - (-14 *3 (-1152)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1191)))) ((*1 *1 *2) - (-12 (-5 *2 (-671 (-333 (-1490) (-1490 'X 'HESS) (-681)))) - (-5 *1 (-64 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-933 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-1490) (-1490 'XC) (-681))) (-5 *1 (-65 *3)) - (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-401 (-933 (-373)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490 '-3156) (-681)))) - (-5 *1 (-70 *3)) (-14 *3 (-1152)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) - (-5 *1 (-73 *3)) (-14 *3 (-1152)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'X 'EPS) (-1490 '-3156) (-681)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) - (-14 *5 (-1152)))) + (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-373))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'EPS) (-1490 'YA 'YB) (-681)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) - (-14 *5 (-1152)))) + (|partial| -12 (-5 *2 (-933 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-1490) (-1490 'X) (-681))) (-5 *1 (-76 *3)) - (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-401 (-933 (-552)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-1490) (-1490 'X) (-681))) (-5 *1 (-77 *3)) - (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1019 (-552))) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'XC) (-681)))) - (-5 *1 (-78 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-1154)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-629 *2)) (-14 *4 (-629 *2)) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) - (-5 *1 (-79 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) + (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-629 (-1154))) + (-14 *4 (-629 (-1154))))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) - (-5 *1 (-80 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-401 (-933 (-552))))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'X '-3156) (-1490) (-681)))) - (-5 *1 (-81 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-401 (-933 (-373))))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-671 (-333 (-1490 'X '-3156) (-1490) (-681)))) - (-5 *1 (-82 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-933 (-552)))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-671 (-333 (-1490 'X) (-1490) (-681)))) (-5 *1 (-83 *3)) - (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-933 (-373)))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490) (-681)))) - (-5 *1 (-84 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-310 (-552)))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490 '-3156) (-681)))) - (-5 *1 (-85 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-673 (-310 (-373)))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-671 (-333 (-1490 'XL 'XR 'ELAM) (-1490) (-681)))) - (-5 *1 (-86 *3)) (-14 *3 (-1152)))) + (|partial| -12 (-5 *2 (-401 (-933 (-552)))) (-4 *1 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-1490 'X) (-1490 '-3156) (-681))) (-5 *1 (-88 *3)) - (-14 *3 (-1152)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-92)))) - ((*1 *2 *1) (-12 (-5 *2 (-983 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) - ((*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) - ((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) + (|partial| -12 (-5 *2 (-401 (-933 (-373)))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-933 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) + (|partial| -12 (-5 *2 (-1237 (-401 (-933 (-552))))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-754)))) + (|partial| -12 (-5 *2 (-1237 (-401 (-933 (-373))))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-1118 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) + (|partial| -12 (-5 *2 (-1237 (-933 (-552)))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) - (-5 *2 (-1235 (-671 (-401 (-931 *4))))) (-5 *1 (-184 *4)))) + (|partial| -12 (-5 *2 (-1237 (-933 (-373)))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) - (-4 *3 - (-13 (-830) - (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) - (-15 -4103 ((-1240) $))))) - (-5 *1 (-209 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-983 10)) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-240 *3)) (-4 *3 (-830)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1068 (-310 *4))) - (-4 *4 (-13 (-830) (-544) (-600 (-373)))) (-5 *2 (-1068 (-373))) - (-5 *1 (-252 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1211 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + (|partial| -12 (-5 *2 (-1237 (-310 (-552)))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) - (-14 *5 (-1152)) (-14 *6 *4) - (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) - (-5 *1 (-307 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-324)))) - ((*1 *2 *1) - (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) - (-4 *3 (-323 *4)))) + (|partial| -12 (-5 *2 (-1237 (-310 (-373)))) (-4 *1 (-434)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) - (-4 *3 (-323 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *2 (-1259 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *2 (-1250 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-671 (-681))) (-4 *1 (-377)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-378)))) - ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) - ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-388)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-676)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-681)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-676))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-681))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) - (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) + (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1213 *5)) + (-5 *2 (-1150 (-1150 *4))) (-5 *1 (-762 *4 *5 *6 *3 *7)) + (-4 *3 (-1213 *6)) (-14 *7 (-902)))) ((*1 *1 *2) - (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) - (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) - (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) + (|partial| -12 (-5 *2 (-629 *6)) (-4 *6 (-1044 *3 *4 *5)) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832)) + (-4 *1 (-957 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1019 *2)) (-4 *2 (-1191)))) ((*1 *1 *2) - (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-830) (-21))) - (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) - (-4 *3 (-13 (-830) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-401 (-931 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-830)) - (-4 *1 (-424 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-931 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-830)) - (-4 *1 (-424 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-830)) - (-4 *1 (-424 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-1028)) (-4 *3 (-830)) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-428)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-431)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1235 (-681))) (-4 *1 (-433)))) + (|partial| -4029 + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) + (-4107 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))) + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-537))) (-4107 (-4 *3 (-38 (-401 (-552))))) + (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))) + (-12 (-5 *2 (-933 *3)) + (-12 (-4107 (-4 *3 (-973 (-552)))) (-4 *3 (-38 (-401 (-552)))) + (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *1 (-1044 *3 *4 *5)) (-4 *4 (-778)) + (-4 *5 (-832))))) ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) - (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-434)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1235 (-401 (-931 *3)))) (-4 *3 (-169)) - (-14 *6 (-1235 (-671 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-461)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) - (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) + (|partial| -4029 + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4107 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))) + (-12 (-5 *2 (-933 (-552))) (-4 *1 (-1044 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154)))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-983 16)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-494)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-727 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1255 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) - (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-619 *3 *2)) (-4 *2 (-727 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) - ((*1 *2 *1) - (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-5 *1 (-657 *3)) - (-4 *3 (-1076)))) - ((*1 *1 *2) - (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-4 *3 (-1076)) - (-5 *1 (-657 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) - ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-663)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-367 *3)) - (-4 *2 (-367 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) - ((*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) - ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-676)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-676)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-676)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) - ((*1 *1 *2) (-12 (-5 *2 (-683)) (-5 *1 (-681)))) - ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-681)))) - ((*1 *2 *3) - (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-683))) (-5 *1 (-683)))) - ((*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1076)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) - ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) - (-5 *1 (-696 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-1076)) - (-14 *5 (-1 (-111) *2 *2)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-4 *3 (-830)) - (-4 *4 (-1076)) (-5 *1 (-696 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) - (-4 *3 (-1028)) (-4 *4 (-709)) (-5 *1 (-718 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-746)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| |mdnia| - (-2 (|:| |fn| (-310 (-220))) - (|:| -1707 (-627 (-1070 (-823 (-220))))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) - (-5 *1 (-752)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *1 (-752)))) - ((*1 *1 *2) - (-12 + (|partial| -12 (-5 *2 (-933 (-401 (-552)))) (-4 *1 (-1044 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1154))) + (-4 *3 (-1030)) (-4 *4 (-778)) (-4 *5 (-832))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-528) (-629 (-528)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-629 (-528)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-566)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 *6)) (-4 *5 (-1195)) (-4 *6 (-1213 *5)) + (-5 *2 (-2 (|:| -1406 (-756)) (|:| -4158 *3) (|:| |radicand| *6))) + (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-756)) (-4 *7 (-1213 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-673 *3)) (-4 *3 (-1030)) (-5 *1 (-674 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-445) (-832) (-1019 (-552)) (-625 (-552)))) + (-4 *3 (-13 (-27) (-1176) (-424 *6) (-10 -8 (-15 -3213 ($ *7))))) + (-4 *7 (-830)) + (-4 *8 + (-13 (-1215 *3 *7) (-357) (-1176) + (-10 -8 (-15 -3096 ($ $)) (-15 -2889 ($ $))))) (-5 *2 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *1 (-752)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-752)))) - ((*1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-756 *3)) (-4 *3 (-1189)))) - ((*1 *1 *2) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1136)) (|:| |prob| (-1136)))))) + (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1136)) (-4 *9 (-964 *8)) + (-14 *10 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-141))))) +(((*1 *2 *3) + (-12 (-5 *3 (-933 *5)) (-4 *5 (-1030)) (-5 *2 (-242 *4 *5)) + (-5 *1 (-925 *4 *5)) (-14 *4 (-629 (-1154)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-832) (-544) (-1019 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) + (-4 *5 (-13 (-832) (-544) (-1019 (-552)))) + (-5 *2 (-1150 (-401 (-552)))) (-5 *1 (-427 *5 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-680 *2)) (-4 *2 (-1213 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1156 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1044 *3 *4 *5)) (-4 *3 (-1030)) + (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-401 (-933 *6)) (-1143 (-1154) (-933 *6)))) + (-5 *5 (-756)) (-4 *6 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *6))))) + (-5 *1 (-286 *6)) (-5 *4 (-673 (-401 (-933 *6)))))) + ((*1 *2 *3 *4) (-12 - (-5 *2 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *1 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-791)))) + (-5 *3 + (-2 (|:| |eigval| (-3 (-401 (-933 *5)) (-1143 (-1154) (-933 *5)))) + (|:| |eigmult| (-756)) (|:| |eigvec| (-629 *4)))) + (-4 *5 (-445)) (-5 *2 (-629 (-673 (-401 (-933 *5))))) + (-5 *1 (-286 *5)) (-5 *4 (-673 (-401 (-933 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-552))) (-5 *2 (-1156 (-401 (-552)))) + (-5 *1 (-185))))) +(((*1 *2 *1) + (-12 (-4 *1 (-671 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *2 (-879 *3)) (-5 *1 (-800 *3 *2 *4)) (-4 *3 (-1076)) - (-14 *4 *3))) - ((*1 *1 *2) - (-12 (-4 *3 (-1076)) (-14 *4 *3) (-5 *1 (-800 *3 *2 *4)) - (-4 *2 (-879 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-807)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) - (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-627 (-310 (-220)))) - (|:| -3002 (-627 (-220))))))) - (-5 *1 (-821)))) - ((*1 *1 *2) + (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *5 (-1030)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-807))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) - (-5 *1 (-821)))) - ((*1 *1 *2) + (-629 + (-2 (|:| |var| (-1154)) (|:| |fn| (-310 (-220))) + (|:| -4235 (-1072 (-825 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220))))) + (-5 *1 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-5 *2 (-629 *3)))) + ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) - (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) - (|:| |ub| (-627 (-823 (-220)))))) - (-5 *1 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-821)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-835 *3 *4 *5 *6)) - (-4 *4 (-1028)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) - ((*1 *1 *2) - (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-845 *3 *4 *5 *6)) - (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) - ((*1 *2 *1) - (-12 (-5 *2 (-931 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1028)) - (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) - ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) + (-629 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220))))) + (-5 *1 (-788))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3428 *7) (|:| |sol?| (-111))) + (-552) *7)) + (-5 *6 (-629 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1213 *7)) + (-5 *3 (-401 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-629 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-562 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-931 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-854)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) + (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-401 (-931 (-48)))) (-5 *2 (-310 (-552))) - (-5 *1 (-854)))) - ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-627 (-310 (-220)))) - (|:| |constraints| - (-627 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-754)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) - (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) - (|:| |tol| (-220)))) - (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-877)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-893 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-898 *4)) - (-4 *4 (-13 (-830) (-544))))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) - ((*1 *1 *2) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950)))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) - ((*1 *2 *3) (-12 (-5 *2 (-1240)) (-5 *1 (-1012 *3)) (-4 *3 (-1189)))) - ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1012 *2)) (-4 *2 (-1189)))) - ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) - (-14 *6 (-627 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) + (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-983))))) ((*1 *2 *3) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-1022 *3)) (-4 *3 (-544)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-671 *5)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) - (-14 *4 (-754)) (-4 *5 (-1028)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) - (-4 *2 (-928 *3 (-523 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) - (-4 *4 (-928 *3 (-523 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-842)))) - ((*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296)))) + ((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) - (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1151)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1162 (-1152) (-431))) (-5 *1 (-1156)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) - ((*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1168 *3)) (-4 *3 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-1183 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-1028)))) - ((*1 *1 *2) - (-12 (-5 *2 (-937 *3)) (-4 *3 (-1189)) (-5 *1 (-1186 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-1189)) (-5 *1 (-1202 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-1208 *3 *4)) - (-4 *4 (-1028)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) - (-4 *3 (-1028)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) - (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1236)))) - ((*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1236)) (-5 *1 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1240)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) - (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-928 *3 *5 *4)) - (-14 *7 (-627 (-754))) (-14 *8 (-754)))) - ((*1 *2 *1) - (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) - (-14 *7 (-627 (-754))) (-14 *8 (-754)))) - ((*1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1028)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1259 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) - (-4 *4 (-169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) - (-5 *1 (-1255 *3 *4)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-826))))) -(((*1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-627 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) - (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) + (-12 (-5 *3 (-113)) (-4 *5 (-832)) (-5 *2 (-111)) + (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) - (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) - (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)) (-4 *2 (-301)))) - ((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) - (-4 *2 (-669 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1031 *2 *3 *4 *5 *6)) (-4 *4 (-1028)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-1161 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-357) (-144))) - (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) - (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) - (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1174))) - (-5 *1 (-571 *4 *2)) - (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) + (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-573 (-401 (-931 *4)))) - (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) - (-5 *2 (-310 *4)) (-5 *1 (-576 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) - (-5 *1 (-173 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) - (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) - (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1083 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-627 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-5 *1 (-442 *4 *5 *6 *7))))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-832) (-544))) (-5 *2 (-111)) + (-5 *1 (-616 *4 *5)) (-4 *5 (-13 (-424 *4) (-983) (-1176)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-804)) (-5 *4 (-52)) (-5 *2 (-1240)) (-5 *1 (-814))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) - (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) + (-12 (-5 *3 (-401 (-933 (-166 (-552))))) (-5 *2 (-629 (-166 *4))) + (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-830))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 (-401 (-933 (-166 (-552)))))) + (-5 *4 (-629 (-1154))) (-5 *2 (-629 (-629 (-166 *5)))) + (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-830)))))) (((*1 *2 *3) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1173 *3)) (-4 *3 (-1030))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) - (-5 *2 (-373)) (-5 *1 (-261)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1237)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-671 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-671 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) - ((*1 *1 *1 *1) (-4 *1 (-537))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-754))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) - ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1152)) - (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-563 *4 *2)) - (-4 *2 (-13 (-1174) (-938) (-1115) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076))))) + (-629 + (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1150 *2)) + (|:| |logand| (-1150 *2))))) + (-5 *4 (-629 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-357)) (-5 *1 (-573 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-844)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-756)) + (-14 *4 (-756)) (-4 *5 (-169))))) (((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1235 *5)) (-5 *3 (-754)) (-5 *4 (-1096)) (-4 *5 (-343)) - (-5 *1 (-520 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) - (-4 *5 (-13 (-27) (-424 *4))) - (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) - (-4 *7 (-1211 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) - (-4 *2 (-336 *5 *6 *7))))) + (-12 (-4 *3 (-13 (-832) (-445))) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1176)))))) +(((*1 *1) (-4 *1 (-343)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) - (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1137 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) - (-5 *1 (-1138 *3)))) - ((*1 *1 *1) (-4 *1 (-1177)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-187)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) - (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-220))) - (-5 *2 (-1014)) (-5 *1 (-738))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-983)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1176))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1213 (-552)))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-844)))) (((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-830) (-544)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991))))) + (-12 (-5 *3 (-1154)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-686 *4 *5 *6 *7)) + (-4 *4 (-600 (-528))) (-4 *5 (-1191)) (-4 *6 (-1191)) + (-4 *7 (-1191))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1030)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-98 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-947 *2)) (-4 *2 (-948))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-629 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-806))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) - (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) - (-4 *6 (-1211 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) - (-4 *4 (-1211 *5)) (-5 *2 (-1148 *7)) (-5 *1 (-493 *5 *4 *6 *7)) - (-4 *6 (-1211 *4))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1016)) (-5 *1 (-743))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-832)) (-5 *1 (-125 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-756)) (-5 *1 (-659 *3)) (-4 *3 (-1030)) + (-4 *3 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-665)))) + ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-951)))) + ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1096))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-830)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) - (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251))))) -(((*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-830))))) -(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 (-141))) (-5 *1 (-138)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-138))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-730))))) -(((*1 *1 *1) (-4 *1 (-613))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) - (-5 *1 (-737))))) -(((*1 *1 *1) (-5 *1 (-528)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) - (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) - (-4 *7 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-671 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) - ((*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950))))) -(((*1 *2 *3) - (-12 (-5 *3 (-671 (-310 (-220)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) - (-5 *1 (-200))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-627 (-1 *4 (-627 *4)))) (-4 *4 (-1076)) - (-5 *1 (-112 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) - (-5 *1 (-112 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-1 *4 (-627 *4)))) - (-5 *1 (-112 *4)) (-4 *4 (-1076))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1174) (-981)))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1026))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-351 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *2 (-1240)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1211 (-401 *5))) (-14 *7 *6)))) + (-12 (-5 *2 (-1007 (-825 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1030))))) (((*1 *2 *3) (-12 (-5 *3 - (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) - (-5 *2 (-627 (-220))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) - (-4 *5 (-544)) (-5 *2 (-627 (-627 (-931 *5)))) (-5 *1 (-1158 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-727 *3)) (-4 *3 (-169))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-850 *2)) (-14 *2 (-552)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-851 *3 *4)) - (-4 *4 (-848 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-552)) (-5 *1 (-851 *2 *3)) (-4 *3 (-848 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-1226 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1226 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 *6)) (-4 *6 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-1148 *7)) (-5 *1 (-315 *4 *5 *6 *7)) - (-4 *7 (-928 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-1184 *2)) (-4 *2 (-953))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-1206 *4 *3)) - (-4 *3 (-1211 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-856 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-858 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-861 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *1 *1) (-4 *1 (-613))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) - (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) - (-5 *1 (-731))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) -(((*1 *1) (-5 *1 (-566))) - ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-843)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1132 *4)) - (-4 *4 (-1076)) (-4 *4 (-1189))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) -(((*1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1237 (-310 (-220)))) (|:| |yinit| (-629 (-220))) + (|:| |intvals| (-629 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1191)) (-5 *2 (-111))))) +(((*1 *1) (-5 *1 (-566)))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1176)))) + ((*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-629 *3)) (-5 *1 (-598 *3)) (-4 *3 (-832))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1237 *6)) (-5 *4 (-1237 (-552))) (-5 *5 (-552)) + (-4 *6 (-1078)) (-5 *2 (-1 *6)) (-5 *1 (-998 *6))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3772 (-629 (-2 (|:| |irr| *10) (|:| -2277 (-552))))))) + (-5 *6 (-629 *3)) (-5 *7 (-629 *8)) (-4 *8 (-832)) (-4 *3 (-301)) + (-4 *10 (-930 *3 *9 *8)) (-4 *9 (-778)) + (-5 *2 + (-2 (|:| |polfac| (-629 *10)) (|:| |correct| *3) + (|:| |corrfact| (-629 (-1150 *3))))) + (-5 *1 (-611 *8 *9 *3 *10)) (-5 *4 (-629 (-1150 *3)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1030)) (-5 *1 (-875 *2 *3)) (-4 *2 (-1213 *3)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1115))) ((*1 *1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-830)) (-4 *5 (-776)) - (-4 *6 (-544)) (-4 *7 (-928 *6 *5 *3)) - (-5 *1 (-455 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1017 (-401 (-552))) (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) - (-15 -2929 (*7 $)))))))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1240))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-937 (-1096))) - (-5 *1 (-340 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-380 *4)) (-4 *4 (-1076)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-631 *4 *2 *5)) - (-4 *4 (-1076)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-802 *4)) (-4 *4 (-830))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) - (-14 *4 (-552))))) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-832) (-544)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) - (-4 *4 (-38 (-401 (-552)))) - (-5 *2 (-1 (-1132 *4) (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) - (-4 *6 (-13 (-357) (-144) (-1017 *4))) (-5 *4 (-552)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) - (|:| -1651 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-994 *6 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-734))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-34)) (-5 *2 (-754)))) - ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-5 *2 (-754)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) - (-4 *4 (-826))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-830)) - (-5 *2 (-2 (|:| |val| *1) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-871 *3)))) - (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + (-12 (-4 *4 (-890)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *7 (-930 *4 *5 *6)) (-5 *2 (-412 (-1150 *7))) + (-5 *1 (-887 *4 *5 *6 *7)) (-5 *3 (-1150 *7)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) - (-4 *7 (-928 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -4067 (-552)))) - (-5 *1 (-929 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) - (-15 -2929 (*7 $)))))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) - (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *6)) - (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) - (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) - (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) - (-4 *3 (-832 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) - (-4 *4 (-343)) (-5 *2 (-1240)) (-5 *1 (-520 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1017 (-552))) (-4 *3 (-13 (-830) (-544))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1148 *4)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1028)) (-4 *1 (-296)))) - ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) - ((*1 *2) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) - (-4 *2 (-1211 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) - (-4 *2 (-445)))) - ((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) - (-4 *4 (-1211 (-401 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *2 (-830)) (-4 *3 (-445)))) - ((*1 *1 *1) - (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1139 *3 *2)) - (-4 *2 (-1211 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) - (-4 *4 (-1076))))) + (-12 (-4 *4 (-890)) (-4 *5 (-1213 *4)) (-5 *2 (-412 (-1150 *5))) + (-5 *1 (-888 *4 *5)) (-5 *3 (-1150 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) - (-4 *4 (-1028))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) - (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) -(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-695 *3 *4)) - (-4 *4 (-1211 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-754)) (-4 *4 (-301)) (-4 *6 (-1211 *4)) - (-5 *2 (-1235 (-627 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-627 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-823 (-373))) (-5 *2 (-823 (-220))) (-5 *1 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) - ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1030))))) +(((*1 *2 *2) (-12 (-5 *2 (-1072 (-825 (-220)))) (-5 *1 (-299))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-830)) (-5 *4 (-627 *6)) - (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-627 *4)))) - (-5 *1 (-1160 *6)) (-5 *5 (-627 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *10)) - (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1048 *5 *6 *7 *8)) - (-4 *10 (-1085 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) - (-5 *1 (-612 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-627 (-1152))) - (-5 *2 - (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) - (-5 *1 (-612 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) - (-5 *1 (-1025 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) - (-4 *1 (-1182 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-627 (-1235 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) - (-5 *2 (-627 (-1235 *3)))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-12 (-5 *3 (-1150 *9)) (-5 *4 (-629 *7)) (-5 *5 (-629 (-629 *8))) + (-4 *7 (-832)) (-4 *8 (-301)) (-4 *9 (-930 *8 *6 *7)) (-4 *6 (-778)) (-5 *2 - (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) - (|:| |success| (-111)))) - (-5 *1 (-772)) (-5 *5 (-552))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) - (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) + (-2 (|:| |upol| (-1150 *8)) (|:| |Lval| (-629 *8)) + (|:| |Lfact| + (-629 (-2 (|:| -3479 (-1150 *8)) (|:| -1406 (-552))))) + (|:| |ctpol| *8))) + (-5 *1 (-727 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-937 (-1148 *4))) (-5 *1 (-351 *4)) - (-5 *3 (-1148 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *2 (-1016)) (-5 *1 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) - (-5 *1 (-299))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| -4067 (-754)) (|:| -3069 *5) (|:| |radicand| (-627 *5)))) - (-5 *1 (-314 *5)) (-5 *4 (-754)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-552))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) - ((*1 *1 *1) (-4 *1 (-1120)))) -(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-236))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) - (-4 *3 (-1042 *6 *7 *8)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) - (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) - (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) - (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) - (-5 *1 (-1084 *6 *7 *4 *8 *9))))) + (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1078)) (-4 *2 (-832)) + (-5 *1 (-112 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1176))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1047 *4 *3)) (-4 *4 (-13 (-830) (-357))) + (-4 *3 (-1213 *4)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1093)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-629 (-1159))) (-5 *3 (-1159)) (-5 *1 (-1096))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-902)) (-5 *1 (-1011 *2)) + (-4 *2 (-13 (-1078) (-10 -8 (-15 -1698 ($ $ $)))))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1078)) (-4 *4 (-1191)) + (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1174)))))) -(((*1 *1) (-5 *1 (-141))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-257))))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-13 (-832) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1154)))) + ((*1 *1 *1) (-4 *1 (-157)))) (((*1 *2 *3) - (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) - ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *1 *2) - (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) - ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-187))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-812))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) - (-5 *1 (-738))))) -(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-602)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1152)) - (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) - (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-285))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-967 *5 *6 *7 *8 *3)))) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) - (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-1083 *5 *6 *7 *8 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) - (-4 *2 (-13 (-830) (-21)))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-627 *9)) (-5 *3 (-1 (-111) *9)) - (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) - (-4 *8 (-830)) (-5 *1 (-956 *6 *7 *8 *9))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1235 (-3 (-461) "undefined"))) (-5 *1 (-1236))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) - (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) - (-4 *6 (-445)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) - (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) - (-4 *6 (-445))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-1248 *4 *5 *6 *7))) - (-5 *1 (-1248 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 *9)) (-5 *4 (-1 (-111) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) - (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-627 (-1248 *6 *7 *8 *9))) - (-5 *1 (-1248 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) - ((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) - ((*1 *1 *1 *1) (-4 *1 (-445))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-754))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) - (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) - (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-301)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) + (-12 (-5 *3 (-902)) (-5 *2 (-1150 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343)))) + ((*1 *1) (-4 *1 (-362))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-1148 *7))) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-301)) (-5 *2 (-1148 *7)) (-5 *1 (-895 *4 *5 *6 *7)) - (-4 *7 (-928 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-900))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) - (-4 *2 (-1211 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *2 (-445))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-627 (-627 (-220)))) (-5 *4 (-220)) - (-5 *2 (-627 (-922 *4))) (-5 *1 (-1185)) (-5 *3 (-922 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) - ((*1 *1 *1) (-5 *1 (-373))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) - (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) - (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-187))))) + (-12 (-5 *3 (-902)) (-5 *2 (-1237 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-5 *1 (-552))) ((*1 *1 *1) (-5 *1 (-756))) + ((*1 *2 *1) (-12 (-5 *2 (-886 *3)) (-5 *1 (-885 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-886 *4)) (-5 *1 (-885 *4)) + (-4 *4 (-1078)))) + ((*1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-537)) (-4 *2 (-544))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-671 (-401 (-931 (-552))))) - (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)) - (-5 *3 (-310 (-552)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1152)) - (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-29 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) - (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076))))) -(((*1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) + (-12 (-4 *4 (-1030)) (-4 *2 (-671 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1213 *4)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) - (-4 *3 (-1211 (-401 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) - (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-461)) - (-5 *1 (-1239)))) + (-12 (-5 *3 (-629 (-1154))) (-5 *2 (-1242)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) - (-5 *2 (-461)) (-5 *1 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) - (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) - (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) - (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-5 *2 (-2 (|:| -3998 *3) (|:| -2162 *4)))))) + (-12 (-5 *4 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1242)) + (-5 *1 (-1157)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-629 (-1154))) (-5 *3 (-1154)) (-5 *2 (-1242)) + (-5 *1 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-521)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521))))) +(((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-1136)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-2 (|:| -2925 *4) (|:| -1400 (-552))))) + (-4 *4 (-1078)) (-5 *2 (-1 *4)) (-5 *1 (-998 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-108))) (-5 *1 (-172))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1192 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4369)) (-4 *1 (-118 *2)) (-4 *2 (-1191))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) - (-5 *2 (-627 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *4 (-756)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-778)) (-4 *6 (-832)) + (-4 *3 (-1044 *4 *5 *6)) (-5 *2 (-3 *3 (-629 *1))) + (-4 *1 (-1050 *4 *5 *6 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-629 *6)) (-4 *6 (-832)) (-4 *4 (-357)) (-4 *5 (-778)) (-5 *2 - (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)) - (|:| |coef2| (-765 *3)))) - (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) - (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1042 *3 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-1040)))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1152)) (-5 *3 (-111)) (-5 *1 (-871 *4)) - (-4 *4 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-841))))) -(((*1 *1 *2) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) + (-2 (|:| |mval| (-673 *4)) (|:| |invmval| (-673 *4)) + (|:| |genIdeal| (-496 *4 *5 *6 *7)))) + (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-930 *4 *5 *6))))) (((*1 *2 *1) - (-12 + (-12 (-4 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *3 (-1078)) (-4 *4 (-1078)) + (-4 *5 (-1078)) (-4 *6 (-1078)) (-4 *7 (-1078)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-844))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4370 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1030)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1213 *2)) + (-4 *4 (-671 *2 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-902)) (-4 *5 (-544)) (-5 *2 (-673 *5)) + (-5 *1 (-937 *5 *3)) (-4 *3 (-640 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1078)) + (-4 *4 (-129)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-355 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-380 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1078)) (-5 *1 (-633 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134 (-1134 *4))) (-5 *2 (-1134 *4)) (-5 *1 (-1138 *4)) + (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1030))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1078) (-34))) + (-4 *3 (-13 (-1078) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-1154)) + (-4 *4 (-13 (-424 *7) (-27) (-1176))) + (-4 *7 (-13 (-445) (-1019 (-552)) (-832) (-144) (-625 (-552)))) (-5 *2 - (-627 - (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) - (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220))))) - (-5 *1 (-547)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4199 (-629 *4)))) + (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-640 *4)) (-4 *3 (-1078))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-673 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) + (-5 *2 (-1016)) (-5 *1 (-738))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1411 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1213 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-629 (-257))) (-5 *1 (-1239)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1111 (-220))) (-5 *3 (-1136)) (-5 *1 (-1239)))) + ((*1 *1 *1) (-5 *1 (-1239)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-930 *4 *5 *6)) (-4 *4 (-301)) + (-4 *5 (-778)) (-4 *6 (-832)) (-5 *1 (-440 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1176))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-902)) (-5 *4 (-373)) (-5 *2 (-1242)) (-5 *1 (-1238)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1242)) (-5 *1 (-1239))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1042))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-1213 *3)) + (-4 *5 (-1213 (-401 *4))) (-5 *2 (-673 (-401 *4)))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3220)))) + (-5 *2 (-1016)) (-5 *1 (-733))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-612)))) ((*1 *2 *1) - (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) - (-5 *2 (-627 *3)))) + (-12 (-4 *3 (-1078)) + (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) + (-5 *1 (-1054 *3 *4 *2)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))))) ((*1 *2 *1) - (-12 + (-12 (-4 *2 (-1078)) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1078))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1) (-5 *1 (-1239)))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1191)) (-4 *2 (-832)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1191)))) + ((*1 *2 *2) + (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1078)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1030)) (-4 *5 (-778)) (-4 *3 (-832)) + (-4 *6 (-1044 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3410 *1) (|:| |upper| *1))) + (-4 *1 (-957 *4 *5 *3 *6))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1040 (-1005 *3) (-1150 (-1005 *3)))) + (-5 *1 (-1005 *3)) (-4 *3 (-13 (-830) (-357) (-1003)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-756)) (-4 *5 (-544)) (-5 *2 - (-627 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) - (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220))))) - (-5 *1 (-786))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-274))) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1072)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) - (-5 *2 (-1014)) (-5 *1 (-741))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-950 *5 *3)) (-4 *3 (-1213 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1152))) (-4 *6 (-357)) - (-5 *2 (-627 (-288 (-931 *6)))) (-5 *1 (-530 *5 *6 *7)) - (-4 *5 (-445)) (-4 *7 (-13 (-357) (-828)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) - (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) - (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) - (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) - (-4 *6 (-301))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *6)))) - (-5 *4 (-1005 (-823 (-552)))) (-5 *5 (-1152)) (-5 *7 (-401 (-552))) - (-4 *6 (-1028)) (-5 *2 (-842)) (-5 *1 (-582 *6))))) -(((*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-671 *2)) (-5 *4 (-754)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) - (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-616))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) - (-4 *3 (-1211 *4)))) + (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-902)) (-4 *3 (-357)) + (-14 *4 (-974 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1213 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-700 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-357)))) + ((*1 *1 *1) (|partial| -4 *1 (-707))) + ((*1 *1 *1) (|partial| -4 *1 (-711))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-778)) (-4 *7 (-832)) + (-4 *3 (-1044 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-761 *5 *6 *7 *3 *4)) (-4 *4 (-1050 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-13 (-830) (-357))) + (-4 *2 (-1213 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-629 (-946))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1136) (-759))) (-5 *1 (-113))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-832)) (-4 *4 (-1030)) + (-5 *2 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1191)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1177 *3)) (-4 *3 (-1078))))) +(((*1 *1 *1) (-5 *1 (-1042)))) +(((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-612)))) ((*1 *2 *1) - (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) - (-4 *5 (-830)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) - (-5 *2 (-401 (-931 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) - (-5 *2 (-401 (-931 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-151)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1043))))) -(((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343)))) - ((*1 *1) (-4 *1 (-362))) - ((*1 *2 *3) - (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) - (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537))) - ((*1 *1 *1) (-5 *1 (-552))) ((*1 *1 *1) (-5 *1 (-754))) - ((*1 *2 *1) (-12 (-5 *2 (-884 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) - (-4 *4 (-1076)))) - ((*1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-537)) (-4 *2 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-842)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-941))))) -(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) - ((*1 *1 *1 *1) (-4 *1 (-445)))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) + (-12 (-4 *3 (-1078)) + (-4 *2 (-13 (-424 *4) (-867 *3) (-600 (-873 *3)))) + (-5 *1 (-1054 *3 *4 *2)) + (-4 *4 (-13 (-1030) (-867 *3) (-832) (-600 (-873 *3)))))) ((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) - (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) + (-12 (-4 *2 (-1078)) (-5 *1 (-1143 *2 *3)) (-4 *3 (-1078))))) +(((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-935))))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-778)) (-4 *5 (-832)) (-5 *2 (-629 *6)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-930 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) - (-4 *4 (-13 (-1076) (-34)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373))))) -(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) + (-12 (-5 *2 (-629 (-886 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1078))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1174) (-424 *3))) - (-14 *4 (-1152)) (-14 *5 *2))) + (-12 (-5 *2 (-1134 *3)) (-4 *3 (-1030)) (-5 *1 (-1138 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1229 *2 *3 *4)) (-4 *2 (-1030)) (-14 *3 (-1154)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *2 (-412 (-1150 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(((*1 *2 *1) + (-12 (-5 *2 (-629 (-2 (|:| |val| *3) (|:| -3361 *4)))) + (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1078) (-34))) + (-4 *4 (-13 (-1078) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) - (-4 *2 (-13 (-27) (-1174) (-424 *3) (-10 -8 (-15 -1477 ($ *4))))) - (-4 *4 (-828)) - (-4 *5 - (-13 (-1213 *2 *4) (-357) (-1174) - (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) - (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-962 *5)) (-14 *7 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-721))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-627 *2) *2 *2 *2)) (-4 *2 (-1076)) - (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2))))) -(((*1 *1) (-5 *1 (-431)))) + (-12 (-4 *3 (-13 (-832) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136)) (-5 *2 (-629 (-1159))) (-5 *1 (-861))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1242)) (-5 *1 (-807))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-629 (-844))) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-987))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) - ((*1 *1) (-5 *1 (-566)))) -((-1268 . 739111) (-1269 . 739083) (-1270 . 738900) (-1271 . 738831) - (-1272 . 738313) (-1273 . 738260) (-1274 . 738205) (-1275 . 737900) - (-1276 . 737813) (-1277 . 737694) (-1278 . 737641) (-1279 . 736991) - (-1280 . 736872) (-1281 . 736631) (-1282 . 736546) (-1283 . 736337) - (-1284 . 736285) (-1285 . 736097) (-1286 . 736042) (-1287 . 735832) - (-1288 . 735421) (-1289 . 735233) (-1290 . 735147) (-1291 . 735085) - (-1292 . 734965) (-1293 . 734931) (-1294 . 734557) (-1295 . 734429) - (-1296 . 733834) (-1297 . 733761) (-1298 . 733690) (-1299 . 733575) - (-1300 . 733423) (-1301 . 733322) (-1302 . 733290) (-1303 . 732937) - (-1304 . 732507) (-1305 . 732369) (-1306 . 732155) (-1307 . 732096) - (-1308 . 731916) (-1309 . 731549) (-1310 . 731497) (-1311 . 731382) - (-1312 . 731257) (-1313 . 731226) (-1314 . 731088) (-1315 . 730913) - (-1316 . 730770) (-1317 . 730692) (-1318 . 730201) (-1319 . 729654) - (-1320 . 729512) (-1321 . 729417) (-1322 . 729282) (-1323 . 728180) - (-1324 . 727975) (-1325 . 727558) (-1326 . 727237) (-1327 . 727075) - (-1328 . 726937) (-1329 . 726709) (-1330 . 726590) (-1331 . 725854) - (-1332 . 725800) (-1333 . 725656) (-1334 . 725569) (-1335 . 725376) - (-1336 . 725323) (-1337 . 725219) (-1338 . 725148) (-1339 . 725071) - (-1340 . 724800) (-1341 . 724723) (-1342 . 724594) (-1343 . 724400) - (-1344 . 724263) (-1345 . 724095) (-1346 . 723986) (-1347 . 723456) - (-1348 . 723406) (-1349 . 723320) (-1350 . 723248) (-1351 . 723165) - (-1352 . 722935) (-1353 . 722858) (-1354 . 722765) (-1355 . 722607) - (-1356 . 722502) (-1357 . 722353) (-1358 . 722134) (-1359 . 722106) - (-1360 . 721906) (-1361 . 719938) (-1362 . 719740) (-1363 . 719631) - (-1364 . 719554) (-1365 . 719453) (-1366 . 719370) (-1367 . 719210) - (-1368 . 719108) (-1369 . 719007) (-1370 . 718936) (-1371 . 718795) - (-1372 . 718710) (-1373 . 718604) (-1374 . 718510) (-1375 . 717915) - (-1376 . 717418) (-1377 . 717276) (-1378 . 716990) (-1379 . 716768) - (-1380 . 716637) (-1381 . 716538) (-1382 . 715953) (-1383 . 715586) - (-1384 . 715473) (-1385 . 715130) (-1386 . 714963) (-1387 . 714799) - (-1388 . 714711) (-1389 . 714351) (-1390 . 714249) (-1391 . 713943) - (-1392 . 713890) (-1393 . 713503) (-1394 . 713307) (-1395 . 712949) - (-1396 . 712848) (-1397 . 712683) (-1398 . 712539) (-1399 . 712320) - (-1400 . 712102) (-1401 . 711993) (-1402 . 711845) (-1403 . 711789) - (-1404 . 711624) (-1405 . 711028) (-1406 . 710959) (-1407 . 710851) - (-1408 . 710799) (-1409 . 710715) (-1410 . 710642) (-1411 . 710491) - (-1412 . 710435) (-1413 . 710292) (-1414 . 710136) (-1415 . 709992) - (-1416 . 709936) (-1417 . 709874) (-1418 . 709760) (-1419 . 709700) - (-1420 . 709584) (-1421 . 709476) (-1422 . 709148) (-1423 . 708995) - (-1424 . 708883) (-1425 . 708624) (-1426 . 708436) (-1427 . 708405) - (-1428 . 708291) (-1429 . 708238) (-1430 . 708094) (-1431 . 707993) - (-1432 . 707900) (-1433 . 707827) (-1434 . 707717) (-1435 . 707648) - (-1436 . 707574) (-1437 . 707522) (-1438 . 707304) (-1439 . 707113) - (-1440 . 706779) (-1441 . 706713) (-1442 . 706601) (-1443 . 706458) - (-1444 . 706184) (-1445 . 705443) (-1446 . 705191) (-1447 . 705075) - (-1448 . 704945) (-1449 . 704888) (-1450 . 704683) (-1451 . 704586) - (-1452 . 704337) (-1453 . 703996) (-1454 . 703844) (-1455 . 703420) - (-1456 . 702679) (-1457 . 702461) (-1458 . 702279) (-1459 . 702152) - (-1460 . 702065) (-1461 . 701900) (-1462 . 701471) (-1463 . 701372) - (-1464 . 701062) (-1465 . 700975) (-1466 . 700889) (-1467 . 700201) - (-1468 . 700094) (-1469 . 699927) (-1470 . 699843) (-1471 . 699749) - (-1472 . 698931) (-1473 . 698695) (-1474 . 698533) (-1475 . 698429) - (-1476 . 698314) (-1477 . 675147) (-1478 . 675049) (-1479 . 674473) - (-1480 . 674318) (-1481 . 674165) (-1482 . 673819) (-1483 . 673706) - (-1484 . 672394) (-1485 . 672342) (-1486 . 672208) (-1487 . 672063) - (-1488 . 671991) (-1489 . 671151) (-1490 . 668399) (-1491 . 668331) - (-1492 . 667755) (-1493 . 667244) (-1494 . 667066) (-1495 . 666939) - (-1496 . 666840) (-1497 . 666806) (-1498 . 666687) (-1499 . 666356) - (-1500 . 666233) (-1501 . 666151) (-1502 . 665575) (-1503 . 665475) - (-1504 . 665365) (-1505 . 664982) (-1506 . 664905) (-1507 . 664709) - (-1508 . 664461) (-1509 . 664222) (-1510 . 664123) (-1511 . 664039) - (-1512 . 663796) (-1513 . 663110) (-1514 . 662967) (-1515 . 662830) - (-1516 . 662446) (-1517 . 662361) (-1518 . 662194) (-1519 . 662141) - (-1520 . 662040) (-1521 . 661885) (-1522 . 661758) (-1523 . 661379) - (-1524 . 660693) (-1525 . 660622) (-1526 . 660509) (-1527 . 660402) - (-1528 . 660211) (-1529 . 660070) (-1530 . 659546) (-1531 . 659475) - (-1532 . 659114) (-1533 . 658945) (-1534 . 658196) (-1535 . 658144) - (-1536 . 658049) (-1537 . 657991) (-1538 . 657852) (-1539 . 657657) - (-1540 . 656477) (-1541 . 656378) (-1542 . 656199) (-1543 . 655642) - (-1544 . 655431) (-1545 . 655232) (-1546 . 654915) (-1547 . 654341) - (-1548 . 653959) (-1549 . 653900) (-1550 . 653755) (-1551 . 653682) - (-1552 . 653558) (-1553 . 653430) (-1554 . 653357) (-1555 . 653280) - (-1556 . 653202) (-1557 . 652808) (-1558 . 652715) (-1559 . 652543) - (-1560 . 652352) (-1561 . 651778) (-1562 . 651651) (-1563 . 651602) - (-1564 . 651331) (-1565 . 651248) (-1566 . 651125) (-1567 . 650954) - (-1568 . 650926) (-1569 . 650832) (-1570 . 650193) (-1571 . 649868) - (-1572 . 649815) (-12 . 649643) (-1574 . 649594) (-1575 . 649020) - (-1576 . 648934) (-1577 . 647753) (-1578 . 647675) (-1579 . 647530) - (-1580 . 647426) (-1581 . 647255) (-1582 . 647065) (-1583 . 646942) - (-1584 . 646255) (-1585 . 645451) (-1586 . 645329) (-1587 . 645226) - (-1588 . 645160) (-1589 . 645065) (-1590 . 644992) (-1591 . 644936) - (-1592 . 644815) (-1593 . 644706) (-1594 . 644618) (-1595 . 644564) - (-1596 . 643877) (-1597 . 643719) (-1598 . 643590) (-1599 . 643379) - (-1600 . 643327) (-1601 . 643133) (-1602 . 642971) (-1603 . 642903) - (-1604 . 642681) (-1605 . 642615) (-1606 . 642431) (-1607 . 641744) - (-1608 . 641670) (-1609 . 641557) (-1610 . 640975) (-1611 . 640898) - (-1612 . 640814) (-1613 . 640763) (-1614 . 640612) (-1615 . 640037) - (-1616 . 640009) (-1617 . 639618) (-1618 . 639399) (-1619 . 639290) - (-1620 . 638910) (-1621 . 638395) (-1622 . 638297) (-1623 . 638037) - (-1624 . 637692) (-1625 . 637624) (-1626 . 637525) (-1627 . 637473) - (-1628 . 636898) (-1629 . 636845) (-1630 . 636773) (-1631 . 636720) - (-1632 . 636620) (-1633 . 636231) (-1634 . 636164) (-1635 . 635634) - (-1636 . 635581) (-1637 . 634878) (-1638 . 634804) (-1639 . 634688) - (-1640 . 634113) (-1641 . 633955) (-1642 . 633857) (-1643 . 633668) - (-1644 . 633217) (-1645 . 633189) (-1646 . 633012) (-1647 . 632929) - (-1648 . 632877) (-1649 . 632791) (-1650 . 632708) (-1651 . 632552) - (-1652 . 631978) (-1653 . 631852) (-1654 . 631797) (-1655 . 631763) - (-1656 . 631697) (-1657 . 631578) (-1658 . 631460) (-1659 . 629328) - (-1660 . 628990) (-1661 . 628416) (-1662 . 627812) (-1663 . 627516) - (-1664 . 627413) (-1665 . 627181) (-1666 . 627058) (-1667 . 626975) - (-1668 . 626847) (-1669 . 626774) (-1670 . 626619) (-1671 . 625803) - (* . 621257) (-1673 . 620683) (-1674 . 620630) (-1675 . 620493) - (-1676 . 620465) (-1677 . 620219) (-1678 . 620134) (-1679 . 620082) - (-1680 . 619625) (-1681 . 619508) (-1682 . 619409) (-1683 . 619093) - (-1684 . 619031) (-1685 . 618234) (-1686 . 617660) (-1687 . 617594) - (-1688 . 617369) (-1689 . 617298) (-1690 . 617171) (-1691 . 617052) - (-1692 . 616943) (-1693 . 616860) (-1694 . 615452) (-1695 . 615423) - (-1696 . 605861) (-1697 . 605287) (-1698 . 605190) (-1699 . 605010) - (-1700 . 604803) (-1701 . 604720) (-1702 . 604637) (-1703 . 599299) - (-1704 . 599190) (-1705 . 599084) (-1706 . 598923) (-1707 . 598784) - (-1708 . 598710) (-1709 . 598333) (-1710 . 598126) (-1711 . 598007) - (-1712 . 597827) (-1713 . 597768) (-1714 . 597187) (-1715 . 597079) - (-1716 . 596868) (-1717 . 596761) (-1718 . 596608) (-1719 . 596456) - (-1720 . 596378) (-1721 . 596094) (-1722 . 596041) (-1723 . 596012) - (-1724 . 595918) (-1725 . 595782) (-1726 . 595692) (-1727 . 590179) - (-1728 . 590021) (-1729 . 589612) (-1730 . 589545) (-1731 . 589350) - (-1732 . 589298) (-1733 . 589191) (-1734 . 589124) (-1735 . 589027) - (-1736 . 588918) (-1737 . 588530) (-1738 . 588277) (-1739 . 588122) - (-1740 . 587934) (-1741 . 587856) (-1742 . 587726) (-1743 . 587563) - (-1744 . 587166) (-1745 . 586528) (-1746 . 586444) (-1747 . 586356) - (-1748 . 586255) (-1749 . 585800) (-1750 . 585772) (-1751 . 585666) - (-1752 . 585501) (-1753 . 585429) (-1754 . 585313) (-1755 . 585221) - (-1756 . 585155) (-1757 . 584942) (-1758 . 584555) (-1759 . 584206) - (-1760 . 583993) (-1761 . 583940) (-1762 . 583773) (-1763 . 583601) - (-1764 . 583395) (-1765 . 583237) (-1766 . 583165) (-1767 . 583085) - (-1768 . 583011) (-1769 . 582649) (-1770 . 582538) (-1771 . 582432) - (-1772 . 582130) (-1773 . 582046) (-1774 . 581829) (-1775 . 581748) - (-1776 . 581630) (-1777 . 578703) (-1778 . 578520) (-1779 . 578429) - (-1780 . 578211) (-1781 . 578154) (-1782 . 577989) (-1783 . 577861) - (-1784 . 577776) (-1785 . 577484) (-1786 . 576720) (-1787 . 576664) - (-1788 . 576126) (-1789 . 576027) (-1790 . 575738) (-1791 . 575490) - (-1792 . 574333) (-1793 . 574238) (-1794 . 574144) (-1795 . 574091) - (-1796 . 573977) (-1797 . 573717) (-1798 . 573469) (-1799 . 573127) - (-1800 . 572870) (-1801 . 572602) (-1802 . 572495) (-1803 . 572411) - (-1804 . 572323) (-1805 . 572266) (-1806 . 571879) (-1807 . 571700) - (-1808 . 571606) (-1809 . 571462) (-1810 . 571086) (-1811 . 570876) - (-1812 . 570762) (-1813 . 570655) (-1814 . 570465) (-1815 . 570247) - (-1816 . 569968) (-1817 . 569522) (-1818 . 569469) (-1819 . 569311) - (-1820 . 569210) (-1821 . 568900) (-1822 . 568742) (-1823 . 568668) - (-1824 . 568589) (-1825 . 568520) (-1826 . 568401) (-1827 . 568346) - (-1828 . 568294) (-1829 . 568242) (-1830 . 568141) (-1831 . 567680) - (-1832 . 566051) (-1833 . 565449) (-1834 . 564770) (-1835 . 564684) - (-1836 . 564165) (-1837 . 564093) (-1838 . 564041) (-1839 . 563544) - (-1840 . 563400) (-1841 . 560101) (-1842 . 559235) (-1843 . 559090) - (-1844 . 558963) (-1845 . 558816) (-1846 . 558723) (-1847 . 558556) - (-1848 . 558482) (-1849 . 558426) (-1850 . 558201) (-1851 . 558135) - (-1852 . 558045) (-1853 . 556671) (-1854 . 556594) (-1855 . 556456) - (-1856 . 556401) (-1857 . 556278) (-1858 . 556169) (-1859 . 556067) - (-1860 . 556014) (-1861 . 555948) (-1862 . 555889) (-1863 . 555837) - (-1864 . 555653) (-1865 . 555582) (-1866 . 555511) (-1867 . 555316) - (-1868 . 555131) (-1869 . 555071) (-1870 . 554557) (-1871 . 554483) - (-1872 . 554417) (-1873 . 554360) (-1874 . 554171) (-1875 . 554122) - (-1876 . 553966) (-1877 . 553883) (-1878 . 553725) (-1879 . 553534) - (-1880 . 553150) (-1881 . 553053) (-1882 . 552898) (-1883 . 552673) - (-1884 . 552510) (-1885 . 552397) (-1886 . 552337) (-1887 . 552231) - (-1888 . 552118) (-1889 . 550530) (-1890 . 550291) (-1891 . 550069) - (-1892 . 549409) (-1893 . 549129) (-1894 . 548834) (-1895 . 548578) - (-1896 . 548447) (-1897 . 548301) (-1898 . 548220) (-1899 . 547663) - (-1900 . 547592) (-1901 . 547521) (-1902 . 547469) (-1903 . 546825) - (-1904 . 546702) (-1905 . 546559) (-1906 . 546473) (-1907 . 546173) - (-1908 . 546079) (-1909 . 544241) (-1910 . 544094) (-1911 . 540758) - (-1912 . 540672) (-1913 . 540541) (-1914 . 540396) (-1915 . 538545) - (-1916 . 538471) (-1917 . 538278) (-1918 . 538201) (-1919 . 537727) - (-1920 . 536217) (-1921 . 534932) (-1922 . 534761) (-1923 . 534691) - (-1924 . 534419) (-1925 . 534331) (-1926 . 534279) (-1927 . 534136) - (-1928 . 534032) (-1929 . 533925) (-1930 . 532377) (-1931 . 532259) - (-1932 . 532069) (-1933 . 531822) (-1934 . 531756) (-1935 . 531678) - (-1936 . 531622) (-1937 . 531417) (-1938 . 531364) (-1939 . 531276) - (-1940 . 531202) (-1941 . 531036) (-1942 . 530828) (-1943 . 530639) - (-1944 . 530573) (-1945 . 530390) (-1946 . 530272) (-1947 . 530205) - (-1948 . 530080) (-1949 . 529933) (-1950 . 529741) (-1951 . 529005) - (-1952 . 528902) (-1953 . 528846) (-1954 . 528764) (-1955 . 528672) - (-1956 . 528586) (-1957 . 528533) (-1958 . 528192) (-1959 . 528093) - (-1960 . 527931) (-1961 . 527843) (-1962 . 527655) (-1963 . 527463) - (-1964 . 526975) (-1965 . 526782) (-1966 . 526652) (-1967 . 526572) - (-1968 . 526324) (-1969 . 526287) (-1970 . 526160) (-1971 . 525290) - (-1972 . 525222) (-1973 . 524769) (-1974 . 524418) (-1975 . 524369) - (-1976 . 524286) (-1977 . 524189) (-1978 . 524119) (-1979 . 524091) - (-1980 . 523997) (-1981 . 523353) (-1982 . 523138) (-1983 . 522842) - (-1984 . 522590) (-1985 . 517478) (-1986 . 517359) (-1987 . 517196) - (-1988 . 517108) (-1989 . 516884) (-1990 . 516750) (-1991 . 516679) - (-1992 . 516529) (-1993 . 515357) (-1994 . 515138) (-1995 . 515080) - (-1996 . 515028) (-1997 . 514919) (-1998 . 514759) (-1999 . 514585) - (-2000 . 514383) (-2001 . 514280) (-2002 . 514246) (-2003 . 514131) - (-2004 . 513988) (-2005 . 513936) (-2006 . 513836) (-2007 . 513651) - (-2008 . 513148) (-2009 . 512912) (-2010 . 512859) (-2011 . 512701) - (-2012 . 512635) (-2013 . 512431) (-2014 . 511294) (-2015 . 511047) - (-2016 . 510894) (-2017 . 510744) (-2018 . 510672) (-2019 . 510583) - (-2020 . 510276) (-2021 . 510211) (-2022 . 510112) (-2023 . 510017) - (-2024 . 509545) (-2025 . 509490) (-2026 . 509461) (-2027 . 509383) - (-2028 . 509280) (-2029 . 509210) (-2030 . 508992) (-2031 . 507927) - (-2032 . 507717) (-2033 . 507269) (-2034 . 507203) (-2035 . 507123) - (-2036 . 506986) (-2037 . 506850) (-2038 . 506766) (-2039 . 506535) - (-2040 . 505319) (-2041 . 505262) (-2042 . 504945) (-2043 . 504792) - (-2044 . 504724) (-2045 . 504620) (-2046 . 504517) (-2047 . 504355) - (-2048 . 504263) (-2049 . 504207) (-2050 . 504123) (-2051 . 504039) - (-2052 . 503945) (-2053 . 503893) (-2054 . 503834) (-2055 . 503492) - (-2056 . 503439) (-2057 . 503344) (-2058 . 503141) (-2059 . 502997) - (-2060 . 502897) (-2061 . 502812) (-2062 . 502726) (-2063 . 502345) - (-2064 . 502289) (-2065 . 502221) (-2066 . 502189) (-2067 . 501646) - (-2068 . 501552) (-2069 . 501449) (-2070 . 500794) (-2071 . 500648) - (-2072 . 500594) (-2073 . 500335) (-2074 . 499891) (-2075 . 499775) - (-2076 . 499692) (-2077 . 499663) (-2078 . 499522) (-2079 . 498673) - (-2080 . 498565) (-2081 . 498383) (-2082 . 498327) (-2083 . 496785) - (-2084 . 496718) (-2085 . 496440) (-2086 . 496370) (-2087 . 496229) - (-2088 . 496163) (-2089 . 496086) (-2090 . 496033) (-2091 . 492412) - (-2092 . 492194) (-2093 . 492079) (-2094 . 491916) (-2095 . 491716) - (-2096 . 491591) (-2097 . 491311) (-9 . 491283) (-2099 . 491076) - (-2100 . 491016) (-2101 . 490564) (-2102 . 490271) (-2103 . 490009) - (-2104 . 489943) (-2105 . 489892) (-2106 . 489783) (-2107 . 489667) - (-2108 . 489612) (-2109 . 489372) (-8 . 489344) (-2111 . 489316) - (-2112 . 489163) (-2113 . 489083) (-2114 . 488824) (-2115 . 488730) - (-2116 . 488586) (-2117 . 488388) (-2118 . 487834) (-2119 . 487781) - (-2120 . 487695) (-2121 . 487603) (-7 . 487575) (-2123 . 487432) - (-2124 . 487317) (-2125 . 487101) (-2126 . 487027) (-2127 . 486906) - (-2128 . 486664) (-2129 . 486558) (-2130 . 486495) (-2131 . 486388) - (-2132 . 486296) (-2133 . 486164) (-2134 . 486105) (-2135 . 485993) - (-2136 . 485916) (-2137 . 485763) (-2138 . 485692) (-2139 . 485239) - (-2140 . 485130) (-2141 . 485075) (-2142 . 484989) (-2143 . 484866) - (-2144 . 484548) (-2145 . 484296) (-2146 . 483981) (-2147 . 483866) - (-2148 . 483439) (-2149 . 483386) (-2150 . 483147) (-2151 . 483015) - (-2152 . 482763) (-2153 . 482683) (-2154 . 482290) (-2155 . 481850) - (-2156 . 481670) (-2157 . 481423) (-2158 . 481346) (-2159 . 481252) - (-2160 . 481145) (-2161 . 480872) (-2162 . 479670) (-2163 . 479143) - (-2164 . 474983) (-2165 . 474822) (-2166 . 474785) (-2167 . 474751) - (-2168 . 474550) (-2169 . 473369) (-2170 . 473088) (-2171 . 473002) - (-2172 . 472651) (-2173 . 472493) (-2174 . 472411) (-2175 . 472038) - (-2176 . 471873) (-2177 . 471787) (-2178 . 471709) (-2179 . 471629) - (-2180 . 471574) (-2181 . 471438) (-2182 . 471350) (-2183 . 471053) - (-2184 . 470969) (-2185 . 470862) (-2186 . 470527) (-2187 . 470434) - (-2188 . 470356) (-2189 . 470273) (-2190 . 470019) (-2191 . 469728) - (-2192 . 469629) (-2193 . 469563) (-2194 . 469271) (-2195 . 469142) - (-2196 . 469007) (-2197 . 468955) (-2198 . 468660) (-2199 . 468517) - (-2200 . 468448) (-2201 . 467846) (-2202 . 467787) (-2203 . 467701) - (-2204 . 467605) (-2205 . 467496) (-2206 . 467263) (-2207 . 467197) - (-2208 . 467026) (-2209 . 466954) (-2210 . 466750) (-2211 . 465632) - (-2212 . 465206) (-2213 . 465088) (-2214 . 465035) (-2215 . 464877) - (-2216 . 464743) (-2217 . 464660) (-2218 . 464409) (-2219 . 464303) - (-2220 . 463692) (-2221 . 463536) (-2222 . 463484) (-2223 . 463260) - (-2224 . 463151) (-2225 . 462497) (-2226 . 462399) (-2227 . 462350) - (-2228 . 462070) (-2229 . 461948) (-2230 . 461708) (-2231 . 461680) - (-2232 . 461556) (-2233 . 461135) (-2234 . 461061) (-2235 . 460955) - (-2236 . 460841) (-2237 . 460696) (-2238 . 460530) (-2239 . 460365) - (-2240 . 460308) (-2241 . 460170) (-2242 . 459962) (-2243 . 459831) - (-2244 . 459700) (-2245 . 459627) (-2246 . 459410) (-2247 . 459101) - (-2248 . 458980) (-2249 . 458909) (-2250 . 458812) (-2251 . 458601) - (-2252 . 458483) (-2253 . 458355) (-2254 . 458218) (-2255 . 458127) - (-2256 . 458049) (-2257 . 457925) (-2258 . 457655) (-2259 . 457453) - (-2260 . 457383) (-2261 . 457311) (-2262 . 457259) (-2263 . 457185) - (-2264 . 457085) (-2265 . 456342) (-2266 . 456262) (-2267 . 455698) - (-2268 . 455162) (-2269 . 454770) (-2270 . 453742) (-2271 . 453495) - (-2272 . 453431) (-2273 . 453101) (-2274 . 452986) (-2275 . 452912) - (-2276 . 452702) (-2277 . 452586) (-2278 . 452479) (-2279 . 451895) - (-2280 . 451844) (-2281 . 451810) (-2282 . 451703) (-2283 . 451100) - (-2284 . 450945) (-2285 . 450850) (-2286 . 450722) (-2287 . 450632) - (-2288 . 450305) (-2289 . 450239) (-2290 . 450161) (-2291 . 450037) - (-2292 . 449765) (-2293 . 449643) (-2294 . 449560) (-2295 . 449430) - (-2296 . 449309) (-2297 . 449149) (-2298 . 449092) (-2299 . 449019) - (-2300 . 448922) (-2301 . 448845) (-2302 . 448738) (-2303 . 448683) - (-2304 . 448567) (-2305 . 448414) (-2306 . 448321) (-2307 . 448227) - (-2308 . 447934) (-2309 . 447862) (-2310 . 447834) (-2311 . 447587) - (-2312 . 446953) (-2313 . 446805) (-2314 . 446689) (-2315 . 446374) - (-2316 . 446143) (-2317 . 446115) (-2318 . 445974) (-2319 . 445889) - (-2320 . 445616) (-2321 . 445550) (-2322 . 445368) (-2323 . 445311) - (-2324 . 445225) (-2325 . 445196) (-2326 . 445136) (-2327 . 444882) - (-2328 . 444740) (-2329 . 444653) (-2330 . 444492) (-2331 . 443685) - (-2332 . 443562) (-2333 . 443472) (-2334 . 443404) (-2335 . 443252) - (-2336 . 443178) (-2337 . 443043) (-2338 . 442882) (-2339 . 442772) - (-2340 . 442613) (-2341 . 442533) (-2342 . 441936) (-2343 . 441883) - (-2344 . 441725) (-2345 . 441610) (-2346 . 441488) (-2347 . 441436) - (-2348 . 441381) (-2349 . 439598) (-2350 . 439535) (-2351 . 439448) - (-2352 . 439333) (-2353 . 439301) (-2354 . 439249) (-2355 . 439105) - (-2356 . 438735) (-2357 . 438666) (-2358 . 438568) (-2359 . 438402) - (-2360 . 438106) (-2361 . 438034) (-2362 . 437979) (-2363 . 437870) - (-2364 . 437384) (-2365 . 437305) (-2366 . 437074) (-2367 . 437019) - (-2368 . 436851) (-2369 . 436755) (-2370 . 436403) (-2371 . 436260) - (-2372 . 436147) (-2373 . 435771) (-2374 . 435681) (-2375 . 435349) - (-2376 . 435265) (-2377 . 435212) (-2378 . 434819) (-2379 . 434745) - (-2380 . 434413) (-2381 . 434360) (-2382 . 434281) (-2383 . 434203) - (-2384 . 433017) (-2385 . 432965) (-2386 . 432789) (-2387 . 432584) - (-2388 . 432497) (-2389 . 432179) (-2390 . 432099) (-2391 . 431918) - (-2392 . 431683) (-2393 . 431630) (-2394 . 431478) (-2395 . 431162) - (-2396 . 429980) (-2397 . 429928) (-2398 . 429782) (-2399 . 429518) - (-2400 . 429289) (-2401 . 429193) (-2402 . 429077) (-2403 . 428973) - (-2404 . 428723) (-2405 . 427988) (-2406 . 427745) (-2407 . 425539) - (-2408 . 425402) (-2409 . 425259) (-2410 . 424174) (-2411 . 423462) - (-2412 . 423394) (-2413 . 423249) (-2414 . 423171) (-2415 . 422986) - (-2416 . 422937) (-2417 . 422812) (-2418 . 422703) (-2419 . 422430) - (-2420 . 422244) (-2421 . 422188) (-2422 . 420812) (-2423 . 420560) - (-2424 . 420394) (-2425 . 420295) (-2426 . 420243) (-2427 . 419950) - (-2428 . 419600) (-2429 . 419500) (-2430 . 419340) (-2431 . 419201) - (-2432 . 419147) (-2433 . 418820) (-2434 . 418720) (-2435 . 418513) - (-2436 . 418352) (-2437 . 418199) (-2438 . 418047) (-2439 . 417994) - (-2440 . 417870) (-2441 . 417712) (-2442 . 417433) (-2443 . 417254) - (-2444 . 417180) (-2445 . 416932) (-2446 . 416814) (-2447 . 416599) - (-2448 . 416533) (-2449 . 416434) (-2450 . 416381) (-2451 . 416236) - (-2452 . 416111) (-2453 . 415902) (-2454 . 415803) (-2455 . 415553) - (-2456 . 415450) (-2457 . 415260) (-2458 . 414945) (-2459 . 414826) - (-2460 . 414666) (-2461 . 414506) (-2462 . 414381) (-2463 . 414251) - (-2464 . 414196) (-2465 . 414137) (-2466 . 414015) (-2467 . 413853) - (-2468 . 413719) (-2469 . 413597) (-2470 . 413295) (-2471 . 413207) - (-2472 . 413124) (-2473 . 413010) (-2474 . 412936) (-2475 . 412862) - (-2476 . 412316) (-2477 . 412004) (-2478 . 411596) (-2479 . 411510) - (-2480 . 411392) (-2481 . 410865) (-2482 . 410814) (-2483 . 410596) - (-2484 . 410508) (-2485 . 410434) (-2486 . 410245) (-2487 . 408972) - (-2488 . 408730) (-2489 . 408657) (-2490 . 408574) (-2491 . 408442) - (-2492 . 408171) (-2493 . 408106) (-2494 . 408054) (-2495 . 407946) - (-2496 . 406936) (-2497 . 406865) (-2498 . 406758) (-2499 . 406614) - (-2500 . 406562) (-2501 . 406477) (-2502 . 406378) (-2503 . 406325) - (-2504 . 406274) (-2505 . 406156) (-2506 . 405805) (-2507 . 405749) - (-2508 . 405610) (-2509 . 405443) (-2510 . 405300) (-2511 . 405154) - (-2512 . 405045) (-2513 . 404966) (-2514 . 404826) (-2515 . 404722) - (-2516 . 404688) (-2517 . 404633) (-2518 . 404173) (-2519 . 403948) - (-2520 . 403851) (-2521 . 403739) (-2522 . 400958) (-2523 . 400683) - (-2524 . 400516) (-2525 . 400343) (-2526 . 400288) (-2527 . 400205) - (-2528 . 400117) (-2529 . 399980) (-2530 . 399858) (-2531 . 399764) - (-2532 . 399643) (-2533 . 399133) (-2534 . 398877) (-2535 . 398695) - (-2536 . 398208) (-2537 . 398112) (-2538 . 397989) (-2539 . 397321) - (-2540 . 396701) (-2541 . 396526) (-2542 . 396470) (-2543 . 396372) - (-2544 . 396236) (-2545 . 396089) (-2546 . 395917) (-2547 . 395865) - (-2548 . 395769) (-2549 . 395651) (-2550 . 395563) (-2551 . 395468) - (-2552 . 395248) (-2553 . 395113) (-2554 . 395062) (-2555 . 394733) - (-2556 . 394665) (-2557 . 394528) (-2558 . 394427) (-2559 . 394261) - (-2560 . 394176) (-2561 . 394081) (-2562 . 393874) (-2563 . 393721) - (-2564 . 393608) (-2565 . 393499) (-2566 . 393140) (-2567 . 393026) - (-2568 . 392693) (-2569 . 392299) (-2570 . 392213) (-2571 . 392110) - (-2572 . 392076) (-2573 . 391982) (-2574 . 391558) (-2575 . 391324) - (-2576 . 391253) (-2577 . 391179) (-2578 . 391108) (-2579 . 390948) - (-2580 . 390556) (-2581 . 390421) (-2582 . 390363) (-2583 . 390149) - (-2584 . 390060) (-2585 . 389986) (-2586 . 389838) (-2587 . 389754) - (-2588 . 389612) (-2589 . 389513) (-2590 . 389444) (-2591 . 389269) - (-2592 . 389240) (-2593 . 389069) (-2594 . 388973) (-2595 . 388815) - (-2596 . 388702) (-2597 . 388640) (-2598 . 388497) (-2599 . 388373) - (-2600 . 387940) (-2601 . 387882) (-2602 . 387636) (-2603 . 387508) - (-2604 . 387452) (-2605 . 387322) (-2606 . 387044) (-2607 . 386867) - (-2608 . 386723) (-2609 . 386600) (-2610 . 386424) (-2611 . 386265) - (-2612 . 386062) (-2613 . 385944) (-2614 . 385861) (-2615 . 385694) - (-2616 . 385415) (-2617 . 385310) (-2618 . 385254) (-2619 . 385008) - (-2620 . 384729) (-2621 . 384660) (-2622 . 384586) (-2623 . 384357) - (-2624 . 384119) (-2625 . 383942) (-2626 . 383787) (-2627 . 383701) - (-2628 . 383623) (-2629 . 383554) (-2630 . 383501) (-2631 . 383400) - (-2632 . 383319) (-2633 . 383166) (-2634 . 382998) (-2635 . 382966) - (-2636 . 382898) (-2637 . 382147) (-2638 . 382018) (-2639 . 381872) - (-2640 . 381556) (-2641 . 379288) (-2642 . 379086) (-2643 . 379025) - (-2644 . 378606) (-2645 . 378518) (-2646 . 378084) (-2647 . 377914) - (-2648 . 377204) (-2649 . 377011) (-2650 . 376931) (-2651 . 376726) - (-2652 . 376571) (-2653 . 376405) (-2654 . 375763) (-2655 . 374993) - (-2656 . 374921) (-2657 . 374837) (-2658 . 374696) (-2659 . 374562) - (-2660 . 374454) (-2661 . 374294) (-2662 . 374191) (-2663 . 373825) - (-2664 . 373685) (-2665 . 373612) (-2666 . 373535) (-2667 . 373220) - (-2668 . 372590) (-2669 . 372105) (-2670 . 371613) (-2671 . 371175) - (-2672 . 371046) (-2673 . 370951) (-2674 . 370865) (-2675 . 370742) - (-2676 . 370688) (-2677 . 370485) (-2678 . 370390) (-2679 . 370337) - (-2680 . 369980) (-2681 . 369887) (-2682 . 369557) (-2683 . 369177) - (-2684 . 369073) (-2685 . 368595) (-2686 . 368467) (-2687 . 368394) - (-2688 . 368177) (-2689 . 367998) (-2690 . 367823) (-2691 . 367702) - (-2692 . 367402) (-2693 . 367349) (-2694 . 367321) (-2695 . 367207) - (-2696 . 367158) (-2697 . 367098) (-2698 . 366990) (-2699 . 366916) - (-2700 . 366846) (-2701 . 366638) (-2702 . 366510) (-2703 . 366440) - (-2704 . 366330) (-2705 . 366084) (-2706 . 365919) (-2707 . 364449) - (-2708 . 364312) (-2709 . 364109) (-2710 . 364002) (-2711 . 363865) - (-2712 . 363632) (-2713 . 363562) (-2714 . 363389) (-2715 . 363248) - (-2716 . 363139) (-2717 . 362950) (-2718 . 362898) (-2719 . 362515) - (-2720 . 362402) (-2721 . 362322) (-2722 . 362270) (-2723 . 362188) - (-2724 . 361857) (-2725 . 361775) (-2726 . 361743) (-2727 . 361648) - (-2728 . 361208) (-2729 . 361045) (-2730 . 360905) (-2731 . 360796) - (-2732 . 360641) (-2733 . 360018) (-2734 . 359963) (-2735 . 359353) - (-2736 . 359273) (-2737 . 359054) (-2738 . 358911) (-2739 . 358661) - (-2740 . 357496) (-2741 . 357394) (-2742 . 357362) (-2743 . 357328) - (-2744 . 357245) (-2745 . 355905) (-2746 . 355298) (-2747 . 348299) - (-2748 . 348191) (-2749 . 347920) (-2750 . 347818) (-2751 . 347736) - (-2752 . 347569) (-2753 . 347416) (-2754 . 347339) (-2755 . 347235) - (-2756 . 347017) (-2757 . 346841) (-2758 . 346661) (-2759 . 346578) - (-2760 . 346480) (-2761 . 345619) (-2762 . 345382) (-2763 . 345278) - (-2764 . 345225) (-2765 . 344922) (-2766 . 344624) (-2767 . 343822) - (-2768 . 343697) (-2769 . 343562) (-2770 . 343463) (-2771 . 342954) - (-2772 . 342842) (-2773 . 342679) (-2774 . 342598) (-2775 . 342468) - (-2776 . 342130) (-2777 . 342056) (-2778 . 341950) (-2779 . 341898) - (-2780 . 341652) (-2781 . 341523) (-2782 . 341409) (-2783 . 341302) - (-2784 . 341201) (-2785 . 341151) (-2786 . 340545) (-2787 . 340432) - (-2788 . 340217) (-2789 . 340120) (-2790 . 339839) (-2791 . 339501) - (-2792 . 339009) (-2793 . 338947) (-2794 . 338825) (-2795 . 338753) - (-2796 . 338652) (-2797 . 338573) (-2798 . 338499) (-2799 . 338305) - (-2800 . 338113) (-2801 . 338029) (-2802 . 337478) (-2803 . 337351) - (-2804 . 337108) (-2805 . 336915) (-2806 . 336720) (-2807 . 336634) - (-2808 . 336481) (-2809 . 336365) (-2810 . 336258) (-2811 . 336122) - (-2812 . 335969) (-2813 . 335872) (-2814 . 335693) (-2815 . 335582) - (-2816 . 335323) (-2817 . 335163) (-2818 . 335097) (-2819 . 334910) - (-2820 . 334784) (-2821 . 334693) (-2822 . 334253) (-2823 . 334179) - (-2824 . 334060) (-2825 . 333850) (-2826 . 333762) (-2827 . 333633) - (-2828 . 333523) (-2829 . 333414) (-2830 . 333383) (-2831 . 333323) - (-2832 . 333069) (-2833 . 332985) (-2834 . 332932) (-2835 . 332466) - (-2836 . 332313) (-2837 . 332218) (-2838 . 332129) (-2839 . 332056) - (-2840 . 331855) (-2841 . 331630) (-2842 . 331544) (-2843 . 330435) - (-2844 . 330361) (-2845 . 330267) (-2846 . 330079) (-2847 . 329938) - (-2848 . 329728) (-2849 . 329554) (-2850 . 329501) (-2851 . 329445) - (-2852 . 329337) (-2853 . 329279) (-2854 . 329185) (-2855 . 328961) - (-2856 . 328579) (-2857 . 328509) (-2858 . 328409) (-2859 . 327593) - (-2860 . 327537) (-2861 . 327484) (-2862 . 327391) (-2863 . 327305) - (-2864 . 327086) (-2865 . 326972) (-2866 . 326891) (-2867 . 326594) - (-2868 . 326520) (-2869 . 326460) (-2870 . 326347) (-2871 . 326295) - (-2872 . 326238) (-2873 . 325982) (-2874 . 325930) (-2875 . 325113) - (-2876 . 324771) (-2877 . 324512) (-2878 . 324380) (-2879 . 324309) - (-2880 . 324103) (-2881 . 323921) (-2882 . 323688) (-2883 . 323528) - (-2884 . 323315) (-2885 . 323118) (-2886 . 322974) (-2887 . 322873) - (-2888 . 322718) (-2889 . 322600) (-2890 . 322282) (-2891 . 322227) - (-2892 . 321947) (-2893 . 321851) (-2894 . 321784) (-2895 . 321750) - (-2896 . 321642) (-2897 . 321424) (-2898 . 321395) (-2899 . 321165) - (-2900 . 320966) (-2901 . 320824) (-2902 . 320524) (-2903 . 320432) - (-2904 . 320288) (-2905 . 320232) (-2906 . 320198) (-2907 . 319942) - (-2908 . 319570) (-2909 . 319432) (-2910 . 319259) (-2911 . 319197) - (-2912 . 319066) (-2913 . 318940) (-2914 . 318827) (-2915 . 318682) - (-2916 . 318600) (-2917 . 318490) (-2918 . 317789) (-2919 . 317666) - (-2920 . 317356) (-2921 . 317279) (-2922 . 317191) (-2923 . 317139) - (-2924 . 317010) (-2925 . 316831) (-2926 . 316718) (-2927 . 316559) - (-2928 . 316451) (-2929 . 315773) (-2930 . 315482) (-2931 . 315405) - (-2932 . 314753) (-2933 . 314543) (-2934 . 314415) (-2935 . 314299) - (-2936 . 314162) (-2937 . 313811) (-2938 . 313452) (-2939 . 313358) - (-2940 . 313160) (-2941 . 313109) (-2942 . 310947) (-2943 . 310655) - (-2944 . 310584) (-2945 . 310420) (-2946 . 310349) (-2947 . 310296) - (-2948 . 310194) (-2949 . 310057) (-2950 . 308754) (-2951 . 308489) - (-2952 . 307523) (-2953 . 307355) (-2954 . 307321) (-2955 . 307176) - (-2956 . 306958) (-2957 . 306092) (-2958 . 306042) (-2959 . 305860) - (-2960 . 304973) (-2961 . 304427) (-2962 . 304320) (-2963 . 304212) - (-2964 . 303978) (-2965 . 303837) (-2966 . 303700) (-2967 . 303179) - (-2968 . 303085) (-2969 . 302998) (-2970 . 302896) (-2971 . 302789) - (-2972 . 302687) (-2973 . 302360) (-2974 . 302265) (-2975 . 302095) - (-2976 . 302021) (-2977 . 301943) (-2978 . 301802) (-2979 . 301636) - (-2980 . 301459) (-2981 . 301273) (-2982 . 301142) (-2983 . 300894) - (-2984 . 300782) (-2985 . 300490) (-2986 . 300258) (-2987 . 300012) - (-2988 . 299959) (-2989 . 299667) (-2990 . 299547) (-2991 . 299240) - (-2992 . 299118) (-2993 . 298239) (-2994 . 298135) (-2995 . 298031) - (-2996 . 297934) (-2997 . 297881) (-2998 . 297766) (-2999 . 297692) - (-3000 . 297585) (-3001 . 296721) (-3002 . 296596) (-3003 . 296543) - (-3004 . 296397) (-3005 . 292334) (-3006 . 292279) (-3007 . 290421) - (-3008 . 290277) (-3009 . 290167) (-3010 . 290011) (-3011 . 289901) - (-3012 . 289637) (-3013 . 289327) (-3014 . 289231) (-3015 . 289028) - (-3016 . 288949) (-3017 . 288677) (-3018 . 288575) (-3019 . 288462) - (-3020 . 288355) (-3021 . 288235) (-3022 . 288179) (-3023 . 288099) - (-3024 . 287800) (-3025 . 287657) (-3026 . 287588) (-3027 . 286911) - (-3028 . 286786) (-3029 . 286615) (-3030 . 285940) (-3031 . 285867) - (-3032 . 285767) (-3033 . 285623) (-3034 . 285504) (-3035 . 285427) - (-3036 . 285300) (-3037 . 285199) (-3038 . 285025) (-3039 . 284921) - (-3040 . 284863) (-3041 . 284810) (-3042 . 284752) (-3043 . 284657) - (-3044 . 284574) (-3045 . 284324) (-3046 . 281979) (-3047 . 281829) - (-3048 . 281758) (-3049 . 281675) (-3050 . 281546) (-3051 . 281449) - (-3052 . 281398) (-3053 . 281366) (-3054 . 281251) (-3055 . 280880) - (-3056 . 280564) (-3057 . 280491) (-3058 . 279918) (-3059 . 279685) - (-3060 . 279557) (-3061 . 279488) (-3062 . 279395) (-3063 . 279252) - (-3064 . 279142) (-3065 . 279074) (-3066 . 278875) (-3067 . 278530) - (-3068 . 278480) (-3069 . 278122) (-3070 . 277999) (-3071 . 277940) - (-3072 . 277820) (-3073 . 277766) (-3074 . 277678) (-3075 . 277435) - (-3076 . 277364) (-3077 . 277281) (-3078 . 276715) (-3079 . 276542) - (-3080 . 276227) (-3081 . 276072) (-3082 . 275756) (-3083 . 275592) - (-3084 . 275347) (-3085 . 275245) (-3086 . 275164) (-3087 . 275057) - (-3088 . 274950) (-3089 . 274384) (-3090 . 274277) (-3091 . 274162) - (-3092 . 274050) (-3093 . 273916) (-3094 . 273686) (-3095 . 273583) - (-3096 . 273051) (-3097 . 272953) (-3098 . 272367) (-3099 . 272230) - (-3100 . 272132) (-3101 . 271837) (-3102 . 271618) (-3103 . 271140) - (-3104 . 270993) (-3105 . 270927) (-3106 . 270812) (-3107 . 270526) - (-3108 . 270150) (-3109 . 270099) (-3110 . 270026) (-3111 . 269922) - (-3112 . 269208) (-3113 . 269078) (-3114 . 268905) (-3115 . 268554) - (-3116 . 268167) (-3117 . 267992) (-3118 . 267926) (-3119 . 267731) - (-3120 . 267614) (-3121 . 267528) (-3122 . 266937) (-3123 . 266860) - (-3124 . 266828) (-3125 . 266719) (-3126 . 266657) (-3127 . 266308) - (-3128 . 266049) (-3129 . 265839) (-3130 . 265765) (-3131 . 265650) - (-3132 . 265598) (-3133 . 264406) (-3134 . 264154) (-3135 . 264008) - (-3136 . 263829) (-3137 . 263759) (-3138 . 263283) (-3139 . 263064) - (-3140 . 263030) (-3141 . 262951) (-3142 . 262899) (-3143 . 262729) - (-3144 . 262631) (-3145 . 262518) (-3146 . 262407) (-3147 . 262330) - (-3148 . 262302) (-3149 . 262215) (-3150 . 262082) (-3151 . 261721) - (-3152 . 261526) (-3153 . 261080) (-3154 . 259868) (-3155 . 259235) - (-3156 . 258966) (-3157 . 258840) (-3158 . 258737) (-3159 . 258635) - (-3160 . 258556) (-3161 . 258399) (-3162 . 258333) (-3163 . 258076) - (-3164 . 257924) (-3165 . 257840) (-3166 . 257769) (-3167 . 257697) - (-3168 . 257568) (-3169 . 257180) (-3170 . 257115) (-3171 . 257008) - (-3172 . 256957) (-3173 . 256811) (-3174 . 256480) (-3175 . 256425) - (-3176 . 256021) (-3177 . 255894) (-3178 . 255793) (-3179 . 255403) - (-3180 . 255346) (-3181 . 255176) (-3182 . 255106) (-3183 . 254987) - (-3184 . 254726) (-3185 . 254663) (-3186 . 254557) (-3187 . 254458) - (-3188 . 254300) (-3189 . 254171) (-3190 . 253998) (-3191 . 253928) - (-3192 . 253829) (-3193 . 253590) (-3194 . 253480) (-3195 . 253252) - (-3196 . 253030) (-3197 . 252932) (-3198 . 252525) (-3199 . 252386) - (-3200 . 252282) (-3201 . 252092) (-3202 . 251648) (-3203 . 251505) - (-3204 . 251432) (-3205 . 251381) (-3206 . 251324) (-3207 . 250926) - (-3208 . 250894) (-3209 . 250787) (-3210 . 250653) (-3211 . 250569) - (-3212 . 250501) (-3213 . 249927) (-3214 . 249856) (-3215 . 249637) - (-3216 . 249451) (-3217 . 249354) (-3218 . 249261) (-3219 . 249120) - (-3220 . 248917) (-3221 . 248413) (-3222 . 248204) (-3223 . 248138) - (-3224 . 247915) (-3225 . 247766) (-3226 . 247476) (-3227 . 247339) - (-3228 . 247226) (-3229 . 247127) (-3230 . 247003) (-3231 . 246936) - (-3232 . 246837) (-3233 . 246684) (-3234 . 246611) (-3235 . 246559) - (-3236 . 246487) (-3237 . 246399) (-3238 . 246196) (-3239 . 245909) - (-3240 . 245854) (-3241 . 245753) (-3242 . 245679) (-3243 . 245612) - (-3244 . 245455) (-3245 . 245424) (-3246 . 244945) (-3247 . 244834) - (-3248 . 244656) (-3249 . 244537) (-3250 . 244369) (-3251 . 244143) - (-3252 . 243987) (-3253 . 243923) (-3254 . 243670) (-3255 . 243472) - (-3256 . 243386) (-3257 . 243035) (-3258 . 242877) (-3259 . 242825) - (-3260 . 242757) (-3261 . 242430) (-3262 . 242203) (-3263 . 242073) - (-3264 . 242020) (-3265 . 241704) (-3266 . 241534) (-3267 . 240999) - (-3268 . 240926) (-3269 . 240876) (-3270 . 240482) (-3271 . 240423) - (-3272 . 240335) (-3273 . 240199) (-3274 . 239880) (-3275 . 239537) - (-3276 . 238573) (-3277 . 238502) (-3278 . 238259) (-3279 . 237506) - (-3280 . 237434) (-3281 . 237294) (-3282 . 237193) (-3283 . 236945) - (-3284 . 236727) (-3285 . 236433) (-3286 . 236340) (-3287 . 236082) - (-3288 . 235691) (-3289 . 235484) (-3290 . 235244) (-3291 . 235143) - (-3292 . 235114) (-3293 . 235017) (-3294 . 234910) (-3295 . 234829) - (-3296 . 234337) (-3297 . 234236) (-3298 . 234148) (-3299 . 234024) - (-3300 . 233545) (-3301 . 233443) (-3302 . 233169) (-3303 . 233090) - (-3304 . 232932) (-3305 . 232808) (-3306 . 232421) (-3307 . 231418) - (-3308 . 231200) (-3309 . 231148) (-3310 . 230933) (-3311 . 230856) - (-3312 . 230806) (-3313 . 230223) (-3314 . 230172) (-3315 . 229992) - (-3316 . 229891) (-3317 . 229761) (-3318 . 229508) (-3319 . 229317) - (-3320 . 229234) (-3321 . 225236) (-3322 . 224981) (-3323 . 224604) - (-3324 . 224531) (-3325 . 224460) (-3326 . 224305) (-3327 . 223946) - (-3328 . 223802) (-3329 . 223301) (-3330 . 223143) (-3331 . 222715) - (-3332 . 222565) (-3333 . 222413) (-3334 . 222214) (-3335 . 222069) - (-3336 . 222013) (-3337 . 221958) (-3338 . 221888) (-3339 . 221293) - (-3340 . 220680) (-3341 . 220557) (-3342 . 220454) (-3343 . 220360) - (-3344 . 220251) (-3345 . 220080) (-3346 . 219982) (-3347 . 219769) - (-3348 . 218993) (-3349 . 218872) (-3350 . 218790) (-3351 . 218363) - (-3352 . 218262) (-3353 . 218183) (-3354 . 218104) (-3355 . 217497) - (-3356 . 217390) (-3357 . 217041) (-3358 . 216779) (-3359 . 216636) - (-3360 . 216465) (-3361 . 216307) (-3362 . 216242) (-3363 . 216084) - (-3364 . 216022) (-3365 . 215929) (-3366 . 214073) (-3367 . 214003) - (-3368 . 213713) (-3369 . 213508) (-3370 . 213409) (-3371 . 212884) - (-3372 . 212786) (-3373 . 212659) (-3374 . 212606) (-3375 . 212553) - (-3376 . 212470) (-3377 . 212382) (-3378 . 212241) (-3379 . 211698) - (-3380 . 211610) (-3381 . 211558) (-3382 . 211428) (-3383 . 210468) - (-3384 . 210387) (-3385 . 209961) (-3386 . 209873) (-3387 . 209801) - (-3388 . 209749) (-3389 . 209527) (-3390 . 209475) (-3391 . 209153) - (-3392 . 209087) (-3393 . 208909) (-3394 . 208558) (-3395 . 208370) - (-3396 . 208127) (-3397 . 208009) (-3398 . 207923) (-3399 . 207646) - (-3400 . 207535) (-3401 . 207327) (-3402 . 206329) (-3403 . 205755) - (-3404 . 205388) (-3405 . 205225) (-3406 . 204923) (-3407 . 204870) - (-3408 . 204799) (-3409 . 204672) (-3410 . 204488) (-3411 . 203600) - (-3412 . 203441) (-3413 . 203009) (-3414 . 202907) (-3415 . 202812) - (-3416 . 202451) (-3417 . 202336) (-3418 . 202062) (-3419 . 201992) - (-3420 . 201895) (-3421 . 201794) (-3422 . 201709) (-3423 . 201641) - (-3424 . 201542) (-3425 . 201338) (-3426 . 201283) (-3427 . 201174) - (-3428 . 201137) (-3429 . 200912) (-3430 . 200714) (-3431 . 199418) - (-3432 . 199288) (-3433 . 199205) (-3434 . 198917) (-3435 . 198814) - (-3436 . 198786) (-3437 . 198668) (-3438 . 198539) (-3439 . 198511) - (-3440 . 198445) (-3441 . 198361) (-3442 . 198291) (-3443 . 198229) - (-3444 . 198091) (-3445 . 198060) (-3446 . 198005) (-3447 . 197887) - (-3448 . 197769) (-3449 . 197068) (-3450 . 196994) (-3451 . 196434) - (-3452 . 196377) (-3453 . 196207) (-3454 . 196105) (-3455 . 195999) - (-3456 . 195850) (-3457 . 195790) (-3458 . 195660) (-3459 . 195461) - (-3460 . 195366) (-3461 . 195271) (-3462 . 195239) (-3463 . 195012) - (-3464 . 194686) (-3465 . 194223) (-3466 . 193853) (-3467 . 193801) - (-3468 . 193741) (-3469 . 193274) (-3470 . 193143) (-3471 . 192916) - (-3472 . 192321) (-3473 . 192089) (-3474 . 192061) (-3475 . 191965) - (-3476 . 191538) (-3477 . 191434) (-3478 . 191360) (-3479 . 191114) - (-3480 . 191042) (-3481 . 190855) (-3482 . 190767) (-3483 . 188989) - (-3484 . 188276) (-3485 . 188118) (-3486 . 188090) (-3487 . 187983) - (-3488 . 187567) (-3489 . 187501) (-3490 . 187370) (-3491 . 187113) - (-3492 . 187006) (-3493 . 186866) (-3494 . 186803) (-3495 . 186421) - (-3496 . 186338) (-3497 . 186216) (-3498 . 186152) (-3499 . 186060) - (-3500 . 186007) (-3501 . 185841) (-3502 . 185568) (-3503 . 185383) - (-3504 . 185261) (-3505 . 185129) (-3506 . 185017) (-3507 . 184878) - (-3508 . 184801) (-3509 . 184677) (-3510 . 184618) (-3511 . 184372) - (-3512 . 184299) (-3513 . 184240) (-3514 . 183826) (-3515 . 183745) - (-3516 . 169631) (-3517 . 169515) (-3518 . 169401) (-3519 . 168827) - (-3520 . 168730) (-3521 . 168478) (-3522 . 168199) (-3523 . 167861) - (-3524 . 167639) (-3525 . 167579) (-3526 . 167477) (-3527 . 167443) - (-3528 . 167231) (-3529 . 167005) (-3530 . 166881) (-3531 . 166508) - (-3532 . 166411) (-3533 . 166362) (-3534 . 166281) (-3535 . 166168) - (-3536 . 166107) (-3537 . 166073) (-3538 . 165969) (-3539 . 165816) - (-3540 . 164900) (-3541 . 164704) (-3542 . 164480) (-3543 . 164408) - (-3544 . 164116) (-3545 . 163992) (-3546 . 163926) (-3547 . 163829) - (-3548 . 163779) (-3549 . 163716) (-3550 . 163645) (-3551 . 163242) - (-3552 . 161940) (-3553 . 161875) (-3554 . 161569) (-3555 . 161541) - (-3556 . 161507) (-3557 . 161221) (-3558 . 161138) (-3559 . 160982) - (-3560 . 160736) (-3561 . 160400) (-3562 . 155673) (-3563 . 155529) - (-3564 . 155450) (-3565 . 155287) (-3566 . 155231) (-3567 . 153117) - (-3568 . 153043) (-3569 . 152885) (-3570 . 152727) (-3571 . 152583) - (-3572 . 152337) (-3573 . 152236) (-3574 . 152129) (-3575 . 151968) - (-3576 . 151875) (-3577 . 151807) (-3578 . 151741) (-3579 . 151502) - (-3580 . 151313) (-3581 . 151252) (-3582 . 151119) (-3583 . 150857) - (-3584 . 150708) (-3585 . 150521) (-3586 . 150347) (-3587 . 150051) - (-3588 . 149969) (-3589 . 149848) (-3590 . 149402) (-3591 . 149340) - (-3592 . 149268) (-3593 . 148594) (-3594 . 148486) (-3595 . 147997) - (-3596 . 147890) (-3597 . 147838) (-3598 . 147615) (-3599 . 147373) - (-3600 . 147235) (-3601 . 147183) (-3602 . 147093) (-3603 . 146799) - (-3604 . 146691) (-3605 . 146603) (-3606 . 146336) (-3607 . 146243) - (-3608 . 146085) (-3609 . 145779) (-3610 . 145672) (-3611 . 145598) - (-3612 . 145455) (-3613 . 145384) (-3614 . 145238) (-3615 . 144809) - (-3616 . 144608) (-3617 . 144479) (-3618 . 144340) (-3619 . 144242) - (-3620 . 144093) (-3621 . 144015) (-3622 . 143965) (-3623 . 143543) - (-3624 . 143470) (-3625 . 143232) (-3626 . 142872) (-3627 . 142496) - (-3628 . 142273) (-3629 . 142061) (-3630 . 141990) (-3631 . 141837) - (-3632 . 141760) (-3633 . 141723) (-3634 . 141608) (-3635 . 141368) - (-3636 . 141309) (-3637 . 141094) (-3638 . 140985) (-3639 . 140807) - (-3640 . 140702) (-3641 . 140592) (-3642 . 140490) (-3643 . 140330) - (-3644 . 140113) (-3645 . 139983) (-3646 . 139535) (-3647 . 139362) - (-3648 . 139204) (-3649 . 138862) (-3650 . 138755) (-3651 . 138692) - (-3652 . 138632) (-3653 . 138338) (-3654 . 137580) (-3655 . 137484) - (-3656 . 137326) (-3657 . 137014) (-3658 . 136962) (-3659 . 136891) - (-3660 . 136835) (-3661 . 136740) (-3662 . 136624) (-3663 . 136572) - (-3664 . 136501) (-3665 . 136448) (-3666 . 135002) (-3667 . 134904) - (-3668 . 134830) (-3669 . 134778) (-3670 . 134665) (-3671 . 134583) - (-3672 . 134442) (-3673 . 134261) (-3674 . 134163) (-3675 . 134030) - (-3676 . 133946) (-3677 . 133286) (-3678 . 133203) (-3679 . 133135) - (-3680 . 133014) (-3681 . 132946) (-3682 . 132881) (-3683 . 132793) - (-3684 . 132621) (-3685 . 132496) (-3686 . 132423) (-3687 . 132370) - (-3688 . 132284) (-3689 . 132207) (-3690 . 132130) (-3691 . 131849) - (-3692 . 131737) (-3693 . 131540) (-3694 . 131480) (-3695 . 131392) - (-3696 . 131262) (-3697 . 130941) (-3698 . 130909) (-3699 . 130751) - (-3700 . 130627) (-3701 . 130240) (-3702 . 130130) (-3703 . 130033) - (-3704 . 129929) (-3705 . 129791) (-3706 . 129705) (-3707 . 129635) - (-3708 . 129545) (-3709 . 129314) (-3710 . 129176) (-3711 . 128840) - (-3712 . 128730) (-3713 . 128649) (-3714 . 128547) (-3715 . 128461) - (-3716 . 128319) (-3717 . 128051) (-3718 . 127921) (-3719 . 127834) - (-3720 . 127635) (-3721 . 127579) (-3722 . 127270) (-3723 . 127169) - (-3724 . 127002) (-3725 . 126899) (-3726 . 126804) (-3727 . 126713) - (-3728 . 126555) (-3729 . 126460) (-3730 . 126380) (-3731 . 126327) - (-3732 . 126076) (-3733 . 125893) (-3734 . 125739) (-3735 . 124818) - (-3736 . 124735) (-3737 . 124605) (-3738 . 124432) (-3739 . 124251) - (-3740 . 124196) (-3741 . 124143) (-3742 . 123889) (-3743 . 123609) - (-3744 . 123429) (-3745 . 123209) (-3746 . 122758) (-3747 . 122670) - (-3748 . 122604) (-3749 . 121700) (-3750 . 121666) (-3751 . 121584) - (-3752 . 121529) (-3753 . 121458) (-3754 . 121391) (-3755 . 121115) - (-3756 . 121036) (-3757 . 120764) (-3758 . 120457) (-3759 . 119919) - (-3760 . 119866) (-3761 . 119702) (-3762 . 119601) (-3763 . 119419) - (-3764 . 119287) (-3765 . 119180) (-3766 . 118966) (-3767 . 118867) - (-3768 . 118800) (-3769 . 118714) (-3770 . 118607) (-3771 . 118444) - (-3772 . 118281) (-3773 . 118068) (-3774 . 117961) (-3775 . 117792) - (-3776 . 117636) (-3777 . 117395) (-3778 . 117340) (-3779 . 117235) - (-3780 . 117116) (-3781 . 117035) (-3782 . 116930) (-3783 . 116776) - (-3784 . 116727) (-3785 . 116647) (-3786 . 116343) (-3787 . 116031) - (-3788 . 115753) (-3789 . 115605) (-3790 . 115391) (-3791 . 115173) - (-3792 . 115099) (-3793 . 114830) (-3794 . 114599) (-3795 . 114540) - (-3796 . 114440) (-3797 . 114360) (-3798 . 114236) (-3799 . 114183) - (-3800 . 114086) (-3801 . 113908) (-3802 . 113547) (-3803 . 113452) - (-3804 . 113121) (-3805 . 112777) (-3806 . 112632) (-3807 . 112552) - (-3808 . 112378) (-3809 . 111874) (-3810 . 111709) (-3811 . 111641) - (-3812 . 111478) (-3813 . 111377) (-3814 . 111066) (-3815 . 109991) - (-3816 . 109917) (-3817 . 109794) (-3818 . 109636) (-3819 . 109558) - (-3820 . 109388) (-3821 . 109318) (-3822 . 108965) (-3823 . 108845) - (-3824 . 108792) (-3825 . 108712) (-3826 . 108589) (-3827 . 108408) - (-3828 . 108338) (-3829 . 107817) (-3830 . 107651) (-3831 . 107574) - (-3832 . 107419) (-3833 . 107314) (-3834 . 107237) (-3835 . 106364) - (-3836 . 106315) (-3837 . 106263) (-3838 . 106157) (-3839 . 106105) - (-3840 . 105989) (-3841 . 105656) (-3842 . 105554) (-3843 . 105232) - (-3844 . 105089) (-3845 . 104982) (-3846 . 104925) (-3847 . 104678) - (-3848 . 104561) (-3849 . 104478) (-3850 . 103951) (-3851 . 103878) - (-3852 . 103719) (-3853 . 103589) (-3854 . 103403) (-3855 . 103331) - (-3856 . 103235) (-3857 . 103148) (-3858 . 102902) (-3859 . 102847) - (-3860 . 102795) (-3861 . 102722) (-3862 . 102437) (-3863 . 102358) - (-3864 . 102144) (-3865 . 102020) (-3866 . 101992) (-3867 . 101858) - (-3868 . 101738) (-3869 . 101593) (-3870 . 101489) (-3871 . 101455) - (-3872 . 101405) (-3873 . 101220) (-3874 . 101042) (-3875 . 100954) - (-3876 . 100863) (-3877 . 100585) (-3878 . 100532) (-3879 . 100504) - (-3880 . 100408) (-3881 . 100217) (** . 97128) (-3883 . 97076) - (-3884 . 96824) (-3885 . 96795) (-3886 . 96597) (-3887 . 96375) - (-3888 . 96256) (-3889 . 96204) (-3890 . 96071) (-3891 . 95999) - (-3892 . 95901) (-3893 . 95527) (-3894 . 95475) (-3895 . 95418) - (-3896 . 95346) (-3897 . 94350) (-3898 . 94276) (-3899 . 94117) - (-3900 . 94015) (-3901 . 93896) (-3902 . 93818) (-3903 . 93674) - (-3904 . 93470) (-3905 . 93330) (-3906 . 93221) (-3907 . 93065) - (-3908 . 92909) (-3909 . 92737) (-3910 . 92651) (-3911 . 92523) - (-3912 . 92031) (-3913 . 91898) (-3914 . 91671) (-3915 . 91570) - (-3916 . 91161) (-3917 . 90965) (-3918 . 90882) (-3919 . 90854) - (-3920 . 90552) (-3921 . 90325) (-3922 . 90031) (-3923 . 89893) - (-3924 . 89780) (-3925 . 89608) (-3926 . 89544) (-3927 . 89471) - (-3928 . 89400) (-3929 . 89310) (-3930 . 89025) (-3931 . 88921) - (-3932 . 88376) (-3933 . 88299) (-3934 . 88006) (-3935 . 87665) - (-3936 . 87526) (-3937 . 87427) (-3938 . 86359) (-3939 . 86288) - (-3940 . 86222) (-3941 . 85837) (-3942 . 85636) (-3943 . 85386) - (-3944 . 85139) (-3945 . 84864) (-3946 . 84790) (-3947 . 84650) - (-3948 . 84504) (-3949 . 84117) (-3950 . 84064) (-3951 . 83922) - (-3952 . 83832) (-3953 . 83716) (-3954 . 81301) (-3955 . 81224) - (-3956 . 81115) (-3957 . 81056) (-3958 . 80781) (-3959 . 80027) - (-3960 . 79975) (-3961 . 79795) (-3962 . 79742) (-3963 . 79307) - (-3964 . 79213) (-3965 . 79097) (-3966 . 78960) (-3967 . 78863) - (-3968 . 78813) (-3969 . 78375) (-3970 . 78290) (-3971 . 78029) - (-3972 . 77962) (-3973 . 77910) (-3974 . 77509) (-3975 . 76626) - (-3976 . 76506) (-3977 . 76089) (-3978 . 76010) (-3979 . 75922) - (-3980 . 75869) (-3981 . 75351) (-3982 . 75161) (-3983 . 75109) - (-3984 . 74780) (-3985 . 74728) (-3986 . 74670) (-3987 . 74642) - (-3988 . 74458) (-3989 . 74253) (-3990 . 74173) (-3991 . 74099) - (-3992 . 74033) (-3993 . 72605) (-3994 . 72526) (-3995 . 71667) - (-3996 . 71386) (-3997 . 71077) (-3998 . 70923) (-3999 . 70843) - (-4000 . 70784) (-4001 . 70607) (-4002 . 70537) (-4003 . 70463) - (-4004 . 68886) (-4005 . 68813) (-4006 . 68495) (-4007 . 67838) - (-4008 . 67729) (-4009 . 67576) (-4010 . 67417) (-4011 . 67245) - (-4012 . 67127) (-4013 . 66700) (-4014 . 66253) (-4015 . 66149) - (-4016 . 66090) (-4017 . 65986) (-4018 . 65871) (-4019 . 65680) - (-4020 . 65646) (-4021 . 65560) (-4022 . 65430) (-4023 . 65258) - (-4024 . 65020) (-4025 . 64964) (-4026 . 64765) (-4027 . 64687) - (-4028 . 64613) (-4029 . 64543) (-4030 . 64491) (-4031 . 64422) - (-4032 . 64319) (-4033 . 64201) (-4034 . 63793) (-4035 . 63184) - (-4036 . 62820) (-4037 . 62648) (-4038 . 62536) (-4039 . 57994) - (-4040 . 57878) (-4041 . 57747) (-4042 . 57694) (-4043 . 57615) - (-4044 . 57392) (-4045 . 57258) (-4046 . 57062) (-4047 . 57000) - (-4048 . 56828) (-4049 . 56649) (-4050 . 56593) (-4051 . 56522) - (-4052 . 56396) (-4053 . 56344) (-4054 . 56229) (-4055 . 56048) - (-4056 . 55989) (-4057 . 55930) (-4058 . 55878) (-4059 . 55777) - (-4060 . 55689) (-4061 . 55524) (-4062 . 55411) (-4063 . 55380) - (-4064 . 55133) (-4065 . 55006) (-4066 . 54956) (-4067 . 54475) - (-4068 . 54350) (-4069 . 54170) (-4070 . 54011) (-4071 . 53887) - (-4072 . 53506) (-4073 . 53382) (-4074 . 53046) (-4075 . 52932) - (-4076 . 52779) (-4077 . 52625) (-4078 . 51363) (-4079 . 51098) - (-4080 . 50755) (-4081 . 50638) (-4082 . 50556) (-4083 . 50310) - (-4084 . 49981) (-4085 . 49844) (-4086 . 49557) (-4087 . 49453) - (-4088 . 49233) (-4089 . 49094) (-4090 . 48868) (-4091 . 48348) - (-4092 . 48191) (-4093 . 47911) (-4094 . 47787) (-4095 . 47671) - (-4096 . 47583) (-4097 . 47419) (-4098 . 47367) (-4099 . 47333) - (-4100 . 47280) (-4101 . 47214) (-4102 . 47005) (-4103 . 46583) - (-4104 . 46162) (-4105 . 46058) (-4106 . 46006) (-4107 . 45954) - (-4108 . 45868) (-4109 . 45772) (-4110 . 45704) (-4111 . 45651) - (-4112 . 45544) (-4113 . 45421) (-4114 . 45079) (-4115 . 44985) - (-4116 . 44758) (-4117 . 44727) (-4118 . 44629) (-4119 . 44327) - (-4120 . 43841) (-4121 . 43789) (-4122 . 43646) (-4123 . 43558) - (-4124 . 43421) (-4125 . 43369) (-4126 . 43263) (-4127 . 43018) - (-4128 . 42885) (-4129 . 42801) (-4130 . 42740) (-4131 . 42685) - (-4132 . 42605) (-4133 . 42549) (-4134 . 42397) (-4135 . 41159) - (-4136 . 41115) (-4137 . 41002) (-4138 . 40916) (-4139 . 40541) - (-4140 . 40420) (-4141 . 40337) (-4142 . 40196) (-4143 . 40064) - (-4144 . 39992) (-4145 . 39940) (-4146 . 39888) (-4147 . 39667) - (-4148 . 38580) (-4149 . 38523) (-4150 . 38357) (-4151 . 38182) - (-4152 . 38119) (-4153 . 37792) (-4154 . 36542) (-4155 . 36485) - (-4156 . 36400) (-4157 . 35587) (-4158 . 34930) (-4159 . 34790) - (-4160 . 34610) (-4161 . 34532) (-4162 . 34478) (-4163 . 34287) - (-4164 . 32557) (-4165 . 32501) (-4166 . 32419) (-4167 . 32291) - (-4168 . 31093) (-4169 . 31038) (-4170 . 30897) (-4171 . 30802) - (-4172 . 30697) (-4173 . 30553) (-4174 . 30480) (-4175 . 30329) - (-4176 . 29896) (-4177 . 29551) (-4178 . 29455) (-4179 . 29293) - (-4180 . 29240) (-4181 . 29157) (-4182 . 28979) (-4183 . 28817) - (-4184 . 28750) (-4185 . 28662) (-4186 . 28585) (-4187 . 28298) - (-4188 . 28164) (-4189 . 28084) (-4190 . 28014) (-4191 . 27945) - (-4192 . 27843) (-4193 . 27675) (-4194 . 27252) (-4195 . 26962) - (-4196 . 26843) (-4197 . 26790) (-4198 . 26647) (-4199 . 26462) - (-4200 . 26244) (-4201 . 26191) (-4202 . 26000) (-4203 . 25927) - (-4204 . 25858) (-4205 . 25483) (-4206 . 25147) (-4207 . 24961) - (-4208 . 22698) (-4209 . 22515) (-4210 . 22434) (-4211 . 22195) - (-4212 . 22124) (-4213 . 21917) (-4214 . 21843) (-4215 . 21700) - (-4216 . 21617) (-4217 . 21017) (-4218 . 20571) (-4219 . 20163) - (-4220 . 19864) (-4221 . 19809) (-4222 . 19615) (-4223 . 19545) - (-4224 . 19490) (-4225 . 19383) (-4226 . 19261) (-4227 . 19157) - (-4228 . 19105) (-4229 . 18456) (-4230 . 18315) (-4231 . 18262) - (-4232 . 18207) (-4233 . 17816) (-4234 . 17760) (-4235 . 17637) - (-4236 . 17461) (-4237 . 17333) (-4238 . 17155) (-4239 . 17103) - (-4240 . 17051) (-4241 . 16952) (-4242 . 16702) (-4243 . 16487) - (-4244 . 16416) (-4245 . 16035) (-4246 . 15938) (-4247 . 15841) - (-4248 . 15755) (-4249 . 15578) (-4250 . 15212) (-4251 . 14380) - (-4252 . 14249) (-4253 . 14180) (-4254 . 14128) (-4255 . 14034) - (-4256 . 13931) (-4257 . 13712) (-4258 . 13539) (-4259 . 13386) - (-4260 . 13276) (-4261 . 13182) (-4262 . 12783) (-4263 . 12731) - (-4264 . 12682) (-4265 . 12584) (-4266 . 12409) (-4267 . 12250) - (-4268 . 12191) (-4269 . 12031) (-4270 . 11936) (-4271 . 11788) - (-4272 . 11736) (-4273 . 11325) (-4274 . 11218) (-4275 . 11039) - (-4276 . 10931) (-4277 . 10903) (-4278 . 10779) (-4279 . 10719) - (-4280 . 10469) (-4281 . 10395) (-4282 . 10321) (-4283 . 10210) - (-4284 . 10007) (-4285 . 9897) (-4286 . 9724) (-4287 . 9520) - (-4288 . 9209) (-4289 . 9018) (-4290 . 8957) (-4291 . 8203) - (-4292 . 8087) (-4293 . 7989) (-4294 . 7905) (-4295 . 7750) - (-4296 . 7631) (-4297 . 7594) (-4298 . 7163) (-4299 . 6992) - (-4300 . 6919) (-4301 . 6781) (-4302 . 6643) (-4303 . 6572) - (-4304 . 6354) (-4305 . 6167) (-4306 . 6101) (-4307 . 6013) - (-4308 . 5933) (-4309 . 5905) (-4310 . 5839) (-4311 . 5705) - (-4312 . 5652) (-4313 . 5539) (-4314 . 5390) (-4315 . 5309) - (-4316 . 5161) (-4317 . 5119) (-4318 . 4666) (-4319 . 4616) - (-4320 . 4588) (-4321 . 4263) (-4322 . 4168) (-4323 . 4056) - (-4324 . 4001) (-4325 . 3609) (-4326 . 3557) (-4327 . 3441) - (-4328 . 3092) (-4329 . 3006) (-4330 . 2920) (-4331 . 2861) - (-4332 . 2833) (-4333 . 2700) (-4334 . 2587) (-4335 . 2256) - (-4336 . 2135) (-4337 . 1989) (-4338 . 1880) (-4339 . 1773) - (-4340 . 1634) (-4341 . 1420) (-4342 . 821) (-4343 . 772) - (-4344 . 283) (-4345 . 203) (-4346 . 30))
\ No newline at end of file + (-12 (-14 *3 (-629 (-1154))) (-4 *4 (-169)) + (-14 *6 + (-1 (-111) (-2 (|:| -2840 *5) (|:| -1406 *2)) + (-2 (|:| -2840 *5) (|:| -1406 *2)))) + (-4 *2 (-233 (-2657 *3) (-756))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-832)) (-4 *7 (-930 *4 *2 (-846 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1030)) + (-5 *2 (-2 (|:| -3713 *1) (|:| -4186 *1))) (-4 *1 (-834 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1030)) + (-5 *2 (-2 (|:| -3713 *3) (|:| -4186 *3))) (-5 *1 (-835 *5 *3)) + (-4 *3 (-834 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1030)) (-5 *2 (-756))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1154)) (-4 *4 (-445)) (-4 *4 (-832)) + (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1164 (-902) (-756)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-111))))) +((-1270 . 739354) (-1271 . 739270) (-1272 . 739140) (-1273 . 739068) + (-1274 . 738782) (-1275 . 738498) (-1276 . 738399) (-1277 . 738336) + (-1278 . 738265) (-1279 . 738187) (-1280 . 737956) (-1281 . 737798) + (-1282 . 737714) (-1283 . 737541) (-1284 . 737319) (-1285 . 737266) + (-1286 . 736700) (-1287 . 736645) (-1288 . 736613) (-1289 . 736472) + (-1290 . 736346) (-1291 . 736290) (-1292 . 736167) (-1293 . 734951) + (-1294 . 734770) (-1295 . 734629) (-1296 . 734198) (-1297 . 734146) + (-1298 . 734117) (-1299 . 734080) (-1300 . 733514) (-1301 . 733462) + (-1302 . 733296) (-1303 . 733162) (-1304 . 733105) (-1305 . 733050) + (-1306 . 732805) (-1307 . 732711) (-1308 . 732567) (-1309 . 732369) + (-1310 . 732188) (-1311 . 732011) (-1312 . 731694) (-1313 . 731641) + (-1314 . 731533) (-1315 . 731397) (-1316 . 731027) (-1317 . 730897) + (-1318 . 730711) (-1319 . 730652) (-1320 . 730499) (-1321 . 730245) + (-1322 . 730085) (-1323 . 729995) (-1324 . 729912) (-1325 . 729843) + (-1326 . 729784) (-1327 . 729653) (-1328 . 729585) (-1329 . 729482) + (-1330 . 729202) (-1331 . 729044) (-1332 . 728394) (-1333 . 728106) + (-1334 . 728054) (-1335 . 727956) (-1336 . 727841) (-1337 . 727656) + (-1338 . 727408) (-1339 . 727304) (-1340 . 727084) (-1341 . 726718) + (-1342 . 726651) (-1343 . 726548) (-1344 . 726252) (-1345 . 726140) + (-1346 . 726039) (-1347 . 725877) (-1348 . 725426) (-1349 . 725286) + (-1350 . 725091) (-1351 . 725063) (-1352 . 724991) (-1353 . 724699) + (-1354 . 724611) (-1355 . 724352) (-1356 . 724260) (-1357 . 724187) + (-1358 . 724099) (-1359 . 724047) (-1360 . 723918) (-1361 . 723863) + (-1362 . 723631) (-1363 . 723466) (-1364 . 723410) (-1365 . 723333) + (-1366 . 723267) (-1367 . 723160) (-1368 . 723132) (-1369 . 723023) + (-1370 . 722910) (-1371 . 722664) (-1372 . 722580) (-1373 . 722265) + (-1374 . 721361) (-1375 . 720875) (-1376 . 720280) (-1377 . 720214) + (-1378 . 720161) (-1379 . 719914) (-1380 . 719820) (-1381 . 719335) + (-1382 . 719301) (-1383 . 719172) (-1384 . 719088) (-1385 . 719009) + (-1386 . 718717) (-1387 . 718590) (-1388 . 718538) (-1389 . 718046) + (-1390 . 717964) (-1391 . 717753) (-1392 . 717572) (-1393 . 713030) + (-1394 . 712960) (-1395 . 712474) (-1396 . 712243) (-1397 . 712123) + (-1398 . 712073) (-1399 . 712014) (-1400 . 711576) (-1401 . 711521) + (-1402 . 711469) (-1403 . 711417) (-1404 . 711362) (-1405 . 711224) + (-1406 . 710743) (-1407 . 710621) (-1408 . 710492) (-1409 . 710421) + (-1410 . 710227) (-1411 . 710172) (-1412 . 710004) (-1413 . 709879) + (-1414 . 709000) (-1415 . 708896) (-1416 . 708817) (-1417 . 708722) + (-1418 . 708560) (-1419 . 708442) (-1420 . 708365) (-1421 . 708269) + (-1422 . 708165) (-1423 . 707985) (-1424 . 707878) (-1425 . 707792) + (-1426 . 707520) (-1427 . 707417) (-1428 . 707349) (-1429 . 706997) + (-1430 . 706797) (-1431 . 706609) (-1432 . 705908) (-1433 . 705749) + (-1434 . 705645) (-1435 . 705527) (-1436 . 705404) (-1437 . 705097) + (-1438 . 704875) (-1439 . 704746) (-1440 . 704633) (-1441 . 704536) + (-1442 . 704450) (-1443 . 704371) (-1444 . 704247) (-1445 . 704057) + (-1446 . 703519) (-1447 . 703465) (-1448 . 703399) (-1449 . 703349) + (-1450 . 702845) (-1451 . 702714) (-1452 . 702576) (-1453 . 702461) + (-1454 . 702080) (-1455 . 702014) (-1456 . 701493) (-1457 . 701290) + (-1458 . 701237) (-1459 . 701053) (-1460 . 700980) (-1461 . 700397) + (-1462 . 700344) (-1463 . 700153) (-1464 . 700029) (-1465 . 699922) + (-1466 . 699866) (-1467 . 699771) (-1468 . 699607) (-1469 . 699533) + (-1470 . 698230) (-1471 . 698050) (-1472 . 697833) (-1473 . 697497) + (-1474 . 696633) (-1475 . 696428) (-1476 . 696315) (-1477 . 682201) + (-1478 . 682100) (-1479 . 681791) (-1480 . 681738) (-1481 . 681624) + (-1482 . 681571) (-1483 . 681393) (-1484 . 681292) (-1485 . 680803) + (-1486 . 680221) (-1487 . 679894) (-1488 . 679764) (-1489 . 679643) + (-1490 . 679497) (-1491 . 679344) (-1492 . 679256) (-1493 . 679090) + (-1494 . 678985) (-1495 . 678732) (-1496 . 678655) (-1497 . 678536) + (-1498 . 678465) (-1499 . 678311) (-1500 . 678256) (-1501 . 677895) + (-1502 . 677821) (-1503 . 677711) (-1504 . 677626) (-1505 . 677542) + (-1506 . 677445) (-1507 . 677254) (-1508 . 677180) (-1509 . 677014) + (-1510 . 676919) (-1511 . 676817) (-1512 . 674959) (-1513 . 674908) + (-1514 . 674825) (-1515 . 674614) (-1516 . 674474) (-1517 . 674417) + (-1518 . 674209) (-1519 . 674049) (-1520 . 673842) (-1521 . 673691) + (-1522 . 668910) (-1523 . 668792) (-1524 . 668537) (-1525 . 668391) + (-1526 . 668135) (-1527 . 667946) (-1528 . 667729) (-1529 . 667576) + (-1530 . 667548) (-1531 . 667455) (-1532 . 667078) (-1533 . 666950) + (-1534 . 666898) (-1535 . 666511) (-1536 . 666445) (-1537 . 666315) + (-1538 . 666202) (-1539 . 665811) (-1540 . 665674) (-1541 . 665601) + (-1542 . 664784) (-1543 . 664731) (-1544 . 664548) (-1545 . 664100) + (-1546 . 663991) (-1547 . 663816) (-1548 . 663597) (-1549 . 663171) + (-1550 . 663080) (-1551 . 662925) (-1552 . 662783) (-1553 . 662441) + (-1554 . 662323) (-1555 . 661964) (-1556 . 661791) (-1557 . 661732) + (-1558 . 661623) (-1559 . 661545) (-1560 . 661186) (-1561 . 660927) + (-1562 . 660837) (-1563 . 660770) (-1564 . 660656) (-1565 . 660498) + (-1566 . 660338) (-1567 . 659958) (-1568 . 659834) (-1569 . 659690) + (-1570 . 659558) (-1571 . 659442) (-1572 . 659317) (-1573 . 658975) + (-1574 . 658642) (-1575 . 658547) (-1576 . 658449) (-1577 . 658247) + (-1578 . 657746) (-1579 . 657675) (-1580 . 655260) (-1581 . 655113) + (-1582 . 655006) (-1583 . 654612) (-1584 . 654464) (-1585 . 654204) + (-1586 . 654134) (-1587 . 653976) (-1588 . 653770) (-1589 . 653693) + (-1590 . 653501) (-1591 . 653415) (-1592 . 653352) (-1593 . 653300) + (-1594 . 652955) (-1595 . 652527) (-1596 . 652455) (-1597 . 652273) + (-1598 . 652164) (-1599 . 652061) (-1600 . 652001) (-1601 . 651898) + (-1602 . 651487) (-1603 . 651238) (-1604 . 651170) (-1605 . 651096) + (-1606 . 650946) (-1607 . 650713) (-1608 . 650654) (-1609 . 650572) + (-1610 . 650538) (-1611 . 650244) (-1612 . 650137) (-1613 . 649865) + (-1614 . 649766) (-1615 . 649666) (-1616 . 649514) (-1617 . 649354) + (-1618 . 649079) (-1619 . 648987) (-1620 . 648229) (-1621 . 648135) + (-1622 . 647955) (-1623 . 647903) (-1624 . 647704) (-1625 . 646961) + (-1626 . 646748) (-1627 . 645994) (-1628 . 645908) (-1629 . 645812) + (-1630 . 645388) (-1631 . 645280) (-1632 . 645049) (-1633 . 644993) + (-1634 . 644940) (-1635 . 644888) (-1636 . 644808) (-1637 . 644664) + (-1638 . 644557) (-1639 . 644504) (-1640 . 644346) (-1641 . 644112) + (-1642 . 644084) (-1643 . 644012) (-1644 . 643925) (-1645 . 643870) + (-1646 . 643801) (-1647 . 643237) (-1648 . 643130) (-1649 . 642950) + (-1650 . 642849) (-1651 . 642508) (-1652 . 642437) (-1653 . 642125) + (-1654 . 642001) (-1655 . 641842) (-1656 . 641789) (-1657 . 641712) + (-1658 . 641642) (-1659 . 641106) (-1660 . 641053) (-1661 . 640898) + (-1662 . 640799) (-1663 . 640725) (-1664 . 640673) (-1665 . 640423) + (-1666 . 640336) (-1667 . 640236) (-1668 . 639208) (-1669 . 638613) + (-1670 . 638178) (-1671 . 638060) (-1672 . 637972) (-1673 . 637901) + (-1674 . 637830) (-1675 . 637756) (-1676 . 637662) (-1677 . 637273) + (-1678 . 637026) (-1679 . 636903) (-1680 . 636585) (-1681 . 636507) + (-1682 . 636380) (-1683 . 636192) (-1684 . 636136) (-1685 . 635976) + (-1686 . 635902) (-1687 . 635835) (-1688 . 635741) (-1689 . 635677) + (-1690 . 635540) (-1691 . 635485) (-1692 . 635416) (-1693 . 634778) + (-1694 . 634586) (-1695 . 634491) (-1696 . 634099) (-1697 . 633896) + (-1698 . 632710) (-1699 . 632180) (-1700 . 631850) (-1701 . 631741) + (-1702 . 631461) (-1703 . 631364) (-1704 . 630876) (-1705 . 630741) + (-1706 . 630625) (-1707 . 630515) (-1708 . 630400) (-1709 . 629218) + (-1710 . 629116) (-1711 . 629063) (-1712 . 629011) (-1713 . 628840) + (-1714 . 628744) (-1715 . 628694) (-1716 . 628501) (-1717 . 628443) + (-1718 . 628391) (-1719 . 628218) (-1720 . 626012) (-1721 . 625309) + (-1722 . 625235) (-1723 . 625137) (-1724 . 625070) (-1725 . 624632) + (-1726 . 621705) (-1727 . 621429) (-1728 . 621299) (-1729 . 621228) + (-1730 . 621014) (-1731 . 620810) (-1732 . 620736) (-1733 . 620526) + (-1734 . 620313) (-1735 . 620228) (-1736 . 620120) (-1737 . 620040) + (-1738 . 619951) (-1739 . 619898) (-1740 . 619707) (-1741 . 619591) + (-1742 . 619475) (-1743 . 618699) (-1744 . 618481) (-1745 . 618220) + (-1746 . 617972) (-1747 . 616526) (-1748 . 616452) (-1749 . 616391) + (-1750 . 616284) (-1751 . 616232) (-1752 . 616097) (-1753 . 615939) + (-1754 . 615818) (-1755 . 615738) (-1756 . 615671) (-1757 . 615642) + (-1758 . 615561) (-1759 . 615405) (-1760 . 615368) (-1761 . 615297) + (-1762 . 615149) (-1763 . 615051) (-1764 . 614935) (-1765 . 614103) + (-1766 . 614005) (-1767 . 613925) (-1768 . 613341) (-1769 . 613259) + (-1770 . 613207) (-1771 . 612977) (-1772 . 612698) (-1773 . 612546) + (-1774 . 611676) (-1775 . 611602) (-1776 . 611518) (-1777 . 611420) + (-1778 . 611231) (-1779 . 611180) (-1780 . 611079) (-1781 . 610880) + (-1782 . 609997) (-1783 . 609929) (-1784 . 609828) (-1785 . 609621) + (-1786 . 609479) (-1787 . 609397) (-1788 . 609313) (-1789 . 609240) + (-1790 . 608789) (-1791 . 608710) (-1792 . 608676) (-1793 . 608553) + (-1794 . 608433) (-1795 . 608291) (-1796 . 608192) (-1797 . 608160) + (-1798 . 607707) (-1799 . 607633) (-1800 . 607492) (-1801 . 607337) + (-1802 . 607306) (-1803 . 607129) (-1804 . 606522) (-1805 . 606415) + (-1806 . 605542) (-1807 . 605125) (-1808 . 604825) (-1809 . 604756) + (-1810 . 604403) (-1811 . 604011) (-1812 . 603660) (-1813 . 603479) + (-1814 . 603242) (-1815 . 603123) (-1816 . 603040) (-1817 . 602933) + (-1818 . 602330) (-1819 . 602251) (-1820 . 602107) (-1821 . 601677) + (-1822 . 601628) (-1823 . 601530) (-1824 . 601501) (-1825 . 601192) + (-1826 . 601155) (-1827 . 601103) (-1828 . 600948) (-1829 . 600599) + (-1830 . 598631) (-1831 . 598543) (-1832 . 598487) (-1833 . 598385) + (-1834 . 598302) (-1835 . 598088) (-1836 . 597955) (-1837 . 597784) + (-1838 . 597533) (-1839 . 597362) (-1840 . 597100) (-1841 . 597014) + (-1842 . 596919) (-1843 . 596721) (-1844 . 596465) (-1845 . 596412) + (-1846 . 596232) (-1847 . 596135) (-1848 . 596051) (-1849 . 595955) + (-1850 . 595882) (-1851 . 595799) (-1852 . 595628) (-1853 . 595500) + (-1854 . 595128) (-1855 . 594610) (-1856 . 594540) (-1857 . 594173) + (-1858 . 594015) (-1859 . 593355) (-1860 . 593217) (-1861 . 593091) + (-1862 . 592982) (-1863 . 592892) (-1864 . 592734) (-1865 . 592544) + (-1866 . 592371) (-1867 . 592319) (-1868 . 592291) (-1869 . 592208) + (-1870 . 592095) (-1871 . 592024) (-1872 . 591905) (-1873 . 591804) + (-1874 . 591749) (-1875 . 591684) (-1876 . 591357) (-1877 . 591295) + (-1878 . 591243) (-1879 . 591149) (-1880 . 591034) (-1881 . 590966) + (-1882 . 590904) (-1883 . 590686) (-1884 . 590624) (-1885 . 590466) + (-1886 . 590432) (-1887 . 590274) (-1888 . 590208) (-1889 . 590077) + (-1890 . 589748) (-1891 . 589623) (-1892 . 589408) (-1893 . 589287) + (-1894 . 589144) (-1895 . 588957) (-1896 . 588852) (-1897 . 588785) + (-1898 . 588719) (-1899 . 588690) (-1900 . 586834) (-1901 . 586756) + (-1902 . 586704) (-1903 . 586578) (-1904 . 586403) (-1905 . 586107) + (-1906 . 586039) (-1907 . 585915) (-1908 . 585849) (-1909 . 585730) + (-1910 . 585566) (-1911 . 585442) (-1912 . 585372) (-1913 . 585259) + (-1914 . 585201) (-1915 . 585058) (-1916 . 584806) (-1917 . 584741) + (-1918 . 584308) (-1919 . 584220) (-1920 . 584121) (-1921 . 584003) + (-1922 . 583713) (-1923 . 583625) (-1924 . 583503) (-1925 . 583475) + (-1926 . 583330) (-1927 . 582839) (-1928 . 582720) (-1929 . 582662) + (-1930 . 582574) (-1931 . 582494) (-1932 . 582411) (-1933 . 582206) + (-1934 . 581868) (-1935 . 581508) (-1936 . 581322) (-1937 . 581240) + (-1938 . 581056) (-1939 . 580893) (-1940 . 580346) (-1941 . 580100) + (-1942 . 579928) (-1943 . 579900) (-1944 . 579695) (-1945 . 579593) + (-1946 . 578989) (-1947 . 578859) (-1948 . 578334) (-1949 . 578281) + (-1950 . 578171) (-1951 . 578043) (-1952 . 577955) (-1953 . 577813) + (-1954 . 577764) (-1955 . 577639) (-1956 . 577573) (-1957 . 577277) + (-1958 . 577156) (-1959 . 577058) (-1960 . 576978) (-1961 . 576855) + (-1962 . 576760) (-1963 . 576536) (-1964 . 576463) (-1965 . 576407) + (-1966 . 576273) (-1967 . 574977) (-1968 . 574804) (-1969 . 574677) + (-1970 . 574517) (-1971 . 574443) (-1972 . 574366) (-1973 . 574231) + (-1974 . 574097) (-1975 . 574044) (-1976 . 573867) (-1977 . 573742) + (-1978 . 573689) (-1979 . 573576) (-1980 . 573523) (-1981 . 573008) + (-1982 . 572935) (-1983 . 572847) (-1984 . 572781) (-1985 . 572576) + (-1986 . 572505) (-1987 . 572419) (-1988 . 572275) (-1989 . 572162) + (-1990 . 572055) (-1991 . 571958) (-1992 . 571905) (-1993 . 570473) + (-1994 . 570421) (-1995 . 570004) (-1996 . 569854) (-1997 . 569777) + (-1998 . 569654) (-1999 . 569505) (-2000 . 569314) (-2001 . 569231) + (-2002 . 569154) (-2003 . 569025) (-2004 . 568946) (-2005 . 568625) + (-2006 . 568449) (-2007 . 568168) (-2008 . 568087) (-2009 . 567946) + (-2010 . 567839) (-2011 . 567559) (-2012 . 567403) (-2013 . 567315) + (-2014 . 566456) (-2015 . 566277) (-2016 . 566206) (-2017 . 566044) + (-2018 . 565932) (-2019 . 565773) (-2020 . 565625) (-2021 . 565101) + (-2022 . 565046) (-2023 . 564905) (-2024 . 564792) (-2025 . 564511) + (-2026 . 564445) (-2027 . 564374) (-2028 . 564146) (-2029 . 563949) + (-2030 . 563746) (-2031 . 563693) (-2032 . 563651) (-2033 . 563580) + (-2034 . 563037) (-2035 . 562921) (-2036 . 562762) (-2037 . 562453) + (-2038 . 562387) (-2039 . 562192) (-2040 . 562073) (-2041 . 562013) + (-2042 . 561895) (-2043 . 561442) (-2044 . 561081) (-2045 . 561050) + (-2046 . 560970) (-2047 . 560862) (-2048 . 560677) (-2049 . 559941) + (-2050 . 559853) (-2051 . 559770) (-2052 . 559720) (-2053 . 559552) + (-2054 . 559383) (-2055 . 559267) (-2056 . 559179) (-2057 . 559120) + (-2058 . 558829) (-2059 . 558769) (-2060 . 553657) (-2061 . 553603) + (-2062 . 553473) (-2063 . 553306) (-2064 . 553278) (-2065 . 553226) + (-2066 . 553073) (-2067 . 552847) (-2068 . 552550) (-2069 . 551898) + (-2070 . 551721) (-2071 . 551207) (-2072 . 551155) (-2073 . 551011) + (-2074 . 550732) (-2075 . 550411) (-2076 . 550086) (-2077 . 549991) + (-2078 . 549907) (-2079 . 549843) (-2080 . 549773) (-2081 . 549645) + (-2082 . 549571) (-2083 . 549484) (-2084 . 549389) (-2085 . 549355) + (-2086 . 549297) (-2087 . 549190) (-2088 . 548937) (-2089 . 547360) + (-2090 . 547244) (-2091 . 547187) (-2092 . 546916) (-2093 . 546723) + (-2094 . 546655) (-2095 . 546543) (-2096 . 546404) (-2097 . 546020) + (-2098 . 545685) (-2099 . 545487) (-2100 . 545414) (-2101 . 545277) + (-2102 . 545173) (-2103 . 544984) (-2104 . 544919) (-2105 . 544853) + (-2106 . 544798) (-2107 . 544603) (-2108 . 544517) (-2109 . 544424) + (-2110 . 544106) (-2111 . 543755) (-2112 . 543706) (-2113 . 543654) + (-2114 . 543415) (-2115 . 543344) (-2116 . 542952) (-2117 . 541772) + (-2118 . 541694) (-2119 . 541343) (-2120 . 541266) (-2121 . 541110) + (-2122 . 540921) (-2123 . 540813) (-2124 . 540761) (-2125 . 540678) + (-2126 . 540499) (-2127 . 540341) (-2128 . 539091) (-2129 . 538984) + (-2130 . 538762) (-2131 . 538701) (-2132 . 538618) (-2133 . 538547) + (-2134 . 538276) (-2135 . 538220) (-2136 . 538104) (-2137 . 537547) + (-2138 . 537293) (-2139 . 537241) (-2140 . 537122) (-2141 . 536986) + (-2142 . 536879) (-2143 . 536721) (-2144 . 536650) (-2145 . 536517) + (-2146 . 536323) (-2147 . 535974) (-2148 . 535763) (-2149 . 534582) + (-2150 . 534514) (-2151 . 534415) (-2152 . 534363) (-2153 . 534210) + (-2154 . 534019) (-2155 . 533878) (-2156 . 533616) (-2157 . 533472) + (-2158 . 533335) (-2159 . 533285) (-2160 . 532968) (-2161 . 532641) + (-2162 . 532575) (-2163 . 532442) (-2164 . 532263) (-2165 . 532211) + (-2166 . 531827) (-2167 . 531659) (-2168 . 531510) (-2169 . 531135) + (-2170 . 530883) (-2171 . 530591) (-2172 . 530312) (-2173 . 529930) + (-2174 . 529800) (-2175 . 529249) (-2176 . 529177) (-2177 . 529066) + (-2178 . 528730) (-2179 . 528543) (-2180 . 528325) (-2181 . 528170) + (-2182 . 527879) (-2183 . 527794) (-2184 . 527685) (-2185 . 527513) + (-2186 . 527367) (-2187 . 527308) (-2188 . 527179) (-2189 . 527126) + (-2190 . 527028) (-2191 . 526868) (-2192 . 526769) (-2193 . 526590) + (-2194 . 526477) (-2195 . 526252) (-2196 . 526120) (-2197 . 525946) + (-2198 . 525416) (-2199 . 525230) (-2200 . 525058) (-2201 . 524835) + (-2202 . 524690) (-2203 . 524374) (-2204 . 524239) (-2205 . 524117) + (-2206 . 523743) (-2207 . 523677) (-2208 . 523607) (-2209 . 523444) + (-2210 . 523387) (-2211 . 522961) (-2212 . 522665) (-2213 . 522614) + (-2214 . 520351) (-2215 . 520179) (-2216 . 520106) (-2217 . 519936) + (-2218 . 519884) (-2219 . 519697) (-2220 . 519645) (-2221 . 519462) + (-2222 . 519409) (-2223 . 519296) (-2224 . 519186) (-2225 . 519104) + (-2226 . 518986) (-2227 . 518814) (-2228 . 518338) (-2229 . 518214) + (-2230 . 517919) (-2231 . 517384) (-2232 . 517258) (-2233 . 517201) + (-2234 . 517141) (-2235 . 517031) (-2236 . 516910) (-2237 . 516559) + (-2238 . 516478) (-2239 . 516259) (-2240 . 516131) (-2241 . 516081) + (-2242 . 515938) (-2243 . 515847) (-2244 . 515775) (-2245 . 515669) + (-2246 . 515613) (-2247 . 515167) (-2248 . 514928) (-2249 . 514894) + (-2250 . 514821) (-2251 . 514752) (-2252 . 514358) (-2253 . 513918) + (-2254 . 512922) (-2255 . 512809) (-2256 . 512747) (-2257 . 512608) + (-2258 . 512529) (-2259 . 512458) (-2260 . 512314) (-2261 . 512236) + (-2262 . 512177) (-2263 . 511575) (-2264 . 511501) (-2265 . 511427) + (-2266 . 509839) (-2267 . 509696) (-2268 . 509624) (-2269 . 509417) + (-2270 . 509365) (-2271 . 509272) (-2272 . 509213) (-2273 . 509125) + (-2274 . 509006) (-2275 . 508847) (-2276 . 508608) (-2277 . 508500) + (-2278 . 508354) (-2279 . 508184) (-2280 . 508110) (-2281 . 507919) + (-2282 . 507833) (-2283 . 507697) (-2284 . 507487) (-2285 . 507385) + (-2286 . 507301) (-2287 . 507251) (-2288 . 507029) (-2289 . 506540) + (-2290 . 506431) (-2291 . 506333) (-2292 . 506190) (-2293 . 506046) + (-2294 . 505919) (-2295 . 505600) (-2296 . 505504) (-2297 . 505416) + (-2298 . 505338) (-2299 . 505259) (-2300 . 504599) (-2301 . 504547) + (-2302 . 504461) (-2303 . 504378) (-2304 . 504265) (-2305 . 503524) + (-2306 . 503317) (-2307 . 503268) (-2308 . 502925) (-2309 . 502816) + (-2310 . 502672) (-2311 . 502543) (-2312 . 502263) (-2313 . 502040) + (-2314 . 501900) (-2315 . 501789) (-2316 . 501189) (-2317 . 501058) + (-2318 . 500317) (-2319 . 499353) (-2320 . 499082) (-2321 . 499054) + (-2322 . 498821) (-2323 . 498617) (-2324 . 498507) (-2325 . 498403) + (-2326 . 498108) (-2327 . 498031) (-2328 . 497789) (-2329 . 497690) + (-2330 . 497282) (-2331 . 497190) (-2332 . 496502) (-2333 . 496419) + (-2334 . 496348) (-2335 . 496282) (-2336 . 496142) (-2337 . 496033) + (-2338 . 495973) (-2339 . 495903) (-2340 . 495647) (-2341 . 495592) + (-2342 . 495454) (-2343 . 495426) (-2344 . 495127) (-2345 . 495035) + (-2346 . 494459) (-2347 . 494336) (-2348 . 494165) (-2349 . 493922) + (-2350 . 493891) (-2351 . 493782) (-2352 . 493322) (-2353 . 493191) + (-2354 . 493139) (-2355 . 492957) (-2356 . 492902) (-2357 . 492815) + (-2358 . 492729) (-2359 . 492153) (-2360 . 491982) (-2361 . 491229) + (-2362 . 491157) (-2363 . 491001) (-2364 . 490747) (-2365 . 490601) + (-2366 . 490376) (-2367 . 490082) (-2368 . 489888) (-2369 . 489755) + (-2370 . 489179) (-2371 . 489085) (-2372 . 488881) (-2373 . 488809) + (-2374 . 488723) (-2375 . 488639) (-2376 . 488558) (-2377 . 488446) + (-2378 . 488338) (-2379 . 488268) (-2380 . 487907) (-2381 . 487441) + (-2382 . 486755) (-2383 . 486116) (-2384 . 485689) (-2385 . 484571) + (-2386 . 484431) (-2387 . 484303) (-2388 . 484233) (-2389 . 483987) + (-2390 . 483430) (-2391 . 483342) (-2392 . 480561) (-2393 . 480506) + (-2394 . 480311) (-2395 . 479625) (-2396 . 479300) (-2397 . 479199) + (-2398 . 479081) (-2399 . 478589) (-2400 . 478436) (-2401 . 478190) + (-2402 . 478119) (-2403 . 477673) (-2404 . 477580) (-2405 . 477407) + (-2406 . 477300) (-2407 . 476854) (-2408 . 476801) (-2409 . 476052) + (-2410 . 476003) (-2411 . 475950) (-2412 . 475702) (-2413 . 475607) + (-2414 . 475474) (-2415 . 475422) (-2416 . 475367) (-2417 . 475209) + (-2418 . 474576) (-2419 . 474472) (-2420 . 473898) (-2421 . 473812) + (-2422 . 473654) (-2423 . 473360) (-2424 . 473133) (-2425 . 473044) + (-2426 . 472918) (-2427 . 472612) (-2428 . 471968) (-2429 . 471885) + (-2430 . 470647) (-2431 . 470595) (-2432 . 466597) (-2433 . 466023) + (-2434 . 465945) (-2435 . 465811) (-2436 . 465718) (-2437 . 465309) + (-2438 . 465236) (-2439 . 465113) (-2440 . 465025) (-2441 . 464951) + (-2442 . 464848) (-2443 . 464199) (-2444 . 463625) (-2445 . 463480) + (-2446 . 463222) (-2447 . 463139) (-2448 . 462938) (-2449 . 462742) + (-2450 . 462599) (-2451 . 462462) (-2452 . 462319) (-2453 . 462217) + (-2454 . 462076) (-2455 . 461389) (-2456 . 461285) (-2457 . 461034) + (-2458 . 460827) (-2459 . 460744) (-2460 . 460519) (-2461 . 460402) + (-2462 . 460316) (-2463 . 460194) (-2464 . 460123) (-2465 . 460044) + (-2466 . 459991) (-2467 . 459304) (-2468 . 459133) (-2469 . 459027) + (-2470 . 458787) (-2471 . 458759) (-2472 . 458673) (-2473 . 458373) + (-2474 . 458279) (-2475 . 458133) (-2476 . 458078) (-2477 . 457921) + (-2478 . 457234) (-2479 . 457044) (-2480 . 456943) (-2481 . 456787) + (-2482 . 456485) (-2483 . 455376) (-2484 . 455070) (-2485 . 454985) + (-2486 . 454891) (-2487 . 454462) (-2488 . 454341) (-2489 . 454275) + (-2490 . 453884) (-2491 . 453738) (-2492 . 453163) (-2493 . 453040) + (-2494 . 453006) (-2495 . 452954) (-2496 . 452925) (-2497 . 452851) + (-2498 . 452624) (-2499 . 452571) (-2500 . 452465) (-2501 . 452318) + (-2502 . 452117) (-2503 . 451607) (-2504 . 451350) (-2505 . 451294) + (-2506 . 450719) (-2507 . 450601) (-2508 . 449797) (-2509 . 449700) + (-2510 . 449476) (-2511 . 449382) (-2512 . 449088) (-2513 . 449002) + (-2514 . 448873) (-2515 . 448617) (-2516 . 448494) (-2517 . 448342) + (-2518 . 447767) (-2519 . 447645) (-2520 . 447547) (-2521 . 447440) + (-2522 . 447331) (-2523 . 447193) (-2524 . 447005) (-2525 . 446874) + (-2526 . 446735) (-2527 . 446553) (-2528 . 446469) (-2529 . 446293) + (-2530 . 445719) (-2531 . 445616) (-2532 . 444962) (-2533 . 444881) + (-2534 . 444740) (-2535 . 444627) (-2536 . 444508) (-2537 . 444437) + (-2538 . 444292) (-2539 . 444194) (-2540 . 444098) (-2541 . 443954) + (-2542 . 443826) (-2543 . 443252) (-2544 . 443169) (-2545 . 443103) + (-2546 . 442611) (-2547 . 442513) (-2548 . 442303) (-2549 . 442131) + (-2550 . 440280) (-2551 . 440157) (-2552 . 440070) (-2553 . 439921) + (-2554 . 439743) (-2555 . 439671) (-2556 . 438997) (-2557 . 438902) + (-2558 . 438742) (-2559 . 438693) (-2560 . 438592) (-2561 . 438539) + (-2562 . 438475) (-2563 . 438360) (-2564 . 438308) (-2565 . 438234) + (-2566 . 437566) (-2567 . 437488) (-2568 . 437359) (-2569 . 437092) + (-2570 . 437019) (-2571 . 436860) (-2572 . 436772) (-2573 . 436492) + (-2574 . 436419) (-2575 . 436363) (-2576 . 436225) (-2577 . 436175) + (-2578 . 435982) (-2579 . 435923) (-2580 . 435303) (-2581 . 434915) + (-2582 . 434816) (-2583 . 434695) (-2584 . 434571) (-2585 . 434449) + (-2586 . 434378) (-2587 . 434270) (-2588 . 434132) (-2589 . 434067) + (-2590 . 433990) (-2591 . 433815) (-2592 . 433393) (-2593 . 433143) + (-2594 . 432041) (-2595 . 431287) (-2596 . 431178) (-2597 . 431150) + (-2598 . 430671) (-2599 . 430581) (-2600 . 430523) (-2601 . 430450) + (-2602 . 430334) (-2603 . 430257) (-2604 . 430183) (-2605 . 430076) + (-2606 . 429602) (-2607 . 429546) (-2608 . 429493) (-2609 . 429422) + (-2610 . 429303) (-2611 . 429215) (-2612 . 429113) (-2613 . 428989) + (-2614 . 428704) (-2615 . 428610) (-2616 . 428533) (-2617 . 428132) + (-2618 . 426847) (-2619 . 426711) (-2620 . 426473) (-2621 . 426422) + (-2622 . 426041) (-2623 . 425987) (-2624 . 425566) (-2625 . 425292) + (-2626 . 425068) (-2627 . 424964) (-2628 . 424887) (-2629 . 424817) + (-2630 . 424670) (-2631 . 424310) (-2632 . 424213) (-2633 . 424067) + (-2634 . 423909) (-2635 . 423835) (-2636 . 423756) (-2637 . 423374) + (-2638 . 422829) (-2639 . 422438) (-2640 . 422166) (-2641 . 422094) + (-2642 . 421922) (-2643 . 421546) (-2644 . 421491) (-2645 . 421394) + (-2646 . 421236) (-2647 . 421130) (-2648 . 421060) (-2649 . 420983) + (-2650 . 420931) (-2651 . 420848) (-2652 . 420762) (-2653 . 420674) + (-2654 . 420462) (-2655 . 419863) (-2656 . 419459) (-2657 . 419092) + (-2658 . 418874) (-2659 . 418760) (-2660 . 418636) (-2661 . 418343) + (-2662 . 418243) (-2663 . 417240) (-2664 . 417188) (-2665 . 417092) + (-2666 . 417021) (-2667 . 416894) (-2668 . 416717) (-2669 . 416535) + (-2670 . 416381) (-2671 . 416350) (-2672 . 415963) (-2673 . 415818) + (-2674 . 415002) (-2675 . 414661) (-2676 . 414573) (-2677 . 414430) + (-2678 . 414338) (-2679 . 414185) (-2680 . 413811) (-2681 . 413445) + (-2682 . 413344) (-2683 . 413217) (-2684 . 413051) (-2685 . 412833) + (-2686 . 412694) (-2687 . 412638) (-2688 . 412500) (-2689 . 412405) + (-2690 . 412274) (-2691 . 412197) (-2692 . 412112) (-2693 . 411722) + (-2694 . 411663) (-2695 . 411576) (-2696 . 411467) (-2697 . 411415) + (-2698 . 411250) (-2699 . 411151) (-2700 . 411098) (-2701 . 410756) + (-2702 . 410143) (-2703 . 410074) (-2704 . 410037) (-2705 . 409817) + (-2706 . 409608) (-2707 . 409551) (-2708 . 409386) (-2709 . 409316) + (-2710 . 409101) (-2711 . 408963) (-2712 . 407893) (-2713 . 407800) + (-2714 . 407543) (-2715 . 407116) (-2716 . 407001) (-2717 . 406813) + (-2718 . 406643) (-2719 . 406508) (-2720 . 406446) (-2721 . 406394) + (-2722 . 405965) (-2723 . 405886) (-2724 . 405755) (-2725 . 405678) + (-2726 . 405592) (-2727 . 405521) (-2728 . 405459) (-2729 . 405352) + (-2730 . 405258) (-2731 . 405018) (-2732 . 404967) (-2733 . 404897) + (-2734 . 404842) (-2735 . 404743) (-2736 . 404524) (-2737 . 404458) + (-2738 . 404359) (-2739 . 404275) (-2740 . 404216) (-2741 . 403887) + (-2742 . 403768) (-2743 . 403665) (-2744 . 403355) (-2745 . 403212) + (-2746 . 402973) (-2747 . 402859) (-2748 . 402474) (-2749 . 402386) + (-2750 . 402167) (-2751 . 402099) (-2752 . 401884) (-2753 . 401623) + (-2754 . 401345) (-2755 . 401259) (-2756 . 401149) (-2757 . 401034) + (-2758 . 400953) (-2759 . 400752) (-2760 . 400695) (-2761 . 400558) + (-2762 . 400449) (-2763 . 400386) (-2764 . 400213) (-2765 . 400106) + (-2766 . 399878) (-2767 . 399662) (-2768 . 399365) (-2769 . 399115) + (-2770 . 398728) (-2771 . 398572) (-2772 . 398419) (-2773 . 398313) + (-2774 . 398146) (-2775 . 398083) (-2776 . 397861) (-2777 . 397787) + (-2778 . 397727) (-2779 . 397480) (-2780 . 397331) (-2781 . 397230) + (-2782 . 397051) (-2783 . 396912) (-2784 . 396853) (-2785 . 396754) + (-2786 . 396644) (-2787 . 396583) (-2788 . 396499) (-2789 . 396401) + (-2790 . 396280) (-2791 . 396005) (-2792 . 395892) (-2793 . 395798) + (-2794 . 395585) (-2795 . 395531) (-2796 . 395117) (-2797 . 394959) + (-2798 . 394865) (-2799 . 394771) (-2800 . 394743) (-2801 . 394501) + (-2802 . 394094) (-2803 . 394042) (-2804 . 393968) (-2805 . 393824) + (-2806 . 393743) (-2807 . 393416) (-2808 . 393287) (-2809 . 392888) + (-2810 . 392070) (-2811 . 391964) (-2812 . 391825) (-2813 . 391449) + (-2814 . 390633) (-2815 . 390533) (-2816 . 390417) (-2817 . 390365) + (-2818 . 390192) (-2819 . 389956) (-2820 . 389852) (-2821 . 389789) + (-2822 . 389687) (-2823 . 389607) (-2824 . 389397) (-2825 . 389190) + (-2826 . 389076) (-2827 . 389027) (-2828 . 388957) (-2829 . 388767) + (-2830 . 388605) (-2831 . 388498) (-2832 . 383160) (-2833 . 383128) + (-2834 . 382947) (-2835 . 382833) (-2836 . 382736) (-2837 . 382575) + (-2838 . 382477) (-2839 . 382378) (-2840 . 382051) (-2841 . 381947) + (-2842 . 381815) (-2843 . 381371) (-2844 . 381301) (-2845 . 381267) + (-2846 . 381160) (-2847 . 380908) (-2848 . 380756) (-2849 . 380641) + (-2850 . 380582) (-2851 . 380439) (-2852 . 380356) (-2853 . 379835) + (-2854 . 379645) (-2855 . 378433) (-2856 . 378154) (-2857 . 378101) + (-2858 . 377756) (-2859 . 377381) (-2860 . 376702) (-2861 . 376604) + (-2862 . 376492) (-2863 . 376419) (-2864 . 376253) (-2865 . 374913) + (-2866 . 374695) (-2867 . 374357) (-2868 . 374233) (-2869 . 374183) + (-2870 . 374062) (-2871 . 374011) (-2872 . 373931) (-2873 . 373851) + (-2874 . 373696) (-2875 . 373619) (-2876 . 373500) (-2877 . 373423) + (-2878 . 372816) (-2879 . 372370) (-2880 . 372148) (-2881 . 371869) + (-2882 . 371786) (-2883 . 371732) (-2884 . 371386) (-2885 . 371147) + (-2886 . 371090) (-2887 . 370937) (-2888 . 370781) (-2889 . 363782) + (-2890 . 363624) (-2891 . 363445) (-2892 . 363013) (-2893 . 362911) + (-2894 . 362770) (-2895 . 362682) (-2896 . 362569) (-2897 . 362171) + (-2898 . 362100) (-2899 . 361992) (-2900 . 361887) (-2901 . 361786) + (-2902 . 361685) (-2903 . 361611) (-2904 . 361399) (-2905 . 361327) + (-2906 . 361084) (-2907 . 359772) (-2908 . 359740) (-2909 . 359287) + (-2910 . 359210) (-2911 . 358939) (-2912 . 358691) (-2913 . 358381) + (-2914 . 358155) (-2915 . 358037) (-2916 . 357966) (-2917 . 357914) + (-2918 . 357862) (-2919 . 357755) (-2920 . 357646) (-2921 . 357597) + (-2922 . 357515) (-2923 . 357357) (-2924 . 357239) (-2925 . 356928) + (-2926 . 356810) (-2927 . 356686) (-2928 . 356634) (-2929 . 356551) + (-2930 . 356417) (-2931 . 356283) (-2932 . 356228) (-2933 . 356061) + (-2934 . 356009) (-2935 . 355636) (-2936 . 355557) (-2937 . 355342) + (-2938 . 355282) (-2939 . 355109) (-2940 . 354888) (-2941 . 354743) + (-2942 . 354620) (-2943 . 354536) (-2944 . 354430) (-2945 . 354277) + (-2946 . 354208) (-2947 . 353981) (-2948 . 353884) (-2949 . 353818) + (-2950 . 353503) (-2951 . 352415) (-2952 . 352343) (-2953 . 352025) + (-2954 . 351957) (-2955 . 351905) (-2956 . 351828) (-2957 . 351596) + (-2958 . 351328) (-2959 . 351209) (-2960 . 351128) (-2961 . 351029) + (-2962 . 350874) (-2963 . 350817) (-2964 . 349977) (-2965 . 349403) + (-2966 . 349151) (-2967 . 349035) (-2968 . 348931) (-2969 . 348876) + (-2970 . 348823) (-2971 . 348710) (-2972 . 348544) (-2973 . 348228) + (-2974 . 348160) (-2975 . 347845) (-2976 . 347774) (-2977 . 347441) + (-2978 . 347223) (-2979 . 347171) (-2980 . 347026) (-2981 . 346965) + (-2982 . 346801) (-2983 . 346626) (-2984 . 346115) (-2985 . 345929) + (-2986 . 345814) (-2987 . 345712) (-2988 . 345536) (-2989 . 345484) + (-2990 . 345450) (-2991 . 345325) (-2992 . 345262) (-2993 . 345160) + (-2994 . 343690) (-2995 . 343512) (-2996 . 343415) (-2997 . 342988) + (-2998 . 342808) (-2999 . 342486) (-3000 . 342277) (-3001 . 342176) + (-3002 . 342072) (-3003 . 341729) (-3004 . 341644) (-3005 . 341563) + (-3006 . 341436) (-3007 . 341343) (-3008 . 341290) (-3009 . 341147) + (-3010 . 341064) (-3011 . 340603) (-3012 . 340504) (-3013 . 339930) + (-3014 . 339777) (-3015 . 339670) (-3016 . 338857) (-3017 . 338739) + (-3018 . 338640) (-3019 . 338538) (-3020 . 338397) (-3021 . 338158) + (-3022 . 338060) (-3023 . 337953) (-3024 . 337351) (-3025 . 336435) + (-3026 . 336185) (-3027 . 335528) (-3028 . 335421) (-3029 . 335387) + (-3030 . 335255) (-3031 . 335052) (-3032 . 334948) (-3033 . 334891) + (-3034 . 334805) (-3035 . 334702) (-3036 . 334506) (-3037 . 334399) + (-3038 . 334259) (-3039 . 333928) (-3040 . 333424) (-3041 . 333172) + (-3042 . 333119) (-3043 . 332872) (-3044 . 332760) (-3045 . 332241) + (-3046 . 332017) (-3047 . 331827) (-3048 . 331647) (-3049 . 331532) + (-3050 . 331409) (-3051 . 331329) (-3052 . 331120) (-3053 . 331037) + (-3054 . 330734) (-3055 . 330662) (-3056 . 330443) (-3057 . 330283) + (-3058 . 330211) (-3059 . 330077) (-3060 . 329999) (-3061 . 329917) + (-3062 . 329524) (-3063 . 329458) (-3064 . 329160) (-3065 . 328633) + (-3066 . 328581) (-3067 . 328289) (-3068 . 328261) (-3069 . 328031) + (-3070 . 327871) (-3071 . 327817) (-3072 . 327757) (-3073 . 327657) + (-3074 . 327434) (-3075 . 326994) (-3076 . 326921) (-3077 . 326119) + (-3078 . 326029) (-3079 . 325532) (-3080 . 325408) (-3081 . 325283) + (-3082 . 325180) (-3083 . 324989) (-3084 . 324912) (-3085 . 324802) + (-3086 . 324622) (-3087 . 324473) (-3088 . 324348) (-3089 . 324189) + (-3090 . 324059) (-3091 . 323915) (-3092 . 323741) (-3093 . 323675) + (-3094 . 323143) (-3095 . 321413) (-3096 . 319251) (-3097 . 318868) + (-3098 . 318578) (-3099 . 318331) (-3100 . 318201) (-3101 . 318102) + (-3102 . 314803) (-3103 . 314706) (-3104 . 314651) (-3105 . 314595) + (-3106 . 314497) (-3107 . 314420) (-3108 . 314283) (-3109 . 314206) + (-3110 . 313697) (-3111 . 313625) (-3112 . 313480) (-3113 . 313421) + (-3114 . 313371) (-3115 . 313289) (-3116 . 312703) (-3117 . 312507) + (-3118 . 312413) (-3119 . 312300) (-3120 . 312204) (-3121 . 312092) + (-3122 . 311945) (-3123 . 311882) (-3124 . 311760) (-3125 . 311623) + (-3126 . 311495) (-3127 . 311247) (-3128 . 311140) (-3129 . 311041) + (-3130 . 310954) (-3131 . 310873) (-3132 . 310780) (-3133 . 310709) + (-3134 . 310547) (-3135 . 310449) (-3136 . 309251) (-3137 . 309152) + (-3138 . 308933) (-3139 . 308809) (-3140 . 308536) (-3141 . 308406) + (-3142 . 308160) (-3143 . 307993) (-3144 . 307859) (-3145 . 307456) + (-3146 . 307161) (-3147 . 307106) (-3148 . 307022) (-3149 . 306955) + (-3150 . 306428) (-3151 . 306373) (-3152 . 306299) (-3153 . 306225) + (-3154 . 306103) (-3155 . 304801) (-3156 . 304706) (-3157 . 304487) + (-3158 . 304244) (-3159 . 304145) (-3160 . 299985) (-3161 . 299933) + (-3162 . 299687) (-3163 . 299385) (-3164 . 299329) (-3165 . 298851) + (-3166 . 298786) (-3167 . 298689) (-3168 . 298584) (-3169 . 298441) + (-3170 . 298280) (-3171 . 298127) (-3172 . 297909) (-3173 . 297780) + (-3174 . 297707) (-3175 . 297482) (-3176 . 297394) (-3177 . 297088) + (-3178 . 296944) (-3179 . 296797) (-3180 . 296654) (-3181 . 296517) + (-3182 . 296480) (-3183 . 296407) (-3184 . 296122) (-3185 . 296008) + (-3186 . 295942) (-3187 . 295914) (-3188 . 295831) (-3189 . 295758) + (-3190 . 295692) (-3191 . 295607) (-3192 . 295555) (-3193 . 295521) + (-3194 . 295414) (-3195 . 295335) (-3196 . 295245) (-3197 . 295131) + (-3198 . 295097) (-3199 . 294982) (-3200 . 294831) (-3201 . 294664) + (-3202 . 294577) (-3203 . 294505) (-3204 . 294304) (-3205 . 294090) + (-3206 . 293989) (-3207 . 293912) (-3208 . 293838) (-3209 . 293552) + (-3210 . 293207) (-3211 . 292921) (-3212 . 292868) (-3213 . 269647) + (-3214 . 269559) (-3215 . 268378) (-3216 . 268254) (-3217 . 267648) + (-3218 . 267574) (-3219 . 267436) (-3220 . 267358) (-3221 . 267275) + (-3222 . 267179) (-3223 . 266803) (-3224 . 266775) (-3225 . 266674) + (-3226 . 263922) (-3227 . 263641) (-3228 . 263438) (-3229 . 263325) + (-3230 . 263219) (-3231 . 263164) (-3232 . 262618) (-3233 . 262462) + (-3234 . 262300) (-3235 . 262249) (-3236 . 262094) (-3237 . 261807) + (-3238 . 261721) (-3239 . 261587) (-3240 . 261372) (-3241 . 261249) + (-3242 . 260937) (-3243 . 260601) (-3244 . 260548) (-3245 . 260475) + (-3246 . 260420) (-3247 . 260293) (-3248 . 259942) (-3249 . 259822) + (-3250 . 259541) (-3251 . 259147) (-3252 . 259038) (-3253 . 258894) + (-3254 . 258486) (-3255 . 258403) (-3256 . 258299) (-3257 . 258198) + (-3258 . 257819) (-3259 . 257791) (-3260 . 257633) (-3261 . 257141) + (-3262 . 256996) (-3263 . 256894) (-3264 . 256815) (-3265 . 256729) + (-3266 . 256551) (-3267 . 256421) (-3268 . 256350) (-3269 . 256276) + (-3270 . 256194) (-3271 . 256090) (-3272 . 256028) (-3273 . 255972) + (-3274 . 255901) (-3275 . 255848) (-3276 . 255685) (-3277 . 255567) + (-3278 . 255394) (-3279 . 255232) (-3280 . 255165) (-3281 . 254792) + (-3282 . 254670) (-3283 . 254636) (-3284 . 254577) (-3285 . 251241) + (-3286 . 251185) (-3287 . 250658) (-3288 . 250307) (-3289 . 250240) + (-3290 . 249853) (-3291 . 249696) (-3292 . 249531) (-3293 . 249481) + (-3294 . 249409) (-3295 . 249207) (-3296 . 249155) (-3297 . 248984) + (-3298 . 248933) (-3299 . 246819) (-3300 . 246731) (-3301 . 246344) + (-3302 . 246148) (-3303 . 246117) (-3304 . 246031) (-3305 . 245930) + (-3306 . 245745) (-3307 . 244975) (-3308 . 244791) (-3309 . 244544) + (-3310 . 244470) (-3311 . 244252) (-3312 . 244077) (-3313 . 244000) + (-3314 . 243899) (-3315 . 243420) (-3316 . 243342) (-3317 . 243263) + (-3318 . 243085) (-3319 . 243011) (-3320 . 242853) (-3321 . 242566) + (-3322 . 242500) (-3323 . 242335) (-3324 . 242255) (-3325 . 242144) + (-3326 . 242070) (-3327 . 241982) (-3328 . 241915) (-3329 . 241757) + (-3330 . 241568) (** . 238479) (-3332 . 238284) (-3333 . 238150) + (-3334 . 237931) (-3335 . 237876) (-3336 . 237698) (-3337 . 237504) + (-3338 . 237413) (-3339 . 237316) (-3340 . 237213) (-3341 . 237144) + (-3342 . 237000) (-3343 . 235727) (-3344 . 235502) (-3345 . 235385) + (-3346 . 235167) (-3347 . 235031) (-3348 . 234912) (-3349 . 234720) + (-3350 . 234442) (-3351 . 234333) (-3352 . 234091) (-3353 . 233990) + (-3354 . 233904) (-3355 . 233802) (-3356 . 233693) (-3357 . 233521) + (-3358 . 233468) (-3359 . 233384) (-3360 . 232182) (-3361 . 232120) + (-3362 . 231867) (-3363 . 231760) (-3364 . 231687) (-3365 . 231519) + (-3366 . 231442) (-3367 . 231294) (-3368 . 230952) (-3369 . 230725) + (-3370 . 230697) (-3371 . 230570) (-3372 . 230415) (-3373 . 230332) + (-3374 . 230171) (-3375 . 230139) (-3376 . 229716) (-3377 . 229660) + (-3378 . 229493) (-3379 . 229440) (-3380 . 229412) (-3381 . 229169) + (-3382 . 229073) (-3383 . 228885) (-3384 . 228753) (-3385 . 228660) + (-3386 . 228370) (-3387 . 228261) (-3388 . 228096) (-3389 . 228001) + (-3390 . 227818) (-3391 . 227627) (-3392 . 227434) (-3393 . 227356) + (-9 . 227328) (-3395 . 227209) (-3396 . 226947) (-3397 . 226598) + (-3398 . 226002) (-3399 . 225799) (-3400 . 225604) (-3401 . 225086) + (-3402 . 225034) (-3403 . 224904) (-3404 . 224830) (-3405 . 224687) + (-8 . 224659) (-3407 . 224606) (-3408 . 224347) (-3409 . 224278) + (-3410 . 224178) (-3411 . 224092) (-3412 . 224039) (-3413 . 223787) + (-3414 . 221655) (-3415 . 221492) (-3416 . 221154) (-3417 . 221041) + (-3418 . 220481) (-7 . 220453) (-3420 . 220310) (-3421 . 220100) + (-3422 . 219992) (-3423 . 219907) (-3424 . 219852) (-3425 . 219654) + (-3426 . 219501) (-3427 . 219104) (-3428 . 218766) (-3429 . 218709) + (-3430 . 218333) (-3431 . 218259) (-3432 . 218041) (-3433 . 217989) + (-3434 . 217903) (-3435 . 217598) (-3436 . 217487) (-3437 . 217403) + (-3438 . 217341) (-3439 . 217171) (-3440 . 217081) (-3441 . 216966) + (-3442 . 216913) (-3443 . 216829) (-3444 . 216448) (-3445 . 216395) + (-3446 . 216294) (-3447 . 216237) (-3448 . 216149) (-3449 . 214741) + (-3450 . 214639) (-3451 . 214307) (-3452 . 214234) (-3453 . 214182) + (-3454 . 214109) (-3455 . 214053) (-3456 . 213696) (-3457 . 213564) + (-3458 . 213511) (-3459 . 213410) (-3460 . 213316) (-3461 . 213232) + (-3462 . 213126) (-3463 . 213057) (-3464 . 211865) (-3465 . 211714) + (-3466 . 211646) (-3467 . 211539) (-3468 . 211446) (-3469 . 211205) + (-3470 . 211177) (-3471 . 210582) (-3472 . 210529) (-3473 . 210380) + (-3474 . 210324) (-3475 . 210292) (-3476 . 209962) (-3477 . 209748) + (-3478 . 209642) (-3479 . 204129) (-3480 . 203736) (-3481 . 203606) + (-3482 . 203462) (-3483 . 202200) (-3484 . 202057) (-3485 . 201514) + (-3486 . 201134) (-3487 . 201035) (-3488 . 200870) (-3489 . 200482) + (-3490 . 200408) (-3491 . 200209) (-3492 . 199944) (-3493 . 199834) + (-3494 . 199678) (-3495 . 199584) (-3496 . 199517) (-3497 . 199413) + (-3498 . 199341) (-3499 . 198886) (-3500 . 198791) (-3501 . 198459) + (-3502 . 198303) (-3503 . 197960) (-3504 . 197816) (-3505 . 197713) + (-3506 . 197235) (-3507 . 197149) (-3508 . 197033) (-3509 . 196684) + (-3510 . 196589) (-3511 . 196536) (-3512 . 196419) (-3513 . 196309) + (-3514 . 196253) (-3515 . 195598) (-3516 . 195165) (-3517 . 195037) + (-3518 . 194930) (-3519 . 194850) (-3520 . 194758) (-3521 . 194261) + (-3522 . 194182) (-3523 . 194150) (-3524 . 194068) (-3525 . 193804) + (-3526 . 193742) (-3527 . 193688) (-3528 . 193525) (-3529 . 193452) + (-3530 . 193386) (-3531 . 193244) (-3532 . 192918) (-3533 . 192840) + (-3534 . 192594) (-3535 . 192284) (-3536 . 192170) (-3537 . 191911) + (-3538 . 191694) (-3539 . 191531) (-3540 . 191318) (-3541 . 191103) + (-3542 . 190965) (-3543 . 190913) (-3544 . 190450) (-3545 . 190354) + (-3546 . 190025) (-3547 . 189965) (-3548 . 189521) (-3549 . 189342) + (-3550 . 189235) (-3551 . 188848) (-3552 . 188559) (-3553 . 188249) + (-3554 . 188073) (-3555 . 187703) (-3556 . 187566) (-3557 . 187363) + (-3558 . 187247) (-3559 . 187131) (-3560 . 186962) (-3561 . 186841) + (-3562 . 186788) (-3563 . 186578) (-3564 . 186373) (-3565 . 186321) + (-3566 . 186034) (-3567 . 185955) (-3568 . 185847) (-3569 . 185764) + (-3570 . 185608) (-3571 . 185308) (-3572 . 185141) (-3573 . 185054) + (-3574 . 184994) (-3575 . 184890) (-3576 . 184618) (-3577 . 184290) + (-3578 . 184261) (-3579 . 184020) (-3580 . 183967) (-3581 . 183795) + (-3582 . 183477) (-3583 . 183010) (-3584 . 182790) (-3585 . 182688) + (-3586 . 182535) (-3587 . 182394) (-3588 . 182366) (-3589 . 182311) + (-3590 . 180682) (-3591 . 180476) (-3592 . 180345) (-3593 . 180164) + (-3594 . 180025) (-3595 . 179912) (-3596 . 179800) (-3597 . 179692) + (-3598 . 179488) (-3599 . 179383) (-3600 . 179269) (-3601 . 179111) + (-3602 . 178245) (-3603 . 178018) (-3604 . 177783) (-3605 . 177676) + (-3606 . 177450) (-3607 . 177191) (-3608 . 177009) (-3609 . 176890) + (-3610 . 176841) (-3611 . 175467) (-3612 . 175395) (-3613 . 175342) + (-3614 . 174747) (-3615 . 174627) (-3616 . 174107) (-3617 . 173919) + (-3618 . 173863) (-3619 . 173758) (-3620 . 173650) (-3621 . 173576) + (-3622 . 173548) (-3623 . 173396) (-3624 . 173239) (-3625 . 173183) + (-3626 . 173069) (-3627 . 171527) (-3628 . 171453) (-3629 . 171299) + (-3630 . 170937) (-3631 . 170841) (-3632 . 170525) (-3633 . 170401) + (-3634 . 170321) (-3635 . 170268) (-3636 . 170201) (-3637 . 170131) + (-3638 . 170082) (-3639 . 169971) (-3640 . 169867) (-3641 . 169815) + (-3642 . 169699) (-3643 . 169400) (-3644 . 169299) (-3645 . 169021) + (-3646 . 168813) (-3647 . 168733) (-3648 . 168627) (-3649 . 168481) + (-3650 . 168407) (-3651 . 168319) (-3652 . 168176) (-3653 . 168083) + (-3654 . 168013) (-3655 . 167709) (-3656 . 167581) (-3657 . 167279) + (-3658 . 165441) (-3659 . 165177) (-3660 . 164931) (-3661 . 164862) + (-3662 . 164698) (-3663 . 164625) (-3664 . 164484) (-3665 . 164414) + (-3666 . 164102) (-3667 . 164051) (-3668 . 163999) (-3669 . 163915) + (-3670 . 162405) (-3671 . 162176) (-3672 . 162104) (-3673 . 162052) + (-3674 . 161375) (-3675 . 161265) (-3676 . 161205) (-3677 . 161139) + (-3678 . 160861) (-3679 . 160751) (-3680 . 160626) (-3681 . 160409) + (-3682 . 158861) (-3683 . 158674) (-3684 . 158578) (-3685 . 158544) + (-3686 . 158473) (-3687 . 158399) (-3688 . 158346) (-3689 . 158198) + (-3690 . 158033) (-3691 . 157974) (-3692 . 157893) (-3693 . 157777) + (-3694 . 157689) (-3695 . 157518) (-3696 . 157465) (-3697 . 157413) + (-3698 . 157195) (-3699 . 157058) (-3700 . 156844) (-3701 . 156108) + (-3702 . 155990) (-3703 . 154212) (-3704 . 154108) (-3705 . 154035) + (-3706 . 153969) (-3707 . 153751) (-3708 . 153636) (-3709 . 153418) + (-3710 . 153215) (-3711 . 153053) (-3712 . 152870) (-3713 . 152620) + (-3714 . 151907) (-3715 . 151698) (-3716 . 151598) (-3717 . 151407) + (-3718 . 150486) (-3719 . 150323) (-3720 . 150216) (-3721 . 150142) + (-3722 . 150015) (-3723 . 149924) (-3724 . 149766) (-3725 . 149031) + (-3726 . 148609) (-3727 . 148465) (-3728 . 148131) (-3729 . 147951) + (-3730 . 147751) (-3731 . 147482) (-3732 . 147345) (-3733 . 146701) + (-3734 . 146483) (-3735 . 146240) (-3736 . 146212) (-3737 . 146093) + (-3738 . 145672) (-3739 . 145606) (-3740 . 145481) (-3741 . 145248) + (-3742 . 145017) (-3743 . 143845) (-3744 . 143788) (-3745 . 143651) + (-3746 . 143544) (-3747 . 143440) (-3748 . 143363) (-3749 . 143251) + (-3750 . 142971) (-3751 . 142912) (-3752 . 142842) (-3753 . 142677) + (-3754 . 142562) (-3755 . 142332) (-3756 . 142189) (-3757 . 142123) + (-3758 . 142071) (-3759 . 141944) (-3760 . 141801) (-3761 . 141741) + (-3762 . 141600) (-3763 . 141500) (-3764 . 141407) (-3765 . 141279) + (-3766 . 140142) (-3767 . 139057) (-3768 . 138926) (-3769 . 138840) + (-3770 . 138739) (-3771 . 138465) (-3772 . 138013) (-3773 . 137889) + (-3774 . 137780) (-3775 . 137727) (-3776 . 137642) (-3777 . 136930) + (-3778 . 136673) (-3779 . 136499) (-3780 . 136403) (-3781 . 136151) + (-3782 . 135858) (-3783 . 135500) (-3784 . 135311) (-3785 . 135214) + (-3786 . 135069) (-3787 . 134777) (-3788 . 134670) (-3789 . 134602) + (-3790 . 134534) (-3791 . 134430) (-3792 . 134333) (-3793 . 134217) + (-3794 . 134151) (-3795 . 134099) (-3796 . 133921) (-3797 . 133157) + (-3798 . 133017) (-3799 . 132872) (-3800 . 132819) (-3801 . 132766) + (-3802 . 132636) (-3803 . 132585) (-3804 . 132202) (-3805 . 131841) + (-3806 . 131785) (-3807 . 131403) (-3808 . 131325) (-3809 . 131267) + (-3810 . 131160) (-3811 . 131103) (-3812 . 130994) (-3813 . 130899) + (-3814 . 130786) (-3815 . 130248) (-3816 . 130165) (-3817 . 129980) + (-3818 . 129885) (-3819 . 129762) (-3820 . 129557) (-3821 . 129441) + (-3822 . 129361) (-3823 . 129030) (-3824 . 129002) (-3825 . 128903) + (-3826 . 128781) (-3827 . 128732) (-3828 . 128649) (-3829 . 128307) + (-3830 . 128210) (-3831 . 128155) (-3832 . 127811) (-3833 . 127759) + (-3834 . 127511) (-3835 . 127386) (-3836 . 127322) (-3837 . 127228) + (-3838 . 126978) (-3839 . 126637) (-3840 . 126397) (-3841 . 126252) + (-3842 . 125921) (-3843 . 125347) (-3844 . 125252) (-3845 . 125160) + (-3846 . 125051) (-3847 . 124901) (-3848 . 124674) (-3849 . 124522) + (-3850 . 124369) (-3851 . 124287) (-3852 . 124113) (-3853 . 123539) + (-3854 . 123445) (-3855 . 123172) (-3856 . 123119) (-3857 . 123021) + (-3858 . 122950) (-3859 . 122526) (-3860 . 122446) (-3861 . 122414) + (-3862 . 122249) (-3863 . 121675) (-3864 . 121644) (-3865 . 121591) + (-3866 . 121425) (-3867 . 121239) (-3868 . 120937) (-3869 . 120854) + (-3870 . 120595) (-3871 . 120500) (-3872 . 120432) (-3873 . 120318) + (-3874 . 119469) (-3875 . 119413) (-3876 . 119140) (-3877 . 119088) + (-3878 . 118959) (-3879 . 118865) (-3880 . 118425) (-3881 . 118262) + (-3882 . 118109) (-3883 . 117849) (-3884 . 114228) (-3885 . 114043) + (-3886 . 112667) (-3887 . 112524) (-3888 . 112427) (-3889 . 112299) + (-3890 . 112155) (-3891 . 112054) (-3892 . 111891) (-3893 . 111482) + (-3894 . 111234) (-3895 . 110982) (-3896 . 110860) (-3897 . 110809) + (-3898 . 110721) (-3899 . 110648) (-3900 . 110450) (-3901 . 110139) + (-3902 . 109999) (-3903 . 109867) (-3904 . 109701) (-3905 . 109564) + (-3906 . 109532) (-3907 . 109391) (-3908 . 108837) (-3909 . 107762) + (-3910 . 107653) (-3911 . 107565) (-3912 . 107462) (-3913 . 107410) + (-3914 . 107298) (-3915 . 107199) (-3916 . 107084) (-3917 . 107032) + (-3918 . 106958) (-3919 . 106905) (-3920 . 106750) (-3921 . 106542) + (-3922 . 106511) (-3923 . 106298) (-3924 . 106066) (-3925 . 105056) + (-3926 . 105004) (-3927 . 104865) (-3928 . 104494) (-3929 . 104388) + (-3930 . 103972) (-3931 . 103886) (-3932 . 103763) (-3933 . 103140) + (-3934 . 103017) (-3935 . 102850) (-3936 . 102557) (-3937 . 102480) + (-3938 . 102235) (-3939 . 101919) (-3940 . 101761) (-3941 . 101706) + (-3942 . 101623) (-3943 . 101456) (-3944 . 101332) (-3945 . 100982) + (-3946 . 100772) (-3947 . 100639) (-3948 . 100566) (-3949 . 100347) + (-3950 . 100269) (-3951 . 99659) (-3952 . 98502) (-3953 . 98374) + (-3954 . 97887) (-3955 . 97314) (-3956 . 97255) (-3957 . 97155) + (-3958 . 96744) (-3959 . 96660) (-3960 . 96420) (-3961 . 96362) + (-3962 . 96282) (-3963 . 96112) (-3964 . 96039) (-3965 . 95879) + (-3966 . 95633) (-3967 . 95400) (-3968 . 95339) (-3969 . 94478) + (-3970 . 94426) (-3971 . 94356) (-3972 . 94137) (-3973 . 94085) + (-3974 . 93930) (-3975 . 93875) (-3976 . 93747) (-3977 . 93584) + (-3978 . 93475) (-3979 . 93332) (-3980 . 92979) (-3981 . 92842) + (-3982 . 92754) (-3983 . 92601) (-3984 . 92532) (-3985 . 92452) + (-3986 . 92182) (-3987 . 92085) (-3988 . 91925) (-3989 . 91675) + (-3990 . 91555) (-3991 . 91435) (-3992 . 91407) (-3993 . 91355) + (-3994 . 91262) (-3995 . 91206) (-3996 . 91113) (-3997 . 90939) + (-3998 . 90886) (-3999 . 90852) (-4000 . 89687) (-4001 . 89441) + (-4002 . 89347) (-4003 . 89217) (-4004 . 89074) (-4005 . 88922) + (-4006 . 88825) (-4007 . 88623) (-4008 . 88538) (-4009 . 88408) + (-4010 . 88115) (-4011 . 87155) (-4012 . 87111) (-4013 . 87001) + (-4014 . 86898) (-4015 . 86197) (-4016 . 86165) (-4017 . 86060) + (-4018 . 85861) (-4019 . 85809) (-4020 . 85536) (-4021 . 85289) + (-4022 . 85208) (-4023 . 85095) (-4024 . 85027) (-4025 . 84993) + (-4026 . 84315) (-4027 . 84069) (-4028 . 83911) (-4029 . 83739) + (-4030 . 83282) (-4031 . 83194) (-4032 . 82560) (-4033 . 82361) + (-4034 . 82275) (-4035 . 82132) (-4036 . 82063) (-4037 . 81939) + (-12 . 81767) (-4039 . 81668) (-4040 . 81596) (-4041 . 81448) + (-4042 . 81396) (-4043 . 81131) (-4044 . 81057) (-4045 . 80670) + (-4046 . 80339) (-4047 . 80224) (-4048 . 79908) (-4049 . 79856) + (-4050 . 79740) (-4051 . 79381) (-4052 . 78724) (-4053 . 78617) + (-4054 . 78451) (-4055 . 78351) (-4056 . 78254) (-4057 . 78025) + (-4058 . 77228) (-4059 . 77006) (-4060 . 76691) (-4061 . 76597) + (-4062 . 76488) (-4063 . 76213) (-4064 . 76028) (-4065 . 75790) + (-4066 . 75686) (-4067 . 75634) (-4068 . 75568) (-4069 . 75540) + (-4070 . 75343) (-4071 . 75145) (-4072 . 74992) (-4073 . 74407) + (-4074 . 73904) (-4075 . 73727) (-4076 . 73589) (-4077 . 73555) + (-4078 . 73330) (-4079 . 73189) (-4080 . 72867) (-4081 . 72816) + (-4082 . 72657) (-4083 . 72421) (-4084 . 72308) (-4085 . 72222) + (-4086 . 71915) (-4087 . 71855) (-4088 . 71700) (-4089 . 71614) + (-4090 . 71580) (-4091 . 71509) (-4092 . 71424) (-4093 . 71358) + (-4094 . 71066) (-4095 . 70948) (-4096 . 66885) (-4097 . 66832) + (-4098 . 66746) (-4099 . 66676) (-4100 . 66590) (-4101 . 66537) + (-4102 . 66410) (-4103 . 66344) (-4104 . 66166) (-4105 . 66095) + (-4106 . 65668) (-4107 . 65551) (-4108 . 65393) (-4109 . 65315) + (-4110 . 65225) (-4111 . 65166) (-4112 . 65047) (-4113 . 64696) + (-4114 . 64514) (-4115 . 64350) (-4116 . 63903) (-4117 . 63837) + (-4118 . 63768) (-4119 . 63537) (-4120 . 63509) (-4121 . 63400) + (-4122 . 63314) (-4123 . 63126) (-4124 . 63055) (-4125 . 62951) + (-4126 . 62340) (-4127 . 62136) (-4128 . 61983) (-4129 . 61845) + (-4130 . 61792) (* . 57246) (-4132 . 57113) (-4133 . 57030) + (-4134 . 57001) (-4135 . 56758) (-4136 . 56705) (-4137 . 56601) + (-4138 . 56354) (-4139 . 54009) (-4140 . 53908) (-4141 . 53572) + (-4142 . 53241) (-4143 . 53121) (-4144 . 53092) (-4145 . 53032) + (-4146 . 52914) (-4147 . 52799) (-4148 . 52662) (-4149 . 52509) + (-4150 . 52428) (-4151 . 52347) (-4152 . 52226) (-4153 . 42664) + (-4154 . 42578) (-4155 . 42324) (-4156 . 41358) (-4157 . 41167) + (-4158 . 40809) (-4159 . 40659) (-4160 . 40557) (-4161 . 40404) + (-4162 . 40258) (-4163 . 40083) (-4164 . 39986) (-4165 . 39709) + (-4166 . 39567) (-4167 . 39533) (-4168 . 39499) (-4169 . 39331) + (-4170 . 39259) (-4171 . 39173) (-4172 . 39005) (-4173 . 38896) + (-4174 . 38650) (-4175 . 38470) (-4176 . 38359) (-4177 . 38198) + (-4178 . 38053) (-4179 . 37967) (-4180 . 37878) (-4181 . 37777) + (-4182 . 37635) (-4183 . 37603) (-4184 . 37496) (-4185 . 37413) + (-4186 . 37205) (-4187 . 36398) (-4188 . 36268) (-4189 . 36050) + (-4190 . 35743) (-4191 . 35475) (-4192 . 35407) (-4193 . 35345) + (-4194 . 35206) (-4195 . 35123) (-4196 . 35000) (-4197 . 34002) + (-4198 . 33764) (-4199 . 32898) (-4200 . 32833) (-4201 . 32082) + (-4202 . 31952) (-4203 . 31738) (-4204 . 31629) (-4205 . 31055) + (-4206 . 30965) (-4207 . 30915) (-4208 . 30716) (-4209 . 30659) + (-4210 . 30560) (-4211 . 30431) (-4212 . 30344) (-4213 . 30295) + (-4214 . 30189) (-4215 . 29822) (-4216 . 29754) (-4217 . 29572) + (-4218 . 29494) (-4219 . 29422) (-4220 . 29327) (-4221 . 29128) + (-4222 . 28982) (-4223 . 28900) (-4224 . 28820) (-4225 . 28659) + (-4226 . 28496) (-4227 . 28344) (-4228 . 28270) (-4229 . 27383) + (-4230 . 27326) (-4231 . 26854) (-4232 . 26538) (-4233 . 26482) + (-4234 . 26309) (-4235 . 26170) (-4236 . 26096) (-4237 . 25794) + (-4238 . 25725) (-4239 . 25179) (-4240 . 25124) (-4241 . 22856) + (-4242 . 22755) (-4243 . 22681) (-4244 . 22610) (-4245 . 22475) + (-4246 . 22372) (-4247 . 22264) (-4248 . 22235) (-4249 . 22068) + (-4250 . 21649) (-4251 . 21272) (-4252 . 21145) (-4253 . 20984) + (-4254 . 20750) (-4255 . 20342) (-4256 . 20264) (-4257 . 20161) + (-4258 . 20073) (-4259 . 19866) (-4260 . 19682) (-4261 . 19572) + (-4262 . 19431) (-4263 . 18822) (-4264 . 18719) (-4265 . 18285) + (-4266 . 18190) (-4267 . 18071) (-4268 . 17896) (-4269 . 17816) + (-4270 . 16928) (-4271 . 16791) (-4272 . 16427) (-4273 . 16357) + (-4274 . 16266) (-4275 . 16096) (-4276 . 16040) (-4277 . 15860) + (-4278 . 15263) (-4279 . 15104) (-4280 . 14992) (-4281 . 14898) + (-4282 . 13833) (-4283 . 13780) (-4284 . 13622) (-4285 . 12912) + (-4286 . 12810) (-4287 . 12751) (-4288 . 12664) (-4289 . 12611) + (-4290 . 11897) (-4291 . 11781) (-4292 . 11571) (-4293 . 11476) + (-4294 . 11283) (-4295 . 11181) (-4296 . 10600) (-4297 . 10442) + (-4298 . 10347) (-4299 . 10216) (-4300 . 9624) (-4301 . 9176) + (-4302 . 9096) (-4303 . 9016) (-4304 . 8939) (-4305 . 8831) + (-4306 . 8716) (-4307 . 8601) (-4308 . 8494) (-4309 . 8441) + (-4310 . 8375) (-4311 . 7700) (-4312 . 7495) (-4313 . 7442) + (-4314 . 7231) (-4315 . 7109) (-4316 . 6835) (-4317 . 6733) + (-4318 . 6510) (-4319 . 5880) (-4320 . 5822) (-4321 . 5742) + (-4322 . 5559) (-4323 . 5404) (-4324 . 5309) (-4325 . 5202) + (-4326 . 5150) (-4327 . 5053) (-4328 . 4919) (-4329 . 4846) + (-4330 . 4772) (-4331 . 4635) (-4332 . 4469) (-4333 . 4315) + (-4334 . 4046) (-4335 . 3894) (-4336 . 3809) (-4337 . 3754) + (-4338 . 3584) (-4339 . 3388) (-4340 . 3073) (-4341 . 2937) + (-4342 . 2854) (-4343 . 2212) (-4344 . 2134) (-4345 . 2066) + (-4346 . 283) (-4347 . 104) (-4348 . 30))
\ No newline at end of file |